* breakpoint.h (struct bp_location): Change type of section
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_symtabs (int block_index,
99 const char *name,
100 const char *linkage_name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
105 const char *name,
106 const char *linkage_name,
107 const domain_enum domain);
108
109 static int file_matches (char *, char **, int);
110
111 static void print_symbol_info (domain_enum,
112 struct symtab *, struct symbol *, int, char *);
113
114 static void print_msymbol_info (struct minimal_symbol *);
115
116 static void symtab_symbol_info (char *, domain_enum, int);
117
118 void _initialize_symtab (void);
119
120 /* */
121
122 /* Allow the user to configure the debugger behavior with respect
123 to multiple-choice menus when more than one symbol matches during
124 a symbol lookup. */
125
126 const char multiple_symbols_ask[] = "ask";
127 const char multiple_symbols_all[] = "all";
128 const char multiple_symbols_cancel[] = "cancel";
129 static const char *multiple_symbols_modes[] =
130 {
131 multiple_symbols_ask,
132 multiple_symbols_all,
133 multiple_symbols_cancel,
134 NULL
135 };
136 static const char *multiple_symbols_mode = multiple_symbols_all;
137
138 /* Read-only accessor to AUTO_SELECT_MODE. */
139
140 const char *
141 multiple_symbols_select_mode (void)
142 {
143 return multiple_symbols_mode;
144 }
145
146 /* The single non-language-specific builtin type */
147 struct type *builtin_type_error;
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (const struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->symtab = 0;
694 sal->section = 0;
695 sal->line = 0;
696 sal->pc = 0;
697 sal->end = 0;
698 sal->explicit_pc = 0;
699 sal->explicit_line = 0;
700 }
701 \f
702
703 /* Return 1 if the two sections are the same, or if they could
704 plausibly be copies of each other, one in an original object
705 file and another in a separated debug file. */
706
707 int
708 matching_obj_sections (struct obj_section *obj_first,
709 struct obj_section *obj_second)
710 {
711 asection *first = obj_first? obj_first->the_bfd_section : NULL;
712 asection *second = obj_second? obj_second->the_bfd_section : NULL;
713 struct objfile *obj;
714
715 /* If they're the same section, then they match. */
716 if (first == second)
717 return 1;
718
719 /* If either is NULL, give up. */
720 if (first == NULL || second == NULL)
721 return 0;
722
723 /* This doesn't apply to absolute symbols. */
724 if (first->owner == NULL || second->owner == NULL)
725 return 0;
726
727 /* If they're in the same object file, they must be different sections. */
728 if (first->owner == second->owner)
729 return 0;
730
731 /* Check whether the two sections are potentially corresponding. They must
732 have the same size, address, and name. We can't compare section indexes,
733 which would be more reliable, because some sections may have been
734 stripped. */
735 if (bfd_get_section_size (first) != bfd_get_section_size (second))
736 return 0;
737
738 /* In-memory addresses may start at a different offset, relativize them. */
739 if (bfd_get_section_vma (first->owner, first)
740 - bfd_get_start_address (first->owner)
741 != bfd_get_section_vma (second->owner, second)
742 - bfd_get_start_address (second->owner))
743 return 0;
744
745 if (bfd_get_section_name (first->owner, first) == NULL
746 || bfd_get_section_name (second->owner, second) == NULL
747 || strcmp (bfd_get_section_name (first->owner, first),
748 bfd_get_section_name (second->owner, second)) != 0)
749 return 0;
750
751 /* Otherwise check that they are in corresponding objfiles. */
752
753 ALL_OBJFILES (obj)
754 if (obj->obfd == first->owner)
755 break;
756 gdb_assert (obj != NULL);
757
758 if (obj->separate_debug_objfile != NULL
759 && obj->separate_debug_objfile->obfd == second->owner)
760 return 1;
761 if (obj->separate_debug_objfile_backlink != NULL
762 && obj->separate_debug_objfile_backlink->obfd == second->owner)
763 return 1;
764
765 return 0;
766 }
767
768 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
769 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
770
771 struct partial_symtab *
772 find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
773 struct partial_symtab *pst,
774 struct minimal_symbol *msymbol)
775 {
776 struct objfile *objfile = pst->objfile;
777 struct partial_symtab *tpst;
778 struct partial_symtab *best_pst = pst;
779 CORE_ADDR best_addr = pst->textlow;
780
781 /* An objfile that has its functions reordered might have
782 many partial symbol tables containing the PC, but
783 we want the partial symbol table that contains the
784 function containing the PC. */
785 if (!(objfile->flags & OBJF_REORDERED) &&
786 section == 0) /* can't validate section this way */
787 return pst;
788
789 if (msymbol == NULL)
790 return (pst);
791
792 /* The code range of partial symtabs sometimes overlap, so, in
793 the loop below, we need to check all partial symtabs and
794 find the one that fits better for the given PC address. We
795 select the partial symtab that contains a symbol whose
796 address is closest to the PC address. By closest we mean
797 that find_pc_sect_symbol returns the symbol with address
798 that is closest and still less than the given PC. */
799 for (tpst = pst; tpst != NULL; tpst = tpst->next)
800 {
801 if (pc >= tpst->textlow && pc < tpst->texthigh)
802 {
803 struct partial_symbol *p;
804 CORE_ADDR this_addr;
805
806 /* NOTE: This assumes that every psymbol has a
807 corresponding msymbol, which is not necessarily
808 true; the debug info might be much richer than the
809 object's symbol table. */
810 p = find_pc_sect_psymbol (tpst, pc, section);
811 if (p != NULL
812 && SYMBOL_VALUE_ADDRESS (p)
813 == SYMBOL_VALUE_ADDRESS (msymbol))
814 return tpst;
815
816 /* Also accept the textlow value of a psymtab as a
817 "symbol", to provide some support for partial
818 symbol tables with line information but no debug
819 symbols (e.g. those produced by an assembler). */
820 if (p != NULL)
821 this_addr = SYMBOL_VALUE_ADDRESS (p);
822 else
823 this_addr = tpst->textlow;
824
825 /* Check whether it is closer than our current
826 BEST_ADDR. Since this symbol address is
827 necessarily lower or equal to PC, the symbol closer
828 to PC is the symbol which address is the highest.
829 This way we return the psymtab which contains such
830 best match symbol. This can help in cases where the
831 symbol information/debuginfo is not complete, like
832 for instance on IRIX6 with gcc, where no debug info
833 is emitted for statics. (See also the nodebug.exp
834 testcase.) */
835 if (this_addr > best_addr)
836 {
837 best_addr = this_addr;
838 best_pst = tpst;
839 }
840 }
841 }
842 return best_pst;
843 }
844
845 /* Find which partial symtab contains PC and SECTION. Return 0 if
846 none. We return the psymtab that contains a symbol whose address
847 exactly matches PC, or, if we cannot find an exact match, the
848 psymtab that contains a symbol whose address is closest to PC. */
849 struct partial_symtab *
850 find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
851 {
852 struct objfile *objfile;
853 struct minimal_symbol *msymbol;
854
855 /* If we know that this is not a text address, return failure. This is
856 necessary because we loop based on texthigh and textlow, which do
857 not include the data ranges. */
858 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
859 if (msymbol
860 && (msymbol->type == mst_data
861 || msymbol->type == mst_bss
862 || msymbol->type == mst_abs
863 || msymbol->type == mst_file_data
864 || msymbol->type == mst_file_bss))
865 return NULL;
866
867 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
868 than the later used TEXTLOW/TEXTHIGH one. */
869
870 ALL_OBJFILES (objfile)
871 if (objfile->psymtabs_addrmap != NULL)
872 {
873 struct partial_symtab *pst;
874
875 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
876 if (pst != NULL)
877 {
878 /* FIXME: addrmaps currently do not handle overlayed sections,
879 so fall back to the non-addrmap case if we're debugging
880 overlays and the addrmap returned the wrong section. */
881 if (overlay_debugging && msymbol && section)
882 {
883 struct partial_symbol *p;
884 /* NOTE: This assumes that every psymbol has a
885 corresponding msymbol, which is not necessarily
886 true; the debug info might be much richer than the
887 object's symbol table. */
888 p = find_pc_sect_psymbol (pst, pc, section);
889 if (!p
890 || SYMBOL_VALUE_ADDRESS (p)
891 != SYMBOL_VALUE_ADDRESS (msymbol))
892 continue;
893 }
894
895 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
896 PSYMTABS_ADDRMAP we used has already the best 1-byte
897 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
898 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
899 overlap. */
900
901 return pst;
902 }
903 }
904
905 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
906 which still have no corresponding full SYMTABs read. But it is not
907 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
908 so far. */
909
910 ALL_OBJFILES (objfile)
911 {
912 struct partial_symtab *pst;
913
914 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
915 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
916 debug info type in single OBJFILE. */
917
918 ALL_OBJFILE_PSYMTABS (objfile, pst)
919 if (pc >= pst->textlow && pc < pst->texthigh)
920 {
921 struct partial_symtab *best_pst;
922
923 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
924 msymbol);
925 if (best_pst != NULL)
926 return best_pst;
927 }
928 }
929
930 return NULL;
931 }
932
933 /* Find which partial symtab contains PC. Return 0 if none.
934 Backward compatibility, no section */
935
936 struct partial_symtab *
937 find_pc_psymtab (CORE_ADDR pc)
938 {
939 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
940 }
941
942 /* Find which partial symbol within a psymtab matches PC and SECTION.
943 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
944
945 struct partial_symbol *
946 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
947 struct obj_section *section)
948 {
949 struct partial_symbol *best = NULL, *p, **pp;
950 CORE_ADDR best_pc;
951
952 if (!psymtab)
953 psymtab = find_pc_sect_psymtab (pc, section);
954 if (!psymtab)
955 return 0;
956
957 /* Cope with programs that start at address 0 */
958 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
959
960 /* Search the global symbols as well as the static symbols, so that
961 find_pc_partial_function doesn't use a minimal symbol and thus
962 cache a bad endaddr. */
963 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
964 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
965 < psymtab->n_global_syms);
966 pp++)
967 {
968 p = *pp;
969 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
970 && SYMBOL_CLASS (p) == LOC_BLOCK
971 && pc >= SYMBOL_VALUE_ADDRESS (p)
972 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
973 || (psymtab->textlow == 0
974 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
975 {
976 if (section) /* match on a specific section */
977 {
978 fixup_psymbol_section (p, psymtab->objfile);
979 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
980 continue;
981 }
982 best_pc = SYMBOL_VALUE_ADDRESS (p);
983 best = p;
984 }
985 }
986
987 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
988 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
989 < psymtab->n_static_syms);
990 pp++)
991 {
992 p = *pp;
993 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
994 && SYMBOL_CLASS (p) == LOC_BLOCK
995 && pc >= SYMBOL_VALUE_ADDRESS (p)
996 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
997 || (psymtab->textlow == 0
998 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
999 {
1000 if (section) /* match on a specific section */
1001 {
1002 fixup_psymbol_section (p, psymtab->objfile);
1003 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1004 continue;
1005 }
1006 best_pc = SYMBOL_VALUE_ADDRESS (p);
1007 best = p;
1008 }
1009 }
1010
1011 return best;
1012 }
1013
1014 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1015 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1016
1017 struct partial_symbol *
1018 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1019 {
1020 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1021 }
1022 \f
1023 /* Debug symbols usually don't have section information. We need to dig that
1024 out of the minimal symbols and stash that in the debug symbol. */
1025
1026 static void
1027 fixup_section (struct general_symbol_info *ginfo,
1028 CORE_ADDR addr, struct objfile *objfile)
1029 {
1030 struct minimal_symbol *msym;
1031
1032 /* First, check whether a minimal symbol with the same name exists
1033 and points to the same address. The address check is required
1034 e.g. on PowerPC64, where the minimal symbol for a function will
1035 point to the function descriptor, while the debug symbol will
1036 point to the actual function code. */
1037 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1038 if (msym)
1039 {
1040 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1041 ginfo->section = SYMBOL_SECTION (msym);
1042 }
1043 else
1044 {
1045 /* Static, function-local variables do appear in the linker
1046 (minimal) symbols, but are frequently given names that won't
1047 be found via lookup_minimal_symbol(). E.g., it has been
1048 observed in frv-uclinux (ELF) executables that a static,
1049 function-local variable named "foo" might appear in the
1050 linker symbols as "foo.6" or "foo.3". Thus, there is no
1051 point in attempting to extend the lookup-by-name mechanism to
1052 handle this case due to the fact that there can be multiple
1053 names.
1054
1055 So, instead, search the section table when lookup by name has
1056 failed. The ``addr'' and ``endaddr'' fields may have already
1057 been relocated. If so, the relocation offset (i.e. the
1058 ANOFFSET value) needs to be subtracted from these values when
1059 performing the comparison. We unconditionally subtract it,
1060 because, when no relocation has been performed, the ANOFFSET
1061 value will simply be zero.
1062
1063 The address of the symbol whose section we're fixing up HAS
1064 NOT BEEN adjusted (relocated) yet. It can't have been since
1065 the section isn't yet known and knowing the section is
1066 necessary in order to add the correct relocation value. In
1067 other words, we wouldn't even be in this function (attempting
1068 to compute the section) if it were already known.
1069
1070 Note that it is possible to search the minimal symbols
1071 (subtracting the relocation value if necessary) to find the
1072 matching minimal symbol, but this is overkill and much less
1073 efficient. It is not necessary to find the matching minimal
1074 symbol, only its section.
1075
1076 Note that this technique (of doing a section table search)
1077 can fail when unrelocated section addresses overlap. For
1078 this reason, we still attempt a lookup by name prior to doing
1079 a search of the section table. */
1080
1081 struct obj_section *s;
1082 ALL_OBJFILE_OSECTIONS (objfile, s)
1083 {
1084 int idx = s->the_bfd_section->index;
1085 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1086
1087 if (obj_section_addr (s) - offset <= addr
1088 && addr < obj_section_endaddr (s) - offset)
1089 {
1090 ginfo->obj_section = s;
1091 ginfo->section = idx;
1092 return;
1093 }
1094 }
1095 }
1096 }
1097
1098 struct symbol *
1099 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1100 {
1101 CORE_ADDR addr;
1102
1103 if (!sym)
1104 return NULL;
1105
1106 if (SYMBOL_OBJ_SECTION (sym))
1107 return sym;
1108
1109 /* We either have an OBJFILE, or we can get at it from the sym's
1110 symtab. Anything else is a bug. */
1111 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1112
1113 if (objfile == NULL)
1114 objfile = SYMBOL_SYMTAB (sym)->objfile;
1115
1116 /* We should have an objfile by now. */
1117 gdb_assert (objfile);
1118
1119 switch (SYMBOL_CLASS (sym))
1120 {
1121 case LOC_STATIC:
1122 case LOC_LABEL:
1123 addr = SYMBOL_VALUE_ADDRESS (sym);
1124 break;
1125 case LOC_BLOCK:
1126 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1127 break;
1128
1129 default:
1130 /* Nothing else will be listed in the minsyms -- no use looking
1131 it up. */
1132 return sym;
1133 }
1134
1135 fixup_section (&sym->ginfo, addr, objfile);
1136
1137 return sym;
1138 }
1139
1140 struct partial_symbol *
1141 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1142 {
1143 CORE_ADDR addr;
1144
1145 if (!psym)
1146 return NULL;
1147
1148 if (SYMBOL_OBJ_SECTION (psym))
1149 return psym;
1150
1151 gdb_assert (objfile);
1152
1153 switch (SYMBOL_CLASS (psym))
1154 {
1155 case LOC_STATIC:
1156 case LOC_LABEL:
1157 case LOC_BLOCK:
1158 addr = SYMBOL_VALUE_ADDRESS (psym);
1159 break;
1160 default:
1161 /* Nothing else will be listed in the minsyms -- no use looking
1162 it up. */
1163 return psym;
1164 }
1165
1166 fixup_section (&psym->ginfo, addr, objfile);
1167
1168 return psym;
1169 }
1170
1171 /* Find the definition for a specified symbol name NAME
1172 in domain DOMAIN, visible from lexical block BLOCK.
1173 Returns the struct symbol pointer, or zero if no symbol is found.
1174 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1175 NAME is a field of the current implied argument `this'. If so set
1176 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1177 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1178 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1179
1180 /* This function has a bunch of loops in it and it would seem to be
1181 attractive to put in some QUIT's (though I'm not really sure
1182 whether it can run long enough to be really important). But there
1183 are a few calls for which it would appear to be bad news to quit
1184 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1185 that there is C++ code below which can error(), but that probably
1186 doesn't affect these calls since they are looking for a known
1187 variable and thus can probably assume it will never hit the C++
1188 code). */
1189
1190 struct symbol *
1191 lookup_symbol_in_language (const char *name, const struct block *block,
1192 const domain_enum domain, enum language lang,
1193 int *is_a_field_of_this)
1194 {
1195 char *demangled_name = NULL;
1196 const char *modified_name = NULL;
1197 const char *mangled_name = NULL;
1198 int needtofreename = 0;
1199 struct symbol *returnval;
1200
1201 modified_name = name;
1202
1203 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1204 we can always binary search. */
1205 if (lang == language_cplus)
1206 {
1207 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1208 if (demangled_name)
1209 {
1210 mangled_name = name;
1211 modified_name = demangled_name;
1212 needtofreename = 1;
1213 }
1214 }
1215 else if (lang == language_java)
1216 {
1217 demangled_name = cplus_demangle (name,
1218 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1219 if (demangled_name)
1220 {
1221 mangled_name = name;
1222 modified_name = demangled_name;
1223 needtofreename = 1;
1224 }
1225 }
1226
1227 if (case_sensitivity == case_sensitive_off)
1228 {
1229 char *copy;
1230 int len, i;
1231
1232 len = strlen (name);
1233 copy = (char *) alloca (len + 1);
1234 for (i= 0; i < len; i++)
1235 copy[i] = tolower (name[i]);
1236 copy[len] = 0;
1237 modified_name = copy;
1238 }
1239
1240 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1241 domain, lang, is_a_field_of_this);
1242 if (needtofreename)
1243 xfree (demangled_name);
1244
1245 return returnval;
1246 }
1247
1248 /* Behave like lookup_symbol_in_language, but performed with the
1249 current language. */
1250
1251 struct symbol *
1252 lookup_symbol (const char *name, const struct block *block,
1253 domain_enum domain, int *is_a_field_of_this)
1254 {
1255 return lookup_symbol_in_language (name, block, domain,
1256 current_language->la_language,
1257 is_a_field_of_this);
1258 }
1259
1260 /* Behave like lookup_symbol except that NAME is the natural name
1261 of the symbol that we're looking for and, if LINKAGE_NAME is
1262 non-NULL, ensure that the symbol's linkage name matches as
1263 well. */
1264
1265 static struct symbol *
1266 lookup_symbol_aux (const char *name, const char *linkage_name,
1267 const struct block *block, const domain_enum domain,
1268 enum language language, int *is_a_field_of_this)
1269 {
1270 struct symbol *sym;
1271 const struct language_defn *langdef;
1272
1273 /* Make sure we do something sensible with is_a_field_of_this, since
1274 the callers that set this parameter to some non-null value will
1275 certainly use it later and expect it to be either 0 or 1.
1276 If we don't set it, the contents of is_a_field_of_this are
1277 undefined. */
1278 if (is_a_field_of_this != NULL)
1279 *is_a_field_of_this = 0;
1280
1281 /* Search specified block and its superiors. Don't search
1282 STATIC_BLOCK or GLOBAL_BLOCK. */
1283
1284 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1285 if (sym != NULL)
1286 return sym;
1287
1288 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1289 check to see if NAME is a field of `this'. */
1290
1291 langdef = language_def (language);
1292
1293 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1294 && block != NULL)
1295 {
1296 struct symbol *sym = NULL;
1297 /* 'this' is only defined in the function's block, so find the
1298 enclosing function block. */
1299 for (; block && !BLOCK_FUNCTION (block);
1300 block = BLOCK_SUPERBLOCK (block));
1301
1302 if (block && !dict_empty (BLOCK_DICT (block)))
1303 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1304 NULL, VAR_DOMAIN);
1305 if (sym)
1306 {
1307 struct type *t = sym->type;
1308
1309 /* I'm not really sure that type of this can ever
1310 be typedefed; just be safe. */
1311 CHECK_TYPEDEF (t);
1312 if (TYPE_CODE (t) == TYPE_CODE_PTR
1313 || TYPE_CODE (t) == TYPE_CODE_REF)
1314 t = TYPE_TARGET_TYPE (t);
1315
1316 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1317 && TYPE_CODE (t) != TYPE_CODE_UNION)
1318 error (_("Internal error: `%s' is not an aggregate"),
1319 langdef->la_name_of_this);
1320
1321 if (check_field (t, name))
1322 {
1323 *is_a_field_of_this = 1;
1324 return NULL;
1325 }
1326 }
1327 }
1328
1329 /* Now do whatever is appropriate for LANGUAGE to look
1330 up static and global variables. */
1331
1332 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1333 if (sym != NULL)
1334 return sym;
1335
1336 /* Now search all static file-level symbols. Not strictly correct,
1337 but more useful than an error. Do the symtabs first, then check
1338 the psymtabs. If a psymtab indicates the existence of the
1339 desired name as a file-level static, then do psymtab-to-symtab
1340 conversion on the fly and return the found symbol. */
1341
1342 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1343 if (sym != NULL)
1344 return sym;
1345
1346 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1347 if (sym != NULL)
1348 return sym;
1349
1350 return NULL;
1351 }
1352
1353 /* Check to see if the symbol is defined in BLOCK or its superiors.
1354 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1355
1356 static struct symbol *
1357 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1358 const struct block *block,
1359 const domain_enum domain)
1360 {
1361 struct symbol *sym;
1362 const struct block *static_block = block_static_block (block);
1363
1364 /* Check if either no block is specified or it's a global block. */
1365
1366 if (static_block == NULL)
1367 return NULL;
1368
1369 while (block != static_block)
1370 {
1371 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1372 if (sym != NULL)
1373 return sym;
1374 block = BLOCK_SUPERBLOCK (block);
1375 }
1376
1377 /* We've reached the static block without finding a result. */
1378
1379 return NULL;
1380 }
1381
1382 /* Look up OBJFILE to BLOCK. */
1383
1384 static struct objfile *
1385 lookup_objfile_from_block (const struct block *block)
1386 {
1387 struct objfile *obj;
1388 struct symtab *s;
1389
1390 if (block == NULL)
1391 return NULL;
1392
1393 block = block_global_block (block);
1394 /* Go through SYMTABS. */
1395 ALL_SYMTABS (obj, s)
1396 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1397 return obj;
1398
1399 return NULL;
1400 }
1401
1402 /* Look up a symbol in a block; if found, fixup the symbol, and set
1403 block_found appropriately. */
1404
1405 struct symbol *
1406 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1407 const struct block *block,
1408 const domain_enum domain)
1409 {
1410 struct symbol *sym;
1411
1412 sym = lookup_block_symbol (block, name, linkage_name, domain);
1413 if (sym)
1414 {
1415 block_found = block;
1416 return fixup_symbol_section (sym, NULL);
1417 }
1418
1419 return NULL;
1420 }
1421
1422 /* Check all global symbols in OBJFILE in symtabs and
1423 psymtabs. */
1424
1425 struct symbol *
1426 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1427 const char *name,
1428 const char *linkage_name,
1429 const domain_enum domain)
1430 {
1431 struct symbol *sym;
1432 struct blockvector *bv;
1433 const struct block *block;
1434 struct symtab *s;
1435 struct partial_symtab *ps;
1436
1437 /* Go through symtabs. */
1438 ALL_OBJFILE_SYMTABS (objfile, s)
1439 {
1440 bv = BLOCKVECTOR (s);
1441 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1442 sym = lookup_block_symbol (block, name, linkage_name, domain);
1443 if (sym)
1444 {
1445 block_found = block;
1446 return fixup_symbol_section (sym, (struct objfile *)objfile);
1447 }
1448 }
1449
1450 /* Now go through psymtabs. */
1451 ALL_OBJFILE_PSYMTABS (objfile, ps)
1452 {
1453 if (!ps->readin
1454 && lookup_partial_symbol (ps, name, linkage_name,
1455 1, domain))
1456 {
1457 s = PSYMTAB_TO_SYMTAB (ps);
1458 bv = BLOCKVECTOR (s);
1459 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1460 sym = lookup_block_symbol (block, name, linkage_name, domain);
1461 return fixup_symbol_section (sym, (struct objfile *)objfile);
1462 }
1463 }
1464
1465 if (objfile->separate_debug_objfile)
1466 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1467 name, linkage_name, domain);
1468
1469 return NULL;
1470 }
1471
1472 /* Check to see if the symbol is defined in one of the symtabs.
1473 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1474 depending on whether or not we want to search global symbols or
1475 static symbols. */
1476
1477 static struct symbol *
1478 lookup_symbol_aux_symtabs (int block_index,
1479 const char *name, const char *linkage_name,
1480 const domain_enum domain)
1481 {
1482 struct symbol *sym;
1483 struct objfile *objfile;
1484 struct blockvector *bv;
1485 const struct block *block;
1486 struct symtab *s;
1487
1488 ALL_PRIMARY_SYMTABS (objfile, s)
1489 {
1490 bv = BLOCKVECTOR (s);
1491 block = BLOCKVECTOR_BLOCK (bv, block_index);
1492 sym = lookup_block_symbol (block, name, linkage_name, domain);
1493 if (sym)
1494 {
1495 block_found = block;
1496 return fixup_symbol_section (sym, objfile);
1497 }
1498 }
1499
1500 return NULL;
1501 }
1502
1503 /* Check to see if the symbol is defined in one of the partial
1504 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1505 STATIC_BLOCK, depending on whether or not we want to search global
1506 symbols or static symbols. */
1507
1508 static struct symbol *
1509 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1510 const char *linkage_name,
1511 const domain_enum domain)
1512 {
1513 struct symbol *sym;
1514 struct objfile *objfile;
1515 struct blockvector *bv;
1516 const struct block *block;
1517 struct partial_symtab *ps;
1518 struct symtab *s;
1519 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1520
1521 ALL_PSYMTABS (objfile, ps)
1522 {
1523 if (!ps->readin
1524 && lookup_partial_symbol (ps, name, linkage_name,
1525 psymtab_index, domain))
1526 {
1527 s = PSYMTAB_TO_SYMTAB (ps);
1528 bv = BLOCKVECTOR (s);
1529 block = BLOCKVECTOR_BLOCK (bv, block_index);
1530 sym = lookup_block_symbol (block, name, linkage_name, domain);
1531 if (!sym)
1532 {
1533 /* This shouldn't be necessary, but as a last resort try
1534 looking in the statics even though the psymtab claimed
1535 the symbol was global, or vice-versa. It's possible
1536 that the psymtab gets it wrong in some cases. */
1537
1538 /* FIXME: carlton/2002-09-30: Should we really do that?
1539 If that happens, isn't it likely to be a GDB error, in
1540 which case we should fix the GDB error rather than
1541 silently dealing with it here? So I'd vote for
1542 removing the check for the symbol in the other
1543 block. */
1544 block = BLOCKVECTOR_BLOCK (bv,
1545 block_index == GLOBAL_BLOCK ?
1546 STATIC_BLOCK : GLOBAL_BLOCK);
1547 sym = lookup_block_symbol (block, name, linkage_name, domain);
1548 if (!sym)
1549 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1550 block_index == GLOBAL_BLOCK ? "global" : "static",
1551 name, ps->filename, name, name);
1552 }
1553 return fixup_symbol_section (sym, objfile);
1554 }
1555 }
1556
1557 return NULL;
1558 }
1559
1560 /* A default version of lookup_symbol_nonlocal for use by languages
1561 that can't think of anything better to do. This implements the C
1562 lookup rules. */
1563
1564 struct symbol *
1565 basic_lookup_symbol_nonlocal (const char *name,
1566 const char *linkage_name,
1567 const struct block *block,
1568 const domain_enum domain)
1569 {
1570 struct symbol *sym;
1571
1572 /* NOTE: carlton/2003-05-19: The comments below were written when
1573 this (or what turned into this) was part of lookup_symbol_aux;
1574 I'm much less worried about these questions now, since these
1575 decisions have turned out well, but I leave these comments here
1576 for posterity. */
1577
1578 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1579 not it would be appropriate to search the current global block
1580 here as well. (That's what this code used to do before the
1581 is_a_field_of_this check was moved up.) On the one hand, it's
1582 redundant with the lookup_symbol_aux_symtabs search that happens
1583 next. On the other hand, if decode_line_1 is passed an argument
1584 like filename:var, then the user presumably wants 'var' to be
1585 searched for in filename. On the third hand, there shouldn't be
1586 multiple global variables all of which are named 'var', and it's
1587 not like decode_line_1 has ever restricted its search to only
1588 global variables in a single filename. All in all, only
1589 searching the static block here seems best: it's correct and it's
1590 cleanest. */
1591
1592 /* NOTE: carlton/2002-12-05: There's also a possible performance
1593 issue here: if you usually search for global symbols in the
1594 current file, then it would be slightly better to search the
1595 current global block before searching all the symtabs. But there
1596 are other factors that have a much greater effect on performance
1597 than that one, so I don't think we should worry about that for
1598 now. */
1599
1600 sym = lookup_symbol_static (name, linkage_name, block, domain);
1601 if (sym != NULL)
1602 return sym;
1603
1604 return lookup_symbol_global (name, linkage_name, block, domain);
1605 }
1606
1607 /* Lookup a symbol in the static block associated to BLOCK, if there
1608 is one; do nothing if BLOCK is NULL or a global block. */
1609
1610 struct symbol *
1611 lookup_symbol_static (const char *name,
1612 const char *linkage_name,
1613 const struct block *block,
1614 const domain_enum domain)
1615 {
1616 const struct block *static_block = block_static_block (block);
1617
1618 if (static_block != NULL)
1619 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1620 else
1621 return NULL;
1622 }
1623
1624 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1625 necessary). */
1626
1627 struct symbol *
1628 lookup_symbol_global (const char *name,
1629 const char *linkage_name,
1630 const struct block *block,
1631 const domain_enum domain)
1632 {
1633 struct symbol *sym = NULL;
1634 struct objfile *objfile = NULL;
1635
1636 /* Call library-specific lookup procedure. */
1637 objfile = lookup_objfile_from_block (block);
1638 if (objfile != NULL)
1639 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1640 if (sym != NULL)
1641 return sym;
1642
1643 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1644 if (sym != NULL)
1645 return sym;
1646
1647 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1648 }
1649
1650 int
1651 symbol_matches_domain (enum language symbol_language,
1652 domain_enum symbol_domain,
1653 domain_enum domain)
1654 {
1655 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1656 A Java class declaration also defines a typedef for the class.
1657 Similarly, any Ada type declaration implicitly defines a typedef. */
1658 if (symbol_language == language_cplus
1659 || symbol_language == language_java
1660 || symbol_language == language_ada)
1661 {
1662 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1663 && symbol_domain == STRUCT_DOMAIN)
1664 return 1;
1665 }
1666 /* For all other languages, strict match is required. */
1667 return (symbol_domain == domain);
1668 }
1669
1670 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1671 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1672 linkage name matches it. Check the global symbols if GLOBAL, the
1673 static symbols if not */
1674
1675 struct partial_symbol *
1676 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1677 const char *linkage_name, int global,
1678 domain_enum domain)
1679 {
1680 struct partial_symbol *temp;
1681 struct partial_symbol **start, **psym;
1682 struct partial_symbol **top, **real_top, **bottom, **center;
1683 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1684 int do_linear_search = 1;
1685
1686 if (length == 0)
1687 {
1688 return (NULL);
1689 }
1690 start = (global ?
1691 pst->objfile->global_psymbols.list + pst->globals_offset :
1692 pst->objfile->static_psymbols.list + pst->statics_offset);
1693
1694 if (global) /* This means we can use a binary search. */
1695 {
1696 do_linear_search = 0;
1697
1698 /* Binary search. This search is guaranteed to end with center
1699 pointing at the earliest partial symbol whose name might be
1700 correct. At that point *all* partial symbols with an
1701 appropriate name will be checked against the correct
1702 domain. */
1703
1704 bottom = start;
1705 top = start + length - 1;
1706 real_top = top;
1707 while (top > bottom)
1708 {
1709 center = bottom + (top - bottom) / 2;
1710 if (!(center < top))
1711 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1712 if (!do_linear_search
1713 && (SYMBOL_LANGUAGE (*center) == language_java))
1714 {
1715 do_linear_search = 1;
1716 }
1717 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1718 {
1719 top = center;
1720 }
1721 else
1722 {
1723 bottom = center + 1;
1724 }
1725 }
1726 if (!(top == bottom))
1727 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1728
1729 while (top <= real_top
1730 && (linkage_name != NULL
1731 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1732 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1733 {
1734 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1735 SYMBOL_DOMAIN (*top), domain))
1736 return (*top);
1737 top++;
1738 }
1739 }
1740
1741 /* Can't use a binary search or else we found during the binary search that
1742 we should also do a linear search. */
1743
1744 if (do_linear_search)
1745 {
1746 for (psym = start; psym < start + length; psym++)
1747 {
1748 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1749 SYMBOL_DOMAIN (*psym), domain))
1750 {
1751 if (linkage_name != NULL
1752 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1753 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1754 {
1755 return (*psym);
1756 }
1757 }
1758 }
1759 }
1760
1761 return (NULL);
1762 }
1763
1764 /* Look up a type named NAME in the struct_domain. The type returned
1765 must not be opaque -- i.e., must have at least one field
1766 defined. */
1767
1768 struct type *
1769 lookup_transparent_type (const char *name)
1770 {
1771 return current_language->la_lookup_transparent_type (name);
1772 }
1773
1774 /* The standard implementation of lookup_transparent_type. This code
1775 was modeled on lookup_symbol -- the parts not relevant to looking
1776 up types were just left out. In particular it's assumed here that
1777 types are available in struct_domain and only at file-static or
1778 global blocks. */
1779
1780 struct type *
1781 basic_lookup_transparent_type (const char *name)
1782 {
1783 struct symbol *sym;
1784 struct symtab *s = NULL;
1785 struct partial_symtab *ps;
1786 struct blockvector *bv;
1787 struct objfile *objfile;
1788 struct block *block;
1789
1790 /* Now search all the global symbols. Do the symtab's first, then
1791 check the psymtab's. If a psymtab indicates the existence
1792 of the desired name as a global, then do psymtab-to-symtab
1793 conversion on the fly and return the found symbol. */
1794
1795 ALL_PRIMARY_SYMTABS (objfile, s)
1796 {
1797 bv = BLOCKVECTOR (s);
1798 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1799 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1800 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1801 {
1802 return SYMBOL_TYPE (sym);
1803 }
1804 }
1805
1806 ALL_PSYMTABS (objfile, ps)
1807 {
1808 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1809 1, STRUCT_DOMAIN))
1810 {
1811 s = PSYMTAB_TO_SYMTAB (ps);
1812 bv = BLOCKVECTOR (s);
1813 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1814 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1815 if (!sym)
1816 {
1817 /* This shouldn't be necessary, but as a last resort
1818 * try looking in the statics even though the psymtab
1819 * claimed the symbol was global. It's possible that
1820 * the psymtab gets it wrong in some cases.
1821 */
1822 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1823 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1824 if (!sym)
1825 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1826 %s may be an inlined function, or may be a template function\n\
1827 (if a template, try specifying an instantiation: %s<type>)."),
1828 name, ps->filename, name, name);
1829 }
1830 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1831 return SYMBOL_TYPE (sym);
1832 }
1833 }
1834
1835 /* Now search the static file-level symbols.
1836 Not strictly correct, but more useful than an error.
1837 Do the symtab's first, then
1838 check the psymtab's. If a psymtab indicates the existence
1839 of the desired name as a file-level static, then do psymtab-to-symtab
1840 conversion on the fly and return the found symbol.
1841 */
1842
1843 ALL_PRIMARY_SYMTABS (objfile, s)
1844 {
1845 bv = BLOCKVECTOR (s);
1846 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1847 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1848 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1849 {
1850 return SYMBOL_TYPE (sym);
1851 }
1852 }
1853
1854 ALL_PSYMTABS (objfile, ps)
1855 {
1856 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1857 {
1858 s = PSYMTAB_TO_SYMTAB (ps);
1859 bv = BLOCKVECTOR (s);
1860 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1861 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1862 if (!sym)
1863 {
1864 /* This shouldn't be necessary, but as a last resort
1865 * try looking in the globals even though the psymtab
1866 * claimed the symbol was static. It's possible that
1867 * the psymtab gets it wrong in some cases.
1868 */
1869 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1870 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1871 if (!sym)
1872 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1873 %s may be an inlined function, or may be a template function\n\
1874 (if a template, try specifying an instantiation: %s<type>)."),
1875 name, ps->filename, name, name);
1876 }
1877 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1878 return SYMBOL_TYPE (sym);
1879 }
1880 }
1881 return (struct type *) 0;
1882 }
1883
1884
1885 /* Find the psymtab containing main(). */
1886 /* FIXME: What about languages without main() or specially linked
1887 executables that have no main() ? */
1888
1889 struct partial_symtab *
1890 find_main_psymtab (void)
1891 {
1892 struct partial_symtab *pst;
1893 struct objfile *objfile;
1894
1895 ALL_PSYMTABS (objfile, pst)
1896 {
1897 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1898 {
1899 return (pst);
1900 }
1901 }
1902 return (NULL);
1903 }
1904
1905 /* Search BLOCK for symbol NAME in DOMAIN.
1906
1907 Note that if NAME is the demangled form of a C++ symbol, we will fail
1908 to find a match during the binary search of the non-encoded names, but
1909 for now we don't worry about the slight inefficiency of looking for
1910 a match we'll never find, since it will go pretty quick. Once the
1911 binary search terminates, we drop through and do a straight linear
1912 search on the symbols. Each symbol which is marked as being a ObjC/C++
1913 symbol (language_cplus or language_objc set) has both the encoded and
1914 non-encoded names tested for a match.
1915
1916 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1917 particular mangled name.
1918 */
1919
1920 struct symbol *
1921 lookup_block_symbol (const struct block *block, const char *name,
1922 const char *linkage_name,
1923 const domain_enum domain)
1924 {
1925 struct dict_iterator iter;
1926 struct symbol *sym;
1927
1928 if (!BLOCK_FUNCTION (block))
1929 {
1930 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1931 sym != NULL;
1932 sym = dict_iter_name_next (name, &iter))
1933 {
1934 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1935 SYMBOL_DOMAIN (sym), domain)
1936 && (linkage_name != NULL
1937 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1938 return sym;
1939 }
1940 return NULL;
1941 }
1942 else
1943 {
1944 /* Note that parameter symbols do not always show up last in the
1945 list; this loop makes sure to take anything else other than
1946 parameter symbols first; it only uses parameter symbols as a
1947 last resort. Note that this only takes up extra computation
1948 time on a match. */
1949
1950 struct symbol *sym_found = NULL;
1951
1952 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1953 sym != NULL;
1954 sym = dict_iter_name_next (name, &iter))
1955 {
1956 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1957 SYMBOL_DOMAIN (sym), domain)
1958 && (linkage_name != NULL
1959 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1960 {
1961 sym_found = sym;
1962 if (!SYMBOL_IS_ARGUMENT (sym))
1963 {
1964 break;
1965 }
1966 }
1967 }
1968 return (sym_found); /* Will be NULL if not found. */
1969 }
1970 }
1971
1972 /* Find the symtab associated with PC and SECTION. Look through the
1973 psymtabs and read in another symtab if necessary. */
1974
1975 struct symtab *
1976 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1977 {
1978 struct block *b;
1979 struct blockvector *bv;
1980 struct symtab *s = NULL;
1981 struct symtab *best_s = NULL;
1982 struct partial_symtab *ps;
1983 struct objfile *objfile;
1984 CORE_ADDR distance = 0;
1985 struct minimal_symbol *msymbol;
1986
1987 /* If we know that this is not a text address, return failure. This is
1988 necessary because we loop based on the block's high and low code
1989 addresses, which do not include the data ranges, and because
1990 we call find_pc_sect_psymtab which has a similar restriction based
1991 on the partial_symtab's texthigh and textlow. */
1992 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1993 if (msymbol
1994 && (msymbol->type == mst_data
1995 || msymbol->type == mst_bss
1996 || msymbol->type == mst_abs
1997 || msymbol->type == mst_file_data
1998 || msymbol->type == mst_file_bss))
1999 return NULL;
2000
2001 /* Search all symtabs for the one whose file contains our address, and which
2002 is the smallest of all the ones containing the address. This is designed
2003 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2004 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2005 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2006
2007 This happens for native ecoff format, where code from included files
2008 gets its own symtab. The symtab for the included file should have
2009 been read in already via the dependency mechanism.
2010 It might be swifter to create several symtabs with the same name
2011 like xcoff does (I'm not sure).
2012
2013 It also happens for objfiles that have their functions reordered.
2014 For these, the symtab we are looking for is not necessarily read in. */
2015
2016 ALL_PRIMARY_SYMTABS (objfile, s)
2017 {
2018 bv = BLOCKVECTOR (s);
2019 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2020
2021 if (BLOCK_START (b) <= pc
2022 && BLOCK_END (b) > pc
2023 && (distance == 0
2024 || BLOCK_END (b) - BLOCK_START (b) < distance))
2025 {
2026 /* For an objfile that has its functions reordered,
2027 find_pc_psymtab will find the proper partial symbol table
2028 and we simply return its corresponding symtab. */
2029 /* In order to better support objfiles that contain both
2030 stabs and coff debugging info, we continue on if a psymtab
2031 can't be found. */
2032 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2033 {
2034 ps = find_pc_sect_psymtab (pc, section);
2035 if (ps)
2036 return PSYMTAB_TO_SYMTAB (ps);
2037 }
2038 if (section != 0)
2039 {
2040 struct dict_iterator iter;
2041 struct symbol *sym = NULL;
2042
2043 ALL_BLOCK_SYMBOLS (b, iter, sym)
2044 {
2045 fixup_symbol_section (sym, objfile);
2046 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2047 break;
2048 }
2049 if (sym == NULL)
2050 continue; /* no symbol in this symtab matches section */
2051 }
2052 distance = BLOCK_END (b) - BLOCK_START (b);
2053 best_s = s;
2054 }
2055 }
2056
2057 if (best_s != NULL)
2058 return (best_s);
2059
2060 s = NULL;
2061 ps = find_pc_sect_psymtab (pc, section);
2062 if (ps)
2063 {
2064 if (ps->readin)
2065 /* Might want to error() here (in case symtab is corrupt and
2066 will cause a core dump), but maybe we can successfully
2067 continue, so let's not. */
2068 warning (_("\
2069 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2070 paddr_nz (pc));
2071 s = PSYMTAB_TO_SYMTAB (ps);
2072 }
2073 return (s);
2074 }
2075
2076 /* Find the symtab associated with PC. Look through the psymtabs and
2077 read in another symtab if necessary. Backward compatibility, no section */
2078
2079 struct symtab *
2080 find_pc_symtab (CORE_ADDR pc)
2081 {
2082 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2083 }
2084 \f
2085
2086 /* Find the source file and line number for a given PC value and SECTION.
2087 Return a structure containing a symtab pointer, a line number,
2088 and a pc range for the entire source line.
2089 The value's .pc field is NOT the specified pc.
2090 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2091 use the line that ends there. Otherwise, in that case, the line
2092 that begins there is used. */
2093
2094 /* The big complication here is that a line may start in one file, and end just
2095 before the start of another file. This usually occurs when you #include
2096 code in the middle of a subroutine. To properly find the end of a line's PC
2097 range, we must search all symtabs associated with this compilation unit, and
2098 find the one whose first PC is closer than that of the next line in this
2099 symtab. */
2100
2101 /* If it's worth the effort, we could be using a binary search. */
2102
2103 struct symtab_and_line
2104 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2105 {
2106 struct symtab *s;
2107 struct linetable *l;
2108 int len;
2109 int i;
2110 struct linetable_entry *item;
2111 struct symtab_and_line val;
2112 struct blockvector *bv;
2113 struct minimal_symbol *msymbol;
2114 struct minimal_symbol *mfunsym;
2115
2116 /* Info on best line seen so far, and where it starts, and its file. */
2117
2118 struct linetable_entry *best = NULL;
2119 CORE_ADDR best_end = 0;
2120 struct symtab *best_symtab = 0;
2121
2122 /* Store here the first line number
2123 of a file which contains the line at the smallest pc after PC.
2124 If we don't find a line whose range contains PC,
2125 we will use a line one less than this,
2126 with a range from the start of that file to the first line's pc. */
2127 struct linetable_entry *alt = NULL;
2128 struct symtab *alt_symtab = 0;
2129
2130 /* Info on best line seen in this file. */
2131
2132 struct linetable_entry *prev;
2133
2134 /* If this pc is not from the current frame,
2135 it is the address of the end of a call instruction.
2136 Quite likely that is the start of the following statement.
2137 But what we want is the statement containing the instruction.
2138 Fudge the pc to make sure we get that. */
2139
2140 init_sal (&val); /* initialize to zeroes */
2141
2142 /* It's tempting to assume that, if we can't find debugging info for
2143 any function enclosing PC, that we shouldn't search for line
2144 number info, either. However, GAS can emit line number info for
2145 assembly files --- very helpful when debugging hand-written
2146 assembly code. In such a case, we'd have no debug info for the
2147 function, but we would have line info. */
2148
2149 if (notcurrent)
2150 pc -= 1;
2151
2152 /* elz: added this because this function returned the wrong
2153 information if the pc belongs to a stub (import/export)
2154 to call a shlib function. This stub would be anywhere between
2155 two functions in the target, and the line info was erroneously
2156 taken to be the one of the line before the pc.
2157 */
2158 /* RT: Further explanation:
2159
2160 * We have stubs (trampolines) inserted between procedures.
2161 *
2162 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2163 * exists in the main image.
2164 *
2165 * In the minimal symbol table, we have a bunch of symbols
2166 * sorted by start address. The stubs are marked as "trampoline",
2167 * the others appear as text. E.g.:
2168 *
2169 * Minimal symbol table for main image
2170 * main: code for main (text symbol)
2171 * shr1: stub (trampoline symbol)
2172 * foo: code for foo (text symbol)
2173 * ...
2174 * Minimal symbol table for "shr1" image:
2175 * ...
2176 * shr1: code for shr1 (text symbol)
2177 * ...
2178 *
2179 * So the code below is trying to detect if we are in the stub
2180 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2181 * and if found, do the symbolization from the real-code address
2182 * rather than the stub address.
2183 *
2184 * Assumptions being made about the minimal symbol table:
2185 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2186 * if we're really in the trampoline. If we're beyond it (say
2187 * we're in "foo" in the above example), it'll have a closer
2188 * symbol (the "foo" text symbol for example) and will not
2189 * return the trampoline.
2190 * 2. lookup_minimal_symbol_text() will find a real text symbol
2191 * corresponding to the trampoline, and whose address will
2192 * be different than the trampoline address. I put in a sanity
2193 * check for the address being the same, to avoid an
2194 * infinite recursion.
2195 */
2196 msymbol = lookup_minimal_symbol_by_pc (pc);
2197 if (msymbol != NULL)
2198 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2199 {
2200 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2201 NULL);
2202 if (mfunsym == NULL)
2203 /* I eliminated this warning since it is coming out
2204 * in the following situation:
2205 * gdb shmain // test program with shared libraries
2206 * (gdb) break shr1 // function in shared lib
2207 * Warning: In stub for ...
2208 * In the above situation, the shared lib is not loaded yet,
2209 * so of course we can't find the real func/line info,
2210 * but the "break" still works, and the warning is annoying.
2211 * So I commented out the warning. RT */
2212 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2213 /* fall through */
2214 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2215 /* Avoid infinite recursion */
2216 /* See above comment about why warning is commented out */
2217 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2218 /* fall through */
2219 else
2220 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2221 }
2222
2223
2224 s = find_pc_sect_symtab (pc, section);
2225 if (!s)
2226 {
2227 /* if no symbol information, return previous pc */
2228 if (notcurrent)
2229 pc++;
2230 val.pc = pc;
2231 return val;
2232 }
2233
2234 bv = BLOCKVECTOR (s);
2235
2236 /* Look at all the symtabs that share this blockvector.
2237 They all have the same apriori range, that we found was right;
2238 but they have different line tables. */
2239
2240 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2241 {
2242 /* Find the best line in this symtab. */
2243 l = LINETABLE (s);
2244 if (!l)
2245 continue;
2246 len = l->nitems;
2247 if (len <= 0)
2248 {
2249 /* I think len can be zero if the symtab lacks line numbers
2250 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2251 I'm not sure which, and maybe it depends on the symbol
2252 reader). */
2253 continue;
2254 }
2255
2256 prev = NULL;
2257 item = l->item; /* Get first line info */
2258
2259 /* Is this file's first line closer than the first lines of other files?
2260 If so, record this file, and its first line, as best alternate. */
2261 if (item->pc > pc && (!alt || item->pc < alt->pc))
2262 {
2263 alt = item;
2264 alt_symtab = s;
2265 }
2266
2267 for (i = 0; i < len; i++, item++)
2268 {
2269 /* Leave prev pointing to the linetable entry for the last line
2270 that started at or before PC. */
2271 if (item->pc > pc)
2272 break;
2273
2274 prev = item;
2275 }
2276
2277 /* At this point, prev points at the line whose start addr is <= pc, and
2278 item points at the next line. If we ran off the end of the linetable
2279 (pc >= start of the last line), then prev == item. If pc < start of
2280 the first line, prev will not be set. */
2281
2282 /* Is this file's best line closer than the best in the other files?
2283 If so, record this file, and its best line, as best so far. Don't
2284 save prev if it represents the end of a function (i.e. line number
2285 0) instead of a real line. */
2286
2287 if (prev && prev->line && (!best || prev->pc > best->pc))
2288 {
2289 best = prev;
2290 best_symtab = s;
2291
2292 /* Discard BEST_END if it's before the PC of the current BEST. */
2293 if (best_end <= best->pc)
2294 best_end = 0;
2295 }
2296
2297 /* If another line (denoted by ITEM) is in the linetable and its
2298 PC is after BEST's PC, but before the current BEST_END, then
2299 use ITEM's PC as the new best_end. */
2300 if (best && i < len && item->pc > best->pc
2301 && (best_end == 0 || best_end > item->pc))
2302 best_end = item->pc;
2303 }
2304
2305 if (!best_symtab)
2306 {
2307 /* If we didn't find any line number info, just return zeros.
2308 We used to return alt->line - 1 here, but that could be
2309 anywhere; if we don't have line number info for this PC,
2310 don't make some up. */
2311 val.pc = pc;
2312 }
2313 else if (best->line == 0)
2314 {
2315 /* If our best fit is in a range of PC's for which no line
2316 number info is available (line number is zero) then we didn't
2317 find any valid line information. */
2318 val.pc = pc;
2319 }
2320 else
2321 {
2322 val.symtab = best_symtab;
2323 val.line = best->line;
2324 val.pc = best->pc;
2325 if (best_end && (!alt || best_end < alt->pc))
2326 val.end = best_end;
2327 else if (alt)
2328 val.end = alt->pc;
2329 else
2330 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2331 }
2332 val.section = section;
2333 return val;
2334 }
2335
2336 /* Backward compatibility (no section) */
2337
2338 struct symtab_and_line
2339 find_pc_line (CORE_ADDR pc, int notcurrent)
2340 {
2341 struct obj_section *section;
2342
2343 section = find_pc_overlay (pc);
2344 if (pc_in_unmapped_range (pc, section))
2345 pc = overlay_mapped_address (pc, section);
2346 return find_pc_sect_line (pc, section, notcurrent);
2347 }
2348 \f
2349 /* Find line number LINE in any symtab whose name is the same as
2350 SYMTAB.
2351
2352 If found, return the symtab that contains the linetable in which it was
2353 found, set *INDEX to the index in the linetable of the best entry
2354 found, and set *EXACT_MATCH nonzero if the value returned is an
2355 exact match.
2356
2357 If not found, return NULL. */
2358
2359 struct symtab *
2360 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2361 {
2362 int exact;
2363
2364 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2365 so far seen. */
2366
2367 int best_index;
2368 struct linetable *best_linetable;
2369 struct symtab *best_symtab;
2370
2371 /* First try looking it up in the given symtab. */
2372 best_linetable = LINETABLE (symtab);
2373 best_symtab = symtab;
2374 best_index = find_line_common (best_linetable, line, &exact);
2375 if (best_index < 0 || !exact)
2376 {
2377 /* Didn't find an exact match. So we better keep looking for
2378 another symtab with the same name. In the case of xcoff,
2379 multiple csects for one source file (produced by IBM's FORTRAN
2380 compiler) produce multiple symtabs (this is unavoidable
2381 assuming csects can be at arbitrary places in memory and that
2382 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2383
2384 /* BEST is the smallest linenumber > LINE so far seen,
2385 or 0 if none has been seen so far.
2386 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2387 int best;
2388
2389 struct objfile *objfile;
2390 struct symtab *s;
2391 struct partial_symtab *p;
2392
2393 if (best_index >= 0)
2394 best = best_linetable->item[best_index].line;
2395 else
2396 best = 0;
2397
2398 ALL_PSYMTABS (objfile, p)
2399 {
2400 if (strcmp (symtab->filename, p->filename) != 0)
2401 continue;
2402 PSYMTAB_TO_SYMTAB (p);
2403 }
2404
2405 ALL_SYMTABS (objfile, s)
2406 {
2407 struct linetable *l;
2408 int ind;
2409
2410 if (strcmp (symtab->filename, s->filename) != 0)
2411 continue;
2412 l = LINETABLE (s);
2413 ind = find_line_common (l, line, &exact);
2414 if (ind >= 0)
2415 {
2416 if (exact)
2417 {
2418 best_index = ind;
2419 best_linetable = l;
2420 best_symtab = s;
2421 goto done;
2422 }
2423 if (best == 0 || l->item[ind].line < best)
2424 {
2425 best = l->item[ind].line;
2426 best_index = ind;
2427 best_linetable = l;
2428 best_symtab = s;
2429 }
2430 }
2431 }
2432 }
2433 done:
2434 if (best_index < 0)
2435 return NULL;
2436
2437 if (index)
2438 *index = best_index;
2439 if (exact_match)
2440 *exact_match = exact;
2441
2442 return best_symtab;
2443 }
2444 \f
2445 /* Set the PC value for a given source file and line number and return true.
2446 Returns zero for invalid line number (and sets the PC to 0).
2447 The source file is specified with a struct symtab. */
2448
2449 int
2450 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2451 {
2452 struct linetable *l;
2453 int ind;
2454
2455 *pc = 0;
2456 if (symtab == 0)
2457 return 0;
2458
2459 symtab = find_line_symtab (symtab, line, &ind, NULL);
2460 if (symtab != NULL)
2461 {
2462 l = LINETABLE (symtab);
2463 *pc = l->item[ind].pc;
2464 return 1;
2465 }
2466 else
2467 return 0;
2468 }
2469
2470 /* Find the range of pc values in a line.
2471 Store the starting pc of the line into *STARTPTR
2472 and the ending pc (start of next line) into *ENDPTR.
2473 Returns 1 to indicate success.
2474 Returns 0 if could not find the specified line. */
2475
2476 int
2477 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2478 CORE_ADDR *endptr)
2479 {
2480 CORE_ADDR startaddr;
2481 struct symtab_and_line found_sal;
2482
2483 startaddr = sal.pc;
2484 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2485 return 0;
2486
2487 /* This whole function is based on address. For example, if line 10 has
2488 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2489 "info line *0x123" should say the line goes from 0x100 to 0x200
2490 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2491 This also insures that we never give a range like "starts at 0x134
2492 and ends at 0x12c". */
2493
2494 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2495 if (found_sal.line != sal.line)
2496 {
2497 /* The specified line (sal) has zero bytes. */
2498 *startptr = found_sal.pc;
2499 *endptr = found_sal.pc;
2500 }
2501 else
2502 {
2503 *startptr = found_sal.pc;
2504 *endptr = found_sal.end;
2505 }
2506 return 1;
2507 }
2508
2509 /* Given a line table and a line number, return the index into the line
2510 table for the pc of the nearest line whose number is >= the specified one.
2511 Return -1 if none is found. The value is >= 0 if it is an index.
2512
2513 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2514
2515 static int
2516 find_line_common (struct linetable *l, int lineno,
2517 int *exact_match)
2518 {
2519 int i;
2520 int len;
2521
2522 /* BEST is the smallest linenumber > LINENO so far seen,
2523 or 0 if none has been seen so far.
2524 BEST_INDEX identifies the item for it. */
2525
2526 int best_index = -1;
2527 int best = 0;
2528
2529 *exact_match = 0;
2530
2531 if (lineno <= 0)
2532 return -1;
2533 if (l == 0)
2534 return -1;
2535
2536 len = l->nitems;
2537 for (i = 0; i < len; i++)
2538 {
2539 struct linetable_entry *item = &(l->item[i]);
2540
2541 if (item->line == lineno)
2542 {
2543 /* Return the first (lowest address) entry which matches. */
2544 *exact_match = 1;
2545 return i;
2546 }
2547
2548 if (item->line > lineno && (best == 0 || item->line < best))
2549 {
2550 best = item->line;
2551 best_index = i;
2552 }
2553 }
2554
2555 /* If we got here, we didn't get an exact match. */
2556 return best_index;
2557 }
2558
2559 int
2560 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2561 {
2562 struct symtab_and_line sal;
2563 sal = find_pc_line (pc, 0);
2564 *startptr = sal.pc;
2565 *endptr = sal.end;
2566 return sal.symtab != 0;
2567 }
2568
2569 /* Given a function start address PC and SECTION, find the first
2570 address after the function prologue. */
2571 CORE_ADDR
2572 find_function_start_pc (struct gdbarch *gdbarch,
2573 CORE_ADDR pc, struct obj_section *section)
2574 {
2575 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2576 so that gdbarch_skip_prologue has something unique to work on. */
2577 if (section_is_overlay (section) && !section_is_mapped (section))
2578 pc = overlay_unmapped_address (pc, section);
2579
2580 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2581 pc = gdbarch_skip_prologue (gdbarch, pc);
2582
2583 /* For overlays, map pc back into its mapped VMA range. */
2584 pc = overlay_mapped_address (pc, section);
2585
2586 return pc;
2587 }
2588
2589 /* Given a function symbol SYM, find the symtab and line for the start
2590 of the function.
2591 If the argument FUNFIRSTLINE is nonzero, we want the first line
2592 of real code inside the function. */
2593
2594 struct symtab_and_line
2595 find_function_start_sal (struct symbol *sym, int funfirstline)
2596 {
2597 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2598 struct objfile *objfile = lookup_objfile_from_block (block);
2599 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2600
2601 CORE_ADDR pc;
2602 struct symtab_and_line sal;
2603
2604 pc = BLOCK_START (block);
2605 fixup_symbol_section (sym, objfile);
2606 if (funfirstline)
2607 {
2608 /* Skip "first line" of function (which is actually its prologue). */
2609 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2610 }
2611 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2612
2613 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2614 line is still part of the same function. */
2615 if (sal.pc != pc
2616 && BLOCK_START (block) <= sal.end
2617 && sal.end < BLOCK_END (block))
2618 {
2619 /* First pc of next line */
2620 pc = sal.end;
2621 /* Recalculate the line number (might not be N+1). */
2622 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2623 }
2624
2625 /* On targets with executable formats that don't have a concept of
2626 constructors (ELF with .init has, PE doesn't), gcc emits a call
2627 to `__main' in `main' between the prologue and before user
2628 code. */
2629 if (funfirstline
2630 && gdbarch_skip_main_prologue_p (current_gdbarch)
2631 && SYMBOL_LINKAGE_NAME (sym)
2632 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2633 {
2634 pc = gdbarch_skip_main_prologue (current_gdbarch, pc);
2635 /* Recalculate the line number (might not be N+1). */
2636 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2637 }
2638
2639 sal.pc = pc;
2640
2641 return sal;
2642 }
2643
2644 /* If P is of the form "operator[ \t]+..." where `...' is
2645 some legitimate operator text, return a pointer to the
2646 beginning of the substring of the operator text.
2647 Otherwise, return "". */
2648 char *
2649 operator_chars (char *p, char **end)
2650 {
2651 *end = "";
2652 if (strncmp (p, "operator", 8))
2653 return *end;
2654 p += 8;
2655
2656 /* Don't get faked out by `operator' being part of a longer
2657 identifier. */
2658 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2659 return *end;
2660
2661 /* Allow some whitespace between `operator' and the operator symbol. */
2662 while (*p == ' ' || *p == '\t')
2663 p++;
2664
2665 /* Recognize 'operator TYPENAME'. */
2666
2667 if (isalpha (*p) || *p == '_' || *p == '$')
2668 {
2669 char *q = p + 1;
2670 while (isalnum (*q) || *q == '_' || *q == '$')
2671 q++;
2672 *end = q;
2673 return p;
2674 }
2675
2676 while (*p)
2677 switch (*p)
2678 {
2679 case '\\': /* regexp quoting */
2680 if (p[1] == '*')
2681 {
2682 if (p[2] == '=') /* 'operator\*=' */
2683 *end = p + 3;
2684 else /* 'operator\*' */
2685 *end = p + 2;
2686 return p;
2687 }
2688 else if (p[1] == '[')
2689 {
2690 if (p[2] == ']')
2691 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2692 else if (p[2] == '\\' && p[3] == ']')
2693 {
2694 *end = p + 4; /* 'operator\[\]' */
2695 return p;
2696 }
2697 else
2698 error (_("nothing is allowed between '[' and ']'"));
2699 }
2700 else
2701 {
2702 /* Gratuitous qoute: skip it and move on. */
2703 p++;
2704 continue;
2705 }
2706 break;
2707 case '!':
2708 case '=':
2709 case '*':
2710 case '/':
2711 case '%':
2712 case '^':
2713 if (p[1] == '=')
2714 *end = p + 2;
2715 else
2716 *end = p + 1;
2717 return p;
2718 case '<':
2719 case '>':
2720 case '+':
2721 case '-':
2722 case '&':
2723 case '|':
2724 if (p[0] == '-' && p[1] == '>')
2725 {
2726 /* Struct pointer member operator 'operator->'. */
2727 if (p[2] == '*')
2728 {
2729 *end = p + 3; /* 'operator->*' */
2730 return p;
2731 }
2732 else if (p[2] == '\\')
2733 {
2734 *end = p + 4; /* Hopefully 'operator->\*' */
2735 return p;
2736 }
2737 else
2738 {
2739 *end = p + 2; /* 'operator->' */
2740 return p;
2741 }
2742 }
2743 if (p[1] == '=' || p[1] == p[0])
2744 *end = p + 2;
2745 else
2746 *end = p + 1;
2747 return p;
2748 case '~':
2749 case ',':
2750 *end = p + 1;
2751 return p;
2752 case '(':
2753 if (p[1] != ')')
2754 error (_("`operator ()' must be specified without whitespace in `()'"));
2755 *end = p + 2;
2756 return p;
2757 case '?':
2758 if (p[1] != ':')
2759 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2760 *end = p + 2;
2761 return p;
2762 case '[':
2763 if (p[1] != ']')
2764 error (_("`operator []' must be specified without whitespace in `[]'"));
2765 *end = p + 2;
2766 return p;
2767 default:
2768 error (_("`operator %s' not supported"), p);
2769 break;
2770 }
2771
2772 *end = "";
2773 return *end;
2774 }
2775 \f
2776
2777 /* If FILE is not already in the table of files, return zero;
2778 otherwise return non-zero. Optionally add FILE to the table if ADD
2779 is non-zero. If *FIRST is non-zero, forget the old table
2780 contents. */
2781 static int
2782 filename_seen (const char *file, int add, int *first)
2783 {
2784 /* Table of files seen so far. */
2785 static const char **tab = NULL;
2786 /* Allocated size of tab in elements.
2787 Start with one 256-byte block (when using GNU malloc.c).
2788 24 is the malloc overhead when range checking is in effect. */
2789 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2790 /* Current size of tab in elements. */
2791 static int tab_cur_size;
2792 const char **p;
2793
2794 if (*first)
2795 {
2796 if (tab == NULL)
2797 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2798 tab_cur_size = 0;
2799 }
2800
2801 /* Is FILE in tab? */
2802 for (p = tab; p < tab + tab_cur_size; p++)
2803 if (strcmp (*p, file) == 0)
2804 return 1;
2805
2806 /* No; maybe add it to tab. */
2807 if (add)
2808 {
2809 if (tab_cur_size == tab_alloc_size)
2810 {
2811 tab_alloc_size *= 2;
2812 tab = (const char **) xrealloc ((char *) tab,
2813 tab_alloc_size * sizeof (*tab));
2814 }
2815 tab[tab_cur_size++] = file;
2816 }
2817
2818 return 0;
2819 }
2820
2821 /* Slave routine for sources_info. Force line breaks at ,'s.
2822 NAME is the name to print and *FIRST is nonzero if this is the first
2823 name printed. Set *FIRST to zero. */
2824 static void
2825 output_source_filename (const char *name, int *first)
2826 {
2827 /* Since a single source file can result in several partial symbol
2828 tables, we need to avoid printing it more than once. Note: if
2829 some of the psymtabs are read in and some are not, it gets
2830 printed both under "Source files for which symbols have been
2831 read" and "Source files for which symbols will be read in on
2832 demand". I consider this a reasonable way to deal with the
2833 situation. I'm not sure whether this can also happen for
2834 symtabs; it doesn't hurt to check. */
2835
2836 /* Was NAME already seen? */
2837 if (filename_seen (name, 1, first))
2838 {
2839 /* Yes; don't print it again. */
2840 return;
2841 }
2842 /* No; print it and reset *FIRST. */
2843 if (*first)
2844 {
2845 *first = 0;
2846 }
2847 else
2848 {
2849 printf_filtered (", ");
2850 }
2851
2852 wrap_here ("");
2853 fputs_filtered (name, gdb_stdout);
2854 }
2855
2856 static void
2857 sources_info (char *ignore, int from_tty)
2858 {
2859 struct symtab *s;
2860 struct partial_symtab *ps;
2861 struct objfile *objfile;
2862 int first;
2863
2864 if (!have_full_symbols () && !have_partial_symbols ())
2865 {
2866 error (_("No symbol table is loaded. Use the \"file\" command."));
2867 }
2868
2869 printf_filtered ("Source files for which symbols have been read in:\n\n");
2870
2871 first = 1;
2872 ALL_SYMTABS (objfile, s)
2873 {
2874 const char *fullname = symtab_to_fullname (s);
2875 output_source_filename (fullname ? fullname : s->filename, &first);
2876 }
2877 printf_filtered ("\n\n");
2878
2879 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2880
2881 first = 1;
2882 ALL_PSYMTABS (objfile, ps)
2883 {
2884 if (!ps->readin)
2885 {
2886 const char *fullname = psymtab_to_fullname (ps);
2887 output_source_filename (fullname ? fullname : ps->filename, &first);
2888 }
2889 }
2890 printf_filtered ("\n");
2891 }
2892
2893 static int
2894 file_matches (char *file, char *files[], int nfiles)
2895 {
2896 int i;
2897
2898 if (file != NULL && nfiles != 0)
2899 {
2900 for (i = 0; i < nfiles; i++)
2901 {
2902 if (strcmp (files[i], lbasename (file)) == 0)
2903 return 1;
2904 }
2905 }
2906 else if (nfiles == 0)
2907 return 1;
2908 return 0;
2909 }
2910
2911 /* Free any memory associated with a search. */
2912 void
2913 free_search_symbols (struct symbol_search *symbols)
2914 {
2915 struct symbol_search *p;
2916 struct symbol_search *next;
2917
2918 for (p = symbols; p != NULL; p = next)
2919 {
2920 next = p->next;
2921 xfree (p);
2922 }
2923 }
2924
2925 static void
2926 do_free_search_symbols_cleanup (void *symbols)
2927 {
2928 free_search_symbols (symbols);
2929 }
2930
2931 struct cleanup *
2932 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2933 {
2934 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2935 }
2936
2937 /* Helper function for sort_search_symbols and qsort. Can only
2938 sort symbols, not minimal symbols. */
2939 static int
2940 compare_search_syms (const void *sa, const void *sb)
2941 {
2942 struct symbol_search **sym_a = (struct symbol_search **) sa;
2943 struct symbol_search **sym_b = (struct symbol_search **) sb;
2944
2945 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2946 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2947 }
2948
2949 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2950 prevtail where it is, but update its next pointer to point to
2951 the first of the sorted symbols. */
2952 static struct symbol_search *
2953 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2954 {
2955 struct symbol_search **symbols, *symp, *old_next;
2956 int i;
2957
2958 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2959 * nfound);
2960 symp = prevtail->next;
2961 for (i = 0; i < nfound; i++)
2962 {
2963 symbols[i] = symp;
2964 symp = symp->next;
2965 }
2966 /* Generally NULL. */
2967 old_next = symp;
2968
2969 qsort (symbols, nfound, sizeof (struct symbol_search *),
2970 compare_search_syms);
2971
2972 symp = prevtail;
2973 for (i = 0; i < nfound; i++)
2974 {
2975 symp->next = symbols[i];
2976 symp = symp->next;
2977 }
2978 symp->next = old_next;
2979
2980 xfree (symbols);
2981 return symp;
2982 }
2983
2984 /* Search the symbol table for matches to the regular expression REGEXP,
2985 returning the results in *MATCHES.
2986
2987 Only symbols of KIND are searched:
2988 FUNCTIONS_DOMAIN - search all functions
2989 TYPES_DOMAIN - search all type names
2990 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2991 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2992 and constants (enums)
2993
2994 free_search_symbols should be called when *MATCHES is no longer needed.
2995
2996 The results are sorted locally; each symtab's global and static blocks are
2997 separately alphabetized.
2998 */
2999 void
3000 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3001 struct symbol_search **matches)
3002 {
3003 struct symtab *s;
3004 struct partial_symtab *ps;
3005 struct blockvector *bv;
3006 struct block *b;
3007 int i = 0;
3008 struct dict_iterator iter;
3009 struct symbol *sym;
3010 struct partial_symbol **psym;
3011 struct objfile *objfile;
3012 struct minimal_symbol *msymbol;
3013 char *val;
3014 int found_misc = 0;
3015 static enum minimal_symbol_type types[]
3016 =
3017 {mst_data, mst_text, mst_abs, mst_unknown};
3018 static enum minimal_symbol_type types2[]
3019 =
3020 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3021 static enum minimal_symbol_type types3[]
3022 =
3023 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3024 static enum minimal_symbol_type types4[]
3025 =
3026 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3027 enum minimal_symbol_type ourtype;
3028 enum minimal_symbol_type ourtype2;
3029 enum minimal_symbol_type ourtype3;
3030 enum minimal_symbol_type ourtype4;
3031 struct symbol_search *sr;
3032 struct symbol_search *psr;
3033 struct symbol_search *tail;
3034 struct cleanup *old_chain = NULL;
3035
3036 if (kind < VARIABLES_DOMAIN)
3037 error (_("must search on specific domain"));
3038
3039 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3040 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3041 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3042 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3043
3044 sr = *matches = NULL;
3045 tail = NULL;
3046
3047 if (regexp != NULL)
3048 {
3049 /* Make sure spacing is right for C++ operators.
3050 This is just a courtesy to make the matching less sensitive
3051 to how many spaces the user leaves between 'operator'
3052 and <TYPENAME> or <OPERATOR>. */
3053 char *opend;
3054 char *opname = operator_chars (regexp, &opend);
3055 if (*opname)
3056 {
3057 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3058 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3059 {
3060 /* There should 1 space between 'operator' and 'TYPENAME'. */
3061 if (opname[-1] != ' ' || opname[-2] == ' ')
3062 fix = 1;
3063 }
3064 else
3065 {
3066 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3067 if (opname[-1] == ' ')
3068 fix = 0;
3069 }
3070 /* If wrong number of spaces, fix it. */
3071 if (fix >= 0)
3072 {
3073 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3074 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3075 regexp = tmp;
3076 }
3077 }
3078
3079 if (0 != (val = re_comp (regexp)))
3080 error (_("Invalid regexp (%s): %s"), val, regexp);
3081 }
3082
3083 /* Search through the partial symtabs *first* for all symbols
3084 matching the regexp. That way we don't have to reproduce all of
3085 the machinery below. */
3086
3087 ALL_PSYMTABS (objfile, ps)
3088 {
3089 struct partial_symbol **bound, **gbound, **sbound;
3090 int keep_going = 1;
3091
3092 if (ps->readin)
3093 continue;
3094
3095 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3096 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3097 bound = gbound;
3098
3099 /* Go through all of the symbols stored in a partial
3100 symtab in one loop. */
3101 psym = objfile->global_psymbols.list + ps->globals_offset;
3102 while (keep_going)
3103 {
3104 if (psym >= bound)
3105 {
3106 if (bound == gbound && ps->n_static_syms != 0)
3107 {
3108 psym = objfile->static_psymbols.list + ps->statics_offset;
3109 bound = sbound;
3110 }
3111 else
3112 keep_going = 0;
3113 continue;
3114 }
3115 else
3116 {
3117 QUIT;
3118
3119 /* If it would match (logic taken from loop below)
3120 load the file and go on to the next one. We check the
3121 filename here, but that's a bit bogus: we don't know
3122 what file it really comes from until we have full
3123 symtabs. The symbol might be in a header file included by
3124 this psymtab. This only affects Insight. */
3125 if (file_matches (ps->filename, files, nfiles)
3126 && ((regexp == NULL
3127 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3128 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3129 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3130 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3131 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3132 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3133 {
3134 PSYMTAB_TO_SYMTAB (ps);
3135 keep_going = 0;
3136 }
3137 }
3138 psym++;
3139 }
3140 }
3141
3142 /* Here, we search through the minimal symbol tables for functions
3143 and variables that match, and force their symbols to be read.
3144 This is in particular necessary for demangled variable names,
3145 which are no longer put into the partial symbol tables.
3146 The symbol will then be found during the scan of symtabs below.
3147
3148 For functions, find_pc_symtab should succeed if we have debug info
3149 for the function, for variables we have to call lookup_symbol
3150 to determine if the variable has debug info.
3151 If the lookup fails, set found_misc so that we will rescan to print
3152 any matching symbols without debug info.
3153 */
3154
3155 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3156 {
3157 ALL_MSYMBOLS (objfile, msymbol)
3158 {
3159 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3160 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3161 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3162 MSYMBOL_TYPE (msymbol) == ourtype4)
3163 {
3164 if (regexp == NULL
3165 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3166 {
3167 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3168 {
3169 /* FIXME: carlton/2003-02-04: Given that the
3170 semantics of lookup_symbol keeps on changing
3171 slightly, it would be a nice idea if we had a
3172 function lookup_symbol_minsym that found the
3173 symbol associated to a given minimal symbol (if
3174 any). */
3175 if (kind == FUNCTIONS_DOMAIN
3176 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3177 (struct block *) NULL,
3178 VAR_DOMAIN, 0)
3179 == NULL)
3180 found_misc = 1;
3181 }
3182 }
3183 }
3184 }
3185 }
3186
3187 ALL_PRIMARY_SYMTABS (objfile, s)
3188 {
3189 bv = BLOCKVECTOR (s);
3190 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3191 {
3192 struct symbol_search *prevtail = tail;
3193 int nfound = 0;
3194 b = BLOCKVECTOR_BLOCK (bv, i);
3195 ALL_BLOCK_SYMBOLS (b, iter, sym)
3196 {
3197 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3198 QUIT;
3199
3200 if (file_matches (real_symtab->filename, files, nfiles)
3201 && ((regexp == NULL
3202 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3203 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3204 && SYMBOL_CLASS (sym) != LOC_BLOCK
3205 && SYMBOL_CLASS (sym) != LOC_CONST)
3206 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3207 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3208 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3209 {
3210 /* match */
3211 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3212 psr->block = i;
3213 psr->symtab = real_symtab;
3214 psr->symbol = sym;
3215 psr->msymbol = NULL;
3216 psr->next = NULL;
3217 if (tail == NULL)
3218 sr = psr;
3219 else
3220 tail->next = psr;
3221 tail = psr;
3222 nfound ++;
3223 }
3224 }
3225 if (nfound > 0)
3226 {
3227 if (prevtail == NULL)
3228 {
3229 struct symbol_search dummy;
3230
3231 dummy.next = sr;
3232 tail = sort_search_symbols (&dummy, nfound);
3233 sr = dummy.next;
3234
3235 old_chain = make_cleanup_free_search_symbols (sr);
3236 }
3237 else
3238 tail = sort_search_symbols (prevtail, nfound);
3239 }
3240 }
3241 }
3242
3243 /* If there are no eyes, avoid all contact. I mean, if there are
3244 no debug symbols, then print directly from the msymbol_vector. */
3245
3246 if (found_misc || kind != FUNCTIONS_DOMAIN)
3247 {
3248 ALL_MSYMBOLS (objfile, msymbol)
3249 {
3250 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3251 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3252 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3253 MSYMBOL_TYPE (msymbol) == ourtype4)
3254 {
3255 if (regexp == NULL
3256 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3257 {
3258 /* Functions: Look up by address. */
3259 if (kind != FUNCTIONS_DOMAIN ||
3260 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3261 {
3262 /* Variables/Absolutes: Look up by name */
3263 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3264 (struct block *) NULL, VAR_DOMAIN, 0)
3265 == NULL)
3266 {
3267 /* match */
3268 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3269 psr->block = i;
3270 psr->msymbol = msymbol;
3271 psr->symtab = NULL;
3272 psr->symbol = NULL;
3273 psr->next = NULL;
3274 if (tail == NULL)
3275 {
3276 sr = psr;
3277 old_chain = make_cleanup_free_search_symbols (sr);
3278 }
3279 else
3280 tail->next = psr;
3281 tail = psr;
3282 }
3283 }
3284 }
3285 }
3286 }
3287 }
3288
3289 *matches = sr;
3290 if (sr != NULL)
3291 discard_cleanups (old_chain);
3292 }
3293
3294 /* Helper function for symtab_symbol_info, this function uses
3295 the data returned from search_symbols() to print information
3296 regarding the match to gdb_stdout.
3297 */
3298 static void
3299 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3300 int block, char *last)
3301 {
3302 if (last == NULL || strcmp (last, s->filename) != 0)
3303 {
3304 fputs_filtered ("\nFile ", gdb_stdout);
3305 fputs_filtered (s->filename, gdb_stdout);
3306 fputs_filtered (":\n", gdb_stdout);
3307 }
3308
3309 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3310 printf_filtered ("static ");
3311
3312 /* Typedef that is not a C++ class */
3313 if (kind == TYPES_DOMAIN
3314 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3315 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3316 /* variable, func, or typedef-that-is-c++-class */
3317 else if (kind < TYPES_DOMAIN ||
3318 (kind == TYPES_DOMAIN &&
3319 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3320 {
3321 type_print (SYMBOL_TYPE (sym),
3322 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3323 ? "" : SYMBOL_PRINT_NAME (sym)),
3324 gdb_stdout, 0);
3325
3326 printf_filtered (";\n");
3327 }
3328 }
3329
3330 /* This help function for symtab_symbol_info() prints information
3331 for non-debugging symbols to gdb_stdout.
3332 */
3333 static void
3334 print_msymbol_info (struct minimal_symbol *msymbol)
3335 {
3336 char *tmp;
3337
3338 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3339 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3340 & (CORE_ADDR) 0xffffffff,
3341 8);
3342 else
3343 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3344 16);
3345 printf_filtered ("%s %s\n",
3346 tmp, SYMBOL_PRINT_NAME (msymbol));
3347 }
3348
3349 /* This is the guts of the commands "info functions", "info types", and
3350 "info variables". It calls search_symbols to find all matches and then
3351 print_[m]symbol_info to print out some useful information about the
3352 matches.
3353 */
3354 static void
3355 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3356 {
3357 static char *classnames[]
3358 =
3359 {"variable", "function", "type", "method"};
3360 struct symbol_search *symbols;
3361 struct symbol_search *p;
3362 struct cleanup *old_chain;
3363 char *last_filename = NULL;
3364 int first = 1;
3365
3366 /* must make sure that if we're interrupted, symbols gets freed */
3367 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3368 old_chain = make_cleanup_free_search_symbols (symbols);
3369
3370 printf_filtered (regexp
3371 ? "All %ss matching regular expression \"%s\":\n"
3372 : "All defined %ss:\n",
3373 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3374
3375 for (p = symbols; p != NULL; p = p->next)
3376 {
3377 QUIT;
3378
3379 if (p->msymbol != NULL)
3380 {
3381 if (first)
3382 {
3383 printf_filtered ("\nNon-debugging symbols:\n");
3384 first = 0;
3385 }
3386 print_msymbol_info (p->msymbol);
3387 }
3388 else
3389 {
3390 print_symbol_info (kind,
3391 p->symtab,
3392 p->symbol,
3393 p->block,
3394 last_filename);
3395 last_filename = p->symtab->filename;
3396 }
3397 }
3398
3399 do_cleanups (old_chain);
3400 }
3401
3402 static void
3403 variables_info (char *regexp, int from_tty)
3404 {
3405 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3406 }
3407
3408 static void
3409 functions_info (char *regexp, int from_tty)
3410 {
3411 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3412 }
3413
3414
3415 static void
3416 types_info (char *regexp, int from_tty)
3417 {
3418 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3419 }
3420
3421 /* Breakpoint all functions matching regular expression. */
3422
3423 void
3424 rbreak_command_wrapper (char *regexp, int from_tty)
3425 {
3426 rbreak_command (regexp, from_tty);
3427 }
3428
3429 static void
3430 rbreak_command (char *regexp, int from_tty)
3431 {
3432 struct symbol_search *ss;
3433 struct symbol_search *p;
3434 struct cleanup *old_chain;
3435
3436 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3437 old_chain = make_cleanup_free_search_symbols (ss);
3438
3439 for (p = ss; p != NULL; p = p->next)
3440 {
3441 if (p->msymbol == NULL)
3442 {
3443 char *string = alloca (strlen (p->symtab->filename)
3444 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3445 + 4);
3446 strcpy (string, p->symtab->filename);
3447 strcat (string, ":'");
3448 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3449 strcat (string, "'");
3450 break_command (string, from_tty);
3451 print_symbol_info (FUNCTIONS_DOMAIN,
3452 p->symtab,
3453 p->symbol,
3454 p->block,
3455 p->symtab->filename);
3456 }
3457 else
3458 {
3459 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3460 + 3);
3461 strcpy (string, "'");
3462 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3463 strcat (string, "'");
3464
3465 break_command (string, from_tty);
3466 printf_filtered ("<function, no debug info> %s;\n",
3467 SYMBOL_PRINT_NAME (p->msymbol));
3468 }
3469 }
3470
3471 do_cleanups (old_chain);
3472 }
3473 \f
3474
3475 /* Helper routine for make_symbol_completion_list. */
3476
3477 static int return_val_size;
3478 static int return_val_index;
3479 static char **return_val;
3480
3481 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3482 completion_list_add_name \
3483 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3484
3485 /* Test to see if the symbol specified by SYMNAME (which is already
3486 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3487 characters. If so, add it to the current completion list. */
3488
3489 static void
3490 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3491 char *text, char *word)
3492 {
3493 int newsize;
3494 int i;
3495
3496 /* clip symbols that cannot match */
3497
3498 if (strncmp (symname, sym_text, sym_text_len) != 0)
3499 {
3500 return;
3501 }
3502
3503 /* We have a match for a completion, so add SYMNAME to the current list
3504 of matches. Note that the name is moved to freshly malloc'd space. */
3505
3506 {
3507 char *new;
3508 if (word == sym_text)
3509 {
3510 new = xmalloc (strlen (symname) + 5);
3511 strcpy (new, symname);
3512 }
3513 else if (word > sym_text)
3514 {
3515 /* Return some portion of symname. */
3516 new = xmalloc (strlen (symname) + 5);
3517 strcpy (new, symname + (word - sym_text));
3518 }
3519 else
3520 {
3521 /* Return some of SYM_TEXT plus symname. */
3522 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3523 strncpy (new, word, sym_text - word);
3524 new[sym_text - word] = '\0';
3525 strcat (new, symname);
3526 }
3527
3528 if (return_val_index + 3 > return_val_size)
3529 {
3530 newsize = (return_val_size *= 2) * sizeof (char *);
3531 return_val = (char **) xrealloc ((char *) return_val, newsize);
3532 }
3533 return_val[return_val_index++] = new;
3534 return_val[return_val_index] = NULL;
3535 }
3536 }
3537
3538 /* ObjC: In case we are completing on a selector, look as the msymbol
3539 again and feed all the selectors into the mill. */
3540
3541 static void
3542 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3543 int sym_text_len, char *text, char *word)
3544 {
3545 static char *tmp = NULL;
3546 static unsigned int tmplen = 0;
3547
3548 char *method, *category, *selector;
3549 char *tmp2 = NULL;
3550
3551 method = SYMBOL_NATURAL_NAME (msymbol);
3552
3553 /* Is it a method? */
3554 if ((method[0] != '-') && (method[0] != '+'))
3555 return;
3556
3557 if (sym_text[0] == '[')
3558 /* Complete on shortened method method. */
3559 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3560
3561 while ((strlen (method) + 1) >= tmplen)
3562 {
3563 if (tmplen == 0)
3564 tmplen = 1024;
3565 else
3566 tmplen *= 2;
3567 tmp = xrealloc (tmp, tmplen);
3568 }
3569 selector = strchr (method, ' ');
3570 if (selector != NULL)
3571 selector++;
3572
3573 category = strchr (method, '(');
3574
3575 if ((category != NULL) && (selector != NULL))
3576 {
3577 memcpy (tmp, method, (category - method));
3578 tmp[category - method] = ' ';
3579 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3580 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3581 if (sym_text[0] == '[')
3582 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3583 }
3584
3585 if (selector != NULL)
3586 {
3587 /* Complete on selector only. */
3588 strcpy (tmp, selector);
3589 tmp2 = strchr (tmp, ']');
3590 if (tmp2 != NULL)
3591 *tmp2 = '\0';
3592
3593 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3594 }
3595 }
3596
3597 /* Break the non-quoted text based on the characters which are in
3598 symbols. FIXME: This should probably be language-specific. */
3599
3600 static char *
3601 language_search_unquoted_string (char *text, char *p)
3602 {
3603 for (; p > text; --p)
3604 {
3605 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3606 continue;
3607 else
3608 {
3609 if ((current_language->la_language == language_objc))
3610 {
3611 if (p[-1] == ':') /* might be part of a method name */
3612 continue;
3613 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3614 p -= 2; /* beginning of a method name */
3615 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3616 { /* might be part of a method name */
3617 char *t = p;
3618
3619 /* Seeing a ' ' or a '(' is not conclusive evidence
3620 that we are in the middle of a method name. However,
3621 finding "-[" or "+[" should be pretty un-ambiguous.
3622 Unfortunately we have to find it now to decide. */
3623
3624 while (t > text)
3625 if (isalnum (t[-1]) || t[-1] == '_' ||
3626 t[-1] == ' ' || t[-1] == ':' ||
3627 t[-1] == '(' || t[-1] == ')')
3628 --t;
3629 else
3630 break;
3631
3632 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3633 p = t - 2; /* method name detected */
3634 /* else we leave with p unchanged */
3635 }
3636 }
3637 break;
3638 }
3639 }
3640 return p;
3641 }
3642
3643 char **
3644 default_make_symbol_completion_list (char *text, char *word)
3645 {
3646 /* Problem: All of the symbols have to be copied because readline
3647 frees them. I'm not going to worry about this; hopefully there
3648 won't be that many. */
3649
3650 struct symbol *sym;
3651 struct symtab *s;
3652 struct partial_symtab *ps;
3653 struct minimal_symbol *msymbol;
3654 struct objfile *objfile;
3655 struct block *b, *surrounding_static_block = 0;
3656 struct dict_iterator iter;
3657 int j;
3658 struct partial_symbol **psym;
3659 /* The symbol we are completing on. Points in same buffer as text. */
3660 char *sym_text;
3661 /* Length of sym_text. */
3662 int sym_text_len;
3663
3664 /* Now look for the symbol we are supposed to complete on. */
3665 {
3666 char *p;
3667 char quote_found;
3668 char *quote_pos = NULL;
3669
3670 /* First see if this is a quoted string. */
3671 quote_found = '\0';
3672 for (p = text; *p != '\0'; ++p)
3673 {
3674 if (quote_found != '\0')
3675 {
3676 if (*p == quote_found)
3677 /* Found close quote. */
3678 quote_found = '\0';
3679 else if (*p == '\\' && p[1] == quote_found)
3680 /* A backslash followed by the quote character
3681 doesn't end the string. */
3682 ++p;
3683 }
3684 else if (*p == '\'' || *p == '"')
3685 {
3686 quote_found = *p;
3687 quote_pos = p;
3688 }
3689 }
3690 if (quote_found == '\'')
3691 /* A string within single quotes can be a symbol, so complete on it. */
3692 sym_text = quote_pos + 1;
3693 else if (quote_found == '"')
3694 /* A double-quoted string is never a symbol, nor does it make sense
3695 to complete it any other way. */
3696 {
3697 return_val = (char **) xmalloc (sizeof (char *));
3698 return_val[0] = NULL;
3699 return return_val;
3700 }
3701 else
3702 {
3703 /* It is not a quoted string. Break it based on the characters
3704 which are in symbols. */
3705 while (p > text)
3706 {
3707 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3708 --p;
3709 else
3710 break;
3711 }
3712 sym_text = p;
3713 }
3714 }
3715
3716 sym_text_len = strlen (sym_text);
3717
3718 return_val_size = 100;
3719 return_val_index = 0;
3720 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3721 return_val[0] = NULL;
3722
3723 /* Look through the partial symtabs for all symbols which begin
3724 by matching SYM_TEXT. Add each one that you find to the list. */
3725
3726 ALL_PSYMTABS (objfile, ps)
3727 {
3728 /* If the psymtab's been read in we'll get it when we search
3729 through the blockvector. */
3730 if (ps->readin)
3731 continue;
3732
3733 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3734 psym < (objfile->global_psymbols.list + ps->globals_offset
3735 + ps->n_global_syms);
3736 psym++)
3737 {
3738 /* If interrupted, then quit. */
3739 QUIT;
3740 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3741 }
3742
3743 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3744 psym < (objfile->static_psymbols.list + ps->statics_offset
3745 + ps->n_static_syms);
3746 psym++)
3747 {
3748 QUIT;
3749 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3750 }
3751 }
3752
3753 /* At this point scan through the misc symbol vectors and add each
3754 symbol you find to the list. Eventually we want to ignore
3755 anything that isn't a text symbol (everything else will be
3756 handled by the psymtab code above). */
3757
3758 ALL_MSYMBOLS (objfile, msymbol)
3759 {
3760 QUIT;
3761 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3762
3763 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3764 }
3765
3766 /* Search upwards from currently selected frame (so that we can
3767 complete on local vars. */
3768
3769 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3770 {
3771 if (!BLOCK_SUPERBLOCK (b))
3772 {
3773 surrounding_static_block = b; /* For elmin of dups */
3774 }
3775
3776 /* Also catch fields of types defined in this places which match our
3777 text string. Only complete on types visible from current context. */
3778
3779 ALL_BLOCK_SYMBOLS (b, iter, sym)
3780 {
3781 QUIT;
3782 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3783 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3784 {
3785 struct type *t = SYMBOL_TYPE (sym);
3786 enum type_code c = TYPE_CODE (t);
3787
3788 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3789 {
3790 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3791 {
3792 if (TYPE_FIELD_NAME (t, j))
3793 {
3794 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3795 sym_text, sym_text_len, text, word);
3796 }
3797 }
3798 }
3799 }
3800 }
3801 }
3802
3803 /* Go through the symtabs and check the externs and statics for
3804 symbols which match. */
3805
3806 ALL_PRIMARY_SYMTABS (objfile, s)
3807 {
3808 QUIT;
3809 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3810 ALL_BLOCK_SYMBOLS (b, iter, sym)
3811 {
3812 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3813 }
3814 }
3815
3816 ALL_PRIMARY_SYMTABS (objfile, s)
3817 {
3818 QUIT;
3819 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3820 /* Don't do this block twice. */
3821 if (b == surrounding_static_block)
3822 continue;
3823 ALL_BLOCK_SYMBOLS (b, iter, sym)
3824 {
3825 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3826 }
3827 }
3828
3829 return (return_val);
3830 }
3831
3832 /* Return a NULL terminated array of all symbols (regardless of class)
3833 which begin by matching TEXT. If the answer is no symbols, then
3834 the return value is an array which contains only a NULL pointer. */
3835
3836 char **
3837 make_symbol_completion_list (char *text, char *word)
3838 {
3839 return current_language->la_make_symbol_completion_list (text, word);
3840 }
3841
3842 /* Like make_symbol_completion_list, but returns a list of symbols
3843 defined in a source file FILE. */
3844
3845 char **
3846 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3847 {
3848 struct symbol *sym;
3849 struct symtab *s;
3850 struct block *b;
3851 struct dict_iterator iter;
3852 /* The symbol we are completing on. Points in same buffer as text. */
3853 char *sym_text;
3854 /* Length of sym_text. */
3855 int sym_text_len;
3856
3857 /* Now look for the symbol we are supposed to complete on.
3858 FIXME: This should be language-specific. */
3859 {
3860 char *p;
3861 char quote_found;
3862 char *quote_pos = NULL;
3863
3864 /* First see if this is a quoted string. */
3865 quote_found = '\0';
3866 for (p = text; *p != '\0'; ++p)
3867 {
3868 if (quote_found != '\0')
3869 {
3870 if (*p == quote_found)
3871 /* Found close quote. */
3872 quote_found = '\0';
3873 else if (*p == '\\' && p[1] == quote_found)
3874 /* A backslash followed by the quote character
3875 doesn't end the string. */
3876 ++p;
3877 }
3878 else if (*p == '\'' || *p == '"')
3879 {
3880 quote_found = *p;
3881 quote_pos = p;
3882 }
3883 }
3884 if (quote_found == '\'')
3885 /* A string within single quotes can be a symbol, so complete on it. */
3886 sym_text = quote_pos + 1;
3887 else if (quote_found == '"')
3888 /* A double-quoted string is never a symbol, nor does it make sense
3889 to complete it any other way. */
3890 {
3891 return_val = (char **) xmalloc (sizeof (char *));
3892 return_val[0] = NULL;
3893 return return_val;
3894 }
3895 else
3896 {
3897 /* Not a quoted string. */
3898 sym_text = language_search_unquoted_string (text, p);
3899 }
3900 }
3901
3902 sym_text_len = strlen (sym_text);
3903
3904 return_val_size = 10;
3905 return_val_index = 0;
3906 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3907 return_val[0] = NULL;
3908
3909 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3910 in). */
3911 s = lookup_symtab (srcfile);
3912 if (s == NULL)
3913 {
3914 /* Maybe they typed the file with leading directories, while the
3915 symbol tables record only its basename. */
3916 const char *tail = lbasename (srcfile);
3917
3918 if (tail > srcfile)
3919 s = lookup_symtab (tail);
3920 }
3921
3922 /* If we have no symtab for that file, return an empty list. */
3923 if (s == NULL)
3924 return (return_val);
3925
3926 /* Go through this symtab and check the externs and statics for
3927 symbols which match. */
3928
3929 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3930 ALL_BLOCK_SYMBOLS (b, iter, sym)
3931 {
3932 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3933 }
3934
3935 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3936 ALL_BLOCK_SYMBOLS (b, iter, sym)
3937 {
3938 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3939 }
3940
3941 return (return_val);
3942 }
3943
3944 /* A helper function for make_source_files_completion_list. It adds
3945 another file name to a list of possible completions, growing the
3946 list as necessary. */
3947
3948 static void
3949 add_filename_to_list (const char *fname, char *text, char *word,
3950 char ***list, int *list_used, int *list_alloced)
3951 {
3952 char *new;
3953 size_t fnlen = strlen (fname);
3954
3955 if (*list_used + 1 >= *list_alloced)
3956 {
3957 *list_alloced *= 2;
3958 *list = (char **) xrealloc ((char *) *list,
3959 *list_alloced * sizeof (char *));
3960 }
3961
3962 if (word == text)
3963 {
3964 /* Return exactly fname. */
3965 new = xmalloc (fnlen + 5);
3966 strcpy (new, fname);
3967 }
3968 else if (word > text)
3969 {
3970 /* Return some portion of fname. */
3971 new = xmalloc (fnlen + 5);
3972 strcpy (new, fname + (word - text));
3973 }
3974 else
3975 {
3976 /* Return some of TEXT plus fname. */
3977 new = xmalloc (fnlen + (text - word) + 5);
3978 strncpy (new, word, text - word);
3979 new[text - word] = '\0';
3980 strcat (new, fname);
3981 }
3982 (*list)[*list_used] = new;
3983 (*list)[++*list_used] = NULL;
3984 }
3985
3986 static int
3987 not_interesting_fname (const char *fname)
3988 {
3989 static const char *illegal_aliens[] = {
3990 "_globals_", /* inserted by coff_symtab_read */
3991 NULL
3992 };
3993 int i;
3994
3995 for (i = 0; illegal_aliens[i]; i++)
3996 {
3997 if (strcmp (fname, illegal_aliens[i]) == 0)
3998 return 1;
3999 }
4000 return 0;
4001 }
4002
4003 /* Return a NULL terminated array of all source files whose names
4004 begin with matching TEXT. The file names are looked up in the
4005 symbol tables of this program. If the answer is no matchess, then
4006 the return value is an array which contains only a NULL pointer. */
4007
4008 char **
4009 make_source_files_completion_list (char *text, char *word)
4010 {
4011 struct symtab *s;
4012 struct partial_symtab *ps;
4013 struct objfile *objfile;
4014 int first = 1;
4015 int list_alloced = 1;
4016 int list_used = 0;
4017 size_t text_len = strlen (text);
4018 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4019 const char *base_name;
4020
4021 list[0] = NULL;
4022
4023 if (!have_full_symbols () && !have_partial_symbols ())
4024 return list;
4025
4026 ALL_SYMTABS (objfile, s)
4027 {
4028 if (not_interesting_fname (s->filename))
4029 continue;
4030 if (!filename_seen (s->filename, 1, &first)
4031 #if HAVE_DOS_BASED_FILE_SYSTEM
4032 && strncasecmp (s->filename, text, text_len) == 0
4033 #else
4034 && strncmp (s->filename, text, text_len) == 0
4035 #endif
4036 )
4037 {
4038 /* This file matches for a completion; add it to the current
4039 list of matches. */
4040 add_filename_to_list (s->filename, text, word,
4041 &list, &list_used, &list_alloced);
4042 }
4043 else
4044 {
4045 /* NOTE: We allow the user to type a base name when the
4046 debug info records leading directories, but not the other
4047 way around. This is what subroutines of breakpoint
4048 command do when they parse file names. */
4049 base_name = lbasename (s->filename);
4050 if (base_name != s->filename
4051 && !filename_seen (base_name, 1, &first)
4052 #if HAVE_DOS_BASED_FILE_SYSTEM
4053 && strncasecmp (base_name, text, text_len) == 0
4054 #else
4055 && strncmp (base_name, text, text_len) == 0
4056 #endif
4057 )
4058 add_filename_to_list (base_name, text, word,
4059 &list, &list_used, &list_alloced);
4060 }
4061 }
4062
4063 ALL_PSYMTABS (objfile, ps)
4064 {
4065 if (not_interesting_fname (ps->filename))
4066 continue;
4067 if (!ps->readin)
4068 {
4069 if (!filename_seen (ps->filename, 1, &first)
4070 #if HAVE_DOS_BASED_FILE_SYSTEM
4071 && strncasecmp (ps->filename, text, text_len) == 0
4072 #else
4073 && strncmp (ps->filename, text, text_len) == 0
4074 #endif
4075 )
4076 {
4077 /* This file matches for a completion; add it to the
4078 current list of matches. */
4079 add_filename_to_list (ps->filename, text, word,
4080 &list, &list_used, &list_alloced);
4081
4082 }
4083 else
4084 {
4085 base_name = lbasename (ps->filename);
4086 if (base_name != ps->filename
4087 && !filename_seen (base_name, 1, &first)
4088 #if HAVE_DOS_BASED_FILE_SYSTEM
4089 && strncasecmp (base_name, text, text_len) == 0
4090 #else
4091 && strncmp (base_name, text, text_len) == 0
4092 #endif
4093 )
4094 add_filename_to_list (base_name, text, word,
4095 &list, &list_used, &list_alloced);
4096 }
4097 }
4098 }
4099
4100 return list;
4101 }
4102
4103 /* Determine if PC is in the prologue of a function. The prologue is the area
4104 between the first instruction of a function, and the first executable line.
4105 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4106
4107 If non-zero, func_start is where we think the prologue starts, possibly
4108 by previous examination of symbol table information.
4109 */
4110
4111 int
4112 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4113 {
4114 struct symtab_and_line sal;
4115 CORE_ADDR func_addr, func_end;
4116
4117 /* We have several sources of information we can consult to figure
4118 this out.
4119 - Compilers usually emit line number info that marks the prologue
4120 as its own "source line". So the ending address of that "line"
4121 is the end of the prologue. If available, this is the most
4122 reliable method.
4123 - The minimal symbols and partial symbols, which can usually tell
4124 us the starting and ending addresses of a function.
4125 - If we know the function's start address, we can call the
4126 architecture-defined gdbarch_skip_prologue function to analyze the
4127 instruction stream and guess where the prologue ends.
4128 - Our `func_start' argument; if non-zero, this is the caller's
4129 best guess as to the function's entry point. At the time of
4130 this writing, handle_inferior_event doesn't get this right, so
4131 it should be our last resort. */
4132
4133 /* Consult the partial symbol table, to find which function
4134 the PC is in. */
4135 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4136 {
4137 CORE_ADDR prologue_end;
4138
4139 /* We don't even have minsym information, so fall back to using
4140 func_start, if given. */
4141 if (! func_start)
4142 return 1; /* We *might* be in a prologue. */
4143
4144 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4145
4146 return func_start <= pc && pc < prologue_end;
4147 }
4148
4149 /* If we have line number information for the function, that's
4150 usually pretty reliable. */
4151 sal = find_pc_line (func_addr, 0);
4152
4153 /* Now sal describes the source line at the function's entry point,
4154 which (by convention) is the prologue. The end of that "line",
4155 sal.end, is the end of the prologue.
4156
4157 Note that, for functions whose source code is all on a single
4158 line, the line number information doesn't always end up this way.
4159 So we must verify that our purported end-of-prologue address is
4160 *within* the function, not at its start or end. */
4161 if (sal.line == 0
4162 || sal.end <= func_addr
4163 || func_end <= sal.end)
4164 {
4165 /* We don't have any good line number info, so use the minsym
4166 information, together with the architecture-specific prologue
4167 scanning code. */
4168 CORE_ADDR prologue_end = gdbarch_skip_prologue
4169 (current_gdbarch, func_addr);
4170
4171 return func_addr <= pc && pc < prologue_end;
4172 }
4173
4174 /* We have line number info, and it looks good. */
4175 return func_addr <= pc && pc < sal.end;
4176 }
4177
4178 /* Given PC at the function's start address, attempt to find the
4179 prologue end using SAL information. Return zero if the skip fails.
4180
4181 A non-optimized prologue traditionally has one SAL for the function
4182 and a second for the function body. A single line function has
4183 them both pointing at the same line.
4184
4185 An optimized prologue is similar but the prologue may contain
4186 instructions (SALs) from the instruction body. Need to skip those
4187 while not getting into the function body.
4188
4189 The functions end point and an increasing SAL line are used as
4190 indicators of the prologue's endpoint.
4191
4192 This code is based on the function refine_prologue_limit (versions
4193 found in both ia64 and ppc). */
4194
4195 CORE_ADDR
4196 skip_prologue_using_sal (CORE_ADDR func_addr)
4197 {
4198 struct symtab_and_line prologue_sal;
4199 CORE_ADDR start_pc;
4200 CORE_ADDR end_pc;
4201
4202 /* Get an initial range for the function. */
4203 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4204 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4205
4206 prologue_sal = find_pc_line (start_pc, 0);
4207 if (prologue_sal.line != 0)
4208 {
4209 /* If there is only one sal that covers the entire function,
4210 then it is probably a single line function, like
4211 "foo(){}". */
4212 if (prologue_sal.end >= end_pc)
4213 return 0;
4214 while (prologue_sal.end < end_pc)
4215 {
4216 struct symtab_and_line sal;
4217
4218 sal = find_pc_line (prologue_sal.end, 0);
4219 if (sal.line == 0)
4220 break;
4221 /* Assume that a consecutive SAL for the same (or larger)
4222 line mark the prologue -> body transition. */
4223 if (sal.line >= prologue_sal.line)
4224 break;
4225 /* The case in which compiler's optimizer/scheduler has
4226 moved instructions into the prologue. We look ahead in
4227 the function looking for address ranges whose
4228 corresponding line number is less the first one that we
4229 found for the function. This is more conservative then
4230 refine_prologue_limit which scans a large number of SALs
4231 looking for any in the prologue */
4232 prologue_sal = sal;
4233 }
4234 }
4235 return prologue_sal.end;
4236 }
4237 \f
4238 struct symtabs_and_lines
4239 decode_line_spec (char *string, int funfirstline)
4240 {
4241 struct symtabs_and_lines sals;
4242 struct symtab_and_line cursal;
4243
4244 if (string == 0)
4245 error (_("Empty line specification."));
4246
4247 /* We use whatever is set as the current source line. We do not try
4248 and get a default or it will recursively call us! */
4249 cursal = get_current_source_symtab_and_line ();
4250
4251 sals = decode_line_1 (&string, funfirstline,
4252 cursal.symtab, cursal.line,
4253 (char ***) NULL, NULL);
4254
4255 if (*string)
4256 error (_("Junk at end of line specification: %s"), string);
4257 return sals;
4258 }
4259
4260 /* Track MAIN */
4261 static char *name_of_main;
4262
4263 void
4264 set_main_name (const char *name)
4265 {
4266 if (name_of_main != NULL)
4267 {
4268 xfree (name_of_main);
4269 name_of_main = NULL;
4270 }
4271 if (name != NULL)
4272 {
4273 name_of_main = xstrdup (name);
4274 }
4275 }
4276
4277 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4278 accordingly. */
4279
4280 static void
4281 find_main_name (void)
4282 {
4283 const char *new_main_name;
4284
4285 /* Try to see if the main procedure is in Ada. */
4286 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4287 be to add a new method in the language vector, and call this
4288 method for each language until one of them returns a non-empty
4289 name. This would allow us to remove this hard-coded call to
4290 an Ada function. It is not clear that this is a better approach
4291 at this point, because all methods need to be written in a way
4292 such that false positives never be returned. For instance, it is
4293 important that a method does not return a wrong name for the main
4294 procedure if the main procedure is actually written in a different
4295 language. It is easy to guaranty this with Ada, since we use a
4296 special symbol generated only when the main in Ada to find the name
4297 of the main procedure. It is difficult however to see how this can
4298 be guarantied for languages such as C, for instance. This suggests
4299 that order of call for these methods becomes important, which means
4300 a more complicated approach. */
4301 new_main_name = ada_main_name ();
4302 if (new_main_name != NULL)
4303 {
4304 set_main_name (new_main_name);
4305 return;
4306 }
4307
4308 new_main_name = pascal_main_name ();
4309 if (new_main_name != NULL)
4310 {
4311 set_main_name (new_main_name);
4312 return;
4313 }
4314
4315 /* The languages above didn't identify the name of the main procedure.
4316 Fallback to "main". */
4317 set_main_name ("main");
4318 }
4319
4320 char *
4321 main_name (void)
4322 {
4323 if (name_of_main == NULL)
4324 find_main_name ();
4325
4326 return name_of_main;
4327 }
4328
4329 /* Handle ``executable_changed'' events for the symtab module. */
4330
4331 static void
4332 symtab_observer_executable_changed (void)
4333 {
4334 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4335 set_main_name (NULL);
4336 }
4337
4338 /* Helper to expand_line_sal below. Appends new sal to SAL,
4339 initializing it from SYMTAB, LINENO and PC. */
4340 static void
4341 append_expanded_sal (struct symtabs_and_lines *sal,
4342 struct symtab *symtab,
4343 int lineno, CORE_ADDR pc)
4344 {
4345 CORE_ADDR func_addr, func_end;
4346
4347 sal->sals = xrealloc (sal->sals,
4348 sizeof (sal->sals[0])
4349 * (sal->nelts + 1));
4350 init_sal (sal->sals + sal->nelts);
4351 sal->sals[sal->nelts].symtab = symtab;
4352 sal->sals[sal->nelts].section = NULL;
4353 sal->sals[sal->nelts].end = 0;
4354 sal->sals[sal->nelts].line = lineno;
4355 sal->sals[sal->nelts].pc = pc;
4356 ++sal->nelts;
4357 }
4358
4359 /* Compute a set of all sals in
4360 the entire program that correspond to same file
4361 and line as SAL and return those. If there
4362 are several sals that belong to the same block,
4363 only one sal for the block is included in results. */
4364
4365 struct symtabs_and_lines
4366 expand_line_sal (struct symtab_and_line sal)
4367 {
4368 struct symtabs_and_lines ret, this_line;
4369 int i, j;
4370 struct objfile *objfile;
4371 struct partial_symtab *psymtab;
4372 struct symtab *symtab;
4373 int lineno;
4374 int deleted = 0;
4375 struct block **blocks = NULL;
4376 int *filter;
4377
4378 ret.nelts = 0;
4379 ret.sals = NULL;
4380
4381 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4382 {
4383 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4384 ret.sals[0] = sal;
4385 ret.nelts = 1;
4386 return ret;
4387 }
4388 else
4389 {
4390 struct linetable_entry *best_item = 0;
4391 struct symtab *best_symtab = 0;
4392 int exact = 0;
4393
4394 lineno = sal.line;
4395
4396 /* We meed to find all symtabs for a file which name
4397 is described by sal. We cannot just directly
4398 iterate over symtabs, since a symtab might not be
4399 yet created. We also cannot iterate over psymtabs,
4400 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4401 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4402 corresponding to an included file. Therefore, we do
4403 first pass over psymtabs, reading in those with
4404 the right name. Then, we iterate over symtabs, knowing
4405 that all symtabs we're interested in are loaded. */
4406
4407 ALL_PSYMTABS (objfile, psymtab)
4408 {
4409 if (strcmp (sal.symtab->filename,
4410 psymtab->filename) == 0)
4411 PSYMTAB_TO_SYMTAB (psymtab);
4412 }
4413
4414
4415 /* For each symtab, we add all pcs to ret.sals. I'm actually
4416 not sure what to do if we have exact match in one symtab,
4417 and non-exact match on another symtab.
4418 */
4419 ALL_SYMTABS (objfile, symtab)
4420 {
4421 if (strcmp (sal.symtab->filename,
4422 symtab->filename) == 0)
4423 {
4424 struct linetable *l;
4425 int len;
4426 l = LINETABLE (symtab);
4427 if (!l)
4428 continue;
4429 len = l->nitems;
4430
4431 for (j = 0; j < len; j++)
4432 {
4433 struct linetable_entry *item = &(l->item[j]);
4434
4435 if (item->line == lineno)
4436 {
4437 exact = 1;
4438 append_expanded_sal (&ret, symtab, lineno, item->pc);
4439 }
4440 else if (!exact && item->line > lineno
4441 && (best_item == NULL || item->line < best_item->line))
4442
4443 {
4444 best_item = item;
4445 best_symtab = symtab;
4446 }
4447 }
4448 }
4449 }
4450 if (!exact && best_item)
4451 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4452 }
4453
4454 /* For optimized code, compiler can scatter one source line accross
4455 disjoint ranges of PC values, even when no duplicate functions
4456 or inline functions are involved. For example, 'for (;;)' inside
4457 non-template non-inline non-ctor-or-dtor function can result
4458 in two PC ranges. In this case, we don't want to set breakpoint
4459 on first PC of each range. To filter such cases, we use containing
4460 blocks -- for each PC found above we see if there are other PCs
4461 that are in the same block. If yes, the other PCs are filtered out. */
4462
4463 filter = alloca (ret.nelts * sizeof (int));
4464 blocks = alloca (ret.nelts * sizeof (struct block *));
4465 for (i = 0; i < ret.nelts; ++i)
4466 {
4467 filter[i] = 1;
4468 blocks[i] = block_for_pc (ret.sals[i].pc);
4469 }
4470
4471 for (i = 0; i < ret.nelts; ++i)
4472 if (blocks[i] != NULL)
4473 for (j = i+1; j < ret.nelts; ++j)
4474 if (blocks[j] == blocks[i])
4475 {
4476 filter[j] = 0;
4477 ++deleted;
4478 break;
4479 }
4480
4481 {
4482 struct symtab_and_line *final =
4483 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4484
4485 for (i = 0, j = 0; i < ret.nelts; ++i)
4486 if (filter[i])
4487 final[j++] = ret.sals[i];
4488
4489 ret.nelts -= deleted;
4490 xfree (ret.sals);
4491 ret.sals = final;
4492 }
4493
4494 return ret;
4495 }
4496
4497
4498 void
4499 _initialize_symtab (void)
4500 {
4501 add_info ("variables", variables_info, _("\
4502 All global and static variable names, or those matching REGEXP."));
4503 if (dbx_commands)
4504 add_com ("whereis", class_info, variables_info, _("\
4505 All global and static variable names, or those matching REGEXP."));
4506
4507 add_info ("functions", functions_info,
4508 _("All function names, or those matching REGEXP."));
4509
4510
4511 /* FIXME: This command has at least the following problems:
4512 1. It prints builtin types (in a very strange and confusing fashion).
4513 2. It doesn't print right, e.g. with
4514 typedef struct foo *FOO
4515 type_print prints "FOO" when we want to make it (in this situation)
4516 print "struct foo *".
4517 I also think "ptype" or "whatis" is more likely to be useful (but if
4518 there is much disagreement "info types" can be fixed). */
4519 add_info ("types", types_info,
4520 _("All type names, or those matching REGEXP."));
4521
4522 add_info ("sources", sources_info,
4523 _("Source files in the program."));
4524
4525 add_com ("rbreak", class_breakpoint, rbreak_command,
4526 _("Set a breakpoint for all functions matching REGEXP."));
4527
4528 if (xdb_commands)
4529 {
4530 add_com ("lf", class_info, sources_info,
4531 _("Source files in the program"));
4532 add_com ("lg", class_info, variables_info, _("\
4533 All global and static variable names, or those matching REGEXP."));
4534 }
4535
4536 add_setshow_enum_cmd ("multiple-symbols", no_class,
4537 multiple_symbols_modes, &multiple_symbols_mode,
4538 _("\
4539 Set the debugger behavior when more than one symbol are possible matches\n\
4540 in an expression."), _("\
4541 Show how the debugger handles ambiguities in expressions."), _("\
4542 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4543 NULL, NULL, &setlist, &showlist);
4544
4545 /* Initialize the one built-in type that isn't language dependent... */
4546 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4547 "<unknown type>", (struct objfile *) NULL);
4548
4549 observer_attach_executable_changed (symtab_observer_executable_changed);
4550 }