gdb: remove MSYMBOL_TYPE macro
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdbsupport/gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
46 #include "fnmatch.h"
47 #include "hashtab.h"
48 #include "typeprint.h"
49
50 #include "gdbsupport/gdb_obstack.h"
51 #include "block.h"
52 #include "dictionary.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <sys/stat.h>
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observable.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
71 #include <algorithm>
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
75
76 /* Forward declarations for local functions. */
77
78 static void rbreak_command (const char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct block_symbol
83 lookup_symbol_aux (const char *name,
84 symbol_name_match_type match_type,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 struct field_of_this_result *);
89
90 static
91 struct block_symbol lookup_local_symbol (const char *name,
92 symbol_name_match_type match_type,
93 const struct block *block,
94 const domain_enum domain,
95 enum language language);
96
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile *objfile,
99 enum block_enum block_index,
100 const char *name, const domain_enum domain);
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 main_info () = default;
107
108 ~main_info ()
109 {
110 xfree (name_of_main);
111 }
112
113 /* Name of "main". */
114
115 char *name_of_main = nullptr;
116
117 /* Language of "main". */
118
119 enum language language_of_main = language_unknown;
120 };
121
122 /* Program space key for finding name and language of "main". */
123
124 static const program_space_key<main_info> main_progspace_key;
125
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
146
147 enum symbol_cache_slot_state
148 {
149 SYMBOL_SLOT_UNUSED,
150 SYMBOL_SLOT_NOT_FOUND,
151 SYMBOL_SLOT_FOUND
152 };
153
154 struct symbol_cache_slot
155 {
156 enum symbol_cache_slot_state state;
157
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
162
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile *objfile_context;
175
176 union
177 {
178 struct block_symbol found;
179 struct
180 {
181 char *name;
182 domain_enum domain;
183 } not_found;
184 } value;
185 };
186
187 /* Clear out SLOT. */
188
189 static void
190 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
191 {
192 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
193 xfree (slot->value.not_found.name);
194 slot->state = SYMBOL_SLOT_UNUSED;
195 }
196
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
199
200 struct block_symbol_cache
201 {
202 unsigned int hits;
203 unsigned int misses;
204 unsigned int collisions;
205
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
210 unsigned int size;
211
212 struct symbol_cache_slot symbols[1];
213 };
214
215 /* Clear all slots of BSC and free BSC. */
216
217 static void
218 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
219 {
220 if (bsc != nullptr)
221 {
222 for (unsigned int i = 0; i < bsc->size; i++)
223 symbol_cache_clear_slot (&bsc->symbols[i]);
224 xfree (bsc);
225 }
226 }
227
228 /* The symbol cache.
229
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
234
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
237
238 struct symbol_cache
239 {
240 symbol_cache () = default;
241
242 ~symbol_cache ()
243 {
244 destroy_block_symbol_cache (global_symbols);
245 destroy_block_symbol_cache (static_symbols);
246 }
247
248 struct block_symbol_cache *global_symbols = nullptr;
249 struct block_symbol_cache *static_symbols = nullptr;
250 };
251
252 /* Program space key for finding its symbol cache. */
253
254 static const program_space_key<symbol_cache> symbol_cache_key;
255
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug = 0;
258
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug = 0;
261
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
264
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
269
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ = false;
274
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
277 a symbol lookup. */
278
279 const char multiple_symbols_ask[] = "ask";
280 const char multiple_symbols_all[] = "all";
281 const char multiple_symbols_cancel[] = "cancel";
282 static const char *const multiple_symbols_modes[] =
283 {
284 multiple_symbols_ask,
285 multiple_symbols_all,
286 multiple_symbols_cancel,
287 NULL
288 };
289 static const char *multiple_symbols_mode = multiple_symbols_all;
290
291 /* When TRUE, ignore the prologue-end flag in linetable_entry when searching
292 for the SAL past a function prologue. */
293 static bool ignore_prologue_end_flag = false;
294
295 /* Read-only accessor to AUTO_SELECT_MODE. */
296
297 const char *
298 multiple_symbols_select_mode (void)
299 {
300 return multiple_symbols_mode;
301 }
302
303 /* Return the name of a domain_enum. */
304
305 const char *
306 domain_name (domain_enum e)
307 {
308 switch (e)
309 {
310 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
311 case VAR_DOMAIN: return "VAR_DOMAIN";
312 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
313 case MODULE_DOMAIN: return "MODULE_DOMAIN";
314 case LABEL_DOMAIN: return "LABEL_DOMAIN";
315 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
316 default: gdb_assert_not_reached ("bad domain_enum");
317 }
318 }
319
320 /* Return the name of a search_domain . */
321
322 const char *
323 search_domain_name (enum search_domain e)
324 {
325 switch (e)
326 {
327 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
328 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
329 case TYPES_DOMAIN: return "TYPES_DOMAIN";
330 case MODULES_DOMAIN: return "MODULES_DOMAIN";
331 case ALL_DOMAIN: return "ALL_DOMAIN";
332 default: gdb_assert_not_reached ("bad search_domain");
333 }
334 }
335
336 /* See symtab.h. */
337
338 call_site *
339 compunit_symtab::find_call_site (CORE_ADDR pc) const
340 {
341 if (m_call_site_htab == nullptr)
342 return nullptr;
343
344 CORE_ADDR delta
345 = this->objfile ()->section_offsets[this->block_line_section ()];
346 CORE_ADDR unrelocated_pc = pc - delta;
347
348 struct call_site call_site_local (unrelocated_pc, nullptr, nullptr);
349 void **slot
350 = htab_find_slot (m_call_site_htab, &call_site_local, NO_INSERT);
351 if (slot == nullptr)
352 return nullptr;
353
354 return (call_site *) *slot;
355 }
356
357 /* See symtab.h. */
358
359 void
360 compunit_symtab::set_call_site_htab (htab_t call_site_htab)
361 {
362 gdb_assert (m_call_site_htab == nullptr);
363 m_call_site_htab = call_site_htab;
364 }
365
366 /* See symtab.h. */
367
368 void
369 compunit_symtab::set_primary_filetab (symtab *primary_filetab)
370 {
371 symtab *prev_filetab = nullptr;
372
373 /* Move PRIMARY_FILETAB to the head of the filetab list. */
374 for (symtab *filetab : this->filetabs ())
375 {
376 if (filetab == primary_filetab)
377 {
378 if (prev_filetab != nullptr)
379 {
380 prev_filetab->next = primary_filetab->next;
381 primary_filetab->next = m_filetabs;
382 m_filetabs = primary_filetab;
383 }
384
385 break;
386 }
387
388 prev_filetab = filetab;
389 }
390
391 gdb_assert (primary_filetab == m_filetabs);
392 }
393
394 /* See symtab.h. */
395
396 struct symtab *
397 compunit_symtab::primary_filetab () const
398 {
399 gdb_assert (m_filetabs != nullptr);
400
401 /* The primary file symtab is the first one in the list. */
402 return m_filetabs;
403 }
404
405 /* See symtab.h. */
406
407 enum language
408 compunit_language (const struct compunit_symtab *cust)
409 {
410 struct symtab *symtab = cust->primary_filetab ();
411
412 /* The language of the compunit symtab is the language of its primary
413 source file. */
414 return symtab->language ();
415 }
416
417 /* The relocated address of the minimal symbol, using the section
418 offsets from OBJFILE. */
419
420 CORE_ADDR
421 minimal_symbol::value_address (objfile *objfile) const
422 {
423 if (this->maybe_copied)
424 return get_msymbol_address (objfile, this);
425 else
426 return (this->value_raw_address ()
427 + objfile->section_offsets[this->section_index ()]);
428 }
429
430 /* See symtab.h. */
431
432 bool
433 minimal_symbol::data_p () const
434 {
435 return m_type == mst_data
436 || m_type == mst_bss
437 || m_type == mst_abs
438 || m_type == mst_file_data
439 || m_type == mst_file_bss;
440 }
441
442 /* See symtab.h. */
443
444 bool
445 minimal_symbol::text_p () const
446 {
447 return m_type == mst_text
448 || m_type == mst_text_gnu_ifunc
449 || m_type == mst_data_gnu_ifunc
450 || m_type == mst_slot_got_plt
451 || m_type == mst_solib_trampoline
452 || m_type == mst_file_text;
453 }
454
455 /* See whether FILENAME matches SEARCH_NAME using the rule that we
456 advertise to the user. (The manual's description of linespecs
457 describes what we advertise). Returns true if they match, false
458 otherwise. */
459
460 bool
461 compare_filenames_for_search (const char *filename, const char *search_name)
462 {
463 int len = strlen (filename);
464 size_t search_len = strlen (search_name);
465
466 if (len < search_len)
467 return false;
468
469 /* The tail of FILENAME must match. */
470 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
471 return false;
472
473 /* Either the names must completely match, or the character
474 preceding the trailing SEARCH_NAME segment of FILENAME must be a
475 directory separator.
476
477 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
478 cannot match FILENAME "/path//dir/file.c" - as user has requested
479 absolute path. The sama applies for "c:\file.c" possibly
480 incorrectly hypothetically matching "d:\dir\c:\file.c".
481
482 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
483 compatible with SEARCH_NAME "file.c". In such case a compiler had
484 to put the "c:file.c" name into debug info. Such compatibility
485 works only on GDB built for DOS host. */
486 return (len == search_len
487 || (!IS_ABSOLUTE_PATH (search_name)
488 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
489 || (HAS_DRIVE_SPEC (filename)
490 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
491 }
492
493 /* Same as compare_filenames_for_search, but for glob-style patterns.
494 Heads up on the order of the arguments. They match the order of
495 compare_filenames_for_search, but it's the opposite of the order of
496 arguments to gdb_filename_fnmatch. */
497
498 bool
499 compare_glob_filenames_for_search (const char *filename,
500 const char *search_name)
501 {
502 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
503 all /s have to be explicitly specified. */
504 int file_path_elements = count_path_elements (filename);
505 int search_path_elements = count_path_elements (search_name);
506
507 if (search_path_elements > file_path_elements)
508 return false;
509
510 if (IS_ABSOLUTE_PATH (search_name))
511 {
512 return (search_path_elements == file_path_elements
513 && gdb_filename_fnmatch (search_name, filename,
514 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
515 }
516
517 {
518 const char *file_to_compare
519 = strip_leading_path_elements (filename,
520 file_path_elements - search_path_elements);
521
522 return gdb_filename_fnmatch (search_name, file_to_compare,
523 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
524 }
525 }
526
527 /* Check for a symtab of a specific name by searching some symtabs.
528 This is a helper function for callbacks of iterate_over_symtabs.
529
530 If NAME is not absolute, then REAL_PATH is NULL
531 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
532
533 The return value, NAME, REAL_PATH and CALLBACK are identical to the
534 `map_symtabs_matching_filename' method of quick_symbol_functions.
535
536 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
537 Each symtab within the specified compunit symtab is also searched.
538 AFTER_LAST is one past the last compunit symtab to search; NULL means to
539 search until the end of the list. */
540
541 bool
542 iterate_over_some_symtabs (const char *name,
543 const char *real_path,
544 struct compunit_symtab *first,
545 struct compunit_symtab *after_last,
546 gdb::function_view<bool (symtab *)> callback)
547 {
548 struct compunit_symtab *cust;
549 const char* base_name = lbasename (name);
550
551 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
552 {
553 for (symtab *s : cust->filetabs ())
554 {
555 if (compare_filenames_for_search (s->filename, name))
556 {
557 if (callback (s))
558 return true;
559 continue;
560 }
561
562 /* Before we invoke realpath, which can get expensive when many
563 files are involved, do a quick comparison of the basenames. */
564 if (! basenames_may_differ
565 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
566 continue;
567
568 if (compare_filenames_for_search (symtab_to_fullname (s), name))
569 {
570 if (callback (s))
571 return true;
572 continue;
573 }
574
575 /* If the user gave us an absolute path, try to find the file in
576 this symtab and use its absolute path. */
577 if (real_path != NULL)
578 {
579 const char *fullname = symtab_to_fullname (s);
580
581 gdb_assert (IS_ABSOLUTE_PATH (real_path));
582 gdb_assert (IS_ABSOLUTE_PATH (name));
583 gdb::unique_xmalloc_ptr<char> fullname_real_path
584 = gdb_realpath (fullname);
585 fullname = fullname_real_path.get ();
586 if (FILENAME_CMP (real_path, fullname) == 0)
587 {
588 if (callback (s))
589 return true;
590 continue;
591 }
592 }
593 }
594 }
595
596 return false;
597 }
598
599 /* Check for a symtab of a specific name; first in symtabs, then in
600 psymtabs. *If* there is no '/' in the name, a match after a '/'
601 in the symtab filename will also work.
602
603 Calls CALLBACK with each symtab that is found. If CALLBACK returns
604 true, the search stops. */
605
606 void
607 iterate_over_symtabs (const char *name,
608 gdb::function_view<bool (symtab *)> callback)
609 {
610 gdb::unique_xmalloc_ptr<char> real_path;
611
612 /* Here we are interested in canonicalizing an absolute path, not
613 absolutizing a relative path. */
614 if (IS_ABSOLUTE_PATH (name))
615 {
616 real_path = gdb_realpath (name);
617 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
618 }
619
620 for (objfile *objfile : current_program_space->objfiles ())
621 {
622 if (iterate_over_some_symtabs (name, real_path.get (),
623 objfile->compunit_symtabs, NULL,
624 callback))
625 return;
626 }
627
628 /* Same search rules as above apply here, but now we look thru the
629 psymtabs. */
630
631 for (objfile *objfile : current_program_space->objfiles ())
632 {
633 if (objfile->map_symtabs_matching_filename (name, real_path.get (),
634 callback))
635 return;
636 }
637 }
638
639 /* A wrapper for iterate_over_symtabs that returns the first matching
640 symtab, or NULL. */
641
642 struct symtab *
643 lookup_symtab (const char *name)
644 {
645 struct symtab *result = NULL;
646
647 iterate_over_symtabs (name, [&] (symtab *symtab)
648 {
649 result = symtab;
650 return true;
651 });
652
653 return result;
654 }
655
656 \f
657 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
658 full method name, which consist of the class name (from T), the unadorned
659 method name from METHOD_ID, and the signature for the specific overload,
660 specified by SIGNATURE_ID. Note that this function is g++ specific. */
661
662 char *
663 gdb_mangle_name (struct type *type, int method_id, int signature_id)
664 {
665 int mangled_name_len;
666 char *mangled_name;
667 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
668 struct fn_field *method = &f[signature_id];
669 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
670 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
671 const char *newname = type->name ();
672
673 /* Does the form of physname indicate that it is the full mangled name
674 of a constructor (not just the args)? */
675 int is_full_physname_constructor;
676
677 int is_constructor;
678 int is_destructor = is_destructor_name (physname);
679 /* Need a new type prefix. */
680 const char *const_prefix = method->is_const ? "C" : "";
681 const char *volatile_prefix = method->is_volatile ? "V" : "";
682 char buf[20];
683 int len = (newname == NULL ? 0 : strlen (newname));
684
685 /* Nothing to do if physname already contains a fully mangled v3 abi name
686 or an operator name. */
687 if ((physname[0] == '_' && physname[1] == 'Z')
688 || is_operator_name (field_name))
689 return xstrdup (physname);
690
691 is_full_physname_constructor = is_constructor_name (physname);
692
693 is_constructor = is_full_physname_constructor
694 || (newname && strcmp (field_name, newname) == 0);
695
696 if (!is_destructor)
697 is_destructor = (startswith (physname, "__dt"));
698
699 if (is_destructor || is_full_physname_constructor)
700 {
701 mangled_name = (char *) xmalloc (strlen (physname) + 1);
702 strcpy (mangled_name, physname);
703 return mangled_name;
704 }
705
706 if (len == 0)
707 {
708 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
709 }
710 else if (physname[0] == 't' || physname[0] == 'Q')
711 {
712 /* The physname for template and qualified methods already includes
713 the class name. */
714 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
715 newname = NULL;
716 len = 0;
717 }
718 else
719 {
720 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
721 volatile_prefix, len);
722 }
723 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
724 + strlen (buf) + len + strlen (physname) + 1);
725
726 mangled_name = (char *) xmalloc (mangled_name_len);
727 if (is_constructor)
728 mangled_name[0] = '\0';
729 else
730 strcpy (mangled_name, field_name);
731
732 strcat (mangled_name, buf);
733 /* If the class doesn't have a name, i.e. newname NULL, then we just
734 mangle it using 0 for the length of the class. Thus it gets mangled
735 as something starting with `::' rather than `classname::'. */
736 if (newname != NULL)
737 strcat (mangled_name, newname);
738
739 strcat (mangled_name, physname);
740 return (mangled_name);
741 }
742
743 /* See symtab.h. */
744
745 void
746 general_symbol_info::set_demangled_name (const char *name,
747 struct obstack *obstack)
748 {
749 if (language () == language_ada)
750 {
751 if (name == NULL)
752 {
753 ada_mangled = 0;
754 language_specific.obstack = obstack;
755 }
756 else
757 {
758 ada_mangled = 1;
759 language_specific.demangled_name = name;
760 }
761 }
762 else
763 language_specific.demangled_name = name;
764 }
765
766 \f
767 /* Initialize the language dependent portion of a symbol
768 depending upon the language for the symbol. */
769
770 void
771 general_symbol_info::set_language (enum language language,
772 struct obstack *obstack)
773 {
774 m_language = language;
775 if (language == language_cplus
776 || language == language_d
777 || language == language_go
778 || language == language_objc
779 || language == language_fortran)
780 {
781 set_demangled_name (NULL, obstack);
782 }
783 else if (language == language_ada)
784 {
785 gdb_assert (ada_mangled == 0);
786 language_specific.obstack = obstack;
787 }
788 else
789 {
790 memset (&language_specific, 0, sizeof (language_specific));
791 }
792 }
793
794 /* Functions to initialize a symbol's mangled name. */
795
796 /* Objects of this type are stored in the demangled name hash table. */
797 struct demangled_name_entry
798 {
799 demangled_name_entry (gdb::string_view mangled_name)
800 : mangled (mangled_name) {}
801
802 gdb::string_view mangled;
803 enum language language;
804 gdb::unique_xmalloc_ptr<char> demangled;
805 };
806
807 /* Hash function for the demangled name hash. */
808
809 static hashval_t
810 hash_demangled_name_entry (const void *data)
811 {
812 const struct demangled_name_entry *e
813 = (const struct demangled_name_entry *) data;
814
815 return fast_hash (e->mangled.data (), e->mangled.length ());
816 }
817
818 /* Equality function for the demangled name hash. */
819
820 static int
821 eq_demangled_name_entry (const void *a, const void *b)
822 {
823 const struct demangled_name_entry *da
824 = (const struct demangled_name_entry *) a;
825 const struct demangled_name_entry *db
826 = (const struct demangled_name_entry *) b;
827
828 return da->mangled == db->mangled;
829 }
830
831 static void
832 free_demangled_name_entry (void *data)
833 {
834 struct demangled_name_entry *e
835 = (struct demangled_name_entry *) data;
836
837 e->~demangled_name_entry();
838 }
839
840 /* Create the hash table used for demangled names. Each hash entry is
841 a pair of strings; one for the mangled name and one for the demangled
842 name. The entry is hashed via just the mangled name. */
843
844 static void
845 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
846 {
847 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
848 The hash table code will round this up to the next prime number.
849 Choosing a much larger table size wastes memory, and saves only about
850 1% in symbol reading. However, if the minsym count is already
851 initialized (e.g. because symbol name setting was deferred to
852 a background thread) we can initialize the hashtable with a count
853 based on that, because we will almost certainly have at least that
854 many entries. If we have a nonzero number but less than 256,
855 we still stay with 256 to have some space for psymbols, etc. */
856
857 /* htab will expand the table when it is 3/4th full, so we account for that
858 here. +2 to round up. */
859 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
860 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
861
862 per_bfd->demangled_names_hash.reset (htab_create_alloc
863 (count, hash_demangled_name_entry, eq_demangled_name_entry,
864 free_demangled_name_entry, xcalloc, xfree));
865 }
866
867 /* See symtab.h */
868
869 gdb::unique_xmalloc_ptr<char>
870 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
871 const char *mangled)
872 {
873 gdb::unique_xmalloc_ptr<char> demangled;
874 int i;
875
876 if (gsymbol->language () == language_unknown)
877 gsymbol->m_language = language_auto;
878
879 if (gsymbol->language () != language_auto)
880 {
881 const struct language_defn *lang = language_def (gsymbol->language ());
882
883 lang->sniff_from_mangled_name (mangled, &demangled);
884 return demangled;
885 }
886
887 for (i = language_unknown; i < nr_languages; ++i)
888 {
889 enum language l = (enum language) i;
890 const struct language_defn *lang = language_def (l);
891
892 if (lang->sniff_from_mangled_name (mangled, &demangled))
893 {
894 gsymbol->m_language = l;
895 return demangled;
896 }
897 }
898
899 return NULL;
900 }
901
902 /* Set both the mangled and demangled (if any) names for GSYMBOL based
903 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
904 objfile's obstack; but if COPY_NAME is 0 and if NAME is
905 NUL-terminated, then this function assumes that NAME is already
906 correctly saved (either permanently or with a lifetime tied to the
907 objfile), and it will not be copied.
908
909 The hash table corresponding to OBJFILE is used, and the memory
910 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
911 so the pointer can be discarded after calling this function. */
912
913 void
914 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
915 bool copy_name,
916 objfile_per_bfd_storage *per_bfd,
917 gdb::optional<hashval_t> hash)
918 {
919 struct demangled_name_entry **slot;
920
921 if (language () == language_ada)
922 {
923 /* In Ada, we do the symbol lookups using the mangled name, so
924 we can save some space by not storing the demangled name. */
925 if (!copy_name)
926 m_name = linkage_name.data ();
927 else
928 m_name = obstack_strndup (&per_bfd->storage_obstack,
929 linkage_name.data (),
930 linkage_name.length ());
931 set_demangled_name (NULL, &per_bfd->storage_obstack);
932
933 return;
934 }
935
936 if (per_bfd->demangled_names_hash == NULL)
937 create_demangled_names_hash (per_bfd);
938
939 struct demangled_name_entry entry (linkage_name);
940 if (!hash.has_value ())
941 hash = hash_demangled_name_entry (&entry);
942 slot = ((struct demangled_name_entry **)
943 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
944 &entry, *hash, INSERT));
945
946 /* The const_cast is safe because the only reason it is already
947 initialized is if we purposefully set it from a background
948 thread to avoid doing the work here. However, it is still
949 allocated from the heap and needs to be freed by us, just
950 like if we called symbol_find_demangled_name here. If this is
951 nullptr, we call symbol_find_demangled_name below, but we put
952 this smart pointer here to be sure that we don't leak this name. */
953 gdb::unique_xmalloc_ptr<char> demangled_name
954 (const_cast<char *> (language_specific.demangled_name));
955
956 /* If this name is not in the hash table, add it. */
957 if (*slot == NULL
958 /* A C version of the symbol may have already snuck into the table.
959 This happens to, e.g., main.init (__go_init_main). Cope. */
960 || (language () == language_go && (*slot)->demangled == nullptr))
961 {
962 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
963 to true if the string might not be nullterminated. We have to make
964 this copy because demangling needs a nullterminated string. */
965 gdb::string_view linkage_name_copy;
966 if (copy_name)
967 {
968 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
969 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
970 alloc_name[linkage_name.length ()] = '\0';
971
972 linkage_name_copy = gdb::string_view (alloc_name,
973 linkage_name.length ());
974 }
975 else
976 linkage_name_copy = linkage_name;
977
978 if (demangled_name.get () == nullptr)
979 demangled_name
980 = symbol_find_demangled_name (this, linkage_name_copy.data ());
981
982 /* Suppose we have demangled_name==NULL, copy_name==0, and
983 linkage_name_copy==linkage_name. In this case, we already have the
984 mangled name saved, and we don't have a demangled name. So,
985 you might think we could save a little space by not recording
986 this in the hash table at all.
987
988 It turns out that it is actually important to still save such
989 an entry in the hash table, because storing this name gives
990 us better bcache hit rates for partial symbols. */
991 if (!copy_name)
992 {
993 *slot
994 = ((struct demangled_name_entry *)
995 obstack_alloc (&per_bfd->storage_obstack,
996 sizeof (demangled_name_entry)));
997 new (*slot) demangled_name_entry (linkage_name);
998 }
999 else
1000 {
1001 /* If we must copy the mangled name, put it directly after
1002 the struct so we can have a single allocation. */
1003 *slot
1004 = ((struct demangled_name_entry *)
1005 obstack_alloc (&per_bfd->storage_obstack,
1006 sizeof (demangled_name_entry)
1007 + linkage_name.length () + 1));
1008 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
1009 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
1010 mangled_ptr [linkage_name.length ()] = '\0';
1011 new (*slot) demangled_name_entry
1012 (gdb::string_view (mangled_ptr, linkage_name.length ()));
1013 }
1014 (*slot)->demangled = std::move (demangled_name);
1015 (*slot)->language = language ();
1016 }
1017 else if (language () == language_unknown || language () == language_auto)
1018 m_language = (*slot)->language;
1019
1020 m_name = (*slot)->mangled.data ();
1021 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
1022 }
1023
1024 /* See symtab.h. */
1025
1026 const char *
1027 general_symbol_info::natural_name () const
1028 {
1029 switch (language ())
1030 {
1031 case language_cplus:
1032 case language_d:
1033 case language_go:
1034 case language_objc:
1035 case language_fortran:
1036 case language_rust:
1037 if (language_specific.demangled_name != nullptr)
1038 return language_specific.demangled_name;
1039 break;
1040 case language_ada:
1041 return ada_decode_symbol (this);
1042 default:
1043 break;
1044 }
1045 return linkage_name ();
1046 }
1047
1048 /* See symtab.h. */
1049
1050 const char *
1051 general_symbol_info::demangled_name () const
1052 {
1053 const char *dem_name = NULL;
1054
1055 switch (language ())
1056 {
1057 case language_cplus:
1058 case language_d:
1059 case language_go:
1060 case language_objc:
1061 case language_fortran:
1062 case language_rust:
1063 dem_name = language_specific.demangled_name;
1064 break;
1065 case language_ada:
1066 dem_name = ada_decode_symbol (this);
1067 break;
1068 default:
1069 break;
1070 }
1071 return dem_name;
1072 }
1073
1074 /* See symtab.h. */
1075
1076 const char *
1077 general_symbol_info::search_name () const
1078 {
1079 if (language () == language_ada)
1080 return linkage_name ();
1081 else
1082 return natural_name ();
1083 }
1084
1085 /* See symtab.h. */
1086
1087 struct obj_section *
1088 general_symbol_info::obj_section (const struct objfile *objfile) const
1089 {
1090 if (section_index () >= 0)
1091 return &objfile->sections[section_index ()];
1092 return nullptr;
1093 }
1094
1095 /* See symtab.h. */
1096
1097 bool
1098 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1099 const lookup_name_info &name)
1100 {
1101 symbol_name_matcher_ftype *name_match
1102 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1103 return name_match (gsymbol->search_name (), name, NULL);
1104 }
1105
1106 \f
1107
1108 /* Return true if the two sections are the same, or if they could
1109 plausibly be copies of each other, one in an original object
1110 file and another in a separated debug file. */
1111
1112 bool
1113 matching_obj_sections (struct obj_section *obj_first,
1114 struct obj_section *obj_second)
1115 {
1116 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1117 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1118
1119 /* If they're the same section, then they match. */
1120 if (first == second)
1121 return true;
1122
1123 /* If either is NULL, give up. */
1124 if (first == NULL || second == NULL)
1125 return false;
1126
1127 /* This doesn't apply to absolute symbols. */
1128 if (first->owner == NULL || second->owner == NULL)
1129 return false;
1130
1131 /* If they're in the same object file, they must be different sections. */
1132 if (first->owner == second->owner)
1133 return false;
1134
1135 /* Check whether the two sections are potentially corresponding. They must
1136 have the same size, address, and name. We can't compare section indexes,
1137 which would be more reliable, because some sections may have been
1138 stripped. */
1139 if (bfd_section_size (first) != bfd_section_size (second))
1140 return false;
1141
1142 /* In-memory addresses may start at a different offset, relativize them. */
1143 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1144 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1145 return false;
1146
1147 if (bfd_section_name (first) == NULL
1148 || bfd_section_name (second) == NULL
1149 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1150 return false;
1151
1152 /* Otherwise check that they are in corresponding objfiles. */
1153
1154 struct objfile *obj = NULL;
1155 for (objfile *objfile : current_program_space->objfiles ())
1156 if (objfile->obfd == first->owner)
1157 {
1158 obj = objfile;
1159 break;
1160 }
1161 gdb_assert (obj != NULL);
1162
1163 if (obj->separate_debug_objfile != NULL
1164 && obj->separate_debug_objfile->obfd == second->owner)
1165 return true;
1166 if (obj->separate_debug_objfile_backlink != NULL
1167 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1168 return true;
1169
1170 return false;
1171 }
1172
1173 /* See symtab.h. */
1174
1175 void
1176 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1177 {
1178 struct bound_minimal_symbol msymbol;
1179
1180 /* If we know that this is not a text address, return failure. This is
1181 necessary because we loop based on texthigh and textlow, which do
1182 not include the data ranges. */
1183 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1184 if (msymbol.minsym && msymbol.minsym->data_p ())
1185 return;
1186
1187 for (objfile *objfile : current_program_space->objfiles ())
1188 {
1189 struct compunit_symtab *cust
1190 = objfile->find_pc_sect_compunit_symtab (msymbol, pc, section, 0);
1191 if (cust)
1192 return;
1193 }
1194 }
1195 \f
1196 /* Hash function for the symbol cache. */
1197
1198 static unsigned int
1199 hash_symbol_entry (const struct objfile *objfile_context,
1200 const char *name, domain_enum domain)
1201 {
1202 unsigned int hash = (uintptr_t) objfile_context;
1203
1204 if (name != NULL)
1205 hash += htab_hash_string (name);
1206
1207 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1208 to map to the same slot. */
1209 if (domain == STRUCT_DOMAIN)
1210 hash += VAR_DOMAIN * 7;
1211 else
1212 hash += domain * 7;
1213
1214 return hash;
1215 }
1216
1217 /* Equality function for the symbol cache. */
1218
1219 static int
1220 eq_symbol_entry (const struct symbol_cache_slot *slot,
1221 const struct objfile *objfile_context,
1222 const char *name, domain_enum domain)
1223 {
1224 const char *slot_name;
1225 domain_enum slot_domain;
1226
1227 if (slot->state == SYMBOL_SLOT_UNUSED)
1228 return 0;
1229
1230 if (slot->objfile_context != objfile_context)
1231 return 0;
1232
1233 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1234 {
1235 slot_name = slot->value.not_found.name;
1236 slot_domain = slot->value.not_found.domain;
1237 }
1238 else
1239 {
1240 slot_name = slot->value.found.symbol->search_name ();
1241 slot_domain = slot->value.found.symbol->domain ();
1242 }
1243
1244 /* NULL names match. */
1245 if (slot_name == NULL && name == NULL)
1246 {
1247 /* But there's no point in calling symbol_matches_domain in the
1248 SYMBOL_SLOT_FOUND case. */
1249 if (slot_domain != domain)
1250 return 0;
1251 }
1252 else if (slot_name != NULL && name != NULL)
1253 {
1254 /* It's important that we use the same comparison that was done
1255 the first time through. If the slot records a found symbol,
1256 then this means using the symbol name comparison function of
1257 the symbol's language with symbol->search_name (). See
1258 dictionary.c. It also means using symbol_matches_domain for
1259 found symbols. See block.c.
1260
1261 If the slot records a not-found symbol, then require a precise match.
1262 We could still be lax with whitespace like strcmp_iw though. */
1263
1264 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1265 {
1266 if (strcmp (slot_name, name) != 0)
1267 return 0;
1268 if (slot_domain != domain)
1269 return 0;
1270 }
1271 else
1272 {
1273 struct symbol *sym = slot->value.found.symbol;
1274 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1275
1276 if (!symbol_matches_search_name (sym, lookup_name))
1277 return 0;
1278
1279 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1280 return 0;
1281 }
1282 }
1283 else
1284 {
1285 /* Only one name is NULL. */
1286 return 0;
1287 }
1288
1289 return 1;
1290 }
1291
1292 /* Given a cache of size SIZE, return the size of the struct (with variable
1293 length array) in bytes. */
1294
1295 static size_t
1296 symbol_cache_byte_size (unsigned int size)
1297 {
1298 return (sizeof (struct block_symbol_cache)
1299 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1300 }
1301
1302 /* Resize CACHE. */
1303
1304 static void
1305 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1306 {
1307 /* If there's no change in size, don't do anything.
1308 All caches have the same size, so we can just compare with the size
1309 of the global symbols cache. */
1310 if ((cache->global_symbols != NULL
1311 && cache->global_symbols->size == new_size)
1312 || (cache->global_symbols == NULL
1313 && new_size == 0))
1314 return;
1315
1316 destroy_block_symbol_cache (cache->global_symbols);
1317 destroy_block_symbol_cache (cache->static_symbols);
1318
1319 if (new_size == 0)
1320 {
1321 cache->global_symbols = NULL;
1322 cache->static_symbols = NULL;
1323 }
1324 else
1325 {
1326 size_t total_size = symbol_cache_byte_size (new_size);
1327
1328 cache->global_symbols
1329 = (struct block_symbol_cache *) xcalloc (1, total_size);
1330 cache->static_symbols
1331 = (struct block_symbol_cache *) xcalloc (1, total_size);
1332 cache->global_symbols->size = new_size;
1333 cache->static_symbols->size = new_size;
1334 }
1335 }
1336
1337 /* Return the symbol cache of PSPACE.
1338 Create one if it doesn't exist yet. */
1339
1340 static struct symbol_cache *
1341 get_symbol_cache (struct program_space *pspace)
1342 {
1343 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1344
1345 if (cache == NULL)
1346 {
1347 cache = symbol_cache_key.emplace (pspace);
1348 resize_symbol_cache (cache, symbol_cache_size);
1349 }
1350
1351 return cache;
1352 }
1353
1354 /* Set the size of the symbol cache in all program spaces. */
1355
1356 static void
1357 set_symbol_cache_size (unsigned int new_size)
1358 {
1359 for (struct program_space *pspace : program_spaces)
1360 {
1361 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1362
1363 /* The pspace could have been created but not have a cache yet. */
1364 if (cache != NULL)
1365 resize_symbol_cache (cache, new_size);
1366 }
1367 }
1368
1369 /* Called when symbol-cache-size is set. */
1370
1371 static void
1372 set_symbol_cache_size_handler (const char *args, int from_tty,
1373 struct cmd_list_element *c)
1374 {
1375 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1376 {
1377 /* Restore the previous value.
1378 This is the value the "show" command prints. */
1379 new_symbol_cache_size = symbol_cache_size;
1380
1381 error (_("Symbol cache size is too large, max is %u."),
1382 MAX_SYMBOL_CACHE_SIZE);
1383 }
1384 symbol_cache_size = new_symbol_cache_size;
1385
1386 set_symbol_cache_size (symbol_cache_size);
1387 }
1388
1389 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1390 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1391 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1392 failed (and thus this one will too), or NULL if the symbol is not present
1393 in the cache.
1394 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1395 can be used to save the result of a full lookup attempt. */
1396
1397 static struct block_symbol
1398 symbol_cache_lookup (struct symbol_cache *cache,
1399 struct objfile *objfile_context, enum block_enum block,
1400 const char *name, domain_enum domain,
1401 struct block_symbol_cache **bsc_ptr,
1402 struct symbol_cache_slot **slot_ptr)
1403 {
1404 struct block_symbol_cache *bsc;
1405 unsigned int hash;
1406 struct symbol_cache_slot *slot;
1407
1408 if (block == GLOBAL_BLOCK)
1409 bsc = cache->global_symbols;
1410 else
1411 bsc = cache->static_symbols;
1412 if (bsc == NULL)
1413 {
1414 *bsc_ptr = NULL;
1415 *slot_ptr = NULL;
1416 return {};
1417 }
1418
1419 hash = hash_symbol_entry (objfile_context, name, domain);
1420 slot = bsc->symbols + hash % bsc->size;
1421
1422 *bsc_ptr = bsc;
1423 *slot_ptr = slot;
1424
1425 if (eq_symbol_entry (slot, objfile_context, name, domain))
1426 {
1427 if (symbol_lookup_debug)
1428 gdb_printf (gdb_stdlog,
1429 "%s block symbol cache hit%s for %s, %s\n",
1430 block == GLOBAL_BLOCK ? "Global" : "Static",
1431 slot->state == SYMBOL_SLOT_NOT_FOUND
1432 ? " (not found)" : "",
1433 name, domain_name (domain));
1434 ++bsc->hits;
1435 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1436 return SYMBOL_LOOKUP_FAILED;
1437 return slot->value.found;
1438 }
1439
1440 /* Symbol is not present in the cache. */
1441
1442 if (symbol_lookup_debug)
1443 {
1444 gdb_printf (gdb_stdlog,
1445 "%s block symbol cache miss for %s, %s\n",
1446 block == GLOBAL_BLOCK ? "Global" : "Static",
1447 name, domain_name (domain));
1448 }
1449 ++bsc->misses;
1450 return {};
1451 }
1452
1453 /* Mark SYMBOL as found in SLOT.
1454 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1455 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1456 necessarily the objfile the symbol was found in. */
1457
1458 static void
1459 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1460 struct symbol_cache_slot *slot,
1461 struct objfile *objfile_context,
1462 struct symbol *symbol,
1463 const struct block *block)
1464 {
1465 if (bsc == NULL)
1466 return;
1467 if (slot->state != SYMBOL_SLOT_UNUSED)
1468 {
1469 ++bsc->collisions;
1470 symbol_cache_clear_slot (slot);
1471 }
1472 slot->state = SYMBOL_SLOT_FOUND;
1473 slot->objfile_context = objfile_context;
1474 slot->value.found.symbol = symbol;
1475 slot->value.found.block = block;
1476 }
1477
1478 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1479 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1480 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1481
1482 static void
1483 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1484 struct symbol_cache_slot *slot,
1485 struct objfile *objfile_context,
1486 const char *name, domain_enum domain)
1487 {
1488 if (bsc == NULL)
1489 return;
1490 if (slot->state != SYMBOL_SLOT_UNUSED)
1491 {
1492 ++bsc->collisions;
1493 symbol_cache_clear_slot (slot);
1494 }
1495 slot->state = SYMBOL_SLOT_NOT_FOUND;
1496 slot->objfile_context = objfile_context;
1497 slot->value.not_found.name = xstrdup (name);
1498 slot->value.not_found.domain = domain;
1499 }
1500
1501 /* Flush the symbol cache of PSPACE. */
1502
1503 static void
1504 symbol_cache_flush (struct program_space *pspace)
1505 {
1506 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1507 int pass;
1508
1509 if (cache == NULL)
1510 return;
1511 if (cache->global_symbols == NULL)
1512 {
1513 gdb_assert (symbol_cache_size == 0);
1514 gdb_assert (cache->static_symbols == NULL);
1515 return;
1516 }
1517
1518 /* If the cache is untouched since the last flush, early exit.
1519 This is important for performance during the startup of a program linked
1520 with 100s (or 1000s) of shared libraries. */
1521 if (cache->global_symbols->misses == 0
1522 && cache->static_symbols->misses == 0)
1523 return;
1524
1525 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1526 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1527
1528 for (pass = 0; pass < 2; ++pass)
1529 {
1530 struct block_symbol_cache *bsc
1531 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1532 unsigned int i;
1533
1534 for (i = 0; i < bsc->size; ++i)
1535 symbol_cache_clear_slot (&bsc->symbols[i]);
1536 }
1537
1538 cache->global_symbols->hits = 0;
1539 cache->global_symbols->misses = 0;
1540 cache->global_symbols->collisions = 0;
1541 cache->static_symbols->hits = 0;
1542 cache->static_symbols->misses = 0;
1543 cache->static_symbols->collisions = 0;
1544 }
1545
1546 /* Dump CACHE. */
1547
1548 static void
1549 symbol_cache_dump (const struct symbol_cache *cache)
1550 {
1551 int pass;
1552
1553 if (cache->global_symbols == NULL)
1554 {
1555 gdb_printf (" <disabled>\n");
1556 return;
1557 }
1558
1559 for (pass = 0; pass < 2; ++pass)
1560 {
1561 const struct block_symbol_cache *bsc
1562 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1563 unsigned int i;
1564
1565 if (pass == 0)
1566 gdb_printf ("Global symbols:\n");
1567 else
1568 gdb_printf ("Static symbols:\n");
1569
1570 for (i = 0; i < bsc->size; ++i)
1571 {
1572 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1573
1574 QUIT;
1575
1576 switch (slot->state)
1577 {
1578 case SYMBOL_SLOT_UNUSED:
1579 break;
1580 case SYMBOL_SLOT_NOT_FOUND:
1581 gdb_printf (" [%4u] = %s, %s %s (not found)\n", i,
1582 host_address_to_string (slot->objfile_context),
1583 slot->value.not_found.name,
1584 domain_name (slot->value.not_found.domain));
1585 break;
1586 case SYMBOL_SLOT_FOUND:
1587 {
1588 struct symbol *found = slot->value.found.symbol;
1589 const struct objfile *context = slot->objfile_context;
1590
1591 gdb_printf (" [%4u] = %s, %s %s\n", i,
1592 host_address_to_string (context),
1593 found->print_name (),
1594 domain_name (found->domain ()));
1595 break;
1596 }
1597 }
1598 }
1599 }
1600 }
1601
1602 /* The "mt print symbol-cache" command. */
1603
1604 static void
1605 maintenance_print_symbol_cache (const char *args, int from_tty)
1606 {
1607 for (struct program_space *pspace : program_spaces)
1608 {
1609 struct symbol_cache *cache;
1610
1611 gdb_printf (_("Symbol cache for pspace %d\n%s:\n"),
1612 pspace->num,
1613 pspace->symfile_object_file != NULL
1614 ? objfile_name (pspace->symfile_object_file)
1615 : "(no object file)");
1616
1617 /* If the cache hasn't been created yet, avoid creating one. */
1618 cache = symbol_cache_key.get (pspace);
1619 if (cache == NULL)
1620 gdb_printf (" <empty>\n");
1621 else
1622 symbol_cache_dump (cache);
1623 }
1624 }
1625
1626 /* The "mt flush-symbol-cache" command. */
1627
1628 static void
1629 maintenance_flush_symbol_cache (const char *args, int from_tty)
1630 {
1631 for (struct program_space *pspace : program_spaces)
1632 {
1633 symbol_cache_flush (pspace);
1634 }
1635 }
1636
1637 /* Print usage statistics of CACHE. */
1638
1639 static void
1640 symbol_cache_stats (struct symbol_cache *cache)
1641 {
1642 int pass;
1643
1644 if (cache->global_symbols == NULL)
1645 {
1646 gdb_printf (" <disabled>\n");
1647 return;
1648 }
1649
1650 for (pass = 0; pass < 2; ++pass)
1651 {
1652 const struct block_symbol_cache *bsc
1653 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1654
1655 QUIT;
1656
1657 if (pass == 0)
1658 gdb_printf ("Global block cache stats:\n");
1659 else
1660 gdb_printf ("Static block cache stats:\n");
1661
1662 gdb_printf (" size: %u\n", bsc->size);
1663 gdb_printf (" hits: %u\n", bsc->hits);
1664 gdb_printf (" misses: %u\n", bsc->misses);
1665 gdb_printf (" collisions: %u\n", bsc->collisions);
1666 }
1667 }
1668
1669 /* The "mt print symbol-cache-statistics" command. */
1670
1671 static void
1672 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1673 {
1674 for (struct program_space *pspace : program_spaces)
1675 {
1676 struct symbol_cache *cache;
1677
1678 gdb_printf (_("Symbol cache statistics for pspace %d\n%s:\n"),
1679 pspace->num,
1680 pspace->symfile_object_file != NULL
1681 ? objfile_name (pspace->symfile_object_file)
1682 : "(no object file)");
1683
1684 /* If the cache hasn't been created yet, avoid creating one. */
1685 cache = symbol_cache_key.get (pspace);
1686 if (cache == NULL)
1687 gdb_printf (" empty, no stats available\n");
1688 else
1689 symbol_cache_stats (cache);
1690 }
1691 }
1692
1693 /* This module's 'new_objfile' observer. */
1694
1695 static void
1696 symtab_new_objfile_observer (struct objfile *objfile)
1697 {
1698 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1699 symbol_cache_flush (current_program_space);
1700 }
1701
1702 /* This module's 'free_objfile' observer. */
1703
1704 static void
1705 symtab_free_objfile_observer (struct objfile *objfile)
1706 {
1707 symbol_cache_flush (objfile->pspace);
1708 }
1709 \f
1710 /* Debug symbols usually don't have section information. We need to dig that
1711 out of the minimal symbols and stash that in the debug symbol. */
1712
1713 void
1714 fixup_section (struct general_symbol_info *ginfo,
1715 CORE_ADDR addr, struct objfile *objfile)
1716 {
1717 struct minimal_symbol *msym;
1718
1719 /* First, check whether a minimal symbol with the same name exists
1720 and points to the same address. The address check is required
1721 e.g. on PowerPC64, where the minimal symbol for a function will
1722 point to the function descriptor, while the debug symbol will
1723 point to the actual function code. */
1724 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1725 objfile);
1726 if (msym)
1727 ginfo->set_section_index (msym->section_index ());
1728 else
1729 {
1730 /* Static, function-local variables do appear in the linker
1731 (minimal) symbols, but are frequently given names that won't
1732 be found via lookup_minimal_symbol(). E.g., it has been
1733 observed in frv-uclinux (ELF) executables that a static,
1734 function-local variable named "foo" might appear in the
1735 linker symbols as "foo.6" or "foo.3". Thus, there is no
1736 point in attempting to extend the lookup-by-name mechanism to
1737 handle this case due to the fact that there can be multiple
1738 names.
1739
1740 So, instead, search the section table when lookup by name has
1741 failed. The ``addr'' and ``endaddr'' fields may have already
1742 been relocated. If so, the relocation offset needs to be
1743 subtracted from these values when performing the comparison.
1744 We unconditionally subtract it, because, when no relocation
1745 has been performed, the value will simply be zero.
1746
1747 The address of the symbol whose section we're fixing up HAS
1748 NOT BEEN adjusted (relocated) yet. It can't have been since
1749 the section isn't yet known and knowing the section is
1750 necessary in order to add the correct relocation value. In
1751 other words, we wouldn't even be in this function (attempting
1752 to compute the section) if it were already known.
1753
1754 Note that it is possible to search the minimal symbols
1755 (subtracting the relocation value if necessary) to find the
1756 matching minimal symbol, but this is overkill and much less
1757 efficient. It is not necessary to find the matching minimal
1758 symbol, only its section.
1759
1760 Note that this technique (of doing a section table search)
1761 can fail when unrelocated section addresses overlap. For
1762 this reason, we still attempt a lookup by name prior to doing
1763 a search of the section table. */
1764
1765 struct obj_section *s;
1766 int fallback = -1;
1767
1768 ALL_OBJFILE_OSECTIONS (objfile, s)
1769 {
1770 int idx = s - objfile->sections;
1771 CORE_ADDR offset = objfile->section_offsets[idx];
1772
1773 if (fallback == -1)
1774 fallback = idx;
1775
1776 if (s->addr () - offset <= addr && addr < s->endaddr () - offset)
1777 {
1778 ginfo->set_section_index (idx);
1779 return;
1780 }
1781 }
1782
1783 /* If we didn't find the section, assume it is in the first
1784 section. If there is no allocated section, then it hardly
1785 matters what we pick, so just pick zero. */
1786 if (fallback == -1)
1787 ginfo->set_section_index (0);
1788 else
1789 ginfo->set_section_index (fallback);
1790 }
1791 }
1792
1793 struct symbol *
1794 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1795 {
1796 CORE_ADDR addr;
1797
1798 if (!sym)
1799 return NULL;
1800
1801 if (!sym->is_objfile_owned ())
1802 return sym;
1803
1804 /* We either have an OBJFILE, or we can get at it from the sym's
1805 symtab. Anything else is a bug. */
1806 gdb_assert (objfile || symbol_symtab (sym));
1807
1808 if (objfile == NULL)
1809 objfile = symbol_objfile (sym);
1810
1811 if (sym->obj_section (objfile) != nullptr)
1812 return sym;
1813
1814 /* We should have an objfile by now. */
1815 gdb_assert (objfile);
1816
1817 switch (sym->aclass ())
1818 {
1819 case LOC_STATIC:
1820 case LOC_LABEL:
1821 addr = sym->value_address ();
1822 break;
1823 case LOC_BLOCK:
1824 addr = BLOCK_ENTRY_PC (sym->value_block ());
1825 break;
1826
1827 default:
1828 /* Nothing else will be listed in the minsyms -- no use looking
1829 it up. */
1830 return sym;
1831 }
1832
1833 fixup_section (sym, addr, objfile);
1834
1835 return sym;
1836 }
1837
1838 /* See symtab.h. */
1839
1840 demangle_for_lookup_info::demangle_for_lookup_info
1841 (const lookup_name_info &lookup_name, language lang)
1842 {
1843 demangle_result_storage storage;
1844
1845 if (lookup_name.ignore_parameters () && lang == language_cplus)
1846 {
1847 gdb::unique_xmalloc_ptr<char> without_params
1848 = cp_remove_params_if_any (lookup_name.c_str (),
1849 lookup_name.completion_mode ());
1850
1851 if (without_params != NULL)
1852 {
1853 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1854 m_demangled_name = demangle_for_lookup (without_params.get (),
1855 lang, storage);
1856 return;
1857 }
1858 }
1859
1860 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1861 m_demangled_name = lookup_name.c_str ();
1862 else
1863 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1864 lang, storage);
1865 }
1866
1867 /* See symtab.h. */
1868
1869 const lookup_name_info &
1870 lookup_name_info::match_any ()
1871 {
1872 /* Lookup any symbol that "" would complete. I.e., this matches all
1873 symbol names. */
1874 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1875 true);
1876
1877 return lookup_name;
1878 }
1879
1880 /* Compute the demangled form of NAME as used by the various symbol
1881 lookup functions. The result can either be the input NAME
1882 directly, or a pointer to a buffer owned by the STORAGE object.
1883
1884 For Ada, this function just returns NAME, unmodified.
1885 Normally, Ada symbol lookups are performed using the encoded name
1886 rather than the demangled name, and so it might seem to make sense
1887 for this function to return an encoded version of NAME.
1888 Unfortunately, we cannot do this, because this function is used in
1889 circumstances where it is not appropriate to try to encode NAME.
1890 For instance, when displaying the frame info, we demangle the name
1891 of each parameter, and then perform a symbol lookup inside our
1892 function using that demangled name. In Ada, certain functions
1893 have internally-generated parameters whose name contain uppercase
1894 characters. Encoding those name would result in those uppercase
1895 characters to become lowercase, and thus cause the symbol lookup
1896 to fail. */
1897
1898 const char *
1899 demangle_for_lookup (const char *name, enum language lang,
1900 demangle_result_storage &storage)
1901 {
1902 /* If we are using C++, D, or Go, demangle the name before doing a
1903 lookup, so we can always binary search. */
1904 if (lang == language_cplus)
1905 {
1906 gdb::unique_xmalloc_ptr<char> demangled_name
1907 = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1908 if (demangled_name != NULL)
1909 return storage.set_malloc_ptr (std::move (demangled_name));
1910
1911 /* If we were given a non-mangled name, canonicalize it
1912 according to the language (so far only for C++). */
1913 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1914 if (canon != nullptr)
1915 return storage.set_malloc_ptr (std::move (canon));
1916 }
1917 else if (lang == language_d)
1918 {
1919 gdb::unique_xmalloc_ptr<char> demangled_name = d_demangle (name, 0);
1920 if (demangled_name != NULL)
1921 return storage.set_malloc_ptr (std::move (demangled_name));
1922 }
1923 else if (lang == language_go)
1924 {
1925 gdb::unique_xmalloc_ptr<char> demangled_name
1926 = language_def (language_go)->demangle_symbol (name, 0);
1927 if (demangled_name != NULL)
1928 return storage.set_malloc_ptr (std::move (demangled_name));
1929 }
1930
1931 return name;
1932 }
1933
1934 /* See symtab.h. */
1935
1936 unsigned int
1937 search_name_hash (enum language language, const char *search_name)
1938 {
1939 return language_def (language)->search_name_hash (search_name);
1940 }
1941
1942 /* See symtab.h.
1943
1944 This function (or rather its subordinates) have a bunch of loops and
1945 it would seem to be attractive to put in some QUIT's (though I'm not really
1946 sure whether it can run long enough to be really important). But there
1947 are a few calls for which it would appear to be bad news to quit
1948 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1949 that there is C++ code below which can error(), but that probably
1950 doesn't affect these calls since they are looking for a known
1951 variable and thus can probably assume it will never hit the C++
1952 code). */
1953
1954 struct block_symbol
1955 lookup_symbol_in_language (const char *name, const struct block *block,
1956 const domain_enum domain, enum language lang,
1957 struct field_of_this_result *is_a_field_of_this)
1958 {
1959 demangle_result_storage storage;
1960 const char *modified_name = demangle_for_lookup (name, lang, storage);
1961
1962 return lookup_symbol_aux (modified_name,
1963 symbol_name_match_type::FULL,
1964 block, domain, lang,
1965 is_a_field_of_this);
1966 }
1967
1968 /* See symtab.h. */
1969
1970 struct block_symbol
1971 lookup_symbol (const char *name, const struct block *block,
1972 domain_enum domain,
1973 struct field_of_this_result *is_a_field_of_this)
1974 {
1975 return lookup_symbol_in_language (name, block, domain,
1976 current_language->la_language,
1977 is_a_field_of_this);
1978 }
1979
1980 /* See symtab.h. */
1981
1982 struct block_symbol
1983 lookup_symbol_search_name (const char *search_name, const struct block *block,
1984 domain_enum domain)
1985 {
1986 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1987 block, domain, language_asm, NULL);
1988 }
1989
1990 /* See symtab.h. */
1991
1992 struct block_symbol
1993 lookup_language_this (const struct language_defn *lang,
1994 const struct block *block)
1995 {
1996 if (lang->name_of_this () == NULL || block == NULL)
1997 return {};
1998
1999 if (symbol_lookup_debug > 1)
2000 {
2001 struct objfile *objfile = block_objfile (block);
2002
2003 gdb_printf (gdb_stdlog,
2004 "lookup_language_this (%s, %s (objfile %s))",
2005 lang->name (), host_address_to_string (block),
2006 objfile_debug_name (objfile));
2007 }
2008
2009 while (block)
2010 {
2011 struct symbol *sym;
2012
2013 sym = block_lookup_symbol (block, lang->name_of_this (),
2014 symbol_name_match_type::SEARCH_NAME,
2015 VAR_DOMAIN);
2016 if (sym != NULL)
2017 {
2018 if (symbol_lookup_debug > 1)
2019 {
2020 gdb_printf (gdb_stdlog, " = %s (%s, block %s)\n",
2021 sym->print_name (),
2022 host_address_to_string (sym),
2023 host_address_to_string (block));
2024 }
2025 return (struct block_symbol) {sym, block};
2026 }
2027 if (BLOCK_FUNCTION (block))
2028 break;
2029 block = BLOCK_SUPERBLOCK (block);
2030 }
2031
2032 if (symbol_lookup_debug > 1)
2033 gdb_printf (gdb_stdlog, " = NULL\n");
2034 return {};
2035 }
2036
2037 /* Given TYPE, a structure/union,
2038 return 1 if the component named NAME from the ultimate target
2039 structure/union is defined, otherwise, return 0. */
2040
2041 static int
2042 check_field (struct type *type, const char *name,
2043 struct field_of_this_result *is_a_field_of_this)
2044 {
2045 int i;
2046
2047 /* The type may be a stub. */
2048 type = check_typedef (type);
2049
2050 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
2051 {
2052 const char *t_field_name = type->field (i).name ();
2053
2054 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2055 {
2056 is_a_field_of_this->type = type;
2057 is_a_field_of_this->field = &type->field (i);
2058 return 1;
2059 }
2060 }
2061
2062 /* C++: If it was not found as a data field, then try to return it
2063 as a pointer to a method. */
2064
2065 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2066 {
2067 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2068 {
2069 is_a_field_of_this->type = type;
2070 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2071 return 1;
2072 }
2073 }
2074
2075 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2076 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2077 return 1;
2078
2079 return 0;
2080 }
2081
2082 /* Behave like lookup_symbol except that NAME is the natural name
2083 (e.g., demangled name) of the symbol that we're looking for. */
2084
2085 static struct block_symbol
2086 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2087 const struct block *block,
2088 const domain_enum domain, enum language language,
2089 struct field_of_this_result *is_a_field_of_this)
2090 {
2091 struct block_symbol result;
2092 const struct language_defn *langdef;
2093
2094 if (symbol_lookup_debug)
2095 {
2096 struct objfile *objfile = (block == nullptr
2097 ? nullptr : block_objfile (block));
2098
2099 gdb_printf (gdb_stdlog,
2100 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2101 name, host_address_to_string (block),
2102 objfile != NULL
2103 ? objfile_debug_name (objfile) : "NULL",
2104 domain_name (domain), language_str (language));
2105 }
2106
2107 /* Make sure we do something sensible with is_a_field_of_this, since
2108 the callers that set this parameter to some non-null value will
2109 certainly use it later. If we don't set it, the contents of
2110 is_a_field_of_this are undefined. */
2111 if (is_a_field_of_this != NULL)
2112 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2113
2114 /* Search specified block and its superiors. Don't search
2115 STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 result = lookup_local_symbol (name, match_type, block, domain, language);
2118 if (result.symbol != NULL)
2119 {
2120 if (symbol_lookup_debug)
2121 {
2122 gdb_printf (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2123 host_address_to_string (result.symbol));
2124 }
2125 return result;
2126 }
2127
2128 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2129 check to see if NAME is a field of `this'. */
2130
2131 langdef = language_def (language);
2132
2133 /* Don't do this check if we are searching for a struct. It will
2134 not be found by check_field, but will be found by other
2135 means. */
2136 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2137 {
2138 result = lookup_language_this (langdef, block);
2139
2140 if (result.symbol)
2141 {
2142 struct type *t = result.symbol->type ();
2143
2144 /* I'm not really sure that type of this can ever
2145 be typedefed; just be safe. */
2146 t = check_typedef (t);
2147 if (t->is_pointer_or_reference ())
2148 t = TYPE_TARGET_TYPE (t);
2149
2150 if (t->code () != TYPE_CODE_STRUCT
2151 && t->code () != TYPE_CODE_UNION)
2152 error (_("Internal error: `%s' is not an aggregate"),
2153 langdef->name_of_this ());
2154
2155 if (check_field (t, name, is_a_field_of_this))
2156 {
2157 if (symbol_lookup_debug)
2158 {
2159 gdb_printf (gdb_stdlog,
2160 "lookup_symbol_aux (...) = NULL\n");
2161 }
2162 return {};
2163 }
2164 }
2165 }
2166
2167 /* Now do whatever is appropriate for LANGUAGE to look
2168 up static and global variables. */
2169
2170 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2171 if (result.symbol != NULL)
2172 {
2173 if (symbol_lookup_debug)
2174 {
2175 gdb_printf (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2176 host_address_to_string (result.symbol));
2177 }
2178 return result;
2179 }
2180
2181 /* Now search all static file-level symbols. Not strictly correct,
2182 but more useful than an error. */
2183
2184 result = lookup_static_symbol (name, domain);
2185 if (symbol_lookup_debug)
2186 {
2187 gdb_printf (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2188 result.symbol != NULL
2189 ? host_address_to_string (result.symbol)
2190 : "NULL");
2191 }
2192 return result;
2193 }
2194
2195 /* Check to see if the symbol is defined in BLOCK or its superiors.
2196 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2197
2198 static struct block_symbol
2199 lookup_local_symbol (const char *name,
2200 symbol_name_match_type match_type,
2201 const struct block *block,
2202 const domain_enum domain,
2203 enum language language)
2204 {
2205 struct symbol *sym;
2206 const struct block *static_block = block_static_block (block);
2207 const char *scope = block_scope (block);
2208
2209 /* Check if either no block is specified or it's a global block. */
2210
2211 if (static_block == NULL)
2212 return {};
2213
2214 while (block != static_block)
2215 {
2216 sym = lookup_symbol_in_block (name, match_type, block, domain);
2217 if (sym != NULL)
2218 return (struct block_symbol) {sym, block};
2219
2220 if (language == language_cplus || language == language_fortran)
2221 {
2222 struct block_symbol blocksym
2223 = cp_lookup_symbol_imports_or_template (scope, name, block,
2224 domain);
2225
2226 if (blocksym.symbol != NULL)
2227 return blocksym;
2228 }
2229
2230 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2231 break;
2232 block = BLOCK_SUPERBLOCK (block);
2233 }
2234
2235 /* We've reached the end of the function without finding a result. */
2236
2237 return {};
2238 }
2239
2240 /* See symtab.h. */
2241
2242 struct symbol *
2243 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2244 const struct block *block,
2245 const domain_enum domain)
2246 {
2247 struct symbol *sym;
2248
2249 if (symbol_lookup_debug > 1)
2250 {
2251 struct objfile *objfile = (block == nullptr
2252 ? nullptr : block_objfile (block));
2253
2254 gdb_printf (gdb_stdlog,
2255 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2256 name, host_address_to_string (block),
2257 objfile_debug_name (objfile),
2258 domain_name (domain));
2259 }
2260
2261 sym = block_lookup_symbol (block, name, match_type, domain);
2262 if (sym)
2263 {
2264 if (symbol_lookup_debug > 1)
2265 {
2266 gdb_printf (gdb_stdlog, " = %s\n",
2267 host_address_to_string (sym));
2268 }
2269 return fixup_symbol_section (sym, NULL);
2270 }
2271
2272 if (symbol_lookup_debug > 1)
2273 gdb_printf (gdb_stdlog, " = NULL\n");
2274 return NULL;
2275 }
2276
2277 /* See symtab.h. */
2278
2279 struct block_symbol
2280 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2281 enum block_enum block_index,
2282 const char *name,
2283 const domain_enum domain)
2284 {
2285 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2286
2287 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2288 {
2289 struct block_symbol result
2290 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2291
2292 if (result.symbol != nullptr)
2293 return result;
2294 }
2295
2296 return {};
2297 }
2298
2299 /* Check to see if the symbol is defined in one of the OBJFILE's
2300 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2301 depending on whether or not we want to search global symbols or
2302 static symbols. */
2303
2304 static struct block_symbol
2305 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2306 enum block_enum block_index, const char *name,
2307 const domain_enum domain)
2308 {
2309 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2310
2311 if (symbol_lookup_debug > 1)
2312 {
2313 gdb_printf (gdb_stdlog,
2314 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2315 objfile_debug_name (objfile),
2316 block_index == GLOBAL_BLOCK
2317 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2318 name, domain_name (domain));
2319 }
2320
2321 struct block_symbol other;
2322 other.symbol = NULL;
2323 for (compunit_symtab *cust : objfile->compunits ())
2324 {
2325 const struct blockvector *bv;
2326 const struct block *block;
2327 struct block_symbol result;
2328
2329 bv = cust->blockvector ();
2330 block = BLOCKVECTOR_BLOCK (bv, block_index);
2331 result.symbol = block_lookup_symbol_primary (block, name, domain);
2332 result.block = block;
2333 if (result.symbol == NULL)
2334 continue;
2335 if (best_symbol (result.symbol, domain))
2336 {
2337 other = result;
2338 break;
2339 }
2340 if (symbol_matches_domain (result.symbol->language (),
2341 result.symbol->domain (), domain))
2342 {
2343 struct symbol *better
2344 = better_symbol (other.symbol, result.symbol, domain);
2345 if (better != other.symbol)
2346 {
2347 other.symbol = better;
2348 other.block = block;
2349 }
2350 }
2351 }
2352
2353 if (other.symbol != NULL)
2354 {
2355 if (symbol_lookup_debug > 1)
2356 {
2357 gdb_printf (gdb_stdlog, " = %s (block %s)\n",
2358 host_address_to_string (other.symbol),
2359 host_address_to_string (other.block));
2360 }
2361 other.symbol = fixup_symbol_section (other.symbol, objfile);
2362 return other;
2363 }
2364
2365 if (symbol_lookup_debug > 1)
2366 gdb_printf (gdb_stdlog, " = NULL\n");
2367 return {};
2368 }
2369
2370 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2371 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2372 and all associated separate debug objfiles.
2373
2374 Normally we only look in OBJFILE, and not any separate debug objfiles
2375 because the outer loop will cause them to be searched too. This case is
2376 different. Here we're called from search_symbols where it will only
2377 call us for the objfile that contains a matching minsym. */
2378
2379 static struct block_symbol
2380 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2381 const char *linkage_name,
2382 domain_enum domain)
2383 {
2384 enum language lang = current_language->la_language;
2385 struct objfile *main_objfile;
2386
2387 demangle_result_storage storage;
2388 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2389
2390 if (objfile->separate_debug_objfile_backlink)
2391 main_objfile = objfile->separate_debug_objfile_backlink;
2392 else
2393 main_objfile = objfile;
2394
2395 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2396 {
2397 struct block_symbol result;
2398
2399 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2400 modified_name, domain);
2401 if (result.symbol == NULL)
2402 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2403 modified_name, domain);
2404 if (result.symbol != NULL)
2405 return result;
2406 }
2407
2408 return {};
2409 }
2410
2411 /* A helper function that throws an exception when a symbol was found
2412 in a psymtab but not in a symtab. */
2413
2414 static void ATTRIBUTE_NORETURN
2415 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2416 struct compunit_symtab *cust)
2417 {
2418 error (_("\
2419 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2420 %s may be an inlined function, or may be a template function\n \
2421 (if a template, try specifying an instantiation: %s<type>)."),
2422 block_index == GLOBAL_BLOCK ? "global" : "static",
2423 name,
2424 symtab_to_filename_for_display (cust->primary_filetab ()),
2425 name, name);
2426 }
2427
2428 /* A helper function for various lookup routines that interfaces with
2429 the "quick" symbol table functions. */
2430
2431 static struct block_symbol
2432 lookup_symbol_via_quick_fns (struct objfile *objfile,
2433 enum block_enum block_index, const char *name,
2434 const domain_enum domain)
2435 {
2436 struct compunit_symtab *cust;
2437 const struct blockvector *bv;
2438 const struct block *block;
2439 struct block_symbol result;
2440
2441 if (symbol_lookup_debug > 1)
2442 {
2443 gdb_printf (gdb_stdlog,
2444 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2445 objfile_debug_name (objfile),
2446 block_index == GLOBAL_BLOCK
2447 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2448 name, domain_name (domain));
2449 }
2450
2451 cust = objfile->lookup_symbol (block_index, name, domain);
2452 if (cust == NULL)
2453 {
2454 if (symbol_lookup_debug > 1)
2455 {
2456 gdb_printf (gdb_stdlog,
2457 "lookup_symbol_via_quick_fns (...) = NULL\n");
2458 }
2459 return {};
2460 }
2461
2462 bv = cust->blockvector ();
2463 block = BLOCKVECTOR_BLOCK (bv, block_index);
2464 result.symbol = block_lookup_symbol (block, name,
2465 symbol_name_match_type::FULL, domain);
2466 if (result.symbol == NULL)
2467 error_in_psymtab_expansion (block_index, name, cust);
2468
2469 if (symbol_lookup_debug > 1)
2470 {
2471 gdb_printf (gdb_stdlog,
2472 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2473 host_address_to_string (result.symbol),
2474 host_address_to_string (block));
2475 }
2476
2477 result.symbol = fixup_symbol_section (result.symbol, objfile);
2478 result.block = block;
2479 return result;
2480 }
2481
2482 /* See language.h. */
2483
2484 struct block_symbol
2485 language_defn::lookup_symbol_nonlocal (const char *name,
2486 const struct block *block,
2487 const domain_enum domain) const
2488 {
2489 struct block_symbol result;
2490
2491 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2492 the current objfile. Searching the current objfile first is useful
2493 for both matching user expectations as well as performance. */
2494
2495 result = lookup_symbol_in_static_block (name, block, domain);
2496 if (result.symbol != NULL)
2497 return result;
2498
2499 /* If we didn't find a definition for a builtin type in the static block,
2500 search for it now. This is actually the right thing to do and can be
2501 a massive performance win. E.g., when debugging a program with lots of
2502 shared libraries we could search all of them only to find out the
2503 builtin type isn't defined in any of them. This is common for types
2504 like "void". */
2505 if (domain == VAR_DOMAIN)
2506 {
2507 struct gdbarch *gdbarch;
2508
2509 if (block == NULL)
2510 gdbarch = target_gdbarch ();
2511 else
2512 gdbarch = block_gdbarch (block);
2513 result.symbol = language_lookup_primitive_type_as_symbol (this,
2514 gdbarch, name);
2515 result.block = NULL;
2516 if (result.symbol != NULL)
2517 return result;
2518 }
2519
2520 return lookup_global_symbol (name, block, domain);
2521 }
2522
2523 /* See symtab.h. */
2524
2525 struct block_symbol
2526 lookup_symbol_in_static_block (const char *name,
2527 const struct block *block,
2528 const domain_enum domain)
2529 {
2530 const struct block *static_block = block_static_block (block);
2531 struct symbol *sym;
2532
2533 if (static_block == NULL)
2534 return {};
2535
2536 if (symbol_lookup_debug)
2537 {
2538 struct objfile *objfile = (block == nullptr
2539 ? nullptr : block_objfile (block));
2540
2541 gdb_printf (gdb_stdlog,
2542 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2543 " %s)\n",
2544 name,
2545 host_address_to_string (block),
2546 objfile_debug_name (objfile),
2547 domain_name (domain));
2548 }
2549
2550 sym = lookup_symbol_in_block (name,
2551 symbol_name_match_type::FULL,
2552 static_block, domain);
2553 if (symbol_lookup_debug)
2554 {
2555 gdb_printf (gdb_stdlog,
2556 "lookup_symbol_in_static_block (...) = %s\n",
2557 sym != NULL ? host_address_to_string (sym) : "NULL");
2558 }
2559 return (struct block_symbol) {sym, static_block};
2560 }
2561
2562 /* Perform the standard symbol lookup of NAME in OBJFILE:
2563 1) First search expanded symtabs, and if not found
2564 2) Search the "quick" symtabs (partial or .gdb_index).
2565 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2566
2567 static struct block_symbol
2568 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2569 const char *name, const domain_enum domain)
2570 {
2571 struct block_symbol result;
2572
2573 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2574
2575 if (symbol_lookup_debug)
2576 {
2577 gdb_printf (gdb_stdlog,
2578 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2579 objfile_debug_name (objfile),
2580 block_index == GLOBAL_BLOCK
2581 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2582 name, domain_name (domain));
2583 }
2584
2585 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2586 name, domain);
2587 if (result.symbol != NULL)
2588 {
2589 if (symbol_lookup_debug)
2590 {
2591 gdb_printf (gdb_stdlog,
2592 "lookup_symbol_in_objfile (...) = %s"
2593 " (in symtabs)\n",
2594 host_address_to_string (result.symbol));
2595 }
2596 return result;
2597 }
2598
2599 result = lookup_symbol_via_quick_fns (objfile, block_index,
2600 name, domain);
2601 if (symbol_lookup_debug)
2602 {
2603 gdb_printf (gdb_stdlog,
2604 "lookup_symbol_in_objfile (...) = %s%s\n",
2605 result.symbol != NULL
2606 ? host_address_to_string (result.symbol)
2607 : "NULL",
2608 result.symbol != NULL ? " (via quick fns)" : "");
2609 }
2610 return result;
2611 }
2612
2613 /* Find the language for partial symbol with NAME. */
2614
2615 static enum language
2616 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2617 {
2618 for (objfile *objfile : current_program_space->objfiles ())
2619 {
2620 bool symbol_found_p;
2621 enum language lang
2622 = objfile->lookup_global_symbol_language (name, domain, &symbol_found_p);
2623 if (symbol_found_p)
2624 return lang;
2625 }
2626
2627 return language_unknown;
2628 }
2629
2630 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2631
2632 struct global_or_static_sym_lookup_data
2633 {
2634 /* The name of the symbol we are searching for. */
2635 const char *name;
2636
2637 /* The domain to use for our search. */
2638 domain_enum domain;
2639
2640 /* The block index in which to search. */
2641 enum block_enum block_index;
2642
2643 /* The field where the callback should store the symbol if found.
2644 It should be initialized to {NULL, NULL} before the search is started. */
2645 struct block_symbol result;
2646 };
2647
2648 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2649 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2650 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2651 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2652
2653 static int
2654 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2655 void *cb_data)
2656 {
2657 struct global_or_static_sym_lookup_data *data =
2658 (struct global_or_static_sym_lookup_data *) cb_data;
2659
2660 gdb_assert (data->result.symbol == NULL
2661 && data->result.block == NULL);
2662
2663 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2664 data->name, data->domain);
2665
2666 /* If we found a match, tell the iterator to stop. Otherwise,
2667 keep going. */
2668 return (data->result.symbol != NULL);
2669 }
2670
2671 /* This function contains the common code of lookup_{global,static}_symbol.
2672 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2673 the objfile to start the lookup in. */
2674
2675 static struct block_symbol
2676 lookup_global_or_static_symbol (const char *name,
2677 enum block_enum block_index,
2678 struct objfile *objfile,
2679 const domain_enum domain)
2680 {
2681 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2682 struct block_symbol result;
2683 struct global_or_static_sym_lookup_data lookup_data;
2684 struct block_symbol_cache *bsc;
2685 struct symbol_cache_slot *slot;
2686
2687 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2688 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2689
2690 /* First see if we can find the symbol in the cache.
2691 This works because we use the current objfile to qualify the lookup. */
2692 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2693 &bsc, &slot);
2694 if (result.symbol != NULL)
2695 {
2696 if (SYMBOL_LOOKUP_FAILED_P (result))
2697 return {};
2698 return result;
2699 }
2700
2701 /* Do a global search (of global blocks, heh). */
2702 if (result.symbol == NULL)
2703 {
2704 memset (&lookup_data, 0, sizeof (lookup_data));
2705 lookup_data.name = name;
2706 lookup_data.block_index = block_index;
2707 lookup_data.domain = domain;
2708 gdbarch_iterate_over_objfiles_in_search_order
2709 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2710 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2711 result = lookup_data.result;
2712 }
2713
2714 if (result.symbol != NULL)
2715 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2716 else
2717 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2718
2719 return result;
2720 }
2721
2722 /* See symtab.h. */
2723
2724 struct block_symbol
2725 lookup_static_symbol (const char *name, const domain_enum domain)
2726 {
2727 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2728 }
2729
2730 /* See symtab.h. */
2731
2732 struct block_symbol
2733 lookup_global_symbol (const char *name,
2734 const struct block *block,
2735 const domain_enum domain)
2736 {
2737 /* If a block was passed in, we want to search the corresponding
2738 global block first. This yields "more expected" behavior, and is
2739 needed to support 'FILENAME'::VARIABLE lookups. */
2740 const struct block *global_block = block_global_block (block);
2741 symbol *sym = NULL;
2742 if (global_block != nullptr)
2743 {
2744 sym = lookup_symbol_in_block (name,
2745 symbol_name_match_type::FULL,
2746 global_block, domain);
2747 if (sym != NULL && best_symbol (sym, domain))
2748 return { sym, global_block };
2749 }
2750
2751 struct objfile *objfile = nullptr;
2752 if (block != nullptr)
2753 {
2754 objfile = block_objfile (block);
2755 if (objfile->separate_debug_objfile_backlink != nullptr)
2756 objfile = objfile->separate_debug_objfile_backlink;
2757 }
2758
2759 block_symbol bs
2760 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2761 if (better_symbol (sym, bs.symbol, domain) == sym)
2762 return { sym, global_block };
2763 else
2764 return bs;
2765 }
2766
2767 bool
2768 symbol_matches_domain (enum language symbol_language,
2769 domain_enum symbol_domain,
2770 domain_enum domain)
2771 {
2772 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2773 Similarly, any Ada type declaration implicitly defines a typedef. */
2774 if (symbol_language == language_cplus
2775 || symbol_language == language_d
2776 || symbol_language == language_ada
2777 || symbol_language == language_rust)
2778 {
2779 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2780 && symbol_domain == STRUCT_DOMAIN)
2781 return true;
2782 }
2783 /* For all other languages, strict match is required. */
2784 return (symbol_domain == domain);
2785 }
2786
2787 /* See symtab.h. */
2788
2789 struct type *
2790 lookup_transparent_type (const char *name)
2791 {
2792 return current_language->lookup_transparent_type (name);
2793 }
2794
2795 /* A helper for basic_lookup_transparent_type that interfaces with the
2796 "quick" symbol table functions. */
2797
2798 static struct type *
2799 basic_lookup_transparent_type_quick (struct objfile *objfile,
2800 enum block_enum block_index,
2801 const char *name)
2802 {
2803 struct compunit_symtab *cust;
2804 const struct blockvector *bv;
2805 const struct block *block;
2806 struct symbol *sym;
2807
2808 cust = objfile->lookup_symbol (block_index, name, STRUCT_DOMAIN);
2809 if (cust == NULL)
2810 return NULL;
2811
2812 bv = cust->blockvector ();
2813 block = BLOCKVECTOR_BLOCK (bv, block_index);
2814 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2815 block_find_non_opaque_type, NULL);
2816 if (sym == NULL)
2817 error_in_psymtab_expansion (block_index, name, cust);
2818 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2819 return sym->type ();
2820 }
2821
2822 /* Subroutine of basic_lookup_transparent_type to simplify it.
2823 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2824 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2825
2826 static struct type *
2827 basic_lookup_transparent_type_1 (struct objfile *objfile,
2828 enum block_enum block_index,
2829 const char *name)
2830 {
2831 const struct blockvector *bv;
2832 const struct block *block;
2833 const struct symbol *sym;
2834
2835 for (compunit_symtab *cust : objfile->compunits ())
2836 {
2837 bv = cust->blockvector ();
2838 block = BLOCKVECTOR_BLOCK (bv, block_index);
2839 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2840 block_find_non_opaque_type, NULL);
2841 if (sym != NULL)
2842 {
2843 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2844 return sym->type ();
2845 }
2846 }
2847
2848 return NULL;
2849 }
2850
2851 /* The standard implementation of lookup_transparent_type. This code
2852 was modeled on lookup_symbol -- the parts not relevant to looking
2853 up types were just left out. In particular it's assumed here that
2854 types are available in STRUCT_DOMAIN and only in file-static or
2855 global blocks. */
2856
2857 struct type *
2858 basic_lookup_transparent_type (const char *name)
2859 {
2860 struct type *t;
2861
2862 /* Now search all the global symbols. Do the symtab's first, then
2863 check the psymtab's. If a psymtab indicates the existence
2864 of the desired name as a global, then do psymtab-to-symtab
2865 conversion on the fly and return the found symbol. */
2866
2867 for (objfile *objfile : current_program_space->objfiles ())
2868 {
2869 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2870 if (t)
2871 return t;
2872 }
2873
2874 for (objfile *objfile : current_program_space->objfiles ())
2875 {
2876 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2877 if (t)
2878 return t;
2879 }
2880
2881 /* Now search the static file-level symbols.
2882 Not strictly correct, but more useful than an error.
2883 Do the symtab's first, then
2884 check the psymtab's. If a psymtab indicates the existence
2885 of the desired name as a file-level static, then do psymtab-to-symtab
2886 conversion on the fly and return the found symbol. */
2887
2888 for (objfile *objfile : current_program_space->objfiles ())
2889 {
2890 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2891 if (t)
2892 return t;
2893 }
2894
2895 for (objfile *objfile : current_program_space->objfiles ())
2896 {
2897 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2898 if (t)
2899 return t;
2900 }
2901
2902 return (struct type *) 0;
2903 }
2904
2905 /* See symtab.h. */
2906
2907 bool
2908 iterate_over_symbols (const struct block *block,
2909 const lookup_name_info &name,
2910 const domain_enum domain,
2911 gdb::function_view<symbol_found_callback_ftype> callback)
2912 {
2913 struct block_iterator iter;
2914 struct symbol *sym;
2915
2916 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2917 {
2918 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
2919 {
2920 struct block_symbol block_sym = {sym, block};
2921
2922 if (!callback (&block_sym))
2923 return false;
2924 }
2925 }
2926 return true;
2927 }
2928
2929 /* See symtab.h. */
2930
2931 bool
2932 iterate_over_symbols_terminated
2933 (const struct block *block,
2934 const lookup_name_info &name,
2935 const domain_enum domain,
2936 gdb::function_view<symbol_found_callback_ftype> callback)
2937 {
2938 if (!iterate_over_symbols (block, name, domain, callback))
2939 return false;
2940 struct block_symbol block_sym = {nullptr, block};
2941 return callback (&block_sym);
2942 }
2943
2944 /* Find the compunit symtab associated with PC and SECTION.
2945 This will read in debug info as necessary. */
2946
2947 struct compunit_symtab *
2948 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2949 {
2950 struct compunit_symtab *best_cust = NULL;
2951 CORE_ADDR best_cust_range = 0;
2952 struct bound_minimal_symbol msymbol;
2953
2954 /* If we know that this is not a text address, return failure. This is
2955 necessary because we loop based on the block's high and low code
2956 addresses, which do not include the data ranges, and because
2957 we call find_pc_sect_psymtab which has a similar restriction based
2958 on the partial_symtab's texthigh and textlow. */
2959 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2960 if (msymbol.minsym && msymbol.minsym->data_p ())
2961 return NULL;
2962
2963 /* Search all symtabs for the one whose file contains our address, and which
2964 is the smallest of all the ones containing the address. This is designed
2965 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2966 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2967 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2968
2969 This happens for native ecoff format, where code from included files
2970 gets its own symtab. The symtab for the included file should have
2971 been read in already via the dependency mechanism.
2972 It might be swifter to create several symtabs with the same name
2973 like xcoff does (I'm not sure).
2974
2975 It also happens for objfiles that have their functions reordered.
2976 For these, the symtab we are looking for is not necessarily read in. */
2977
2978 for (objfile *obj_file : current_program_space->objfiles ())
2979 {
2980 for (compunit_symtab *cust : obj_file->compunits ())
2981 {
2982 const struct blockvector *bv = cust->blockvector ();
2983 const struct block *global_block
2984 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2985 CORE_ADDR start = BLOCK_START (global_block);
2986 CORE_ADDR end = BLOCK_END (global_block);
2987 bool in_range_p = start <= pc && pc < end;
2988 if (!in_range_p)
2989 continue;
2990
2991 if (BLOCKVECTOR_MAP (bv))
2992 {
2993 if (addrmap_find (BLOCKVECTOR_MAP (bv), pc) == nullptr)
2994 continue;
2995
2996 return cust;
2997 }
2998
2999 CORE_ADDR range = end - start;
3000 if (best_cust != nullptr
3001 && range >= best_cust_range)
3002 /* Cust doesn't have a smaller range than best_cust, skip it. */
3003 continue;
3004
3005 /* For an objfile that has its functions reordered,
3006 find_pc_psymtab will find the proper partial symbol table
3007 and we simply return its corresponding symtab. */
3008 /* In order to better support objfiles that contain both
3009 stabs and coff debugging info, we continue on if a psymtab
3010 can't be found. */
3011 if ((obj_file->flags & OBJF_REORDERED) != 0)
3012 {
3013 struct compunit_symtab *result;
3014
3015 result
3016 = obj_file->find_pc_sect_compunit_symtab (msymbol,
3017 pc,
3018 section,
3019 0);
3020 if (result != NULL)
3021 return result;
3022 }
3023
3024 if (section != 0)
3025 {
3026 struct symbol *sym = NULL;
3027 struct block_iterator iter;
3028
3029 for (int b_index = GLOBAL_BLOCK;
3030 b_index <= STATIC_BLOCK && sym == NULL;
3031 ++b_index)
3032 {
3033 const struct block *b = BLOCKVECTOR_BLOCK (bv, b_index);
3034 ALL_BLOCK_SYMBOLS (b, iter, sym)
3035 {
3036 fixup_symbol_section (sym, obj_file);
3037 if (matching_obj_sections (sym->obj_section (obj_file),
3038 section))
3039 break;
3040 }
3041 }
3042 if (sym == NULL)
3043 continue; /* No symbol in this symtab matches
3044 section. */
3045 }
3046
3047 /* Cust is best found sofar, save it. */
3048 best_cust = cust;
3049 best_cust_range = range;
3050 }
3051 }
3052
3053 if (best_cust != NULL)
3054 return best_cust;
3055
3056 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3057
3058 for (objfile *objf : current_program_space->objfiles ())
3059 {
3060 struct compunit_symtab *result
3061 = objf->find_pc_sect_compunit_symtab (msymbol, pc, section, 1);
3062 if (result != NULL)
3063 return result;
3064 }
3065
3066 return NULL;
3067 }
3068
3069 /* Find the compunit symtab associated with PC.
3070 This will read in debug info as necessary.
3071 Backward compatibility, no section. */
3072
3073 struct compunit_symtab *
3074 find_pc_compunit_symtab (CORE_ADDR pc)
3075 {
3076 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3077 }
3078
3079 /* See symtab.h. */
3080
3081 struct symbol *
3082 find_symbol_at_address (CORE_ADDR address)
3083 {
3084 /* A helper function to search a given symtab for a symbol matching
3085 ADDR. */
3086 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3087 {
3088 const struct blockvector *bv = symtab->blockvector ();
3089
3090 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3091 {
3092 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3093 struct block_iterator iter;
3094 struct symbol *sym;
3095
3096 ALL_BLOCK_SYMBOLS (b, iter, sym)
3097 {
3098 if (sym->aclass () == LOC_STATIC
3099 && sym->value_address () == addr)
3100 return sym;
3101 }
3102 }
3103 return nullptr;
3104 };
3105
3106 for (objfile *objfile : current_program_space->objfiles ())
3107 {
3108 /* If this objfile was read with -readnow, then we need to
3109 search the symtabs directly. */
3110 if ((objfile->flags & OBJF_READNOW) != 0)
3111 {
3112 for (compunit_symtab *symtab : objfile->compunits ())
3113 {
3114 struct symbol *sym = search_symtab (symtab, address);
3115 if (sym != nullptr)
3116 return sym;
3117 }
3118 }
3119 else
3120 {
3121 struct compunit_symtab *symtab
3122 = objfile->find_compunit_symtab_by_address (address);
3123 if (symtab != NULL)
3124 {
3125 struct symbol *sym = search_symtab (symtab, address);
3126 if (sym != nullptr)
3127 return sym;
3128 }
3129 }
3130 }
3131
3132 return NULL;
3133 }
3134
3135 \f
3136
3137 /* Find the source file and line number for a given PC value and SECTION.
3138 Return a structure containing a symtab pointer, a line number,
3139 and a pc range for the entire source line.
3140 The value's .pc field is NOT the specified pc.
3141 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3142 use the line that ends there. Otherwise, in that case, the line
3143 that begins there is used. */
3144
3145 /* The big complication here is that a line may start in one file, and end just
3146 before the start of another file. This usually occurs when you #include
3147 code in the middle of a subroutine. To properly find the end of a line's PC
3148 range, we must search all symtabs associated with this compilation unit, and
3149 find the one whose first PC is closer than that of the next line in this
3150 symtab. */
3151
3152 struct symtab_and_line
3153 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3154 {
3155 struct compunit_symtab *cust;
3156 struct linetable *l;
3157 int len;
3158 struct linetable_entry *item;
3159 const struct blockvector *bv;
3160 struct bound_minimal_symbol msymbol;
3161
3162 /* Info on best line seen so far, and where it starts, and its file. */
3163
3164 struct linetable_entry *best = NULL;
3165 CORE_ADDR best_end = 0;
3166 struct symtab *best_symtab = 0;
3167
3168 /* Store here the first line number
3169 of a file which contains the line at the smallest pc after PC.
3170 If we don't find a line whose range contains PC,
3171 we will use a line one less than this,
3172 with a range from the start of that file to the first line's pc. */
3173 struct linetable_entry *alt = NULL;
3174
3175 /* Info on best line seen in this file. */
3176
3177 struct linetable_entry *prev;
3178
3179 /* If this pc is not from the current frame,
3180 it is the address of the end of a call instruction.
3181 Quite likely that is the start of the following statement.
3182 But what we want is the statement containing the instruction.
3183 Fudge the pc to make sure we get that. */
3184
3185 /* It's tempting to assume that, if we can't find debugging info for
3186 any function enclosing PC, that we shouldn't search for line
3187 number info, either. However, GAS can emit line number info for
3188 assembly files --- very helpful when debugging hand-written
3189 assembly code. In such a case, we'd have no debug info for the
3190 function, but we would have line info. */
3191
3192 if (notcurrent)
3193 pc -= 1;
3194
3195 /* elz: added this because this function returned the wrong
3196 information if the pc belongs to a stub (import/export)
3197 to call a shlib function. This stub would be anywhere between
3198 two functions in the target, and the line info was erroneously
3199 taken to be the one of the line before the pc. */
3200
3201 /* RT: Further explanation:
3202
3203 * We have stubs (trampolines) inserted between procedures.
3204 *
3205 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3206 * exists in the main image.
3207 *
3208 * In the minimal symbol table, we have a bunch of symbols
3209 * sorted by start address. The stubs are marked as "trampoline",
3210 * the others appear as text. E.g.:
3211 *
3212 * Minimal symbol table for main image
3213 * main: code for main (text symbol)
3214 * shr1: stub (trampoline symbol)
3215 * foo: code for foo (text symbol)
3216 * ...
3217 * Minimal symbol table for "shr1" image:
3218 * ...
3219 * shr1: code for shr1 (text symbol)
3220 * ...
3221 *
3222 * So the code below is trying to detect if we are in the stub
3223 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3224 * and if found, do the symbolization from the real-code address
3225 * rather than the stub address.
3226 *
3227 * Assumptions being made about the minimal symbol table:
3228 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3229 * if we're really in the trampoline.s If we're beyond it (say
3230 * we're in "foo" in the above example), it'll have a closer
3231 * symbol (the "foo" text symbol for example) and will not
3232 * return the trampoline.
3233 * 2. lookup_minimal_symbol_text() will find a real text symbol
3234 * corresponding to the trampoline, and whose address will
3235 * be different than the trampoline address. I put in a sanity
3236 * check for the address being the same, to avoid an
3237 * infinite recursion.
3238 */
3239 msymbol = lookup_minimal_symbol_by_pc (pc);
3240 if (msymbol.minsym != NULL)
3241 if (msymbol.minsym->type () == mst_solib_trampoline)
3242 {
3243 struct bound_minimal_symbol mfunsym
3244 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3245 NULL);
3246
3247 if (mfunsym.minsym == NULL)
3248 /* I eliminated this warning since it is coming out
3249 * in the following situation:
3250 * gdb shmain // test program with shared libraries
3251 * (gdb) break shr1 // function in shared lib
3252 * Warning: In stub for ...
3253 * In the above situation, the shared lib is not loaded yet,
3254 * so of course we can't find the real func/line info,
3255 * but the "break" still works, and the warning is annoying.
3256 * So I commented out the warning. RT */
3257 /* warning ("In stub for %s; unable to find real function/line info",
3258 msymbol->linkage_name ()); */
3259 ;
3260 /* fall through */
3261 else if (mfunsym.value_address ()
3262 == msymbol.value_address ())
3263 /* Avoid infinite recursion */
3264 /* See above comment about why warning is commented out. */
3265 /* warning ("In stub for %s; unable to find real function/line info",
3266 msymbol->linkage_name ()); */
3267 ;
3268 /* fall through */
3269 else
3270 {
3271 /* Detect an obvious case of infinite recursion. If this
3272 should occur, we'd like to know about it, so error out,
3273 fatally. */
3274 if (mfunsym.value_address () == pc)
3275 internal_error (__FILE__, __LINE__,
3276 _("Infinite recursion detected in find_pc_sect_line;"
3277 "please file a bug report"));
3278
3279 return find_pc_line (mfunsym.value_address (), 0);
3280 }
3281 }
3282
3283 symtab_and_line val;
3284 val.pspace = current_program_space;
3285
3286 cust = find_pc_sect_compunit_symtab (pc, section);
3287 if (cust == NULL)
3288 {
3289 /* If no symbol information, return previous pc. */
3290 if (notcurrent)
3291 pc++;
3292 val.pc = pc;
3293 return val;
3294 }
3295
3296 bv = cust->blockvector ();
3297
3298 /* Look at all the symtabs that share this blockvector.
3299 They all have the same apriori range, that we found was right;
3300 but they have different line tables. */
3301
3302 for (symtab *iter_s : cust->filetabs ())
3303 {
3304 /* Find the best line in this symtab. */
3305 l = iter_s->linetable ();
3306 if (!l)
3307 continue;
3308 len = l->nitems;
3309 if (len <= 0)
3310 {
3311 /* I think len can be zero if the symtab lacks line numbers
3312 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3313 I'm not sure which, and maybe it depends on the symbol
3314 reader). */
3315 continue;
3316 }
3317
3318 prev = NULL;
3319 item = l->item; /* Get first line info. */
3320
3321 /* Is this file's first line closer than the first lines of other files?
3322 If so, record this file, and its first line, as best alternate. */
3323 if (item->pc > pc && (!alt || item->pc < alt->pc))
3324 alt = item;
3325
3326 auto pc_compare = [](const CORE_ADDR & comp_pc,
3327 const struct linetable_entry & lhs)->bool
3328 {
3329 return comp_pc < lhs.pc;
3330 };
3331
3332 struct linetable_entry *first = item;
3333 struct linetable_entry *last = item + len;
3334 item = std::upper_bound (first, last, pc, pc_compare);
3335 if (item != first)
3336 prev = item - 1; /* Found a matching item. */
3337
3338 /* At this point, prev points at the line whose start addr is <= pc, and
3339 item points at the next line. If we ran off the end of the linetable
3340 (pc >= start of the last line), then prev == item. If pc < start of
3341 the first line, prev will not be set. */
3342
3343 /* Is this file's best line closer than the best in the other files?
3344 If so, record this file, and its best line, as best so far. Don't
3345 save prev if it represents the end of a function (i.e. line number
3346 0) instead of a real line. */
3347
3348 if (prev && prev->line && (!best || prev->pc > best->pc))
3349 {
3350 best = prev;
3351 best_symtab = iter_s;
3352
3353 /* If during the binary search we land on a non-statement entry,
3354 scan backward through entries at the same address to see if
3355 there is an entry marked as is-statement. In theory this
3356 duplication should have been removed from the line table
3357 during construction, this is just a double check. If the line
3358 table has had the duplication removed then this should be
3359 pretty cheap. */
3360 if (!best->is_stmt)
3361 {
3362 struct linetable_entry *tmp = best;
3363 while (tmp > first && (tmp - 1)->pc == tmp->pc
3364 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3365 --tmp;
3366 if (tmp->is_stmt)
3367 best = tmp;
3368 }
3369
3370 /* Discard BEST_END if it's before the PC of the current BEST. */
3371 if (best_end <= best->pc)
3372 best_end = 0;
3373 }
3374
3375 /* If another line (denoted by ITEM) is in the linetable and its
3376 PC is after BEST's PC, but before the current BEST_END, then
3377 use ITEM's PC as the new best_end. */
3378 if (best && item < last && item->pc > best->pc
3379 && (best_end == 0 || best_end > item->pc))
3380 best_end = item->pc;
3381 }
3382
3383 if (!best_symtab)
3384 {
3385 /* If we didn't find any line number info, just return zeros.
3386 We used to return alt->line - 1 here, but that could be
3387 anywhere; if we don't have line number info for this PC,
3388 don't make some up. */
3389 val.pc = pc;
3390 }
3391 else if (best->line == 0)
3392 {
3393 /* If our best fit is in a range of PC's for which no line
3394 number info is available (line number is zero) then we didn't
3395 find any valid line information. */
3396 val.pc = pc;
3397 }
3398 else
3399 {
3400 val.is_stmt = best->is_stmt;
3401 val.symtab = best_symtab;
3402 val.line = best->line;
3403 val.pc = best->pc;
3404 if (best_end && (!alt || best_end < alt->pc))
3405 val.end = best_end;
3406 else if (alt)
3407 val.end = alt->pc;
3408 else
3409 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3410 }
3411 val.section = section;
3412 return val;
3413 }
3414
3415 /* Backward compatibility (no section). */
3416
3417 struct symtab_and_line
3418 find_pc_line (CORE_ADDR pc, int notcurrent)
3419 {
3420 struct obj_section *section;
3421
3422 section = find_pc_overlay (pc);
3423 if (!pc_in_unmapped_range (pc, section))
3424 return find_pc_sect_line (pc, section, notcurrent);
3425
3426 /* If the original PC was an unmapped address then we translate this to a
3427 mapped address in order to lookup the sal. However, as the user
3428 passed us an unmapped address it makes more sense to return a result
3429 that has the pc and end fields translated to unmapped addresses. */
3430 pc = overlay_mapped_address (pc, section);
3431 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3432 sal.pc = overlay_unmapped_address (sal.pc, section);
3433 sal.end = overlay_unmapped_address (sal.end, section);
3434 return sal;
3435 }
3436
3437 /* See symtab.h. */
3438
3439 struct symtab *
3440 find_pc_line_symtab (CORE_ADDR pc)
3441 {
3442 struct symtab_and_line sal;
3443
3444 /* This always passes zero for NOTCURRENT to find_pc_line.
3445 There are currently no callers that ever pass non-zero. */
3446 sal = find_pc_line (pc, 0);
3447 return sal.symtab;
3448 }
3449 \f
3450 /* Find line number LINE in any symtab whose name is the same as
3451 SYMTAB.
3452
3453 If found, return the symtab that contains the linetable in which it was
3454 found, set *INDEX to the index in the linetable of the best entry
3455 found, and set *EXACT_MATCH to true if the value returned is an
3456 exact match.
3457
3458 If not found, return NULL. */
3459
3460 struct symtab *
3461 find_line_symtab (struct symtab *sym_tab, int line,
3462 int *index, bool *exact_match)
3463 {
3464 int exact = 0; /* Initialized here to avoid a compiler warning. */
3465
3466 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3467 so far seen. */
3468
3469 int best_index;
3470 struct linetable *best_linetable;
3471 struct symtab *best_symtab;
3472
3473 /* First try looking it up in the given symtab. */
3474 best_linetable = sym_tab->linetable ();
3475 best_symtab = sym_tab;
3476 best_index = find_line_common (best_linetable, line, &exact, 0);
3477 if (best_index < 0 || !exact)
3478 {
3479 /* Didn't find an exact match. So we better keep looking for
3480 another symtab with the same name. In the case of xcoff,
3481 multiple csects for one source file (produced by IBM's FORTRAN
3482 compiler) produce multiple symtabs (this is unavoidable
3483 assuming csects can be at arbitrary places in memory and that
3484 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3485
3486 /* BEST is the smallest linenumber > LINE so far seen,
3487 or 0 if none has been seen so far.
3488 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3489 int best;
3490
3491 if (best_index >= 0)
3492 best = best_linetable->item[best_index].line;
3493 else
3494 best = 0;
3495
3496 for (objfile *objfile : current_program_space->objfiles ())
3497 objfile->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab));
3498
3499 for (objfile *objfile : current_program_space->objfiles ())
3500 {
3501 for (compunit_symtab *cu : objfile->compunits ())
3502 {
3503 for (symtab *s : cu->filetabs ())
3504 {
3505 struct linetable *l;
3506 int ind;
3507
3508 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3509 continue;
3510 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3511 symtab_to_fullname (s)) != 0)
3512 continue;
3513 l = s->linetable ();
3514 ind = find_line_common (l, line, &exact, 0);
3515 if (ind >= 0)
3516 {
3517 if (exact)
3518 {
3519 best_index = ind;
3520 best_linetable = l;
3521 best_symtab = s;
3522 goto done;
3523 }
3524 if (best == 0 || l->item[ind].line < best)
3525 {
3526 best = l->item[ind].line;
3527 best_index = ind;
3528 best_linetable = l;
3529 best_symtab = s;
3530 }
3531 }
3532 }
3533 }
3534 }
3535 }
3536 done:
3537 if (best_index < 0)
3538 return NULL;
3539
3540 if (index)
3541 *index = best_index;
3542 if (exact_match)
3543 *exact_match = (exact != 0);
3544
3545 return best_symtab;
3546 }
3547
3548 /* Given SYMTAB, returns all the PCs function in the symtab that
3549 exactly match LINE. Returns an empty vector if there are no exact
3550 matches, but updates BEST_ITEM in this case. */
3551
3552 std::vector<CORE_ADDR>
3553 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3554 struct linetable_entry **best_item)
3555 {
3556 int start = 0;
3557 std::vector<CORE_ADDR> result;
3558
3559 /* First, collect all the PCs that are at this line. */
3560 while (1)
3561 {
3562 int was_exact;
3563 int idx;
3564
3565 idx = find_line_common (symtab->linetable (), line, &was_exact,
3566 start);
3567 if (idx < 0)
3568 break;
3569
3570 if (!was_exact)
3571 {
3572 struct linetable_entry *item = &symtab->linetable ()->item[idx];
3573
3574 if (*best_item == NULL
3575 || (item->line < (*best_item)->line && item->is_stmt))
3576 *best_item = item;
3577
3578 break;
3579 }
3580
3581 result.push_back (symtab->linetable ()->item[idx].pc);
3582 start = idx + 1;
3583 }
3584
3585 return result;
3586 }
3587
3588 \f
3589 /* Set the PC value for a given source file and line number and return true.
3590 Returns false for invalid line number (and sets the PC to 0).
3591 The source file is specified with a struct symtab. */
3592
3593 bool
3594 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3595 {
3596 struct linetable *l;
3597 int ind;
3598
3599 *pc = 0;
3600 if (symtab == 0)
3601 return false;
3602
3603 symtab = find_line_symtab (symtab, line, &ind, NULL);
3604 if (symtab != NULL)
3605 {
3606 l = symtab->linetable ();
3607 *pc = l->item[ind].pc;
3608 return true;
3609 }
3610 else
3611 return false;
3612 }
3613
3614 /* Find the range of pc values in a line.
3615 Store the starting pc of the line into *STARTPTR
3616 and the ending pc (start of next line) into *ENDPTR.
3617 Returns true to indicate success.
3618 Returns false if could not find the specified line. */
3619
3620 bool
3621 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3622 CORE_ADDR *endptr)
3623 {
3624 CORE_ADDR startaddr;
3625 struct symtab_and_line found_sal;
3626
3627 startaddr = sal.pc;
3628 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3629 return false;
3630
3631 /* This whole function is based on address. For example, if line 10 has
3632 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3633 "info line *0x123" should say the line goes from 0x100 to 0x200
3634 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3635 This also insures that we never give a range like "starts at 0x134
3636 and ends at 0x12c". */
3637
3638 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3639 if (found_sal.line != sal.line)
3640 {
3641 /* The specified line (sal) has zero bytes. */
3642 *startptr = found_sal.pc;
3643 *endptr = found_sal.pc;
3644 }
3645 else
3646 {
3647 *startptr = found_sal.pc;
3648 *endptr = found_sal.end;
3649 }
3650 return true;
3651 }
3652
3653 /* Given a line table and a line number, return the index into the line
3654 table for the pc of the nearest line whose number is >= the specified one.
3655 Return -1 if none is found. The value is >= 0 if it is an index.
3656 START is the index at which to start searching the line table.
3657
3658 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3659
3660 static int
3661 find_line_common (struct linetable *l, int lineno,
3662 int *exact_match, int start)
3663 {
3664 int i;
3665 int len;
3666
3667 /* BEST is the smallest linenumber > LINENO so far seen,
3668 or 0 if none has been seen so far.
3669 BEST_INDEX identifies the item for it. */
3670
3671 int best_index = -1;
3672 int best = 0;
3673
3674 *exact_match = 0;
3675
3676 if (lineno <= 0)
3677 return -1;
3678 if (l == 0)
3679 return -1;
3680
3681 len = l->nitems;
3682 for (i = start; i < len; i++)
3683 {
3684 struct linetable_entry *item = &(l->item[i]);
3685
3686 /* Ignore non-statements. */
3687 if (!item->is_stmt)
3688 continue;
3689
3690 if (item->line == lineno)
3691 {
3692 /* Return the first (lowest address) entry which matches. */
3693 *exact_match = 1;
3694 return i;
3695 }
3696
3697 if (item->line > lineno && (best == 0 || item->line < best))
3698 {
3699 best = item->line;
3700 best_index = i;
3701 }
3702 }
3703
3704 /* If we got here, we didn't get an exact match. */
3705 return best_index;
3706 }
3707
3708 bool
3709 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3710 {
3711 struct symtab_and_line sal;
3712
3713 sal = find_pc_line (pc, 0);
3714 *startptr = sal.pc;
3715 *endptr = sal.end;
3716 return sal.symtab != 0;
3717 }
3718
3719 /* Helper for find_function_start_sal. Does most of the work, except
3720 setting the sal's symbol. */
3721
3722 static symtab_and_line
3723 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3724 bool funfirstline)
3725 {
3726 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3727
3728 if (funfirstline && sal.symtab != NULL
3729 && (sal.symtab->compunit ()->locations_valid ()
3730 || sal.symtab->language () == language_asm))
3731 {
3732 struct gdbarch *gdbarch = sal.symtab->compunit ()->objfile ()->arch ();
3733
3734 sal.pc = func_addr;
3735 if (gdbarch_skip_entrypoint_p (gdbarch))
3736 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3737 return sal;
3738 }
3739
3740 /* We always should have a line for the function start address.
3741 If we don't, something is odd. Create a plain SAL referring
3742 just the PC and hope that skip_prologue_sal (if requested)
3743 can find a line number for after the prologue. */
3744 if (sal.pc < func_addr)
3745 {
3746 sal = {};
3747 sal.pspace = current_program_space;
3748 sal.pc = func_addr;
3749 sal.section = section;
3750 }
3751
3752 if (funfirstline)
3753 skip_prologue_sal (&sal);
3754
3755 return sal;
3756 }
3757
3758 /* See symtab.h. */
3759
3760 symtab_and_line
3761 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3762 bool funfirstline)
3763 {
3764 symtab_and_line sal
3765 = find_function_start_sal_1 (func_addr, section, funfirstline);
3766
3767 /* find_function_start_sal_1 does a linetable search, so it finds
3768 the symtab and linenumber, but not a symbol. Fill in the
3769 function symbol too. */
3770 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3771
3772 return sal;
3773 }
3774
3775 /* See symtab.h. */
3776
3777 symtab_and_line
3778 find_function_start_sal (symbol *sym, bool funfirstline)
3779 {
3780 fixup_symbol_section (sym, NULL);
3781 symtab_and_line sal
3782 = find_function_start_sal_1 (BLOCK_ENTRY_PC (sym->value_block ()),
3783 sym->obj_section (symbol_objfile (sym)),
3784 funfirstline);
3785 sal.symbol = sym;
3786 return sal;
3787 }
3788
3789
3790 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3791 address for that function that has an entry in SYMTAB's line info
3792 table. If such an entry cannot be found, return FUNC_ADDR
3793 unaltered. */
3794
3795 static CORE_ADDR
3796 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3797 {
3798 CORE_ADDR func_start, func_end;
3799 struct linetable *l;
3800 int i;
3801
3802 /* Give up if this symbol has no lineinfo table. */
3803 l = symtab->linetable ();
3804 if (l == NULL)
3805 return func_addr;
3806
3807 /* Get the range for the function's PC values, or give up if we
3808 cannot, for some reason. */
3809 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3810 return func_addr;
3811
3812 /* Linetable entries are ordered by PC values, see the commentary in
3813 symtab.h where `struct linetable' is defined. Thus, the first
3814 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3815 address we are looking for. */
3816 for (i = 0; i < l->nitems; i++)
3817 {
3818 struct linetable_entry *item = &(l->item[i]);
3819
3820 /* Don't use line numbers of zero, they mark special entries in
3821 the table. See the commentary on symtab.h before the
3822 definition of struct linetable. */
3823 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3824 return item->pc;
3825 }
3826
3827 return func_addr;
3828 }
3829
3830 /* Try to locate the address where a breakpoint should be placed past the
3831 prologue of function starting at FUNC_ADDR using the line table.
3832
3833 Return the address associated with the first entry in the line-table for
3834 the function starting at FUNC_ADDR which has prologue_end set to true if
3835 such entry exist, otherwise return an empty optional. */
3836
3837 static gdb::optional<CORE_ADDR>
3838 skip_prologue_using_linetable (CORE_ADDR func_addr)
3839 {
3840 CORE_ADDR start_pc, end_pc;
3841
3842 if (!find_pc_partial_function (func_addr, nullptr, &start_pc, &end_pc))
3843 return {};
3844
3845 const struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
3846 if (prologue_sal.symtab != nullptr
3847 && prologue_sal.symtab->language () != language_asm)
3848 {
3849 struct linetable *linetable = prologue_sal.symtab->linetable ();
3850
3851 auto it = std::lower_bound
3852 (linetable->item, linetable->item + linetable->nitems, start_pc,
3853 [] (const linetable_entry &lte, CORE_ADDR pc) -> bool
3854 {
3855 return lte.pc < pc;
3856 });
3857
3858 for (;
3859 it < linetable->item + linetable->nitems && it->pc <= end_pc;
3860 it++)
3861 if (it->prologue_end)
3862 return {it->pc};
3863 }
3864
3865 return {};
3866 }
3867
3868 /* Adjust SAL to the first instruction past the function prologue.
3869 If the PC was explicitly specified, the SAL is not changed.
3870 If the line number was explicitly specified then the SAL can still be
3871 updated, unless the language for SAL is assembler, in which case the SAL
3872 will be left unchanged.
3873 If SAL is already past the prologue, then do nothing. */
3874
3875 void
3876 skip_prologue_sal (struct symtab_and_line *sal)
3877 {
3878 struct symbol *sym;
3879 struct symtab_and_line start_sal;
3880 CORE_ADDR pc, saved_pc;
3881 struct obj_section *section;
3882 const char *name;
3883 struct objfile *objfile;
3884 struct gdbarch *gdbarch;
3885 const struct block *b, *function_block;
3886 int force_skip, skip;
3887
3888 /* Do not change the SAL if PC was specified explicitly. */
3889 if (sal->explicit_pc)
3890 return;
3891
3892 /* In assembly code, if the user asks for a specific line then we should
3893 not adjust the SAL. The user already has instruction level
3894 visibility in this case, so selecting a line other than one requested
3895 is likely to be the wrong choice. */
3896 if (sal->symtab != nullptr
3897 && sal->explicit_line
3898 && sal->symtab->language () == language_asm)
3899 return;
3900
3901 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3902
3903 switch_to_program_space_and_thread (sal->pspace);
3904
3905 sym = find_pc_sect_function (sal->pc, sal->section);
3906 if (sym != NULL)
3907 {
3908 fixup_symbol_section (sym, NULL);
3909
3910 objfile = symbol_objfile (sym);
3911 pc = BLOCK_ENTRY_PC (sym->value_block ());
3912 section = sym->obj_section (objfile);
3913 name = sym->linkage_name ();
3914 }
3915 else
3916 {
3917 struct bound_minimal_symbol msymbol
3918 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3919
3920 if (msymbol.minsym == NULL)
3921 return;
3922
3923 objfile = msymbol.objfile;
3924 pc = msymbol.value_address ();
3925 section = msymbol.minsym->obj_section (objfile);
3926 name = msymbol.minsym->linkage_name ();
3927 }
3928
3929 gdbarch = objfile->arch ();
3930
3931 /* Process the prologue in two passes. In the first pass try to skip the
3932 prologue (SKIP is true) and verify there is a real need for it (indicated
3933 by FORCE_SKIP). If no such reason was found run a second pass where the
3934 prologue is not skipped (SKIP is false). */
3935
3936 skip = 1;
3937 force_skip = 1;
3938
3939 /* Be conservative - allow direct PC (without skipping prologue) only if we
3940 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3941 have to be set by the caller so we use SYM instead. */
3942 if (sym != NULL
3943 && symbol_symtab (sym)->compunit ()->locations_valid ())
3944 force_skip = 0;
3945
3946 saved_pc = pc;
3947 do
3948 {
3949 pc = saved_pc;
3950
3951 /* Check if the compiler explicitly indicated where a breakpoint should
3952 be placed to skip the prologue. */
3953 if (!ignore_prologue_end_flag && skip)
3954 {
3955 gdb::optional<CORE_ADDR> linetable_pc
3956 = skip_prologue_using_linetable (pc);
3957 if (linetable_pc)
3958 {
3959 pc = *linetable_pc;
3960 start_sal = find_pc_sect_line (pc, section, 0);
3961 force_skip = 1;
3962 continue;
3963 }
3964 }
3965
3966 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3967 so that gdbarch_skip_prologue has something unique to work on. */
3968 if (section_is_overlay (section) && !section_is_mapped (section))
3969 pc = overlay_unmapped_address (pc, section);
3970
3971 /* Skip "first line" of function (which is actually its prologue). */
3972 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3973 if (gdbarch_skip_entrypoint_p (gdbarch))
3974 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3975 if (skip)
3976 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3977
3978 /* For overlays, map pc back into its mapped VMA range. */
3979 pc = overlay_mapped_address (pc, section);
3980
3981 /* Calculate line number. */
3982 start_sal = find_pc_sect_line (pc, section, 0);
3983
3984 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3985 line is still part of the same function. */
3986 if (skip && start_sal.pc != pc
3987 && (sym ? (BLOCK_ENTRY_PC (sym->value_block ()) <= start_sal.end
3988 && start_sal.end < BLOCK_END (sym->value_block ()))
3989 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3990 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3991 {
3992 /* First pc of next line */
3993 pc = start_sal.end;
3994 /* Recalculate the line number (might not be N+1). */
3995 start_sal = find_pc_sect_line (pc, section, 0);
3996 }
3997
3998 /* On targets with executable formats that don't have a concept of
3999 constructors (ELF with .init has, PE doesn't), gcc emits a call
4000 to `__main' in `main' between the prologue and before user
4001 code. */
4002 if (gdbarch_skip_main_prologue_p (gdbarch)
4003 && name && strcmp_iw (name, "main") == 0)
4004 {
4005 pc = gdbarch_skip_main_prologue (gdbarch, pc);
4006 /* Recalculate the line number (might not be N+1). */
4007 start_sal = find_pc_sect_line (pc, section, 0);
4008 force_skip = 1;
4009 }
4010 }
4011 while (!force_skip && skip--);
4012
4013 /* If we still don't have a valid source line, try to find the first
4014 PC in the lineinfo table that belongs to the same function. This
4015 happens with COFF debug info, which does not seem to have an
4016 entry in lineinfo table for the code after the prologue which has
4017 no direct relation to source. For example, this was found to be
4018 the case with the DJGPP target using "gcc -gcoff" when the
4019 compiler inserted code after the prologue to make sure the stack
4020 is aligned. */
4021 if (!force_skip && sym && start_sal.symtab == NULL)
4022 {
4023 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
4024 /* Recalculate the line number. */
4025 start_sal = find_pc_sect_line (pc, section, 0);
4026 }
4027
4028 /* If we're already past the prologue, leave SAL unchanged. Otherwise
4029 forward SAL to the end of the prologue. */
4030 if (sal->pc >= pc)
4031 return;
4032
4033 sal->pc = pc;
4034 sal->section = section;
4035 sal->symtab = start_sal.symtab;
4036 sal->line = start_sal.line;
4037 sal->end = start_sal.end;
4038
4039 /* Check if we are now inside an inlined function. If we can,
4040 use the call site of the function instead. */
4041 b = block_for_pc_sect (sal->pc, sal->section);
4042 function_block = NULL;
4043 while (b != NULL)
4044 {
4045 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4046 function_block = b;
4047 else if (BLOCK_FUNCTION (b) != NULL)
4048 break;
4049 b = BLOCK_SUPERBLOCK (b);
4050 }
4051 if (function_block != NULL
4052 && BLOCK_FUNCTION (function_block)->line () != 0)
4053 {
4054 sal->line = BLOCK_FUNCTION (function_block)->line ();
4055 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
4056 }
4057 }
4058
4059 /* Given PC at the function's start address, attempt to find the
4060 prologue end using SAL information. Return zero if the skip fails.
4061
4062 A non-optimized prologue traditionally has one SAL for the function
4063 and a second for the function body. A single line function has
4064 them both pointing at the same line.
4065
4066 An optimized prologue is similar but the prologue may contain
4067 instructions (SALs) from the instruction body. Need to skip those
4068 while not getting into the function body.
4069
4070 The functions end point and an increasing SAL line are used as
4071 indicators of the prologue's endpoint.
4072
4073 This code is based on the function refine_prologue_limit
4074 (found in ia64). */
4075
4076 CORE_ADDR
4077 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4078 {
4079 struct symtab_and_line prologue_sal;
4080 CORE_ADDR start_pc;
4081 CORE_ADDR end_pc;
4082 const struct block *bl;
4083
4084 /* Get an initial range for the function. */
4085 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4086 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4087
4088 prologue_sal = find_pc_line (start_pc, 0);
4089 if (prologue_sal.line != 0)
4090 {
4091 /* For languages other than assembly, treat two consecutive line
4092 entries at the same address as a zero-instruction prologue.
4093 The GNU assembler emits separate line notes for each instruction
4094 in a multi-instruction macro, but compilers generally will not
4095 do this. */
4096 if (prologue_sal.symtab->language () != language_asm)
4097 {
4098 struct linetable *linetable = prologue_sal.symtab->linetable ();
4099 int idx = 0;
4100
4101 /* Skip any earlier lines, and any end-of-sequence marker
4102 from a previous function. */
4103 while (linetable->item[idx].pc != prologue_sal.pc
4104 || linetable->item[idx].line == 0)
4105 idx++;
4106
4107 if (idx+1 < linetable->nitems
4108 && linetable->item[idx+1].line != 0
4109 && linetable->item[idx+1].pc == start_pc)
4110 return start_pc;
4111 }
4112
4113 /* If there is only one sal that covers the entire function,
4114 then it is probably a single line function, like
4115 "foo(){}". */
4116 if (prologue_sal.end >= end_pc)
4117 return 0;
4118
4119 while (prologue_sal.end < end_pc)
4120 {
4121 struct symtab_and_line sal;
4122
4123 sal = find_pc_line (prologue_sal.end, 0);
4124 if (sal.line == 0)
4125 break;
4126 /* Assume that a consecutive SAL for the same (or larger)
4127 line mark the prologue -> body transition. */
4128 if (sal.line >= prologue_sal.line)
4129 break;
4130 /* Likewise if we are in a different symtab altogether
4131 (e.g. within a file included via #include).  */
4132 if (sal.symtab != prologue_sal.symtab)
4133 break;
4134
4135 /* The line number is smaller. Check that it's from the
4136 same function, not something inlined. If it's inlined,
4137 then there is no point comparing the line numbers. */
4138 bl = block_for_pc (prologue_sal.end);
4139 while (bl)
4140 {
4141 if (block_inlined_p (bl))
4142 break;
4143 if (BLOCK_FUNCTION (bl))
4144 {
4145 bl = NULL;
4146 break;
4147 }
4148 bl = BLOCK_SUPERBLOCK (bl);
4149 }
4150 if (bl != NULL)
4151 break;
4152
4153 /* The case in which compiler's optimizer/scheduler has
4154 moved instructions into the prologue. We look ahead in
4155 the function looking for address ranges whose
4156 corresponding line number is less the first one that we
4157 found for the function. This is more conservative then
4158 refine_prologue_limit which scans a large number of SALs
4159 looking for any in the prologue. */
4160 prologue_sal = sal;
4161 }
4162 }
4163
4164 if (prologue_sal.end < end_pc)
4165 /* Return the end of this line, or zero if we could not find a
4166 line. */
4167 return prologue_sal.end;
4168 else
4169 /* Don't return END_PC, which is past the end of the function. */
4170 return prologue_sal.pc;
4171 }
4172
4173 /* See symtab.h. */
4174
4175 symbol *
4176 find_function_alias_target (bound_minimal_symbol msymbol)
4177 {
4178 CORE_ADDR func_addr;
4179 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4180 return NULL;
4181
4182 symbol *sym = find_pc_function (func_addr);
4183 if (sym != NULL
4184 && sym->aclass () == LOC_BLOCK
4185 && BLOCK_ENTRY_PC (sym->value_block ()) == func_addr)
4186 return sym;
4187
4188 return NULL;
4189 }
4190
4191 \f
4192 /* If P is of the form "operator[ \t]+..." where `...' is
4193 some legitimate operator text, return a pointer to the
4194 beginning of the substring of the operator text.
4195 Otherwise, return "". */
4196
4197 static const char *
4198 operator_chars (const char *p, const char **end)
4199 {
4200 *end = "";
4201 if (!startswith (p, CP_OPERATOR_STR))
4202 return *end;
4203 p += CP_OPERATOR_LEN;
4204
4205 /* Don't get faked out by `operator' being part of a longer
4206 identifier. */
4207 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4208 return *end;
4209
4210 /* Allow some whitespace between `operator' and the operator symbol. */
4211 while (*p == ' ' || *p == '\t')
4212 p++;
4213
4214 /* Recognize 'operator TYPENAME'. */
4215
4216 if (isalpha (*p) || *p == '_' || *p == '$')
4217 {
4218 const char *q = p + 1;
4219
4220 while (isalnum (*q) || *q == '_' || *q == '$')
4221 q++;
4222 *end = q;
4223 return p;
4224 }
4225
4226 while (*p)
4227 switch (*p)
4228 {
4229 case '\\': /* regexp quoting */
4230 if (p[1] == '*')
4231 {
4232 if (p[2] == '=') /* 'operator\*=' */
4233 *end = p + 3;
4234 else /* 'operator\*' */
4235 *end = p + 2;
4236 return p;
4237 }
4238 else if (p[1] == '[')
4239 {
4240 if (p[2] == ']')
4241 error (_("mismatched quoting on brackets, "
4242 "try 'operator\\[\\]'"));
4243 else if (p[2] == '\\' && p[3] == ']')
4244 {
4245 *end = p + 4; /* 'operator\[\]' */
4246 return p;
4247 }
4248 else
4249 error (_("nothing is allowed between '[' and ']'"));
4250 }
4251 else
4252 {
4253 /* Gratuitous quote: skip it and move on. */
4254 p++;
4255 continue;
4256 }
4257 break;
4258 case '!':
4259 case '=':
4260 case '*':
4261 case '/':
4262 case '%':
4263 case '^':
4264 if (p[1] == '=')
4265 *end = p + 2;
4266 else
4267 *end = p + 1;
4268 return p;
4269 case '<':
4270 case '>':
4271 case '+':
4272 case '-':
4273 case '&':
4274 case '|':
4275 if (p[0] == '-' && p[1] == '>')
4276 {
4277 /* Struct pointer member operator 'operator->'. */
4278 if (p[2] == '*')
4279 {
4280 *end = p + 3; /* 'operator->*' */
4281 return p;
4282 }
4283 else if (p[2] == '\\')
4284 {
4285 *end = p + 4; /* Hopefully 'operator->\*' */
4286 return p;
4287 }
4288 else
4289 {
4290 *end = p + 2; /* 'operator->' */
4291 return p;
4292 }
4293 }
4294 if (p[1] == '=' || p[1] == p[0])
4295 *end = p + 2;
4296 else
4297 *end = p + 1;
4298 return p;
4299 case '~':
4300 case ',':
4301 *end = p + 1;
4302 return p;
4303 case '(':
4304 if (p[1] != ')')
4305 error (_("`operator ()' must be specified "
4306 "without whitespace in `()'"));
4307 *end = p + 2;
4308 return p;
4309 case '?':
4310 if (p[1] != ':')
4311 error (_("`operator ?:' must be specified "
4312 "without whitespace in `?:'"));
4313 *end = p + 2;
4314 return p;
4315 case '[':
4316 if (p[1] != ']')
4317 error (_("`operator []' must be specified "
4318 "without whitespace in `[]'"));
4319 *end = p + 2;
4320 return p;
4321 default:
4322 error (_("`operator %s' not supported"), p);
4323 break;
4324 }
4325
4326 *end = "";
4327 return *end;
4328 }
4329 \f
4330
4331 /* See class declaration. */
4332
4333 info_sources_filter::info_sources_filter (match_on match_type,
4334 const char *regexp)
4335 : m_match_type (match_type),
4336 m_regexp (regexp)
4337 {
4338 /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */
4339 if (m_regexp != nullptr && *m_regexp != '\0')
4340 {
4341 gdb_assert (m_regexp != nullptr);
4342
4343 int cflags = REG_NOSUB;
4344 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4345 cflags |= REG_ICASE;
4346 #endif
4347 m_c_regexp.emplace (m_regexp, cflags, _("Invalid regexp"));
4348 }
4349 }
4350
4351 /* See class declaration. */
4352
4353 bool
4354 info_sources_filter::matches (const char *fullname) const
4355 {
4356 /* Does it match regexp? */
4357 if (m_c_regexp.has_value ())
4358 {
4359 const char *to_match;
4360 std::string dirname;
4361
4362 switch (m_match_type)
4363 {
4364 case match_on::DIRNAME:
4365 dirname = ldirname (fullname);
4366 to_match = dirname.c_str ();
4367 break;
4368 case match_on::BASENAME:
4369 to_match = lbasename (fullname);
4370 break;
4371 case match_on::FULLNAME:
4372 to_match = fullname;
4373 break;
4374 default:
4375 gdb_assert_not_reached ("bad m_match_type");
4376 }
4377
4378 if (m_c_regexp->exec (to_match, 0, NULL, 0) != 0)
4379 return false;
4380 }
4381
4382 return true;
4383 }
4384
4385 /* Data structure to maintain the state used for printing the results of
4386 the 'info sources' command. */
4387
4388 struct output_source_filename_data
4389 {
4390 /* Create an object for displaying the results of the 'info sources'
4391 command to UIOUT. FILTER must remain valid and unchanged for the
4392 lifetime of this object as this object retains a reference to FILTER. */
4393 output_source_filename_data (struct ui_out *uiout,
4394 const info_sources_filter &filter)
4395 : m_filter (filter),
4396 m_uiout (uiout)
4397 { /* Nothing. */ }
4398
4399 DISABLE_COPY_AND_ASSIGN (output_source_filename_data);
4400
4401 /* Reset enough state of this object so we can match against a new set of
4402 files. The existing regular expression is retained though. */
4403 void reset_output ()
4404 {
4405 m_first = true;
4406 m_filename_seen_cache.clear ();
4407 }
4408
4409 /* Worker for sources_info, outputs the file name formatted for either
4410 cli or mi (based on the current_uiout). In cli mode displays
4411 FULLNAME with a comma separating this name from any previously
4412 printed name (line breaks are added at the comma). In MI mode
4413 outputs a tuple containing DISP_NAME (the files display name),
4414 FULLNAME, and EXPANDED_P (true when this file is from a fully
4415 expanded symtab, otherwise false). */
4416 void output (const char *disp_name, const char *fullname, bool expanded_p);
4417
4418 /* An overload suitable for use as a callback to
4419 quick_symbol_functions::map_symbol_filenames. */
4420 void operator() (const char *filename, const char *fullname)
4421 {
4422 /* The false here indicates that this file is from an unexpanded
4423 symtab. */
4424 output (filename, fullname, false);
4425 }
4426
4427 /* Return true if at least one filename has been printed (after a call to
4428 output) since either this object was created, or the last call to
4429 reset_output. */
4430 bool printed_filename_p () const
4431 {
4432 return !m_first;
4433 }
4434
4435 private:
4436
4437 /* Flag of whether we're printing the first one. */
4438 bool m_first = true;
4439
4440 /* Cache of what we've seen so far. */
4441 filename_seen_cache m_filename_seen_cache;
4442
4443 /* How source filename should be filtered. */
4444 const info_sources_filter &m_filter;
4445
4446 /* The object to which output is sent. */
4447 struct ui_out *m_uiout;
4448 };
4449
4450 /* See comment in class declaration above. */
4451
4452 void
4453 output_source_filename_data::output (const char *disp_name,
4454 const char *fullname,
4455 bool expanded_p)
4456 {
4457 /* Since a single source file can result in several partial symbol
4458 tables, we need to avoid printing it more than once. Note: if
4459 some of the psymtabs are read in and some are not, it gets
4460 printed both under "Source files for which symbols have been
4461 read" and "Source files for which symbols will be read in on
4462 demand". I consider this a reasonable way to deal with the
4463 situation. I'm not sure whether this can also happen for
4464 symtabs; it doesn't hurt to check. */
4465
4466 /* Was NAME already seen? If so, then don't print it again. */
4467 if (m_filename_seen_cache.seen (fullname))
4468 return;
4469
4470 /* If the filter rejects this file then don't print it. */
4471 if (!m_filter.matches (fullname))
4472 return;
4473
4474 ui_out_emit_tuple ui_emitter (m_uiout, nullptr);
4475
4476 /* Print it and reset *FIRST. */
4477 if (!m_first)
4478 m_uiout->text (", ");
4479 m_first = false;
4480
4481 m_uiout->wrap_hint (0);
4482 if (m_uiout->is_mi_like_p ())
4483 {
4484 m_uiout->field_string ("file", disp_name, file_name_style.style ());
4485 if (fullname != nullptr)
4486 m_uiout->field_string ("fullname", fullname,
4487 file_name_style.style ());
4488 m_uiout->field_string ("debug-fully-read",
4489 (expanded_p ? "true" : "false"));
4490 }
4491 else
4492 {
4493 if (fullname == nullptr)
4494 fullname = disp_name;
4495 m_uiout->field_string ("fullname", fullname,
4496 file_name_style.style ());
4497 }
4498 }
4499
4500 /* For the 'info sources' command, what part of the file names should we be
4501 matching the user supplied regular expression against? */
4502
4503 struct filename_partial_match_opts
4504 {
4505 /* Only match the directory name part. */
4506 bool dirname = false;
4507
4508 /* Only match the basename part. */
4509 bool basename = false;
4510 };
4511
4512 using isrc_flag_option_def
4513 = gdb::option::flag_option_def<filename_partial_match_opts>;
4514
4515 static const gdb::option::option_def info_sources_option_defs[] = {
4516
4517 isrc_flag_option_def {
4518 "dirname",
4519 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4520 N_("Show only the files having a dirname matching REGEXP."),
4521 },
4522
4523 isrc_flag_option_def {
4524 "basename",
4525 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4526 N_("Show only the files having a basename matching REGEXP."),
4527 },
4528
4529 };
4530
4531 /* Create an option_def_group for the "info sources" options, with
4532 ISRC_OPTS as context. */
4533
4534 static inline gdb::option::option_def_group
4535 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4536 {
4537 return {{info_sources_option_defs}, isrc_opts};
4538 }
4539
4540 /* Completer for "info sources". */
4541
4542 static void
4543 info_sources_command_completer (cmd_list_element *ignore,
4544 completion_tracker &tracker,
4545 const char *text, const char *word)
4546 {
4547 const auto group = make_info_sources_options_def_group (nullptr);
4548 if (gdb::option::complete_options
4549 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4550 return;
4551 }
4552
4553 /* See symtab.h. */
4554
4555 void
4556 info_sources_worker (struct ui_out *uiout,
4557 bool group_by_objfile,
4558 const info_sources_filter &filter)
4559 {
4560 output_source_filename_data data (uiout, filter);
4561
4562 ui_out_emit_list results_emitter (uiout, "files");
4563 gdb::optional<ui_out_emit_tuple> output_tuple;
4564 gdb::optional<ui_out_emit_list> sources_list;
4565
4566 gdb_assert (group_by_objfile || uiout->is_mi_like_p ());
4567
4568 for (objfile *objfile : current_program_space->objfiles ())
4569 {
4570 if (group_by_objfile)
4571 {
4572 output_tuple.emplace (uiout, nullptr);
4573 uiout->field_string ("filename", objfile_name (objfile),
4574 file_name_style.style ());
4575 uiout->text (":\n");
4576 bool debug_fully_readin = !objfile->has_unexpanded_symtabs ();
4577 if (uiout->is_mi_like_p ())
4578 {
4579 const char *debug_info_state;
4580 if (objfile_has_symbols (objfile))
4581 {
4582 if (debug_fully_readin)
4583 debug_info_state = "fully-read";
4584 else
4585 debug_info_state = "partially-read";
4586 }
4587 else
4588 debug_info_state = "none";
4589 current_uiout->field_string ("debug-info", debug_info_state);
4590 }
4591 else
4592 {
4593 if (!debug_fully_readin)
4594 uiout->text ("(Full debug information has not yet been read "
4595 "for this file.)\n");
4596 if (!objfile_has_symbols (objfile))
4597 uiout->text ("(Objfile has no debug information.)\n");
4598 uiout->text ("\n");
4599 }
4600 sources_list.emplace (uiout, "sources");
4601 }
4602
4603 for (compunit_symtab *cu : objfile->compunits ())
4604 {
4605 for (symtab *s : cu->filetabs ())
4606 {
4607 const char *file = symtab_to_filename_for_display (s);
4608 const char *fullname = symtab_to_fullname (s);
4609 data.output (file, fullname, true);
4610 }
4611 }
4612
4613 if (group_by_objfile)
4614 {
4615 objfile->map_symbol_filenames (data, true /* need_fullname */);
4616 if (data.printed_filename_p ())
4617 uiout->text ("\n\n");
4618 data.reset_output ();
4619 sources_list.reset ();
4620 output_tuple.reset ();
4621 }
4622 }
4623
4624 if (!group_by_objfile)
4625 {
4626 data.reset_output ();
4627 map_symbol_filenames (data, true /*need_fullname*/);
4628 }
4629 }
4630
4631 /* Implement the 'info sources' command. */
4632
4633 static void
4634 info_sources_command (const char *args, int from_tty)
4635 {
4636 if (!have_full_symbols () && !have_partial_symbols ())
4637 error (_("No symbol table is loaded. Use the \"file\" command."));
4638
4639 filename_partial_match_opts match_opts;
4640 auto group = make_info_sources_options_def_group (&match_opts);
4641 gdb::option::process_options
4642 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4643
4644 if (match_opts.dirname && match_opts.basename)
4645 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4646
4647 const char *regex = nullptr;
4648 if (args != NULL && *args != '\000')
4649 regex = args;
4650
4651 if ((match_opts.dirname || match_opts.basename) && regex == nullptr)
4652 error (_("Missing REGEXP for 'info sources'."));
4653
4654 info_sources_filter::match_on match_type;
4655 if (match_opts.dirname)
4656 match_type = info_sources_filter::match_on::DIRNAME;
4657 else if (match_opts.basename)
4658 match_type = info_sources_filter::match_on::BASENAME;
4659 else
4660 match_type = info_sources_filter::match_on::FULLNAME;
4661
4662 info_sources_filter filter (match_type, regex);
4663 info_sources_worker (current_uiout, true, filter);
4664 }
4665
4666 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4667 true compare only lbasename of FILENAMES. */
4668
4669 static bool
4670 file_matches (const char *file, const std::vector<const char *> &filenames,
4671 bool basenames)
4672 {
4673 if (filenames.empty ())
4674 return true;
4675
4676 for (const char *name : filenames)
4677 {
4678 name = (basenames ? lbasename (name) : name);
4679 if (compare_filenames_for_search (file, name))
4680 return true;
4681 }
4682
4683 return false;
4684 }
4685
4686 /* Helper function for std::sort on symbol_search objects. Can only sort
4687 symbols, not minimal symbols. */
4688
4689 int
4690 symbol_search::compare_search_syms (const symbol_search &sym_a,
4691 const symbol_search &sym_b)
4692 {
4693 int c;
4694
4695 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4696 symbol_symtab (sym_b.symbol)->filename);
4697 if (c != 0)
4698 return c;
4699
4700 if (sym_a.block != sym_b.block)
4701 return sym_a.block - sym_b.block;
4702
4703 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4704 }
4705
4706 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4707 If SYM has no symbol_type or symbol_name, returns false. */
4708
4709 bool
4710 treg_matches_sym_type_name (const compiled_regex &treg,
4711 const struct symbol *sym)
4712 {
4713 struct type *sym_type;
4714 std::string printed_sym_type_name;
4715
4716 if (symbol_lookup_debug > 1)
4717 {
4718 gdb_printf (gdb_stdlog,
4719 "treg_matches_sym_type_name\n sym %s\n",
4720 sym->natural_name ());
4721 }
4722
4723 sym_type = sym->type ();
4724 if (sym_type == NULL)
4725 return false;
4726
4727 {
4728 scoped_switch_to_sym_language_if_auto l (sym);
4729
4730 printed_sym_type_name = type_to_string (sym_type);
4731 }
4732
4733
4734 if (symbol_lookup_debug > 1)
4735 {
4736 gdb_printf (gdb_stdlog,
4737 " sym_type_name %s\n",
4738 printed_sym_type_name.c_str ());
4739 }
4740
4741
4742 if (printed_sym_type_name.empty ())
4743 return false;
4744
4745 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4746 }
4747
4748 /* See symtab.h. */
4749
4750 bool
4751 global_symbol_searcher::is_suitable_msymbol
4752 (const enum search_domain kind, const minimal_symbol *msymbol)
4753 {
4754 switch (msymbol->type ())
4755 {
4756 case mst_data:
4757 case mst_bss:
4758 case mst_file_data:
4759 case mst_file_bss:
4760 return kind == VARIABLES_DOMAIN;
4761 case mst_text:
4762 case mst_file_text:
4763 case mst_solib_trampoline:
4764 case mst_text_gnu_ifunc:
4765 return kind == FUNCTIONS_DOMAIN;
4766 default:
4767 return false;
4768 }
4769 }
4770
4771 /* See symtab.h. */
4772
4773 bool
4774 global_symbol_searcher::expand_symtabs
4775 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4776 {
4777 enum search_domain kind = m_kind;
4778 bool found_msymbol = false;
4779
4780 auto do_file_match = [&] (const char *filename, bool basenames)
4781 {
4782 return file_matches (filename, filenames, basenames);
4783 };
4784 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher = nullptr;
4785 if (!filenames.empty ())
4786 file_matcher = do_file_match;
4787
4788 objfile->expand_symtabs_matching
4789 (file_matcher,
4790 &lookup_name_info::match_any (),
4791 [&] (const char *symname)
4792 {
4793 return (!preg.has_value ()
4794 || preg->exec (symname, 0, NULL, 0) == 0);
4795 },
4796 NULL,
4797 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
4798 UNDEF_DOMAIN,
4799 kind);
4800
4801 /* Here, we search through the minimal symbol tables for functions and
4802 variables that match, and force their symbols to be read. This is in
4803 particular necessary for demangled variable names, which are no longer
4804 put into the partial symbol tables. The symbol will then be found
4805 during the scan of symtabs later.
4806
4807 For functions, find_pc_symtab should succeed if we have debug info for
4808 the function, for variables we have to call
4809 lookup_symbol_in_objfile_from_linkage_name to determine if the
4810 variable has debug info. If the lookup fails, set found_msymbol so
4811 that we will rescan to print any matching symbols without debug info.
4812 We only search the objfile the msymbol came from, we no longer search
4813 all objfiles. In large programs (1000s of shared libs) searching all
4814 objfiles is not worth the pain. */
4815 if (filenames.empty ()
4816 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4817 {
4818 for (minimal_symbol *msymbol : objfile->msymbols ())
4819 {
4820 QUIT;
4821
4822 if (msymbol->created_by_gdb)
4823 continue;
4824
4825 if (is_suitable_msymbol (kind, msymbol))
4826 {
4827 if (!preg.has_value ()
4828 || preg->exec (msymbol->natural_name (), 0,
4829 NULL, 0) == 0)
4830 {
4831 /* An important side-effect of these lookup functions is
4832 to expand the symbol table if msymbol is found, later
4833 in the process we will add matching symbols or
4834 msymbols to the results list, and that requires that
4835 the symbols tables are expanded. */
4836 if (kind == FUNCTIONS_DOMAIN
4837 ? (find_pc_compunit_symtab
4838 (msymbol->value_address (objfile)) == NULL)
4839 : (lookup_symbol_in_objfile_from_linkage_name
4840 (objfile, msymbol->linkage_name (),
4841 VAR_DOMAIN)
4842 .symbol == NULL))
4843 found_msymbol = true;
4844 }
4845 }
4846 }
4847 }
4848
4849 return found_msymbol;
4850 }
4851
4852 /* See symtab.h. */
4853
4854 bool
4855 global_symbol_searcher::add_matching_symbols
4856 (objfile *objfile,
4857 const gdb::optional<compiled_regex> &preg,
4858 const gdb::optional<compiled_regex> &treg,
4859 std::set<symbol_search> *result_set) const
4860 {
4861 enum search_domain kind = m_kind;
4862
4863 /* Add matching symbols (if not already present). */
4864 for (compunit_symtab *cust : objfile->compunits ())
4865 {
4866 const struct blockvector *bv = cust->blockvector ();
4867
4868 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4869 {
4870 struct block_iterator iter;
4871 struct symbol *sym;
4872 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4873
4874 ALL_BLOCK_SYMBOLS (b, iter, sym)
4875 {
4876 struct symtab *real_symtab = symbol_symtab (sym);
4877
4878 QUIT;
4879
4880 /* Check first sole REAL_SYMTAB->FILENAME. It does
4881 not need to be a substring of symtab_to_fullname as
4882 it may contain "./" etc. */
4883 if ((file_matches (real_symtab->filename, filenames, false)
4884 || ((basenames_may_differ
4885 || file_matches (lbasename (real_symtab->filename),
4886 filenames, true))
4887 && file_matches (symtab_to_fullname (real_symtab),
4888 filenames, false)))
4889 && ((!preg.has_value ()
4890 || preg->exec (sym->natural_name (), 0,
4891 NULL, 0) == 0)
4892 && ((kind == VARIABLES_DOMAIN
4893 && sym->aclass () != LOC_TYPEDEF
4894 && sym->aclass () != LOC_UNRESOLVED
4895 && sym->aclass () != LOC_BLOCK
4896 /* LOC_CONST can be used for more than
4897 just enums, e.g., c++ static const
4898 members. We only want to skip enums
4899 here. */
4900 && !(sym->aclass () == LOC_CONST
4901 && (sym->type ()->code ()
4902 == TYPE_CODE_ENUM))
4903 && (!treg.has_value ()
4904 || treg_matches_sym_type_name (*treg, sym)))
4905 || (kind == FUNCTIONS_DOMAIN
4906 && sym->aclass () == LOC_BLOCK
4907 && (!treg.has_value ()
4908 || treg_matches_sym_type_name (*treg,
4909 sym)))
4910 || (kind == TYPES_DOMAIN
4911 && sym->aclass () == LOC_TYPEDEF
4912 && sym->domain () != MODULE_DOMAIN)
4913 || (kind == MODULES_DOMAIN
4914 && sym->domain () == MODULE_DOMAIN
4915 && sym->line () != 0))))
4916 {
4917 if (result_set->size () < m_max_search_results)
4918 {
4919 /* Match, insert if not already in the results. */
4920 symbol_search ss (block, sym);
4921 if (result_set->find (ss) == result_set->end ())
4922 result_set->insert (ss);
4923 }
4924 else
4925 return false;
4926 }
4927 }
4928 }
4929 }
4930
4931 return true;
4932 }
4933
4934 /* See symtab.h. */
4935
4936 bool
4937 global_symbol_searcher::add_matching_msymbols
4938 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4939 std::vector<symbol_search> *results) const
4940 {
4941 enum search_domain kind = m_kind;
4942
4943 for (minimal_symbol *msymbol : objfile->msymbols ())
4944 {
4945 QUIT;
4946
4947 if (msymbol->created_by_gdb)
4948 continue;
4949
4950 if (is_suitable_msymbol (kind, msymbol))
4951 {
4952 if (!preg.has_value ()
4953 || preg->exec (msymbol->natural_name (), 0,
4954 NULL, 0) == 0)
4955 {
4956 /* For functions we can do a quick check of whether the
4957 symbol might be found via find_pc_symtab. */
4958 if (kind != FUNCTIONS_DOMAIN
4959 || (find_pc_compunit_symtab
4960 (msymbol->value_address (objfile)) == NULL))
4961 {
4962 if (lookup_symbol_in_objfile_from_linkage_name
4963 (objfile, msymbol->linkage_name (),
4964 VAR_DOMAIN).symbol == NULL)
4965 {
4966 /* Matching msymbol, add it to the results list. */
4967 if (results->size () < m_max_search_results)
4968 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4969 else
4970 return false;
4971 }
4972 }
4973 }
4974 }
4975 }
4976
4977 return true;
4978 }
4979
4980 /* See symtab.h. */
4981
4982 std::vector<symbol_search>
4983 global_symbol_searcher::search () const
4984 {
4985 gdb::optional<compiled_regex> preg;
4986 gdb::optional<compiled_regex> treg;
4987
4988 gdb_assert (m_kind != ALL_DOMAIN);
4989
4990 if (m_symbol_name_regexp != NULL)
4991 {
4992 const char *symbol_name_regexp = m_symbol_name_regexp;
4993
4994 /* Make sure spacing is right for C++ operators.
4995 This is just a courtesy to make the matching less sensitive
4996 to how many spaces the user leaves between 'operator'
4997 and <TYPENAME> or <OPERATOR>. */
4998 const char *opend;
4999 const char *opname = operator_chars (symbol_name_regexp, &opend);
5000
5001 if (*opname)
5002 {
5003 int fix = -1; /* -1 means ok; otherwise number of
5004 spaces needed. */
5005
5006 if (isalpha (*opname) || *opname == '_' || *opname == '$')
5007 {
5008 /* There should 1 space between 'operator' and 'TYPENAME'. */
5009 if (opname[-1] != ' ' || opname[-2] == ' ')
5010 fix = 1;
5011 }
5012 else
5013 {
5014 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
5015 if (opname[-1] == ' ')
5016 fix = 0;
5017 }
5018 /* If wrong number of spaces, fix it. */
5019 if (fix >= 0)
5020 {
5021 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
5022
5023 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
5024 symbol_name_regexp = tmp;
5025 }
5026 }
5027
5028 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
5029 ? REG_ICASE : 0);
5030 preg.emplace (symbol_name_regexp, cflags,
5031 _("Invalid regexp"));
5032 }
5033
5034 if (m_symbol_type_regexp != NULL)
5035 {
5036 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
5037 ? REG_ICASE : 0);
5038 treg.emplace (m_symbol_type_regexp, cflags,
5039 _("Invalid regexp"));
5040 }
5041
5042 bool found_msymbol = false;
5043 std::set<symbol_search> result_set;
5044 for (objfile *objfile : current_program_space->objfiles ())
5045 {
5046 /* Expand symtabs within objfile that possibly contain matching
5047 symbols. */
5048 found_msymbol |= expand_symtabs (objfile, preg);
5049
5050 /* Find matching symbols within OBJFILE and add them in to the
5051 RESULT_SET set. Use a set here so that we can easily detect
5052 duplicates as we go, and can therefore track how many unique
5053 matches we have found so far. */
5054 if (!add_matching_symbols (objfile, preg, treg, &result_set))
5055 break;
5056 }
5057
5058 /* Convert the result set into a sorted result list, as std::set is
5059 defined to be sorted then no explicit call to std::sort is needed. */
5060 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
5061
5062 /* If there are no debug symbols, then add matching minsyms. But if the
5063 user wants to see symbols matching a type regexp, then never give a
5064 minimal symbol, as we assume that a minimal symbol does not have a
5065 type. */
5066 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
5067 && !m_exclude_minsyms
5068 && !treg.has_value ())
5069 {
5070 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
5071 for (objfile *objfile : current_program_space->objfiles ())
5072 if (!add_matching_msymbols (objfile, preg, &result))
5073 break;
5074 }
5075
5076 return result;
5077 }
5078
5079 /* See symtab.h. */
5080
5081 std::string
5082 symbol_to_info_string (struct symbol *sym, int block,
5083 enum search_domain kind)
5084 {
5085 std::string str;
5086
5087 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
5088
5089 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
5090 str += "static ";
5091
5092 /* Typedef that is not a C++ class. */
5093 if (kind == TYPES_DOMAIN
5094 && sym->domain () != STRUCT_DOMAIN)
5095 {
5096 string_file tmp_stream;
5097
5098 /* FIXME: For C (and C++) we end up with a difference in output here
5099 between how a typedef is printed, and non-typedefs are printed.
5100 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
5101 appear C-like, while TYPE_PRINT doesn't.
5102
5103 For the struct printing case below, things are worse, we force
5104 printing of the ";" in this function, which is going to be wrong
5105 for languages that don't require a ";" between statements. */
5106 if (sym->type ()->code () == TYPE_CODE_TYPEDEF)
5107 typedef_print (sym->type (), sym, &tmp_stream);
5108 else
5109 type_print (sym->type (), "", &tmp_stream, -1);
5110 str += tmp_stream.string ();
5111 }
5112 /* variable, func, or typedef-that-is-c++-class. */
5113 else if (kind < TYPES_DOMAIN
5114 || (kind == TYPES_DOMAIN
5115 && sym->domain () == STRUCT_DOMAIN))
5116 {
5117 string_file tmp_stream;
5118
5119 type_print (sym->type (),
5120 (sym->aclass () == LOC_TYPEDEF
5121 ? "" : sym->print_name ()),
5122 &tmp_stream, 0);
5123
5124 str += tmp_stream.string ();
5125 str += ";";
5126 }
5127 /* Printing of modules is currently done here, maybe at some future
5128 point we might want a language specific method to print the module
5129 symbol so that we can customise the output more. */
5130 else if (kind == MODULES_DOMAIN)
5131 str += sym->print_name ();
5132
5133 return str;
5134 }
5135
5136 /* Helper function for symbol info commands, for example 'info functions',
5137 'info variables', etc. KIND is the kind of symbol we searched for, and
5138 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
5139 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
5140 print file and line number information for the symbol as well. Skip
5141 printing the filename if it matches LAST. */
5142
5143 static void
5144 print_symbol_info (enum search_domain kind,
5145 struct symbol *sym,
5146 int block, const char *last)
5147 {
5148 scoped_switch_to_sym_language_if_auto l (sym);
5149 struct symtab *s = symbol_symtab (sym);
5150
5151 if (last != NULL)
5152 {
5153 const char *s_filename = symtab_to_filename_for_display (s);
5154
5155 if (filename_cmp (last, s_filename) != 0)
5156 {
5157 gdb_printf (_("\nFile %ps:\n"),
5158 styled_string (file_name_style.style (),
5159 s_filename));
5160 }
5161
5162 if (sym->line () != 0)
5163 gdb_printf ("%d:\t", sym->line ());
5164 else
5165 gdb_puts ("\t");
5166 }
5167
5168 std::string str = symbol_to_info_string (sym, block, kind);
5169 gdb_printf ("%s\n", str.c_str ());
5170 }
5171
5172 /* This help function for symtab_symbol_info() prints information
5173 for non-debugging symbols to gdb_stdout. */
5174
5175 static void
5176 print_msymbol_info (struct bound_minimal_symbol msymbol)
5177 {
5178 struct gdbarch *gdbarch = msymbol.objfile->arch ();
5179 char *tmp;
5180
5181 if (gdbarch_addr_bit (gdbarch) <= 32)
5182 tmp = hex_string_custom (msymbol.value_address ()
5183 & (CORE_ADDR) 0xffffffff,
5184 8);
5185 else
5186 tmp = hex_string_custom (msymbol.value_address (),
5187 16);
5188
5189 ui_file_style sym_style = (msymbol.minsym->text_p ()
5190 ? function_name_style.style ()
5191 : ui_file_style ());
5192
5193 gdb_printf (_("%ps %ps\n"),
5194 styled_string (address_style.style (), tmp),
5195 styled_string (sym_style, msymbol.minsym->print_name ()));
5196 }
5197
5198 /* This is the guts of the commands "info functions", "info types", and
5199 "info variables". It calls search_symbols to find all matches and then
5200 print_[m]symbol_info to print out some useful information about the
5201 matches. */
5202
5203 static void
5204 symtab_symbol_info (bool quiet, bool exclude_minsyms,
5205 const char *regexp, enum search_domain kind,
5206 const char *t_regexp, int from_tty)
5207 {
5208 static const char * const classnames[] =
5209 {"variable", "function", "type", "module"};
5210 const char *last_filename = "";
5211 int first = 1;
5212
5213 gdb_assert (kind != ALL_DOMAIN);
5214
5215 if (regexp != nullptr && *regexp == '\0')
5216 regexp = nullptr;
5217
5218 global_symbol_searcher spec (kind, regexp);
5219 spec.set_symbol_type_regexp (t_regexp);
5220 spec.set_exclude_minsyms (exclude_minsyms);
5221 std::vector<symbol_search> symbols = spec.search ();
5222
5223 if (!quiet)
5224 {
5225 if (regexp != NULL)
5226 {
5227 if (t_regexp != NULL)
5228 gdb_printf
5229 (_("All %ss matching regular expression \"%s\""
5230 " with type matching regular expression \"%s\":\n"),
5231 classnames[kind], regexp, t_regexp);
5232 else
5233 gdb_printf (_("All %ss matching regular expression \"%s\":\n"),
5234 classnames[kind], regexp);
5235 }
5236 else
5237 {
5238 if (t_regexp != NULL)
5239 gdb_printf
5240 (_("All defined %ss"
5241 " with type matching regular expression \"%s\" :\n"),
5242 classnames[kind], t_regexp);
5243 else
5244 gdb_printf (_("All defined %ss:\n"), classnames[kind]);
5245 }
5246 }
5247
5248 for (const symbol_search &p : symbols)
5249 {
5250 QUIT;
5251
5252 if (p.msymbol.minsym != NULL)
5253 {
5254 if (first)
5255 {
5256 if (!quiet)
5257 gdb_printf (_("\nNon-debugging symbols:\n"));
5258 first = 0;
5259 }
5260 print_msymbol_info (p.msymbol);
5261 }
5262 else
5263 {
5264 print_symbol_info (kind,
5265 p.symbol,
5266 p.block,
5267 last_filename);
5268 last_filename
5269 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5270 }
5271 }
5272 }
5273
5274 /* Structure to hold the values of the options used by the 'info variables'
5275 and 'info functions' commands. These correspond to the -q, -t, and -n
5276 options. */
5277
5278 struct info_vars_funcs_options
5279 {
5280 bool quiet = false;
5281 bool exclude_minsyms = false;
5282 std::string type_regexp;
5283 };
5284
5285 /* The options used by the 'info variables' and 'info functions'
5286 commands. */
5287
5288 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5289 gdb::option::boolean_option_def<info_vars_funcs_options> {
5290 "q",
5291 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5292 nullptr, /* show_cmd_cb */
5293 nullptr /* set_doc */
5294 },
5295
5296 gdb::option::boolean_option_def<info_vars_funcs_options> {
5297 "n",
5298 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5299 nullptr, /* show_cmd_cb */
5300 nullptr /* set_doc */
5301 },
5302
5303 gdb::option::string_option_def<info_vars_funcs_options> {
5304 "t",
5305 [] (info_vars_funcs_options *opt) { return &opt->type_regexp; },
5306 nullptr, /* show_cmd_cb */
5307 nullptr /* set_doc */
5308 }
5309 };
5310
5311 /* Returns the option group used by 'info variables' and 'info
5312 functions'. */
5313
5314 static gdb::option::option_def_group
5315 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5316 {
5317 return {{info_vars_funcs_options_defs}, opts};
5318 }
5319
5320 /* Command completer for 'info variables' and 'info functions'. */
5321
5322 static void
5323 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5324 completion_tracker &tracker,
5325 const char *text, const char * /* word */)
5326 {
5327 const auto group
5328 = make_info_vars_funcs_options_def_group (nullptr);
5329 if (gdb::option::complete_options
5330 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5331 return;
5332
5333 const char *word = advance_to_expression_complete_word_point (tracker, text);
5334 symbol_completer (ignore, tracker, text, word);
5335 }
5336
5337 /* Implement the 'info variables' command. */
5338
5339 static void
5340 info_variables_command (const char *args, int from_tty)
5341 {
5342 info_vars_funcs_options opts;
5343 auto grp = make_info_vars_funcs_options_def_group (&opts);
5344 gdb::option::process_options
5345 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5346 if (args != nullptr && *args == '\0')
5347 args = nullptr;
5348
5349 symtab_symbol_info
5350 (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5351 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5352 from_tty);
5353 }
5354
5355 /* Implement the 'info functions' command. */
5356
5357 static void
5358 info_functions_command (const char *args, int from_tty)
5359 {
5360 info_vars_funcs_options opts;
5361
5362 auto grp = make_info_vars_funcs_options_def_group (&opts);
5363 gdb::option::process_options
5364 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5365 if (args != nullptr && *args == '\0')
5366 args = nullptr;
5367
5368 symtab_symbol_info
5369 (opts.quiet, opts.exclude_minsyms, args, FUNCTIONS_DOMAIN,
5370 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5371 from_tty);
5372 }
5373
5374 /* Holds the -q option for the 'info types' command. */
5375
5376 struct info_types_options
5377 {
5378 bool quiet = false;
5379 };
5380
5381 /* The options used by the 'info types' command. */
5382
5383 static const gdb::option::option_def info_types_options_defs[] = {
5384 gdb::option::boolean_option_def<info_types_options> {
5385 "q",
5386 [] (info_types_options *opt) { return &opt->quiet; },
5387 nullptr, /* show_cmd_cb */
5388 nullptr /* set_doc */
5389 }
5390 };
5391
5392 /* Returns the option group used by 'info types'. */
5393
5394 static gdb::option::option_def_group
5395 make_info_types_options_def_group (info_types_options *opts)
5396 {
5397 return {{info_types_options_defs}, opts};
5398 }
5399
5400 /* Implement the 'info types' command. */
5401
5402 static void
5403 info_types_command (const char *args, int from_tty)
5404 {
5405 info_types_options opts;
5406
5407 auto grp = make_info_types_options_def_group (&opts);
5408 gdb::option::process_options
5409 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5410 if (args != nullptr && *args == '\0')
5411 args = nullptr;
5412 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5413 }
5414
5415 /* Command completer for 'info types' command. */
5416
5417 static void
5418 info_types_command_completer (struct cmd_list_element *ignore,
5419 completion_tracker &tracker,
5420 const char *text, const char * /* word */)
5421 {
5422 const auto group
5423 = make_info_types_options_def_group (nullptr);
5424 if (gdb::option::complete_options
5425 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5426 return;
5427
5428 const char *word = advance_to_expression_complete_word_point (tracker, text);
5429 symbol_completer (ignore, tracker, text, word);
5430 }
5431
5432 /* Implement the 'info modules' command. */
5433
5434 static void
5435 info_modules_command (const char *args, int from_tty)
5436 {
5437 info_types_options opts;
5438
5439 auto grp = make_info_types_options_def_group (&opts);
5440 gdb::option::process_options
5441 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5442 if (args != nullptr && *args == '\0')
5443 args = nullptr;
5444 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5445 from_tty);
5446 }
5447
5448 static void
5449 rbreak_command (const char *regexp, int from_tty)
5450 {
5451 std::string string;
5452 const char *file_name = nullptr;
5453
5454 if (regexp != nullptr)
5455 {
5456 const char *colon = strchr (regexp, ':');
5457
5458 /* Ignore the colon if it is part of a Windows drive. */
5459 if (HAS_DRIVE_SPEC (regexp)
5460 && (regexp[2] == '/' || regexp[2] == '\\'))
5461 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5462
5463 if (colon && *(colon + 1) != ':')
5464 {
5465 int colon_index;
5466 char *local_name;
5467
5468 colon_index = colon - regexp;
5469 local_name = (char *) alloca (colon_index + 1);
5470 memcpy (local_name, regexp, colon_index);
5471 local_name[colon_index--] = 0;
5472 while (isspace (local_name[colon_index]))
5473 local_name[colon_index--] = 0;
5474 file_name = local_name;
5475 regexp = skip_spaces (colon + 1);
5476 }
5477 }
5478
5479 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5480 if (file_name != nullptr)
5481 spec.filenames.push_back (file_name);
5482 std::vector<symbol_search> symbols = spec.search ();
5483
5484 scoped_rbreak_breakpoints finalize;
5485 for (const symbol_search &p : symbols)
5486 {
5487 if (p.msymbol.minsym == NULL)
5488 {
5489 struct symtab *symtab = symbol_symtab (p.symbol);
5490 const char *fullname = symtab_to_fullname (symtab);
5491
5492 string = string_printf ("%s:'%s'", fullname,
5493 p.symbol->linkage_name ());
5494 break_command (&string[0], from_tty);
5495 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5496 }
5497 else
5498 {
5499 string = string_printf ("'%s'",
5500 p.msymbol.minsym->linkage_name ());
5501
5502 break_command (&string[0], from_tty);
5503 gdb_printf ("<function, no debug info> %s;\n",
5504 p.msymbol.minsym->print_name ());
5505 }
5506 }
5507 }
5508 \f
5509
5510 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5511
5512 static int
5513 compare_symbol_name (const char *symbol_name, language symbol_language,
5514 const lookup_name_info &lookup_name,
5515 completion_match_result &match_res)
5516 {
5517 const language_defn *lang = language_def (symbol_language);
5518
5519 symbol_name_matcher_ftype *name_match
5520 = lang->get_symbol_name_matcher (lookup_name);
5521
5522 return name_match (symbol_name, lookup_name, &match_res);
5523 }
5524
5525 /* See symtab.h. */
5526
5527 bool
5528 completion_list_add_name (completion_tracker &tracker,
5529 language symbol_language,
5530 const char *symname,
5531 const lookup_name_info &lookup_name,
5532 const char *text, const char *word)
5533 {
5534 completion_match_result &match_res
5535 = tracker.reset_completion_match_result ();
5536
5537 /* Clip symbols that cannot match. */
5538 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5539 return false;
5540
5541 /* Refresh SYMNAME from the match string. It's potentially
5542 different depending on language. (E.g., on Ada, the match may be
5543 the encoded symbol name wrapped in "<>"). */
5544 symname = match_res.match.match ();
5545 gdb_assert (symname != NULL);
5546
5547 /* We have a match for a completion, so add SYMNAME to the current list
5548 of matches. Note that the name is moved to freshly malloc'd space. */
5549
5550 {
5551 gdb::unique_xmalloc_ptr<char> completion
5552 = make_completion_match_str (symname, text, word);
5553
5554 /* Here we pass the match-for-lcd object to add_completion. Some
5555 languages match the user text against substrings of symbol
5556 names in some cases. E.g., in C++, "b push_ba" completes to
5557 "std::vector::push_back", "std::string::push_back", etc., and
5558 in this case we want the completion lowest common denominator
5559 to be "push_back" instead of "std::". */
5560 tracker.add_completion (std::move (completion),
5561 &match_res.match_for_lcd, text, word);
5562 }
5563
5564 return true;
5565 }
5566
5567 /* completion_list_add_name wrapper for struct symbol. */
5568
5569 static void
5570 completion_list_add_symbol (completion_tracker &tracker,
5571 symbol *sym,
5572 const lookup_name_info &lookup_name,
5573 const char *text, const char *word)
5574 {
5575 if (!completion_list_add_name (tracker, sym->language (),
5576 sym->natural_name (),
5577 lookup_name, text, word))
5578 return;
5579
5580 /* C++ function symbols include the parameters within both the msymbol
5581 name and the symbol name. The problem is that the msymbol name will
5582 describe the parameters in the most basic way, with typedefs stripped
5583 out, while the symbol name will represent the types as they appear in
5584 the program. This means we will see duplicate entries in the
5585 completion tracker. The following converts the symbol name back to
5586 the msymbol name and removes the msymbol name from the completion
5587 tracker. */
5588 if (sym->language () == language_cplus
5589 && sym->domain () == VAR_DOMAIN
5590 && sym->aclass () == LOC_BLOCK)
5591 {
5592 /* The call to canonicalize returns the empty string if the input
5593 string is already in canonical form, thanks to this we don't
5594 remove the symbol we just added above. */
5595 gdb::unique_xmalloc_ptr<char> str
5596 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5597 if (str != nullptr)
5598 tracker.remove_completion (str.get ());
5599 }
5600 }
5601
5602 /* completion_list_add_name wrapper for struct minimal_symbol. */
5603
5604 static void
5605 completion_list_add_msymbol (completion_tracker &tracker,
5606 minimal_symbol *sym,
5607 const lookup_name_info &lookup_name,
5608 const char *text, const char *word)
5609 {
5610 completion_list_add_name (tracker, sym->language (),
5611 sym->natural_name (),
5612 lookup_name, text, word);
5613 }
5614
5615
5616 /* ObjC: In case we are completing on a selector, look as the msymbol
5617 again and feed all the selectors into the mill. */
5618
5619 static void
5620 completion_list_objc_symbol (completion_tracker &tracker,
5621 struct minimal_symbol *msymbol,
5622 const lookup_name_info &lookup_name,
5623 const char *text, const char *word)
5624 {
5625 static char *tmp = NULL;
5626 static unsigned int tmplen = 0;
5627
5628 const char *method, *category, *selector;
5629 char *tmp2 = NULL;
5630
5631 method = msymbol->natural_name ();
5632
5633 /* Is it a method? */
5634 if ((method[0] != '-') && (method[0] != '+'))
5635 return;
5636
5637 if (text[0] == '[')
5638 /* Complete on shortened method method. */
5639 completion_list_add_name (tracker, language_objc,
5640 method + 1,
5641 lookup_name,
5642 text, word);
5643
5644 while ((strlen (method) + 1) >= tmplen)
5645 {
5646 if (tmplen == 0)
5647 tmplen = 1024;
5648 else
5649 tmplen *= 2;
5650 tmp = (char *) xrealloc (tmp, tmplen);
5651 }
5652 selector = strchr (method, ' ');
5653 if (selector != NULL)
5654 selector++;
5655
5656 category = strchr (method, '(');
5657
5658 if ((category != NULL) && (selector != NULL))
5659 {
5660 memcpy (tmp, method, (category - method));
5661 tmp[category - method] = ' ';
5662 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5663 completion_list_add_name (tracker, language_objc, tmp,
5664 lookup_name, text, word);
5665 if (text[0] == '[')
5666 completion_list_add_name (tracker, language_objc, tmp + 1,
5667 lookup_name, text, word);
5668 }
5669
5670 if (selector != NULL)
5671 {
5672 /* Complete on selector only. */
5673 strcpy (tmp, selector);
5674 tmp2 = strchr (tmp, ']');
5675 if (tmp2 != NULL)
5676 *tmp2 = '\0';
5677
5678 completion_list_add_name (tracker, language_objc, tmp,
5679 lookup_name, text, word);
5680 }
5681 }
5682
5683 /* Break the non-quoted text based on the characters which are in
5684 symbols. FIXME: This should probably be language-specific. */
5685
5686 static const char *
5687 language_search_unquoted_string (const char *text, const char *p)
5688 {
5689 for (; p > text; --p)
5690 {
5691 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5692 continue;
5693 else
5694 {
5695 if ((current_language->la_language == language_objc))
5696 {
5697 if (p[-1] == ':') /* Might be part of a method name. */
5698 continue;
5699 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5700 p -= 2; /* Beginning of a method name. */
5701 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5702 { /* Might be part of a method name. */
5703 const char *t = p;
5704
5705 /* Seeing a ' ' or a '(' is not conclusive evidence
5706 that we are in the middle of a method name. However,
5707 finding "-[" or "+[" should be pretty un-ambiguous.
5708 Unfortunately we have to find it now to decide. */
5709
5710 while (t > text)
5711 if (isalnum (t[-1]) || t[-1] == '_' ||
5712 t[-1] == ' ' || t[-1] == ':' ||
5713 t[-1] == '(' || t[-1] == ')')
5714 --t;
5715 else
5716 break;
5717
5718 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5719 p = t - 2; /* Method name detected. */
5720 /* Else we leave with p unchanged. */
5721 }
5722 }
5723 break;
5724 }
5725 }
5726 return p;
5727 }
5728
5729 static void
5730 completion_list_add_fields (completion_tracker &tracker,
5731 struct symbol *sym,
5732 const lookup_name_info &lookup_name,
5733 const char *text, const char *word)
5734 {
5735 if (sym->aclass () == LOC_TYPEDEF)
5736 {
5737 struct type *t = sym->type ();
5738 enum type_code c = t->code ();
5739 int j;
5740
5741 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5742 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5743 if (t->field (j).name ())
5744 completion_list_add_name (tracker, sym->language (),
5745 t->field (j).name (),
5746 lookup_name, text, word);
5747 }
5748 }
5749
5750 /* See symtab.h. */
5751
5752 bool
5753 symbol_is_function_or_method (symbol *sym)
5754 {
5755 switch (sym->type ()->code ())
5756 {
5757 case TYPE_CODE_FUNC:
5758 case TYPE_CODE_METHOD:
5759 return true;
5760 default:
5761 return false;
5762 }
5763 }
5764
5765 /* See symtab.h. */
5766
5767 bool
5768 symbol_is_function_or_method (minimal_symbol *msymbol)
5769 {
5770 switch (msymbol->type ())
5771 {
5772 case mst_text:
5773 case mst_text_gnu_ifunc:
5774 case mst_solib_trampoline:
5775 case mst_file_text:
5776 return true;
5777 default:
5778 return false;
5779 }
5780 }
5781
5782 /* See symtab.h. */
5783
5784 bound_minimal_symbol
5785 find_gnu_ifunc (const symbol *sym)
5786 {
5787 if (sym->aclass () != LOC_BLOCK)
5788 return {};
5789
5790 lookup_name_info lookup_name (sym->search_name (),
5791 symbol_name_match_type::SEARCH_NAME);
5792 struct objfile *objfile = symbol_objfile (sym);
5793
5794 CORE_ADDR address = BLOCK_ENTRY_PC (sym->value_block ());
5795 minimal_symbol *ifunc = NULL;
5796
5797 iterate_over_minimal_symbols (objfile, lookup_name,
5798 [&] (minimal_symbol *minsym)
5799 {
5800 if (minsym->type () == mst_text_gnu_ifunc
5801 || minsym->type () == mst_data_gnu_ifunc)
5802 {
5803 CORE_ADDR msym_addr = minsym->value_address (objfile);
5804 if (minsym->type () == mst_data_gnu_ifunc)
5805 {
5806 struct gdbarch *gdbarch = objfile->arch ();
5807 msym_addr = gdbarch_convert_from_func_ptr_addr
5808 (gdbarch, msym_addr, current_inferior ()->top_target ());
5809 }
5810 if (msym_addr == address)
5811 {
5812 ifunc = minsym;
5813 return true;
5814 }
5815 }
5816 return false;
5817 });
5818
5819 if (ifunc != NULL)
5820 return {ifunc, objfile};
5821 return {};
5822 }
5823
5824 /* Add matching symbols from SYMTAB to the current completion list. */
5825
5826 static void
5827 add_symtab_completions (struct compunit_symtab *cust,
5828 completion_tracker &tracker,
5829 complete_symbol_mode mode,
5830 const lookup_name_info &lookup_name,
5831 const char *text, const char *word,
5832 enum type_code code)
5833 {
5834 struct symbol *sym;
5835 const struct block *b;
5836 struct block_iterator iter;
5837 int i;
5838
5839 if (cust == NULL)
5840 return;
5841
5842 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5843 {
5844 QUIT;
5845 b = BLOCKVECTOR_BLOCK (cust->blockvector (), i);
5846 ALL_BLOCK_SYMBOLS (b, iter, sym)
5847 {
5848 if (completion_skip_symbol (mode, sym))
5849 continue;
5850
5851 if (code == TYPE_CODE_UNDEF
5852 || (sym->domain () == STRUCT_DOMAIN
5853 && sym->type ()->code () == code))
5854 completion_list_add_symbol (tracker, sym,
5855 lookup_name,
5856 text, word);
5857 }
5858 }
5859 }
5860
5861 void
5862 default_collect_symbol_completion_matches_break_on
5863 (completion_tracker &tracker, complete_symbol_mode mode,
5864 symbol_name_match_type name_match_type,
5865 const char *text, const char *word,
5866 const char *break_on, enum type_code code)
5867 {
5868 /* Problem: All of the symbols have to be copied because readline
5869 frees them. I'm not going to worry about this; hopefully there
5870 won't be that many. */
5871
5872 struct symbol *sym;
5873 const struct block *b;
5874 const struct block *surrounding_static_block, *surrounding_global_block;
5875 struct block_iterator iter;
5876 /* The symbol we are completing on. Points in same buffer as text. */
5877 const char *sym_text;
5878
5879 /* Now look for the symbol we are supposed to complete on. */
5880 if (mode == complete_symbol_mode::LINESPEC)
5881 sym_text = text;
5882 else
5883 {
5884 const char *p;
5885 char quote_found;
5886 const char *quote_pos = NULL;
5887
5888 /* First see if this is a quoted string. */
5889 quote_found = '\0';
5890 for (p = text; *p != '\0'; ++p)
5891 {
5892 if (quote_found != '\0')
5893 {
5894 if (*p == quote_found)
5895 /* Found close quote. */
5896 quote_found = '\0';
5897 else if (*p == '\\' && p[1] == quote_found)
5898 /* A backslash followed by the quote character
5899 doesn't end the string. */
5900 ++p;
5901 }
5902 else if (*p == '\'' || *p == '"')
5903 {
5904 quote_found = *p;
5905 quote_pos = p;
5906 }
5907 }
5908 if (quote_found == '\'')
5909 /* A string within single quotes can be a symbol, so complete on it. */
5910 sym_text = quote_pos + 1;
5911 else if (quote_found == '"')
5912 /* A double-quoted string is never a symbol, nor does it make sense
5913 to complete it any other way. */
5914 {
5915 return;
5916 }
5917 else
5918 {
5919 /* It is not a quoted string. Break it based on the characters
5920 which are in symbols. */
5921 while (p > text)
5922 {
5923 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5924 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5925 --p;
5926 else
5927 break;
5928 }
5929 sym_text = p;
5930 }
5931 }
5932
5933 lookup_name_info lookup_name (sym_text, name_match_type, true);
5934
5935 /* At this point scan through the misc symbol vectors and add each
5936 symbol you find to the list. Eventually we want to ignore
5937 anything that isn't a text symbol (everything else will be
5938 handled by the psymtab code below). */
5939
5940 if (code == TYPE_CODE_UNDEF)
5941 {
5942 for (objfile *objfile : current_program_space->objfiles ())
5943 {
5944 for (minimal_symbol *msymbol : objfile->msymbols ())
5945 {
5946 QUIT;
5947
5948 if (completion_skip_symbol (mode, msymbol))
5949 continue;
5950
5951 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5952 sym_text, word);
5953
5954 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5955 sym_text, word);
5956 }
5957 }
5958 }
5959
5960 /* Add completions for all currently loaded symbol tables. */
5961 for (objfile *objfile : current_program_space->objfiles ())
5962 {
5963 for (compunit_symtab *cust : objfile->compunits ())
5964 add_symtab_completions (cust, tracker, mode, lookup_name,
5965 sym_text, word, code);
5966 }
5967
5968 /* Look through the partial symtabs for all symbols which begin by
5969 matching SYM_TEXT. Expand all CUs that you find to the list. */
5970 expand_symtabs_matching (NULL,
5971 lookup_name,
5972 NULL,
5973 [&] (compunit_symtab *symtab) /* expansion notify */
5974 {
5975 add_symtab_completions (symtab,
5976 tracker, mode, lookup_name,
5977 sym_text, word, code);
5978 return true;
5979 },
5980 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
5981 ALL_DOMAIN);
5982
5983 /* Search upwards from currently selected frame (so that we can
5984 complete on local vars). Also catch fields of types defined in
5985 this places which match our text string. Only complete on types
5986 visible from current context. */
5987
5988 b = get_selected_block (0);
5989 surrounding_static_block = block_static_block (b);
5990 surrounding_global_block = block_global_block (b);
5991 if (surrounding_static_block != NULL)
5992 while (b != surrounding_static_block)
5993 {
5994 QUIT;
5995
5996 ALL_BLOCK_SYMBOLS (b, iter, sym)
5997 {
5998 if (code == TYPE_CODE_UNDEF)
5999 {
6000 completion_list_add_symbol (tracker, sym, lookup_name,
6001 sym_text, word);
6002 completion_list_add_fields (tracker, sym, lookup_name,
6003 sym_text, word);
6004 }
6005 else if (sym->domain () == STRUCT_DOMAIN
6006 && sym->type ()->code () == code)
6007 completion_list_add_symbol (tracker, sym, lookup_name,
6008 sym_text, word);
6009 }
6010
6011 /* Stop when we encounter an enclosing function. Do not stop for
6012 non-inlined functions - the locals of the enclosing function
6013 are in scope for a nested function. */
6014 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
6015 break;
6016 b = BLOCK_SUPERBLOCK (b);
6017 }
6018
6019 /* Add fields from the file's types; symbols will be added below. */
6020
6021 if (code == TYPE_CODE_UNDEF)
6022 {
6023 if (surrounding_static_block != NULL)
6024 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
6025 completion_list_add_fields (tracker, sym, lookup_name,
6026 sym_text, word);
6027
6028 if (surrounding_global_block != NULL)
6029 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
6030 completion_list_add_fields (tracker, sym, lookup_name,
6031 sym_text, word);
6032 }
6033
6034 /* Skip macros if we are completing a struct tag -- arguable but
6035 usually what is expected. */
6036 if (current_language->macro_expansion () == macro_expansion_c
6037 && code == TYPE_CODE_UNDEF)
6038 {
6039 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
6040
6041 /* This adds a macro's name to the current completion list. */
6042 auto add_macro_name = [&] (const char *macro_name,
6043 const macro_definition *,
6044 macro_source_file *,
6045 int)
6046 {
6047 completion_list_add_name (tracker, language_c, macro_name,
6048 lookup_name, sym_text, word);
6049 };
6050
6051 /* Add any macros visible in the default scope. Note that this
6052 may yield the occasional wrong result, because an expression
6053 might be evaluated in a scope other than the default. For
6054 example, if the user types "break file:line if <TAB>", the
6055 resulting expression will be evaluated at "file:line" -- but
6056 at there does not seem to be a way to detect this at
6057 completion time. */
6058 scope = default_macro_scope ();
6059 if (scope)
6060 macro_for_each_in_scope (scope->file, scope->line,
6061 add_macro_name);
6062
6063 /* User-defined macros are always visible. */
6064 macro_for_each (macro_user_macros, add_macro_name);
6065 }
6066 }
6067
6068 /* Collect all symbols (regardless of class) which begin by matching
6069 TEXT. */
6070
6071 void
6072 collect_symbol_completion_matches (completion_tracker &tracker,
6073 complete_symbol_mode mode,
6074 symbol_name_match_type name_match_type,
6075 const char *text, const char *word)
6076 {
6077 current_language->collect_symbol_completion_matches (tracker, mode,
6078 name_match_type,
6079 text, word,
6080 TYPE_CODE_UNDEF);
6081 }
6082
6083 /* Like collect_symbol_completion_matches, but only collect
6084 STRUCT_DOMAIN symbols whose type code is CODE. */
6085
6086 void
6087 collect_symbol_completion_matches_type (completion_tracker &tracker,
6088 const char *text, const char *word,
6089 enum type_code code)
6090 {
6091 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
6092 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
6093
6094 gdb_assert (code == TYPE_CODE_UNION
6095 || code == TYPE_CODE_STRUCT
6096 || code == TYPE_CODE_ENUM);
6097 current_language->collect_symbol_completion_matches (tracker, mode,
6098 name_match_type,
6099 text, word, code);
6100 }
6101
6102 /* Like collect_symbol_completion_matches, but collects a list of
6103 symbols defined in all source files named SRCFILE. */
6104
6105 void
6106 collect_file_symbol_completion_matches (completion_tracker &tracker,
6107 complete_symbol_mode mode,
6108 symbol_name_match_type name_match_type,
6109 const char *text, const char *word,
6110 const char *srcfile)
6111 {
6112 /* The symbol we are completing on. Points in same buffer as text. */
6113 const char *sym_text;
6114
6115 /* Now look for the symbol we are supposed to complete on.
6116 FIXME: This should be language-specific. */
6117 if (mode == complete_symbol_mode::LINESPEC)
6118 sym_text = text;
6119 else
6120 {
6121 const char *p;
6122 char quote_found;
6123 const char *quote_pos = NULL;
6124
6125 /* First see if this is a quoted string. */
6126 quote_found = '\0';
6127 for (p = text; *p != '\0'; ++p)
6128 {
6129 if (quote_found != '\0')
6130 {
6131 if (*p == quote_found)
6132 /* Found close quote. */
6133 quote_found = '\0';
6134 else if (*p == '\\' && p[1] == quote_found)
6135 /* A backslash followed by the quote character
6136 doesn't end the string. */
6137 ++p;
6138 }
6139 else if (*p == '\'' || *p == '"')
6140 {
6141 quote_found = *p;
6142 quote_pos = p;
6143 }
6144 }
6145 if (quote_found == '\'')
6146 /* A string within single quotes can be a symbol, so complete on it. */
6147 sym_text = quote_pos + 1;
6148 else if (quote_found == '"')
6149 /* A double-quoted string is never a symbol, nor does it make sense
6150 to complete it any other way. */
6151 {
6152 return;
6153 }
6154 else
6155 {
6156 /* Not a quoted string. */
6157 sym_text = language_search_unquoted_string (text, p);
6158 }
6159 }
6160
6161 lookup_name_info lookup_name (sym_text, name_match_type, true);
6162
6163 /* Go through symtabs for SRCFILE and check the externs and statics
6164 for symbols which match. */
6165 iterate_over_symtabs (srcfile, [&] (symtab *s)
6166 {
6167 add_symtab_completions (s->compunit (),
6168 tracker, mode, lookup_name,
6169 sym_text, word, TYPE_CODE_UNDEF);
6170 return false;
6171 });
6172 }
6173
6174 /* A helper function for make_source_files_completion_list. It adds
6175 another file name to a list of possible completions, growing the
6176 list as necessary. */
6177
6178 static void
6179 add_filename_to_list (const char *fname, const char *text, const char *word,
6180 completion_list *list)
6181 {
6182 list->emplace_back (make_completion_match_str (fname, text, word));
6183 }
6184
6185 static int
6186 not_interesting_fname (const char *fname)
6187 {
6188 static const char *illegal_aliens[] = {
6189 "_globals_", /* inserted by coff_symtab_read */
6190 NULL
6191 };
6192 int i;
6193
6194 for (i = 0; illegal_aliens[i]; i++)
6195 {
6196 if (filename_cmp (fname, illegal_aliens[i]) == 0)
6197 return 1;
6198 }
6199 return 0;
6200 }
6201
6202 /* An object of this type is passed as the callback argument to
6203 map_partial_symbol_filenames. */
6204 struct add_partial_filename_data
6205 {
6206 struct filename_seen_cache *filename_seen_cache;
6207 const char *text;
6208 const char *word;
6209 int text_len;
6210 completion_list *list;
6211
6212 void operator() (const char *filename, const char *fullname);
6213 };
6214
6215 /* A callback for map_partial_symbol_filenames. */
6216
6217 void
6218 add_partial_filename_data::operator() (const char *filename,
6219 const char *fullname)
6220 {
6221 if (not_interesting_fname (filename))
6222 return;
6223 if (!filename_seen_cache->seen (filename)
6224 && filename_ncmp (filename, text, text_len) == 0)
6225 {
6226 /* This file matches for a completion; add it to the
6227 current list of matches. */
6228 add_filename_to_list (filename, text, word, list);
6229 }
6230 else
6231 {
6232 const char *base_name = lbasename (filename);
6233
6234 if (base_name != filename
6235 && !filename_seen_cache->seen (base_name)
6236 && filename_ncmp (base_name, text, text_len) == 0)
6237 add_filename_to_list (base_name, text, word, list);
6238 }
6239 }
6240
6241 /* Return a list of all source files whose names begin with matching
6242 TEXT. The file names are looked up in the symbol tables of this
6243 program. */
6244
6245 completion_list
6246 make_source_files_completion_list (const char *text, const char *word)
6247 {
6248 size_t text_len = strlen (text);
6249 completion_list list;
6250 const char *base_name;
6251 struct add_partial_filename_data datum;
6252
6253 if (!have_full_symbols () && !have_partial_symbols ())
6254 return list;
6255
6256 filename_seen_cache filenames_seen;
6257
6258 for (objfile *objfile : current_program_space->objfiles ())
6259 {
6260 for (compunit_symtab *cu : objfile->compunits ())
6261 {
6262 for (symtab *s : cu->filetabs ())
6263 {
6264 if (not_interesting_fname (s->filename))
6265 continue;
6266 if (!filenames_seen.seen (s->filename)
6267 && filename_ncmp (s->filename, text, text_len) == 0)
6268 {
6269 /* This file matches for a completion; add it to the current
6270 list of matches. */
6271 add_filename_to_list (s->filename, text, word, &list);
6272 }
6273 else
6274 {
6275 /* NOTE: We allow the user to type a base name when the
6276 debug info records leading directories, but not the other
6277 way around. This is what subroutines of breakpoint
6278 command do when they parse file names. */
6279 base_name = lbasename (s->filename);
6280 if (base_name != s->filename
6281 && !filenames_seen.seen (base_name)
6282 && filename_ncmp (base_name, text, text_len) == 0)
6283 add_filename_to_list (base_name, text, word, &list);
6284 }
6285 }
6286 }
6287 }
6288
6289 datum.filename_seen_cache = &filenames_seen;
6290 datum.text = text;
6291 datum.word = word;
6292 datum.text_len = text_len;
6293 datum.list = &list;
6294 map_symbol_filenames (datum, false /*need_fullname*/);
6295
6296 return list;
6297 }
6298 \f
6299 /* Track MAIN */
6300
6301 /* Return the "main_info" object for the current program space. If
6302 the object has not yet been created, create it and fill in some
6303 default values. */
6304
6305 static struct main_info *
6306 get_main_info (void)
6307 {
6308 struct main_info *info = main_progspace_key.get (current_program_space);
6309
6310 if (info == NULL)
6311 {
6312 /* It may seem strange to store the main name in the progspace
6313 and also in whatever objfile happens to see a main name in
6314 its debug info. The reason for this is mainly historical:
6315 gdb returned "main" as the name even if no function named
6316 "main" was defined the program; and this approach lets us
6317 keep compatibility. */
6318 info = main_progspace_key.emplace (current_program_space);
6319 }
6320
6321 return info;
6322 }
6323
6324 static void
6325 set_main_name (const char *name, enum language lang)
6326 {
6327 struct main_info *info = get_main_info ();
6328
6329 if (info->name_of_main != NULL)
6330 {
6331 xfree (info->name_of_main);
6332 info->name_of_main = NULL;
6333 info->language_of_main = language_unknown;
6334 }
6335 if (name != NULL)
6336 {
6337 info->name_of_main = xstrdup (name);
6338 info->language_of_main = lang;
6339 }
6340 }
6341
6342 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6343 accordingly. */
6344
6345 static void
6346 find_main_name (void)
6347 {
6348 const char *new_main_name;
6349
6350 /* First check the objfiles to see whether a debuginfo reader has
6351 picked up the appropriate main name. Historically the main name
6352 was found in a more or less random way; this approach instead
6353 relies on the order of objfile creation -- which still isn't
6354 guaranteed to get the correct answer, but is just probably more
6355 accurate. */
6356 for (objfile *objfile : current_program_space->objfiles ())
6357 {
6358 if (objfile->per_bfd->name_of_main != NULL)
6359 {
6360 set_main_name (objfile->per_bfd->name_of_main,
6361 objfile->per_bfd->language_of_main);
6362 return;
6363 }
6364 }
6365
6366 /* Try to see if the main procedure is in Ada. */
6367 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6368 be to add a new method in the language vector, and call this
6369 method for each language until one of them returns a non-empty
6370 name. This would allow us to remove this hard-coded call to
6371 an Ada function. It is not clear that this is a better approach
6372 at this point, because all methods need to be written in a way
6373 such that false positives never be returned. For instance, it is
6374 important that a method does not return a wrong name for the main
6375 procedure if the main procedure is actually written in a different
6376 language. It is easy to guaranty this with Ada, since we use a
6377 special symbol generated only when the main in Ada to find the name
6378 of the main procedure. It is difficult however to see how this can
6379 be guarantied for languages such as C, for instance. This suggests
6380 that order of call for these methods becomes important, which means
6381 a more complicated approach. */
6382 new_main_name = ada_main_name ();
6383 if (new_main_name != NULL)
6384 {
6385 set_main_name (new_main_name, language_ada);
6386 return;
6387 }
6388
6389 new_main_name = d_main_name ();
6390 if (new_main_name != NULL)
6391 {
6392 set_main_name (new_main_name, language_d);
6393 return;
6394 }
6395
6396 new_main_name = go_main_name ();
6397 if (new_main_name != NULL)
6398 {
6399 set_main_name (new_main_name, language_go);
6400 return;
6401 }
6402
6403 new_main_name = pascal_main_name ();
6404 if (new_main_name != NULL)
6405 {
6406 set_main_name (new_main_name, language_pascal);
6407 return;
6408 }
6409
6410 /* The languages above didn't identify the name of the main procedure.
6411 Fallback to "main". */
6412
6413 /* Try to find language for main in psymtabs. */
6414 enum language lang
6415 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6416 if (lang != language_unknown)
6417 {
6418 set_main_name ("main", lang);
6419 return;
6420 }
6421
6422 set_main_name ("main", language_unknown);
6423 }
6424
6425 /* See symtab.h. */
6426
6427 const char *
6428 main_name ()
6429 {
6430 struct main_info *info = get_main_info ();
6431
6432 if (info->name_of_main == NULL)
6433 find_main_name ();
6434
6435 return info->name_of_main;
6436 }
6437
6438 /* Return the language of the main function. If it is not known,
6439 return language_unknown. */
6440
6441 enum language
6442 main_language (void)
6443 {
6444 struct main_info *info = get_main_info ();
6445
6446 if (info->name_of_main == NULL)
6447 find_main_name ();
6448
6449 return info->language_of_main;
6450 }
6451
6452 /* Handle ``executable_changed'' events for the symtab module. */
6453
6454 static void
6455 symtab_observer_executable_changed (void)
6456 {
6457 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6458 set_main_name (NULL, language_unknown);
6459 }
6460
6461 /* Return 1 if the supplied producer string matches the ARM RealView
6462 compiler (armcc). */
6463
6464 bool
6465 producer_is_realview (const char *producer)
6466 {
6467 static const char *const arm_idents[] = {
6468 "ARM C Compiler, ADS",
6469 "Thumb C Compiler, ADS",
6470 "ARM C++ Compiler, ADS",
6471 "Thumb C++ Compiler, ADS",
6472 "ARM/Thumb C/C++ Compiler, RVCT",
6473 "ARM C/C++ Compiler, RVCT"
6474 };
6475
6476 if (producer == NULL)
6477 return false;
6478
6479 for (const char *ident : arm_idents)
6480 if (startswith (producer, ident))
6481 return true;
6482
6483 return false;
6484 }
6485
6486 \f
6487
6488 /* The next index to hand out in response to a registration request. */
6489
6490 static int next_aclass_value = LOC_FINAL_VALUE;
6491
6492 /* The maximum number of "aclass" registrations we support. This is
6493 constant for convenience. */
6494 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6495
6496 /* The objects representing the various "aclass" values. The elements
6497 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6498 elements are those registered at gdb initialization time. */
6499
6500 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6501
6502 /* The globally visible pointer. This is separate from 'symbol_impl'
6503 so that it can be const. */
6504
6505 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6506
6507 /* Make sure we saved enough room in struct symbol. */
6508
6509 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6510
6511 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6512 is the ops vector associated with this index. This returns the new
6513 index, which should be used as the aclass_index field for symbols
6514 of this type. */
6515
6516 int
6517 register_symbol_computed_impl (enum address_class aclass,
6518 const struct symbol_computed_ops *ops)
6519 {
6520 int result = next_aclass_value++;
6521
6522 gdb_assert (aclass == LOC_COMPUTED);
6523 gdb_assert (result < MAX_SYMBOL_IMPLS);
6524 symbol_impl[result].aclass = aclass;
6525 symbol_impl[result].ops_computed = ops;
6526
6527 /* Sanity check OPS. */
6528 gdb_assert (ops != NULL);
6529 gdb_assert (ops->tracepoint_var_ref != NULL);
6530 gdb_assert (ops->describe_location != NULL);
6531 gdb_assert (ops->get_symbol_read_needs != NULL);
6532 gdb_assert (ops->read_variable != NULL);
6533
6534 return result;
6535 }
6536
6537 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6538 OPS is the ops vector associated with this index. This returns the
6539 new index, which should be used as the aclass_index field for symbols
6540 of this type. */
6541
6542 int
6543 register_symbol_block_impl (enum address_class aclass,
6544 const struct symbol_block_ops *ops)
6545 {
6546 int result = next_aclass_value++;
6547
6548 gdb_assert (aclass == LOC_BLOCK);
6549 gdb_assert (result < MAX_SYMBOL_IMPLS);
6550 symbol_impl[result].aclass = aclass;
6551 symbol_impl[result].ops_block = ops;
6552
6553 /* Sanity check OPS. */
6554 gdb_assert (ops != NULL);
6555 gdb_assert (ops->find_frame_base_location != NULL);
6556
6557 return result;
6558 }
6559
6560 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6561 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6562 this index. This returns the new index, which should be used as
6563 the aclass_index field for symbols of this type. */
6564
6565 int
6566 register_symbol_register_impl (enum address_class aclass,
6567 const struct symbol_register_ops *ops)
6568 {
6569 int result = next_aclass_value++;
6570
6571 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6572 gdb_assert (result < MAX_SYMBOL_IMPLS);
6573 symbol_impl[result].aclass = aclass;
6574 symbol_impl[result].ops_register = ops;
6575
6576 return result;
6577 }
6578
6579 /* Initialize elements of 'symbol_impl' for the constants in enum
6580 address_class. */
6581
6582 static void
6583 initialize_ordinary_address_classes (void)
6584 {
6585 int i;
6586
6587 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6588 symbol_impl[i].aclass = (enum address_class) i;
6589 }
6590
6591 \f
6592
6593 /* See symtab.h. */
6594
6595 struct objfile *
6596 symbol_objfile (const struct symbol *symbol)
6597 {
6598 gdb_assert (symbol->is_objfile_owned ());
6599 return symbol->owner.symtab->compunit ()->objfile ();
6600 }
6601
6602 /* See symtab.h. */
6603
6604 struct gdbarch *
6605 symbol_arch (const struct symbol *symbol)
6606 {
6607 if (!symbol->is_objfile_owned ())
6608 return symbol->owner.arch;
6609 return symbol->owner.symtab->compunit ()->objfile ()->arch ();
6610 }
6611
6612 /* See symtab.h. */
6613
6614 struct symtab *
6615 symbol_symtab (const struct symbol *symbol)
6616 {
6617 gdb_assert (symbol->is_objfile_owned ());
6618 return symbol->owner.symtab;
6619 }
6620
6621 /* See symtab.h. */
6622
6623 void
6624 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6625 {
6626 gdb_assert (symbol->is_objfile_owned ());
6627 symbol->owner.symtab = symtab;
6628 }
6629
6630 /* See symtab.h. */
6631
6632 CORE_ADDR
6633 get_symbol_address (const struct symbol *sym)
6634 {
6635 gdb_assert (sym->maybe_copied);
6636 gdb_assert (sym->aclass () == LOC_STATIC);
6637
6638 const char *linkage_name = sym->linkage_name ();
6639
6640 for (objfile *objfile : current_program_space->objfiles ())
6641 {
6642 if (objfile->separate_debug_objfile_backlink != nullptr)
6643 continue;
6644
6645 bound_minimal_symbol minsym
6646 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6647 if (minsym.minsym != nullptr)
6648 return minsym.value_address ();
6649 }
6650 return sym->m_value.address;
6651 }
6652
6653 /* See symtab.h. */
6654
6655 CORE_ADDR
6656 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6657 {
6658 gdb_assert (minsym->maybe_copied);
6659 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6660
6661 const char *linkage_name = minsym->linkage_name ();
6662
6663 for (objfile *objfile : current_program_space->objfiles ())
6664 {
6665 if (objfile->separate_debug_objfile_backlink == nullptr
6666 && (objfile->flags & OBJF_MAINLINE) != 0)
6667 {
6668 bound_minimal_symbol found
6669 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6670 if (found.minsym != nullptr)
6671 return found.value_address ();
6672 }
6673 }
6674 return (minsym->m_value.address
6675 + objf->section_offsets[minsym->section_index ()]);
6676 }
6677
6678 \f
6679
6680 /* Hold the sub-commands of 'info module'. */
6681
6682 static struct cmd_list_element *info_module_cmdlist = NULL;
6683
6684 /* See symtab.h. */
6685
6686 std::vector<module_symbol_search>
6687 search_module_symbols (const char *module_regexp, const char *regexp,
6688 const char *type_regexp, search_domain kind)
6689 {
6690 std::vector<module_symbol_search> results;
6691
6692 /* Search for all modules matching MODULE_REGEXP. */
6693 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6694 spec1.set_exclude_minsyms (true);
6695 std::vector<symbol_search> modules = spec1.search ();
6696
6697 /* Now search for all symbols of the required KIND matching the required
6698 regular expressions. We figure out which ones are in which modules
6699 below. */
6700 global_symbol_searcher spec2 (kind, regexp);
6701 spec2.set_symbol_type_regexp (type_regexp);
6702 spec2.set_exclude_minsyms (true);
6703 std::vector<symbol_search> symbols = spec2.search ();
6704
6705 /* Now iterate over all MODULES, checking to see which items from
6706 SYMBOLS are in each module. */
6707 for (const symbol_search &p : modules)
6708 {
6709 QUIT;
6710
6711 /* This is a module. */
6712 gdb_assert (p.symbol != nullptr);
6713
6714 std::string prefix = p.symbol->print_name ();
6715 prefix += "::";
6716
6717 for (const symbol_search &q : symbols)
6718 {
6719 if (q.symbol == nullptr)
6720 continue;
6721
6722 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6723 prefix.size ()) != 0)
6724 continue;
6725
6726 results.push_back ({p, q});
6727 }
6728 }
6729
6730 return results;
6731 }
6732
6733 /* Implement the core of both 'info module functions' and 'info module
6734 variables'. */
6735
6736 static void
6737 info_module_subcommand (bool quiet, const char *module_regexp,
6738 const char *regexp, const char *type_regexp,
6739 search_domain kind)
6740 {
6741 /* Print a header line. Don't build the header line bit by bit as this
6742 prevents internationalisation. */
6743 if (!quiet)
6744 {
6745 if (module_regexp == nullptr)
6746 {
6747 if (type_regexp == nullptr)
6748 {
6749 if (regexp == nullptr)
6750 gdb_printf ((kind == VARIABLES_DOMAIN
6751 ? _("All variables in all modules:")
6752 : _("All functions in all modules:")));
6753 else
6754 gdb_printf
6755 ((kind == VARIABLES_DOMAIN
6756 ? _("All variables matching regular expression"
6757 " \"%s\" in all modules:")
6758 : _("All functions matching regular expression"
6759 " \"%s\" in all modules:")),
6760 regexp);
6761 }
6762 else
6763 {
6764 if (regexp == nullptr)
6765 gdb_printf
6766 ((kind == VARIABLES_DOMAIN
6767 ? _("All variables with type matching regular "
6768 "expression \"%s\" in all modules:")
6769 : _("All functions with type matching regular "
6770 "expression \"%s\" in all modules:")),
6771 type_regexp);
6772 else
6773 gdb_printf
6774 ((kind == VARIABLES_DOMAIN
6775 ? _("All variables matching regular expression "
6776 "\"%s\",\n\twith type matching regular "
6777 "expression \"%s\" in all modules:")
6778 : _("All functions matching regular expression "
6779 "\"%s\",\n\twith type matching regular "
6780 "expression \"%s\" in all modules:")),
6781 regexp, type_regexp);
6782 }
6783 }
6784 else
6785 {
6786 if (type_regexp == nullptr)
6787 {
6788 if (regexp == nullptr)
6789 gdb_printf
6790 ((kind == VARIABLES_DOMAIN
6791 ? _("All variables in all modules matching regular "
6792 "expression \"%s\":")
6793 : _("All functions in all modules matching regular "
6794 "expression \"%s\":")),
6795 module_regexp);
6796 else
6797 gdb_printf
6798 ((kind == VARIABLES_DOMAIN
6799 ? _("All variables matching regular expression "
6800 "\"%s\",\n\tin all modules matching regular "
6801 "expression \"%s\":")
6802 : _("All functions matching regular expression "
6803 "\"%s\",\n\tin all modules matching regular "
6804 "expression \"%s\":")),
6805 regexp, module_regexp);
6806 }
6807 else
6808 {
6809 if (regexp == nullptr)
6810 gdb_printf
6811 ((kind == VARIABLES_DOMAIN
6812 ? _("All variables with type matching regular "
6813 "expression \"%s\"\n\tin all modules matching "
6814 "regular expression \"%s\":")
6815 : _("All functions with type matching regular "
6816 "expression \"%s\"\n\tin all modules matching "
6817 "regular expression \"%s\":")),
6818 type_regexp, module_regexp);
6819 else
6820 gdb_printf
6821 ((kind == VARIABLES_DOMAIN
6822 ? _("All variables matching regular expression "
6823 "\"%s\",\n\twith type matching regular expression "
6824 "\"%s\",\n\tin all modules matching regular "
6825 "expression \"%s\":")
6826 : _("All functions matching regular expression "
6827 "\"%s\",\n\twith type matching regular expression "
6828 "\"%s\",\n\tin all modules matching regular "
6829 "expression \"%s\":")),
6830 regexp, type_regexp, module_regexp);
6831 }
6832 }
6833 gdb_printf ("\n");
6834 }
6835
6836 /* Find all symbols of type KIND matching the given regular expressions
6837 along with the symbols for the modules in which those symbols
6838 reside. */
6839 std::vector<module_symbol_search> module_symbols
6840 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6841
6842 std::sort (module_symbols.begin (), module_symbols.end (),
6843 [] (const module_symbol_search &a, const module_symbol_search &b)
6844 {
6845 if (a.first < b.first)
6846 return true;
6847 else if (a.first == b.first)
6848 return a.second < b.second;
6849 else
6850 return false;
6851 });
6852
6853 const char *last_filename = "";
6854 const symbol *last_module_symbol = nullptr;
6855 for (const module_symbol_search &ms : module_symbols)
6856 {
6857 const symbol_search &p = ms.first;
6858 const symbol_search &q = ms.second;
6859
6860 gdb_assert (q.symbol != nullptr);
6861
6862 if (last_module_symbol != p.symbol)
6863 {
6864 gdb_printf ("\n");
6865 gdb_printf (_("Module \"%s\":\n"), p.symbol->print_name ());
6866 last_module_symbol = p.symbol;
6867 last_filename = "";
6868 }
6869
6870 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6871 last_filename);
6872 last_filename
6873 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6874 }
6875 }
6876
6877 /* Hold the option values for the 'info module .....' sub-commands. */
6878
6879 struct info_modules_var_func_options
6880 {
6881 bool quiet = false;
6882 std::string type_regexp;
6883 std::string module_regexp;
6884 };
6885
6886 /* The options used by 'info module variables' and 'info module functions'
6887 commands. */
6888
6889 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6890 gdb::option::boolean_option_def<info_modules_var_func_options> {
6891 "q",
6892 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6893 nullptr, /* show_cmd_cb */
6894 nullptr /* set_doc */
6895 },
6896
6897 gdb::option::string_option_def<info_modules_var_func_options> {
6898 "t",
6899 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6900 nullptr, /* show_cmd_cb */
6901 nullptr /* set_doc */
6902 },
6903
6904 gdb::option::string_option_def<info_modules_var_func_options> {
6905 "m",
6906 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6907 nullptr, /* show_cmd_cb */
6908 nullptr /* set_doc */
6909 }
6910 };
6911
6912 /* Return the option group used by the 'info module ...' sub-commands. */
6913
6914 static inline gdb::option::option_def_group
6915 make_info_modules_var_func_options_def_group
6916 (info_modules_var_func_options *opts)
6917 {
6918 return {{info_modules_var_func_options_defs}, opts};
6919 }
6920
6921 /* Implements the 'info module functions' command. */
6922
6923 static void
6924 info_module_functions_command (const char *args, int from_tty)
6925 {
6926 info_modules_var_func_options opts;
6927 auto grp = make_info_modules_var_func_options_def_group (&opts);
6928 gdb::option::process_options
6929 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6930 if (args != nullptr && *args == '\0')
6931 args = nullptr;
6932
6933 info_module_subcommand
6934 (opts.quiet,
6935 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6936 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6937 FUNCTIONS_DOMAIN);
6938 }
6939
6940 /* Implements the 'info module variables' command. */
6941
6942 static void
6943 info_module_variables_command (const char *args, int from_tty)
6944 {
6945 info_modules_var_func_options opts;
6946 auto grp = make_info_modules_var_func_options_def_group (&opts);
6947 gdb::option::process_options
6948 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6949 if (args != nullptr && *args == '\0')
6950 args = nullptr;
6951
6952 info_module_subcommand
6953 (opts.quiet,
6954 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6955 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6956 VARIABLES_DOMAIN);
6957 }
6958
6959 /* Command completer for 'info module ...' sub-commands. */
6960
6961 static void
6962 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6963 completion_tracker &tracker,
6964 const char *text,
6965 const char * /* word */)
6966 {
6967
6968 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6969 if (gdb::option::complete_options
6970 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6971 return;
6972
6973 const char *word = advance_to_expression_complete_word_point (tracker, text);
6974 symbol_completer (ignore, tracker, text, word);
6975 }
6976
6977 \f
6978
6979 void _initialize_symtab ();
6980 void
6981 _initialize_symtab ()
6982 {
6983 cmd_list_element *c;
6984
6985 initialize_ordinary_address_classes ();
6986
6987 c = add_info ("variables", info_variables_command,
6988 info_print_args_help (_("\
6989 All global and static variable names or those matching REGEXPs.\n\
6990 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6991 Prints the global and static variables.\n"),
6992 _("global and static variables"),
6993 true));
6994 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6995
6996 c = add_info ("functions", info_functions_command,
6997 info_print_args_help (_("\
6998 All function names or those matching REGEXPs.\n\
6999 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
7000 Prints the functions.\n"),
7001 _("functions"),
7002 true));
7003 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
7004
7005 c = add_info ("types", info_types_command, _("\
7006 All type names, or those matching REGEXP.\n\
7007 Usage: info types [-q] [REGEXP]\n\
7008 Print information about all types matching REGEXP, or all types if no\n\
7009 REGEXP is given. The optional flag -q disables printing of headers."));
7010 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
7011
7012 const auto info_sources_opts
7013 = make_info_sources_options_def_group (nullptr);
7014
7015 static std::string info_sources_help
7016 = gdb::option::build_help (_("\
7017 All source files in the program or those matching REGEXP.\n\
7018 Usage: info sources [OPTION]... [REGEXP]\n\
7019 By default, REGEXP is used to match anywhere in the filename.\n\
7020 \n\
7021 Options:\n\
7022 %OPTIONS%"),
7023 info_sources_opts);
7024
7025 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
7026 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
7027
7028 c = add_info ("modules", info_modules_command,
7029 _("All module names, or those matching REGEXP."));
7030 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
7031
7032 add_basic_prefix_cmd ("module", class_info, _("\
7033 Print information about modules."),
7034 &info_module_cmdlist, 0, &infolist);
7035
7036 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
7037 Display functions arranged by modules.\n\
7038 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
7039 Print a summary of all functions within each Fortran module, grouped by\n\
7040 module and file. For each function the line on which the function is\n\
7041 defined is given along with the type signature and name of the function.\n\
7042 \n\
7043 If REGEXP is provided then only functions whose name matches REGEXP are\n\
7044 listed. If MODREGEXP is provided then only functions in modules matching\n\
7045 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
7046 type signature matches TYPEREGEXP are listed.\n\
7047 \n\
7048 The -q flag suppresses printing some header information."),
7049 &info_module_cmdlist);
7050 set_cmd_completer_handle_brkchars
7051 (c, info_module_var_func_command_completer);
7052
7053 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
7054 Display variables arranged by modules.\n\
7055 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
7056 Print a summary of all variables within each Fortran module, grouped by\n\
7057 module and file. For each variable the line on which the variable is\n\
7058 defined is given along with the type and name of the variable.\n\
7059 \n\
7060 If REGEXP is provided then only variables whose name matches REGEXP are\n\
7061 listed. If MODREGEXP is provided then only variables in modules matching\n\
7062 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
7063 type matches TYPEREGEXP are listed.\n\
7064 \n\
7065 The -q flag suppresses printing some header information."),
7066 &info_module_cmdlist);
7067 set_cmd_completer_handle_brkchars
7068 (c, info_module_var_func_command_completer);
7069
7070 add_com ("rbreak", class_breakpoint, rbreak_command,
7071 _("Set a breakpoint for all functions matching REGEXP."));
7072
7073 add_setshow_enum_cmd ("multiple-symbols", no_class,
7074 multiple_symbols_modes, &multiple_symbols_mode,
7075 _("\
7076 Set how the debugger handles ambiguities in expressions."), _("\
7077 Show how the debugger handles ambiguities in expressions."), _("\
7078 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
7079 NULL, NULL, &setlist, &showlist);
7080
7081 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
7082 &basenames_may_differ, _("\
7083 Set whether a source file may have multiple base names."), _("\
7084 Show whether a source file may have multiple base names."), _("\
7085 (A \"base name\" is the name of a file with the directory part removed.\n\
7086 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
7087 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
7088 before comparing them. Canonicalization is an expensive operation,\n\
7089 but it allows the same file be known by more than one base name.\n\
7090 If not set (the default), all source files are assumed to have just\n\
7091 one base name, and gdb will do file name comparisons more efficiently."),
7092 NULL, NULL,
7093 &setlist, &showlist);
7094
7095 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
7096 _("Set debugging of symbol table creation."),
7097 _("Show debugging of symbol table creation."), _("\
7098 When enabled (non-zero), debugging messages are printed when building\n\
7099 symbol tables. A value of 1 (one) normally provides enough information.\n\
7100 A value greater than 1 provides more verbose information."),
7101 NULL,
7102 NULL,
7103 &setdebuglist, &showdebuglist);
7104
7105 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
7106 _("\
7107 Set debugging of symbol lookup."), _("\
7108 Show debugging of symbol lookup."), _("\
7109 When enabled (non-zero), symbol lookups are logged."),
7110 NULL, NULL,
7111 &setdebuglist, &showdebuglist);
7112
7113 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
7114 &new_symbol_cache_size,
7115 _("Set the size of the symbol cache."),
7116 _("Show the size of the symbol cache."), _("\
7117 The size of the symbol cache.\n\
7118 If zero then the symbol cache is disabled."),
7119 set_symbol_cache_size_handler, NULL,
7120 &maintenance_set_cmdlist,
7121 &maintenance_show_cmdlist);
7122
7123 add_setshow_boolean_cmd ("ignore-prologue-end-flag", no_class,
7124 &ignore_prologue_end_flag,
7125 _("Set if the PROLOGUE-END flag is ignored."),
7126 _("Show if the PROLOGUE-END flag is ignored."),
7127 _("\
7128 The PROLOGUE-END flag from the line-table entries is used to place \
7129 breakpoints past the prologue of functions. Disabeling its use use forces \
7130 the use of prologue scanners."),
7131 nullptr, nullptr,
7132 &maintenance_set_cmdlist,
7133 &maintenance_show_cmdlist);
7134
7135
7136 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
7137 _("Dump the symbol cache for each program space."),
7138 &maintenanceprintlist);
7139
7140 add_cmd ("symbol-cache-statistics", class_maintenance,
7141 maintenance_print_symbol_cache_statistics,
7142 _("Print symbol cache statistics for each program space."),
7143 &maintenanceprintlist);
7144
7145 cmd_list_element *maintenance_flush_symbol_cache_cmd
7146 = add_cmd ("symbol-cache", class_maintenance,
7147 maintenance_flush_symbol_cache,
7148 _("Flush the symbol cache for each program space."),
7149 &maintenanceflushlist);
7150 c = add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd,
7151 class_maintenance, 0, &maintenancelist);
7152 deprecate_cmd (c, "maintenancelist flush symbol-cache");
7153
7154 gdb::observers::executable_changed.attach (symtab_observer_executable_changed,
7155 "symtab");
7156 gdb::observers::new_objfile.attach (symtab_new_objfile_observer, "symtab");
7157 gdb::observers::free_objfile.attach (symtab_free_objfile_observer, "symtab");
7158 }