Unify lookup_symbol_in_objfile_symtabs
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static struct symbol *
83 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
84 int block_index, const char *name,
85 const domain_enum domain);
86
87 static
88 struct symbol *lookup_symbol_via_quick_fns (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 unsigned int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Return the name of a domain_enum. */
151
152 const char *
153 domain_name (domain_enum e)
154 {
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case LABEL_DOMAIN: return "LABEL_DOMAIN";
161 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
162 default: gdb_assert_not_reached ("bad domain_enum");
163 }
164 }
165
166 /* Return the name of a search_domain . */
167
168 const char *
169 search_domain_name (enum search_domain e)
170 {
171 switch (e)
172 {
173 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
174 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
175 case TYPES_DOMAIN: return "TYPES_DOMAIN";
176 case ALL_DOMAIN: return "ALL_DOMAIN";
177 default: gdb_assert_not_reached ("bad search_domain");
178 }
179 }
180
181 /* See symtab.h. */
182
183 struct symtab *
184 compunit_primary_filetab (const struct compunit_symtab *cust)
185 {
186 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
187
188 /* The primary file symtab is the first one in the list. */
189 return COMPUNIT_FILETABS (cust);
190 }
191
192 /* See symtab.h. */
193
194 enum language
195 compunit_language (const struct compunit_symtab *cust)
196 {
197 struct symtab *symtab = compunit_primary_filetab (cust);
198
199 /* The language of the compunit symtab is the language of its primary
200 source file. */
201 return SYMTAB_LANGUAGE (symtab);
202 }
203
204 /* See whether FILENAME matches SEARCH_NAME using the rule that we
205 advertise to the user. (The manual's description of linespecs
206 describes what we advertise). Returns true if they match, false
207 otherwise. */
208
209 int
210 compare_filenames_for_search (const char *filename, const char *search_name)
211 {
212 int len = strlen (filename);
213 size_t search_len = strlen (search_name);
214
215 if (len < search_len)
216 return 0;
217
218 /* The tail of FILENAME must match. */
219 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
220 return 0;
221
222 /* Either the names must completely match, or the character
223 preceding the trailing SEARCH_NAME segment of FILENAME must be a
224 directory separator.
225
226 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
227 cannot match FILENAME "/path//dir/file.c" - as user has requested
228 absolute path. The sama applies for "c:\file.c" possibly
229 incorrectly hypothetically matching "d:\dir\c:\file.c".
230
231 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
232 compatible with SEARCH_NAME "file.c". In such case a compiler had
233 to put the "c:file.c" name into debug info. Such compatibility
234 works only on GDB built for DOS host. */
235 return (len == search_len
236 || (!IS_ABSOLUTE_PATH (search_name)
237 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
238 || (HAS_DRIVE_SPEC (filename)
239 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
240 }
241
242 /* Check for a symtab of a specific name by searching some symtabs.
243 This is a helper function for callbacks of iterate_over_symtabs.
244
245 If NAME is not absolute, then REAL_PATH is NULL
246 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
247
248 The return value, NAME, REAL_PATH, CALLBACK, and DATA
249 are identical to the `map_symtabs_matching_filename' method of
250 quick_symbol_functions.
251
252 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
253 Each symtab within the specified compunit symtab is also searched.
254 AFTER_LAST is one past the last compunit symtab to search; NULL means to
255 search until the end of the list. */
256
257 int
258 iterate_over_some_symtabs (const char *name,
259 const char *real_path,
260 int (*callback) (struct symtab *symtab,
261 void *data),
262 void *data,
263 struct compunit_symtab *first,
264 struct compunit_symtab *after_last)
265 {
266 struct compunit_symtab *cust;
267 struct symtab *s;
268 const char* base_name = lbasename (name);
269
270 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
271 {
272 ALL_COMPUNIT_FILETABS (cust, s)
273 {
274 if (compare_filenames_for_search (s->filename, name))
275 {
276 if (callback (s, data))
277 return 1;
278 continue;
279 }
280
281 /* Before we invoke realpath, which can get expensive when many
282 files are involved, do a quick comparison of the basenames. */
283 if (! basenames_may_differ
284 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
285 continue;
286
287 if (compare_filenames_for_search (symtab_to_fullname (s), name))
288 {
289 if (callback (s, data))
290 return 1;
291 continue;
292 }
293
294 /* If the user gave us an absolute path, try to find the file in
295 this symtab and use its absolute path. */
296 if (real_path != NULL)
297 {
298 const char *fullname = symtab_to_fullname (s);
299
300 gdb_assert (IS_ABSOLUTE_PATH (real_path));
301 gdb_assert (IS_ABSOLUTE_PATH (name));
302 if (FILENAME_CMP (real_path, fullname) == 0)
303 {
304 if (callback (s, data))
305 return 1;
306 continue;
307 }
308 }
309 }
310 }
311
312 return 0;
313 }
314
315 /* Check for a symtab of a specific name; first in symtabs, then in
316 psymtabs. *If* there is no '/' in the name, a match after a '/'
317 in the symtab filename will also work.
318
319 Calls CALLBACK with each symtab that is found and with the supplied
320 DATA. If CALLBACK returns true, the search stops. */
321
322 void
323 iterate_over_symtabs (const char *name,
324 int (*callback) (struct symtab *symtab,
325 void *data),
326 void *data)
327 {
328 struct objfile *objfile;
329 char *real_path = NULL;
330 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
331
332 /* Here we are interested in canonicalizing an absolute path, not
333 absolutizing a relative path. */
334 if (IS_ABSOLUTE_PATH (name))
335 {
336 real_path = gdb_realpath (name);
337 make_cleanup (xfree, real_path);
338 gdb_assert (IS_ABSOLUTE_PATH (real_path));
339 }
340
341 ALL_OBJFILES (objfile)
342 {
343 if (iterate_over_some_symtabs (name, real_path, callback, data,
344 objfile->compunit_symtabs, NULL))
345 {
346 do_cleanups (cleanups);
347 return;
348 }
349 }
350
351 /* Same search rules as above apply here, but now we look thru the
352 psymtabs. */
353
354 ALL_OBJFILES (objfile)
355 {
356 if (objfile->sf
357 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
358 name,
359 real_path,
360 callback,
361 data))
362 {
363 do_cleanups (cleanups);
364 return;
365 }
366 }
367
368 do_cleanups (cleanups);
369 }
370
371 /* The callback function used by lookup_symtab. */
372
373 static int
374 lookup_symtab_callback (struct symtab *symtab, void *data)
375 {
376 struct symtab **result_ptr = data;
377
378 *result_ptr = symtab;
379 return 1;
380 }
381
382 /* A wrapper for iterate_over_symtabs that returns the first matching
383 symtab, or NULL. */
384
385 struct symtab *
386 lookup_symtab (const char *name)
387 {
388 struct symtab *result = NULL;
389
390 iterate_over_symtabs (name, lookup_symtab_callback, &result);
391 return result;
392 }
393
394 \f
395 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
396 full method name, which consist of the class name (from T), the unadorned
397 method name from METHOD_ID, and the signature for the specific overload,
398 specified by SIGNATURE_ID. Note that this function is g++ specific. */
399
400 char *
401 gdb_mangle_name (struct type *type, int method_id, int signature_id)
402 {
403 int mangled_name_len;
404 char *mangled_name;
405 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
406 struct fn_field *method = &f[signature_id];
407 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
408 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
409 const char *newname = type_name_no_tag (type);
410
411 /* Does the form of physname indicate that it is the full mangled name
412 of a constructor (not just the args)? */
413 int is_full_physname_constructor;
414
415 int is_constructor;
416 int is_destructor = is_destructor_name (physname);
417 /* Need a new type prefix. */
418 char *const_prefix = method->is_const ? "C" : "";
419 char *volatile_prefix = method->is_volatile ? "V" : "";
420 char buf[20];
421 int len = (newname == NULL ? 0 : strlen (newname));
422
423 /* Nothing to do if physname already contains a fully mangled v3 abi name
424 or an operator name. */
425 if ((physname[0] == '_' && physname[1] == 'Z')
426 || is_operator_name (field_name))
427 return xstrdup (physname);
428
429 is_full_physname_constructor = is_constructor_name (physname);
430
431 is_constructor = is_full_physname_constructor
432 || (newname && strcmp (field_name, newname) == 0);
433
434 if (!is_destructor)
435 is_destructor = (strncmp (physname, "__dt", 4) == 0);
436
437 if (is_destructor || is_full_physname_constructor)
438 {
439 mangled_name = (char *) xmalloc (strlen (physname) + 1);
440 strcpy (mangled_name, physname);
441 return mangled_name;
442 }
443
444 if (len == 0)
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
447 }
448 else if (physname[0] == 't' || physname[0] == 'Q')
449 {
450 /* The physname for template and qualified methods already includes
451 the class name. */
452 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
453 newname = NULL;
454 len = 0;
455 }
456 else
457 {
458 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
459 volatile_prefix, len);
460 }
461 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
462 + strlen (buf) + len + strlen (physname) + 1);
463
464 mangled_name = (char *) xmalloc (mangled_name_len);
465 if (is_constructor)
466 mangled_name[0] = '\0';
467 else
468 strcpy (mangled_name, field_name);
469
470 strcat (mangled_name, buf);
471 /* If the class doesn't have a name, i.e. newname NULL, then we just
472 mangle it using 0 for the length of the class. Thus it gets mangled
473 as something starting with `::' rather than `classname::'. */
474 if (newname != NULL)
475 strcat (mangled_name, newname);
476
477 strcat (mangled_name, physname);
478 return (mangled_name);
479 }
480
481 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
482 correctly allocated. */
483
484 void
485 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
486 const char *name,
487 struct obstack *obstack)
488 {
489 if (gsymbol->language == language_ada)
490 {
491 if (name == NULL)
492 {
493 gsymbol->ada_mangled = 0;
494 gsymbol->language_specific.obstack = obstack;
495 }
496 else
497 {
498 gsymbol->ada_mangled = 1;
499 gsymbol->language_specific.mangled_lang.demangled_name = name;
500 }
501 }
502 else
503 gsymbol->language_specific.mangled_lang.demangled_name = name;
504 }
505
506 /* Return the demangled name of GSYMBOL. */
507
508 const char *
509 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
510 {
511 if (gsymbol->language == language_ada)
512 {
513 if (!gsymbol->ada_mangled)
514 return NULL;
515 /* Fall through. */
516 }
517
518 return gsymbol->language_specific.mangled_lang.demangled_name;
519 }
520
521 \f
522 /* Initialize the language dependent portion of a symbol
523 depending upon the language for the symbol. */
524
525 void
526 symbol_set_language (struct general_symbol_info *gsymbol,
527 enum language language,
528 struct obstack *obstack)
529 {
530 gsymbol->language = language;
531 if (gsymbol->language == language_cplus
532 || gsymbol->language == language_d
533 || gsymbol->language == language_go
534 || gsymbol->language == language_java
535 || gsymbol->language == language_objc
536 || gsymbol->language == language_fortran)
537 {
538 symbol_set_demangled_name (gsymbol, NULL, obstack);
539 }
540 else if (gsymbol->language == language_ada)
541 {
542 gdb_assert (gsymbol->ada_mangled == 0);
543 gsymbol->language_specific.obstack = obstack;
544 }
545 else
546 {
547 memset (&gsymbol->language_specific, 0,
548 sizeof (gsymbol->language_specific));
549 }
550 }
551
552 /* Functions to initialize a symbol's mangled name. */
553
554 /* Objects of this type are stored in the demangled name hash table. */
555 struct demangled_name_entry
556 {
557 const char *mangled;
558 char demangled[1];
559 };
560
561 /* Hash function for the demangled name hash. */
562
563 static hashval_t
564 hash_demangled_name_entry (const void *data)
565 {
566 const struct demangled_name_entry *e = data;
567
568 return htab_hash_string (e->mangled);
569 }
570
571 /* Equality function for the demangled name hash. */
572
573 static int
574 eq_demangled_name_entry (const void *a, const void *b)
575 {
576 const struct demangled_name_entry *da = a;
577 const struct demangled_name_entry *db = b;
578
579 return strcmp (da->mangled, db->mangled) == 0;
580 }
581
582 /* Create the hash table used for demangled names. Each hash entry is
583 a pair of strings; one for the mangled name and one for the demangled
584 name. The entry is hashed via just the mangled name. */
585
586 static void
587 create_demangled_names_hash (struct objfile *objfile)
588 {
589 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
590 The hash table code will round this up to the next prime number.
591 Choosing a much larger table size wastes memory, and saves only about
592 1% in symbol reading. */
593
594 objfile->per_bfd->demangled_names_hash = htab_create_alloc
595 (256, hash_demangled_name_entry, eq_demangled_name_entry,
596 NULL, xcalloc, xfree);
597 }
598
599 /* Try to determine the demangled name for a symbol, based on the
600 language of that symbol. If the language is set to language_auto,
601 it will attempt to find any demangling algorithm that works and
602 then set the language appropriately. The returned name is allocated
603 by the demangler and should be xfree'd. */
604
605 static char *
606 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
607 const char *mangled)
608 {
609 char *demangled = NULL;
610
611 if (gsymbol->language == language_unknown)
612 gsymbol->language = language_auto;
613
614 if (gsymbol->language == language_objc
615 || gsymbol->language == language_auto)
616 {
617 demangled =
618 objc_demangle (mangled, 0);
619 if (demangled != NULL)
620 {
621 gsymbol->language = language_objc;
622 return demangled;
623 }
624 }
625 if (gsymbol->language == language_cplus
626 || gsymbol->language == language_auto)
627 {
628 demangled =
629 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
630 if (demangled != NULL)
631 {
632 gsymbol->language = language_cplus;
633 return demangled;
634 }
635 }
636 if (gsymbol->language == language_java)
637 {
638 demangled =
639 gdb_demangle (mangled,
640 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
641 if (demangled != NULL)
642 {
643 gsymbol->language = language_java;
644 return demangled;
645 }
646 }
647 if (gsymbol->language == language_d
648 || gsymbol->language == language_auto)
649 {
650 demangled = d_demangle(mangled, 0);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_d;
654 return demangled;
655 }
656 }
657 /* FIXME(dje): Continually adding languages here is clumsy.
658 Better to just call la_demangle if !auto, and if auto then call
659 a utility routine that tries successive languages in turn and reports
660 which one it finds. I realize the la_demangle options may be different
661 for different languages but there's already a FIXME for that. */
662 if (gsymbol->language == language_go
663 || gsymbol->language == language_auto)
664 {
665 demangled = go_demangle (mangled, 0);
666 if (demangled != NULL)
667 {
668 gsymbol->language = language_go;
669 return demangled;
670 }
671 }
672
673 /* We could support `gsymbol->language == language_fortran' here to provide
674 module namespaces also for inferiors with only minimal symbol table (ELF
675 symbols). Just the mangling standard is not standardized across compilers
676 and there is no DW_AT_producer available for inferiors with only the ELF
677 symbols to check the mangling kind. */
678
679 /* Check for Ada symbols last. See comment below explaining why. */
680
681 if (gsymbol->language == language_auto)
682 {
683 const char *demangled = ada_decode (mangled);
684
685 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
686 {
687 /* Set the gsymbol language to Ada, but still return NULL.
688 Two reasons for that:
689
690 1. For Ada, we prefer computing the symbol's decoded name
691 on the fly rather than pre-compute it, in order to save
692 memory (Ada projects are typically very large).
693
694 2. There are some areas in the definition of the GNAT
695 encoding where, with a bit of bad luck, we might be able
696 to decode a non-Ada symbol, generating an incorrect
697 demangled name (Eg: names ending with "TB" for instance
698 are identified as task bodies and so stripped from
699 the decoded name returned).
700
701 Returning NULL, here, helps us get a little bit of
702 the best of both worlds. Because we're last, we should
703 not affect any of the other languages that were able to
704 demangle the symbol before us; we get to correctly tag
705 Ada symbols as such; and even if we incorrectly tagged
706 a non-Ada symbol, which should be rare, any routing
707 through the Ada language should be transparent (Ada
708 tries to behave much like C/C++ with non-Ada symbols). */
709 gsymbol->language = language_ada;
710 return NULL;
711 }
712 }
713
714 return NULL;
715 }
716
717 /* Set both the mangled and demangled (if any) names for GSYMBOL based
718 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
719 objfile's obstack; but if COPY_NAME is 0 and if NAME is
720 NUL-terminated, then this function assumes that NAME is already
721 correctly saved (either permanently or with a lifetime tied to the
722 objfile), and it will not be copied.
723
724 The hash table corresponding to OBJFILE is used, and the memory
725 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
726 so the pointer can be discarded after calling this function. */
727
728 /* We have to be careful when dealing with Java names: when we run
729 into a Java minimal symbol, we don't know it's a Java symbol, so it
730 gets demangled as a C++ name. This is unfortunate, but there's not
731 much we can do about it: but when demangling partial symbols and
732 regular symbols, we'd better not reuse the wrong demangled name.
733 (See PR gdb/1039.) We solve this by putting a distinctive prefix
734 on Java names when storing them in the hash table. */
735
736 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
737 don't mind the Java prefix so much: different languages have
738 different demangling requirements, so it's only natural that we
739 need to keep language data around in our demangling cache. But
740 it's not good that the minimal symbol has the wrong demangled name.
741 Unfortunately, I can't think of any easy solution to that
742 problem. */
743
744 #define JAVA_PREFIX "##JAVA$$"
745 #define JAVA_PREFIX_LEN 8
746
747 void
748 symbol_set_names (struct general_symbol_info *gsymbol,
749 const char *linkage_name, int len, int copy_name,
750 struct objfile *objfile)
751 {
752 struct demangled_name_entry **slot;
753 /* A 0-terminated copy of the linkage name. */
754 const char *linkage_name_copy;
755 /* A copy of the linkage name that might have a special Java prefix
756 added to it, for use when looking names up in the hash table. */
757 const char *lookup_name;
758 /* The length of lookup_name. */
759 int lookup_len;
760 struct demangled_name_entry entry;
761 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
762
763 if (gsymbol->language == language_ada)
764 {
765 /* In Ada, we do the symbol lookups using the mangled name, so
766 we can save some space by not storing the demangled name.
767
768 As a side note, we have also observed some overlap between
769 the C++ mangling and Ada mangling, similarly to what has
770 been observed with Java. Because we don't store the demangled
771 name with the symbol, we don't need to use the same trick
772 as Java. */
773 if (!copy_name)
774 gsymbol->name = linkage_name;
775 else
776 {
777 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
778
779 memcpy (name, linkage_name, len);
780 name[len] = '\0';
781 gsymbol->name = name;
782 }
783 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
784
785 return;
786 }
787
788 if (per_bfd->demangled_names_hash == NULL)
789 create_demangled_names_hash (objfile);
790
791 /* The stabs reader generally provides names that are not
792 NUL-terminated; most of the other readers don't do this, so we
793 can just use the given copy, unless we're in the Java case. */
794 if (gsymbol->language == language_java)
795 {
796 char *alloc_name;
797
798 lookup_len = len + JAVA_PREFIX_LEN;
799 alloc_name = alloca (lookup_len + 1);
800 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
801 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
802 alloc_name[lookup_len] = '\0';
803
804 lookup_name = alloc_name;
805 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
806 }
807 else if (linkage_name[len] != '\0')
808 {
809 char *alloc_name;
810
811 lookup_len = len;
812 alloc_name = alloca (lookup_len + 1);
813 memcpy (alloc_name, linkage_name, len);
814 alloc_name[lookup_len] = '\0';
815
816 lookup_name = alloc_name;
817 linkage_name_copy = alloc_name;
818 }
819 else
820 {
821 lookup_len = len;
822 lookup_name = linkage_name;
823 linkage_name_copy = linkage_name;
824 }
825
826 entry.mangled = lookup_name;
827 slot = ((struct demangled_name_entry **)
828 htab_find_slot (per_bfd->demangled_names_hash,
829 &entry, INSERT));
830
831 /* If this name is not in the hash table, add it. */
832 if (*slot == NULL
833 /* A C version of the symbol may have already snuck into the table.
834 This happens to, e.g., main.init (__go_init_main). Cope. */
835 || (gsymbol->language == language_go
836 && (*slot)->demangled[0] == '\0'))
837 {
838 char *demangled_name = symbol_find_demangled_name (gsymbol,
839 linkage_name_copy);
840 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
841
842 /* Suppose we have demangled_name==NULL, copy_name==0, and
843 lookup_name==linkage_name. In this case, we already have the
844 mangled name saved, and we don't have a demangled name. So,
845 you might think we could save a little space by not recording
846 this in the hash table at all.
847
848 It turns out that it is actually important to still save such
849 an entry in the hash table, because storing this name gives
850 us better bcache hit rates for partial symbols. */
851 if (!copy_name && lookup_name == linkage_name)
852 {
853 *slot = obstack_alloc (&per_bfd->storage_obstack,
854 offsetof (struct demangled_name_entry,
855 demangled)
856 + demangled_len + 1);
857 (*slot)->mangled = lookup_name;
858 }
859 else
860 {
861 char *mangled_ptr;
862
863 /* If we must copy the mangled name, put it directly after
864 the demangled name so we can have a single
865 allocation. */
866 *slot = obstack_alloc (&per_bfd->storage_obstack,
867 offsetof (struct demangled_name_entry,
868 demangled)
869 + lookup_len + demangled_len + 2);
870 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
871 strcpy (mangled_ptr, lookup_name);
872 (*slot)->mangled = mangled_ptr;
873 }
874
875 if (demangled_name != NULL)
876 {
877 strcpy ((*slot)->demangled, demangled_name);
878 xfree (demangled_name);
879 }
880 else
881 (*slot)->demangled[0] = '\0';
882 }
883
884 gsymbol->name = (*slot)->mangled + lookup_len - len;
885 if ((*slot)->demangled[0] != '\0')
886 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
887 &per_bfd->storage_obstack);
888 else
889 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
890 }
891
892 /* Return the source code name of a symbol. In languages where
893 demangling is necessary, this is the demangled name. */
894
895 const char *
896 symbol_natural_name (const struct general_symbol_info *gsymbol)
897 {
898 switch (gsymbol->language)
899 {
900 case language_cplus:
901 case language_d:
902 case language_go:
903 case language_java:
904 case language_objc:
905 case language_fortran:
906 if (symbol_get_demangled_name (gsymbol) != NULL)
907 return symbol_get_demangled_name (gsymbol);
908 break;
909 case language_ada:
910 return ada_decode_symbol (gsymbol);
911 default:
912 break;
913 }
914 return gsymbol->name;
915 }
916
917 /* Return the demangled name for a symbol based on the language for
918 that symbol. If no demangled name exists, return NULL. */
919
920 const char *
921 symbol_demangled_name (const struct general_symbol_info *gsymbol)
922 {
923 const char *dem_name = NULL;
924
925 switch (gsymbol->language)
926 {
927 case language_cplus:
928 case language_d:
929 case language_go:
930 case language_java:
931 case language_objc:
932 case language_fortran:
933 dem_name = symbol_get_demangled_name (gsymbol);
934 break;
935 case language_ada:
936 dem_name = ada_decode_symbol (gsymbol);
937 break;
938 default:
939 break;
940 }
941 return dem_name;
942 }
943
944 /* Return the search name of a symbol---generally the demangled or
945 linkage name of the symbol, depending on how it will be searched for.
946 If there is no distinct demangled name, then returns the same value
947 (same pointer) as SYMBOL_LINKAGE_NAME. */
948
949 const char *
950 symbol_search_name (const struct general_symbol_info *gsymbol)
951 {
952 if (gsymbol->language == language_ada)
953 return gsymbol->name;
954 else
955 return symbol_natural_name (gsymbol);
956 }
957
958 /* Initialize the structure fields to zero values. */
959
960 void
961 init_sal (struct symtab_and_line *sal)
962 {
963 memset (sal, 0, sizeof (*sal));
964 }
965 \f
966
967 /* Return 1 if the two sections are the same, or if they could
968 plausibly be copies of each other, one in an original object
969 file and another in a separated debug file. */
970
971 int
972 matching_obj_sections (struct obj_section *obj_first,
973 struct obj_section *obj_second)
974 {
975 asection *first = obj_first? obj_first->the_bfd_section : NULL;
976 asection *second = obj_second? obj_second->the_bfd_section : NULL;
977 struct objfile *obj;
978
979 /* If they're the same section, then they match. */
980 if (first == second)
981 return 1;
982
983 /* If either is NULL, give up. */
984 if (first == NULL || second == NULL)
985 return 0;
986
987 /* This doesn't apply to absolute symbols. */
988 if (first->owner == NULL || second->owner == NULL)
989 return 0;
990
991 /* If they're in the same object file, they must be different sections. */
992 if (first->owner == second->owner)
993 return 0;
994
995 /* Check whether the two sections are potentially corresponding. They must
996 have the same size, address, and name. We can't compare section indexes,
997 which would be more reliable, because some sections may have been
998 stripped. */
999 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1000 return 0;
1001
1002 /* In-memory addresses may start at a different offset, relativize them. */
1003 if (bfd_get_section_vma (first->owner, first)
1004 - bfd_get_start_address (first->owner)
1005 != bfd_get_section_vma (second->owner, second)
1006 - bfd_get_start_address (second->owner))
1007 return 0;
1008
1009 if (bfd_get_section_name (first->owner, first) == NULL
1010 || bfd_get_section_name (second->owner, second) == NULL
1011 || strcmp (bfd_get_section_name (first->owner, first),
1012 bfd_get_section_name (second->owner, second)) != 0)
1013 return 0;
1014
1015 /* Otherwise check that they are in corresponding objfiles. */
1016
1017 ALL_OBJFILES (obj)
1018 if (obj->obfd == first->owner)
1019 break;
1020 gdb_assert (obj != NULL);
1021
1022 if (obj->separate_debug_objfile != NULL
1023 && obj->separate_debug_objfile->obfd == second->owner)
1024 return 1;
1025 if (obj->separate_debug_objfile_backlink != NULL
1026 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1027 return 1;
1028
1029 return 0;
1030 }
1031
1032 /* See symtab.h. */
1033
1034 void
1035 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1036 {
1037 struct objfile *objfile;
1038 struct bound_minimal_symbol msymbol;
1039
1040 /* If we know that this is not a text address, return failure. This is
1041 necessary because we loop based on texthigh and textlow, which do
1042 not include the data ranges. */
1043 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1044 if (msymbol.minsym
1045 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1048 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1049 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1050 return;
1051
1052 ALL_OBJFILES (objfile)
1053 {
1054 struct compunit_symtab *cust = NULL;
1055
1056 if (objfile->sf)
1057 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1058 pc, section, 0);
1059 if (cust)
1060 return;
1061 }
1062 }
1063 \f
1064 /* Debug symbols usually don't have section information. We need to dig that
1065 out of the minimal symbols and stash that in the debug symbol. */
1066
1067 void
1068 fixup_section (struct general_symbol_info *ginfo,
1069 CORE_ADDR addr, struct objfile *objfile)
1070 {
1071 struct minimal_symbol *msym;
1072
1073 /* First, check whether a minimal symbol with the same name exists
1074 and points to the same address. The address check is required
1075 e.g. on PowerPC64, where the minimal symbol for a function will
1076 point to the function descriptor, while the debug symbol will
1077 point to the actual function code. */
1078 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1079 if (msym)
1080 ginfo->section = MSYMBOL_SECTION (msym);
1081 else
1082 {
1083 /* Static, function-local variables do appear in the linker
1084 (minimal) symbols, but are frequently given names that won't
1085 be found via lookup_minimal_symbol(). E.g., it has been
1086 observed in frv-uclinux (ELF) executables that a static,
1087 function-local variable named "foo" might appear in the
1088 linker symbols as "foo.6" or "foo.3". Thus, there is no
1089 point in attempting to extend the lookup-by-name mechanism to
1090 handle this case due to the fact that there can be multiple
1091 names.
1092
1093 So, instead, search the section table when lookup by name has
1094 failed. The ``addr'' and ``endaddr'' fields may have already
1095 been relocated. If so, the relocation offset (i.e. the
1096 ANOFFSET value) needs to be subtracted from these values when
1097 performing the comparison. We unconditionally subtract it,
1098 because, when no relocation has been performed, the ANOFFSET
1099 value will simply be zero.
1100
1101 The address of the symbol whose section we're fixing up HAS
1102 NOT BEEN adjusted (relocated) yet. It can't have been since
1103 the section isn't yet known and knowing the section is
1104 necessary in order to add the correct relocation value. In
1105 other words, we wouldn't even be in this function (attempting
1106 to compute the section) if it were already known.
1107
1108 Note that it is possible to search the minimal symbols
1109 (subtracting the relocation value if necessary) to find the
1110 matching minimal symbol, but this is overkill and much less
1111 efficient. It is not necessary to find the matching minimal
1112 symbol, only its section.
1113
1114 Note that this technique (of doing a section table search)
1115 can fail when unrelocated section addresses overlap. For
1116 this reason, we still attempt a lookup by name prior to doing
1117 a search of the section table. */
1118
1119 struct obj_section *s;
1120 int fallback = -1;
1121
1122 ALL_OBJFILE_OSECTIONS (objfile, s)
1123 {
1124 int idx = s - objfile->sections;
1125 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1126
1127 if (fallback == -1)
1128 fallback = idx;
1129
1130 if (obj_section_addr (s) - offset <= addr
1131 && addr < obj_section_endaddr (s) - offset)
1132 {
1133 ginfo->section = idx;
1134 return;
1135 }
1136 }
1137
1138 /* If we didn't find the section, assume it is in the first
1139 section. If there is no allocated section, then it hardly
1140 matters what we pick, so just pick zero. */
1141 if (fallback == -1)
1142 ginfo->section = 0;
1143 else
1144 ginfo->section = fallback;
1145 }
1146 }
1147
1148 struct symbol *
1149 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1150 {
1151 CORE_ADDR addr;
1152
1153 if (!sym)
1154 return NULL;
1155
1156 /* We either have an OBJFILE, or we can get at it from the sym's
1157 symtab. Anything else is a bug. */
1158 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1159
1160 if (objfile == NULL)
1161 objfile = SYMBOL_OBJFILE (sym);
1162
1163 if (SYMBOL_OBJ_SECTION (objfile, sym))
1164 return sym;
1165
1166 /* We should have an objfile by now. */
1167 gdb_assert (objfile);
1168
1169 switch (SYMBOL_CLASS (sym))
1170 {
1171 case LOC_STATIC:
1172 case LOC_LABEL:
1173 addr = SYMBOL_VALUE_ADDRESS (sym);
1174 break;
1175 case LOC_BLOCK:
1176 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1177 break;
1178
1179 default:
1180 /* Nothing else will be listed in the minsyms -- no use looking
1181 it up. */
1182 return sym;
1183 }
1184
1185 fixup_section (&sym->ginfo, addr, objfile);
1186
1187 return sym;
1188 }
1189
1190 /* Compute the demangled form of NAME as used by the various symbol
1191 lookup functions. The result is stored in *RESULT_NAME. Returns a
1192 cleanup which can be used to clean up the result.
1193
1194 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1195 Normally, Ada symbol lookups are performed using the encoded name
1196 rather than the demangled name, and so it might seem to make sense
1197 for this function to return an encoded version of NAME.
1198 Unfortunately, we cannot do this, because this function is used in
1199 circumstances where it is not appropriate to try to encode NAME.
1200 For instance, when displaying the frame info, we demangle the name
1201 of each parameter, and then perform a symbol lookup inside our
1202 function using that demangled name. In Ada, certain functions
1203 have internally-generated parameters whose name contain uppercase
1204 characters. Encoding those name would result in those uppercase
1205 characters to become lowercase, and thus cause the symbol lookup
1206 to fail. */
1207
1208 struct cleanup *
1209 demangle_for_lookup (const char *name, enum language lang,
1210 const char **result_name)
1211 {
1212 char *demangled_name = NULL;
1213 const char *modified_name = NULL;
1214 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1215
1216 modified_name = name;
1217
1218 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1219 lookup, so we can always binary search. */
1220 if (lang == language_cplus)
1221 {
1222 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1223 if (demangled_name)
1224 {
1225 modified_name = demangled_name;
1226 make_cleanup (xfree, demangled_name);
1227 }
1228 else
1229 {
1230 /* If we were given a non-mangled name, canonicalize it
1231 according to the language (so far only for C++). */
1232 demangled_name = cp_canonicalize_string (name);
1233 if (demangled_name)
1234 {
1235 modified_name = demangled_name;
1236 make_cleanup (xfree, demangled_name);
1237 }
1238 }
1239 }
1240 else if (lang == language_java)
1241 {
1242 demangled_name = gdb_demangle (name,
1243 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1244 if (demangled_name)
1245 {
1246 modified_name = demangled_name;
1247 make_cleanup (xfree, demangled_name);
1248 }
1249 }
1250 else if (lang == language_d)
1251 {
1252 demangled_name = d_demangle (name, 0);
1253 if (demangled_name)
1254 {
1255 modified_name = demangled_name;
1256 make_cleanup (xfree, demangled_name);
1257 }
1258 }
1259 else if (lang == language_go)
1260 {
1261 demangled_name = go_demangle (name, 0);
1262 if (demangled_name)
1263 {
1264 modified_name = demangled_name;
1265 make_cleanup (xfree, demangled_name);
1266 }
1267 }
1268
1269 *result_name = modified_name;
1270 return cleanup;
1271 }
1272
1273 /* See symtab.h.
1274
1275 This function (or rather its subordinates) have a bunch of loops and
1276 it would seem to be attractive to put in some QUIT's (though I'm not really
1277 sure whether it can run long enough to be really important). But there
1278 are a few calls for which it would appear to be bad news to quit
1279 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1280 that there is C++ code below which can error(), but that probably
1281 doesn't affect these calls since they are looking for a known
1282 variable and thus can probably assume it will never hit the C++
1283 code). */
1284
1285 struct symbol *
1286 lookup_symbol_in_language (const char *name, const struct block *block,
1287 const domain_enum domain, enum language lang,
1288 struct field_of_this_result *is_a_field_of_this)
1289 {
1290 const char *modified_name;
1291 struct symbol *returnval;
1292 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1293
1294 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1295 is_a_field_of_this);
1296 do_cleanups (cleanup);
1297
1298 return returnval;
1299 }
1300
1301 /* See symtab.h. */
1302
1303 struct symbol *
1304 lookup_symbol (const char *name, const struct block *block,
1305 domain_enum domain,
1306 struct field_of_this_result *is_a_field_of_this)
1307 {
1308 return lookup_symbol_in_language (name, block, domain,
1309 current_language->la_language,
1310 is_a_field_of_this);
1311 }
1312
1313 /* See symtab.h. */
1314
1315 struct symbol *
1316 lookup_language_this (const struct language_defn *lang,
1317 const struct block *block)
1318 {
1319 if (lang->la_name_of_this == NULL || block == NULL)
1320 return NULL;
1321
1322 while (block)
1323 {
1324 struct symbol *sym;
1325
1326 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1327 if (sym != NULL)
1328 {
1329 block_found = block;
1330 return sym;
1331 }
1332 if (BLOCK_FUNCTION (block))
1333 break;
1334 block = BLOCK_SUPERBLOCK (block);
1335 }
1336
1337 return NULL;
1338 }
1339
1340 /* Given TYPE, a structure/union,
1341 return 1 if the component named NAME from the ultimate target
1342 structure/union is defined, otherwise, return 0. */
1343
1344 static int
1345 check_field (struct type *type, const char *name,
1346 struct field_of_this_result *is_a_field_of_this)
1347 {
1348 int i;
1349
1350 /* The type may be a stub. */
1351 CHECK_TYPEDEF (type);
1352
1353 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1354 {
1355 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1356
1357 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1358 {
1359 is_a_field_of_this->type = type;
1360 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1361 return 1;
1362 }
1363 }
1364
1365 /* C++: If it was not found as a data field, then try to return it
1366 as a pointer to a method. */
1367
1368 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1369 {
1370 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1371 {
1372 is_a_field_of_this->type = type;
1373 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1374 return 1;
1375 }
1376 }
1377
1378 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1379 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1380 return 1;
1381
1382 return 0;
1383 }
1384
1385 /* Behave like lookup_symbol except that NAME is the natural name
1386 (e.g., demangled name) of the symbol that we're looking for. */
1387
1388 static struct symbol *
1389 lookup_symbol_aux (const char *name, const struct block *block,
1390 const domain_enum domain, enum language language,
1391 struct field_of_this_result *is_a_field_of_this)
1392 {
1393 struct symbol *sym;
1394 const struct language_defn *langdef;
1395
1396 /* Make sure we do something sensible with is_a_field_of_this, since
1397 the callers that set this parameter to some non-null value will
1398 certainly use it later. If we don't set it, the contents of
1399 is_a_field_of_this are undefined. */
1400 if (is_a_field_of_this != NULL)
1401 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1402
1403 /* Search specified block and its superiors. Don't search
1404 STATIC_BLOCK or GLOBAL_BLOCK. */
1405
1406 sym = lookup_local_symbol (name, block, domain, language);
1407 if (sym != NULL)
1408 return sym;
1409
1410 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1411 check to see if NAME is a field of `this'. */
1412
1413 langdef = language_def (language);
1414
1415 /* Don't do this check if we are searching for a struct. It will
1416 not be found by check_field, but will be found by other
1417 means. */
1418 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1419 {
1420 struct symbol *sym = lookup_language_this (langdef, block);
1421
1422 if (sym)
1423 {
1424 struct type *t = sym->type;
1425
1426 /* I'm not really sure that type of this can ever
1427 be typedefed; just be safe. */
1428 CHECK_TYPEDEF (t);
1429 if (TYPE_CODE (t) == TYPE_CODE_PTR
1430 || TYPE_CODE (t) == TYPE_CODE_REF)
1431 t = TYPE_TARGET_TYPE (t);
1432
1433 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1434 && TYPE_CODE (t) != TYPE_CODE_UNION)
1435 error (_("Internal error: `%s' is not an aggregate"),
1436 langdef->la_name_of_this);
1437
1438 if (check_field (t, name, is_a_field_of_this))
1439 return NULL;
1440 }
1441 }
1442
1443 /* Now do whatever is appropriate for LANGUAGE to look
1444 up static and global variables. */
1445
1446 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1447 if (sym != NULL)
1448 return sym;
1449
1450 /* Now search all static file-level symbols. Not strictly correct,
1451 but more useful than an error. */
1452
1453 return lookup_static_symbol (name, domain);
1454 }
1455
1456 /* Check to see if the symbol is defined in BLOCK or its superiors.
1457 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1458
1459 static struct symbol *
1460 lookup_local_symbol (const char *name, const struct block *block,
1461 const domain_enum domain,
1462 enum language language)
1463 {
1464 struct symbol *sym;
1465 const struct block *static_block = block_static_block (block);
1466 const char *scope = block_scope (block);
1467
1468 /* Check if either no block is specified or it's a global block. */
1469
1470 if (static_block == NULL)
1471 return NULL;
1472
1473 while (block != static_block)
1474 {
1475 sym = lookup_symbol_in_block (name, block, domain);
1476 if (sym != NULL)
1477 return sym;
1478
1479 if (language == language_cplus || language == language_fortran)
1480 {
1481 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1482 domain);
1483 if (sym != NULL)
1484 return sym;
1485 }
1486
1487 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1488 break;
1489 block = BLOCK_SUPERBLOCK (block);
1490 }
1491
1492 /* We've reached the end of the function without finding a result. */
1493
1494 return NULL;
1495 }
1496
1497 /* See symtab.h. */
1498
1499 struct objfile *
1500 lookup_objfile_from_block (const struct block *block)
1501 {
1502 struct objfile *obj;
1503 struct compunit_symtab *cust;
1504
1505 if (block == NULL)
1506 return NULL;
1507
1508 block = block_global_block (block);
1509 /* Look through all blockvectors. */
1510 ALL_COMPUNITS (obj, cust)
1511 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
1512 GLOBAL_BLOCK))
1513 {
1514 if (obj->separate_debug_objfile_backlink)
1515 obj = obj->separate_debug_objfile_backlink;
1516
1517 return obj;
1518 }
1519
1520 return NULL;
1521 }
1522
1523 /* See symtab.h. */
1524
1525 struct symbol *
1526 lookup_symbol_in_block (const char *name, const struct block *block,
1527 const domain_enum domain)
1528 {
1529 struct symbol *sym;
1530
1531 sym = block_lookup_symbol (block, name, domain);
1532 if (sym)
1533 {
1534 block_found = block;
1535 return fixup_symbol_section (sym, NULL);
1536 }
1537
1538 return NULL;
1539 }
1540
1541 /* See symtab.h. */
1542
1543 struct symbol *
1544 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
1545 const char *name,
1546 const domain_enum domain)
1547 {
1548 struct objfile *objfile;
1549
1550 for (objfile = main_objfile;
1551 objfile;
1552 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1553 {
1554 struct symbol *sym;
1555
1556 sym = lookup_symbol_in_objfile_symtabs (objfile, GLOBAL_BLOCK, name,
1557 domain);
1558 if (sym != NULL)
1559 return sym;
1560
1561 sym = lookup_symbol_via_quick_fns (objfile, GLOBAL_BLOCK, name, domain);
1562 if (sym)
1563 return sym;
1564 }
1565
1566 return NULL;
1567 }
1568
1569 /* Check to see if the symbol is defined in one of the OBJFILE's
1570 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1571 depending on whether or not we want to search global symbols or
1572 static symbols. */
1573
1574 static struct symbol *
1575 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1576 const char *name, const domain_enum domain)
1577 {
1578 struct compunit_symtab *cust;
1579
1580 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
1581
1582 ALL_OBJFILE_COMPUNITS (objfile, cust)
1583 {
1584 const struct blockvector *bv;
1585 const struct block *block;
1586 struct symbol *sym;
1587
1588 bv = COMPUNIT_BLOCKVECTOR (cust);
1589 block = BLOCKVECTOR_BLOCK (bv, block_index);
1590 sym = block_lookup_symbol_primary (block, name, domain);
1591 if (sym)
1592 {
1593 block_found = block;
1594 return fixup_symbol_section (sym, objfile);
1595 }
1596 }
1597
1598 return NULL;
1599 }
1600
1601 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1602 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1603 and all associated separate debug objfiles.
1604
1605 Normally we only look in OBJFILE, and not any separate debug objfiles
1606 because the outer loop will cause them to be searched too. This case is
1607 different. Here we're called from search_symbols where it will only
1608 call us for the the objfile that contains a matching minsym. */
1609
1610 static struct symbol *
1611 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1612 const char *linkage_name,
1613 domain_enum domain)
1614 {
1615 enum language lang = current_language->la_language;
1616 const char *modified_name;
1617 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1618 &modified_name);
1619 struct objfile *main_objfile, *cur_objfile;
1620
1621 if (objfile->separate_debug_objfile_backlink)
1622 main_objfile = objfile->separate_debug_objfile_backlink;
1623 else
1624 main_objfile = objfile;
1625
1626 for (cur_objfile = main_objfile;
1627 cur_objfile;
1628 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1629 {
1630 struct symbol *sym;
1631
1632 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1633 modified_name, domain);
1634 if (sym == NULL)
1635 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1636 modified_name, domain);
1637 if (sym != NULL)
1638 {
1639 do_cleanups (cleanup);
1640 return sym;
1641 }
1642 }
1643
1644 do_cleanups (cleanup);
1645 return NULL;
1646 }
1647
1648 /* A helper function that throws an exception when a symbol was found
1649 in a psymtab but not in a symtab. */
1650
1651 static void ATTRIBUTE_NORETURN
1652 error_in_psymtab_expansion (int block_index, const char *name,
1653 struct compunit_symtab *cust)
1654 {
1655 error (_("\
1656 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1657 %s may be an inlined function, or may be a template function\n \
1658 (if a template, try specifying an instantiation: %s<type>)."),
1659 block_index == GLOBAL_BLOCK ? "global" : "static",
1660 name,
1661 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
1662 name, name);
1663 }
1664
1665 /* A helper function for various lookup routines that interfaces with
1666 the "quick" symbol table functions. */
1667
1668 static struct symbol *
1669 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1670 const char *name, const domain_enum domain)
1671 {
1672 struct compunit_symtab *cust;
1673 const struct blockvector *bv;
1674 const struct block *block;
1675 struct symbol *sym;
1676
1677 if (!objfile->sf)
1678 return NULL;
1679 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1680 if (cust == NULL)
1681 return NULL;
1682
1683 bv = COMPUNIT_BLOCKVECTOR (cust);
1684 block = BLOCKVECTOR_BLOCK (bv, block_index);
1685 sym = block_lookup_symbol (block, name, domain);
1686 if (!sym)
1687 error_in_psymtab_expansion (block_index, name, cust);
1688 block_found = block;
1689 return fixup_symbol_section (sym, objfile);
1690 }
1691
1692 /* See symtab.h. */
1693
1694 struct symbol *
1695 basic_lookup_symbol_nonlocal (const char *name,
1696 const struct block *block,
1697 const domain_enum domain)
1698 {
1699 struct symbol *sym;
1700
1701 /* NOTE: carlton/2003-05-19: The comments below were written when
1702 this (or what turned into this) was part of lookup_symbol_aux;
1703 I'm much less worried about these questions now, since these
1704 decisions have turned out well, but I leave these comments here
1705 for posterity. */
1706
1707 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1708 not it would be appropriate to search the current global block
1709 here as well. (That's what this code used to do before the
1710 is_a_field_of_this check was moved up.) On the one hand, it's
1711 redundant with the lookup in all objfiles search that happens
1712 next. On the other hand, if decode_line_1 is passed an argument
1713 like filename:var, then the user presumably wants 'var' to be
1714 searched for in filename. On the third hand, there shouldn't be
1715 multiple global variables all of which are named 'var', and it's
1716 not like decode_line_1 has ever restricted its search to only
1717 global variables in a single filename. All in all, only
1718 searching the static block here seems best: it's correct and it's
1719 cleanest. */
1720
1721 /* NOTE: carlton/2002-12-05: There's also a possible performance
1722 issue here: if you usually search for global symbols in the
1723 current file, then it would be slightly better to search the
1724 current global block before searching all the symtabs. But there
1725 are other factors that have a much greater effect on performance
1726 than that one, so I don't think we should worry about that for
1727 now. */
1728
1729 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1730 the current objfile. Searching the current objfile first is useful
1731 for both matching user expectations as well as performance. */
1732
1733 sym = lookup_symbol_in_static_block (name, block, domain);
1734 if (sym != NULL)
1735 return sym;
1736
1737 return lookup_global_symbol (name, block, domain);
1738 }
1739
1740 /* See symtab.h. */
1741
1742 struct symbol *
1743 lookup_symbol_in_static_block (const char *name,
1744 const struct block *block,
1745 const domain_enum domain)
1746 {
1747 const struct block *static_block = block_static_block (block);
1748
1749 if (static_block != NULL)
1750 return lookup_symbol_in_block (name, static_block, domain);
1751 else
1752 return NULL;
1753 }
1754
1755 /* Perform the standard symbol lookup of NAME in OBJFILE:
1756 1) First search expanded symtabs, and if not found
1757 2) Search the "quick" symtabs (partial or .gdb_index).
1758 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1759
1760 static struct symbol *
1761 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1762 const char *name, const domain_enum domain)
1763 {
1764 struct symbol *result;
1765
1766 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1767 name, domain);
1768 if (result == NULL)
1769 {
1770 result = lookup_symbol_via_quick_fns (objfile, block_index,
1771 name, domain);
1772 }
1773
1774 return result;
1775 }
1776
1777 /* See symtab.h. */
1778
1779 struct symbol *
1780 lookup_static_symbol (const char *name, const domain_enum domain)
1781 {
1782 struct objfile *objfile;
1783 struct symbol *result;
1784
1785 ALL_OBJFILES (objfile)
1786 {
1787 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1788 if (result != NULL)
1789 return result;
1790 }
1791
1792 return NULL;
1793 }
1794
1795 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1796
1797 struct global_sym_lookup_data
1798 {
1799 /* The name of the symbol we are searching for. */
1800 const char *name;
1801
1802 /* The domain to use for our search. */
1803 domain_enum domain;
1804
1805 /* The field where the callback should store the symbol if found.
1806 It should be initialized to NULL before the search is started. */
1807 struct symbol *result;
1808 };
1809
1810 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1811 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1812 OBJFILE. The arguments for the search are passed via CB_DATA,
1813 which in reality is a pointer to struct global_sym_lookup_data. */
1814
1815 static int
1816 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1817 void *cb_data)
1818 {
1819 struct global_sym_lookup_data *data =
1820 (struct global_sym_lookup_data *) cb_data;
1821
1822 gdb_assert (data->result == NULL);
1823
1824 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1825 data->name, data->domain);
1826
1827 /* If we found a match, tell the iterator to stop. Otherwise,
1828 keep going. */
1829 return (data->result != NULL);
1830 }
1831
1832 /* See symtab.h. */
1833
1834 struct symbol *
1835 lookup_global_symbol (const char *name,
1836 const struct block *block,
1837 const domain_enum domain)
1838 {
1839 struct symbol *sym = NULL;
1840 struct objfile *objfile = NULL;
1841 struct global_sym_lookup_data lookup_data;
1842
1843 /* Call library-specific lookup procedure. */
1844 objfile = lookup_objfile_from_block (block);
1845 if (objfile != NULL)
1846 sym = solib_global_lookup (objfile, name, domain);
1847 if (sym != NULL)
1848 return sym;
1849
1850 memset (&lookup_data, 0, sizeof (lookup_data));
1851 lookup_data.name = name;
1852 lookup_data.domain = domain;
1853 gdbarch_iterate_over_objfiles_in_search_order
1854 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1855 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1856
1857 return lookup_data.result;
1858 }
1859
1860 int
1861 symbol_matches_domain (enum language symbol_language,
1862 domain_enum symbol_domain,
1863 domain_enum domain)
1864 {
1865 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1866 A Java class declaration also defines a typedef for the class.
1867 Similarly, any Ada type declaration implicitly defines a typedef. */
1868 if (symbol_language == language_cplus
1869 || symbol_language == language_d
1870 || symbol_language == language_java
1871 || symbol_language == language_ada)
1872 {
1873 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1874 && symbol_domain == STRUCT_DOMAIN)
1875 return 1;
1876 }
1877 /* For all other languages, strict match is required. */
1878 return (symbol_domain == domain);
1879 }
1880
1881 /* See symtab.h. */
1882
1883 struct type *
1884 lookup_transparent_type (const char *name)
1885 {
1886 return current_language->la_lookup_transparent_type (name);
1887 }
1888
1889 /* A helper for basic_lookup_transparent_type that interfaces with the
1890 "quick" symbol table functions. */
1891
1892 static struct type *
1893 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1894 const char *name)
1895 {
1896 struct compunit_symtab *cust;
1897 const struct blockvector *bv;
1898 struct block *block;
1899 struct symbol *sym;
1900
1901 if (!objfile->sf)
1902 return NULL;
1903 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1904 STRUCT_DOMAIN);
1905 if (cust == NULL)
1906 return NULL;
1907
1908 bv = COMPUNIT_BLOCKVECTOR (cust);
1909 block = BLOCKVECTOR_BLOCK (bv, block_index);
1910 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1911 if (!sym)
1912 error_in_psymtab_expansion (block_index, name, cust);
1913
1914 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1915 return SYMBOL_TYPE (sym);
1916
1917 return NULL;
1918 }
1919
1920 /* The standard implementation of lookup_transparent_type. This code
1921 was modeled on lookup_symbol -- the parts not relevant to looking
1922 up types were just left out. In particular it's assumed here that
1923 types are available in STRUCT_DOMAIN and only in file-static or
1924 global blocks. */
1925
1926 struct type *
1927 basic_lookup_transparent_type (const char *name)
1928 {
1929 struct symbol *sym;
1930 struct compunit_symtab *cust;
1931 const struct blockvector *bv;
1932 struct objfile *objfile;
1933 struct block *block;
1934 struct type *t;
1935
1936 /* Now search all the global symbols. Do the symtab's first, then
1937 check the psymtab's. If a psymtab indicates the existence
1938 of the desired name as a global, then do psymtab-to-symtab
1939 conversion on the fly and return the found symbol. */
1940
1941 ALL_OBJFILES (objfile)
1942 {
1943 ALL_OBJFILE_COMPUNITS (objfile, cust)
1944 {
1945 bv = COMPUNIT_BLOCKVECTOR (cust);
1946 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1947 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1948 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1949 {
1950 return SYMBOL_TYPE (sym);
1951 }
1952 }
1953 }
1954
1955 ALL_OBJFILES (objfile)
1956 {
1957 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1958 if (t)
1959 return t;
1960 }
1961
1962 /* Now search the static file-level symbols.
1963 Not strictly correct, but more useful than an error.
1964 Do the symtab's first, then
1965 check the psymtab's. If a psymtab indicates the existence
1966 of the desired name as a file-level static, then do psymtab-to-symtab
1967 conversion on the fly and return the found symbol. */
1968
1969 ALL_OBJFILES (objfile)
1970 {
1971 ALL_OBJFILE_COMPUNITS (objfile, cust)
1972 {
1973 bv = COMPUNIT_BLOCKVECTOR (cust);
1974 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1975 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1976 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1977 {
1978 return SYMBOL_TYPE (sym);
1979 }
1980 }
1981 }
1982
1983 ALL_OBJFILES (objfile)
1984 {
1985 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1986 if (t)
1987 return t;
1988 }
1989
1990 return (struct type *) 0;
1991 }
1992
1993 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
1994
1995 For each symbol that matches, CALLBACK is called. The symbol and
1996 DATA are passed to the callback.
1997
1998 If CALLBACK returns zero, the iteration ends. Otherwise, the
1999 search continues. */
2000
2001 void
2002 iterate_over_symbols (const struct block *block, const char *name,
2003 const domain_enum domain,
2004 symbol_found_callback_ftype *callback,
2005 void *data)
2006 {
2007 struct block_iterator iter;
2008 struct symbol *sym;
2009
2010 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2011 {
2012 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2013 SYMBOL_DOMAIN (sym), domain))
2014 {
2015 if (!callback (sym, data))
2016 return;
2017 }
2018 }
2019 }
2020
2021 /* Find the compunit symtab associated with PC and SECTION.
2022 This will read in debug info as necessary. */
2023
2024 struct compunit_symtab *
2025 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2026 {
2027 struct compunit_symtab *cust;
2028 struct compunit_symtab *best_cust = NULL;
2029 struct objfile *objfile;
2030 CORE_ADDR distance = 0;
2031 struct bound_minimal_symbol msymbol;
2032
2033 /* If we know that this is not a text address, return failure. This is
2034 necessary because we loop based on the block's high and low code
2035 addresses, which do not include the data ranges, and because
2036 we call find_pc_sect_psymtab which has a similar restriction based
2037 on the partial_symtab's texthigh and textlow. */
2038 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2039 if (msymbol.minsym
2040 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2041 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2042 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2043 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2044 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2045 return NULL;
2046
2047 /* Search all symtabs for the one whose file contains our address, and which
2048 is the smallest of all the ones containing the address. This is designed
2049 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2050 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2051 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2052
2053 This happens for native ecoff format, where code from included files
2054 gets its own symtab. The symtab for the included file should have
2055 been read in already via the dependency mechanism.
2056 It might be swifter to create several symtabs with the same name
2057 like xcoff does (I'm not sure).
2058
2059 It also happens for objfiles that have their functions reordered.
2060 For these, the symtab we are looking for is not necessarily read in. */
2061
2062 ALL_COMPUNITS (objfile, cust)
2063 {
2064 struct block *b;
2065 const struct blockvector *bv;
2066
2067 bv = COMPUNIT_BLOCKVECTOR (cust);
2068 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2069
2070 if (BLOCK_START (b) <= pc
2071 && BLOCK_END (b) > pc
2072 && (distance == 0
2073 || BLOCK_END (b) - BLOCK_START (b) < distance))
2074 {
2075 /* For an objfile that has its functions reordered,
2076 find_pc_psymtab will find the proper partial symbol table
2077 and we simply return its corresponding symtab. */
2078 /* In order to better support objfiles that contain both
2079 stabs and coff debugging info, we continue on if a psymtab
2080 can't be found. */
2081 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2082 {
2083 struct compunit_symtab *result;
2084
2085 result
2086 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2087 msymbol,
2088 pc, section,
2089 0);
2090 if (result != NULL)
2091 return result;
2092 }
2093 if (section != 0)
2094 {
2095 struct block_iterator iter;
2096 struct symbol *sym = NULL;
2097
2098 ALL_BLOCK_SYMBOLS (b, iter, sym)
2099 {
2100 fixup_symbol_section (sym, objfile);
2101 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2102 section))
2103 break;
2104 }
2105 if (sym == NULL)
2106 continue; /* No symbol in this symtab matches
2107 section. */
2108 }
2109 distance = BLOCK_END (b) - BLOCK_START (b);
2110 best_cust = cust;
2111 }
2112 }
2113
2114 if (best_cust != NULL)
2115 return best_cust;
2116
2117 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2118
2119 ALL_OBJFILES (objfile)
2120 {
2121 struct compunit_symtab *result;
2122
2123 if (!objfile->sf)
2124 continue;
2125 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2126 msymbol,
2127 pc, section,
2128 1);
2129 if (result != NULL)
2130 return result;
2131 }
2132
2133 return NULL;
2134 }
2135
2136 /* Find the compunit symtab associated with PC.
2137 This will read in debug info as necessary.
2138 Backward compatibility, no section. */
2139
2140 struct compunit_symtab *
2141 find_pc_compunit_symtab (CORE_ADDR pc)
2142 {
2143 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2144 }
2145 \f
2146
2147 /* Find the source file and line number for a given PC value and SECTION.
2148 Return a structure containing a symtab pointer, a line number,
2149 and a pc range for the entire source line.
2150 The value's .pc field is NOT the specified pc.
2151 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2152 use the line that ends there. Otherwise, in that case, the line
2153 that begins there is used. */
2154
2155 /* The big complication here is that a line may start in one file, and end just
2156 before the start of another file. This usually occurs when you #include
2157 code in the middle of a subroutine. To properly find the end of a line's PC
2158 range, we must search all symtabs associated with this compilation unit, and
2159 find the one whose first PC is closer than that of the next line in this
2160 symtab. */
2161
2162 /* If it's worth the effort, we could be using a binary search. */
2163
2164 struct symtab_and_line
2165 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2166 {
2167 struct compunit_symtab *cust;
2168 struct symtab *iter_s;
2169 struct linetable *l;
2170 int len;
2171 int i;
2172 struct linetable_entry *item;
2173 struct symtab_and_line val;
2174 const struct blockvector *bv;
2175 struct bound_minimal_symbol msymbol;
2176
2177 /* Info on best line seen so far, and where it starts, and its file. */
2178
2179 struct linetable_entry *best = NULL;
2180 CORE_ADDR best_end = 0;
2181 struct symtab *best_symtab = 0;
2182
2183 /* Store here the first line number
2184 of a file which contains the line at the smallest pc after PC.
2185 If we don't find a line whose range contains PC,
2186 we will use a line one less than this,
2187 with a range from the start of that file to the first line's pc. */
2188 struct linetable_entry *alt = NULL;
2189
2190 /* Info on best line seen in this file. */
2191
2192 struct linetable_entry *prev;
2193
2194 /* If this pc is not from the current frame,
2195 it is the address of the end of a call instruction.
2196 Quite likely that is the start of the following statement.
2197 But what we want is the statement containing the instruction.
2198 Fudge the pc to make sure we get that. */
2199
2200 init_sal (&val); /* initialize to zeroes */
2201
2202 val.pspace = current_program_space;
2203
2204 /* It's tempting to assume that, if we can't find debugging info for
2205 any function enclosing PC, that we shouldn't search for line
2206 number info, either. However, GAS can emit line number info for
2207 assembly files --- very helpful when debugging hand-written
2208 assembly code. In such a case, we'd have no debug info for the
2209 function, but we would have line info. */
2210
2211 if (notcurrent)
2212 pc -= 1;
2213
2214 /* elz: added this because this function returned the wrong
2215 information if the pc belongs to a stub (import/export)
2216 to call a shlib function. This stub would be anywhere between
2217 two functions in the target, and the line info was erroneously
2218 taken to be the one of the line before the pc. */
2219
2220 /* RT: Further explanation:
2221
2222 * We have stubs (trampolines) inserted between procedures.
2223 *
2224 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2225 * exists in the main image.
2226 *
2227 * In the minimal symbol table, we have a bunch of symbols
2228 * sorted by start address. The stubs are marked as "trampoline",
2229 * the others appear as text. E.g.:
2230 *
2231 * Minimal symbol table for main image
2232 * main: code for main (text symbol)
2233 * shr1: stub (trampoline symbol)
2234 * foo: code for foo (text symbol)
2235 * ...
2236 * Minimal symbol table for "shr1" image:
2237 * ...
2238 * shr1: code for shr1 (text symbol)
2239 * ...
2240 *
2241 * So the code below is trying to detect if we are in the stub
2242 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2243 * and if found, do the symbolization from the real-code address
2244 * rather than the stub address.
2245 *
2246 * Assumptions being made about the minimal symbol table:
2247 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2248 * if we're really in the trampoline.s If we're beyond it (say
2249 * we're in "foo" in the above example), it'll have a closer
2250 * symbol (the "foo" text symbol for example) and will not
2251 * return the trampoline.
2252 * 2. lookup_minimal_symbol_text() will find a real text symbol
2253 * corresponding to the trampoline, and whose address will
2254 * be different than the trampoline address. I put in a sanity
2255 * check for the address being the same, to avoid an
2256 * infinite recursion.
2257 */
2258 msymbol = lookup_minimal_symbol_by_pc (pc);
2259 if (msymbol.minsym != NULL)
2260 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2261 {
2262 struct bound_minimal_symbol mfunsym
2263 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2264 NULL);
2265
2266 if (mfunsym.minsym == NULL)
2267 /* I eliminated this warning since it is coming out
2268 * in the following situation:
2269 * gdb shmain // test program with shared libraries
2270 * (gdb) break shr1 // function in shared lib
2271 * Warning: In stub for ...
2272 * In the above situation, the shared lib is not loaded yet,
2273 * so of course we can't find the real func/line info,
2274 * but the "break" still works, and the warning is annoying.
2275 * So I commented out the warning. RT */
2276 /* warning ("In stub for %s; unable to find real function/line info",
2277 SYMBOL_LINKAGE_NAME (msymbol)); */
2278 ;
2279 /* fall through */
2280 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2281 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2282 /* Avoid infinite recursion */
2283 /* See above comment about why warning is commented out. */
2284 /* warning ("In stub for %s; unable to find real function/line info",
2285 SYMBOL_LINKAGE_NAME (msymbol)); */
2286 ;
2287 /* fall through */
2288 else
2289 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2290 }
2291
2292
2293 cust = find_pc_sect_compunit_symtab (pc, section);
2294 if (cust == NULL)
2295 {
2296 /* If no symbol information, return previous pc. */
2297 if (notcurrent)
2298 pc++;
2299 val.pc = pc;
2300 return val;
2301 }
2302
2303 bv = COMPUNIT_BLOCKVECTOR (cust);
2304
2305 /* Look at all the symtabs that share this blockvector.
2306 They all have the same apriori range, that we found was right;
2307 but they have different line tables. */
2308
2309 ALL_COMPUNIT_FILETABS (cust, iter_s)
2310 {
2311 /* Find the best line in this symtab. */
2312 l = SYMTAB_LINETABLE (iter_s);
2313 if (!l)
2314 continue;
2315 len = l->nitems;
2316 if (len <= 0)
2317 {
2318 /* I think len can be zero if the symtab lacks line numbers
2319 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2320 I'm not sure which, and maybe it depends on the symbol
2321 reader). */
2322 continue;
2323 }
2324
2325 prev = NULL;
2326 item = l->item; /* Get first line info. */
2327
2328 /* Is this file's first line closer than the first lines of other files?
2329 If so, record this file, and its first line, as best alternate. */
2330 if (item->pc > pc && (!alt || item->pc < alt->pc))
2331 alt = item;
2332
2333 for (i = 0; i < len; i++, item++)
2334 {
2335 /* Leave prev pointing to the linetable entry for the last line
2336 that started at or before PC. */
2337 if (item->pc > pc)
2338 break;
2339
2340 prev = item;
2341 }
2342
2343 /* At this point, prev points at the line whose start addr is <= pc, and
2344 item points at the next line. If we ran off the end of the linetable
2345 (pc >= start of the last line), then prev == item. If pc < start of
2346 the first line, prev will not be set. */
2347
2348 /* Is this file's best line closer than the best in the other files?
2349 If so, record this file, and its best line, as best so far. Don't
2350 save prev if it represents the end of a function (i.e. line number
2351 0) instead of a real line. */
2352
2353 if (prev && prev->line && (!best || prev->pc > best->pc))
2354 {
2355 best = prev;
2356 best_symtab = iter_s;
2357
2358 /* Discard BEST_END if it's before the PC of the current BEST. */
2359 if (best_end <= best->pc)
2360 best_end = 0;
2361 }
2362
2363 /* If another line (denoted by ITEM) is in the linetable and its
2364 PC is after BEST's PC, but before the current BEST_END, then
2365 use ITEM's PC as the new best_end. */
2366 if (best && i < len && item->pc > best->pc
2367 && (best_end == 0 || best_end > item->pc))
2368 best_end = item->pc;
2369 }
2370
2371 if (!best_symtab)
2372 {
2373 /* If we didn't find any line number info, just return zeros.
2374 We used to return alt->line - 1 here, but that could be
2375 anywhere; if we don't have line number info for this PC,
2376 don't make some up. */
2377 val.pc = pc;
2378 }
2379 else if (best->line == 0)
2380 {
2381 /* If our best fit is in a range of PC's for which no line
2382 number info is available (line number is zero) then we didn't
2383 find any valid line information. */
2384 val.pc = pc;
2385 }
2386 else
2387 {
2388 val.symtab = best_symtab;
2389 val.line = best->line;
2390 val.pc = best->pc;
2391 if (best_end && (!alt || best_end < alt->pc))
2392 val.end = best_end;
2393 else if (alt)
2394 val.end = alt->pc;
2395 else
2396 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2397 }
2398 val.section = section;
2399 return val;
2400 }
2401
2402 /* Backward compatibility (no section). */
2403
2404 struct symtab_and_line
2405 find_pc_line (CORE_ADDR pc, int notcurrent)
2406 {
2407 struct obj_section *section;
2408
2409 section = find_pc_overlay (pc);
2410 if (pc_in_unmapped_range (pc, section))
2411 pc = overlay_mapped_address (pc, section);
2412 return find_pc_sect_line (pc, section, notcurrent);
2413 }
2414
2415 /* See symtab.h. */
2416
2417 struct symtab *
2418 find_pc_line_symtab (CORE_ADDR pc)
2419 {
2420 struct symtab_and_line sal;
2421
2422 /* This always passes zero for NOTCURRENT to find_pc_line.
2423 There are currently no callers that ever pass non-zero. */
2424 sal = find_pc_line (pc, 0);
2425 return sal.symtab;
2426 }
2427 \f
2428 /* Find line number LINE in any symtab whose name is the same as
2429 SYMTAB.
2430
2431 If found, return the symtab that contains the linetable in which it was
2432 found, set *INDEX to the index in the linetable of the best entry
2433 found, and set *EXACT_MATCH nonzero if the value returned is an
2434 exact match.
2435
2436 If not found, return NULL. */
2437
2438 struct symtab *
2439 find_line_symtab (struct symtab *symtab, int line,
2440 int *index, int *exact_match)
2441 {
2442 int exact = 0; /* Initialized here to avoid a compiler warning. */
2443
2444 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2445 so far seen. */
2446
2447 int best_index;
2448 struct linetable *best_linetable;
2449 struct symtab *best_symtab;
2450
2451 /* First try looking it up in the given symtab. */
2452 best_linetable = SYMTAB_LINETABLE (symtab);
2453 best_symtab = symtab;
2454 best_index = find_line_common (best_linetable, line, &exact, 0);
2455 if (best_index < 0 || !exact)
2456 {
2457 /* Didn't find an exact match. So we better keep looking for
2458 another symtab with the same name. In the case of xcoff,
2459 multiple csects for one source file (produced by IBM's FORTRAN
2460 compiler) produce multiple symtabs (this is unavoidable
2461 assuming csects can be at arbitrary places in memory and that
2462 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2463
2464 /* BEST is the smallest linenumber > LINE so far seen,
2465 or 0 if none has been seen so far.
2466 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2467 int best;
2468
2469 struct objfile *objfile;
2470 struct compunit_symtab *cu;
2471 struct symtab *s;
2472
2473 if (best_index >= 0)
2474 best = best_linetable->item[best_index].line;
2475 else
2476 best = 0;
2477
2478 ALL_OBJFILES (objfile)
2479 {
2480 if (objfile->sf)
2481 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2482 symtab_to_fullname (symtab));
2483 }
2484
2485 ALL_FILETABS (objfile, cu, s)
2486 {
2487 struct linetable *l;
2488 int ind;
2489
2490 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2491 continue;
2492 if (FILENAME_CMP (symtab_to_fullname (symtab),
2493 symtab_to_fullname (s)) != 0)
2494 continue;
2495 l = SYMTAB_LINETABLE (s);
2496 ind = find_line_common (l, line, &exact, 0);
2497 if (ind >= 0)
2498 {
2499 if (exact)
2500 {
2501 best_index = ind;
2502 best_linetable = l;
2503 best_symtab = s;
2504 goto done;
2505 }
2506 if (best == 0 || l->item[ind].line < best)
2507 {
2508 best = l->item[ind].line;
2509 best_index = ind;
2510 best_linetable = l;
2511 best_symtab = s;
2512 }
2513 }
2514 }
2515 }
2516 done:
2517 if (best_index < 0)
2518 return NULL;
2519
2520 if (index)
2521 *index = best_index;
2522 if (exact_match)
2523 *exact_match = exact;
2524
2525 return best_symtab;
2526 }
2527
2528 /* Given SYMTAB, returns all the PCs function in the symtab that
2529 exactly match LINE. Returns NULL if there are no exact matches,
2530 but updates BEST_ITEM in this case. */
2531
2532 VEC (CORE_ADDR) *
2533 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2534 struct linetable_entry **best_item)
2535 {
2536 int start = 0;
2537 VEC (CORE_ADDR) *result = NULL;
2538
2539 /* First, collect all the PCs that are at this line. */
2540 while (1)
2541 {
2542 int was_exact;
2543 int idx;
2544
2545 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
2546 start);
2547 if (idx < 0)
2548 break;
2549
2550 if (!was_exact)
2551 {
2552 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
2553
2554 if (*best_item == NULL || item->line < (*best_item)->line)
2555 *best_item = item;
2556
2557 break;
2558 }
2559
2560 VEC_safe_push (CORE_ADDR, result,
2561 SYMTAB_LINETABLE (symtab)->item[idx].pc);
2562 start = idx + 1;
2563 }
2564
2565 return result;
2566 }
2567
2568 \f
2569 /* Set the PC value for a given source file and line number and return true.
2570 Returns zero for invalid line number (and sets the PC to 0).
2571 The source file is specified with a struct symtab. */
2572
2573 int
2574 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2575 {
2576 struct linetable *l;
2577 int ind;
2578
2579 *pc = 0;
2580 if (symtab == 0)
2581 return 0;
2582
2583 symtab = find_line_symtab (symtab, line, &ind, NULL);
2584 if (symtab != NULL)
2585 {
2586 l = SYMTAB_LINETABLE (symtab);
2587 *pc = l->item[ind].pc;
2588 return 1;
2589 }
2590 else
2591 return 0;
2592 }
2593
2594 /* Find the range of pc values in a line.
2595 Store the starting pc of the line into *STARTPTR
2596 and the ending pc (start of next line) into *ENDPTR.
2597 Returns 1 to indicate success.
2598 Returns 0 if could not find the specified line. */
2599
2600 int
2601 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2602 CORE_ADDR *endptr)
2603 {
2604 CORE_ADDR startaddr;
2605 struct symtab_and_line found_sal;
2606
2607 startaddr = sal.pc;
2608 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2609 return 0;
2610
2611 /* This whole function is based on address. For example, if line 10 has
2612 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2613 "info line *0x123" should say the line goes from 0x100 to 0x200
2614 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2615 This also insures that we never give a range like "starts at 0x134
2616 and ends at 0x12c". */
2617
2618 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2619 if (found_sal.line != sal.line)
2620 {
2621 /* The specified line (sal) has zero bytes. */
2622 *startptr = found_sal.pc;
2623 *endptr = found_sal.pc;
2624 }
2625 else
2626 {
2627 *startptr = found_sal.pc;
2628 *endptr = found_sal.end;
2629 }
2630 return 1;
2631 }
2632
2633 /* Given a line table and a line number, return the index into the line
2634 table for the pc of the nearest line whose number is >= the specified one.
2635 Return -1 if none is found. The value is >= 0 if it is an index.
2636 START is the index at which to start searching the line table.
2637
2638 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2639
2640 static int
2641 find_line_common (struct linetable *l, int lineno,
2642 int *exact_match, int start)
2643 {
2644 int i;
2645 int len;
2646
2647 /* BEST is the smallest linenumber > LINENO so far seen,
2648 or 0 if none has been seen so far.
2649 BEST_INDEX identifies the item for it. */
2650
2651 int best_index = -1;
2652 int best = 0;
2653
2654 *exact_match = 0;
2655
2656 if (lineno <= 0)
2657 return -1;
2658 if (l == 0)
2659 return -1;
2660
2661 len = l->nitems;
2662 for (i = start; i < len; i++)
2663 {
2664 struct linetable_entry *item = &(l->item[i]);
2665
2666 if (item->line == lineno)
2667 {
2668 /* Return the first (lowest address) entry which matches. */
2669 *exact_match = 1;
2670 return i;
2671 }
2672
2673 if (item->line > lineno && (best == 0 || item->line < best))
2674 {
2675 best = item->line;
2676 best_index = i;
2677 }
2678 }
2679
2680 /* If we got here, we didn't get an exact match. */
2681 return best_index;
2682 }
2683
2684 int
2685 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2686 {
2687 struct symtab_and_line sal;
2688
2689 sal = find_pc_line (pc, 0);
2690 *startptr = sal.pc;
2691 *endptr = sal.end;
2692 return sal.symtab != 0;
2693 }
2694
2695 /* Given a function symbol SYM, find the symtab and line for the start
2696 of the function.
2697 If the argument FUNFIRSTLINE is nonzero, we want the first line
2698 of real code inside the function. */
2699
2700 struct symtab_and_line
2701 find_function_start_sal (struct symbol *sym, int funfirstline)
2702 {
2703 struct symtab_and_line sal;
2704
2705 fixup_symbol_section (sym, NULL);
2706 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2707 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2708
2709 /* We always should have a line for the function start address.
2710 If we don't, something is odd. Create a plain SAL refering
2711 just the PC and hope that skip_prologue_sal (if requested)
2712 can find a line number for after the prologue. */
2713 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2714 {
2715 init_sal (&sal);
2716 sal.pspace = current_program_space;
2717 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2718 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2719 }
2720
2721 if (funfirstline)
2722 skip_prologue_sal (&sal);
2723
2724 return sal;
2725 }
2726
2727 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2728 address for that function that has an entry in SYMTAB's line info
2729 table. If such an entry cannot be found, return FUNC_ADDR
2730 unaltered. */
2731
2732 static CORE_ADDR
2733 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2734 {
2735 CORE_ADDR func_start, func_end;
2736 struct linetable *l;
2737 int i;
2738
2739 /* Give up if this symbol has no lineinfo table. */
2740 l = SYMTAB_LINETABLE (symtab);
2741 if (l == NULL)
2742 return func_addr;
2743
2744 /* Get the range for the function's PC values, or give up if we
2745 cannot, for some reason. */
2746 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2747 return func_addr;
2748
2749 /* Linetable entries are ordered by PC values, see the commentary in
2750 symtab.h where `struct linetable' is defined. Thus, the first
2751 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2752 address we are looking for. */
2753 for (i = 0; i < l->nitems; i++)
2754 {
2755 struct linetable_entry *item = &(l->item[i]);
2756
2757 /* Don't use line numbers of zero, they mark special entries in
2758 the table. See the commentary on symtab.h before the
2759 definition of struct linetable. */
2760 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2761 return item->pc;
2762 }
2763
2764 return func_addr;
2765 }
2766
2767 /* Adjust SAL to the first instruction past the function prologue.
2768 If the PC was explicitly specified, the SAL is not changed.
2769 If the line number was explicitly specified, at most the SAL's PC
2770 is updated. If SAL is already past the prologue, then do nothing. */
2771
2772 void
2773 skip_prologue_sal (struct symtab_and_line *sal)
2774 {
2775 struct symbol *sym;
2776 struct symtab_and_line start_sal;
2777 struct cleanup *old_chain;
2778 CORE_ADDR pc, saved_pc;
2779 struct obj_section *section;
2780 const char *name;
2781 struct objfile *objfile;
2782 struct gdbarch *gdbarch;
2783 const struct block *b, *function_block;
2784 int force_skip, skip;
2785
2786 /* Do not change the SAL if PC was specified explicitly. */
2787 if (sal->explicit_pc)
2788 return;
2789
2790 old_chain = save_current_space_and_thread ();
2791 switch_to_program_space_and_thread (sal->pspace);
2792
2793 sym = find_pc_sect_function (sal->pc, sal->section);
2794 if (sym != NULL)
2795 {
2796 fixup_symbol_section (sym, NULL);
2797
2798 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2799 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2800 name = SYMBOL_LINKAGE_NAME (sym);
2801 objfile = SYMBOL_OBJFILE (sym);
2802 }
2803 else
2804 {
2805 struct bound_minimal_symbol msymbol
2806 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2807
2808 if (msymbol.minsym == NULL)
2809 {
2810 do_cleanups (old_chain);
2811 return;
2812 }
2813
2814 objfile = msymbol.objfile;
2815 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2816 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2817 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2818 }
2819
2820 gdbarch = get_objfile_arch (objfile);
2821
2822 /* Process the prologue in two passes. In the first pass try to skip the
2823 prologue (SKIP is true) and verify there is a real need for it (indicated
2824 by FORCE_SKIP). If no such reason was found run a second pass where the
2825 prologue is not skipped (SKIP is false). */
2826
2827 skip = 1;
2828 force_skip = 1;
2829
2830 /* Be conservative - allow direct PC (without skipping prologue) only if we
2831 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2832 have to be set by the caller so we use SYM instead. */
2833 if (sym && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (SYMBOL_SYMTAB (sym))))
2834 force_skip = 0;
2835
2836 saved_pc = pc;
2837 do
2838 {
2839 pc = saved_pc;
2840
2841 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2842 so that gdbarch_skip_prologue has something unique to work on. */
2843 if (section_is_overlay (section) && !section_is_mapped (section))
2844 pc = overlay_unmapped_address (pc, section);
2845
2846 /* Skip "first line" of function (which is actually its prologue). */
2847 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2848 if (gdbarch_skip_entrypoint_p (gdbarch))
2849 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2850 if (skip)
2851 pc = gdbarch_skip_prologue (gdbarch, pc);
2852
2853 /* For overlays, map pc back into its mapped VMA range. */
2854 pc = overlay_mapped_address (pc, section);
2855
2856 /* Calculate line number. */
2857 start_sal = find_pc_sect_line (pc, section, 0);
2858
2859 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2860 line is still part of the same function. */
2861 if (skip && start_sal.pc != pc
2862 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2863 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2864 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2865 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2866 {
2867 /* First pc of next line */
2868 pc = start_sal.end;
2869 /* Recalculate the line number (might not be N+1). */
2870 start_sal = find_pc_sect_line (pc, section, 0);
2871 }
2872
2873 /* On targets with executable formats that don't have a concept of
2874 constructors (ELF with .init has, PE doesn't), gcc emits a call
2875 to `__main' in `main' between the prologue and before user
2876 code. */
2877 if (gdbarch_skip_main_prologue_p (gdbarch)
2878 && name && strcmp_iw (name, "main") == 0)
2879 {
2880 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2881 /* Recalculate the line number (might not be N+1). */
2882 start_sal = find_pc_sect_line (pc, section, 0);
2883 force_skip = 1;
2884 }
2885 }
2886 while (!force_skip && skip--);
2887
2888 /* If we still don't have a valid source line, try to find the first
2889 PC in the lineinfo table that belongs to the same function. This
2890 happens with COFF debug info, which does not seem to have an
2891 entry in lineinfo table for the code after the prologue which has
2892 no direct relation to source. For example, this was found to be
2893 the case with the DJGPP target using "gcc -gcoff" when the
2894 compiler inserted code after the prologue to make sure the stack
2895 is aligned. */
2896 if (!force_skip && sym && start_sal.symtab == NULL)
2897 {
2898 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2899 /* Recalculate the line number. */
2900 start_sal = find_pc_sect_line (pc, section, 0);
2901 }
2902
2903 do_cleanups (old_chain);
2904
2905 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2906 forward SAL to the end of the prologue. */
2907 if (sal->pc >= pc)
2908 return;
2909
2910 sal->pc = pc;
2911 sal->section = section;
2912
2913 /* Unless the explicit_line flag was set, update the SAL line
2914 and symtab to correspond to the modified PC location. */
2915 if (sal->explicit_line)
2916 return;
2917
2918 sal->symtab = start_sal.symtab;
2919 sal->line = start_sal.line;
2920 sal->end = start_sal.end;
2921
2922 /* Check if we are now inside an inlined function. If we can,
2923 use the call site of the function instead. */
2924 b = block_for_pc_sect (sal->pc, sal->section);
2925 function_block = NULL;
2926 while (b != NULL)
2927 {
2928 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2929 function_block = b;
2930 else if (BLOCK_FUNCTION (b) != NULL)
2931 break;
2932 b = BLOCK_SUPERBLOCK (b);
2933 }
2934 if (function_block != NULL
2935 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2936 {
2937 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2938 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2939 }
2940 }
2941
2942 /* Given PC at the function's start address, attempt to find the
2943 prologue end using SAL information. Return zero if the skip fails.
2944
2945 A non-optimized prologue traditionally has one SAL for the function
2946 and a second for the function body. A single line function has
2947 them both pointing at the same line.
2948
2949 An optimized prologue is similar but the prologue may contain
2950 instructions (SALs) from the instruction body. Need to skip those
2951 while not getting into the function body.
2952
2953 The functions end point and an increasing SAL line are used as
2954 indicators of the prologue's endpoint.
2955
2956 This code is based on the function refine_prologue_limit
2957 (found in ia64). */
2958
2959 CORE_ADDR
2960 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
2961 {
2962 struct symtab_and_line prologue_sal;
2963 CORE_ADDR start_pc;
2964 CORE_ADDR end_pc;
2965 const struct block *bl;
2966
2967 /* Get an initial range for the function. */
2968 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
2969 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
2970
2971 prologue_sal = find_pc_line (start_pc, 0);
2972 if (prologue_sal.line != 0)
2973 {
2974 /* For languages other than assembly, treat two consecutive line
2975 entries at the same address as a zero-instruction prologue.
2976 The GNU assembler emits separate line notes for each instruction
2977 in a multi-instruction macro, but compilers generally will not
2978 do this. */
2979 if (prologue_sal.symtab->language != language_asm)
2980 {
2981 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
2982 int idx = 0;
2983
2984 /* Skip any earlier lines, and any end-of-sequence marker
2985 from a previous function. */
2986 while (linetable->item[idx].pc != prologue_sal.pc
2987 || linetable->item[idx].line == 0)
2988 idx++;
2989
2990 if (idx+1 < linetable->nitems
2991 && linetable->item[idx+1].line != 0
2992 && linetable->item[idx+1].pc == start_pc)
2993 return start_pc;
2994 }
2995
2996 /* If there is only one sal that covers the entire function,
2997 then it is probably a single line function, like
2998 "foo(){}". */
2999 if (prologue_sal.end >= end_pc)
3000 return 0;
3001
3002 while (prologue_sal.end < end_pc)
3003 {
3004 struct symtab_and_line sal;
3005
3006 sal = find_pc_line (prologue_sal.end, 0);
3007 if (sal.line == 0)
3008 break;
3009 /* Assume that a consecutive SAL for the same (or larger)
3010 line mark the prologue -> body transition. */
3011 if (sal.line >= prologue_sal.line)
3012 break;
3013 /* Likewise if we are in a different symtab altogether
3014 (e.g. within a file included via #include).  */
3015 if (sal.symtab != prologue_sal.symtab)
3016 break;
3017
3018 /* The line number is smaller. Check that it's from the
3019 same function, not something inlined. If it's inlined,
3020 then there is no point comparing the line numbers. */
3021 bl = block_for_pc (prologue_sal.end);
3022 while (bl)
3023 {
3024 if (block_inlined_p (bl))
3025 break;
3026 if (BLOCK_FUNCTION (bl))
3027 {
3028 bl = NULL;
3029 break;
3030 }
3031 bl = BLOCK_SUPERBLOCK (bl);
3032 }
3033 if (bl != NULL)
3034 break;
3035
3036 /* The case in which compiler's optimizer/scheduler has
3037 moved instructions into the prologue. We look ahead in
3038 the function looking for address ranges whose
3039 corresponding line number is less the first one that we
3040 found for the function. This is more conservative then
3041 refine_prologue_limit which scans a large number of SALs
3042 looking for any in the prologue. */
3043 prologue_sal = sal;
3044 }
3045 }
3046
3047 if (prologue_sal.end < end_pc)
3048 /* Return the end of this line, or zero if we could not find a
3049 line. */
3050 return prologue_sal.end;
3051 else
3052 /* Don't return END_PC, which is past the end of the function. */
3053 return prologue_sal.pc;
3054 }
3055 \f
3056 /* If P is of the form "operator[ \t]+..." where `...' is
3057 some legitimate operator text, return a pointer to the
3058 beginning of the substring of the operator text.
3059 Otherwise, return "". */
3060
3061 static const char *
3062 operator_chars (const char *p, const char **end)
3063 {
3064 *end = "";
3065 if (strncmp (p, "operator", 8))
3066 return *end;
3067 p += 8;
3068
3069 /* Don't get faked out by `operator' being part of a longer
3070 identifier. */
3071 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3072 return *end;
3073
3074 /* Allow some whitespace between `operator' and the operator symbol. */
3075 while (*p == ' ' || *p == '\t')
3076 p++;
3077
3078 /* Recognize 'operator TYPENAME'. */
3079
3080 if (isalpha (*p) || *p == '_' || *p == '$')
3081 {
3082 const char *q = p + 1;
3083
3084 while (isalnum (*q) || *q == '_' || *q == '$')
3085 q++;
3086 *end = q;
3087 return p;
3088 }
3089
3090 while (*p)
3091 switch (*p)
3092 {
3093 case '\\': /* regexp quoting */
3094 if (p[1] == '*')
3095 {
3096 if (p[2] == '=') /* 'operator\*=' */
3097 *end = p + 3;
3098 else /* 'operator\*' */
3099 *end = p + 2;
3100 return p;
3101 }
3102 else if (p[1] == '[')
3103 {
3104 if (p[2] == ']')
3105 error (_("mismatched quoting on brackets, "
3106 "try 'operator\\[\\]'"));
3107 else if (p[2] == '\\' && p[3] == ']')
3108 {
3109 *end = p + 4; /* 'operator\[\]' */
3110 return p;
3111 }
3112 else
3113 error (_("nothing is allowed between '[' and ']'"));
3114 }
3115 else
3116 {
3117 /* Gratuitous qoute: skip it and move on. */
3118 p++;
3119 continue;
3120 }
3121 break;
3122 case '!':
3123 case '=':
3124 case '*':
3125 case '/':
3126 case '%':
3127 case '^':
3128 if (p[1] == '=')
3129 *end = p + 2;
3130 else
3131 *end = p + 1;
3132 return p;
3133 case '<':
3134 case '>':
3135 case '+':
3136 case '-':
3137 case '&':
3138 case '|':
3139 if (p[0] == '-' && p[1] == '>')
3140 {
3141 /* Struct pointer member operator 'operator->'. */
3142 if (p[2] == '*')
3143 {
3144 *end = p + 3; /* 'operator->*' */
3145 return p;
3146 }
3147 else if (p[2] == '\\')
3148 {
3149 *end = p + 4; /* Hopefully 'operator->\*' */
3150 return p;
3151 }
3152 else
3153 {
3154 *end = p + 2; /* 'operator->' */
3155 return p;
3156 }
3157 }
3158 if (p[1] == '=' || p[1] == p[0])
3159 *end = p + 2;
3160 else
3161 *end = p + 1;
3162 return p;
3163 case '~':
3164 case ',':
3165 *end = p + 1;
3166 return p;
3167 case '(':
3168 if (p[1] != ')')
3169 error (_("`operator ()' must be specified "
3170 "without whitespace in `()'"));
3171 *end = p + 2;
3172 return p;
3173 case '?':
3174 if (p[1] != ':')
3175 error (_("`operator ?:' must be specified "
3176 "without whitespace in `?:'"));
3177 *end = p + 2;
3178 return p;
3179 case '[':
3180 if (p[1] != ']')
3181 error (_("`operator []' must be specified "
3182 "without whitespace in `[]'"));
3183 *end = p + 2;
3184 return p;
3185 default:
3186 error (_("`operator %s' not supported"), p);
3187 break;
3188 }
3189
3190 *end = "";
3191 return *end;
3192 }
3193 \f
3194
3195 /* Cache to watch for file names already seen by filename_seen. */
3196
3197 struct filename_seen_cache
3198 {
3199 /* Table of files seen so far. */
3200 htab_t tab;
3201 /* Initial size of the table. It automagically grows from here. */
3202 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3203 };
3204
3205 /* filename_seen_cache constructor. */
3206
3207 static struct filename_seen_cache *
3208 create_filename_seen_cache (void)
3209 {
3210 struct filename_seen_cache *cache;
3211
3212 cache = XNEW (struct filename_seen_cache);
3213 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3214 filename_hash, filename_eq,
3215 NULL, xcalloc, xfree);
3216
3217 return cache;
3218 }
3219
3220 /* Empty the cache, but do not delete it. */
3221
3222 static void
3223 clear_filename_seen_cache (struct filename_seen_cache *cache)
3224 {
3225 htab_empty (cache->tab);
3226 }
3227
3228 /* filename_seen_cache destructor.
3229 This takes a void * argument as it is generally used as a cleanup. */
3230
3231 static void
3232 delete_filename_seen_cache (void *ptr)
3233 {
3234 struct filename_seen_cache *cache = ptr;
3235
3236 htab_delete (cache->tab);
3237 xfree (cache);
3238 }
3239
3240 /* If FILE is not already in the table of files in CACHE, return zero;
3241 otherwise return non-zero. Optionally add FILE to the table if ADD
3242 is non-zero.
3243
3244 NOTE: We don't manage space for FILE, we assume FILE lives as long
3245 as the caller needs. */
3246
3247 static int
3248 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3249 {
3250 void **slot;
3251
3252 /* Is FILE in tab? */
3253 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3254 if (*slot != NULL)
3255 return 1;
3256
3257 /* No; maybe add it to tab. */
3258 if (add)
3259 *slot = (char *) file;
3260
3261 return 0;
3262 }
3263
3264 /* Data structure to maintain printing state for output_source_filename. */
3265
3266 struct output_source_filename_data
3267 {
3268 /* Cache of what we've seen so far. */
3269 struct filename_seen_cache *filename_seen_cache;
3270
3271 /* Flag of whether we're printing the first one. */
3272 int first;
3273 };
3274
3275 /* Slave routine for sources_info. Force line breaks at ,'s.
3276 NAME is the name to print.
3277 DATA contains the state for printing and watching for duplicates. */
3278
3279 static void
3280 output_source_filename (const char *name,
3281 struct output_source_filename_data *data)
3282 {
3283 /* Since a single source file can result in several partial symbol
3284 tables, we need to avoid printing it more than once. Note: if
3285 some of the psymtabs are read in and some are not, it gets
3286 printed both under "Source files for which symbols have been
3287 read" and "Source files for which symbols will be read in on
3288 demand". I consider this a reasonable way to deal with the
3289 situation. I'm not sure whether this can also happen for
3290 symtabs; it doesn't hurt to check. */
3291
3292 /* Was NAME already seen? */
3293 if (filename_seen (data->filename_seen_cache, name, 1))
3294 {
3295 /* Yes; don't print it again. */
3296 return;
3297 }
3298
3299 /* No; print it and reset *FIRST. */
3300 if (! data->first)
3301 printf_filtered (", ");
3302 data->first = 0;
3303
3304 wrap_here ("");
3305 fputs_filtered (name, gdb_stdout);
3306 }
3307
3308 /* A callback for map_partial_symbol_filenames. */
3309
3310 static void
3311 output_partial_symbol_filename (const char *filename, const char *fullname,
3312 void *data)
3313 {
3314 output_source_filename (fullname ? fullname : filename, data);
3315 }
3316
3317 static void
3318 sources_info (char *ignore, int from_tty)
3319 {
3320 struct compunit_symtab *cu;
3321 struct symtab *s;
3322 struct objfile *objfile;
3323 struct output_source_filename_data data;
3324 struct cleanup *cleanups;
3325
3326 if (!have_full_symbols () && !have_partial_symbols ())
3327 {
3328 error (_("No symbol table is loaded. Use the \"file\" command."));
3329 }
3330
3331 data.filename_seen_cache = create_filename_seen_cache ();
3332 cleanups = make_cleanup (delete_filename_seen_cache,
3333 data.filename_seen_cache);
3334
3335 printf_filtered ("Source files for which symbols have been read in:\n\n");
3336
3337 data.first = 1;
3338 ALL_FILETABS (objfile, cu, s)
3339 {
3340 const char *fullname = symtab_to_fullname (s);
3341
3342 output_source_filename (fullname, &data);
3343 }
3344 printf_filtered ("\n\n");
3345
3346 printf_filtered ("Source files for which symbols "
3347 "will be read in on demand:\n\n");
3348
3349 clear_filename_seen_cache (data.filename_seen_cache);
3350 data.first = 1;
3351 map_symbol_filenames (output_partial_symbol_filename, &data,
3352 1 /*need_fullname*/);
3353 printf_filtered ("\n");
3354
3355 do_cleanups (cleanups);
3356 }
3357
3358 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3359 non-zero compare only lbasename of FILES. */
3360
3361 static int
3362 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3363 {
3364 int i;
3365
3366 if (file != NULL && nfiles != 0)
3367 {
3368 for (i = 0; i < nfiles; i++)
3369 {
3370 if (compare_filenames_for_search (file, (basenames
3371 ? lbasename (files[i])
3372 : files[i])))
3373 return 1;
3374 }
3375 }
3376 else if (nfiles == 0)
3377 return 1;
3378 return 0;
3379 }
3380
3381 /* Free any memory associated with a search. */
3382
3383 void
3384 free_search_symbols (struct symbol_search *symbols)
3385 {
3386 struct symbol_search *p;
3387 struct symbol_search *next;
3388
3389 for (p = symbols; p != NULL; p = next)
3390 {
3391 next = p->next;
3392 xfree (p);
3393 }
3394 }
3395
3396 static void
3397 do_free_search_symbols_cleanup (void *symbolsp)
3398 {
3399 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3400
3401 free_search_symbols (symbols);
3402 }
3403
3404 struct cleanup *
3405 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3406 {
3407 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3408 }
3409
3410 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3411 sort symbols, not minimal symbols. */
3412
3413 static int
3414 compare_search_syms (const void *sa, const void *sb)
3415 {
3416 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3417 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3418 int c;
3419
3420 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3421 if (c != 0)
3422 return c;
3423
3424 if (sym_a->block != sym_b->block)
3425 return sym_a->block - sym_b->block;
3426
3427 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3428 SYMBOL_PRINT_NAME (sym_b->symbol));
3429 }
3430
3431 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3432 The duplicates are freed, and the new list is returned in
3433 *NEW_HEAD, *NEW_TAIL. */
3434
3435 static void
3436 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3437 struct symbol_search **new_head,
3438 struct symbol_search **new_tail)
3439 {
3440 struct symbol_search **symbols, *symp, *old_next;
3441 int i, j, nunique;
3442
3443 gdb_assert (found != NULL && nfound > 0);
3444
3445 /* Build an array out of the list so we can easily sort them. */
3446 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3447 * nfound);
3448 symp = found;
3449 for (i = 0; i < nfound; i++)
3450 {
3451 gdb_assert (symp != NULL);
3452 gdb_assert (symp->block >= 0 && symp->block <= 1);
3453 symbols[i] = symp;
3454 symp = symp->next;
3455 }
3456 gdb_assert (symp == NULL);
3457
3458 qsort (symbols, nfound, sizeof (struct symbol_search *),
3459 compare_search_syms);
3460
3461 /* Collapse out the dups. */
3462 for (i = 1, j = 1; i < nfound; ++i)
3463 {
3464 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3465 symbols[j++] = symbols[i];
3466 else
3467 xfree (symbols[i]);
3468 }
3469 nunique = j;
3470 symbols[j - 1]->next = NULL;
3471
3472 /* Rebuild the linked list. */
3473 for (i = 0; i < nunique - 1; i++)
3474 symbols[i]->next = symbols[i + 1];
3475 symbols[nunique - 1]->next = NULL;
3476
3477 *new_head = symbols[0];
3478 *new_tail = symbols[nunique - 1];
3479 xfree (symbols);
3480 }
3481
3482 /* An object of this type is passed as the user_data to the
3483 expand_symtabs_matching method. */
3484 struct search_symbols_data
3485 {
3486 int nfiles;
3487 const char **files;
3488
3489 /* It is true if PREG contains valid data, false otherwise. */
3490 unsigned preg_p : 1;
3491 regex_t preg;
3492 };
3493
3494 /* A callback for expand_symtabs_matching. */
3495
3496 static int
3497 search_symbols_file_matches (const char *filename, void *user_data,
3498 int basenames)
3499 {
3500 struct search_symbols_data *data = user_data;
3501
3502 return file_matches (filename, data->files, data->nfiles, basenames);
3503 }
3504
3505 /* A callback for expand_symtabs_matching. */
3506
3507 static int
3508 search_symbols_name_matches (const char *symname, void *user_data)
3509 {
3510 struct search_symbols_data *data = user_data;
3511
3512 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3513 }
3514
3515 /* Search the symbol table for matches to the regular expression REGEXP,
3516 returning the results in *MATCHES.
3517
3518 Only symbols of KIND are searched:
3519 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3520 and constants (enums)
3521 FUNCTIONS_DOMAIN - search all functions
3522 TYPES_DOMAIN - search all type names
3523 ALL_DOMAIN - an internal error for this function
3524
3525 free_search_symbols should be called when *MATCHES is no longer needed.
3526
3527 Within each file the results are sorted locally; each symtab's global and
3528 static blocks are separately alphabetized.
3529 Duplicate entries are removed. */
3530
3531 void
3532 search_symbols (const char *regexp, enum search_domain kind,
3533 int nfiles, const char *files[],
3534 struct symbol_search **matches)
3535 {
3536 struct compunit_symtab *cust;
3537 const struct blockvector *bv;
3538 struct block *b;
3539 int i = 0;
3540 struct block_iterator iter;
3541 struct symbol *sym;
3542 struct objfile *objfile;
3543 struct minimal_symbol *msymbol;
3544 int found_misc = 0;
3545 static const enum minimal_symbol_type types[]
3546 = {mst_data, mst_text, mst_abs};
3547 static const enum minimal_symbol_type types2[]
3548 = {mst_bss, mst_file_text, mst_abs};
3549 static const enum minimal_symbol_type types3[]
3550 = {mst_file_data, mst_solib_trampoline, mst_abs};
3551 static const enum minimal_symbol_type types4[]
3552 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3553 enum minimal_symbol_type ourtype;
3554 enum minimal_symbol_type ourtype2;
3555 enum minimal_symbol_type ourtype3;
3556 enum minimal_symbol_type ourtype4;
3557 struct symbol_search *found;
3558 struct symbol_search *tail;
3559 struct search_symbols_data datum;
3560 int nfound;
3561
3562 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3563 CLEANUP_CHAIN is freed only in the case of an error. */
3564 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3565 struct cleanup *retval_chain;
3566
3567 gdb_assert (kind <= TYPES_DOMAIN);
3568
3569 ourtype = types[kind];
3570 ourtype2 = types2[kind];
3571 ourtype3 = types3[kind];
3572 ourtype4 = types4[kind];
3573
3574 *matches = NULL;
3575 datum.preg_p = 0;
3576
3577 if (regexp != NULL)
3578 {
3579 /* Make sure spacing is right for C++ operators.
3580 This is just a courtesy to make the matching less sensitive
3581 to how many spaces the user leaves between 'operator'
3582 and <TYPENAME> or <OPERATOR>. */
3583 const char *opend;
3584 const char *opname = operator_chars (regexp, &opend);
3585 int errcode;
3586
3587 if (*opname)
3588 {
3589 int fix = -1; /* -1 means ok; otherwise number of
3590 spaces needed. */
3591
3592 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3593 {
3594 /* There should 1 space between 'operator' and 'TYPENAME'. */
3595 if (opname[-1] != ' ' || opname[-2] == ' ')
3596 fix = 1;
3597 }
3598 else
3599 {
3600 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3601 if (opname[-1] == ' ')
3602 fix = 0;
3603 }
3604 /* If wrong number of spaces, fix it. */
3605 if (fix >= 0)
3606 {
3607 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3608
3609 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3610 regexp = tmp;
3611 }
3612 }
3613
3614 errcode = regcomp (&datum.preg, regexp,
3615 REG_NOSUB | (case_sensitivity == case_sensitive_off
3616 ? REG_ICASE : 0));
3617 if (errcode != 0)
3618 {
3619 char *err = get_regcomp_error (errcode, &datum.preg);
3620
3621 make_cleanup (xfree, err);
3622 error (_("Invalid regexp (%s): %s"), err, regexp);
3623 }
3624 datum.preg_p = 1;
3625 make_regfree_cleanup (&datum.preg);
3626 }
3627
3628 /* Search through the partial symtabs *first* for all symbols
3629 matching the regexp. That way we don't have to reproduce all of
3630 the machinery below. */
3631
3632 datum.nfiles = nfiles;
3633 datum.files = files;
3634 expand_symtabs_matching ((nfiles == 0
3635 ? NULL
3636 : search_symbols_file_matches),
3637 search_symbols_name_matches,
3638 kind, &datum);
3639
3640 /* Here, we search through the minimal symbol tables for functions
3641 and variables that match, and force their symbols to be read.
3642 This is in particular necessary for demangled variable names,
3643 which are no longer put into the partial symbol tables.
3644 The symbol will then be found during the scan of symtabs below.
3645
3646 For functions, find_pc_symtab should succeed if we have debug info
3647 for the function, for variables we have to call
3648 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3649 has debug info.
3650 If the lookup fails, set found_misc so that we will rescan to print
3651 any matching symbols without debug info.
3652 We only search the objfile the msymbol came from, we no longer search
3653 all objfiles. In large programs (1000s of shared libs) searching all
3654 objfiles is not worth the pain. */
3655
3656 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3657 {
3658 ALL_MSYMBOLS (objfile, msymbol)
3659 {
3660 QUIT;
3661
3662 if (msymbol->created_by_gdb)
3663 continue;
3664
3665 if (MSYMBOL_TYPE (msymbol) == ourtype
3666 || MSYMBOL_TYPE (msymbol) == ourtype2
3667 || MSYMBOL_TYPE (msymbol) == ourtype3
3668 || MSYMBOL_TYPE (msymbol) == ourtype4)
3669 {
3670 if (!datum.preg_p
3671 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3672 NULL, 0) == 0)
3673 {
3674 /* Note: An important side-effect of these lookup functions
3675 is to expand the symbol table if msymbol is found, for the
3676 benefit of the next loop on ALL_COMPUNITS. */
3677 if (kind == FUNCTIONS_DOMAIN
3678 ? (find_pc_compunit_symtab
3679 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
3680 : (lookup_symbol_in_objfile_from_linkage_name
3681 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3682 == NULL))
3683 found_misc = 1;
3684 }
3685 }
3686 }
3687 }
3688
3689 found = NULL;
3690 tail = NULL;
3691 nfound = 0;
3692 retval_chain = make_cleanup_free_search_symbols (&found);
3693
3694 ALL_COMPUNITS (objfile, cust)
3695 {
3696 bv = COMPUNIT_BLOCKVECTOR (cust);
3697 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3698 {
3699 b = BLOCKVECTOR_BLOCK (bv, i);
3700 ALL_BLOCK_SYMBOLS (b, iter, sym)
3701 {
3702 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3703
3704 QUIT;
3705
3706 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3707 a substring of symtab_to_fullname as it may contain "./" etc. */
3708 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3709 || ((basenames_may_differ
3710 || file_matches (lbasename (real_symtab->filename),
3711 files, nfiles, 1))
3712 && file_matches (symtab_to_fullname (real_symtab),
3713 files, nfiles, 0)))
3714 && ((!datum.preg_p
3715 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3716 NULL, 0) == 0)
3717 && ((kind == VARIABLES_DOMAIN
3718 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3719 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3720 && SYMBOL_CLASS (sym) != LOC_BLOCK
3721 /* LOC_CONST can be used for more than just enums,
3722 e.g., c++ static const members.
3723 We only want to skip enums here. */
3724 && !(SYMBOL_CLASS (sym) == LOC_CONST
3725 && (TYPE_CODE (SYMBOL_TYPE (sym))
3726 == TYPE_CODE_ENUM)))
3727 || (kind == FUNCTIONS_DOMAIN
3728 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3729 || (kind == TYPES_DOMAIN
3730 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3731 {
3732 /* match */
3733 struct symbol_search *psr = (struct symbol_search *)
3734 xmalloc (sizeof (struct symbol_search));
3735 psr->block = i;
3736 psr->symtab = real_symtab;
3737 psr->symbol = sym;
3738 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3739 psr->next = NULL;
3740 if (tail == NULL)
3741 found = psr;
3742 else
3743 tail->next = psr;
3744 tail = psr;
3745 nfound ++;
3746 }
3747 }
3748 }
3749 }
3750
3751 if (found != NULL)
3752 {
3753 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3754 /* Note: nfound is no longer useful beyond this point. */
3755 }
3756
3757 /* If there are no eyes, avoid all contact. I mean, if there are
3758 no debug symbols, then add matching minsyms. */
3759
3760 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3761 {
3762 ALL_MSYMBOLS (objfile, msymbol)
3763 {
3764 QUIT;
3765
3766 if (msymbol->created_by_gdb)
3767 continue;
3768
3769 if (MSYMBOL_TYPE (msymbol) == ourtype
3770 || MSYMBOL_TYPE (msymbol) == ourtype2
3771 || MSYMBOL_TYPE (msymbol) == ourtype3
3772 || MSYMBOL_TYPE (msymbol) == ourtype4)
3773 {
3774 if (!datum.preg_p
3775 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3776 NULL, 0) == 0)
3777 {
3778 /* For functions we can do a quick check of whether the
3779 symbol might be found via find_pc_symtab. */
3780 if (kind != FUNCTIONS_DOMAIN
3781 || (find_pc_compunit_symtab
3782 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
3783 {
3784 if (lookup_symbol_in_objfile_from_linkage_name
3785 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3786 == NULL)
3787 {
3788 /* match */
3789 struct symbol_search *psr = (struct symbol_search *)
3790 xmalloc (sizeof (struct symbol_search));
3791 psr->block = i;
3792 psr->msymbol.minsym = msymbol;
3793 psr->msymbol.objfile = objfile;
3794 psr->symtab = NULL;
3795 psr->symbol = NULL;
3796 psr->next = NULL;
3797 if (tail == NULL)
3798 found = psr;
3799 else
3800 tail->next = psr;
3801 tail = psr;
3802 }
3803 }
3804 }
3805 }
3806 }
3807 }
3808
3809 discard_cleanups (retval_chain);
3810 do_cleanups (old_chain);
3811 *matches = found;
3812 }
3813
3814 /* Helper function for symtab_symbol_info, this function uses
3815 the data returned from search_symbols() to print information
3816 regarding the match to gdb_stdout. */
3817
3818 static void
3819 print_symbol_info (enum search_domain kind,
3820 struct symtab *s, struct symbol *sym,
3821 int block, const char *last)
3822 {
3823 const char *s_filename = symtab_to_filename_for_display (s);
3824
3825 if (last == NULL || filename_cmp (last, s_filename) != 0)
3826 {
3827 fputs_filtered ("\nFile ", gdb_stdout);
3828 fputs_filtered (s_filename, gdb_stdout);
3829 fputs_filtered (":\n", gdb_stdout);
3830 }
3831
3832 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3833 printf_filtered ("static ");
3834
3835 /* Typedef that is not a C++ class. */
3836 if (kind == TYPES_DOMAIN
3837 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3838 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3839 /* variable, func, or typedef-that-is-c++-class. */
3840 else if (kind < TYPES_DOMAIN
3841 || (kind == TYPES_DOMAIN
3842 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3843 {
3844 type_print (SYMBOL_TYPE (sym),
3845 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3846 ? "" : SYMBOL_PRINT_NAME (sym)),
3847 gdb_stdout, 0);
3848
3849 printf_filtered (";\n");
3850 }
3851 }
3852
3853 /* This help function for symtab_symbol_info() prints information
3854 for non-debugging symbols to gdb_stdout. */
3855
3856 static void
3857 print_msymbol_info (struct bound_minimal_symbol msymbol)
3858 {
3859 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3860 char *tmp;
3861
3862 if (gdbarch_addr_bit (gdbarch) <= 32)
3863 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3864 & (CORE_ADDR) 0xffffffff,
3865 8);
3866 else
3867 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3868 16);
3869 printf_filtered ("%s %s\n",
3870 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3871 }
3872
3873 /* This is the guts of the commands "info functions", "info types", and
3874 "info variables". It calls search_symbols to find all matches and then
3875 print_[m]symbol_info to print out some useful information about the
3876 matches. */
3877
3878 static void
3879 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3880 {
3881 static const char * const classnames[] =
3882 {"variable", "function", "type"};
3883 struct symbol_search *symbols;
3884 struct symbol_search *p;
3885 struct cleanup *old_chain;
3886 const char *last_filename = NULL;
3887 int first = 1;
3888
3889 gdb_assert (kind <= TYPES_DOMAIN);
3890
3891 /* Must make sure that if we're interrupted, symbols gets freed. */
3892 search_symbols (regexp, kind, 0, NULL, &symbols);
3893 old_chain = make_cleanup_free_search_symbols (&symbols);
3894
3895 if (regexp != NULL)
3896 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3897 classnames[kind], regexp);
3898 else
3899 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3900
3901 for (p = symbols; p != NULL; p = p->next)
3902 {
3903 QUIT;
3904
3905 if (p->msymbol.minsym != NULL)
3906 {
3907 if (first)
3908 {
3909 printf_filtered (_("\nNon-debugging symbols:\n"));
3910 first = 0;
3911 }
3912 print_msymbol_info (p->msymbol);
3913 }
3914 else
3915 {
3916 print_symbol_info (kind,
3917 p->symtab,
3918 p->symbol,
3919 p->block,
3920 last_filename);
3921 last_filename = symtab_to_filename_for_display (p->symtab);
3922 }
3923 }
3924
3925 do_cleanups (old_chain);
3926 }
3927
3928 static void
3929 variables_info (char *regexp, int from_tty)
3930 {
3931 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3932 }
3933
3934 static void
3935 functions_info (char *regexp, int from_tty)
3936 {
3937 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3938 }
3939
3940
3941 static void
3942 types_info (char *regexp, int from_tty)
3943 {
3944 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3945 }
3946
3947 /* Breakpoint all functions matching regular expression. */
3948
3949 void
3950 rbreak_command_wrapper (char *regexp, int from_tty)
3951 {
3952 rbreak_command (regexp, from_tty);
3953 }
3954
3955 /* A cleanup function that calls end_rbreak_breakpoints. */
3956
3957 static void
3958 do_end_rbreak_breakpoints (void *ignore)
3959 {
3960 end_rbreak_breakpoints ();
3961 }
3962
3963 static void
3964 rbreak_command (char *regexp, int from_tty)
3965 {
3966 struct symbol_search *ss;
3967 struct symbol_search *p;
3968 struct cleanup *old_chain;
3969 char *string = NULL;
3970 int len = 0;
3971 const char **files = NULL;
3972 const char *file_name;
3973 int nfiles = 0;
3974
3975 if (regexp)
3976 {
3977 char *colon = strchr (regexp, ':');
3978
3979 if (colon && *(colon + 1) != ':')
3980 {
3981 int colon_index;
3982 char *local_name;
3983
3984 colon_index = colon - regexp;
3985 local_name = alloca (colon_index + 1);
3986 memcpy (local_name, regexp, colon_index);
3987 local_name[colon_index--] = 0;
3988 while (isspace (local_name[colon_index]))
3989 local_name[colon_index--] = 0;
3990 file_name = local_name;
3991 files = &file_name;
3992 nfiles = 1;
3993 regexp = skip_spaces (colon + 1);
3994 }
3995 }
3996
3997 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3998 old_chain = make_cleanup_free_search_symbols (&ss);
3999 make_cleanup (free_current_contents, &string);
4000
4001 start_rbreak_breakpoints ();
4002 make_cleanup (do_end_rbreak_breakpoints, NULL);
4003 for (p = ss; p != NULL; p = p->next)
4004 {
4005 if (p->msymbol.minsym == NULL)
4006 {
4007 const char *fullname = symtab_to_fullname (p->symtab);
4008
4009 int newlen = (strlen (fullname)
4010 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4011 + 4);
4012
4013 if (newlen > len)
4014 {
4015 string = xrealloc (string, newlen);
4016 len = newlen;
4017 }
4018 strcpy (string, fullname);
4019 strcat (string, ":'");
4020 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4021 strcat (string, "'");
4022 break_command (string, from_tty);
4023 print_symbol_info (FUNCTIONS_DOMAIN,
4024 p->symtab,
4025 p->symbol,
4026 p->block,
4027 symtab_to_filename_for_display (p->symtab));
4028 }
4029 else
4030 {
4031 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4032
4033 if (newlen > len)
4034 {
4035 string = xrealloc (string, newlen);
4036 len = newlen;
4037 }
4038 strcpy (string, "'");
4039 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4040 strcat (string, "'");
4041
4042 break_command (string, from_tty);
4043 printf_filtered ("<function, no debug info> %s;\n",
4044 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4045 }
4046 }
4047
4048 do_cleanups (old_chain);
4049 }
4050 \f
4051
4052 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4053
4054 Either sym_text[sym_text_len] != '(' and then we search for any
4055 symbol starting with SYM_TEXT text.
4056
4057 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4058 be terminated at that point. Partial symbol tables do not have parameters
4059 information. */
4060
4061 static int
4062 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4063 {
4064 int (*ncmp) (const char *, const char *, size_t);
4065
4066 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4067
4068 if (ncmp (name, sym_text, sym_text_len) != 0)
4069 return 0;
4070
4071 if (sym_text[sym_text_len] == '(')
4072 {
4073 /* User searches for `name(someth...'. Require NAME to be terminated.
4074 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4075 present but accept even parameters presence. In this case this
4076 function is in fact strcmp_iw but whitespace skipping is not supported
4077 for tab completion. */
4078
4079 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4080 return 0;
4081 }
4082
4083 return 1;
4084 }
4085
4086 /* Free any memory associated with a completion list. */
4087
4088 static void
4089 free_completion_list (VEC (char_ptr) **list_ptr)
4090 {
4091 int i;
4092 char *p;
4093
4094 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4095 xfree (p);
4096 VEC_free (char_ptr, *list_ptr);
4097 }
4098
4099 /* Callback for make_cleanup. */
4100
4101 static void
4102 do_free_completion_list (void *list)
4103 {
4104 free_completion_list (list);
4105 }
4106
4107 /* Helper routine for make_symbol_completion_list. */
4108
4109 static VEC (char_ptr) *return_val;
4110
4111 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4112 completion_list_add_name \
4113 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4114
4115 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4116 completion_list_add_name \
4117 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4118
4119 /* Test to see if the symbol specified by SYMNAME (which is already
4120 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4121 characters. If so, add it to the current completion list. */
4122
4123 static void
4124 completion_list_add_name (const char *symname,
4125 const char *sym_text, int sym_text_len,
4126 const char *text, const char *word)
4127 {
4128 /* Clip symbols that cannot match. */
4129 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4130 return;
4131
4132 /* We have a match for a completion, so add SYMNAME to the current list
4133 of matches. Note that the name is moved to freshly malloc'd space. */
4134
4135 {
4136 char *new;
4137
4138 if (word == sym_text)
4139 {
4140 new = xmalloc (strlen (symname) + 5);
4141 strcpy (new, symname);
4142 }
4143 else if (word > sym_text)
4144 {
4145 /* Return some portion of symname. */
4146 new = xmalloc (strlen (symname) + 5);
4147 strcpy (new, symname + (word - sym_text));
4148 }
4149 else
4150 {
4151 /* Return some of SYM_TEXT plus symname. */
4152 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4153 strncpy (new, word, sym_text - word);
4154 new[sym_text - word] = '\0';
4155 strcat (new, symname);
4156 }
4157
4158 VEC_safe_push (char_ptr, return_val, new);
4159 }
4160 }
4161
4162 /* ObjC: In case we are completing on a selector, look as the msymbol
4163 again and feed all the selectors into the mill. */
4164
4165 static void
4166 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4167 const char *sym_text, int sym_text_len,
4168 const char *text, const char *word)
4169 {
4170 static char *tmp = NULL;
4171 static unsigned int tmplen = 0;
4172
4173 const char *method, *category, *selector;
4174 char *tmp2 = NULL;
4175
4176 method = MSYMBOL_NATURAL_NAME (msymbol);
4177
4178 /* Is it a method? */
4179 if ((method[0] != '-') && (method[0] != '+'))
4180 return;
4181
4182 if (sym_text[0] == '[')
4183 /* Complete on shortened method method. */
4184 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4185
4186 while ((strlen (method) + 1) >= tmplen)
4187 {
4188 if (tmplen == 0)
4189 tmplen = 1024;
4190 else
4191 tmplen *= 2;
4192 tmp = xrealloc (tmp, tmplen);
4193 }
4194 selector = strchr (method, ' ');
4195 if (selector != NULL)
4196 selector++;
4197
4198 category = strchr (method, '(');
4199
4200 if ((category != NULL) && (selector != NULL))
4201 {
4202 memcpy (tmp, method, (category - method));
4203 tmp[category - method] = ' ';
4204 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4205 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4206 if (sym_text[0] == '[')
4207 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4208 }
4209
4210 if (selector != NULL)
4211 {
4212 /* Complete on selector only. */
4213 strcpy (tmp, selector);
4214 tmp2 = strchr (tmp, ']');
4215 if (tmp2 != NULL)
4216 *tmp2 = '\0';
4217
4218 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4219 }
4220 }
4221
4222 /* Break the non-quoted text based on the characters which are in
4223 symbols. FIXME: This should probably be language-specific. */
4224
4225 static const char *
4226 language_search_unquoted_string (const char *text, const char *p)
4227 {
4228 for (; p > text; --p)
4229 {
4230 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4231 continue;
4232 else
4233 {
4234 if ((current_language->la_language == language_objc))
4235 {
4236 if (p[-1] == ':') /* Might be part of a method name. */
4237 continue;
4238 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4239 p -= 2; /* Beginning of a method name. */
4240 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4241 { /* Might be part of a method name. */
4242 const char *t = p;
4243
4244 /* Seeing a ' ' or a '(' is not conclusive evidence
4245 that we are in the middle of a method name. However,
4246 finding "-[" or "+[" should be pretty un-ambiguous.
4247 Unfortunately we have to find it now to decide. */
4248
4249 while (t > text)
4250 if (isalnum (t[-1]) || t[-1] == '_' ||
4251 t[-1] == ' ' || t[-1] == ':' ||
4252 t[-1] == '(' || t[-1] == ')')
4253 --t;
4254 else
4255 break;
4256
4257 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4258 p = t - 2; /* Method name detected. */
4259 /* Else we leave with p unchanged. */
4260 }
4261 }
4262 break;
4263 }
4264 }
4265 return p;
4266 }
4267
4268 static void
4269 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4270 int sym_text_len, const char *text,
4271 const char *word)
4272 {
4273 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4274 {
4275 struct type *t = SYMBOL_TYPE (sym);
4276 enum type_code c = TYPE_CODE (t);
4277 int j;
4278
4279 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4280 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4281 if (TYPE_FIELD_NAME (t, j))
4282 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4283 sym_text, sym_text_len, text, word);
4284 }
4285 }
4286
4287 /* Type of the user_data argument passed to add_macro_name or
4288 symbol_completion_matcher. The contents are simply whatever is
4289 needed by completion_list_add_name. */
4290 struct add_name_data
4291 {
4292 const char *sym_text;
4293 int sym_text_len;
4294 const char *text;
4295 const char *word;
4296 };
4297
4298 /* A callback used with macro_for_each and macro_for_each_in_scope.
4299 This adds a macro's name to the current completion list. */
4300
4301 static void
4302 add_macro_name (const char *name, const struct macro_definition *ignore,
4303 struct macro_source_file *ignore2, int ignore3,
4304 void *user_data)
4305 {
4306 struct add_name_data *datum = (struct add_name_data *) user_data;
4307
4308 completion_list_add_name (name,
4309 datum->sym_text, datum->sym_text_len,
4310 datum->text, datum->word);
4311 }
4312
4313 /* A callback for expand_symtabs_matching. */
4314
4315 static int
4316 symbol_completion_matcher (const char *name, void *user_data)
4317 {
4318 struct add_name_data *datum = (struct add_name_data *) user_data;
4319
4320 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4321 }
4322
4323 VEC (char_ptr) *
4324 default_make_symbol_completion_list_break_on (const char *text,
4325 const char *word,
4326 const char *break_on,
4327 enum type_code code)
4328 {
4329 /* Problem: All of the symbols have to be copied because readline
4330 frees them. I'm not going to worry about this; hopefully there
4331 won't be that many. */
4332
4333 struct symbol *sym;
4334 struct compunit_symtab *cust;
4335 struct minimal_symbol *msymbol;
4336 struct objfile *objfile;
4337 const struct block *b;
4338 const struct block *surrounding_static_block, *surrounding_global_block;
4339 struct block_iterator iter;
4340 /* The symbol we are completing on. Points in same buffer as text. */
4341 const char *sym_text;
4342 /* Length of sym_text. */
4343 int sym_text_len;
4344 struct add_name_data datum;
4345 struct cleanup *back_to;
4346
4347 /* Now look for the symbol we are supposed to complete on. */
4348 {
4349 const char *p;
4350 char quote_found;
4351 const char *quote_pos = NULL;
4352
4353 /* First see if this is a quoted string. */
4354 quote_found = '\0';
4355 for (p = text; *p != '\0'; ++p)
4356 {
4357 if (quote_found != '\0')
4358 {
4359 if (*p == quote_found)
4360 /* Found close quote. */
4361 quote_found = '\0';
4362 else if (*p == '\\' && p[1] == quote_found)
4363 /* A backslash followed by the quote character
4364 doesn't end the string. */
4365 ++p;
4366 }
4367 else if (*p == '\'' || *p == '"')
4368 {
4369 quote_found = *p;
4370 quote_pos = p;
4371 }
4372 }
4373 if (quote_found == '\'')
4374 /* A string within single quotes can be a symbol, so complete on it. */
4375 sym_text = quote_pos + 1;
4376 else if (quote_found == '"')
4377 /* A double-quoted string is never a symbol, nor does it make sense
4378 to complete it any other way. */
4379 {
4380 return NULL;
4381 }
4382 else
4383 {
4384 /* It is not a quoted string. Break it based on the characters
4385 which are in symbols. */
4386 while (p > text)
4387 {
4388 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4389 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4390 --p;
4391 else
4392 break;
4393 }
4394 sym_text = p;
4395 }
4396 }
4397
4398 sym_text_len = strlen (sym_text);
4399
4400 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4401
4402 if (current_language->la_language == language_cplus
4403 || current_language->la_language == language_java
4404 || current_language->la_language == language_fortran)
4405 {
4406 /* These languages may have parameters entered by user but they are never
4407 present in the partial symbol tables. */
4408
4409 const char *cs = memchr (sym_text, '(', sym_text_len);
4410
4411 if (cs)
4412 sym_text_len = cs - sym_text;
4413 }
4414 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4415
4416 return_val = NULL;
4417 back_to = make_cleanup (do_free_completion_list, &return_val);
4418
4419 datum.sym_text = sym_text;
4420 datum.sym_text_len = sym_text_len;
4421 datum.text = text;
4422 datum.word = word;
4423
4424 /* Look through the partial symtabs for all symbols which begin
4425 by matching SYM_TEXT. Expand all CUs that you find to the list.
4426 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4427 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4428 &datum);
4429
4430 /* At this point scan through the misc symbol vectors and add each
4431 symbol you find to the list. Eventually we want to ignore
4432 anything that isn't a text symbol (everything else will be
4433 handled by the psymtab code above). */
4434
4435 if (code == TYPE_CODE_UNDEF)
4436 {
4437 ALL_MSYMBOLS (objfile, msymbol)
4438 {
4439 QUIT;
4440 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4441 word);
4442
4443 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4444 word);
4445 }
4446 }
4447
4448 /* Search upwards from currently selected frame (so that we can
4449 complete on local vars). Also catch fields of types defined in
4450 this places which match our text string. Only complete on types
4451 visible from current context. */
4452
4453 b = get_selected_block (0);
4454 surrounding_static_block = block_static_block (b);
4455 surrounding_global_block = block_global_block (b);
4456 if (surrounding_static_block != NULL)
4457 while (b != surrounding_static_block)
4458 {
4459 QUIT;
4460
4461 ALL_BLOCK_SYMBOLS (b, iter, sym)
4462 {
4463 if (code == TYPE_CODE_UNDEF)
4464 {
4465 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4466 word);
4467 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4468 word);
4469 }
4470 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4471 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4472 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4473 word);
4474 }
4475
4476 /* Stop when we encounter an enclosing function. Do not stop for
4477 non-inlined functions - the locals of the enclosing function
4478 are in scope for a nested function. */
4479 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4480 break;
4481 b = BLOCK_SUPERBLOCK (b);
4482 }
4483
4484 /* Add fields from the file's types; symbols will be added below. */
4485
4486 if (code == TYPE_CODE_UNDEF)
4487 {
4488 if (surrounding_static_block != NULL)
4489 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4490 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4491
4492 if (surrounding_global_block != NULL)
4493 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4494 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4495 }
4496
4497 /* Go through the symtabs and check the externs and statics for
4498 symbols which match. */
4499
4500 ALL_COMPUNITS (objfile, cust)
4501 {
4502 QUIT;
4503 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK);
4504 ALL_BLOCK_SYMBOLS (b, iter, sym)
4505 {
4506 if (code == TYPE_CODE_UNDEF
4507 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4508 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4509 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4510 }
4511 }
4512
4513 ALL_COMPUNITS (objfile, cust)
4514 {
4515 QUIT;
4516 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK);
4517 ALL_BLOCK_SYMBOLS (b, iter, sym)
4518 {
4519 if (code == TYPE_CODE_UNDEF
4520 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4521 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4522 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4523 }
4524 }
4525
4526 /* Skip macros if we are completing a struct tag -- arguable but
4527 usually what is expected. */
4528 if (current_language->la_macro_expansion == macro_expansion_c
4529 && code == TYPE_CODE_UNDEF)
4530 {
4531 struct macro_scope *scope;
4532
4533 /* Add any macros visible in the default scope. Note that this
4534 may yield the occasional wrong result, because an expression
4535 might be evaluated in a scope other than the default. For
4536 example, if the user types "break file:line if <TAB>", the
4537 resulting expression will be evaluated at "file:line" -- but
4538 at there does not seem to be a way to detect this at
4539 completion time. */
4540 scope = default_macro_scope ();
4541 if (scope)
4542 {
4543 macro_for_each_in_scope (scope->file, scope->line,
4544 add_macro_name, &datum);
4545 xfree (scope);
4546 }
4547
4548 /* User-defined macros are always visible. */
4549 macro_for_each (macro_user_macros, add_macro_name, &datum);
4550 }
4551
4552 discard_cleanups (back_to);
4553 return (return_val);
4554 }
4555
4556 VEC (char_ptr) *
4557 default_make_symbol_completion_list (const char *text, const char *word,
4558 enum type_code code)
4559 {
4560 return default_make_symbol_completion_list_break_on (text, word, "", code);
4561 }
4562
4563 /* Return a vector of all symbols (regardless of class) which begin by
4564 matching TEXT. If the answer is no symbols, then the return value
4565 is NULL. */
4566
4567 VEC (char_ptr) *
4568 make_symbol_completion_list (const char *text, const char *word)
4569 {
4570 return current_language->la_make_symbol_completion_list (text, word,
4571 TYPE_CODE_UNDEF);
4572 }
4573
4574 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4575 symbols whose type code is CODE. */
4576
4577 VEC (char_ptr) *
4578 make_symbol_completion_type (const char *text, const char *word,
4579 enum type_code code)
4580 {
4581 gdb_assert (code == TYPE_CODE_UNION
4582 || code == TYPE_CODE_STRUCT
4583 || code == TYPE_CODE_ENUM);
4584 return current_language->la_make_symbol_completion_list (text, word, code);
4585 }
4586
4587 /* Like make_symbol_completion_list, but suitable for use as a
4588 completion function. */
4589
4590 VEC (char_ptr) *
4591 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4592 const char *text, const char *word)
4593 {
4594 return make_symbol_completion_list (text, word);
4595 }
4596
4597 /* Like make_symbol_completion_list, but returns a list of symbols
4598 defined in a source file FILE. */
4599
4600 VEC (char_ptr) *
4601 make_file_symbol_completion_list (const char *text, const char *word,
4602 const char *srcfile)
4603 {
4604 struct symbol *sym;
4605 struct symtab *s;
4606 struct block *b;
4607 struct block_iterator iter;
4608 /* The symbol we are completing on. Points in same buffer as text. */
4609 const char *sym_text;
4610 /* Length of sym_text. */
4611 int sym_text_len;
4612
4613 /* Now look for the symbol we are supposed to complete on.
4614 FIXME: This should be language-specific. */
4615 {
4616 const char *p;
4617 char quote_found;
4618 const char *quote_pos = NULL;
4619
4620 /* First see if this is a quoted string. */
4621 quote_found = '\0';
4622 for (p = text; *p != '\0'; ++p)
4623 {
4624 if (quote_found != '\0')
4625 {
4626 if (*p == quote_found)
4627 /* Found close quote. */
4628 quote_found = '\0';
4629 else if (*p == '\\' && p[1] == quote_found)
4630 /* A backslash followed by the quote character
4631 doesn't end the string. */
4632 ++p;
4633 }
4634 else if (*p == '\'' || *p == '"')
4635 {
4636 quote_found = *p;
4637 quote_pos = p;
4638 }
4639 }
4640 if (quote_found == '\'')
4641 /* A string within single quotes can be a symbol, so complete on it. */
4642 sym_text = quote_pos + 1;
4643 else if (quote_found == '"')
4644 /* A double-quoted string is never a symbol, nor does it make sense
4645 to complete it any other way. */
4646 {
4647 return NULL;
4648 }
4649 else
4650 {
4651 /* Not a quoted string. */
4652 sym_text = language_search_unquoted_string (text, p);
4653 }
4654 }
4655
4656 sym_text_len = strlen (sym_text);
4657
4658 return_val = NULL;
4659
4660 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4661 in). */
4662 s = lookup_symtab (srcfile);
4663 if (s == NULL)
4664 {
4665 /* Maybe they typed the file with leading directories, while the
4666 symbol tables record only its basename. */
4667 const char *tail = lbasename (srcfile);
4668
4669 if (tail > srcfile)
4670 s = lookup_symtab (tail);
4671 }
4672
4673 /* If we have no symtab for that file, return an empty list. */
4674 if (s == NULL)
4675 return (return_val);
4676
4677 /* Go through this symtab and check the externs and statics for
4678 symbols which match. */
4679
4680 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
4681 ALL_BLOCK_SYMBOLS (b, iter, sym)
4682 {
4683 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4684 }
4685
4686 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
4687 ALL_BLOCK_SYMBOLS (b, iter, sym)
4688 {
4689 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4690 }
4691
4692 return (return_val);
4693 }
4694
4695 /* A helper function for make_source_files_completion_list. It adds
4696 another file name to a list of possible completions, growing the
4697 list as necessary. */
4698
4699 static void
4700 add_filename_to_list (const char *fname, const char *text, const char *word,
4701 VEC (char_ptr) **list)
4702 {
4703 char *new;
4704 size_t fnlen = strlen (fname);
4705
4706 if (word == text)
4707 {
4708 /* Return exactly fname. */
4709 new = xmalloc (fnlen + 5);
4710 strcpy (new, fname);
4711 }
4712 else if (word > text)
4713 {
4714 /* Return some portion of fname. */
4715 new = xmalloc (fnlen + 5);
4716 strcpy (new, fname + (word - text));
4717 }
4718 else
4719 {
4720 /* Return some of TEXT plus fname. */
4721 new = xmalloc (fnlen + (text - word) + 5);
4722 strncpy (new, word, text - word);
4723 new[text - word] = '\0';
4724 strcat (new, fname);
4725 }
4726 VEC_safe_push (char_ptr, *list, new);
4727 }
4728
4729 static int
4730 not_interesting_fname (const char *fname)
4731 {
4732 static const char *illegal_aliens[] = {
4733 "_globals_", /* inserted by coff_symtab_read */
4734 NULL
4735 };
4736 int i;
4737
4738 for (i = 0; illegal_aliens[i]; i++)
4739 {
4740 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4741 return 1;
4742 }
4743 return 0;
4744 }
4745
4746 /* An object of this type is passed as the user_data argument to
4747 map_partial_symbol_filenames. */
4748 struct add_partial_filename_data
4749 {
4750 struct filename_seen_cache *filename_seen_cache;
4751 const char *text;
4752 const char *word;
4753 int text_len;
4754 VEC (char_ptr) **list;
4755 };
4756
4757 /* A callback for map_partial_symbol_filenames. */
4758
4759 static void
4760 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4761 void *user_data)
4762 {
4763 struct add_partial_filename_data *data = user_data;
4764
4765 if (not_interesting_fname (filename))
4766 return;
4767 if (!filename_seen (data->filename_seen_cache, filename, 1)
4768 && filename_ncmp (filename, data->text, data->text_len) == 0)
4769 {
4770 /* This file matches for a completion; add it to the
4771 current list of matches. */
4772 add_filename_to_list (filename, data->text, data->word, data->list);
4773 }
4774 else
4775 {
4776 const char *base_name = lbasename (filename);
4777
4778 if (base_name != filename
4779 && !filename_seen (data->filename_seen_cache, base_name, 1)
4780 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4781 add_filename_to_list (base_name, data->text, data->word, data->list);
4782 }
4783 }
4784
4785 /* Return a vector of all source files whose names begin with matching
4786 TEXT. The file names are looked up in the symbol tables of this
4787 program. If the answer is no matchess, then the return value is
4788 NULL. */
4789
4790 VEC (char_ptr) *
4791 make_source_files_completion_list (const char *text, const char *word)
4792 {
4793 struct compunit_symtab *cu;
4794 struct symtab *s;
4795 struct objfile *objfile;
4796 size_t text_len = strlen (text);
4797 VEC (char_ptr) *list = NULL;
4798 const char *base_name;
4799 struct add_partial_filename_data datum;
4800 struct filename_seen_cache *filename_seen_cache;
4801 struct cleanup *back_to, *cache_cleanup;
4802
4803 if (!have_full_symbols () && !have_partial_symbols ())
4804 return list;
4805
4806 back_to = make_cleanup (do_free_completion_list, &list);
4807
4808 filename_seen_cache = create_filename_seen_cache ();
4809 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4810 filename_seen_cache);
4811
4812 ALL_FILETABS (objfile, cu, s)
4813 {
4814 if (not_interesting_fname (s->filename))
4815 continue;
4816 if (!filename_seen (filename_seen_cache, s->filename, 1)
4817 && filename_ncmp (s->filename, text, text_len) == 0)
4818 {
4819 /* This file matches for a completion; add it to the current
4820 list of matches. */
4821 add_filename_to_list (s->filename, text, word, &list);
4822 }
4823 else
4824 {
4825 /* NOTE: We allow the user to type a base name when the
4826 debug info records leading directories, but not the other
4827 way around. This is what subroutines of breakpoint
4828 command do when they parse file names. */
4829 base_name = lbasename (s->filename);
4830 if (base_name != s->filename
4831 && !filename_seen (filename_seen_cache, base_name, 1)
4832 && filename_ncmp (base_name, text, text_len) == 0)
4833 add_filename_to_list (base_name, text, word, &list);
4834 }
4835 }
4836
4837 datum.filename_seen_cache = filename_seen_cache;
4838 datum.text = text;
4839 datum.word = word;
4840 datum.text_len = text_len;
4841 datum.list = &list;
4842 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4843 0 /*need_fullname*/);
4844
4845 do_cleanups (cache_cleanup);
4846 discard_cleanups (back_to);
4847
4848 return list;
4849 }
4850 \f
4851 /* Track MAIN */
4852
4853 /* Return the "main_info" object for the current program space. If
4854 the object has not yet been created, create it and fill in some
4855 default values. */
4856
4857 static struct main_info *
4858 get_main_info (void)
4859 {
4860 struct main_info *info = program_space_data (current_program_space,
4861 main_progspace_key);
4862
4863 if (info == NULL)
4864 {
4865 /* It may seem strange to store the main name in the progspace
4866 and also in whatever objfile happens to see a main name in
4867 its debug info. The reason for this is mainly historical:
4868 gdb returned "main" as the name even if no function named
4869 "main" was defined the program; and this approach lets us
4870 keep compatibility. */
4871 info = XCNEW (struct main_info);
4872 info->language_of_main = language_unknown;
4873 set_program_space_data (current_program_space, main_progspace_key,
4874 info);
4875 }
4876
4877 return info;
4878 }
4879
4880 /* A cleanup to destroy a struct main_info when a progspace is
4881 destroyed. */
4882
4883 static void
4884 main_info_cleanup (struct program_space *pspace, void *data)
4885 {
4886 struct main_info *info = data;
4887
4888 if (info != NULL)
4889 xfree (info->name_of_main);
4890 xfree (info);
4891 }
4892
4893 static void
4894 set_main_name (const char *name, enum language lang)
4895 {
4896 struct main_info *info = get_main_info ();
4897
4898 if (info->name_of_main != NULL)
4899 {
4900 xfree (info->name_of_main);
4901 info->name_of_main = NULL;
4902 info->language_of_main = language_unknown;
4903 }
4904 if (name != NULL)
4905 {
4906 info->name_of_main = xstrdup (name);
4907 info->language_of_main = lang;
4908 }
4909 }
4910
4911 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4912 accordingly. */
4913
4914 static void
4915 find_main_name (void)
4916 {
4917 const char *new_main_name;
4918 struct objfile *objfile;
4919
4920 /* First check the objfiles to see whether a debuginfo reader has
4921 picked up the appropriate main name. Historically the main name
4922 was found in a more or less random way; this approach instead
4923 relies on the order of objfile creation -- which still isn't
4924 guaranteed to get the correct answer, but is just probably more
4925 accurate. */
4926 ALL_OBJFILES (objfile)
4927 {
4928 if (objfile->per_bfd->name_of_main != NULL)
4929 {
4930 set_main_name (objfile->per_bfd->name_of_main,
4931 objfile->per_bfd->language_of_main);
4932 return;
4933 }
4934 }
4935
4936 /* Try to see if the main procedure is in Ada. */
4937 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4938 be to add a new method in the language vector, and call this
4939 method for each language until one of them returns a non-empty
4940 name. This would allow us to remove this hard-coded call to
4941 an Ada function. It is not clear that this is a better approach
4942 at this point, because all methods need to be written in a way
4943 such that false positives never be returned. For instance, it is
4944 important that a method does not return a wrong name for the main
4945 procedure if the main procedure is actually written in a different
4946 language. It is easy to guaranty this with Ada, since we use a
4947 special symbol generated only when the main in Ada to find the name
4948 of the main procedure. It is difficult however to see how this can
4949 be guarantied for languages such as C, for instance. This suggests
4950 that order of call for these methods becomes important, which means
4951 a more complicated approach. */
4952 new_main_name = ada_main_name ();
4953 if (new_main_name != NULL)
4954 {
4955 set_main_name (new_main_name, language_ada);
4956 return;
4957 }
4958
4959 new_main_name = d_main_name ();
4960 if (new_main_name != NULL)
4961 {
4962 set_main_name (new_main_name, language_d);
4963 return;
4964 }
4965
4966 new_main_name = go_main_name ();
4967 if (new_main_name != NULL)
4968 {
4969 set_main_name (new_main_name, language_go);
4970 return;
4971 }
4972
4973 new_main_name = pascal_main_name ();
4974 if (new_main_name != NULL)
4975 {
4976 set_main_name (new_main_name, language_pascal);
4977 return;
4978 }
4979
4980 /* The languages above didn't identify the name of the main procedure.
4981 Fallback to "main". */
4982 set_main_name ("main", language_unknown);
4983 }
4984
4985 char *
4986 main_name (void)
4987 {
4988 struct main_info *info = get_main_info ();
4989
4990 if (info->name_of_main == NULL)
4991 find_main_name ();
4992
4993 return info->name_of_main;
4994 }
4995
4996 /* Return the language of the main function. If it is not known,
4997 return language_unknown. */
4998
4999 enum language
5000 main_language (void)
5001 {
5002 struct main_info *info = get_main_info ();
5003
5004 if (info->name_of_main == NULL)
5005 find_main_name ();
5006
5007 return info->language_of_main;
5008 }
5009
5010 /* Handle ``executable_changed'' events for the symtab module. */
5011
5012 static void
5013 symtab_observer_executable_changed (void)
5014 {
5015 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5016 set_main_name (NULL, language_unknown);
5017 }
5018
5019 /* Return 1 if the supplied producer string matches the ARM RealView
5020 compiler (armcc). */
5021
5022 int
5023 producer_is_realview (const char *producer)
5024 {
5025 static const char *const arm_idents[] = {
5026 "ARM C Compiler, ADS",
5027 "Thumb C Compiler, ADS",
5028 "ARM C++ Compiler, ADS",
5029 "Thumb C++ Compiler, ADS",
5030 "ARM/Thumb C/C++ Compiler, RVCT",
5031 "ARM C/C++ Compiler, RVCT"
5032 };
5033 int i;
5034
5035 if (producer == NULL)
5036 return 0;
5037
5038 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5039 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5040 return 1;
5041
5042 return 0;
5043 }
5044
5045 \f
5046
5047 /* The next index to hand out in response to a registration request. */
5048
5049 static int next_aclass_value = LOC_FINAL_VALUE;
5050
5051 /* The maximum number of "aclass" registrations we support. This is
5052 constant for convenience. */
5053 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5054
5055 /* The objects representing the various "aclass" values. The elements
5056 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5057 elements are those registered at gdb initialization time. */
5058
5059 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5060
5061 /* The globally visible pointer. This is separate from 'symbol_impl'
5062 so that it can be const. */
5063
5064 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5065
5066 /* Make sure we saved enough room in struct symbol. */
5067
5068 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5069
5070 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5071 is the ops vector associated with this index. This returns the new
5072 index, which should be used as the aclass_index field for symbols
5073 of this type. */
5074
5075 int
5076 register_symbol_computed_impl (enum address_class aclass,
5077 const struct symbol_computed_ops *ops)
5078 {
5079 int result = next_aclass_value++;
5080
5081 gdb_assert (aclass == LOC_COMPUTED);
5082 gdb_assert (result < MAX_SYMBOL_IMPLS);
5083 symbol_impl[result].aclass = aclass;
5084 symbol_impl[result].ops_computed = ops;
5085
5086 /* Sanity check OPS. */
5087 gdb_assert (ops != NULL);
5088 gdb_assert (ops->tracepoint_var_ref != NULL);
5089 gdb_assert (ops->describe_location != NULL);
5090 gdb_assert (ops->read_needs_frame != NULL);
5091 gdb_assert (ops->read_variable != NULL);
5092
5093 return result;
5094 }
5095
5096 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5097 OPS is the ops vector associated with this index. This returns the
5098 new index, which should be used as the aclass_index field for symbols
5099 of this type. */
5100
5101 int
5102 register_symbol_block_impl (enum address_class aclass,
5103 const struct symbol_block_ops *ops)
5104 {
5105 int result = next_aclass_value++;
5106
5107 gdb_assert (aclass == LOC_BLOCK);
5108 gdb_assert (result < MAX_SYMBOL_IMPLS);
5109 symbol_impl[result].aclass = aclass;
5110 symbol_impl[result].ops_block = ops;
5111
5112 /* Sanity check OPS. */
5113 gdb_assert (ops != NULL);
5114 gdb_assert (ops->find_frame_base_location != NULL);
5115
5116 return result;
5117 }
5118
5119 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5120 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5121 this index. This returns the new index, which should be used as
5122 the aclass_index field for symbols of this type. */
5123
5124 int
5125 register_symbol_register_impl (enum address_class aclass,
5126 const struct symbol_register_ops *ops)
5127 {
5128 int result = next_aclass_value++;
5129
5130 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5131 gdb_assert (result < MAX_SYMBOL_IMPLS);
5132 symbol_impl[result].aclass = aclass;
5133 symbol_impl[result].ops_register = ops;
5134
5135 return result;
5136 }
5137
5138 /* Initialize elements of 'symbol_impl' for the constants in enum
5139 address_class. */
5140
5141 static void
5142 initialize_ordinary_address_classes (void)
5143 {
5144 int i;
5145
5146 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5147 symbol_impl[i].aclass = i;
5148 }
5149
5150 \f
5151
5152 /* Initialize the symbol SYM. */
5153
5154 void
5155 initialize_symbol (struct symbol *sym)
5156 {
5157 memset (sym, 0, sizeof (*sym));
5158 SYMBOL_SECTION (sym) = -1;
5159 }
5160
5161 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5162 obstack. */
5163
5164 struct symbol *
5165 allocate_symbol (struct objfile *objfile)
5166 {
5167 struct symbol *result;
5168
5169 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5170 SYMBOL_SECTION (result) = -1;
5171
5172 return result;
5173 }
5174
5175 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5176 obstack. */
5177
5178 struct template_symbol *
5179 allocate_template_symbol (struct objfile *objfile)
5180 {
5181 struct template_symbol *result;
5182
5183 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5184 SYMBOL_SECTION (&result->base) = -1;
5185
5186 return result;
5187 }
5188
5189 \f
5190
5191 void
5192 _initialize_symtab (void)
5193 {
5194 initialize_ordinary_address_classes ();
5195
5196 main_progspace_key
5197 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5198
5199 add_info ("variables", variables_info, _("\
5200 All global and static variable names, or those matching REGEXP."));
5201 if (dbx_commands)
5202 add_com ("whereis", class_info, variables_info, _("\
5203 All global and static variable names, or those matching REGEXP."));
5204
5205 add_info ("functions", functions_info,
5206 _("All function names, or those matching REGEXP."));
5207
5208 /* FIXME: This command has at least the following problems:
5209 1. It prints builtin types (in a very strange and confusing fashion).
5210 2. It doesn't print right, e.g. with
5211 typedef struct foo *FOO
5212 type_print prints "FOO" when we want to make it (in this situation)
5213 print "struct foo *".
5214 I also think "ptype" or "whatis" is more likely to be useful (but if
5215 there is much disagreement "info types" can be fixed). */
5216 add_info ("types", types_info,
5217 _("All type names, or those matching REGEXP."));
5218
5219 add_info ("sources", sources_info,
5220 _("Source files in the program."));
5221
5222 add_com ("rbreak", class_breakpoint, rbreak_command,
5223 _("Set a breakpoint for all functions matching REGEXP."));
5224
5225 if (xdb_commands)
5226 {
5227 add_com ("lf", class_info, sources_info,
5228 _("Source files in the program"));
5229 add_com ("lg", class_info, variables_info, _("\
5230 All global and static variable names, or those matching REGEXP."));
5231 }
5232
5233 add_setshow_enum_cmd ("multiple-symbols", no_class,
5234 multiple_symbols_modes, &multiple_symbols_mode,
5235 _("\
5236 Set the debugger behavior when more than one symbol are possible matches\n\
5237 in an expression."), _("\
5238 Show how the debugger handles ambiguities in expressions."), _("\
5239 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5240 NULL, NULL, &setlist, &showlist);
5241
5242 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5243 &basenames_may_differ, _("\
5244 Set whether a source file may have multiple base names."), _("\
5245 Show whether a source file may have multiple base names."), _("\
5246 (A \"base name\" is the name of a file with the directory part removed.\n\
5247 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5248 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5249 before comparing them. Canonicalization is an expensive operation,\n\
5250 but it allows the same file be known by more than one base name.\n\
5251 If not set (the default), all source files are assumed to have just\n\
5252 one base name, and gdb will do file name comparisons more efficiently."),
5253 NULL, NULL,
5254 &setlist, &showlist);
5255
5256 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5257 _("Set debugging of symbol table creation."),
5258 _("Show debugging of symbol table creation."), _("\
5259 When enabled (non-zero), debugging messages are printed when building\n\
5260 symbol tables. A value of 1 (one) normally provides enough information.\n\
5261 A value greater than 1 provides more verbose information."),
5262 NULL,
5263 NULL,
5264 &setdebuglist, &showdebuglist);
5265
5266 observer_attach_executable_changed (symtab_observer_executable_changed);
5267 }