[gdb/symtab] Use early continue in find_pc_sect_compunit_symtab
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = type->name ();
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 \f
694 /* Initialize the language dependent portion of a symbol
695 depending upon the language for the symbol. */
696
697 void
698 general_symbol_info::set_language (enum language language,
699 struct obstack *obstack)
700 {
701 m_language = language;
702 if (language == language_cplus
703 || language == language_d
704 || language == language_go
705 || language == language_objc
706 || language == language_fortran)
707 {
708 set_demangled_name (NULL, obstack);
709 }
710 else if (language == language_ada)
711 {
712 gdb_assert (ada_mangled == 0);
713 language_specific.obstack = obstack;
714 }
715 else
716 {
717 memset (&language_specific, 0, sizeof (language_specific));
718 }
719 }
720
721 /* Functions to initialize a symbol's mangled name. */
722
723 /* Objects of this type are stored in the demangled name hash table. */
724 struct demangled_name_entry
725 {
726 demangled_name_entry (gdb::string_view mangled_name)
727 : mangled (mangled_name) {}
728
729 gdb::string_view mangled;
730 enum language language;
731 gdb::unique_xmalloc_ptr<char> demangled;
732 };
733
734 /* Hash function for the demangled name hash. */
735
736 static hashval_t
737 hash_demangled_name_entry (const void *data)
738 {
739 const struct demangled_name_entry *e
740 = (const struct demangled_name_entry *) data;
741
742 return fast_hash (e->mangled.data (), e->mangled.length ());
743 }
744
745 /* Equality function for the demangled name hash. */
746
747 static int
748 eq_demangled_name_entry (const void *a, const void *b)
749 {
750 const struct demangled_name_entry *da
751 = (const struct demangled_name_entry *) a;
752 const struct demangled_name_entry *db
753 = (const struct demangled_name_entry *) b;
754
755 return da->mangled == db->mangled;
756 }
757
758 static void
759 free_demangled_name_entry (void *data)
760 {
761 struct demangled_name_entry *e
762 = (struct demangled_name_entry *) data;
763
764 e->~demangled_name_entry();
765 }
766
767 /* Create the hash table used for demangled names. Each hash entry is
768 a pair of strings; one for the mangled name and one for the demangled
769 name. The entry is hashed via just the mangled name. */
770
771 static void
772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
773 {
774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
775 The hash table code will round this up to the next prime number.
776 Choosing a much larger table size wastes memory, and saves only about
777 1% in symbol reading. However, if the minsym count is already
778 initialized (e.g. because symbol name setting was deferred to
779 a background thread) we can initialize the hashtable with a count
780 based on that, because we will almost certainly have at least that
781 many entries. If we have a nonzero number but less than 256,
782 we still stay with 256 to have some space for psymbols, etc. */
783
784 /* htab will expand the table when it is 3/4th full, so we account for that
785 here. +2 to round up. */
786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
788
789 per_bfd->demangled_names_hash.reset (htab_create_alloc
790 (count, hash_demangled_name_entry, eq_demangled_name_entry,
791 free_demangled_name_entry, xcalloc, xfree));
792 }
793
794 /* See symtab.h */
795
796 char *
797 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
798 const char *mangled)
799 {
800 char *demangled = NULL;
801 int i;
802
803 if (gsymbol->language () == language_unknown)
804 gsymbol->m_language = language_auto;
805
806 if (gsymbol->language () != language_auto)
807 {
808 const struct language_defn *lang = language_def (gsymbol->language ());
809
810 lang->sniff_from_mangled_name (mangled, &demangled);
811 return demangled;
812 }
813
814 for (i = language_unknown; i < nr_languages; ++i)
815 {
816 enum language l = (enum language) i;
817 const struct language_defn *lang = language_def (l);
818
819 if (lang->sniff_from_mangled_name (mangled, &demangled))
820 {
821 gsymbol->m_language = l;
822 return demangled;
823 }
824 }
825
826 return NULL;
827 }
828
829 /* Set both the mangled and demangled (if any) names for GSYMBOL based
830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
831 objfile's obstack; but if COPY_NAME is 0 and if NAME is
832 NUL-terminated, then this function assumes that NAME is already
833 correctly saved (either permanently or with a lifetime tied to the
834 objfile), and it will not be copied.
835
836 The hash table corresponding to OBJFILE is used, and the memory
837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
838 so the pointer can be discarded after calling this function. */
839
840 void
841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
842 bool copy_name,
843 objfile_per_bfd_storage *per_bfd,
844 gdb::optional<hashval_t> hash)
845 {
846 struct demangled_name_entry **slot;
847
848 if (language () == language_ada)
849 {
850 /* In Ada, we do the symbol lookups using the mangled name, so
851 we can save some space by not storing the demangled name. */
852 if (!copy_name)
853 m_name = linkage_name.data ();
854 else
855 m_name = obstack_strndup (&per_bfd->storage_obstack,
856 linkage_name.data (),
857 linkage_name.length ());
858 set_demangled_name (NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 if (!hash.has_value ())
868 hash = hash_demangled_name_entry (&entry);
869 slot = ((struct demangled_name_entry **)
870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
871 &entry, *hash, INSERT));
872
873 /* The const_cast is safe because the only reason it is already
874 initialized is if we purposefully set it from a background
875 thread to avoid doing the work here. However, it is still
876 allocated from the heap and needs to be freed by us, just
877 like if we called symbol_find_demangled_name here. If this is
878 nullptr, we call symbol_find_demangled_name below, but we put
879 this smart pointer here to be sure that we don't leak this name. */
880 gdb::unique_xmalloc_ptr<char> demangled_name
881 (const_cast<char *> (language_specific.demangled_name));
882
883 /* If this name is not in the hash table, add it. */
884 if (*slot == NULL
885 /* A C version of the symbol may have already snuck into the table.
886 This happens to, e.g., main.init (__go_init_main). Cope. */
887 || (language () == language_go && (*slot)->demangled == nullptr))
888 {
889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
890 to true if the string might not be nullterminated. We have to make
891 this copy because demangling needs a nullterminated string. */
892 gdb::string_view linkage_name_copy;
893 if (copy_name)
894 {
895 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
897 alloc_name[linkage_name.length ()] = '\0';
898
899 linkage_name_copy = gdb::string_view (alloc_name,
900 linkage_name.length ());
901 }
902 else
903 linkage_name_copy = linkage_name;
904
905 if (demangled_name.get () == nullptr)
906 demangled_name.reset
907 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
908
909 /* Suppose we have demangled_name==NULL, copy_name==0, and
910 linkage_name_copy==linkage_name. In this case, we already have the
911 mangled name saved, and we don't have a demangled name. So,
912 you might think we could save a little space by not recording
913 this in the hash table at all.
914
915 It turns out that it is actually important to still save such
916 an entry in the hash table, because storing this name gives
917 us better bcache hit rates for partial symbols. */
918 if (!copy_name)
919 {
920 *slot
921 = ((struct demangled_name_entry *)
922 obstack_alloc (&per_bfd->storage_obstack,
923 sizeof (demangled_name_entry)));
924 new (*slot) demangled_name_entry (linkage_name);
925 }
926 else
927 {
928 /* If we must copy the mangled name, put it directly after
929 the struct so we can have a single allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 sizeof (demangled_name_entry)
934 + linkage_name.length () + 1));
935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
937 mangled_ptr [linkage_name.length ()] = '\0';
938 new (*slot) demangled_name_entry
939 (gdb::string_view (mangled_ptr, linkage_name.length ()));
940 }
941 (*slot)->demangled = std::move (demangled_name);
942 (*slot)->language = language ();
943 }
944 else if (language () == language_unknown || language () == language_auto)
945 m_language = (*slot)->language;
946
947 m_name = (*slot)->mangled.data ();
948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
949 }
950
951 /* See symtab.h. */
952
953 const char *
954 general_symbol_info::natural_name () const
955 {
956 switch (language ())
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 case language_rust:
964 if (language_specific.demangled_name != nullptr)
965 return language_specific.demangled_name;
966 break;
967 case language_ada:
968 return ada_decode_symbol (this);
969 default:
970 break;
971 }
972 return linkage_name ();
973 }
974
975 /* See symtab.h. */
976
977 const char *
978 general_symbol_info::demangled_name () const
979 {
980 const char *dem_name = NULL;
981
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 case language_rust:
990 dem_name = language_specific.demangled_name;
991 break;
992 case language_ada:
993 dem_name = ada_decode_symbol (this);
994 break;
995 default:
996 break;
997 }
998 return dem_name;
999 }
1000
1001 /* See symtab.h. */
1002
1003 const char *
1004 general_symbol_info::search_name () const
1005 {
1006 if (language () == language_ada)
1007 return linkage_name ();
1008 else
1009 return natural_name ();
1010 }
1011
1012 /* See symtab.h. */
1013
1014 bool
1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1016 const lookup_name_info &name)
1017 {
1018 symbol_name_matcher_ftype *name_match
1019 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1020 return name_match (gsymbol->search_name (), name, NULL);
1021 }
1022
1023 \f
1024
1025 /* Return true if the two sections are the same, or if they could
1026 plausibly be copies of each other, one in an original object
1027 file and another in a separated debug file. */
1028
1029 bool
1030 matching_obj_sections (struct obj_section *obj_first,
1031 struct obj_section *obj_second)
1032 {
1033 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1034 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1035
1036 /* If they're the same section, then they match. */
1037 if (first == second)
1038 return true;
1039
1040 /* If either is NULL, give up. */
1041 if (first == NULL || second == NULL)
1042 return false;
1043
1044 /* This doesn't apply to absolute symbols. */
1045 if (first->owner == NULL || second->owner == NULL)
1046 return false;
1047
1048 /* If they're in the same object file, they must be different sections. */
1049 if (first->owner == second->owner)
1050 return false;
1051
1052 /* Check whether the two sections are potentially corresponding. They must
1053 have the same size, address, and name. We can't compare section indexes,
1054 which would be more reliable, because some sections may have been
1055 stripped. */
1056 if (bfd_section_size (first) != bfd_section_size (second))
1057 return false;
1058
1059 /* In-memory addresses may start at a different offset, relativize them. */
1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1062 return false;
1063
1064 if (bfd_section_name (first) == NULL
1065 || bfd_section_name (second) == NULL
1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1067 return false;
1068
1069 /* Otherwise check that they are in corresponding objfiles. */
1070
1071 struct objfile *obj = NULL;
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile->obfd == first->owner)
1074 {
1075 obj = objfile;
1076 break;
1077 }
1078 gdb_assert (obj != NULL);
1079
1080 if (obj->separate_debug_objfile != NULL
1081 && obj->separate_debug_objfile->obfd == second->owner)
1082 return true;
1083 if (obj->separate_debug_objfile_backlink != NULL
1084 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /* See symtab.h. */
1091
1092 void
1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1094 {
1095 struct bound_minimal_symbol msymbol;
1096
1097 /* If we know that this is not a text address, return failure. This is
1098 necessary because we loop based on texthigh and textlow, which do
1099 not include the data ranges. */
1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1101 if (msymbol.minsym && msymbol.minsym->data_p ())
1102 return;
1103
1104 for (objfile *objfile : current_program_space->objfiles ())
1105 {
1106 struct compunit_symtab *cust = NULL;
1107
1108 if (objfile->sf)
1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1110 pc, section, 0);
1111 if (cust)
1112 return;
1113 }
1114 }
1115 \f
1116 /* Hash function for the symbol cache. */
1117
1118 static unsigned int
1119 hash_symbol_entry (const struct objfile *objfile_context,
1120 const char *name, domain_enum domain)
1121 {
1122 unsigned int hash = (uintptr_t) objfile_context;
1123
1124 if (name != NULL)
1125 hash += htab_hash_string (name);
1126
1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1128 to map to the same slot. */
1129 if (domain == STRUCT_DOMAIN)
1130 hash += VAR_DOMAIN * 7;
1131 else
1132 hash += domain * 7;
1133
1134 return hash;
1135 }
1136
1137 /* Equality function for the symbol cache. */
1138
1139 static int
1140 eq_symbol_entry (const struct symbol_cache_slot *slot,
1141 const struct objfile *objfile_context,
1142 const char *name, domain_enum domain)
1143 {
1144 const char *slot_name;
1145 domain_enum slot_domain;
1146
1147 if (slot->state == SYMBOL_SLOT_UNUSED)
1148 return 0;
1149
1150 if (slot->objfile_context != objfile_context)
1151 return 0;
1152
1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1154 {
1155 slot_name = slot->value.not_found.name;
1156 slot_domain = slot->value.not_found.domain;
1157 }
1158 else
1159 {
1160 slot_name = slot->value.found.symbol->search_name ();
1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1162 }
1163
1164 /* NULL names match. */
1165 if (slot_name == NULL && name == NULL)
1166 {
1167 /* But there's no point in calling symbol_matches_domain in the
1168 SYMBOL_SLOT_FOUND case. */
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else if (slot_name != NULL && name != NULL)
1173 {
1174 /* It's important that we use the same comparison that was done
1175 the first time through. If the slot records a found symbol,
1176 then this means using the symbol name comparison function of
1177 the symbol's language with symbol->search_name (). See
1178 dictionary.c. It also means using symbol_matches_domain for
1179 found symbols. See block.c.
1180
1181 If the slot records a not-found symbol, then require a precise match.
1182 We could still be lax with whitespace like strcmp_iw though. */
1183
1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1185 {
1186 if (strcmp (slot_name, name) != 0)
1187 return 0;
1188 if (slot_domain != domain)
1189 return 0;
1190 }
1191 else
1192 {
1193 struct symbol *sym = slot->value.found.symbol;
1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1195
1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1197 return 0;
1198
1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1200 return 0;
1201 }
1202 }
1203 else
1204 {
1205 /* Only one name is NULL. */
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Given a cache of size SIZE, return the size of the struct (with variable
1213 length array) in bytes. */
1214
1215 static size_t
1216 symbol_cache_byte_size (unsigned int size)
1217 {
1218 return (sizeof (struct block_symbol_cache)
1219 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1220 }
1221
1222 /* Resize CACHE. */
1223
1224 static void
1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1226 {
1227 /* If there's no change in size, don't do anything.
1228 All caches have the same size, so we can just compare with the size
1229 of the global symbols cache. */
1230 if ((cache->global_symbols != NULL
1231 && cache->global_symbols->size == new_size)
1232 || (cache->global_symbols == NULL
1233 && new_size == 0))
1234 return;
1235
1236 destroy_block_symbol_cache (cache->global_symbols);
1237 destroy_block_symbol_cache (cache->static_symbols);
1238
1239 if (new_size == 0)
1240 {
1241 cache->global_symbols = NULL;
1242 cache->static_symbols = NULL;
1243 }
1244 else
1245 {
1246 size_t total_size = symbol_cache_byte_size (new_size);
1247
1248 cache->global_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->static_symbols
1251 = (struct block_symbol_cache *) xcalloc (1, total_size);
1252 cache->global_symbols->size = new_size;
1253 cache->static_symbols->size = new_size;
1254 }
1255 }
1256
1257 /* Return the symbol cache of PSPACE.
1258 Create one if it doesn't exist yet. */
1259
1260 static struct symbol_cache *
1261 get_symbol_cache (struct program_space *pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 if (cache == NULL)
1266 {
1267 cache = symbol_cache_key.emplace (pspace);
1268 resize_symbol_cache (cache, symbol_cache_size);
1269 }
1270
1271 return cache;
1272 }
1273
1274 /* Set the size of the symbol cache in all program spaces. */
1275
1276 static void
1277 set_symbol_cache_size (unsigned int new_size)
1278 {
1279 for (struct program_space *pspace : program_spaces)
1280 {
1281 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1282
1283 /* The pspace could have been created but not have a cache yet. */
1284 if (cache != NULL)
1285 resize_symbol_cache (cache, new_size);
1286 }
1287 }
1288
1289 /* Called when symbol-cache-size is set. */
1290
1291 static void
1292 set_symbol_cache_size_handler (const char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1296 {
1297 /* Restore the previous value.
1298 This is the value the "show" command prints. */
1299 new_symbol_cache_size = symbol_cache_size;
1300
1301 error (_("Symbol cache size is too large, max is %u."),
1302 MAX_SYMBOL_CACHE_SIZE);
1303 }
1304 symbol_cache_size = new_symbol_cache_size;
1305
1306 set_symbol_cache_size (symbol_cache_size);
1307 }
1308
1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1310 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1312 failed (and thus this one will too), or NULL if the symbol is not present
1313 in the cache.
1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1315 can be used to save the result of a full lookup attempt. */
1316
1317 static struct block_symbol
1318 symbol_cache_lookup (struct symbol_cache *cache,
1319 struct objfile *objfile_context, enum block_enum block,
1320 const char *name, domain_enum domain,
1321 struct block_symbol_cache **bsc_ptr,
1322 struct symbol_cache_slot **slot_ptr)
1323 {
1324 struct block_symbol_cache *bsc;
1325 unsigned int hash;
1326 struct symbol_cache_slot *slot;
1327
1328 if (block == GLOBAL_BLOCK)
1329 bsc = cache->global_symbols;
1330 else
1331 bsc = cache->static_symbols;
1332 if (bsc == NULL)
1333 {
1334 *bsc_ptr = NULL;
1335 *slot_ptr = NULL;
1336 return {};
1337 }
1338
1339 hash = hash_symbol_entry (objfile_context, name, domain);
1340 slot = bsc->symbols + hash % bsc->size;
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 if (symbol_lookup_debug)
1363 {
1364 fprintf_unfiltered (gdb_stdlog,
1365 "%s block symbol cache miss for %s, %s\n",
1366 block == GLOBAL_BLOCK ? "Global" : "Static",
1367 name, domain_name (domain));
1368 }
1369 ++bsc->misses;
1370 return {};
1371 }
1372
1373 /* Mark SYMBOL as found in SLOT.
1374 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1375 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1376 necessarily the objfile the symbol was found in. */
1377
1378 static void
1379 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1380 struct symbol_cache_slot *slot,
1381 struct objfile *objfile_context,
1382 struct symbol *symbol,
1383 const struct block *block)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.found.symbol = symbol;
1395 slot->value.found.block = block;
1396 }
1397
1398 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1400 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1401
1402 static void
1403 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1404 struct symbol_cache_slot *slot,
1405 struct objfile *objfile_context,
1406 const char *name, domain_enum domain)
1407 {
1408 if (bsc == NULL)
1409 return;
1410 if (slot->state != SYMBOL_SLOT_UNUSED)
1411 {
1412 ++bsc->collisions;
1413 symbol_cache_clear_slot (slot);
1414 }
1415 slot->state = SYMBOL_SLOT_NOT_FOUND;
1416 slot->objfile_context = objfile_context;
1417 slot->value.not_found.name = xstrdup (name);
1418 slot->value.not_found.domain = domain;
1419 }
1420
1421 /* Flush the symbol cache of PSPACE. */
1422
1423 static void
1424 symbol_cache_flush (struct program_space *pspace)
1425 {
1426 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1427 int pass;
1428
1429 if (cache == NULL)
1430 return;
1431 if (cache->global_symbols == NULL)
1432 {
1433 gdb_assert (symbol_cache_size == 0);
1434 gdb_assert (cache->static_symbols == NULL);
1435 return;
1436 }
1437
1438 /* If the cache is untouched since the last flush, early exit.
1439 This is important for performance during the startup of a program linked
1440 with 100s (or 1000s) of shared libraries. */
1441 if (cache->global_symbols->misses == 0
1442 && cache->static_symbols->misses == 0)
1443 return;
1444
1445 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1446 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1447
1448 for (pass = 0; pass < 2; ++pass)
1449 {
1450 struct block_symbol_cache *bsc
1451 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1452 unsigned int i;
1453
1454 for (i = 0; i < bsc->size; ++i)
1455 symbol_cache_clear_slot (&bsc->symbols[i]);
1456 }
1457
1458 cache->global_symbols->hits = 0;
1459 cache->global_symbols->misses = 0;
1460 cache->global_symbols->collisions = 0;
1461 cache->static_symbols->hits = 0;
1462 cache->static_symbols->misses = 0;
1463 cache->static_symbols->collisions = 0;
1464 }
1465
1466 /* Dump CACHE. */
1467
1468 static void
1469 symbol_cache_dump (const struct symbol_cache *cache)
1470 {
1471 int pass;
1472
1473 if (cache->global_symbols == NULL)
1474 {
1475 printf_filtered (" <disabled>\n");
1476 return;
1477 }
1478
1479 for (pass = 0; pass < 2; ++pass)
1480 {
1481 const struct block_symbol_cache *bsc
1482 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1483 unsigned int i;
1484
1485 if (pass == 0)
1486 printf_filtered ("Global symbols:\n");
1487 else
1488 printf_filtered ("Static symbols:\n");
1489
1490 for (i = 0; i < bsc->size; ++i)
1491 {
1492 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1493
1494 QUIT;
1495
1496 switch (slot->state)
1497 {
1498 case SYMBOL_SLOT_UNUSED:
1499 break;
1500 case SYMBOL_SLOT_NOT_FOUND:
1501 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1502 host_address_to_string (slot->objfile_context),
1503 slot->value.not_found.name,
1504 domain_name (slot->value.not_found.domain));
1505 break;
1506 case SYMBOL_SLOT_FOUND:
1507 {
1508 struct symbol *found = slot->value.found.symbol;
1509 const struct objfile *context = slot->objfile_context;
1510
1511 printf_filtered (" [%4u] = %s, %s %s\n", i,
1512 host_address_to_string (context),
1513 found->print_name (),
1514 domain_name (SYMBOL_DOMAIN (found)));
1515 break;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /* The "mt print symbol-cache" command. */
1523
1524 static void
1525 maintenance_print_symbol_cache (const char *args, int from_tty)
1526 {
1527 for (struct program_space *pspace : program_spaces)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache = symbol_cache_key.get (pspace);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 for (struct program_space *pspace : program_spaces)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 for (struct program_space *pspace : program_spaces)
1595 {
1596 struct symbol_cache *cache;
1597
1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 printf_filtered (" empty, no stats available\n");
1608 else
1609 symbol_cache_stats (cache);
1610 }
1611 }
1612
1613 /* This module's 'new_objfile' observer. */
1614
1615 static void
1616 symtab_new_objfile_observer (struct objfile *objfile)
1617 {
1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1619 symbol_cache_flush (current_program_space);
1620 }
1621
1622 /* This module's 'free_objfile' observer. */
1623
1624 static void
1625 symtab_free_objfile_observer (struct objfile *objfile)
1626 {
1627 symbol_cache_flush (objfile->pspace);
1628 }
1629 \f
1630 /* Debug symbols usually don't have section information. We need to dig that
1631 out of the minimal symbols and stash that in the debug symbol. */
1632
1633 void
1634 fixup_section (struct general_symbol_info *ginfo,
1635 CORE_ADDR addr, struct objfile *objfile)
1636 {
1637 struct minimal_symbol *msym;
1638
1639 /* First, check whether a minimal symbol with the same name exists
1640 and points to the same address. The address check is required
1641 e.g. on PowerPC64, where the minimal symbol for a function will
1642 point to the function descriptor, while the debug symbol will
1643 point to the actual function code. */
1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1645 objfile);
1646 if (msym)
1647 ginfo->section = MSYMBOL_SECTION (msym);
1648 else
1649 {
1650 /* Static, function-local variables do appear in the linker
1651 (minimal) symbols, but are frequently given names that won't
1652 be found via lookup_minimal_symbol(). E.g., it has been
1653 observed in frv-uclinux (ELF) executables that a static,
1654 function-local variable named "foo" might appear in the
1655 linker symbols as "foo.6" or "foo.3". Thus, there is no
1656 point in attempting to extend the lookup-by-name mechanism to
1657 handle this case due to the fact that there can be multiple
1658 names.
1659
1660 So, instead, search the section table when lookup by name has
1661 failed. The ``addr'' and ``endaddr'' fields may have already
1662 been relocated. If so, the relocation offset needs to be
1663 subtracted from these values when performing the comparison.
1664 We unconditionally subtract it, because, when no relocation
1665 has been performed, the value will simply be zero.
1666
1667 The address of the symbol whose section we're fixing up HAS
1668 NOT BEEN adjusted (relocated) yet. It can't have been since
1669 the section isn't yet known and knowing the section is
1670 necessary in order to add the correct relocation value. In
1671 other words, we wouldn't even be in this function (attempting
1672 to compute the section) if it were already known.
1673
1674 Note that it is possible to search the minimal symbols
1675 (subtracting the relocation value if necessary) to find the
1676 matching minimal symbol, but this is overkill and much less
1677 efficient. It is not necessary to find the matching minimal
1678 symbol, only its section.
1679
1680 Note that this technique (of doing a section table search)
1681 can fail when unrelocated section addresses overlap. For
1682 this reason, we still attempt a lookup by name prior to doing
1683 a search of the section table. */
1684
1685 struct obj_section *s;
1686 int fallback = -1;
1687
1688 ALL_OBJFILE_OSECTIONS (objfile, s)
1689 {
1690 int idx = s - objfile->sections;
1691 CORE_ADDR offset = objfile->section_offsets[idx];
1692
1693 if (fallback == -1)
1694 fallback = idx;
1695
1696 if (obj_section_addr (s) - offset <= addr
1697 && addr < obj_section_endaddr (s) - offset)
1698 {
1699 ginfo->section = idx;
1700 return;
1701 }
1702 }
1703
1704 /* If we didn't find the section, assume it is in the first
1705 section. If there is no allocated section, then it hardly
1706 matters what we pick, so just pick zero. */
1707 if (fallback == -1)
1708 ginfo->section = 0;
1709 else
1710 ginfo->section = fallback;
1711 }
1712 }
1713
1714 struct symbol *
1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1716 {
1717 CORE_ADDR addr;
1718
1719 if (!sym)
1720 return NULL;
1721
1722 if (!SYMBOL_OBJFILE_OWNED (sym))
1723 return sym;
1724
1725 /* We either have an OBJFILE, or we can get at it from the sym's
1726 symtab. Anything else is a bug. */
1727 gdb_assert (objfile || symbol_symtab (sym));
1728
1729 if (objfile == NULL)
1730 objfile = symbol_objfile (sym);
1731
1732 if (SYMBOL_OBJ_SECTION (objfile, sym))
1733 return sym;
1734
1735 /* We should have an objfile by now. */
1736 gdb_assert (objfile);
1737
1738 switch (SYMBOL_CLASS (sym))
1739 {
1740 case LOC_STATIC:
1741 case LOC_LABEL:
1742 addr = SYMBOL_VALUE_ADDRESS (sym);
1743 break;
1744 case LOC_BLOCK:
1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1746 break;
1747
1748 default:
1749 /* Nothing else will be listed in the minsyms -- no use looking
1750 it up. */
1751 return sym;
1752 }
1753
1754 fixup_section (sym, addr, objfile);
1755
1756 return sym;
1757 }
1758
1759 /* See symtab.h. */
1760
1761 demangle_for_lookup_info::demangle_for_lookup_info
1762 (const lookup_name_info &lookup_name, language lang)
1763 {
1764 demangle_result_storage storage;
1765
1766 if (lookup_name.ignore_parameters () && lang == language_cplus)
1767 {
1768 gdb::unique_xmalloc_ptr<char> without_params
1769 = cp_remove_params_if_any (lookup_name.c_str (),
1770 lookup_name.completion_mode ());
1771
1772 if (without_params != NULL)
1773 {
1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1775 m_demangled_name = demangle_for_lookup (without_params.get (),
1776 lang, storage);
1777 return;
1778 }
1779 }
1780
1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = lookup_name.c_str ();
1783 else
1784 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1785 lang, storage);
1786 }
1787
1788 /* See symtab.h. */
1789
1790 const lookup_name_info &
1791 lookup_name_info::match_any ()
1792 {
1793 /* Lookup any symbol that "" would complete. I.e., this matches all
1794 symbol names. */
1795 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1796 true);
1797
1798 return lookup_name;
1799 }
1800
1801 /* Compute the demangled form of NAME as used by the various symbol
1802 lookup functions. The result can either be the input NAME
1803 directly, or a pointer to a buffer owned by the STORAGE object.
1804
1805 For Ada, this function just returns NAME, unmodified.
1806 Normally, Ada symbol lookups are performed using the encoded name
1807 rather than the demangled name, and so it might seem to make sense
1808 for this function to return an encoded version of NAME.
1809 Unfortunately, we cannot do this, because this function is used in
1810 circumstances where it is not appropriate to try to encode NAME.
1811 For instance, when displaying the frame info, we demangle the name
1812 of each parameter, and then perform a symbol lookup inside our
1813 function using that demangled name. In Ada, certain functions
1814 have internally-generated parameters whose name contain uppercase
1815 characters. Encoding those name would result in those uppercase
1816 characters to become lowercase, and thus cause the symbol lookup
1817 to fail. */
1818
1819 const char *
1820 demangle_for_lookup (const char *name, enum language lang,
1821 demangle_result_storage &storage)
1822 {
1823 /* If we are using C++, D, or Go, demangle the name before doing a
1824 lookup, so we can always binary search. */
1825 if (lang == language_cplus)
1826 {
1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1828 if (demangled_name != NULL)
1829 return storage.set_malloc_ptr (demangled_name);
1830
1831 /* If we were given a non-mangled name, canonicalize it
1832 according to the language (so far only for C++). */
1833 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1834 if (canon != nullptr)
1835 return storage.set_malloc_ptr (std::move (canon));
1836 }
1837 else if (lang == language_d)
1838 {
1839 char *demangled_name = d_demangle (name, 0);
1840 if (demangled_name != NULL)
1841 return storage.set_malloc_ptr (demangled_name);
1842 }
1843 else if (lang == language_go)
1844 {
1845 char *demangled_name = go_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849
1850 return name;
1851 }
1852
1853 /* See symtab.h. */
1854
1855 unsigned int
1856 search_name_hash (enum language language, const char *search_name)
1857 {
1858 return language_def (language)->search_name_hash (search_name);
1859 }
1860
1861 /* See symtab.h.
1862
1863 This function (or rather its subordinates) have a bunch of loops and
1864 it would seem to be attractive to put in some QUIT's (though I'm not really
1865 sure whether it can run long enough to be really important). But there
1866 are a few calls for which it would appear to be bad news to quit
1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1868 that there is C++ code below which can error(), but that probably
1869 doesn't affect these calls since they are looking for a known
1870 variable and thus can probably assume it will never hit the C++
1871 code). */
1872
1873 struct block_symbol
1874 lookup_symbol_in_language (const char *name, const struct block *block,
1875 const domain_enum domain, enum language lang,
1876 struct field_of_this_result *is_a_field_of_this)
1877 {
1878 demangle_result_storage storage;
1879 const char *modified_name = demangle_for_lookup (name, lang, storage);
1880
1881 return lookup_symbol_aux (modified_name,
1882 symbol_name_match_type::FULL,
1883 block, domain, lang,
1884 is_a_field_of_this);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct block_symbol
1890 lookup_symbol (const char *name, const struct block *block,
1891 domain_enum domain,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 return lookup_symbol_in_language (name, block, domain,
1895 current_language->la_language,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol_search_name (const char *search_name, const struct block *block,
1903 domain_enum domain)
1904 {
1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1906 block, domain, language_asm, NULL);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_language_this (const struct language_defn *lang,
1913 const struct block *block)
1914 {
1915 if (lang->name_of_this () == NULL || block == NULL)
1916 return {};
1917
1918 if (symbol_lookup_debug > 1)
1919 {
1920 struct objfile *objfile = block_objfile (block);
1921
1922 fprintf_unfiltered (gdb_stdlog,
1923 "lookup_language_this (%s, %s (objfile %s))",
1924 lang->name (), host_address_to_string (block),
1925 objfile_debug_name (objfile));
1926 }
1927
1928 while (block)
1929 {
1930 struct symbol *sym;
1931
1932 sym = block_lookup_symbol (block, lang->name_of_this (),
1933 symbol_name_match_type::SEARCH_NAME,
1934 VAR_DOMAIN);
1935 if (sym != NULL)
1936 {
1937 if (symbol_lookup_debug > 1)
1938 {
1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1940 sym->print_name (),
1941 host_address_to_string (sym),
1942 host_address_to_string (block));
1943 }
1944 return (struct block_symbol) {sym, block};
1945 }
1946 if (BLOCK_FUNCTION (block))
1947 break;
1948 block = BLOCK_SUPERBLOCK (block);
1949 }
1950
1951 if (symbol_lookup_debug > 1)
1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1953 return {};
1954 }
1955
1956 /* Given TYPE, a structure/union,
1957 return 1 if the component named NAME from the ultimate target
1958 structure/union is defined, otherwise, return 0. */
1959
1960 static int
1961 check_field (struct type *type, const char *name,
1962 struct field_of_this_result *is_a_field_of_this)
1963 {
1964 int i;
1965
1966 /* The type may be a stub. */
1967 type = check_typedef (type);
1968
1969 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1970 {
1971 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1974 {
1975 is_a_field_of_this->type = type;
1976 is_a_field_of_this->field = &type->field (i);
1977 return 1;
1978 }
1979 }
1980
1981 /* C++: If it was not found as a data field, then try to return it
1982 as a pointer to a method. */
1983
1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1985 {
1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1987 {
1988 is_a_field_of_this->type = type;
1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1990 return 1;
1991 }
1992 }
1993
1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1996 return 1;
1997
1998 return 0;
1999 }
2000
2001 /* Behave like lookup_symbol except that NAME is the natural name
2002 (e.g., demangled name) of the symbol that we're looking for. */
2003
2004 static struct block_symbol
2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2006 const struct block *block,
2007 const domain_enum domain, enum language language,
2008 struct field_of_this_result *is_a_field_of_this)
2009 {
2010 struct block_symbol result;
2011 const struct language_defn *langdef;
2012
2013 if (symbol_lookup_debug)
2014 {
2015 struct objfile *objfile = (block == nullptr
2016 ? nullptr : block_objfile (block));
2017
2018 fprintf_unfiltered (gdb_stdlog,
2019 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2020 name, host_address_to_string (block),
2021 objfile != NULL
2022 ? objfile_debug_name (objfile) : "NULL",
2023 domain_name (domain), language_str (language));
2024 }
2025
2026 /* Make sure we do something sensible with is_a_field_of_this, since
2027 the callers that set this parameter to some non-null value will
2028 certainly use it later. If we don't set it, the contents of
2029 is_a_field_of_this are undefined. */
2030 if (is_a_field_of_this != NULL)
2031 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2032
2033 /* Search specified block and its superiors. Don't search
2034 STATIC_BLOCK or GLOBAL_BLOCK. */
2035
2036 result = lookup_local_symbol (name, match_type, block, domain, language);
2037 if (result.symbol != NULL)
2038 {
2039 if (symbol_lookup_debug)
2040 {
2041 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2042 host_address_to_string (result.symbol));
2043 }
2044 return result;
2045 }
2046
2047 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2048 check to see if NAME is a field of `this'. */
2049
2050 langdef = language_def (language);
2051
2052 /* Don't do this check if we are searching for a struct. It will
2053 not be found by check_field, but will be found by other
2054 means. */
2055 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2056 {
2057 result = lookup_language_this (langdef, block);
2058
2059 if (result.symbol)
2060 {
2061 struct type *t = result.symbol->type;
2062
2063 /* I'm not really sure that type of this can ever
2064 be typedefed; just be safe. */
2065 t = check_typedef (t);
2066 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2067 t = TYPE_TARGET_TYPE (t);
2068
2069 if (t->code () != TYPE_CODE_STRUCT
2070 && t->code () != TYPE_CODE_UNION)
2071 error (_("Internal error: `%s' is not an aggregate"),
2072 langdef->name_of_this ());
2073
2074 if (check_field (t, name, is_a_field_of_this))
2075 {
2076 if (symbol_lookup_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "lookup_symbol_aux (...) = NULL\n");
2080 }
2081 return {};
2082 }
2083 }
2084 }
2085
2086 /* Now do whatever is appropriate for LANGUAGE to look
2087 up static and global variables. */
2088
2089 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2090 if (result.symbol != NULL)
2091 {
2092 if (symbol_lookup_debug)
2093 {
2094 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2095 host_address_to_string (result.symbol));
2096 }
2097 return result;
2098 }
2099
2100 /* Now search all static file-level symbols. Not strictly correct,
2101 but more useful than an error. */
2102
2103 result = lookup_static_symbol (name, domain);
2104 if (symbol_lookup_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2107 result.symbol != NULL
2108 ? host_address_to_string (result.symbol)
2109 : "NULL");
2110 }
2111 return result;
2112 }
2113
2114 /* Check to see if the symbol is defined in BLOCK or its superiors.
2115 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 static struct block_symbol
2118 lookup_local_symbol (const char *name,
2119 symbol_name_match_type match_type,
2120 const struct block *block,
2121 const domain_enum domain,
2122 enum language language)
2123 {
2124 struct symbol *sym;
2125 const struct block *static_block = block_static_block (block);
2126 const char *scope = block_scope (block);
2127
2128 /* Check if either no block is specified or it's a global block. */
2129
2130 if (static_block == NULL)
2131 return {};
2132
2133 while (block != static_block)
2134 {
2135 sym = lookup_symbol_in_block (name, match_type, block, domain);
2136 if (sym != NULL)
2137 return (struct block_symbol) {sym, block};
2138
2139 if (language == language_cplus || language == language_fortran)
2140 {
2141 struct block_symbol blocksym
2142 = cp_lookup_symbol_imports_or_template (scope, name, block,
2143 domain);
2144
2145 if (blocksym.symbol != NULL)
2146 return blocksym;
2147 }
2148
2149 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2150 break;
2151 block = BLOCK_SUPERBLOCK (block);
2152 }
2153
2154 /* We've reached the end of the function without finding a result. */
2155
2156 return {};
2157 }
2158
2159 /* See symtab.h. */
2160
2161 struct symbol *
2162 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2163 const struct block *block,
2164 const domain_enum domain)
2165 {
2166 struct symbol *sym;
2167
2168 if (symbol_lookup_debug > 1)
2169 {
2170 struct objfile *objfile = (block == nullptr
2171 ? nullptr : block_objfile (block));
2172
2173 fprintf_unfiltered (gdb_stdlog,
2174 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2175 name, host_address_to_string (block),
2176 objfile_debug_name (objfile),
2177 domain_name (domain));
2178 }
2179
2180 sym = block_lookup_symbol (block, name, match_type, domain);
2181 if (sym)
2182 {
2183 if (symbol_lookup_debug > 1)
2184 {
2185 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2186 host_address_to_string (sym));
2187 }
2188 return fixup_symbol_section (sym, NULL);
2189 }
2190
2191 if (symbol_lookup_debug > 1)
2192 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2193 return NULL;
2194 }
2195
2196 /* See symtab.h. */
2197
2198 struct block_symbol
2199 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2200 enum block_enum block_index,
2201 const char *name,
2202 const domain_enum domain)
2203 {
2204 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2205
2206 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2207 {
2208 struct block_symbol result
2209 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2210
2211 if (result.symbol != nullptr)
2212 return result;
2213 }
2214
2215 return {};
2216 }
2217
2218 /* Check to see if the symbol is defined in one of the OBJFILE's
2219 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2220 depending on whether or not we want to search global symbols or
2221 static symbols. */
2222
2223 static struct block_symbol
2224 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2225 enum block_enum block_index, const char *name,
2226 const domain_enum domain)
2227 {
2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2229
2230 if (symbol_lookup_debug > 1)
2231 {
2232 fprintf_unfiltered (gdb_stdlog,
2233 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2234 objfile_debug_name (objfile),
2235 block_index == GLOBAL_BLOCK
2236 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2237 name, domain_name (domain));
2238 }
2239
2240 struct block_symbol other;
2241 other.symbol = NULL;
2242 for (compunit_symtab *cust : objfile->compunits ())
2243 {
2244 const struct blockvector *bv;
2245 const struct block *block;
2246 struct block_symbol result;
2247
2248 bv = COMPUNIT_BLOCKVECTOR (cust);
2249 block = BLOCKVECTOR_BLOCK (bv, block_index);
2250 result.symbol = block_lookup_symbol_primary (block, name, domain);
2251 result.block = block;
2252 if (result.symbol == NULL)
2253 continue;
2254 if (best_symbol (result.symbol, domain))
2255 {
2256 other = result;
2257 break;
2258 }
2259 if (symbol_matches_domain (result.symbol->language (),
2260 SYMBOL_DOMAIN (result.symbol), domain))
2261 {
2262 struct symbol *better
2263 = better_symbol (other.symbol, result.symbol, domain);
2264 if (better != other.symbol)
2265 {
2266 other.symbol = better;
2267 other.block = block;
2268 }
2269 }
2270 }
2271
2272 if (other.symbol != NULL)
2273 {
2274 if (symbol_lookup_debug > 1)
2275 {
2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2277 host_address_to_string (other.symbol),
2278 host_address_to_string (other.block));
2279 }
2280 other.symbol = fixup_symbol_section (other.symbol, objfile);
2281 return other;
2282 }
2283
2284 if (symbol_lookup_debug > 1)
2285 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2286 return {};
2287 }
2288
2289 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2290 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2291 and all associated separate debug objfiles.
2292
2293 Normally we only look in OBJFILE, and not any separate debug objfiles
2294 because the outer loop will cause them to be searched too. This case is
2295 different. Here we're called from search_symbols where it will only
2296 call us for the objfile that contains a matching minsym. */
2297
2298 static struct block_symbol
2299 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2300 const char *linkage_name,
2301 domain_enum domain)
2302 {
2303 enum language lang = current_language->la_language;
2304 struct objfile *main_objfile;
2305
2306 demangle_result_storage storage;
2307 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2308
2309 if (objfile->separate_debug_objfile_backlink)
2310 main_objfile = objfile->separate_debug_objfile_backlink;
2311 else
2312 main_objfile = objfile;
2313
2314 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2315 {
2316 struct block_symbol result;
2317
2318 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2319 modified_name, domain);
2320 if (result.symbol == NULL)
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol != NULL)
2324 return result;
2325 }
2326
2327 return {};
2328 }
2329
2330 /* A helper function that throws an exception when a symbol was found
2331 in a psymtab but not in a symtab. */
2332
2333 static void ATTRIBUTE_NORETURN
2334 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2335 struct compunit_symtab *cust)
2336 {
2337 error (_("\
2338 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2339 %s may be an inlined function, or may be a template function\n \
2340 (if a template, try specifying an instantiation: %s<type>)."),
2341 block_index == GLOBAL_BLOCK ? "global" : "static",
2342 name,
2343 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2344 name, name);
2345 }
2346
2347 /* A helper function for various lookup routines that interfaces with
2348 the "quick" symbol table functions. */
2349
2350 static struct block_symbol
2351 lookup_symbol_via_quick_fns (struct objfile *objfile,
2352 enum block_enum block_index, const char *name,
2353 const domain_enum domain)
2354 {
2355 struct compunit_symtab *cust;
2356 const struct blockvector *bv;
2357 const struct block *block;
2358 struct block_symbol result;
2359
2360 if (!objfile->sf)
2361 return {};
2362
2363 if (symbol_lookup_debug > 1)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2367 objfile_debug_name (objfile),
2368 block_index == GLOBAL_BLOCK
2369 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2370 name, domain_name (domain));
2371 }
2372
2373 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2374 if (cust == NULL)
2375 {
2376 if (symbol_lookup_debug > 1)
2377 {
2378 fprintf_unfiltered (gdb_stdlog,
2379 "lookup_symbol_via_quick_fns (...) = NULL\n");
2380 }
2381 return {};
2382 }
2383
2384 bv = COMPUNIT_BLOCKVECTOR (cust);
2385 block = BLOCKVECTOR_BLOCK (bv, block_index);
2386 result.symbol = block_lookup_symbol (block, name,
2387 symbol_name_match_type::FULL, domain);
2388 if (result.symbol == NULL)
2389 error_in_psymtab_expansion (block_index, name, cust);
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2395 host_address_to_string (result.symbol),
2396 host_address_to_string (block));
2397 }
2398
2399 result.symbol = fixup_symbol_section (result.symbol, objfile);
2400 result.block = block;
2401 return result;
2402 }
2403
2404 /* See language.h. */
2405
2406 struct block_symbol
2407 language_defn::lookup_symbol_nonlocal (const char *name,
2408 const struct block *block,
2409 const domain_enum domain) const
2410 {
2411 struct block_symbol result;
2412
2413 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2414 the current objfile. Searching the current objfile first is useful
2415 for both matching user expectations as well as performance. */
2416
2417 result = lookup_symbol_in_static_block (name, block, domain);
2418 if (result.symbol != NULL)
2419 return result;
2420
2421 /* If we didn't find a definition for a builtin type in the static block,
2422 search for it now. This is actually the right thing to do and can be
2423 a massive performance win. E.g., when debugging a program with lots of
2424 shared libraries we could search all of them only to find out the
2425 builtin type isn't defined in any of them. This is common for types
2426 like "void". */
2427 if (domain == VAR_DOMAIN)
2428 {
2429 struct gdbarch *gdbarch;
2430
2431 if (block == NULL)
2432 gdbarch = target_gdbarch ();
2433 else
2434 gdbarch = block_gdbarch (block);
2435 result.symbol = language_lookup_primitive_type_as_symbol (this,
2436 gdbarch, name);
2437 result.block = NULL;
2438 if (result.symbol != NULL)
2439 return result;
2440 }
2441
2442 return lookup_global_symbol (name, block, domain);
2443 }
2444
2445 /* See symtab.h. */
2446
2447 struct block_symbol
2448 lookup_symbol_in_static_block (const char *name,
2449 const struct block *block,
2450 const domain_enum domain)
2451 {
2452 const struct block *static_block = block_static_block (block);
2453 struct symbol *sym;
2454
2455 if (static_block == NULL)
2456 return {};
2457
2458 if (symbol_lookup_debug)
2459 {
2460 struct objfile *objfile = (block == nullptr
2461 ? nullptr : block_objfile (block));
2462
2463 fprintf_unfiltered (gdb_stdlog,
2464 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2465 " %s)\n",
2466 name,
2467 host_address_to_string (block),
2468 objfile_debug_name (objfile),
2469 domain_name (domain));
2470 }
2471
2472 sym = lookup_symbol_in_block (name,
2473 symbol_name_match_type::FULL,
2474 static_block, domain);
2475 if (symbol_lookup_debug)
2476 {
2477 fprintf_unfiltered (gdb_stdlog,
2478 "lookup_symbol_in_static_block (...) = %s\n",
2479 sym != NULL ? host_address_to_string (sym) : "NULL");
2480 }
2481 return (struct block_symbol) {sym, static_block};
2482 }
2483
2484 /* Perform the standard symbol lookup of NAME in OBJFILE:
2485 1) First search expanded symtabs, and if not found
2486 2) Search the "quick" symtabs (partial or .gdb_index).
2487 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2488
2489 static struct block_symbol
2490 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2491 const char *name, const domain_enum domain)
2492 {
2493 struct block_symbol result;
2494
2495 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2496
2497 if (symbol_lookup_debug)
2498 {
2499 fprintf_unfiltered (gdb_stdlog,
2500 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2501 objfile_debug_name (objfile),
2502 block_index == GLOBAL_BLOCK
2503 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2504 name, domain_name (domain));
2505 }
2506
2507 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2508 name, domain);
2509 if (result.symbol != NULL)
2510 {
2511 if (symbol_lookup_debug)
2512 {
2513 fprintf_unfiltered (gdb_stdlog,
2514 "lookup_symbol_in_objfile (...) = %s"
2515 " (in symtabs)\n",
2516 host_address_to_string (result.symbol));
2517 }
2518 return result;
2519 }
2520
2521 result = lookup_symbol_via_quick_fns (objfile, block_index,
2522 name, domain);
2523 if (symbol_lookup_debug)
2524 {
2525 fprintf_unfiltered (gdb_stdlog,
2526 "lookup_symbol_in_objfile (...) = %s%s\n",
2527 result.symbol != NULL
2528 ? host_address_to_string (result.symbol)
2529 : "NULL",
2530 result.symbol != NULL ? " (via quick fns)" : "");
2531 }
2532 return result;
2533 }
2534
2535 /* Find the language for partial symbol with NAME. */
2536
2537 static enum language
2538 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2539 {
2540 for (objfile *objfile : current_program_space->objfiles ())
2541 {
2542 if (objfile->sf && objfile->sf->qf
2543 && objfile->sf->qf->lookup_global_symbol_language)
2544 continue;
2545 return language_unknown;
2546 }
2547
2548 for (objfile *objfile : current_program_space->objfiles ())
2549 {
2550 bool symbol_found_p;
2551 enum language lang
2552 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2553 &symbol_found_p);
2554 if (!symbol_found_p)
2555 continue;
2556 return lang;
2557 }
2558
2559 return language_unknown;
2560 }
2561
2562 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2563
2564 struct global_or_static_sym_lookup_data
2565 {
2566 /* The name of the symbol we are searching for. */
2567 const char *name;
2568
2569 /* The domain to use for our search. */
2570 domain_enum domain;
2571
2572 /* The block index in which to search. */
2573 enum block_enum block_index;
2574
2575 /* The field where the callback should store the symbol if found.
2576 It should be initialized to {NULL, NULL} before the search is started. */
2577 struct block_symbol result;
2578 };
2579
2580 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2581 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2582 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2583 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2584
2585 static int
2586 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2587 void *cb_data)
2588 {
2589 struct global_or_static_sym_lookup_data *data =
2590 (struct global_or_static_sym_lookup_data *) cb_data;
2591
2592 gdb_assert (data->result.symbol == NULL
2593 && data->result.block == NULL);
2594
2595 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2596 data->name, data->domain);
2597
2598 /* If we found a match, tell the iterator to stop. Otherwise,
2599 keep going. */
2600 return (data->result.symbol != NULL);
2601 }
2602
2603 /* This function contains the common code of lookup_{global,static}_symbol.
2604 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2605 the objfile to start the lookup in. */
2606
2607 static struct block_symbol
2608 lookup_global_or_static_symbol (const char *name,
2609 enum block_enum block_index,
2610 struct objfile *objfile,
2611 const domain_enum domain)
2612 {
2613 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2614 struct block_symbol result;
2615 struct global_or_static_sym_lookup_data lookup_data;
2616 struct block_symbol_cache *bsc;
2617 struct symbol_cache_slot *slot;
2618
2619 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2620 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2621
2622 /* First see if we can find the symbol in the cache.
2623 This works because we use the current objfile to qualify the lookup. */
2624 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2625 &bsc, &slot);
2626 if (result.symbol != NULL)
2627 {
2628 if (SYMBOL_LOOKUP_FAILED_P (result))
2629 return {};
2630 return result;
2631 }
2632
2633 /* Do a global search (of global blocks, heh). */
2634 if (result.symbol == NULL)
2635 {
2636 memset (&lookup_data, 0, sizeof (lookup_data));
2637 lookup_data.name = name;
2638 lookup_data.block_index = block_index;
2639 lookup_data.domain = domain;
2640 gdbarch_iterate_over_objfiles_in_search_order
2641 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2642 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2643 result = lookup_data.result;
2644 }
2645
2646 if (result.symbol != NULL)
2647 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2648 else
2649 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2650
2651 return result;
2652 }
2653
2654 /* See symtab.h. */
2655
2656 struct block_symbol
2657 lookup_static_symbol (const char *name, const domain_enum domain)
2658 {
2659 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2660 }
2661
2662 /* See symtab.h. */
2663
2664 struct block_symbol
2665 lookup_global_symbol (const char *name,
2666 const struct block *block,
2667 const domain_enum domain)
2668 {
2669 /* If a block was passed in, we want to search the corresponding
2670 global block first. This yields "more expected" behavior, and is
2671 needed to support 'FILENAME'::VARIABLE lookups. */
2672 const struct block *global_block = block_global_block (block);
2673 symbol *sym = NULL;
2674 if (global_block != nullptr)
2675 {
2676 sym = lookup_symbol_in_block (name,
2677 symbol_name_match_type::FULL,
2678 global_block, domain);
2679 if (sym != NULL && best_symbol (sym, domain))
2680 return { sym, global_block };
2681 }
2682
2683 struct objfile *objfile = nullptr;
2684 if (block != nullptr)
2685 {
2686 objfile = block_objfile (block);
2687 if (objfile->separate_debug_objfile_backlink != nullptr)
2688 objfile = objfile->separate_debug_objfile_backlink;
2689 }
2690
2691 block_symbol bs
2692 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2693 if (better_symbol (sym, bs.symbol, domain) == sym)
2694 return { sym, global_block };
2695 else
2696 return bs;
2697 }
2698
2699 bool
2700 symbol_matches_domain (enum language symbol_language,
2701 domain_enum symbol_domain,
2702 domain_enum domain)
2703 {
2704 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2705 Similarly, any Ada type declaration implicitly defines a typedef. */
2706 if (symbol_language == language_cplus
2707 || symbol_language == language_d
2708 || symbol_language == language_ada
2709 || symbol_language == language_rust)
2710 {
2711 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2712 && symbol_domain == STRUCT_DOMAIN)
2713 return true;
2714 }
2715 /* For all other languages, strict match is required. */
2716 return (symbol_domain == domain);
2717 }
2718
2719 /* See symtab.h. */
2720
2721 struct type *
2722 lookup_transparent_type (const char *name)
2723 {
2724 return current_language->lookup_transparent_type (name);
2725 }
2726
2727 /* A helper for basic_lookup_transparent_type that interfaces with the
2728 "quick" symbol table functions. */
2729
2730 static struct type *
2731 basic_lookup_transparent_type_quick (struct objfile *objfile,
2732 enum block_enum block_index,
2733 const char *name)
2734 {
2735 struct compunit_symtab *cust;
2736 const struct blockvector *bv;
2737 const struct block *block;
2738 struct symbol *sym;
2739
2740 if (!objfile->sf)
2741 return NULL;
2742 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2743 STRUCT_DOMAIN);
2744 if (cust == NULL)
2745 return NULL;
2746
2747 bv = COMPUNIT_BLOCKVECTOR (cust);
2748 block = BLOCKVECTOR_BLOCK (bv, block_index);
2749 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2750 block_find_non_opaque_type, NULL);
2751 if (sym == NULL)
2752 error_in_psymtab_expansion (block_index, name, cust);
2753 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2754 return SYMBOL_TYPE (sym);
2755 }
2756
2757 /* Subroutine of basic_lookup_transparent_type to simplify it.
2758 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2759 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2760
2761 static struct type *
2762 basic_lookup_transparent_type_1 (struct objfile *objfile,
2763 enum block_enum block_index,
2764 const char *name)
2765 {
2766 const struct blockvector *bv;
2767 const struct block *block;
2768 const struct symbol *sym;
2769
2770 for (compunit_symtab *cust : objfile->compunits ())
2771 {
2772 bv = COMPUNIT_BLOCKVECTOR (cust);
2773 block = BLOCKVECTOR_BLOCK (bv, block_index);
2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2775 block_find_non_opaque_type, NULL);
2776 if (sym != NULL)
2777 {
2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2779 return SYMBOL_TYPE (sym);
2780 }
2781 }
2782
2783 return NULL;
2784 }
2785
2786 /* The standard implementation of lookup_transparent_type. This code
2787 was modeled on lookup_symbol -- the parts not relevant to looking
2788 up types were just left out. In particular it's assumed here that
2789 types are available in STRUCT_DOMAIN and only in file-static or
2790 global blocks. */
2791
2792 struct type *
2793 basic_lookup_transparent_type (const char *name)
2794 {
2795 struct type *t;
2796
2797 /* Now search all the global symbols. Do the symtab's first, then
2798 check the psymtab's. If a psymtab indicates the existence
2799 of the desired name as a global, then do psymtab-to-symtab
2800 conversion on the fly and return the found symbol. */
2801
2802 for (objfile *objfile : current_program_space->objfiles ())
2803 {
2804 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2805 if (t)
2806 return t;
2807 }
2808
2809 for (objfile *objfile : current_program_space->objfiles ())
2810 {
2811 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2812 if (t)
2813 return t;
2814 }
2815
2816 /* Now search the static file-level symbols.
2817 Not strictly correct, but more useful than an error.
2818 Do the symtab's first, then
2819 check the psymtab's. If a psymtab indicates the existence
2820 of the desired name as a file-level static, then do psymtab-to-symtab
2821 conversion on the fly and return the found symbol. */
2822
2823 for (objfile *objfile : current_program_space->objfiles ())
2824 {
2825 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2826 if (t)
2827 return t;
2828 }
2829
2830 for (objfile *objfile : current_program_space->objfiles ())
2831 {
2832 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2833 if (t)
2834 return t;
2835 }
2836
2837 return (struct type *) 0;
2838 }
2839
2840 /* See symtab.h. */
2841
2842 bool
2843 iterate_over_symbols (const struct block *block,
2844 const lookup_name_info &name,
2845 const domain_enum domain,
2846 gdb::function_view<symbol_found_callback_ftype> callback)
2847 {
2848 struct block_iterator iter;
2849 struct symbol *sym;
2850
2851 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2852 {
2853 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2854 {
2855 struct block_symbol block_sym = {sym, block};
2856
2857 if (!callback (&block_sym))
2858 return false;
2859 }
2860 }
2861 return true;
2862 }
2863
2864 /* See symtab.h. */
2865
2866 bool
2867 iterate_over_symbols_terminated
2868 (const struct block *block,
2869 const lookup_name_info &name,
2870 const domain_enum domain,
2871 gdb::function_view<symbol_found_callback_ftype> callback)
2872 {
2873 if (!iterate_over_symbols (block, name, domain, callback))
2874 return false;
2875 struct block_symbol block_sym = {nullptr, block};
2876 return callback (&block_sym);
2877 }
2878
2879 /* Find the compunit symtab associated with PC and SECTION.
2880 This will read in debug info as necessary. */
2881
2882 struct compunit_symtab *
2883 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2884 {
2885 struct compunit_symtab *best_cust = NULL;
2886 CORE_ADDR best_cust_range = 0;
2887 struct bound_minimal_symbol msymbol;
2888
2889 /* If we know that this is not a text address, return failure. This is
2890 necessary because we loop based on the block's high and low code
2891 addresses, which do not include the data ranges, and because
2892 we call find_pc_sect_psymtab which has a similar restriction based
2893 on the partial_symtab's texthigh and textlow. */
2894 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2895 if (msymbol.minsym && msymbol.minsym->data_p ())
2896 return NULL;
2897
2898 /* Search all symtabs for the one whose file contains our address, and which
2899 is the smallest of all the ones containing the address. This is designed
2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2903
2904 This happens for native ecoff format, where code from included files
2905 gets its own symtab. The symtab for the included file should have
2906 been read in already via the dependency mechanism.
2907 It might be swifter to create several symtabs with the same name
2908 like xcoff does (I'm not sure).
2909
2910 It also happens for objfiles that have their functions reordered.
2911 For these, the symtab we are looking for is not necessarily read in. */
2912
2913 for (objfile *obj_file : current_program_space->objfiles ())
2914 {
2915 for (compunit_symtab *cust : obj_file->compunits ())
2916 {
2917 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
2918 const struct block *global_block
2919 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2920 CORE_ADDR start = BLOCK_START (global_block);
2921 CORE_ADDR end = BLOCK_END (global_block);
2922 bool in_range_p = start <= pc && pc < end;
2923 if (!in_range_p)
2924 continue;
2925
2926 CORE_ADDR range = end - start;
2927 if (best_cust != nullptr
2928 && range >= best_cust_range)
2929 /* Cust doesn't have a smaller range than best_cust, skip it. */
2930 continue;
2931
2932 /* For an objfile that has its functions reordered,
2933 find_pc_psymtab will find the proper partial symbol table
2934 and we simply return its corresponding symtab. */
2935 /* In order to better support objfiles that contain both
2936 stabs and coff debugging info, we continue on if a psymtab
2937 can't be found. */
2938 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2939 {
2940 struct compunit_symtab *result;
2941
2942 result
2943 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2944 msymbol,
2945 pc,
2946 section,
2947 0);
2948 if (result != NULL)
2949 return result;
2950 }
2951
2952 if (section != 0)
2953 {
2954 struct symbol *sym = NULL;
2955 struct block_iterator iter;
2956
2957 ALL_BLOCK_SYMBOLS (global_block, iter, sym)
2958 {
2959 fixup_symbol_section (sym, obj_file);
2960 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2961 sym),
2962 section))
2963 break;
2964 }
2965 if (sym == NULL)
2966 continue; /* No symbol in this symtab matches
2967 section. */
2968 }
2969
2970 /* Cust is best found sofar, save it. */
2971 best_cust = cust;
2972 best_cust_range = range;
2973 }
2974 }
2975
2976 if (best_cust != NULL)
2977 return best_cust;
2978
2979 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2980
2981 for (objfile *objf : current_program_space->objfiles ())
2982 {
2983 struct compunit_symtab *result;
2984
2985 if (!objf->sf)
2986 continue;
2987 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2988 msymbol,
2989 pc, section,
2990 1);
2991 if (result != NULL)
2992 return result;
2993 }
2994
2995 return NULL;
2996 }
2997
2998 /* Find the compunit symtab associated with PC.
2999 This will read in debug info as necessary.
3000 Backward compatibility, no section. */
3001
3002 struct compunit_symtab *
3003 find_pc_compunit_symtab (CORE_ADDR pc)
3004 {
3005 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3006 }
3007
3008 /* See symtab.h. */
3009
3010 struct symbol *
3011 find_symbol_at_address (CORE_ADDR address)
3012 {
3013 for (objfile *objfile : current_program_space->objfiles ())
3014 {
3015 if (objfile->sf == NULL
3016 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3017 continue;
3018
3019 struct compunit_symtab *symtab
3020 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3021 if (symtab != NULL)
3022 {
3023 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3024
3025 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3026 {
3027 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3028 struct block_iterator iter;
3029 struct symbol *sym;
3030
3031 ALL_BLOCK_SYMBOLS (b, iter, sym)
3032 {
3033 if (SYMBOL_CLASS (sym) == LOC_STATIC
3034 && SYMBOL_VALUE_ADDRESS (sym) == address)
3035 return sym;
3036 }
3037 }
3038 }
3039 }
3040
3041 return NULL;
3042 }
3043
3044 \f
3045
3046 /* Find the source file and line number for a given PC value and SECTION.
3047 Return a structure containing a symtab pointer, a line number,
3048 and a pc range for the entire source line.
3049 The value's .pc field is NOT the specified pc.
3050 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3051 use the line that ends there. Otherwise, in that case, the line
3052 that begins there is used. */
3053
3054 /* The big complication here is that a line may start in one file, and end just
3055 before the start of another file. This usually occurs when you #include
3056 code in the middle of a subroutine. To properly find the end of a line's PC
3057 range, we must search all symtabs associated with this compilation unit, and
3058 find the one whose first PC is closer than that of the next line in this
3059 symtab. */
3060
3061 struct symtab_and_line
3062 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3063 {
3064 struct compunit_symtab *cust;
3065 struct linetable *l;
3066 int len;
3067 struct linetable_entry *item;
3068 const struct blockvector *bv;
3069 struct bound_minimal_symbol msymbol;
3070
3071 /* Info on best line seen so far, and where it starts, and its file. */
3072
3073 struct linetable_entry *best = NULL;
3074 CORE_ADDR best_end = 0;
3075 struct symtab *best_symtab = 0;
3076
3077 /* Store here the first line number
3078 of a file which contains the line at the smallest pc after PC.
3079 If we don't find a line whose range contains PC,
3080 we will use a line one less than this,
3081 with a range from the start of that file to the first line's pc. */
3082 struct linetable_entry *alt = NULL;
3083
3084 /* Info on best line seen in this file. */
3085
3086 struct linetable_entry *prev;
3087
3088 /* If this pc is not from the current frame,
3089 it is the address of the end of a call instruction.
3090 Quite likely that is the start of the following statement.
3091 But what we want is the statement containing the instruction.
3092 Fudge the pc to make sure we get that. */
3093
3094 /* It's tempting to assume that, if we can't find debugging info for
3095 any function enclosing PC, that we shouldn't search for line
3096 number info, either. However, GAS can emit line number info for
3097 assembly files --- very helpful when debugging hand-written
3098 assembly code. In such a case, we'd have no debug info for the
3099 function, but we would have line info. */
3100
3101 if (notcurrent)
3102 pc -= 1;
3103
3104 /* elz: added this because this function returned the wrong
3105 information if the pc belongs to a stub (import/export)
3106 to call a shlib function. This stub would be anywhere between
3107 two functions in the target, and the line info was erroneously
3108 taken to be the one of the line before the pc. */
3109
3110 /* RT: Further explanation:
3111
3112 * We have stubs (trampolines) inserted between procedures.
3113 *
3114 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3115 * exists in the main image.
3116 *
3117 * In the minimal symbol table, we have a bunch of symbols
3118 * sorted by start address. The stubs are marked as "trampoline",
3119 * the others appear as text. E.g.:
3120 *
3121 * Minimal symbol table for main image
3122 * main: code for main (text symbol)
3123 * shr1: stub (trampoline symbol)
3124 * foo: code for foo (text symbol)
3125 * ...
3126 * Minimal symbol table for "shr1" image:
3127 * ...
3128 * shr1: code for shr1 (text symbol)
3129 * ...
3130 *
3131 * So the code below is trying to detect if we are in the stub
3132 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3133 * and if found, do the symbolization from the real-code address
3134 * rather than the stub address.
3135 *
3136 * Assumptions being made about the minimal symbol table:
3137 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3138 * if we're really in the trampoline.s If we're beyond it (say
3139 * we're in "foo" in the above example), it'll have a closer
3140 * symbol (the "foo" text symbol for example) and will not
3141 * return the trampoline.
3142 * 2. lookup_minimal_symbol_text() will find a real text symbol
3143 * corresponding to the trampoline, and whose address will
3144 * be different than the trampoline address. I put in a sanity
3145 * check for the address being the same, to avoid an
3146 * infinite recursion.
3147 */
3148 msymbol = lookup_minimal_symbol_by_pc (pc);
3149 if (msymbol.minsym != NULL)
3150 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3151 {
3152 struct bound_minimal_symbol mfunsym
3153 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3154 NULL);
3155
3156 if (mfunsym.minsym == NULL)
3157 /* I eliminated this warning since it is coming out
3158 * in the following situation:
3159 * gdb shmain // test program with shared libraries
3160 * (gdb) break shr1 // function in shared lib
3161 * Warning: In stub for ...
3162 * In the above situation, the shared lib is not loaded yet,
3163 * so of course we can't find the real func/line info,
3164 * but the "break" still works, and the warning is annoying.
3165 * So I commented out the warning. RT */
3166 /* warning ("In stub for %s; unable to find real function/line info",
3167 msymbol->linkage_name ()); */
3168 ;
3169 /* fall through */
3170 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3171 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3172 /* Avoid infinite recursion */
3173 /* See above comment about why warning is commented out. */
3174 /* warning ("In stub for %s; unable to find real function/line info",
3175 msymbol->linkage_name ()); */
3176 ;
3177 /* fall through */
3178 else
3179 {
3180 /* Detect an obvious case of infinite recursion. If this
3181 should occur, we'd like to know about it, so error out,
3182 fatally. */
3183 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3184 internal_error (__FILE__, __LINE__,
3185 _("Infinite recursion detected in find_pc_sect_line;"
3186 "please file a bug report"));
3187
3188 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3189 }
3190 }
3191
3192 symtab_and_line val;
3193 val.pspace = current_program_space;
3194
3195 cust = find_pc_sect_compunit_symtab (pc, section);
3196 if (cust == NULL)
3197 {
3198 /* If no symbol information, return previous pc. */
3199 if (notcurrent)
3200 pc++;
3201 val.pc = pc;
3202 return val;
3203 }
3204
3205 bv = COMPUNIT_BLOCKVECTOR (cust);
3206
3207 /* Look at all the symtabs that share this blockvector.
3208 They all have the same apriori range, that we found was right;
3209 but they have different line tables. */
3210
3211 for (symtab *iter_s : compunit_filetabs (cust))
3212 {
3213 /* Find the best line in this symtab. */
3214 l = SYMTAB_LINETABLE (iter_s);
3215 if (!l)
3216 continue;
3217 len = l->nitems;
3218 if (len <= 0)
3219 {
3220 /* I think len can be zero if the symtab lacks line numbers
3221 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3222 I'm not sure which, and maybe it depends on the symbol
3223 reader). */
3224 continue;
3225 }
3226
3227 prev = NULL;
3228 item = l->item; /* Get first line info. */
3229
3230 /* Is this file's first line closer than the first lines of other files?
3231 If so, record this file, and its first line, as best alternate. */
3232 if (item->pc > pc && (!alt || item->pc < alt->pc))
3233 alt = item;
3234
3235 auto pc_compare = [](const CORE_ADDR & comp_pc,
3236 const struct linetable_entry & lhs)->bool
3237 {
3238 return comp_pc < lhs.pc;
3239 };
3240
3241 struct linetable_entry *first = item;
3242 struct linetable_entry *last = item + len;
3243 item = std::upper_bound (first, last, pc, pc_compare);
3244 if (item != first)
3245 prev = item - 1; /* Found a matching item. */
3246
3247 /* At this point, prev points at the line whose start addr is <= pc, and
3248 item points at the next line. If we ran off the end of the linetable
3249 (pc >= start of the last line), then prev == item. If pc < start of
3250 the first line, prev will not be set. */
3251
3252 /* Is this file's best line closer than the best in the other files?
3253 If so, record this file, and its best line, as best so far. Don't
3254 save prev if it represents the end of a function (i.e. line number
3255 0) instead of a real line. */
3256
3257 if (prev && prev->line && (!best || prev->pc > best->pc))
3258 {
3259 best = prev;
3260 best_symtab = iter_s;
3261
3262 /* If during the binary search we land on a non-statement entry,
3263 scan backward through entries at the same address to see if
3264 there is an entry marked as is-statement. In theory this
3265 duplication should have been removed from the line table
3266 during construction, this is just a double check. If the line
3267 table has had the duplication removed then this should be
3268 pretty cheap. */
3269 if (!best->is_stmt)
3270 {
3271 struct linetable_entry *tmp = best;
3272 while (tmp > first && (tmp - 1)->pc == tmp->pc
3273 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3274 --tmp;
3275 if (tmp->is_stmt)
3276 best = tmp;
3277 }
3278
3279 /* Discard BEST_END if it's before the PC of the current BEST. */
3280 if (best_end <= best->pc)
3281 best_end = 0;
3282 }
3283
3284 /* If another line (denoted by ITEM) is in the linetable and its
3285 PC is after BEST's PC, but before the current BEST_END, then
3286 use ITEM's PC as the new best_end. */
3287 if (best && item < last && item->pc > best->pc
3288 && (best_end == 0 || best_end > item->pc))
3289 best_end = item->pc;
3290 }
3291
3292 if (!best_symtab)
3293 {
3294 /* If we didn't find any line number info, just return zeros.
3295 We used to return alt->line - 1 here, but that could be
3296 anywhere; if we don't have line number info for this PC,
3297 don't make some up. */
3298 val.pc = pc;
3299 }
3300 else if (best->line == 0)
3301 {
3302 /* If our best fit is in a range of PC's for which no line
3303 number info is available (line number is zero) then we didn't
3304 find any valid line information. */
3305 val.pc = pc;
3306 }
3307 else
3308 {
3309 val.is_stmt = best->is_stmt;
3310 val.symtab = best_symtab;
3311 val.line = best->line;
3312 val.pc = best->pc;
3313 if (best_end && (!alt || best_end < alt->pc))
3314 val.end = best_end;
3315 else if (alt)
3316 val.end = alt->pc;
3317 else
3318 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3319 }
3320 val.section = section;
3321 return val;
3322 }
3323
3324 /* Backward compatibility (no section). */
3325
3326 struct symtab_and_line
3327 find_pc_line (CORE_ADDR pc, int notcurrent)
3328 {
3329 struct obj_section *section;
3330
3331 section = find_pc_overlay (pc);
3332 if (!pc_in_unmapped_range (pc, section))
3333 return find_pc_sect_line (pc, section, notcurrent);
3334
3335 /* If the original PC was an unmapped address then we translate this to a
3336 mapped address in order to lookup the sal. However, as the user
3337 passed us an unmapped address it makes more sense to return a result
3338 that has the pc and end fields translated to unmapped addresses. */
3339 pc = overlay_mapped_address (pc, section);
3340 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3341 sal.pc = overlay_unmapped_address (sal.pc, section);
3342 sal.end = overlay_unmapped_address (sal.end, section);
3343 return sal;
3344 }
3345
3346 /* See symtab.h. */
3347
3348 struct symtab *
3349 find_pc_line_symtab (CORE_ADDR pc)
3350 {
3351 struct symtab_and_line sal;
3352
3353 /* This always passes zero for NOTCURRENT to find_pc_line.
3354 There are currently no callers that ever pass non-zero. */
3355 sal = find_pc_line (pc, 0);
3356 return sal.symtab;
3357 }
3358 \f
3359 /* Find line number LINE in any symtab whose name is the same as
3360 SYMTAB.
3361
3362 If found, return the symtab that contains the linetable in which it was
3363 found, set *INDEX to the index in the linetable of the best entry
3364 found, and set *EXACT_MATCH to true if the value returned is an
3365 exact match.
3366
3367 If not found, return NULL. */
3368
3369 struct symtab *
3370 find_line_symtab (struct symtab *sym_tab, int line,
3371 int *index, bool *exact_match)
3372 {
3373 int exact = 0; /* Initialized here to avoid a compiler warning. */
3374
3375 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3376 so far seen. */
3377
3378 int best_index;
3379 struct linetable *best_linetable;
3380 struct symtab *best_symtab;
3381
3382 /* First try looking it up in the given symtab. */
3383 best_linetable = SYMTAB_LINETABLE (sym_tab);
3384 best_symtab = sym_tab;
3385 best_index = find_line_common (best_linetable, line, &exact, 0);
3386 if (best_index < 0 || !exact)
3387 {
3388 /* Didn't find an exact match. So we better keep looking for
3389 another symtab with the same name. In the case of xcoff,
3390 multiple csects for one source file (produced by IBM's FORTRAN
3391 compiler) produce multiple symtabs (this is unavoidable
3392 assuming csects can be at arbitrary places in memory and that
3393 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3394
3395 /* BEST is the smallest linenumber > LINE so far seen,
3396 or 0 if none has been seen so far.
3397 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3398 int best;
3399
3400 if (best_index >= 0)
3401 best = best_linetable->item[best_index].line;
3402 else
3403 best = 0;
3404
3405 for (objfile *objfile : current_program_space->objfiles ())
3406 {
3407 if (objfile->sf)
3408 objfile->sf->qf->expand_symtabs_with_fullname
3409 (objfile, symtab_to_fullname (sym_tab));
3410 }
3411
3412 for (objfile *objfile : current_program_space->objfiles ())
3413 {
3414 for (compunit_symtab *cu : objfile->compunits ())
3415 {
3416 for (symtab *s : compunit_filetabs (cu))
3417 {
3418 struct linetable *l;
3419 int ind;
3420
3421 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3422 continue;
3423 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3424 symtab_to_fullname (s)) != 0)
3425 continue;
3426 l = SYMTAB_LINETABLE (s);
3427 ind = find_line_common (l, line, &exact, 0);
3428 if (ind >= 0)
3429 {
3430 if (exact)
3431 {
3432 best_index = ind;
3433 best_linetable = l;
3434 best_symtab = s;
3435 goto done;
3436 }
3437 if (best == 0 || l->item[ind].line < best)
3438 {
3439 best = l->item[ind].line;
3440 best_index = ind;
3441 best_linetable = l;
3442 best_symtab = s;
3443 }
3444 }
3445 }
3446 }
3447 }
3448 }
3449 done:
3450 if (best_index < 0)
3451 return NULL;
3452
3453 if (index)
3454 *index = best_index;
3455 if (exact_match)
3456 *exact_match = (exact != 0);
3457
3458 return best_symtab;
3459 }
3460
3461 /* Given SYMTAB, returns all the PCs function in the symtab that
3462 exactly match LINE. Returns an empty vector if there are no exact
3463 matches, but updates BEST_ITEM in this case. */
3464
3465 std::vector<CORE_ADDR>
3466 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3467 struct linetable_entry **best_item)
3468 {
3469 int start = 0;
3470 std::vector<CORE_ADDR> result;
3471
3472 /* First, collect all the PCs that are at this line. */
3473 while (1)
3474 {
3475 int was_exact;
3476 int idx;
3477
3478 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3479 start);
3480 if (idx < 0)
3481 break;
3482
3483 if (!was_exact)
3484 {
3485 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3486
3487 if (*best_item == NULL
3488 || (item->line < (*best_item)->line && item->is_stmt))
3489 *best_item = item;
3490
3491 break;
3492 }
3493
3494 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3495 start = idx + 1;
3496 }
3497
3498 return result;
3499 }
3500
3501 \f
3502 /* Set the PC value for a given source file and line number and return true.
3503 Returns false for invalid line number (and sets the PC to 0).
3504 The source file is specified with a struct symtab. */
3505
3506 bool
3507 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3508 {
3509 struct linetable *l;
3510 int ind;
3511
3512 *pc = 0;
3513 if (symtab == 0)
3514 return false;
3515
3516 symtab = find_line_symtab (symtab, line, &ind, NULL);
3517 if (symtab != NULL)
3518 {
3519 l = SYMTAB_LINETABLE (symtab);
3520 *pc = l->item[ind].pc;
3521 return true;
3522 }
3523 else
3524 return false;
3525 }
3526
3527 /* Find the range of pc values in a line.
3528 Store the starting pc of the line into *STARTPTR
3529 and the ending pc (start of next line) into *ENDPTR.
3530 Returns true to indicate success.
3531 Returns false if could not find the specified line. */
3532
3533 bool
3534 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3535 CORE_ADDR *endptr)
3536 {
3537 CORE_ADDR startaddr;
3538 struct symtab_and_line found_sal;
3539
3540 startaddr = sal.pc;
3541 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3542 return false;
3543
3544 /* This whole function is based on address. For example, if line 10 has
3545 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3546 "info line *0x123" should say the line goes from 0x100 to 0x200
3547 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3548 This also insures that we never give a range like "starts at 0x134
3549 and ends at 0x12c". */
3550
3551 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3552 if (found_sal.line != sal.line)
3553 {
3554 /* The specified line (sal) has zero bytes. */
3555 *startptr = found_sal.pc;
3556 *endptr = found_sal.pc;
3557 }
3558 else
3559 {
3560 *startptr = found_sal.pc;
3561 *endptr = found_sal.end;
3562 }
3563 return true;
3564 }
3565
3566 /* Given a line table and a line number, return the index into the line
3567 table for the pc of the nearest line whose number is >= the specified one.
3568 Return -1 if none is found. The value is >= 0 if it is an index.
3569 START is the index at which to start searching the line table.
3570
3571 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3572
3573 static int
3574 find_line_common (struct linetable *l, int lineno,
3575 int *exact_match, int start)
3576 {
3577 int i;
3578 int len;
3579
3580 /* BEST is the smallest linenumber > LINENO so far seen,
3581 or 0 if none has been seen so far.
3582 BEST_INDEX identifies the item for it. */
3583
3584 int best_index = -1;
3585 int best = 0;
3586
3587 *exact_match = 0;
3588
3589 if (lineno <= 0)
3590 return -1;
3591 if (l == 0)
3592 return -1;
3593
3594 len = l->nitems;
3595 for (i = start; i < len; i++)
3596 {
3597 struct linetable_entry *item = &(l->item[i]);
3598
3599 /* Ignore non-statements. */
3600 if (!item->is_stmt)
3601 continue;
3602
3603 if (item->line == lineno)
3604 {
3605 /* Return the first (lowest address) entry which matches. */
3606 *exact_match = 1;
3607 return i;
3608 }
3609
3610 if (item->line > lineno && (best == 0 || item->line < best))
3611 {
3612 best = item->line;
3613 best_index = i;
3614 }
3615 }
3616
3617 /* If we got here, we didn't get an exact match. */
3618 return best_index;
3619 }
3620
3621 bool
3622 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3623 {
3624 struct symtab_and_line sal;
3625
3626 sal = find_pc_line (pc, 0);
3627 *startptr = sal.pc;
3628 *endptr = sal.end;
3629 return sal.symtab != 0;
3630 }
3631
3632 /* Helper for find_function_start_sal. Does most of the work, except
3633 setting the sal's symbol. */
3634
3635 static symtab_and_line
3636 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3637 bool funfirstline)
3638 {
3639 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3640
3641 if (funfirstline && sal.symtab != NULL
3642 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3643 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3644 {
3645 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3646
3647 sal.pc = func_addr;
3648 if (gdbarch_skip_entrypoint_p (gdbarch))
3649 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3650 return sal;
3651 }
3652
3653 /* We always should have a line for the function start address.
3654 If we don't, something is odd. Create a plain SAL referring
3655 just the PC and hope that skip_prologue_sal (if requested)
3656 can find a line number for after the prologue. */
3657 if (sal.pc < func_addr)
3658 {
3659 sal = {};
3660 sal.pspace = current_program_space;
3661 sal.pc = func_addr;
3662 sal.section = section;
3663 }
3664
3665 if (funfirstline)
3666 skip_prologue_sal (&sal);
3667
3668 return sal;
3669 }
3670
3671 /* See symtab.h. */
3672
3673 symtab_and_line
3674 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3675 bool funfirstline)
3676 {
3677 symtab_and_line sal
3678 = find_function_start_sal_1 (func_addr, section, funfirstline);
3679
3680 /* find_function_start_sal_1 does a linetable search, so it finds
3681 the symtab and linenumber, but not a symbol. Fill in the
3682 function symbol too. */
3683 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3684
3685 return sal;
3686 }
3687
3688 /* See symtab.h. */
3689
3690 symtab_and_line
3691 find_function_start_sal (symbol *sym, bool funfirstline)
3692 {
3693 fixup_symbol_section (sym, NULL);
3694 symtab_and_line sal
3695 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3696 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3697 funfirstline);
3698 sal.symbol = sym;
3699 return sal;
3700 }
3701
3702
3703 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3704 address for that function that has an entry in SYMTAB's line info
3705 table. If such an entry cannot be found, return FUNC_ADDR
3706 unaltered. */
3707
3708 static CORE_ADDR
3709 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3710 {
3711 CORE_ADDR func_start, func_end;
3712 struct linetable *l;
3713 int i;
3714
3715 /* Give up if this symbol has no lineinfo table. */
3716 l = SYMTAB_LINETABLE (symtab);
3717 if (l == NULL)
3718 return func_addr;
3719
3720 /* Get the range for the function's PC values, or give up if we
3721 cannot, for some reason. */
3722 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3723 return func_addr;
3724
3725 /* Linetable entries are ordered by PC values, see the commentary in
3726 symtab.h where `struct linetable' is defined. Thus, the first
3727 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3728 address we are looking for. */
3729 for (i = 0; i < l->nitems; i++)
3730 {
3731 struct linetable_entry *item = &(l->item[i]);
3732
3733 /* Don't use line numbers of zero, they mark special entries in
3734 the table. See the commentary on symtab.h before the
3735 definition of struct linetable. */
3736 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3737 return item->pc;
3738 }
3739
3740 return func_addr;
3741 }
3742
3743 /* Adjust SAL to the first instruction past the function prologue.
3744 If the PC was explicitly specified, the SAL is not changed.
3745 If the line number was explicitly specified then the SAL can still be
3746 updated, unless the language for SAL is assembler, in which case the SAL
3747 will be left unchanged.
3748 If SAL is already past the prologue, then do nothing. */
3749
3750 void
3751 skip_prologue_sal (struct symtab_and_line *sal)
3752 {
3753 struct symbol *sym;
3754 struct symtab_and_line start_sal;
3755 CORE_ADDR pc, saved_pc;
3756 struct obj_section *section;
3757 const char *name;
3758 struct objfile *objfile;
3759 struct gdbarch *gdbarch;
3760 const struct block *b, *function_block;
3761 int force_skip, skip;
3762
3763 /* Do not change the SAL if PC was specified explicitly. */
3764 if (sal->explicit_pc)
3765 return;
3766
3767 /* In assembly code, if the user asks for a specific line then we should
3768 not adjust the SAL. The user already has instruction level
3769 visibility in this case, so selecting a line other than one requested
3770 is likely to be the wrong choice. */
3771 if (sal->symtab != nullptr
3772 && sal->explicit_line
3773 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3774 return;
3775
3776 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3777
3778 switch_to_program_space_and_thread (sal->pspace);
3779
3780 sym = find_pc_sect_function (sal->pc, sal->section);
3781 if (sym != NULL)
3782 {
3783 fixup_symbol_section (sym, NULL);
3784
3785 objfile = symbol_objfile (sym);
3786 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3787 section = SYMBOL_OBJ_SECTION (objfile, sym);
3788 name = sym->linkage_name ();
3789 }
3790 else
3791 {
3792 struct bound_minimal_symbol msymbol
3793 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3794
3795 if (msymbol.minsym == NULL)
3796 return;
3797
3798 objfile = msymbol.objfile;
3799 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3800 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3801 name = msymbol.minsym->linkage_name ();
3802 }
3803
3804 gdbarch = objfile->arch ();
3805
3806 /* Process the prologue in two passes. In the first pass try to skip the
3807 prologue (SKIP is true) and verify there is a real need for it (indicated
3808 by FORCE_SKIP). If no such reason was found run a second pass where the
3809 prologue is not skipped (SKIP is false). */
3810
3811 skip = 1;
3812 force_skip = 1;
3813
3814 /* Be conservative - allow direct PC (without skipping prologue) only if we
3815 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3816 have to be set by the caller so we use SYM instead. */
3817 if (sym != NULL
3818 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3819 force_skip = 0;
3820
3821 saved_pc = pc;
3822 do
3823 {
3824 pc = saved_pc;
3825
3826 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3827 so that gdbarch_skip_prologue has something unique to work on. */
3828 if (section_is_overlay (section) && !section_is_mapped (section))
3829 pc = overlay_unmapped_address (pc, section);
3830
3831 /* Skip "first line" of function (which is actually its prologue). */
3832 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3833 if (gdbarch_skip_entrypoint_p (gdbarch))
3834 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3835 if (skip)
3836 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3837
3838 /* For overlays, map pc back into its mapped VMA range. */
3839 pc = overlay_mapped_address (pc, section);
3840
3841 /* Calculate line number. */
3842 start_sal = find_pc_sect_line (pc, section, 0);
3843
3844 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3845 line is still part of the same function. */
3846 if (skip && start_sal.pc != pc
3847 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3848 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3849 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3850 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3851 {
3852 /* First pc of next line */
3853 pc = start_sal.end;
3854 /* Recalculate the line number (might not be N+1). */
3855 start_sal = find_pc_sect_line (pc, section, 0);
3856 }
3857
3858 /* On targets with executable formats that don't have a concept of
3859 constructors (ELF with .init has, PE doesn't), gcc emits a call
3860 to `__main' in `main' between the prologue and before user
3861 code. */
3862 if (gdbarch_skip_main_prologue_p (gdbarch)
3863 && name && strcmp_iw (name, "main") == 0)
3864 {
3865 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3866 /* Recalculate the line number (might not be N+1). */
3867 start_sal = find_pc_sect_line (pc, section, 0);
3868 force_skip = 1;
3869 }
3870 }
3871 while (!force_skip && skip--);
3872
3873 /* If we still don't have a valid source line, try to find the first
3874 PC in the lineinfo table that belongs to the same function. This
3875 happens with COFF debug info, which does not seem to have an
3876 entry in lineinfo table for the code after the prologue which has
3877 no direct relation to source. For example, this was found to be
3878 the case with the DJGPP target using "gcc -gcoff" when the
3879 compiler inserted code after the prologue to make sure the stack
3880 is aligned. */
3881 if (!force_skip && sym && start_sal.symtab == NULL)
3882 {
3883 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3884 /* Recalculate the line number. */
3885 start_sal = find_pc_sect_line (pc, section, 0);
3886 }
3887
3888 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3889 forward SAL to the end of the prologue. */
3890 if (sal->pc >= pc)
3891 return;
3892
3893 sal->pc = pc;
3894 sal->section = section;
3895 sal->symtab = start_sal.symtab;
3896 sal->line = start_sal.line;
3897 sal->end = start_sal.end;
3898
3899 /* Check if we are now inside an inlined function. If we can,
3900 use the call site of the function instead. */
3901 b = block_for_pc_sect (sal->pc, sal->section);
3902 function_block = NULL;
3903 while (b != NULL)
3904 {
3905 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3906 function_block = b;
3907 else if (BLOCK_FUNCTION (b) != NULL)
3908 break;
3909 b = BLOCK_SUPERBLOCK (b);
3910 }
3911 if (function_block != NULL
3912 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3913 {
3914 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3915 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3916 }
3917 }
3918
3919 /* Given PC at the function's start address, attempt to find the
3920 prologue end using SAL information. Return zero if the skip fails.
3921
3922 A non-optimized prologue traditionally has one SAL for the function
3923 and a second for the function body. A single line function has
3924 them both pointing at the same line.
3925
3926 An optimized prologue is similar but the prologue may contain
3927 instructions (SALs) from the instruction body. Need to skip those
3928 while not getting into the function body.
3929
3930 The functions end point and an increasing SAL line are used as
3931 indicators of the prologue's endpoint.
3932
3933 This code is based on the function refine_prologue_limit
3934 (found in ia64). */
3935
3936 CORE_ADDR
3937 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3938 {
3939 struct symtab_and_line prologue_sal;
3940 CORE_ADDR start_pc;
3941 CORE_ADDR end_pc;
3942 const struct block *bl;
3943
3944 /* Get an initial range for the function. */
3945 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3946 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3947
3948 prologue_sal = find_pc_line (start_pc, 0);
3949 if (prologue_sal.line != 0)
3950 {
3951 /* For languages other than assembly, treat two consecutive line
3952 entries at the same address as a zero-instruction prologue.
3953 The GNU assembler emits separate line notes for each instruction
3954 in a multi-instruction macro, but compilers generally will not
3955 do this. */
3956 if (prologue_sal.symtab->language != language_asm)
3957 {
3958 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3959 int idx = 0;
3960
3961 /* Skip any earlier lines, and any end-of-sequence marker
3962 from a previous function. */
3963 while (linetable->item[idx].pc != prologue_sal.pc
3964 || linetable->item[idx].line == 0)
3965 idx++;
3966
3967 if (idx+1 < linetable->nitems
3968 && linetable->item[idx+1].line != 0
3969 && linetable->item[idx+1].pc == start_pc)
3970 return start_pc;
3971 }
3972
3973 /* If there is only one sal that covers the entire function,
3974 then it is probably a single line function, like
3975 "foo(){}". */
3976 if (prologue_sal.end >= end_pc)
3977 return 0;
3978
3979 while (prologue_sal.end < end_pc)
3980 {
3981 struct symtab_and_line sal;
3982
3983 sal = find_pc_line (prologue_sal.end, 0);
3984 if (sal.line == 0)
3985 break;
3986 /* Assume that a consecutive SAL for the same (or larger)
3987 line mark the prologue -> body transition. */
3988 if (sal.line >= prologue_sal.line)
3989 break;
3990 /* Likewise if we are in a different symtab altogether
3991 (e.g. within a file included via #include).  */
3992 if (sal.symtab != prologue_sal.symtab)
3993 break;
3994
3995 /* The line number is smaller. Check that it's from the
3996 same function, not something inlined. If it's inlined,
3997 then there is no point comparing the line numbers. */
3998 bl = block_for_pc (prologue_sal.end);
3999 while (bl)
4000 {
4001 if (block_inlined_p (bl))
4002 break;
4003 if (BLOCK_FUNCTION (bl))
4004 {
4005 bl = NULL;
4006 break;
4007 }
4008 bl = BLOCK_SUPERBLOCK (bl);
4009 }
4010 if (bl != NULL)
4011 break;
4012
4013 /* The case in which compiler's optimizer/scheduler has
4014 moved instructions into the prologue. We look ahead in
4015 the function looking for address ranges whose
4016 corresponding line number is less the first one that we
4017 found for the function. This is more conservative then
4018 refine_prologue_limit which scans a large number of SALs
4019 looking for any in the prologue. */
4020 prologue_sal = sal;
4021 }
4022 }
4023
4024 if (prologue_sal.end < end_pc)
4025 /* Return the end of this line, or zero if we could not find a
4026 line. */
4027 return prologue_sal.end;
4028 else
4029 /* Don't return END_PC, which is past the end of the function. */
4030 return prologue_sal.pc;
4031 }
4032
4033 /* See symtab.h. */
4034
4035 symbol *
4036 find_function_alias_target (bound_minimal_symbol msymbol)
4037 {
4038 CORE_ADDR func_addr;
4039 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4040 return NULL;
4041
4042 symbol *sym = find_pc_function (func_addr);
4043 if (sym != NULL
4044 && SYMBOL_CLASS (sym) == LOC_BLOCK
4045 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4046 return sym;
4047
4048 return NULL;
4049 }
4050
4051 \f
4052 /* If P is of the form "operator[ \t]+..." where `...' is
4053 some legitimate operator text, return a pointer to the
4054 beginning of the substring of the operator text.
4055 Otherwise, return "". */
4056
4057 static const char *
4058 operator_chars (const char *p, const char **end)
4059 {
4060 *end = "";
4061 if (!startswith (p, CP_OPERATOR_STR))
4062 return *end;
4063 p += CP_OPERATOR_LEN;
4064
4065 /* Don't get faked out by `operator' being part of a longer
4066 identifier. */
4067 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4068 return *end;
4069
4070 /* Allow some whitespace between `operator' and the operator symbol. */
4071 while (*p == ' ' || *p == '\t')
4072 p++;
4073
4074 /* Recognize 'operator TYPENAME'. */
4075
4076 if (isalpha (*p) || *p == '_' || *p == '$')
4077 {
4078 const char *q = p + 1;
4079
4080 while (isalnum (*q) || *q == '_' || *q == '$')
4081 q++;
4082 *end = q;
4083 return p;
4084 }
4085
4086 while (*p)
4087 switch (*p)
4088 {
4089 case '\\': /* regexp quoting */
4090 if (p[1] == '*')
4091 {
4092 if (p[2] == '=') /* 'operator\*=' */
4093 *end = p + 3;
4094 else /* 'operator\*' */
4095 *end = p + 2;
4096 return p;
4097 }
4098 else if (p[1] == '[')
4099 {
4100 if (p[2] == ']')
4101 error (_("mismatched quoting on brackets, "
4102 "try 'operator\\[\\]'"));
4103 else if (p[2] == '\\' && p[3] == ']')
4104 {
4105 *end = p + 4; /* 'operator\[\]' */
4106 return p;
4107 }
4108 else
4109 error (_("nothing is allowed between '[' and ']'"));
4110 }
4111 else
4112 {
4113 /* Gratuitous quote: skip it and move on. */
4114 p++;
4115 continue;
4116 }
4117 break;
4118 case '!':
4119 case '=':
4120 case '*':
4121 case '/':
4122 case '%':
4123 case '^':
4124 if (p[1] == '=')
4125 *end = p + 2;
4126 else
4127 *end = p + 1;
4128 return p;
4129 case '<':
4130 case '>':
4131 case '+':
4132 case '-':
4133 case '&':
4134 case '|':
4135 if (p[0] == '-' && p[1] == '>')
4136 {
4137 /* Struct pointer member operator 'operator->'. */
4138 if (p[2] == '*')
4139 {
4140 *end = p + 3; /* 'operator->*' */
4141 return p;
4142 }
4143 else if (p[2] == '\\')
4144 {
4145 *end = p + 4; /* Hopefully 'operator->\*' */
4146 return p;
4147 }
4148 else
4149 {
4150 *end = p + 2; /* 'operator->' */
4151 return p;
4152 }
4153 }
4154 if (p[1] == '=' || p[1] == p[0])
4155 *end = p + 2;
4156 else
4157 *end = p + 1;
4158 return p;
4159 case '~':
4160 case ',':
4161 *end = p + 1;
4162 return p;
4163 case '(':
4164 if (p[1] != ')')
4165 error (_("`operator ()' must be specified "
4166 "without whitespace in `()'"));
4167 *end = p + 2;
4168 return p;
4169 case '?':
4170 if (p[1] != ':')
4171 error (_("`operator ?:' must be specified "
4172 "without whitespace in `?:'"));
4173 *end = p + 2;
4174 return p;
4175 case '[':
4176 if (p[1] != ']')
4177 error (_("`operator []' must be specified "
4178 "without whitespace in `[]'"));
4179 *end = p + 2;
4180 return p;
4181 default:
4182 error (_("`operator %s' not supported"), p);
4183 break;
4184 }
4185
4186 *end = "";
4187 return *end;
4188 }
4189 \f
4190
4191 /* What part to match in a file name. */
4192
4193 struct filename_partial_match_opts
4194 {
4195 /* Only match the directory name part. */
4196 bool dirname = false;
4197
4198 /* Only match the basename part. */
4199 bool basename = false;
4200 };
4201
4202 /* Data structure to maintain printing state for output_source_filename. */
4203
4204 struct output_source_filename_data
4205 {
4206 /* Output only filenames matching REGEXP. */
4207 std::string regexp;
4208 gdb::optional<compiled_regex> c_regexp;
4209 /* Possibly only match a part of the filename. */
4210 filename_partial_match_opts partial_match;
4211
4212
4213 /* Cache of what we've seen so far. */
4214 struct filename_seen_cache *filename_seen_cache;
4215
4216 /* Flag of whether we're printing the first one. */
4217 int first;
4218 };
4219
4220 /* Slave routine for sources_info. Force line breaks at ,'s.
4221 NAME is the name to print.
4222 DATA contains the state for printing and watching for duplicates. */
4223
4224 static void
4225 output_source_filename (const char *name,
4226 struct output_source_filename_data *data)
4227 {
4228 /* Since a single source file can result in several partial symbol
4229 tables, we need to avoid printing it more than once. Note: if
4230 some of the psymtabs are read in and some are not, it gets
4231 printed both under "Source files for which symbols have been
4232 read" and "Source files for which symbols will be read in on
4233 demand". I consider this a reasonable way to deal with the
4234 situation. I'm not sure whether this can also happen for
4235 symtabs; it doesn't hurt to check. */
4236
4237 /* Was NAME already seen? */
4238 if (data->filename_seen_cache->seen (name))
4239 {
4240 /* Yes; don't print it again. */
4241 return;
4242 }
4243
4244 /* Does it match data->regexp? */
4245 if (data->c_regexp.has_value ())
4246 {
4247 const char *to_match;
4248 std::string dirname;
4249
4250 if (data->partial_match.dirname)
4251 {
4252 dirname = ldirname (name);
4253 to_match = dirname.c_str ();
4254 }
4255 else if (data->partial_match.basename)
4256 to_match = lbasename (name);
4257 else
4258 to_match = name;
4259
4260 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4261 return;
4262 }
4263
4264 /* Print it and reset *FIRST. */
4265 if (! data->first)
4266 printf_filtered (", ");
4267 data->first = 0;
4268
4269 wrap_here ("");
4270 fputs_styled (name, file_name_style.style (), gdb_stdout);
4271 }
4272
4273 /* A callback for map_partial_symbol_filenames. */
4274
4275 static void
4276 output_partial_symbol_filename (const char *filename, const char *fullname,
4277 void *data)
4278 {
4279 output_source_filename (fullname ? fullname : filename,
4280 (struct output_source_filename_data *) data);
4281 }
4282
4283 using isrc_flag_option_def
4284 = gdb::option::flag_option_def<filename_partial_match_opts>;
4285
4286 static const gdb::option::option_def info_sources_option_defs[] = {
4287
4288 isrc_flag_option_def {
4289 "dirname",
4290 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4291 N_("Show only the files having a dirname matching REGEXP."),
4292 },
4293
4294 isrc_flag_option_def {
4295 "basename",
4296 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4297 N_("Show only the files having a basename matching REGEXP."),
4298 },
4299
4300 };
4301
4302 /* Create an option_def_group for the "info sources" options, with
4303 ISRC_OPTS as context. */
4304
4305 static inline gdb::option::option_def_group
4306 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4307 {
4308 return {{info_sources_option_defs}, isrc_opts};
4309 }
4310
4311 /* Prints the header message for the source files that will be printed
4312 with the matching info present in DATA. SYMBOL_MSG is a message
4313 that tells what will or has been done with the symbols of the
4314 matching source files. */
4315
4316 static void
4317 print_info_sources_header (const char *symbol_msg,
4318 const struct output_source_filename_data *data)
4319 {
4320 puts_filtered (symbol_msg);
4321 if (!data->regexp.empty ())
4322 {
4323 if (data->partial_match.dirname)
4324 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4325 data->regexp.c_str ());
4326 else if (data->partial_match.basename)
4327 printf_filtered (_("(basename matching regular expression \"%s\")"),
4328 data->regexp.c_str ());
4329 else
4330 printf_filtered (_("(filename matching regular expression \"%s\")"),
4331 data->regexp.c_str ());
4332 }
4333 puts_filtered ("\n");
4334 }
4335
4336 /* Completer for "info sources". */
4337
4338 static void
4339 info_sources_command_completer (cmd_list_element *ignore,
4340 completion_tracker &tracker,
4341 const char *text, const char *word)
4342 {
4343 const auto group = make_info_sources_options_def_group (nullptr);
4344 if (gdb::option::complete_options
4345 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4346 return;
4347 }
4348
4349 static void
4350 info_sources_command (const char *args, int from_tty)
4351 {
4352 struct output_source_filename_data data;
4353
4354 if (!have_full_symbols () && !have_partial_symbols ())
4355 {
4356 error (_("No symbol table is loaded. Use the \"file\" command."));
4357 }
4358
4359 filename_seen_cache filenames_seen;
4360
4361 auto group = make_info_sources_options_def_group (&data.partial_match);
4362
4363 gdb::option::process_options
4364 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4365
4366 if (args != NULL && *args != '\000')
4367 data.regexp = args;
4368
4369 data.filename_seen_cache = &filenames_seen;
4370 data.first = 1;
4371
4372 if (data.partial_match.dirname && data.partial_match.basename)
4373 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4374 if ((data.partial_match.dirname || data.partial_match.basename)
4375 && data.regexp.empty ())
4376 error (_("Missing REGEXP for 'info sources'."));
4377
4378 if (data.regexp.empty ())
4379 data.c_regexp.reset ();
4380 else
4381 {
4382 int cflags = REG_NOSUB;
4383 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4384 cflags |= REG_ICASE;
4385 #endif
4386 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4387 _("Invalid regexp"));
4388 }
4389
4390 print_info_sources_header
4391 (_("Source files for which symbols have been read in:\n"), &data);
4392
4393 for (objfile *objfile : current_program_space->objfiles ())
4394 {
4395 for (compunit_symtab *cu : objfile->compunits ())
4396 {
4397 for (symtab *s : compunit_filetabs (cu))
4398 {
4399 const char *fullname = symtab_to_fullname (s);
4400
4401 output_source_filename (fullname, &data);
4402 }
4403 }
4404 }
4405 printf_filtered ("\n\n");
4406
4407 print_info_sources_header
4408 (_("Source files for which symbols will be read in on demand:\n"), &data);
4409
4410 filenames_seen.clear ();
4411 data.first = 1;
4412 map_symbol_filenames (output_partial_symbol_filename, &data,
4413 1 /*need_fullname*/);
4414 printf_filtered ("\n");
4415 }
4416
4417 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4418 true compare only lbasename of FILENAMES. */
4419
4420 static bool
4421 file_matches (const char *file, const std::vector<const char *> &filenames,
4422 bool basenames)
4423 {
4424 if (filenames.empty ())
4425 return true;
4426
4427 for (const char *name : filenames)
4428 {
4429 name = (basenames ? lbasename (name) : name);
4430 if (compare_filenames_for_search (file, name))
4431 return true;
4432 }
4433
4434 return false;
4435 }
4436
4437 /* Helper function for std::sort on symbol_search objects. Can only sort
4438 symbols, not minimal symbols. */
4439
4440 int
4441 symbol_search::compare_search_syms (const symbol_search &sym_a,
4442 const symbol_search &sym_b)
4443 {
4444 int c;
4445
4446 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4447 symbol_symtab (sym_b.symbol)->filename);
4448 if (c != 0)
4449 return c;
4450
4451 if (sym_a.block != sym_b.block)
4452 return sym_a.block - sym_b.block;
4453
4454 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4455 }
4456
4457 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4458 If SYM has no symbol_type or symbol_name, returns false. */
4459
4460 bool
4461 treg_matches_sym_type_name (const compiled_regex &treg,
4462 const struct symbol *sym)
4463 {
4464 struct type *sym_type;
4465 std::string printed_sym_type_name;
4466
4467 if (symbol_lookup_debug > 1)
4468 {
4469 fprintf_unfiltered (gdb_stdlog,
4470 "treg_matches_sym_type_name\n sym %s\n",
4471 sym->natural_name ());
4472 }
4473
4474 sym_type = SYMBOL_TYPE (sym);
4475 if (sym_type == NULL)
4476 return false;
4477
4478 {
4479 scoped_switch_to_sym_language_if_auto l (sym);
4480
4481 printed_sym_type_name = type_to_string (sym_type);
4482 }
4483
4484
4485 if (symbol_lookup_debug > 1)
4486 {
4487 fprintf_unfiltered (gdb_stdlog,
4488 " sym_type_name %s\n",
4489 printed_sym_type_name.c_str ());
4490 }
4491
4492
4493 if (printed_sym_type_name.empty ())
4494 return false;
4495
4496 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4497 }
4498
4499 /* See symtab.h. */
4500
4501 bool
4502 global_symbol_searcher::is_suitable_msymbol
4503 (const enum search_domain kind, const minimal_symbol *msymbol)
4504 {
4505 switch (MSYMBOL_TYPE (msymbol))
4506 {
4507 case mst_data:
4508 case mst_bss:
4509 case mst_file_data:
4510 case mst_file_bss:
4511 return kind == VARIABLES_DOMAIN;
4512 case mst_text:
4513 case mst_file_text:
4514 case mst_solib_trampoline:
4515 case mst_text_gnu_ifunc:
4516 return kind == FUNCTIONS_DOMAIN;
4517 default:
4518 return false;
4519 }
4520 }
4521
4522 /* See symtab.h. */
4523
4524 bool
4525 global_symbol_searcher::expand_symtabs
4526 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4527 {
4528 enum search_domain kind = m_kind;
4529 bool found_msymbol = false;
4530
4531 if (objfile->sf)
4532 objfile->sf->qf->expand_symtabs_matching
4533 (objfile,
4534 [&] (const char *filename, bool basenames)
4535 {
4536 return file_matches (filename, filenames, basenames);
4537 },
4538 &lookup_name_info::match_any (),
4539 [&] (const char *symname)
4540 {
4541 return (!preg.has_value ()
4542 || preg->exec (symname, 0, NULL, 0) == 0);
4543 },
4544 NULL,
4545 kind);
4546
4547 /* Here, we search through the minimal symbol tables for functions and
4548 variables that match, and force their symbols to be read. This is in
4549 particular necessary for demangled variable names, which are no longer
4550 put into the partial symbol tables. The symbol will then be found
4551 during the scan of symtabs later.
4552
4553 For functions, find_pc_symtab should succeed if we have debug info for
4554 the function, for variables we have to call
4555 lookup_symbol_in_objfile_from_linkage_name to determine if the
4556 variable has debug info. If the lookup fails, set found_msymbol so
4557 that we will rescan to print any matching symbols without debug info.
4558 We only search the objfile the msymbol came from, we no longer search
4559 all objfiles. In large programs (1000s of shared libs) searching all
4560 objfiles is not worth the pain. */
4561 if (filenames.empty ()
4562 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4563 {
4564 for (minimal_symbol *msymbol : objfile->msymbols ())
4565 {
4566 QUIT;
4567
4568 if (msymbol->created_by_gdb)
4569 continue;
4570
4571 if (is_suitable_msymbol (kind, msymbol))
4572 {
4573 if (!preg.has_value ()
4574 || preg->exec (msymbol->natural_name (), 0,
4575 NULL, 0) == 0)
4576 {
4577 /* An important side-effect of these lookup functions is
4578 to expand the symbol table if msymbol is found, later
4579 in the process we will add matching symbols or
4580 msymbols to the results list, and that requires that
4581 the symbols tables are expanded. */
4582 if (kind == FUNCTIONS_DOMAIN
4583 ? (find_pc_compunit_symtab
4584 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4585 == NULL)
4586 : (lookup_symbol_in_objfile_from_linkage_name
4587 (objfile, msymbol->linkage_name (),
4588 VAR_DOMAIN)
4589 .symbol == NULL))
4590 found_msymbol = true;
4591 }
4592 }
4593 }
4594 }
4595
4596 return found_msymbol;
4597 }
4598
4599 /* See symtab.h. */
4600
4601 bool
4602 global_symbol_searcher::add_matching_symbols
4603 (objfile *objfile,
4604 const gdb::optional<compiled_regex> &preg,
4605 const gdb::optional<compiled_regex> &treg,
4606 std::set<symbol_search> *result_set) const
4607 {
4608 enum search_domain kind = m_kind;
4609
4610 /* Add matching symbols (if not already present). */
4611 for (compunit_symtab *cust : objfile->compunits ())
4612 {
4613 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4614
4615 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4616 {
4617 struct block_iterator iter;
4618 struct symbol *sym;
4619 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4620
4621 ALL_BLOCK_SYMBOLS (b, iter, sym)
4622 {
4623 struct symtab *real_symtab = symbol_symtab (sym);
4624
4625 QUIT;
4626
4627 /* Check first sole REAL_SYMTAB->FILENAME. It does
4628 not need to be a substring of symtab_to_fullname as
4629 it may contain "./" etc. */
4630 if ((file_matches (real_symtab->filename, filenames, false)
4631 || ((basenames_may_differ
4632 || file_matches (lbasename (real_symtab->filename),
4633 filenames, true))
4634 && file_matches (symtab_to_fullname (real_symtab),
4635 filenames, false)))
4636 && ((!preg.has_value ()
4637 || preg->exec (sym->natural_name (), 0,
4638 NULL, 0) == 0)
4639 && ((kind == VARIABLES_DOMAIN
4640 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4641 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4642 && SYMBOL_CLASS (sym) != LOC_BLOCK
4643 /* LOC_CONST can be used for more than
4644 just enums, e.g., c++ static const
4645 members. We only want to skip enums
4646 here. */
4647 && !(SYMBOL_CLASS (sym) == LOC_CONST
4648 && (SYMBOL_TYPE (sym)->code ()
4649 == TYPE_CODE_ENUM))
4650 && (!treg.has_value ()
4651 || treg_matches_sym_type_name (*treg, sym)))
4652 || (kind == FUNCTIONS_DOMAIN
4653 && SYMBOL_CLASS (sym) == LOC_BLOCK
4654 && (!treg.has_value ()
4655 || treg_matches_sym_type_name (*treg,
4656 sym)))
4657 || (kind == TYPES_DOMAIN
4658 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4659 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4660 || (kind == MODULES_DOMAIN
4661 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4662 && SYMBOL_LINE (sym) != 0))))
4663 {
4664 if (result_set->size () < m_max_search_results)
4665 {
4666 /* Match, insert if not already in the results. */
4667 symbol_search ss (block, sym);
4668 if (result_set->find (ss) == result_set->end ())
4669 result_set->insert (ss);
4670 }
4671 else
4672 return false;
4673 }
4674 }
4675 }
4676 }
4677
4678 return true;
4679 }
4680
4681 /* See symtab.h. */
4682
4683 bool
4684 global_symbol_searcher::add_matching_msymbols
4685 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4686 std::vector<symbol_search> *results) const
4687 {
4688 enum search_domain kind = m_kind;
4689
4690 for (minimal_symbol *msymbol : objfile->msymbols ())
4691 {
4692 QUIT;
4693
4694 if (msymbol->created_by_gdb)
4695 continue;
4696
4697 if (is_suitable_msymbol (kind, msymbol))
4698 {
4699 if (!preg.has_value ()
4700 || preg->exec (msymbol->natural_name (), 0,
4701 NULL, 0) == 0)
4702 {
4703 /* For functions we can do a quick check of whether the
4704 symbol might be found via find_pc_symtab. */
4705 if (kind != FUNCTIONS_DOMAIN
4706 || (find_pc_compunit_symtab
4707 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4708 == NULL))
4709 {
4710 if (lookup_symbol_in_objfile_from_linkage_name
4711 (objfile, msymbol->linkage_name (),
4712 VAR_DOMAIN).symbol == NULL)
4713 {
4714 /* Matching msymbol, add it to the results list. */
4715 if (results->size () < m_max_search_results)
4716 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4717 else
4718 return false;
4719 }
4720 }
4721 }
4722 }
4723 }
4724
4725 return true;
4726 }
4727
4728 /* See symtab.h. */
4729
4730 std::vector<symbol_search>
4731 global_symbol_searcher::search () const
4732 {
4733 gdb::optional<compiled_regex> preg;
4734 gdb::optional<compiled_regex> treg;
4735
4736 gdb_assert (m_kind != ALL_DOMAIN);
4737
4738 if (m_symbol_name_regexp != NULL)
4739 {
4740 const char *symbol_name_regexp = m_symbol_name_regexp;
4741
4742 /* Make sure spacing is right for C++ operators.
4743 This is just a courtesy to make the matching less sensitive
4744 to how many spaces the user leaves between 'operator'
4745 and <TYPENAME> or <OPERATOR>. */
4746 const char *opend;
4747 const char *opname = operator_chars (symbol_name_regexp, &opend);
4748
4749 if (*opname)
4750 {
4751 int fix = -1; /* -1 means ok; otherwise number of
4752 spaces needed. */
4753
4754 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4755 {
4756 /* There should 1 space between 'operator' and 'TYPENAME'. */
4757 if (opname[-1] != ' ' || opname[-2] == ' ')
4758 fix = 1;
4759 }
4760 else
4761 {
4762 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4763 if (opname[-1] == ' ')
4764 fix = 0;
4765 }
4766 /* If wrong number of spaces, fix it. */
4767 if (fix >= 0)
4768 {
4769 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4770
4771 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4772 symbol_name_regexp = tmp;
4773 }
4774 }
4775
4776 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4777 ? REG_ICASE : 0);
4778 preg.emplace (symbol_name_regexp, cflags,
4779 _("Invalid regexp"));
4780 }
4781
4782 if (m_symbol_type_regexp != NULL)
4783 {
4784 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4785 ? REG_ICASE : 0);
4786 treg.emplace (m_symbol_type_regexp, cflags,
4787 _("Invalid regexp"));
4788 }
4789
4790 bool found_msymbol = false;
4791 std::set<symbol_search> result_set;
4792 for (objfile *objfile : current_program_space->objfiles ())
4793 {
4794 /* Expand symtabs within objfile that possibly contain matching
4795 symbols. */
4796 found_msymbol |= expand_symtabs (objfile, preg);
4797
4798 /* Find matching symbols within OBJFILE and add them in to the
4799 RESULT_SET set. Use a set here so that we can easily detect
4800 duplicates as we go, and can therefore track how many unique
4801 matches we have found so far. */
4802 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4803 break;
4804 }
4805
4806 /* Convert the result set into a sorted result list, as std::set is
4807 defined to be sorted then no explicit call to std::sort is needed. */
4808 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4809
4810 /* If there are no debug symbols, then add matching minsyms. But if the
4811 user wants to see symbols matching a type regexp, then never give a
4812 minimal symbol, as we assume that a minimal symbol does not have a
4813 type. */
4814 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4815 && !m_exclude_minsyms
4816 && !treg.has_value ())
4817 {
4818 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4819 for (objfile *objfile : current_program_space->objfiles ())
4820 if (!add_matching_msymbols (objfile, preg, &result))
4821 break;
4822 }
4823
4824 return result;
4825 }
4826
4827 /* See symtab.h. */
4828
4829 std::string
4830 symbol_to_info_string (struct symbol *sym, int block,
4831 enum search_domain kind)
4832 {
4833 std::string str;
4834
4835 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4836
4837 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4838 str += "static ";
4839
4840 /* Typedef that is not a C++ class. */
4841 if (kind == TYPES_DOMAIN
4842 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4843 {
4844 string_file tmp_stream;
4845
4846 /* FIXME: For C (and C++) we end up with a difference in output here
4847 between how a typedef is printed, and non-typedefs are printed.
4848 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4849 appear C-like, while TYPE_PRINT doesn't.
4850
4851 For the struct printing case below, things are worse, we force
4852 printing of the ";" in this function, which is going to be wrong
4853 for languages that don't require a ";" between statements. */
4854 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4855 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4856 else
4857 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4858 str += tmp_stream.string ();
4859 }
4860 /* variable, func, or typedef-that-is-c++-class. */
4861 else if (kind < TYPES_DOMAIN
4862 || (kind == TYPES_DOMAIN
4863 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4864 {
4865 string_file tmp_stream;
4866
4867 type_print (SYMBOL_TYPE (sym),
4868 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4869 ? "" : sym->print_name ()),
4870 &tmp_stream, 0);
4871
4872 str += tmp_stream.string ();
4873 str += ";";
4874 }
4875 /* Printing of modules is currently done here, maybe at some future
4876 point we might want a language specific method to print the module
4877 symbol so that we can customise the output more. */
4878 else if (kind == MODULES_DOMAIN)
4879 str += sym->print_name ();
4880
4881 return str;
4882 }
4883
4884 /* Helper function for symbol info commands, for example 'info functions',
4885 'info variables', etc. KIND is the kind of symbol we searched for, and
4886 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4887 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4888 print file and line number information for the symbol as well. Skip
4889 printing the filename if it matches LAST. */
4890
4891 static void
4892 print_symbol_info (enum search_domain kind,
4893 struct symbol *sym,
4894 int block, const char *last)
4895 {
4896 scoped_switch_to_sym_language_if_auto l (sym);
4897 struct symtab *s = symbol_symtab (sym);
4898
4899 if (last != NULL)
4900 {
4901 const char *s_filename = symtab_to_filename_for_display (s);
4902
4903 if (filename_cmp (last, s_filename) != 0)
4904 {
4905 printf_filtered (_("\nFile %ps:\n"),
4906 styled_string (file_name_style.style (),
4907 s_filename));
4908 }
4909
4910 if (SYMBOL_LINE (sym) != 0)
4911 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4912 else
4913 puts_filtered ("\t");
4914 }
4915
4916 std::string str = symbol_to_info_string (sym, block, kind);
4917 printf_filtered ("%s\n", str.c_str ());
4918 }
4919
4920 /* This help function for symtab_symbol_info() prints information
4921 for non-debugging symbols to gdb_stdout. */
4922
4923 static void
4924 print_msymbol_info (struct bound_minimal_symbol msymbol)
4925 {
4926 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4927 char *tmp;
4928
4929 if (gdbarch_addr_bit (gdbarch) <= 32)
4930 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4931 & (CORE_ADDR) 0xffffffff,
4932 8);
4933 else
4934 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4935 16);
4936
4937 ui_file_style sym_style = (msymbol.minsym->text_p ()
4938 ? function_name_style.style ()
4939 : ui_file_style ());
4940
4941 printf_filtered (_("%ps %ps\n"),
4942 styled_string (address_style.style (), tmp),
4943 styled_string (sym_style, msymbol.minsym->print_name ()));
4944 }
4945
4946 /* This is the guts of the commands "info functions", "info types", and
4947 "info variables". It calls search_symbols to find all matches and then
4948 print_[m]symbol_info to print out some useful information about the
4949 matches. */
4950
4951 static void
4952 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4953 const char *regexp, enum search_domain kind,
4954 const char *t_regexp, int from_tty)
4955 {
4956 static const char * const classnames[] =
4957 {"variable", "function", "type", "module"};
4958 const char *last_filename = "";
4959 int first = 1;
4960
4961 gdb_assert (kind != ALL_DOMAIN);
4962
4963 if (regexp != nullptr && *regexp == '\0')
4964 regexp = nullptr;
4965
4966 global_symbol_searcher spec (kind, regexp);
4967 spec.set_symbol_type_regexp (t_regexp);
4968 spec.set_exclude_minsyms (exclude_minsyms);
4969 std::vector<symbol_search> symbols = spec.search ();
4970
4971 if (!quiet)
4972 {
4973 if (regexp != NULL)
4974 {
4975 if (t_regexp != NULL)
4976 printf_filtered
4977 (_("All %ss matching regular expression \"%s\""
4978 " with type matching regular expression \"%s\":\n"),
4979 classnames[kind], regexp, t_regexp);
4980 else
4981 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4982 classnames[kind], regexp);
4983 }
4984 else
4985 {
4986 if (t_regexp != NULL)
4987 printf_filtered
4988 (_("All defined %ss"
4989 " with type matching regular expression \"%s\" :\n"),
4990 classnames[kind], t_regexp);
4991 else
4992 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4993 }
4994 }
4995
4996 for (const symbol_search &p : symbols)
4997 {
4998 QUIT;
4999
5000 if (p.msymbol.minsym != NULL)
5001 {
5002 if (first)
5003 {
5004 if (!quiet)
5005 printf_filtered (_("\nNon-debugging symbols:\n"));
5006 first = 0;
5007 }
5008 print_msymbol_info (p.msymbol);
5009 }
5010 else
5011 {
5012 print_symbol_info (kind,
5013 p.symbol,
5014 p.block,
5015 last_filename);
5016 last_filename
5017 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5018 }
5019 }
5020 }
5021
5022 /* Structure to hold the values of the options used by the 'info variables'
5023 and 'info functions' commands. These correspond to the -q, -t, and -n
5024 options. */
5025
5026 struct info_vars_funcs_options
5027 {
5028 bool quiet = false;
5029 bool exclude_minsyms = false;
5030 char *type_regexp = nullptr;
5031
5032 ~info_vars_funcs_options ()
5033 {
5034 xfree (type_regexp);
5035 }
5036 };
5037
5038 /* The options used by the 'info variables' and 'info functions'
5039 commands. */
5040
5041 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5042 gdb::option::boolean_option_def<info_vars_funcs_options> {
5043 "q",
5044 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5045 nullptr, /* show_cmd_cb */
5046 nullptr /* set_doc */
5047 },
5048
5049 gdb::option::boolean_option_def<info_vars_funcs_options> {
5050 "n",
5051 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5052 nullptr, /* show_cmd_cb */
5053 nullptr /* set_doc */
5054 },
5055
5056 gdb::option::string_option_def<info_vars_funcs_options> {
5057 "t",
5058 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5059 },
5060 nullptr, /* show_cmd_cb */
5061 nullptr /* set_doc */
5062 }
5063 };
5064
5065 /* Returns the option group used by 'info variables' and 'info
5066 functions'. */
5067
5068 static gdb::option::option_def_group
5069 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5070 {
5071 return {{info_vars_funcs_options_defs}, opts};
5072 }
5073
5074 /* Command completer for 'info variables' and 'info functions'. */
5075
5076 static void
5077 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5078 completion_tracker &tracker,
5079 const char *text, const char * /* word */)
5080 {
5081 const auto group
5082 = make_info_vars_funcs_options_def_group (nullptr);
5083 if (gdb::option::complete_options
5084 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5085 return;
5086
5087 const char *word = advance_to_expression_complete_word_point (tracker, text);
5088 symbol_completer (ignore, tracker, text, word);
5089 }
5090
5091 /* Implement the 'info variables' command. */
5092
5093 static void
5094 info_variables_command (const char *args, int from_tty)
5095 {
5096 info_vars_funcs_options opts;
5097 auto grp = make_info_vars_funcs_options_def_group (&opts);
5098 gdb::option::process_options
5099 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5100 if (args != nullptr && *args == '\0')
5101 args = nullptr;
5102
5103 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5104 opts.type_regexp, from_tty);
5105 }
5106
5107 /* Implement the 'info functions' command. */
5108
5109 static void
5110 info_functions_command (const char *args, int from_tty)
5111 {
5112 info_vars_funcs_options opts;
5113
5114 auto grp = make_info_vars_funcs_options_def_group (&opts);
5115 gdb::option::process_options
5116 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5117 if (args != nullptr && *args == '\0')
5118 args = nullptr;
5119
5120 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5121 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5122 }
5123
5124 /* Holds the -q option for the 'info types' command. */
5125
5126 struct info_types_options
5127 {
5128 bool quiet = false;
5129 };
5130
5131 /* The options used by the 'info types' command. */
5132
5133 static const gdb::option::option_def info_types_options_defs[] = {
5134 gdb::option::boolean_option_def<info_types_options> {
5135 "q",
5136 [] (info_types_options *opt) { return &opt->quiet; },
5137 nullptr, /* show_cmd_cb */
5138 nullptr /* set_doc */
5139 }
5140 };
5141
5142 /* Returns the option group used by 'info types'. */
5143
5144 static gdb::option::option_def_group
5145 make_info_types_options_def_group (info_types_options *opts)
5146 {
5147 return {{info_types_options_defs}, opts};
5148 }
5149
5150 /* Implement the 'info types' command. */
5151
5152 static void
5153 info_types_command (const char *args, int from_tty)
5154 {
5155 info_types_options opts;
5156
5157 auto grp = make_info_types_options_def_group (&opts);
5158 gdb::option::process_options
5159 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5160 if (args != nullptr && *args == '\0')
5161 args = nullptr;
5162 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5163 }
5164
5165 /* Command completer for 'info types' command. */
5166
5167 static void
5168 info_types_command_completer (struct cmd_list_element *ignore,
5169 completion_tracker &tracker,
5170 const char *text, const char * /* word */)
5171 {
5172 const auto group
5173 = make_info_types_options_def_group (nullptr);
5174 if (gdb::option::complete_options
5175 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5176 return;
5177
5178 const char *word = advance_to_expression_complete_word_point (tracker, text);
5179 symbol_completer (ignore, tracker, text, word);
5180 }
5181
5182 /* Implement the 'info modules' command. */
5183
5184 static void
5185 info_modules_command (const char *args, int from_tty)
5186 {
5187 info_types_options opts;
5188
5189 auto grp = make_info_types_options_def_group (&opts);
5190 gdb::option::process_options
5191 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5192 if (args != nullptr && *args == '\0')
5193 args = nullptr;
5194 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5195 from_tty);
5196 }
5197
5198 static void
5199 rbreak_command (const char *regexp, int from_tty)
5200 {
5201 std::string string;
5202 const char *file_name = nullptr;
5203
5204 if (regexp != nullptr)
5205 {
5206 const char *colon = strchr (regexp, ':');
5207
5208 /* Ignore the colon if it is part of a Windows drive. */
5209 if (HAS_DRIVE_SPEC (regexp)
5210 && (regexp[2] == '/' || regexp[2] == '\\'))
5211 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5212
5213 if (colon && *(colon + 1) != ':')
5214 {
5215 int colon_index;
5216 char *local_name;
5217
5218 colon_index = colon - regexp;
5219 local_name = (char *) alloca (colon_index + 1);
5220 memcpy (local_name, regexp, colon_index);
5221 local_name[colon_index--] = 0;
5222 while (isspace (local_name[colon_index]))
5223 local_name[colon_index--] = 0;
5224 file_name = local_name;
5225 regexp = skip_spaces (colon + 1);
5226 }
5227 }
5228
5229 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5230 if (file_name != nullptr)
5231 spec.filenames.push_back (file_name);
5232 std::vector<symbol_search> symbols = spec.search ();
5233
5234 scoped_rbreak_breakpoints finalize;
5235 for (const symbol_search &p : symbols)
5236 {
5237 if (p.msymbol.minsym == NULL)
5238 {
5239 struct symtab *symtab = symbol_symtab (p.symbol);
5240 const char *fullname = symtab_to_fullname (symtab);
5241
5242 string = string_printf ("%s:'%s'", fullname,
5243 p.symbol->linkage_name ());
5244 break_command (&string[0], from_tty);
5245 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5246 }
5247 else
5248 {
5249 string = string_printf ("'%s'",
5250 p.msymbol.minsym->linkage_name ());
5251
5252 break_command (&string[0], from_tty);
5253 printf_filtered ("<function, no debug info> %s;\n",
5254 p.msymbol.minsym->print_name ());
5255 }
5256 }
5257 }
5258 \f
5259
5260 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5261
5262 static int
5263 compare_symbol_name (const char *symbol_name, language symbol_language,
5264 const lookup_name_info &lookup_name,
5265 completion_match_result &match_res)
5266 {
5267 const language_defn *lang = language_def (symbol_language);
5268
5269 symbol_name_matcher_ftype *name_match
5270 = lang->get_symbol_name_matcher (lookup_name);
5271
5272 return name_match (symbol_name, lookup_name, &match_res);
5273 }
5274
5275 /* See symtab.h. */
5276
5277 bool
5278 completion_list_add_name (completion_tracker &tracker,
5279 language symbol_language,
5280 const char *symname,
5281 const lookup_name_info &lookup_name,
5282 const char *text, const char *word)
5283 {
5284 completion_match_result &match_res
5285 = tracker.reset_completion_match_result ();
5286
5287 /* Clip symbols that cannot match. */
5288 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5289 return false;
5290
5291 /* Refresh SYMNAME from the match string. It's potentially
5292 different depending on language. (E.g., on Ada, the match may be
5293 the encoded symbol name wrapped in "<>"). */
5294 symname = match_res.match.match ();
5295 gdb_assert (symname != NULL);
5296
5297 /* We have a match for a completion, so add SYMNAME to the current list
5298 of matches. Note that the name is moved to freshly malloc'd space. */
5299
5300 {
5301 gdb::unique_xmalloc_ptr<char> completion
5302 = make_completion_match_str (symname, text, word);
5303
5304 /* Here we pass the match-for-lcd object to add_completion. Some
5305 languages match the user text against substrings of symbol
5306 names in some cases. E.g., in C++, "b push_ba" completes to
5307 "std::vector::push_back", "std::string::push_back", etc., and
5308 in this case we want the completion lowest common denominator
5309 to be "push_back" instead of "std::". */
5310 tracker.add_completion (std::move (completion),
5311 &match_res.match_for_lcd, text, word);
5312 }
5313
5314 return true;
5315 }
5316
5317 /* completion_list_add_name wrapper for struct symbol. */
5318
5319 static void
5320 completion_list_add_symbol (completion_tracker &tracker,
5321 symbol *sym,
5322 const lookup_name_info &lookup_name,
5323 const char *text, const char *word)
5324 {
5325 if (!completion_list_add_name (tracker, sym->language (),
5326 sym->natural_name (),
5327 lookup_name, text, word))
5328 return;
5329
5330 /* C++ function symbols include the parameters within both the msymbol
5331 name and the symbol name. The problem is that the msymbol name will
5332 describe the parameters in the most basic way, with typedefs stripped
5333 out, while the symbol name will represent the types as they appear in
5334 the program. This means we will see duplicate entries in the
5335 completion tracker. The following converts the symbol name back to
5336 the msymbol name and removes the msymbol name from the completion
5337 tracker. */
5338 if (sym->language () == language_cplus
5339 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5340 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5341 {
5342 /* The call to canonicalize returns the empty string if the input
5343 string is already in canonical form, thanks to this we don't
5344 remove the symbol we just added above. */
5345 gdb::unique_xmalloc_ptr<char> str
5346 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5347 if (str != nullptr)
5348 tracker.remove_completion (str.get ());
5349 }
5350 }
5351
5352 /* completion_list_add_name wrapper for struct minimal_symbol. */
5353
5354 static void
5355 completion_list_add_msymbol (completion_tracker &tracker,
5356 minimal_symbol *sym,
5357 const lookup_name_info &lookup_name,
5358 const char *text, const char *word)
5359 {
5360 completion_list_add_name (tracker, sym->language (),
5361 sym->natural_name (),
5362 lookup_name, text, word);
5363 }
5364
5365
5366 /* ObjC: In case we are completing on a selector, look as the msymbol
5367 again and feed all the selectors into the mill. */
5368
5369 static void
5370 completion_list_objc_symbol (completion_tracker &tracker,
5371 struct minimal_symbol *msymbol,
5372 const lookup_name_info &lookup_name,
5373 const char *text, const char *word)
5374 {
5375 static char *tmp = NULL;
5376 static unsigned int tmplen = 0;
5377
5378 const char *method, *category, *selector;
5379 char *tmp2 = NULL;
5380
5381 method = msymbol->natural_name ();
5382
5383 /* Is it a method? */
5384 if ((method[0] != '-') && (method[0] != '+'))
5385 return;
5386
5387 if (text[0] == '[')
5388 /* Complete on shortened method method. */
5389 completion_list_add_name (tracker, language_objc,
5390 method + 1,
5391 lookup_name,
5392 text, word);
5393
5394 while ((strlen (method) + 1) >= tmplen)
5395 {
5396 if (tmplen == 0)
5397 tmplen = 1024;
5398 else
5399 tmplen *= 2;
5400 tmp = (char *) xrealloc (tmp, tmplen);
5401 }
5402 selector = strchr (method, ' ');
5403 if (selector != NULL)
5404 selector++;
5405
5406 category = strchr (method, '(');
5407
5408 if ((category != NULL) && (selector != NULL))
5409 {
5410 memcpy (tmp, method, (category - method));
5411 tmp[category - method] = ' ';
5412 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5413 completion_list_add_name (tracker, language_objc, tmp,
5414 lookup_name, text, word);
5415 if (text[0] == '[')
5416 completion_list_add_name (tracker, language_objc, tmp + 1,
5417 lookup_name, text, word);
5418 }
5419
5420 if (selector != NULL)
5421 {
5422 /* Complete on selector only. */
5423 strcpy (tmp, selector);
5424 tmp2 = strchr (tmp, ']');
5425 if (tmp2 != NULL)
5426 *tmp2 = '\0';
5427
5428 completion_list_add_name (tracker, language_objc, tmp,
5429 lookup_name, text, word);
5430 }
5431 }
5432
5433 /* Break the non-quoted text based on the characters which are in
5434 symbols. FIXME: This should probably be language-specific. */
5435
5436 static const char *
5437 language_search_unquoted_string (const char *text, const char *p)
5438 {
5439 for (; p > text; --p)
5440 {
5441 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5442 continue;
5443 else
5444 {
5445 if ((current_language->la_language == language_objc))
5446 {
5447 if (p[-1] == ':') /* Might be part of a method name. */
5448 continue;
5449 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5450 p -= 2; /* Beginning of a method name. */
5451 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5452 { /* Might be part of a method name. */
5453 const char *t = p;
5454
5455 /* Seeing a ' ' or a '(' is not conclusive evidence
5456 that we are in the middle of a method name. However,
5457 finding "-[" or "+[" should be pretty un-ambiguous.
5458 Unfortunately we have to find it now to decide. */
5459
5460 while (t > text)
5461 if (isalnum (t[-1]) || t[-1] == '_' ||
5462 t[-1] == ' ' || t[-1] == ':' ||
5463 t[-1] == '(' || t[-1] == ')')
5464 --t;
5465 else
5466 break;
5467
5468 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5469 p = t - 2; /* Method name detected. */
5470 /* Else we leave with p unchanged. */
5471 }
5472 }
5473 break;
5474 }
5475 }
5476 return p;
5477 }
5478
5479 static void
5480 completion_list_add_fields (completion_tracker &tracker,
5481 struct symbol *sym,
5482 const lookup_name_info &lookup_name,
5483 const char *text, const char *word)
5484 {
5485 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5486 {
5487 struct type *t = SYMBOL_TYPE (sym);
5488 enum type_code c = t->code ();
5489 int j;
5490
5491 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5492 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5493 if (TYPE_FIELD_NAME (t, j))
5494 completion_list_add_name (tracker, sym->language (),
5495 TYPE_FIELD_NAME (t, j),
5496 lookup_name, text, word);
5497 }
5498 }
5499
5500 /* See symtab.h. */
5501
5502 bool
5503 symbol_is_function_or_method (symbol *sym)
5504 {
5505 switch (SYMBOL_TYPE (sym)->code ())
5506 {
5507 case TYPE_CODE_FUNC:
5508 case TYPE_CODE_METHOD:
5509 return true;
5510 default:
5511 return false;
5512 }
5513 }
5514
5515 /* See symtab.h. */
5516
5517 bool
5518 symbol_is_function_or_method (minimal_symbol *msymbol)
5519 {
5520 switch (MSYMBOL_TYPE (msymbol))
5521 {
5522 case mst_text:
5523 case mst_text_gnu_ifunc:
5524 case mst_solib_trampoline:
5525 case mst_file_text:
5526 return true;
5527 default:
5528 return false;
5529 }
5530 }
5531
5532 /* See symtab.h. */
5533
5534 bound_minimal_symbol
5535 find_gnu_ifunc (const symbol *sym)
5536 {
5537 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5538 return {};
5539
5540 lookup_name_info lookup_name (sym->search_name (),
5541 symbol_name_match_type::SEARCH_NAME);
5542 struct objfile *objfile = symbol_objfile (sym);
5543
5544 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5545 minimal_symbol *ifunc = NULL;
5546
5547 iterate_over_minimal_symbols (objfile, lookup_name,
5548 [&] (minimal_symbol *minsym)
5549 {
5550 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5551 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5552 {
5553 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5554 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5555 {
5556 struct gdbarch *gdbarch = objfile->arch ();
5557 msym_addr
5558 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5559 msym_addr,
5560 current_top_target ());
5561 }
5562 if (msym_addr == address)
5563 {
5564 ifunc = minsym;
5565 return true;
5566 }
5567 }
5568 return false;
5569 });
5570
5571 if (ifunc != NULL)
5572 return {ifunc, objfile};
5573 return {};
5574 }
5575
5576 /* Add matching symbols from SYMTAB to the current completion list. */
5577
5578 static void
5579 add_symtab_completions (struct compunit_symtab *cust,
5580 completion_tracker &tracker,
5581 complete_symbol_mode mode,
5582 const lookup_name_info &lookup_name,
5583 const char *text, const char *word,
5584 enum type_code code)
5585 {
5586 struct symbol *sym;
5587 const struct block *b;
5588 struct block_iterator iter;
5589 int i;
5590
5591 if (cust == NULL)
5592 return;
5593
5594 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5595 {
5596 QUIT;
5597 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5598 ALL_BLOCK_SYMBOLS (b, iter, sym)
5599 {
5600 if (completion_skip_symbol (mode, sym))
5601 continue;
5602
5603 if (code == TYPE_CODE_UNDEF
5604 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5605 && SYMBOL_TYPE (sym)->code () == code))
5606 completion_list_add_symbol (tracker, sym,
5607 lookup_name,
5608 text, word);
5609 }
5610 }
5611 }
5612
5613 void
5614 default_collect_symbol_completion_matches_break_on
5615 (completion_tracker &tracker, complete_symbol_mode mode,
5616 symbol_name_match_type name_match_type,
5617 const char *text, const char *word,
5618 const char *break_on, enum type_code code)
5619 {
5620 /* Problem: All of the symbols have to be copied because readline
5621 frees them. I'm not going to worry about this; hopefully there
5622 won't be that many. */
5623
5624 struct symbol *sym;
5625 const struct block *b;
5626 const struct block *surrounding_static_block, *surrounding_global_block;
5627 struct block_iterator iter;
5628 /* The symbol we are completing on. Points in same buffer as text. */
5629 const char *sym_text;
5630
5631 /* Now look for the symbol we are supposed to complete on. */
5632 if (mode == complete_symbol_mode::LINESPEC)
5633 sym_text = text;
5634 else
5635 {
5636 const char *p;
5637 char quote_found;
5638 const char *quote_pos = NULL;
5639
5640 /* First see if this is a quoted string. */
5641 quote_found = '\0';
5642 for (p = text; *p != '\0'; ++p)
5643 {
5644 if (quote_found != '\0')
5645 {
5646 if (*p == quote_found)
5647 /* Found close quote. */
5648 quote_found = '\0';
5649 else if (*p == '\\' && p[1] == quote_found)
5650 /* A backslash followed by the quote character
5651 doesn't end the string. */
5652 ++p;
5653 }
5654 else if (*p == '\'' || *p == '"')
5655 {
5656 quote_found = *p;
5657 quote_pos = p;
5658 }
5659 }
5660 if (quote_found == '\'')
5661 /* A string within single quotes can be a symbol, so complete on it. */
5662 sym_text = quote_pos + 1;
5663 else if (quote_found == '"')
5664 /* A double-quoted string is never a symbol, nor does it make sense
5665 to complete it any other way. */
5666 {
5667 return;
5668 }
5669 else
5670 {
5671 /* It is not a quoted string. Break it based on the characters
5672 which are in symbols. */
5673 while (p > text)
5674 {
5675 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5676 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5677 --p;
5678 else
5679 break;
5680 }
5681 sym_text = p;
5682 }
5683 }
5684
5685 lookup_name_info lookup_name (sym_text, name_match_type, true);
5686
5687 /* At this point scan through the misc symbol vectors and add each
5688 symbol you find to the list. Eventually we want to ignore
5689 anything that isn't a text symbol (everything else will be
5690 handled by the psymtab code below). */
5691
5692 if (code == TYPE_CODE_UNDEF)
5693 {
5694 for (objfile *objfile : current_program_space->objfiles ())
5695 {
5696 for (minimal_symbol *msymbol : objfile->msymbols ())
5697 {
5698 QUIT;
5699
5700 if (completion_skip_symbol (mode, msymbol))
5701 continue;
5702
5703 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5704 sym_text, word);
5705
5706 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5707 sym_text, word);
5708 }
5709 }
5710 }
5711
5712 /* Add completions for all currently loaded symbol tables. */
5713 for (objfile *objfile : current_program_space->objfiles ())
5714 {
5715 for (compunit_symtab *cust : objfile->compunits ())
5716 add_symtab_completions (cust, tracker, mode, lookup_name,
5717 sym_text, word, code);
5718 }
5719
5720 /* Look through the partial symtabs for all symbols which begin by
5721 matching SYM_TEXT. Expand all CUs that you find to the list. */
5722 expand_symtabs_matching (NULL,
5723 lookup_name,
5724 NULL,
5725 [&] (compunit_symtab *symtab) /* expansion notify */
5726 {
5727 add_symtab_completions (symtab,
5728 tracker, mode, lookup_name,
5729 sym_text, word, code);
5730 },
5731 ALL_DOMAIN);
5732
5733 /* Search upwards from currently selected frame (so that we can
5734 complete on local vars). Also catch fields of types defined in
5735 this places which match our text string. Only complete on types
5736 visible from current context. */
5737
5738 b = get_selected_block (0);
5739 surrounding_static_block = block_static_block (b);
5740 surrounding_global_block = block_global_block (b);
5741 if (surrounding_static_block != NULL)
5742 while (b != surrounding_static_block)
5743 {
5744 QUIT;
5745
5746 ALL_BLOCK_SYMBOLS (b, iter, sym)
5747 {
5748 if (code == TYPE_CODE_UNDEF)
5749 {
5750 completion_list_add_symbol (tracker, sym, lookup_name,
5751 sym_text, word);
5752 completion_list_add_fields (tracker, sym, lookup_name,
5753 sym_text, word);
5754 }
5755 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5756 && SYMBOL_TYPE (sym)->code () == code)
5757 completion_list_add_symbol (tracker, sym, lookup_name,
5758 sym_text, word);
5759 }
5760
5761 /* Stop when we encounter an enclosing function. Do not stop for
5762 non-inlined functions - the locals of the enclosing function
5763 are in scope for a nested function. */
5764 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5765 break;
5766 b = BLOCK_SUPERBLOCK (b);
5767 }
5768
5769 /* Add fields from the file's types; symbols will be added below. */
5770
5771 if (code == TYPE_CODE_UNDEF)
5772 {
5773 if (surrounding_static_block != NULL)
5774 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5775 completion_list_add_fields (tracker, sym, lookup_name,
5776 sym_text, word);
5777
5778 if (surrounding_global_block != NULL)
5779 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5780 completion_list_add_fields (tracker, sym, lookup_name,
5781 sym_text, word);
5782 }
5783
5784 /* Skip macros if we are completing a struct tag -- arguable but
5785 usually what is expected. */
5786 if (current_language->macro_expansion () == macro_expansion_c
5787 && code == TYPE_CODE_UNDEF)
5788 {
5789 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5790
5791 /* This adds a macro's name to the current completion list. */
5792 auto add_macro_name = [&] (const char *macro_name,
5793 const macro_definition *,
5794 macro_source_file *,
5795 int)
5796 {
5797 completion_list_add_name (tracker, language_c, macro_name,
5798 lookup_name, sym_text, word);
5799 };
5800
5801 /* Add any macros visible in the default scope. Note that this
5802 may yield the occasional wrong result, because an expression
5803 might be evaluated in a scope other than the default. For
5804 example, if the user types "break file:line if <TAB>", the
5805 resulting expression will be evaluated at "file:line" -- but
5806 at there does not seem to be a way to detect this at
5807 completion time. */
5808 scope = default_macro_scope ();
5809 if (scope)
5810 macro_for_each_in_scope (scope->file, scope->line,
5811 add_macro_name);
5812
5813 /* User-defined macros are always visible. */
5814 macro_for_each (macro_user_macros, add_macro_name);
5815 }
5816 }
5817
5818 /* Collect all symbols (regardless of class) which begin by matching
5819 TEXT. */
5820
5821 void
5822 collect_symbol_completion_matches (completion_tracker &tracker,
5823 complete_symbol_mode mode,
5824 symbol_name_match_type name_match_type,
5825 const char *text, const char *word)
5826 {
5827 current_language->collect_symbol_completion_matches (tracker, mode,
5828 name_match_type,
5829 text, word,
5830 TYPE_CODE_UNDEF);
5831 }
5832
5833 /* Like collect_symbol_completion_matches, but only collect
5834 STRUCT_DOMAIN symbols whose type code is CODE. */
5835
5836 void
5837 collect_symbol_completion_matches_type (completion_tracker &tracker,
5838 const char *text, const char *word,
5839 enum type_code code)
5840 {
5841 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5842 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5843
5844 gdb_assert (code == TYPE_CODE_UNION
5845 || code == TYPE_CODE_STRUCT
5846 || code == TYPE_CODE_ENUM);
5847 current_language->collect_symbol_completion_matches (tracker, mode,
5848 name_match_type,
5849 text, word, code);
5850 }
5851
5852 /* Like collect_symbol_completion_matches, but collects a list of
5853 symbols defined in all source files named SRCFILE. */
5854
5855 void
5856 collect_file_symbol_completion_matches (completion_tracker &tracker,
5857 complete_symbol_mode mode,
5858 symbol_name_match_type name_match_type,
5859 const char *text, const char *word,
5860 const char *srcfile)
5861 {
5862 /* The symbol we are completing on. Points in same buffer as text. */
5863 const char *sym_text;
5864
5865 /* Now look for the symbol we are supposed to complete on.
5866 FIXME: This should be language-specific. */
5867 if (mode == complete_symbol_mode::LINESPEC)
5868 sym_text = text;
5869 else
5870 {
5871 const char *p;
5872 char quote_found;
5873 const char *quote_pos = NULL;
5874
5875 /* First see if this is a quoted string. */
5876 quote_found = '\0';
5877 for (p = text; *p != '\0'; ++p)
5878 {
5879 if (quote_found != '\0')
5880 {
5881 if (*p == quote_found)
5882 /* Found close quote. */
5883 quote_found = '\0';
5884 else if (*p == '\\' && p[1] == quote_found)
5885 /* A backslash followed by the quote character
5886 doesn't end the string. */
5887 ++p;
5888 }
5889 else if (*p == '\'' || *p == '"')
5890 {
5891 quote_found = *p;
5892 quote_pos = p;
5893 }
5894 }
5895 if (quote_found == '\'')
5896 /* A string within single quotes can be a symbol, so complete on it. */
5897 sym_text = quote_pos + 1;
5898 else if (quote_found == '"')
5899 /* A double-quoted string is never a symbol, nor does it make sense
5900 to complete it any other way. */
5901 {
5902 return;
5903 }
5904 else
5905 {
5906 /* Not a quoted string. */
5907 sym_text = language_search_unquoted_string (text, p);
5908 }
5909 }
5910
5911 lookup_name_info lookup_name (sym_text, name_match_type, true);
5912
5913 /* Go through symtabs for SRCFILE and check the externs and statics
5914 for symbols which match. */
5915 iterate_over_symtabs (srcfile, [&] (symtab *s)
5916 {
5917 add_symtab_completions (SYMTAB_COMPUNIT (s),
5918 tracker, mode, lookup_name,
5919 sym_text, word, TYPE_CODE_UNDEF);
5920 return false;
5921 });
5922 }
5923
5924 /* A helper function for make_source_files_completion_list. It adds
5925 another file name to a list of possible completions, growing the
5926 list as necessary. */
5927
5928 static void
5929 add_filename_to_list (const char *fname, const char *text, const char *word,
5930 completion_list *list)
5931 {
5932 list->emplace_back (make_completion_match_str (fname, text, word));
5933 }
5934
5935 static int
5936 not_interesting_fname (const char *fname)
5937 {
5938 static const char *illegal_aliens[] = {
5939 "_globals_", /* inserted by coff_symtab_read */
5940 NULL
5941 };
5942 int i;
5943
5944 for (i = 0; illegal_aliens[i]; i++)
5945 {
5946 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5947 return 1;
5948 }
5949 return 0;
5950 }
5951
5952 /* An object of this type is passed as the user_data argument to
5953 map_partial_symbol_filenames. */
5954 struct add_partial_filename_data
5955 {
5956 struct filename_seen_cache *filename_seen_cache;
5957 const char *text;
5958 const char *word;
5959 int text_len;
5960 completion_list *list;
5961 };
5962
5963 /* A callback for map_partial_symbol_filenames. */
5964
5965 static void
5966 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5967 void *user_data)
5968 {
5969 struct add_partial_filename_data *data
5970 = (struct add_partial_filename_data *) user_data;
5971
5972 if (not_interesting_fname (filename))
5973 return;
5974 if (!data->filename_seen_cache->seen (filename)
5975 && filename_ncmp (filename, data->text, data->text_len) == 0)
5976 {
5977 /* This file matches for a completion; add it to the
5978 current list of matches. */
5979 add_filename_to_list (filename, data->text, data->word, data->list);
5980 }
5981 else
5982 {
5983 const char *base_name = lbasename (filename);
5984
5985 if (base_name != filename
5986 && !data->filename_seen_cache->seen (base_name)
5987 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5988 add_filename_to_list (base_name, data->text, data->word, data->list);
5989 }
5990 }
5991
5992 /* Return a list of all source files whose names begin with matching
5993 TEXT. The file names are looked up in the symbol tables of this
5994 program. */
5995
5996 completion_list
5997 make_source_files_completion_list (const char *text, const char *word)
5998 {
5999 size_t text_len = strlen (text);
6000 completion_list list;
6001 const char *base_name;
6002 struct add_partial_filename_data datum;
6003
6004 if (!have_full_symbols () && !have_partial_symbols ())
6005 return list;
6006
6007 filename_seen_cache filenames_seen;
6008
6009 for (objfile *objfile : current_program_space->objfiles ())
6010 {
6011 for (compunit_symtab *cu : objfile->compunits ())
6012 {
6013 for (symtab *s : compunit_filetabs (cu))
6014 {
6015 if (not_interesting_fname (s->filename))
6016 continue;
6017 if (!filenames_seen.seen (s->filename)
6018 && filename_ncmp (s->filename, text, text_len) == 0)
6019 {
6020 /* This file matches for a completion; add it to the current
6021 list of matches. */
6022 add_filename_to_list (s->filename, text, word, &list);
6023 }
6024 else
6025 {
6026 /* NOTE: We allow the user to type a base name when the
6027 debug info records leading directories, but not the other
6028 way around. This is what subroutines of breakpoint
6029 command do when they parse file names. */
6030 base_name = lbasename (s->filename);
6031 if (base_name != s->filename
6032 && !filenames_seen.seen (base_name)
6033 && filename_ncmp (base_name, text, text_len) == 0)
6034 add_filename_to_list (base_name, text, word, &list);
6035 }
6036 }
6037 }
6038 }
6039
6040 datum.filename_seen_cache = &filenames_seen;
6041 datum.text = text;
6042 datum.word = word;
6043 datum.text_len = text_len;
6044 datum.list = &list;
6045 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6046 0 /*need_fullname*/);
6047
6048 return list;
6049 }
6050 \f
6051 /* Track MAIN */
6052
6053 /* Return the "main_info" object for the current program space. If
6054 the object has not yet been created, create it and fill in some
6055 default values. */
6056
6057 static struct main_info *
6058 get_main_info (void)
6059 {
6060 struct main_info *info = main_progspace_key.get (current_program_space);
6061
6062 if (info == NULL)
6063 {
6064 /* It may seem strange to store the main name in the progspace
6065 and also in whatever objfile happens to see a main name in
6066 its debug info. The reason for this is mainly historical:
6067 gdb returned "main" as the name even if no function named
6068 "main" was defined the program; and this approach lets us
6069 keep compatibility. */
6070 info = main_progspace_key.emplace (current_program_space);
6071 }
6072
6073 return info;
6074 }
6075
6076 static void
6077 set_main_name (const char *name, enum language lang)
6078 {
6079 struct main_info *info = get_main_info ();
6080
6081 if (info->name_of_main != NULL)
6082 {
6083 xfree (info->name_of_main);
6084 info->name_of_main = NULL;
6085 info->language_of_main = language_unknown;
6086 }
6087 if (name != NULL)
6088 {
6089 info->name_of_main = xstrdup (name);
6090 info->language_of_main = lang;
6091 }
6092 }
6093
6094 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6095 accordingly. */
6096
6097 static void
6098 find_main_name (void)
6099 {
6100 const char *new_main_name;
6101
6102 /* First check the objfiles to see whether a debuginfo reader has
6103 picked up the appropriate main name. Historically the main name
6104 was found in a more or less random way; this approach instead
6105 relies on the order of objfile creation -- which still isn't
6106 guaranteed to get the correct answer, but is just probably more
6107 accurate. */
6108 for (objfile *objfile : current_program_space->objfiles ())
6109 {
6110 if (objfile->per_bfd->name_of_main != NULL)
6111 {
6112 set_main_name (objfile->per_bfd->name_of_main,
6113 objfile->per_bfd->language_of_main);
6114 return;
6115 }
6116 }
6117
6118 /* Try to see if the main procedure is in Ada. */
6119 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6120 be to add a new method in the language vector, and call this
6121 method for each language until one of them returns a non-empty
6122 name. This would allow us to remove this hard-coded call to
6123 an Ada function. It is not clear that this is a better approach
6124 at this point, because all methods need to be written in a way
6125 such that false positives never be returned. For instance, it is
6126 important that a method does not return a wrong name for the main
6127 procedure if the main procedure is actually written in a different
6128 language. It is easy to guaranty this with Ada, since we use a
6129 special symbol generated only when the main in Ada to find the name
6130 of the main procedure. It is difficult however to see how this can
6131 be guarantied for languages such as C, for instance. This suggests
6132 that order of call for these methods becomes important, which means
6133 a more complicated approach. */
6134 new_main_name = ada_main_name ();
6135 if (new_main_name != NULL)
6136 {
6137 set_main_name (new_main_name, language_ada);
6138 return;
6139 }
6140
6141 new_main_name = d_main_name ();
6142 if (new_main_name != NULL)
6143 {
6144 set_main_name (new_main_name, language_d);
6145 return;
6146 }
6147
6148 new_main_name = go_main_name ();
6149 if (new_main_name != NULL)
6150 {
6151 set_main_name (new_main_name, language_go);
6152 return;
6153 }
6154
6155 new_main_name = pascal_main_name ();
6156 if (new_main_name != NULL)
6157 {
6158 set_main_name (new_main_name, language_pascal);
6159 return;
6160 }
6161
6162 /* The languages above didn't identify the name of the main procedure.
6163 Fallback to "main". */
6164
6165 /* Try to find language for main in psymtabs. */
6166 enum language lang
6167 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6168 if (lang != language_unknown)
6169 {
6170 set_main_name ("main", lang);
6171 return;
6172 }
6173
6174 set_main_name ("main", language_unknown);
6175 }
6176
6177 /* See symtab.h. */
6178
6179 const char *
6180 main_name ()
6181 {
6182 struct main_info *info = get_main_info ();
6183
6184 if (info->name_of_main == NULL)
6185 find_main_name ();
6186
6187 return info->name_of_main;
6188 }
6189
6190 /* Return the language of the main function. If it is not known,
6191 return language_unknown. */
6192
6193 enum language
6194 main_language (void)
6195 {
6196 struct main_info *info = get_main_info ();
6197
6198 if (info->name_of_main == NULL)
6199 find_main_name ();
6200
6201 return info->language_of_main;
6202 }
6203
6204 /* Handle ``executable_changed'' events for the symtab module. */
6205
6206 static void
6207 symtab_observer_executable_changed (void)
6208 {
6209 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6210 set_main_name (NULL, language_unknown);
6211 }
6212
6213 /* Return 1 if the supplied producer string matches the ARM RealView
6214 compiler (armcc). */
6215
6216 bool
6217 producer_is_realview (const char *producer)
6218 {
6219 static const char *const arm_idents[] = {
6220 "ARM C Compiler, ADS",
6221 "Thumb C Compiler, ADS",
6222 "ARM C++ Compiler, ADS",
6223 "Thumb C++ Compiler, ADS",
6224 "ARM/Thumb C/C++ Compiler, RVCT",
6225 "ARM C/C++ Compiler, RVCT"
6226 };
6227 int i;
6228
6229 if (producer == NULL)
6230 return false;
6231
6232 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6233 if (startswith (producer, arm_idents[i]))
6234 return true;
6235
6236 return false;
6237 }
6238
6239 \f
6240
6241 /* The next index to hand out in response to a registration request. */
6242
6243 static int next_aclass_value = LOC_FINAL_VALUE;
6244
6245 /* The maximum number of "aclass" registrations we support. This is
6246 constant for convenience. */
6247 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6248
6249 /* The objects representing the various "aclass" values. The elements
6250 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6251 elements are those registered at gdb initialization time. */
6252
6253 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6254
6255 /* The globally visible pointer. This is separate from 'symbol_impl'
6256 so that it can be const. */
6257
6258 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6259
6260 /* Make sure we saved enough room in struct symbol. */
6261
6262 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6263
6264 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6265 is the ops vector associated with this index. This returns the new
6266 index, which should be used as the aclass_index field for symbols
6267 of this type. */
6268
6269 int
6270 register_symbol_computed_impl (enum address_class aclass,
6271 const struct symbol_computed_ops *ops)
6272 {
6273 int result = next_aclass_value++;
6274
6275 gdb_assert (aclass == LOC_COMPUTED);
6276 gdb_assert (result < MAX_SYMBOL_IMPLS);
6277 symbol_impl[result].aclass = aclass;
6278 symbol_impl[result].ops_computed = ops;
6279
6280 /* Sanity check OPS. */
6281 gdb_assert (ops != NULL);
6282 gdb_assert (ops->tracepoint_var_ref != NULL);
6283 gdb_assert (ops->describe_location != NULL);
6284 gdb_assert (ops->get_symbol_read_needs != NULL);
6285 gdb_assert (ops->read_variable != NULL);
6286
6287 return result;
6288 }
6289
6290 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6291 OPS is the ops vector associated with this index. This returns the
6292 new index, which should be used as the aclass_index field for symbols
6293 of this type. */
6294
6295 int
6296 register_symbol_block_impl (enum address_class aclass,
6297 const struct symbol_block_ops *ops)
6298 {
6299 int result = next_aclass_value++;
6300
6301 gdb_assert (aclass == LOC_BLOCK);
6302 gdb_assert (result < MAX_SYMBOL_IMPLS);
6303 symbol_impl[result].aclass = aclass;
6304 symbol_impl[result].ops_block = ops;
6305
6306 /* Sanity check OPS. */
6307 gdb_assert (ops != NULL);
6308 gdb_assert (ops->find_frame_base_location != NULL);
6309
6310 return result;
6311 }
6312
6313 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6314 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6315 this index. This returns the new index, which should be used as
6316 the aclass_index field for symbols of this type. */
6317
6318 int
6319 register_symbol_register_impl (enum address_class aclass,
6320 const struct symbol_register_ops *ops)
6321 {
6322 int result = next_aclass_value++;
6323
6324 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6325 gdb_assert (result < MAX_SYMBOL_IMPLS);
6326 symbol_impl[result].aclass = aclass;
6327 symbol_impl[result].ops_register = ops;
6328
6329 return result;
6330 }
6331
6332 /* Initialize elements of 'symbol_impl' for the constants in enum
6333 address_class. */
6334
6335 static void
6336 initialize_ordinary_address_classes (void)
6337 {
6338 int i;
6339
6340 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6341 symbol_impl[i].aclass = (enum address_class) i;
6342 }
6343
6344 \f
6345
6346 /* See symtab.h. */
6347
6348 struct objfile *
6349 symbol_objfile (const struct symbol *symbol)
6350 {
6351 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6352 return SYMTAB_OBJFILE (symbol->owner.symtab);
6353 }
6354
6355 /* See symtab.h. */
6356
6357 struct gdbarch *
6358 symbol_arch (const struct symbol *symbol)
6359 {
6360 if (!SYMBOL_OBJFILE_OWNED (symbol))
6361 return symbol->owner.arch;
6362 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6363 }
6364
6365 /* See symtab.h. */
6366
6367 struct symtab *
6368 symbol_symtab (const struct symbol *symbol)
6369 {
6370 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6371 return symbol->owner.symtab;
6372 }
6373
6374 /* See symtab.h. */
6375
6376 void
6377 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6378 {
6379 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6380 symbol->owner.symtab = symtab;
6381 }
6382
6383 /* See symtab.h. */
6384
6385 CORE_ADDR
6386 get_symbol_address (const struct symbol *sym)
6387 {
6388 gdb_assert (sym->maybe_copied);
6389 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6390
6391 const char *linkage_name = sym->linkage_name ();
6392
6393 for (objfile *objfile : current_program_space->objfiles ())
6394 {
6395 if (objfile->separate_debug_objfile_backlink != nullptr)
6396 continue;
6397
6398 bound_minimal_symbol minsym
6399 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6400 if (minsym.minsym != nullptr)
6401 return BMSYMBOL_VALUE_ADDRESS (minsym);
6402 }
6403 return sym->value.address;
6404 }
6405
6406 /* See symtab.h. */
6407
6408 CORE_ADDR
6409 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6410 {
6411 gdb_assert (minsym->maybe_copied);
6412 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6413
6414 const char *linkage_name = minsym->linkage_name ();
6415
6416 for (objfile *objfile : current_program_space->objfiles ())
6417 {
6418 if (objfile->separate_debug_objfile_backlink == nullptr
6419 && (objfile->flags & OBJF_MAINLINE) != 0)
6420 {
6421 bound_minimal_symbol found
6422 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6423 if (found.minsym != nullptr)
6424 return BMSYMBOL_VALUE_ADDRESS (found);
6425 }
6426 }
6427 return minsym->value.address + objf->section_offsets[minsym->section];
6428 }
6429
6430 \f
6431
6432 /* Hold the sub-commands of 'info module'. */
6433
6434 static struct cmd_list_element *info_module_cmdlist = NULL;
6435
6436 /* See symtab.h. */
6437
6438 std::vector<module_symbol_search>
6439 search_module_symbols (const char *module_regexp, const char *regexp,
6440 const char *type_regexp, search_domain kind)
6441 {
6442 std::vector<module_symbol_search> results;
6443
6444 /* Search for all modules matching MODULE_REGEXP. */
6445 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6446 spec1.set_exclude_minsyms (true);
6447 std::vector<symbol_search> modules = spec1.search ();
6448
6449 /* Now search for all symbols of the required KIND matching the required
6450 regular expressions. We figure out which ones are in which modules
6451 below. */
6452 global_symbol_searcher spec2 (kind, regexp);
6453 spec2.set_symbol_type_regexp (type_regexp);
6454 spec2.set_exclude_minsyms (true);
6455 std::vector<symbol_search> symbols = spec2.search ();
6456
6457 /* Now iterate over all MODULES, checking to see which items from
6458 SYMBOLS are in each module. */
6459 for (const symbol_search &p : modules)
6460 {
6461 QUIT;
6462
6463 /* This is a module. */
6464 gdb_assert (p.symbol != nullptr);
6465
6466 std::string prefix = p.symbol->print_name ();
6467 prefix += "::";
6468
6469 for (const symbol_search &q : symbols)
6470 {
6471 if (q.symbol == nullptr)
6472 continue;
6473
6474 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6475 prefix.size ()) != 0)
6476 continue;
6477
6478 results.push_back ({p, q});
6479 }
6480 }
6481
6482 return results;
6483 }
6484
6485 /* Implement the core of both 'info module functions' and 'info module
6486 variables'. */
6487
6488 static void
6489 info_module_subcommand (bool quiet, const char *module_regexp,
6490 const char *regexp, const char *type_regexp,
6491 search_domain kind)
6492 {
6493 /* Print a header line. Don't build the header line bit by bit as this
6494 prevents internationalisation. */
6495 if (!quiet)
6496 {
6497 if (module_regexp == nullptr)
6498 {
6499 if (type_regexp == nullptr)
6500 {
6501 if (regexp == nullptr)
6502 printf_filtered ((kind == VARIABLES_DOMAIN
6503 ? _("All variables in all modules:")
6504 : _("All functions in all modules:")));
6505 else
6506 printf_filtered
6507 ((kind == VARIABLES_DOMAIN
6508 ? _("All variables matching regular expression"
6509 " \"%s\" in all modules:")
6510 : _("All functions matching regular expression"
6511 " \"%s\" in all modules:")),
6512 regexp);
6513 }
6514 else
6515 {
6516 if (regexp == nullptr)
6517 printf_filtered
6518 ((kind == VARIABLES_DOMAIN
6519 ? _("All variables with type matching regular "
6520 "expression \"%s\" in all modules:")
6521 : _("All functions with type matching regular "
6522 "expression \"%s\" in all modules:")),
6523 type_regexp);
6524 else
6525 printf_filtered
6526 ((kind == VARIABLES_DOMAIN
6527 ? _("All variables matching regular expression "
6528 "\"%s\",\n\twith type matching regular "
6529 "expression \"%s\" in all modules:")
6530 : _("All functions matching regular expression "
6531 "\"%s\",\n\twith type matching regular "
6532 "expression \"%s\" in all modules:")),
6533 regexp, type_regexp);
6534 }
6535 }
6536 else
6537 {
6538 if (type_regexp == nullptr)
6539 {
6540 if (regexp == nullptr)
6541 printf_filtered
6542 ((kind == VARIABLES_DOMAIN
6543 ? _("All variables in all modules matching regular "
6544 "expression \"%s\":")
6545 : _("All functions in all modules matching regular "
6546 "expression \"%s\":")),
6547 module_regexp);
6548 else
6549 printf_filtered
6550 ((kind == VARIABLES_DOMAIN
6551 ? _("All variables matching regular expression "
6552 "\"%s\",\n\tin all modules matching regular "
6553 "expression \"%s\":")
6554 : _("All functions matching regular expression "
6555 "\"%s\",\n\tin all modules matching regular "
6556 "expression \"%s\":")),
6557 regexp, module_regexp);
6558 }
6559 else
6560 {
6561 if (regexp == nullptr)
6562 printf_filtered
6563 ((kind == VARIABLES_DOMAIN
6564 ? _("All variables with type matching regular "
6565 "expression \"%s\"\n\tin all modules matching "
6566 "regular expression \"%s\":")
6567 : _("All functions with type matching regular "
6568 "expression \"%s\"\n\tin all modules matching "
6569 "regular expression \"%s\":")),
6570 type_regexp, module_regexp);
6571 else
6572 printf_filtered
6573 ((kind == VARIABLES_DOMAIN
6574 ? _("All variables matching regular expression "
6575 "\"%s\",\n\twith type matching regular expression "
6576 "\"%s\",\n\tin all modules matching regular "
6577 "expression \"%s\":")
6578 : _("All functions matching regular expression "
6579 "\"%s\",\n\twith type matching regular expression "
6580 "\"%s\",\n\tin all modules matching regular "
6581 "expression \"%s\":")),
6582 regexp, type_regexp, module_regexp);
6583 }
6584 }
6585 printf_filtered ("\n");
6586 }
6587
6588 /* Find all symbols of type KIND matching the given regular expressions
6589 along with the symbols for the modules in which those symbols
6590 reside. */
6591 std::vector<module_symbol_search> module_symbols
6592 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6593
6594 std::sort (module_symbols.begin (), module_symbols.end (),
6595 [] (const module_symbol_search &a, const module_symbol_search &b)
6596 {
6597 if (a.first < b.first)
6598 return true;
6599 else if (a.first == b.first)
6600 return a.second < b.second;
6601 else
6602 return false;
6603 });
6604
6605 const char *last_filename = "";
6606 const symbol *last_module_symbol = nullptr;
6607 for (const module_symbol_search &ms : module_symbols)
6608 {
6609 const symbol_search &p = ms.first;
6610 const symbol_search &q = ms.second;
6611
6612 gdb_assert (q.symbol != nullptr);
6613
6614 if (last_module_symbol != p.symbol)
6615 {
6616 printf_filtered ("\n");
6617 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6618 last_module_symbol = p.symbol;
6619 last_filename = "";
6620 }
6621
6622 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6623 last_filename);
6624 last_filename
6625 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6626 }
6627 }
6628
6629 /* Hold the option values for the 'info module .....' sub-commands. */
6630
6631 struct info_modules_var_func_options
6632 {
6633 bool quiet = false;
6634 char *type_regexp = nullptr;
6635 char *module_regexp = nullptr;
6636
6637 ~info_modules_var_func_options ()
6638 {
6639 xfree (type_regexp);
6640 xfree (module_regexp);
6641 }
6642 };
6643
6644 /* The options used by 'info module variables' and 'info module functions'
6645 commands. */
6646
6647 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6648 gdb::option::boolean_option_def<info_modules_var_func_options> {
6649 "q",
6650 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6651 nullptr, /* show_cmd_cb */
6652 nullptr /* set_doc */
6653 },
6654
6655 gdb::option::string_option_def<info_modules_var_func_options> {
6656 "t",
6657 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6658 nullptr, /* show_cmd_cb */
6659 nullptr /* set_doc */
6660 },
6661
6662 gdb::option::string_option_def<info_modules_var_func_options> {
6663 "m",
6664 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6665 nullptr, /* show_cmd_cb */
6666 nullptr /* set_doc */
6667 }
6668 };
6669
6670 /* Return the option group used by the 'info module ...' sub-commands. */
6671
6672 static inline gdb::option::option_def_group
6673 make_info_modules_var_func_options_def_group
6674 (info_modules_var_func_options *opts)
6675 {
6676 return {{info_modules_var_func_options_defs}, opts};
6677 }
6678
6679 /* Implements the 'info module functions' command. */
6680
6681 static void
6682 info_module_functions_command (const char *args, int from_tty)
6683 {
6684 info_modules_var_func_options opts;
6685 auto grp = make_info_modules_var_func_options_def_group (&opts);
6686 gdb::option::process_options
6687 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6688 if (args != nullptr && *args == '\0')
6689 args = nullptr;
6690
6691 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6692 opts.type_regexp, FUNCTIONS_DOMAIN);
6693 }
6694
6695 /* Implements the 'info module variables' command. */
6696
6697 static void
6698 info_module_variables_command (const char *args, int from_tty)
6699 {
6700 info_modules_var_func_options opts;
6701 auto grp = make_info_modules_var_func_options_def_group (&opts);
6702 gdb::option::process_options
6703 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6704 if (args != nullptr && *args == '\0')
6705 args = nullptr;
6706
6707 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6708 opts.type_regexp, VARIABLES_DOMAIN);
6709 }
6710
6711 /* Command completer for 'info module ...' sub-commands. */
6712
6713 static void
6714 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6715 completion_tracker &tracker,
6716 const char *text,
6717 const char * /* word */)
6718 {
6719
6720 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6721 if (gdb::option::complete_options
6722 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6723 return;
6724
6725 const char *word = advance_to_expression_complete_word_point (tracker, text);
6726 symbol_completer (ignore, tracker, text, word);
6727 }
6728
6729 \f
6730
6731 void _initialize_symtab ();
6732 void
6733 _initialize_symtab ()
6734 {
6735 cmd_list_element *c;
6736
6737 initialize_ordinary_address_classes ();
6738
6739 c = add_info ("variables", info_variables_command,
6740 info_print_args_help (_("\
6741 All global and static variable names or those matching REGEXPs.\n\
6742 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6743 Prints the global and static variables.\n"),
6744 _("global and static variables"),
6745 true));
6746 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6747 if (dbx_commands)
6748 {
6749 c = add_com ("whereis", class_info, info_variables_command,
6750 info_print_args_help (_("\
6751 All global and static variable names, or those matching REGEXPs.\n\
6752 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6753 Prints the global and static variables.\n"),
6754 _("global and static variables"),
6755 true));
6756 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6757 }
6758
6759 c = add_info ("functions", info_functions_command,
6760 info_print_args_help (_("\
6761 All function names or those matching REGEXPs.\n\
6762 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6763 Prints the functions.\n"),
6764 _("functions"),
6765 true));
6766 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6767
6768 c = add_info ("types", info_types_command, _("\
6769 All type names, or those matching REGEXP.\n\
6770 Usage: info types [-q] [REGEXP]\n\
6771 Print information about all types matching REGEXP, or all types if no\n\
6772 REGEXP is given. The optional flag -q disables printing of headers."));
6773 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6774
6775 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6776
6777 static std::string info_sources_help
6778 = gdb::option::build_help (_("\
6779 All source files in the program or those matching REGEXP.\n\
6780 Usage: info sources [OPTION]... [REGEXP]\n\
6781 By default, REGEXP is used to match anywhere in the filename.\n\
6782 \n\
6783 Options:\n\
6784 %OPTIONS%"),
6785 info_sources_opts);
6786
6787 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6788 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6789
6790 c = add_info ("modules", info_modules_command,
6791 _("All module names, or those matching REGEXP."));
6792 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6793
6794 add_basic_prefix_cmd ("module", class_info, _("\
6795 Print information about modules."),
6796 &info_module_cmdlist, "info module ",
6797 0, &infolist);
6798
6799 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6800 Display functions arranged by modules.\n\
6801 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6802 Print a summary of all functions within each Fortran module, grouped by\n\
6803 module and file. For each function the line on which the function is\n\
6804 defined is given along with the type signature and name of the function.\n\
6805 \n\
6806 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6807 listed. If MODREGEXP is provided then only functions in modules matching\n\
6808 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6809 type signature matches TYPEREGEXP are listed.\n\
6810 \n\
6811 The -q flag suppresses printing some header information."),
6812 &info_module_cmdlist);
6813 set_cmd_completer_handle_brkchars
6814 (c, info_module_var_func_command_completer);
6815
6816 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6817 Display variables arranged by modules.\n\
6818 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6819 Print a summary of all variables within each Fortran module, grouped by\n\
6820 module and file. For each variable the line on which the variable is\n\
6821 defined is given along with the type and name of the variable.\n\
6822 \n\
6823 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6824 listed. If MODREGEXP is provided then only variables in modules matching\n\
6825 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6826 type matches TYPEREGEXP are listed.\n\
6827 \n\
6828 The -q flag suppresses printing some header information."),
6829 &info_module_cmdlist);
6830 set_cmd_completer_handle_brkchars
6831 (c, info_module_var_func_command_completer);
6832
6833 add_com ("rbreak", class_breakpoint, rbreak_command,
6834 _("Set a breakpoint for all functions matching REGEXP."));
6835
6836 add_setshow_enum_cmd ("multiple-symbols", no_class,
6837 multiple_symbols_modes, &multiple_symbols_mode,
6838 _("\
6839 Set how the debugger handles ambiguities in expressions."), _("\
6840 Show how the debugger handles ambiguities in expressions."), _("\
6841 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6842 NULL, NULL, &setlist, &showlist);
6843
6844 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6845 &basenames_may_differ, _("\
6846 Set whether a source file may have multiple base names."), _("\
6847 Show whether a source file may have multiple base names."), _("\
6848 (A \"base name\" is the name of a file with the directory part removed.\n\
6849 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6850 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6851 before comparing them. Canonicalization is an expensive operation,\n\
6852 but it allows the same file be known by more than one base name.\n\
6853 If not set (the default), all source files are assumed to have just\n\
6854 one base name, and gdb will do file name comparisons more efficiently."),
6855 NULL, NULL,
6856 &setlist, &showlist);
6857
6858 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6859 _("Set debugging of symbol table creation."),
6860 _("Show debugging of symbol table creation."), _("\
6861 When enabled (non-zero), debugging messages are printed when building\n\
6862 symbol tables. A value of 1 (one) normally provides enough information.\n\
6863 A value greater than 1 provides more verbose information."),
6864 NULL,
6865 NULL,
6866 &setdebuglist, &showdebuglist);
6867
6868 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6869 _("\
6870 Set debugging of symbol lookup."), _("\
6871 Show debugging of symbol lookup."), _("\
6872 When enabled (non-zero), symbol lookups are logged."),
6873 NULL, NULL,
6874 &setdebuglist, &showdebuglist);
6875
6876 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6877 &new_symbol_cache_size,
6878 _("Set the size of the symbol cache."),
6879 _("Show the size of the symbol cache."), _("\
6880 The size of the symbol cache.\n\
6881 If zero then the symbol cache is disabled."),
6882 set_symbol_cache_size_handler, NULL,
6883 &maintenance_set_cmdlist,
6884 &maintenance_show_cmdlist);
6885
6886 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6887 _("Dump the symbol cache for each program space."),
6888 &maintenanceprintlist);
6889
6890 add_cmd ("symbol-cache-statistics", class_maintenance,
6891 maintenance_print_symbol_cache_statistics,
6892 _("Print symbol cache statistics for each program space."),
6893 &maintenanceprintlist);
6894
6895 add_cmd ("flush-symbol-cache", class_maintenance,
6896 maintenance_flush_symbol_cache,
6897 _("Flush the symbol cache for each program space."),
6898 &maintenancelist);
6899
6900 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6901 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6902 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6903 }