Remove cplus_specific from general_symbol_info.
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_via_quick_fns (struct objfile *objfile,
84 int block_index,
85 const char *name,
86 const domain_enum domain);
87
88 extern initialize_file_ftype _initialize_symtab;
89
90 /* Program space key for finding name and language of "main". */
91
92 static const struct program_space_data *main_progspace_key;
93
94 /* Type of the data stored on the program space. */
95
96 struct main_info
97 {
98 /* Name of "main". */
99
100 char *name_of_main;
101
102 /* Language of "main". */
103
104 enum language language_of_main;
105 };
106
107 /* When non-zero, print debugging messages related to symtab creation. */
108 unsigned int symtab_create_debug = 0;
109
110 /* Non-zero if a file may be known by two different basenames.
111 This is the uncommon case, and significantly slows down gdb.
112 Default set to "off" to not slow down the common case. */
113 int basenames_may_differ = 0;
114
115 /* Allow the user to configure the debugger behavior with respect
116 to multiple-choice menus when more than one symbol matches during
117 a symbol lookup. */
118
119 const char multiple_symbols_ask[] = "ask";
120 const char multiple_symbols_all[] = "all";
121 const char multiple_symbols_cancel[] = "cancel";
122 static const char *const multiple_symbols_modes[] =
123 {
124 multiple_symbols_ask,
125 multiple_symbols_all,
126 multiple_symbols_cancel,
127 NULL
128 };
129 static const char *multiple_symbols_mode = multiple_symbols_all;
130
131 /* Read-only accessor to AUTO_SELECT_MODE. */
132
133 const char *
134 multiple_symbols_select_mode (void)
135 {
136 return multiple_symbols_mode;
137 }
138
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
141 value_of_this. */
142
143 const struct block *block_found;
144
145 /* Return the name of a domain_enum. */
146
147 const char *
148 domain_name (domain_enum e)
149 {
150 switch (e)
151 {
152 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
153 case VAR_DOMAIN: return "VAR_DOMAIN";
154 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
155 case LABEL_DOMAIN: return "LABEL_DOMAIN";
156 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
157 default: gdb_assert_not_reached ("bad domain_enum");
158 }
159 }
160
161 /* Return the name of a search_domain . */
162
163 const char *
164 search_domain_name (enum search_domain e)
165 {
166 switch (e)
167 {
168 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
169 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
170 case TYPES_DOMAIN: return "TYPES_DOMAIN";
171 case ALL_DOMAIN: return "ALL_DOMAIN";
172 default: gdb_assert_not_reached ("bad search_domain");
173 }
174 }
175
176 /* See symtab.h. */
177
178 struct symtab *
179 compunit_primary_filetab (const struct compunit_symtab *cust)
180 {
181 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
182
183 /* The primary file symtab is the first one in the list. */
184 return COMPUNIT_FILETABS (cust);
185 }
186
187 /* See symtab.h. */
188
189 enum language
190 compunit_language (const struct compunit_symtab *cust)
191 {
192 struct symtab *symtab = compunit_primary_filetab (cust);
193
194 /* The language of the compunit symtab is the language of its primary
195 source file. */
196 return SYMTAB_LANGUAGE (symtab);
197 }
198
199 /* See whether FILENAME matches SEARCH_NAME using the rule that we
200 advertise to the user. (The manual's description of linespecs
201 describes what we advertise). Returns true if they match, false
202 otherwise. */
203
204 int
205 compare_filenames_for_search (const char *filename, const char *search_name)
206 {
207 int len = strlen (filename);
208 size_t search_len = strlen (search_name);
209
210 if (len < search_len)
211 return 0;
212
213 /* The tail of FILENAME must match. */
214 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
215 return 0;
216
217 /* Either the names must completely match, or the character
218 preceding the trailing SEARCH_NAME segment of FILENAME must be a
219 directory separator.
220
221 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
222 cannot match FILENAME "/path//dir/file.c" - as user has requested
223 absolute path. The sama applies for "c:\file.c" possibly
224 incorrectly hypothetically matching "d:\dir\c:\file.c".
225
226 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
227 compatible with SEARCH_NAME "file.c". In such case a compiler had
228 to put the "c:file.c" name into debug info. Such compatibility
229 works only on GDB built for DOS host. */
230 return (len == search_len
231 || (!IS_ABSOLUTE_PATH (search_name)
232 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
233 || (HAS_DRIVE_SPEC (filename)
234 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
235 }
236
237 /* Check for a symtab of a specific name by searching some symtabs.
238 This is a helper function for callbacks of iterate_over_symtabs.
239
240 If NAME is not absolute, then REAL_PATH is NULL
241 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
242
243 The return value, NAME, REAL_PATH, CALLBACK, and DATA
244 are identical to the `map_symtabs_matching_filename' method of
245 quick_symbol_functions.
246
247 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
248 Each symtab within the specified compunit symtab is also searched.
249 AFTER_LAST is one past the last compunit symtab to search; NULL means to
250 search until the end of the list. */
251
252 int
253 iterate_over_some_symtabs (const char *name,
254 const char *real_path,
255 int (*callback) (struct symtab *symtab,
256 void *data),
257 void *data,
258 struct compunit_symtab *first,
259 struct compunit_symtab *after_last)
260 {
261 struct compunit_symtab *cust;
262 struct symtab *s;
263 const char* base_name = lbasename (name);
264
265 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
266 {
267 ALL_COMPUNIT_FILETABS (cust, s)
268 {
269 if (compare_filenames_for_search (s->filename, name))
270 {
271 if (callback (s, data))
272 return 1;
273 continue;
274 }
275
276 /* Before we invoke realpath, which can get expensive when many
277 files are involved, do a quick comparison of the basenames. */
278 if (! basenames_may_differ
279 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
280 continue;
281
282 if (compare_filenames_for_search (symtab_to_fullname (s), name))
283 {
284 if (callback (s, data))
285 return 1;
286 continue;
287 }
288
289 /* If the user gave us an absolute path, try to find the file in
290 this symtab and use its absolute path. */
291 if (real_path != NULL)
292 {
293 const char *fullname = symtab_to_fullname (s);
294
295 gdb_assert (IS_ABSOLUTE_PATH (real_path));
296 gdb_assert (IS_ABSOLUTE_PATH (name));
297 if (FILENAME_CMP (real_path, fullname) == 0)
298 {
299 if (callback (s, data))
300 return 1;
301 continue;
302 }
303 }
304 }
305 }
306
307 return 0;
308 }
309
310 /* Check for a symtab of a specific name; first in symtabs, then in
311 psymtabs. *If* there is no '/' in the name, a match after a '/'
312 in the symtab filename will also work.
313
314 Calls CALLBACK with each symtab that is found and with the supplied
315 DATA. If CALLBACK returns true, the search stops. */
316
317 void
318 iterate_over_symtabs (const char *name,
319 int (*callback) (struct symtab *symtab,
320 void *data),
321 void *data)
322 {
323 struct objfile *objfile;
324 char *real_path = NULL;
325 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
326
327 /* Here we are interested in canonicalizing an absolute path, not
328 absolutizing a relative path. */
329 if (IS_ABSOLUTE_PATH (name))
330 {
331 real_path = gdb_realpath (name);
332 make_cleanup (xfree, real_path);
333 gdb_assert (IS_ABSOLUTE_PATH (real_path));
334 }
335
336 ALL_OBJFILES (objfile)
337 {
338 if (iterate_over_some_symtabs (name, real_path, callback, data,
339 objfile->compunit_symtabs, NULL))
340 {
341 do_cleanups (cleanups);
342 return;
343 }
344 }
345
346 /* Same search rules as above apply here, but now we look thru the
347 psymtabs. */
348
349 ALL_OBJFILES (objfile)
350 {
351 if (objfile->sf
352 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
353 name,
354 real_path,
355 callback,
356 data))
357 {
358 do_cleanups (cleanups);
359 return;
360 }
361 }
362
363 do_cleanups (cleanups);
364 }
365
366 /* The callback function used by lookup_symtab. */
367
368 static int
369 lookup_symtab_callback (struct symtab *symtab, void *data)
370 {
371 struct symtab **result_ptr = data;
372
373 *result_ptr = symtab;
374 return 1;
375 }
376
377 /* A wrapper for iterate_over_symtabs that returns the first matching
378 symtab, or NULL. */
379
380 struct symtab *
381 lookup_symtab (const char *name)
382 {
383 struct symtab *result = NULL;
384
385 iterate_over_symtabs (name, lookup_symtab_callback, &result);
386 return result;
387 }
388
389 \f
390 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
391 full method name, which consist of the class name (from T), the unadorned
392 method name from METHOD_ID, and the signature for the specific overload,
393 specified by SIGNATURE_ID. Note that this function is g++ specific. */
394
395 char *
396 gdb_mangle_name (struct type *type, int method_id, int signature_id)
397 {
398 int mangled_name_len;
399 char *mangled_name;
400 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
401 struct fn_field *method = &f[signature_id];
402 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
403 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
404 const char *newname = type_name_no_tag (type);
405
406 /* Does the form of physname indicate that it is the full mangled name
407 of a constructor (not just the args)? */
408 int is_full_physname_constructor;
409
410 int is_constructor;
411 int is_destructor = is_destructor_name (physname);
412 /* Need a new type prefix. */
413 char *const_prefix = method->is_const ? "C" : "";
414 char *volatile_prefix = method->is_volatile ? "V" : "";
415 char buf[20];
416 int len = (newname == NULL ? 0 : strlen (newname));
417
418 /* Nothing to do if physname already contains a fully mangled v3 abi name
419 or an operator name. */
420 if ((physname[0] == '_' && physname[1] == 'Z')
421 || is_operator_name (field_name))
422 return xstrdup (physname);
423
424 is_full_physname_constructor = is_constructor_name (physname);
425
426 is_constructor = is_full_physname_constructor
427 || (newname && strcmp (field_name, newname) == 0);
428
429 if (!is_destructor)
430 is_destructor = (strncmp (physname, "__dt", 4) == 0);
431
432 if (is_destructor || is_full_physname_constructor)
433 {
434 mangled_name = (char *) xmalloc (strlen (physname) + 1);
435 strcpy (mangled_name, physname);
436 return mangled_name;
437 }
438
439 if (len == 0)
440 {
441 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
442 }
443 else if (physname[0] == 't' || physname[0] == 'Q')
444 {
445 /* The physname for template and qualified methods already includes
446 the class name. */
447 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
448 newname = NULL;
449 len = 0;
450 }
451 else
452 {
453 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
454 volatile_prefix, len);
455 }
456 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
457 + strlen (buf) + len + strlen (physname) + 1);
458
459 mangled_name = (char *) xmalloc (mangled_name_len);
460 if (is_constructor)
461 mangled_name[0] = '\0';
462 else
463 strcpy (mangled_name, field_name);
464
465 strcat (mangled_name, buf);
466 /* If the class doesn't have a name, i.e. newname NULL, then we just
467 mangle it using 0 for the length of the class. Thus it gets mangled
468 as something starting with `::' rather than `classname::'. */
469 if (newname != NULL)
470 strcat (mangled_name, newname);
471
472 strcat (mangled_name, physname);
473 return (mangled_name);
474 }
475
476 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
477 correctly allocated. */
478
479 void
480 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
481 const char *name,
482 struct obstack *obstack)
483 {
484 if (gsymbol->language == language_ada)
485 {
486 if (name == NULL)
487 {
488 gsymbol->ada_mangled = 0;
489 gsymbol->language_specific.obstack = obstack;
490 }
491 else
492 {
493 gsymbol->ada_mangled = 1;
494 gsymbol->language_specific.mangled_lang.demangled_name = name;
495 }
496 }
497 else
498 gsymbol->language_specific.mangled_lang.demangled_name = name;
499 }
500
501 /* Return the demangled name of GSYMBOL. */
502
503 const char *
504 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
505 {
506 if (gsymbol->language == language_ada)
507 {
508 if (!gsymbol->ada_mangled)
509 return NULL;
510 /* Fall through. */
511 }
512
513 return gsymbol->language_specific.mangled_lang.demangled_name;
514 }
515
516 \f
517 /* Initialize the language dependent portion of a symbol
518 depending upon the language for the symbol. */
519
520 void
521 symbol_set_language (struct general_symbol_info *gsymbol,
522 enum language language,
523 struct obstack *obstack)
524 {
525 gsymbol->language = language;
526 if (gsymbol->language == language_cplus
527 || gsymbol->language == language_d
528 || gsymbol->language == language_go
529 || gsymbol->language == language_java
530 || gsymbol->language == language_objc
531 || gsymbol->language == language_fortran)
532 {
533 symbol_set_demangled_name (gsymbol, NULL, obstack);
534 }
535 else if (gsymbol->language == language_ada)
536 {
537 gdb_assert (gsymbol->ada_mangled == 0);
538 gsymbol->language_specific.obstack = obstack;
539 }
540 else
541 {
542 memset (&gsymbol->language_specific, 0,
543 sizeof (gsymbol->language_specific));
544 }
545 }
546
547 /* Functions to initialize a symbol's mangled name. */
548
549 /* Objects of this type are stored in the demangled name hash table. */
550 struct demangled_name_entry
551 {
552 const char *mangled;
553 char demangled[1];
554 };
555
556 /* Hash function for the demangled name hash. */
557
558 static hashval_t
559 hash_demangled_name_entry (const void *data)
560 {
561 const struct demangled_name_entry *e = data;
562
563 return htab_hash_string (e->mangled);
564 }
565
566 /* Equality function for the demangled name hash. */
567
568 static int
569 eq_demangled_name_entry (const void *a, const void *b)
570 {
571 const struct demangled_name_entry *da = a;
572 const struct demangled_name_entry *db = b;
573
574 return strcmp (da->mangled, db->mangled) == 0;
575 }
576
577 /* Create the hash table used for demangled names. Each hash entry is
578 a pair of strings; one for the mangled name and one for the demangled
579 name. The entry is hashed via just the mangled name. */
580
581 static void
582 create_demangled_names_hash (struct objfile *objfile)
583 {
584 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
585 The hash table code will round this up to the next prime number.
586 Choosing a much larger table size wastes memory, and saves only about
587 1% in symbol reading. */
588
589 objfile->per_bfd->demangled_names_hash = htab_create_alloc
590 (256, hash_demangled_name_entry, eq_demangled_name_entry,
591 NULL, xcalloc, xfree);
592 }
593
594 /* Try to determine the demangled name for a symbol, based on the
595 language of that symbol. If the language is set to language_auto,
596 it will attempt to find any demangling algorithm that works and
597 then set the language appropriately. The returned name is allocated
598 by the demangler and should be xfree'd. */
599
600 static char *
601 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
602 const char *mangled)
603 {
604 char *demangled = NULL;
605
606 if (gsymbol->language == language_unknown)
607 gsymbol->language = language_auto;
608
609 if (gsymbol->language == language_objc
610 || gsymbol->language == language_auto)
611 {
612 demangled =
613 objc_demangle (mangled, 0);
614 if (demangled != NULL)
615 {
616 gsymbol->language = language_objc;
617 return demangled;
618 }
619 }
620 if (gsymbol->language == language_cplus
621 || gsymbol->language == language_auto)
622 {
623 demangled =
624 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
625 if (demangled != NULL)
626 {
627 gsymbol->language = language_cplus;
628 return demangled;
629 }
630 }
631 if (gsymbol->language == language_java)
632 {
633 demangled =
634 gdb_demangle (mangled,
635 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
636 if (demangled != NULL)
637 {
638 gsymbol->language = language_java;
639 return demangled;
640 }
641 }
642 if (gsymbol->language == language_d
643 || gsymbol->language == language_auto)
644 {
645 demangled = d_demangle(mangled, 0);
646 if (demangled != NULL)
647 {
648 gsymbol->language = language_d;
649 return demangled;
650 }
651 }
652 /* FIXME(dje): Continually adding languages here is clumsy.
653 Better to just call la_demangle if !auto, and if auto then call
654 a utility routine that tries successive languages in turn and reports
655 which one it finds. I realize the la_demangle options may be different
656 for different languages but there's already a FIXME for that. */
657 if (gsymbol->language == language_go
658 || gsymbol->language == language_auto)
659 {
660 demangled = go_demangle (mangled, 0);
661 if (demangled != NULL)
662 {
663 gsymbol->language = language_go;
664 return demangled;
665 }
666 }
667
668 /* We could support `gsymbol->language == language_fortran' here to provide
669 module namespaces also for inferiors with only minimal symbol table (ELF
670 symbols). Just the mangling standard is not standardized across compilers
671 and there is no DW_AT_producer available for inferiors with only the ELF
672 symbols to check the mangling kind. */
673
674 /* Check for Ada symbols last. See comment below explaining why. */
675
676 if (gsymbol->language == language_auto)
677 {
678 const char *demangled = ada_decode (mangled);
679
680 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
681 {
682 /* Set the gsymbol language to Ada, but still return NULL.
683 Two reasons for that:
684
685 1. For Ada, we prefer computing the symbol's decoded name
686 on the fly rather than pre-compute it, in order to save
687 memory (Ada projects are typically very large).
688
689 2. There are some areas in the definition of the GNAT
690 encoding where, with a bit of bad luck, we might be able
691 to decode a non-Ada symbol, generating an incorrect
692 demangled name (Eg: names ending with "TB" for instance
693 are identified as task bodies and so stripped from
694 the decoded name returned).
695
696 Returning NULL, here, helps us get a little bit of
697 the best of both worlds. Because we're last, we should
698 not affect any of the other languages that were able to
699 demangle the symbol before us; we get to correctly tag
700 Ada symbols as such; and even if we incorrectly tagged
701 a non-Ada symbol, which should be rare, any routing
702 through the Ada language should be transparent (Ada
703 tries to behave much like C/C++ with non-Ada symbols). */
704 gsymbol->language = language_ada;
705 return NULL;
706 }
707 }
708
709 return NULL;
710 }
711
712 /* Set both the mangled and demangled (if any) names for GSYMBOL based
713 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
714 objfile's obstack; but if COPY_NAME is 0 and if NAME is
715 NUL-terminated, then this function assumes that NAME is already
716 correctly saved (either permanently or with a lifetime tied to the
717 objfile), and it will not be copied.
718
719 The hash table corresponding to OBJFILE is used, and the memory
720 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
721 so the pointer can be discarded after calling this function. */
722
723 /* We have to be careful when dealing with Java names: when we run
724 into a Java minimal symbol, we don't know it's a Java symbol, so it
725 gets demangled as a C++ name. This is unfortunate, but there's not
726 much we can do about it: but when demangling partial symbols and
727 regular symbols, we'd better not reuse the wrong demangled name.
728 (See PR gdb/1039.) We solve this by putting a distinctive prefix
729 on Java names when storing them in the hash table. */
730
731 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
732 don't mind the Java prefix so much: different languages have
733 different demangling requirements, so it's only natural that we
734 need to keep language data around in our demangling cache. But
735 it's not good that the minimal symbol has the wrong demangled name.
736 Unfortunately, I can't think of any easy solution to that
737 problem. */
738
739 #define JAVA_PREFIX "##JAVA$$"
740 #define JAVA_PREFIX_LEN 8
741
742 void
743 symbol_set_names (struct general_symbol_info *gsymbol,
744 const char *linkage_name, int len, int copy_name,
745 struct objfile *objfile)
746 {
747 struct demangled_name_entry **slot;
748 /* A 0-terminated copy of the linkage name. */
749 const char *linkage_name_copy;
750 /* A copy of the linkage name that might have a special Java prefix
751 added to it, for use when looking names up in the hash table. */
752 const char *lookup_name;
753 /* The length of lookup_name. */
754 int lookup_len;
755 struct demangled_name_entry entry;
756 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
757
758 if (gsymbol->language == language_ada)
759 {
760 /* In Ada, we do the symbol lookups using the mangled name, so
761 we can save some space by not storing the demangled name.
762
763 As a side note, we have also observed some overlap between
764 the C++ mangling and Ada mangling, similarly to what has
765 been observed with Java. Because we don't store the demangled
766 name with the symbol, we don't need to use the same trick
767 as Java. */
768 if (!copy_name)
769 gsymbol->name = linkage_name;
770 else
771 {
772 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
773
774 memcpy (name, linkage_name, len);
775 name[len] = '\0';
776 gsymbol->name = name;
777 }
778 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
779
780 return;
781 }
782
783 if (per_bfd->demangled_names_hash == NULL)
784 create_demangled_names_hash (objfile);
785
786 /* The stabs reader generally provides names that are not
787 NUL-terminated; most of the other readers don't do this, so we
788 can just use the given copy, unless we're in the Java case. */
789 if (gsymbol->language == language_java)
790 {
791 char *alloc_name;
792
793 lookup_len = len + JAVA_PREFIX_LEN;
794 alloc_name = alloca (lookup_len + 1);
795 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
796 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
797 alloc_name[lookup_len] = '\0';
798
799 lookup_name = alloc_name;
800 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
801 }
802 else if (linkage_name[len] != '\0')
803 {
804 char *alloc_name;
805
806 lookup_len = len;
807 alloc_name = alloca (lookup_len + 1);
808 memcpy (alloc_name, linkage_name, len);
809 alloc_name[lookup_len] = '\0';
810
811 lookup_name = alloc_name;
812 linkage_name_copy = alloc_name;
813 }
814 else
815 {
816 lookup_len = len;
817 lookup_name = linkage_name;
818 linkage_name_copy = linkage_name;
819 }
820
821 entry.mangled = lookup_name;
822 slot = ((struct demangled_name_entry **)
823 htab_find_slot (per_bfd->demangled_names_hash,
824 &entry, INSERT));
825
826 /* If this name is not in the hash table, add it. */
827 if (*slot == NULL
828 /* A C version of the symbol may have already snuck into the table.
829 This happens to, e.g., main.init (__go_init_main). Cope. */
830 || (gsymbol->language == language_go
831 && (*slot)->demangled[0] == '\0'))
832 {
833 char *demangled_name = symbol_find_demangled_name (gsymbol,
834 linkage_name_copy);
835 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
836
837 /* Suppose we have demangled_name==NULL, copy_name==0, and
838 lookup_name==linkage_name. In this case, we already have the
839 mangled name saved, and we don't have a demangled name. So,
840 you might think we could save a little space by not recording
841 this in the hash table at all.
842
843 It turns out that it is actually important to still save such
844 an entry in the hash table, because storing this name gives
845 us better bcache hit rates for partial symbols. */
846 if (!copy_name && lookup_name == linkage_name)
847 {
848 *slot = obstack_alloc (&per_bfd->storage_obstack,
849 offsetof (struct demangled_name_entry,
850 demangled)
851 + demangled_len + 1);
852 (*slot)->mangled = lookup_name;
853 }
854 else
855 {
856 char *mangled_ptr;
857
858 /* If we must copy the mangled name, put it directly after
859 the demangled name so we can have a single
860 allocation. */
861 *slot = obstack_alloc (&per_bfd->storage_obstack,
862 offsetof (struct demangled_name_entry,
863 demangled)
864 + lookup_len + demangled_len + 2);
865 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
866 strcpy (mangled_ptr, lookup_name);
867 (*slot)->mangled = mangled_ptr;
868 }
869
870 if (demangled_name != NULL)
871 {
872 strcpy ((*slot)->demangled, demangled_name);
873 xfree (demangled_name);
874 }
875 else
876 (*slot)->demangled[0] = '\0';
877 }
878
879 gsymbol->name = (*slot)->mangled + lookup_len - len;
880 if ((*slot)->demangled[0] != '\0')
881 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
882 &per_bfd->storage_obstack);
883 else
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
885 }
886
887 /* Return the source code name of a symbol. In languages where
888 demangling is necessary, this is the demangled name. */
889
890 const char *
891 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 {
893 switch (gsymbol->language)
894 {
895 case language_cplus:
896 case language_d:
897 case language_go:
898 case language_java:
899 case language_objc:
900 case language_fortran:
901 if (symbol_get_demangled_name (gsymbol) != NULL)
902 return symbol_get_demangled_name (gsymbol);
903 break;
904 case language_ada:
905 return ada_decode_symbol (gsymbol);
906 default:
907 break;
908 }
909 return gsymbol->name;
910 }
911
912 /* Return the demangled name for a symbol based on the language for
913 that symbol. If no demangled name exists, return NULL. */
914
915 const char *
916 symbol_demangled_name (const struct general_symbol_info *gsymbol)
917 {
918 const char *dem_name = NULL;
919
920 switch (gsymbol->language)
921 {
922 case language_cplus:
923 case language_d:
924 case language_go:
925 case language_java:
926 case language_objc:
927 case language_fortran:
928 dem_name = symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 dem_name = ada_decode_symbol (gsymbol);
932 break;
933 default:
934 break;
935 }
936 return dem_name;
937 }
938
939 /* Return the search name of a symbol---generally the demangled or
940 linkage name of the symbol, depending on how it will be searched for.
941 If there is no distinct demangled name, then returns the same value
942 (same pointer) as SYMBOL_LINKAGE_NAME. */
943
944 const char *
945 symbol_search_name (const struct general_symbol_info *gsymbol)
946 {
947 if (gsymbol->language == language_ada)
948 return gsymbol->name;
949 else
950 return symbol_natural_name (gsymbol);
951 }
952
953 /* Initialize the structure fields to zero values. */
954
955 void
956 init_sal (struct symtab_and_line *sal)
957 {
958 memset (sal, 0, sizeof (*sal));
959 }
960 \f
961
962 /* Return 1 if the two sections are the same, or if they could
963 plausibly be copies of each other, one in an original object
964 file and another in a separated debug file. */
965
966 int
967 matching_obj_sections (struct obj_section *obj_first,
968 struct obj_section *obj_second)
969 {
970 asection *first = obj_first? obj_first->the_bfd_section : NULL;
971 asection *second = obj_second? obj_second->the_bfd_section : NULL;
972 struct objfile *obj;
973
974 /* If they're the same section, then they match. */
975 if (first == second)
976 return 1;
977
978 /* If either is NULL, give up. */
979 if (first == NULL || second == NULL)
980 return 0;
981
982 /* This doesn't apply to absolute symbols. */
983 if (first->owner == NULL || second->owner == NULL)
984 return 0;
985
986 /* If they're in the same object file, they must be different sections. */
987 if (first->owner == second->owner)
988 return 0;
989
990 /* Check whether the two sections are potentially corresponding. They must
991 have the same size, address, and name. We can't compare section indexes,
992 which would be more reliable, because some sections may have been
993 stripped. */
994 if (bfd_get_section_size (first) != bfd_get_section_size (second))
995 return 0;
996
997 /* In-memory addresses may start at a different offset, relativize them. */
998 if (bfd_get_section_vma (first->owner, first)
999 - bfd_get_start_address (first->owner)
1000 != bfd_get_section_vma (second->owner, second)
1001 - bfd_get_start_address (second->owner))
1002 return 0;
1003
1004 if (bfd_get_section_name (first->owner, first) == NULL
1005 || bfd_get_section_name (second->owner, second) == NULL
1006 || strcmp (bfd_get_section_name (first->owner, first),
1007 bfd_get_section_name (second->owner, second)) != 0)
1008 return 0;
1009
1010 /* Otherwise check that they are in corresponding objfiles. */
1011
1012 ALL_OBJFILES (obj)
1013 if (obj->obfd == first->owner)
1014 break;
1015 gdb_assert (obj != NULL);
1016
1017 if (obj->separate_debug_objfile != NULL
1018 && obj->separate_debug_objfile->obfd == second->owner)
1019 return 1;
1020 if (obj->separate_debug_objfile_backlink != NULL
1021 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1022 return 1;
1023
1024 return 0;
1025 }
1026
1027 /* See symtab.h. */
1028
1029 void
1030 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1031 {
1032 struct objfile *objfile;
1033 struct bound_minimal_symbol msymbol;
1034
1035 /* If we know that this is not a text address, return failure. This is
1036 necessary because we loop based on texthigh and textlow, which do
1037 not include the data ranges. */
1038 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1039 if (msymbol.minsym
1040 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1041 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1042 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1045 return;
1046
1047 ALL_OBJFILES (objfile)
1048 {
1049 struct compunit_symtab *cust = NULL;
1050
1051 if (objfile->sf)
1052 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1053 pc, section, 0);
1054 if (cust)
1055 return;
1056 }
1057 }
1058 \f
1059 /* Debug symbols usually don't have section information. We need to dig that
1060 out of the minimal symbols and stash that in the debug symbol. */
1061
1062 void
1063 fixup_section (struct general_symbol_info *ginfo,
1064 CORE_ADDR addr, struct objfile *objfile)
1065 {
1066 struct minimal_symbol *msym;
1067
1068 /* First, check whether a minimal symbol with the same name exists
1069 and points to the same address. The address check is required
1070 e.g. on PowerPC64, where the minimal symbol for a function will
1071 point to the function descriptor, while the debug symbol will
1072 point to the actual function code. */
1073 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1074 if (msym)
1075 ginfo->section = MSYMBOL_SECTION (msym);
1076 else
1077 {
1078 /* Static, function-local variables do appear in the linker
1079 (minimal) symbols, but are frequently given names that won't
1080 be found via lookup_minimal_symbol(). E.g., it has been
1081 observed in frv-uclinux (ELF) executables that a static,
1082 function-local variable named "foo" might appear in the
1083 linker symbols as "foo.6" or "foo.3". Thus, there is no
1084 point in attempting to extend the lookup-by-name mechanism to
1085 handle this case due to the fact that there can be multiple
1086 names.
1087
1088 So, instead, search the section table when lookup by name has
1089 failed. The ``addr'' and ``endaddr'' fields may have already
1090 been relocated. If so, the relocation offset (i.e. the
1091 ANOFFSET value) needs to be subtracted from these values when
1092 performing the comparison. We unconditionally subtract it,
1093 because, when no relocation has been performed, the ANOFFSET
1094 value will simply be zero.
1095
1096 The address of the symbol whose section we're fixing up HAS
1097 NOT BEEN adjusted (relocated) yet. It can't have been since
1098 the section isn't yet known and knowing the section is
1099 necessary in order to add the correct relocation value. In
1100 other words, we wouldn't even be in this function (attempting
1101 to compute the section) if it were already known.
1102
1103 Note that it is possible to search the minimal symbols
1104 (subtracting the relocation value if necessary) to find the
1105 matching minimal symbol, but this is overkill and much less
1106 efficient. It is not necessary to find the matching minimal
1107 symbol, only its section.
1108
1109 Note that this technique (of doing a section table search)
1110 can fail when unrelocated section addresses overlap. For
1111 this reason, we still attempt a lookup by name prior to doing
1112 a search of the section table. */
1113
1114 struct obj_section *s;
1115 int fallback = -1;
1116
1117 ALL_OBJFILE_OSECTIONS (objfile, s)
1118 {
1119 int idx = s - objfile->sections;
1120 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1121
1122 if (fallback == -1)
1123 fallback = idx;
1124
1125 if (obj_section_addr (s) - offset <= addr
1126 && addr < obj_section_endaddr (s) - offset)
1127 {
1128 ginfo->section = idx;
1129 return;
1130 }
1131 }
1132
1133 /* If we didn't find the section, assume it is in the first
1134 section. If there is no allocated section, then it hardly
1135 matters what we pick, so just pick zero. */
1136 if (fallback == -1)
1137 ginfo->section = 0;
1138 else
1139 ginfo->section = fallback;
1140 }
1141 }
1142
1143 struct symbol *
1144 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1145 {
1146 CORE_ADDR addr;
1147
1148 if (!sym)
1149 return NULL;
1150
1151 /* We either have an OBJFILE, or we can get at it from the sym's
1152 symtab. Anything else is a bug. */
1153 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1154
1155 if (objfile == NULL)
1156 objfile = SYMBOL_OBJFILE (sym);
1157
1158 if (SYMBOL_OBJ_SECTION (objfile, sym))
1159 return sym;
1160
1161 /* We should have an objfile by now. */
1162 gdb_assert (objfile);
1163
1164 switch (SYMBOL_CLASS (sym))
1165 {
1166 case LOC_STATIC:
1167 case LOC_LABEL:
1168 addr = SYMBOL_VALUE_ADDRESS (sym);
1169 break;
1170 case LOC_BLOCK:
1171 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1172 break;
1173
1174 default:
1175 /* Nothing else will be listed in the minsyms -- no use looking
1176 it up. */
1177 return sym;
1178 }
1179
1180 fixup_section (&sym->ginfo, addr, objfile);
1181
1182 return sym;
1183 }
1184
1185 /* Compute the demangled form of NAME as used by the various symbol
1186 lookup functions. The result is stored in *RESULT_NAME. Returns a
1187 cleanup which can be used to clean up the result.
1188
1189 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1190 Normally, Ada symbol lookups are performed using the encoded name
1191 rather than the demangled name, and so it might seem to make sense
1192 for this function to return an encoded version of NAME.
1193 Unfortunately, we cannot do this, because this function is used in
1194 circumstances where it is not appropriate to try to encode NAME.
1195 For instance, when displaying the frame info, we demangle the name
1196 of each parameter, and then perform a symbol lookup inside our
1197 function using that demangled name. In Ada, certain functions
1198 have internally-generated parameters whose name contain uppercase
1199 characters. Encoding those name would result in those uppercase
1200 characters to become lowercase, and thus cause the symbol lookup
1201 to fail. */
1202
1203 struct cleanup *
1204 demangle_for_lookup (const char *name, enum language lang,
1205 const char **result_name)
1206 {
1207 char *demangled_name = NULL;
1208 const char *modified_name = NULL;
1209 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1210
1211 modified_name = name;
1212
1213 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1214 lookup, so we can always binary search. */
1215 if (lang == language_cplus)
1216 {
1217 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1218 if (demangled_name)
1219 {
1220 modified_name = demangled_name;
1221 make_cleanup (xfree, demangled_name);
1222 }
1223 else
1224 {
1225 /* If we were given a non-mangled name, canonicalize it
1226 according to the language (so far only for C++). */
1227 demangled_name = cp_canonicalize_string (name);
1228 if (demangled_name)
1229 {
1230 modified_name = demangled_name;
1231 make_cleanup (xfree, demangled_name);
1232 }
1233 }
1234 }
1235 else if (lang == language_java)
1236 {
1237 demangled_name = gdb_demangle (name,
1238 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1239 if (demangled_name)
1240 {
1241 modified_name = demangled_name;
1242 make_cleanup (xfree, demangled_name);
1243 }
1244 }
1245 else if (lang == language_d)
1246 {
1247 demangled_name = d_demangle (name, 0);
1248 if (demangled_name)
1249 {
1250 modified_name = demangled_name;
1251 make_cleanup (xfree, demangled_name);
1252 }
1253 }
1254 else if (lang == language_go)
1255 {
1256 demangled_name = go_demangle (name, 0);
1257 if (demangled_name)
1258 {
1259 modified_name = demangled_name;
1260 make_cleanup (xfree, demangled_name);
1261 }
1262 }
1263
1264 *result_name = modified_name;
1265 return cleanup;
1266 }
1267
1268 /* See symtab.h.
1269
1270 This function (or rather its subordinates) have a bunch of loops and
1271 it would seem to be attractive to put in some QUIT's (though I'm not really
1272 sure whether it can run long enough to be really important). But there
1273 are a few calls for which it would appear to be bad news to quit
1274 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1275 that there is C++ code below which can error(), but that probably
1276 doesn't affect these calls since they are looking for a known
1277 variable and thus can probably assume it will never hit the C++
1278 code). */
1279
1280 struct symbol *
1281 lookup_symbol_in_language (const char *name, const struct block *block,
1282 const domain_enum domain, enum language lang,
1283 struct field_of_this_result *is_a_field_of_this)
1284 {
1285 const char *modified_name;
1286 struct symbol *returnval;
1287 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1288
1289 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1290 is_a_field_of_this);
1291 do_cleanups (cleanup);
1292
1293 return returnval;
1294 }
1295
1296 /* See symtab.h. */
1297
1298 struct symbol *
1299 lookup_symbol (const char *name, const struct block *block,
1300 domain_enum domain,
1301 struct field_of_this_result *is_a_field_of_this)
1302 {
1303 return lookup_symbol_in_language (name, block, domain,
1304 current_language->la_language,
1305 is_a_field_of_this);
1306 }
1307
1308 /* See symtab.h. */
1309
1310 struct symbol *
1311 lookup_language_this (const struct language_defn *lang,
1312 const struct block *block)
1313 {
1314 if (lang->la_name_of_this == NULL || block == NULL)
1315 return NULL;
1316
1317 while (block)
1318 {
1319 struct symbol *sym;
1320
1321 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1322 if (sym != NULL)
1323 {
1324 block_found = block;
1325 return sym;
1326 }
1327 if (BLOCK_FUNCTION (block))
1328 break;
1329 block = BLOCK_SUPERBLOCK (block);
1330 }
1331
1332 return NULL;
1333 }
1334
1335 /* Given TYPE, a structure/union,
1336 return 1 if the component named NAME from the ultimate target
1337 structure/union is defined, otherwise, return 0. */
1338
1339 static int
1340 check_field (struct type *type, const char *name,
1341 struct field_of_this_result *is_a_field_of_this)
1342 {
1343 int i;
1344
1345 /* The type may be a stub. */
1346 CHECK_TYPEDEF (type);
1347
1348 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1349 {
1350 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1351
1352 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1353 {
1354 is_a_field_of_this->type = type;
1355 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1356 return 1;
1357 }
1358 }
1359
1360 /* C++: If it was not found as a data field, then try to return it
1361 as a pointer to a method. */
1362
1363 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1364 {
1365 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1366 {
1367 is_a_field_of_this->type = type;
1368 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1369 return 1;
1370 }
1371 }
1372
1373 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1374 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1375 return 1;
1376
1377 return 0;
1378 }
1379
1380 /* Behave like lookup_symbol except that NAME is the natural name
1381 (e.g., demangled name) of the symbol that we're looking for. */
1382
1383 static struct symbol *
1384 lookup_symbol_aux (const char *name, const struct block *block,
1385 const domain_enum domain, enum language language,
1386 struct field_of_this_result *is_a_field_of_this)
1387 {
1388 struct symbol *sym;
1389 const struct language_defn *langdef;
1390
1391 /* Make sure we do something sensible with is_a_field_of_this, since
1392 the callers that set this parameter to some non-null value will
1393 certainly use it later. If we don't set it, the contents of
1394 is_a_field_of_this are undefined. */
1395 if (is_a_field_of_this != NULL)
1396 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1397
1398 /* Search specified block and its superiors. Don't search
1399 STATIC_BLOCK or GLOBAL_BLOCK. */
1400
1401 sym = lookup_local_symbol (name, block, domain, language);
1402 if (sym != NULL)
1403 return sym;
1404
1405 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1406 check to see if NAME is a field of `this'. */
1407
1408 langdef = language_def (language);
1409
1410 /* Don't do this check if we are searching for a struct. It will
1411 not be found by check_field, but will be found by other
1412 means. */
1413 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1414 {
1415 struct symbol *sym = lookup_language_this (langdef, block);
1416
1417 if (sym)
1418 {
1419 struct type *t = sym->type;
1420
1421 /* I'm not really sure that type of this can ever
1422 be typedefed; just be safe. */
1423 CHECK_TYPEDEF (t);
1424 if (TYPE_CODE (t) == TYPE_CODE_PTR
1425 || TYPE_CODE (t) == TYPE_CODE_REF)
1426 t = TYPE_TARGET_TYPE (t);
1427
1428 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1429 && TYPE_CODE (t) != TYPE_CODE_UNION)
1430 error (_("Internal error: `%s' is not an aggregate"),
1431 langdef->la_name_of_this);
1432
1433 if (check_field (t, name, is_a_field_of_this))
1434 return NULL;
1435 }
1436 }
1437
1438 /* Now do whatever is appropriate for LANGUAGE to look
1439 up static and global variables. */
1440
1441 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1442 if (sym != NULL)
1443 return sym;
1444
1445 /* Now search all static file-level symbols. Not strictly correct,
1446 but more useful than an error. */
1447
1448 return lookup_static_symbol (name, domain);
1449 }
1450
1451 /* Check to see if the symbol is defined in BLOCK or its superiors.
1452 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1453
1454 static struct symbol *
1455 lookup_local_symbol (const char *name, const struct block *block,
1456 const domain_enum domain,
1457 enum language language)
1458 {
1459 struct symbol *sym;
1460 const struct block *static_block = block_static_block (block);
1461 const char *scope = block_scope (block);
1462
1463 /* Check if either no block is specified or it's a global block. */
1464
1465 if (static_block == NULL)
1466 return NULL;
1467
1468 while (block != static_block)
1469 {
1470 sym = lookup_symbol_in_block (name, block, domain);
1471 if (sym != NULL)
1472 return sym;
1473
1474 if (language == language_cplus || language == language_fortran)
1475 {
1476 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1477 domain);
1478 if (sym != NULL)
1479 return sym;
1480 }
1481
1482 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1483 break;
1484 block = BLOCK_SUPERBLOCK (block);
1485 }
1486
1487 /* We've reached the end of the function without finding a result. */
1488
1489 return NULL;
1490 }
1491
1492 /* See symtab.h. */
1493
1494 struct objfile *
1495 lookup_objfile_from_block (const struct block *block)
1496 {
1497 struct objfile *obj;
1498 struct compunit_symtab *cust;
1499
1500 if (block == NULL)
1501 return NULL;
1502
1503 block = block_global_block (block);
1504 /* Look through all blockvectors. */
1505 ALL_COMPUNITS (obj, cust)
1506 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
1507 GLOBAL_BLOCK))
1508 {
1509 if (obj->separate_debug_objfile_backlink)
1510 obj = obj->separate_debug_objfile_backlink;
1511
1512 return obj;
1513 }
1514
1515 return NULL;
1516 }
1517
1518 /* See symtab.h. */
1519
1520 struct symbol *
1521 lookup_symbol_in_block (const char *name, const struct block *block,
1522 const domain_enum domain)
1523 {
1524 struct symbol *sym;
1525
1526 sym = block_lookup_symbol (block, name, domain);
1527 if (sym)
1528 {
1529 block_found = block;
1530 return fixup_symbol_section (sym, NULL);
1531 }
1532
1533 return NULL;
1534 }
1535
1536 /* See symtab.h. */
1537
1538 struct symbol *
1539 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1540 const char *name,
1541 const domain_enum domain)
1542 {
1543 const struct objfile *objfile;
1544
1545 for (objfile = main_objfile;
1546 objfile;
1547 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1548 {
1549 struct compunit_symtab *cust;
1550 struct symbol *sym;
1551
1552 /* Go through symtabs. */
1553 ALL_OBJFILE_COMPUNITS (objfile, cust)
1554 {
1555 const struct blockvector *bv;
1556 const struct block *block;
1557
1558 bv = COMPUNIT_BLOCKVECTOR (cust);
1559 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1560 sym = block_lookup_symbol (block, name, domain);
1561 if (sym)
1562 {
1563 block_found = block;
1564 return fixup_symbol_section (sym, (struct objfile *)objfile);
1565 }
1566 }
1567
1568 sym = lookup_symbol_via_quick_fns ((struct objfile *) objfile,
1569 GLOBAL_BLOCK, name, domain);
1570 if (sym)
1571 return sym;
1572 }
1573
1574 return NULL;
1575 }
1576
1577 /* Check to see if the symbol is defined in one of the OBJFILE's
1578 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1579 depending on whether or not we want to search global symbols or
1580 static symbols. */
1581
1582 static struct symbol *
1583 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1584 const char *name, const domain_enum domain)
1585 {
1586 struct compunit_symtab *cust;
1587
1588 ALL_OBJFILE_COMPUNITS (objfile, cust)
1589 {
1590 const struct blockvector *bv;
1591 const struct block *block;
1592 struct symbol *sym;
1593
1594 bv = COMPUNIT_BLOCKVECTOR (cust);
1595 block = BLOCKVECTOR_BLOCK (bv, block_index);
1596 sym = block_lookup_symbol (block, name, domain);
1597 if (sym)
1598 {
1599 block_found = block;
1600 return fixup_symbol_section (sym, objfile);
1601 }
1602 }
1603
1604 return NULL;
1605 }
1606
1607 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1608 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1609 and all associated separate debug objfiles.
1610
1611 Normally we only look in OBJFILE, and not any separate debug objfiles
1612 because the outer loop will cause them to be searched too. This case is
1613 different. Here we're called from search_symbols where it will only
1614 call us for the the objfile that contains a matching minsym. */
1615
1616 static struct symbol *
1617 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1618 const char *linkage_name,
1619 domain_enum domain)
1620 {
1621 enum language lang = current_language->la_language;
1622 const char *modified_name;
1623 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1624 &modified_name);
1625 struct objfile *main_objfile, *cur_objfile;
1626
1627 if (objfile->separate_debug_objfile_backlink)
1628 main_objfile = objfile->separate_debug_objfile_backlink;
1629 else
1630 main_objfile = objfile;
1631
1632 for (cur_objfile = main_objfile;
1633 cur_objfile;
1634 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1635 {
1636 struct symbol *sym;
1637
1638 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1639 modified_name, domain);
1640 if (sym == NULL)
1641 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1642 modified_name, domain);
1643 if (sym != NULL)
1644 {
1645 do_cleanups (cleanup);
1646 return sym;
1647 }
1648 }
1649
1650 do_cleanups (cleanup);
1651 return NULL;
1652 }
1653
1654 /* A helper function that throws an exception when a symbol was found
1655 in a psymtab but not in a symtab. */
1656
1657 static void ATTRIBUTE_NORETURN
1658 error_in_psymtab_expansion (int block_index, const char *name,
1659 struct compunit_symtab *cust)
1660 {
1661 error (_("\
1662 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1663 %s may be an inlined function, or may be a template function\n \
1664 (if a template, try specifying an instantiation: %s<type>)."),
1665 block_index == GLOBAL_BLOCK ? "global" : "static",
1666 name,
1667 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
1668 name, name);
1669 }
1670
1671 /* A helper function for various lookup routines that interfaces with
1672 the "quick" symbol table functions. */
1673
1674 static struct symbol *
1675 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1676 const char *name, const domain_enum domain)
1677 {
1678 struct compunit_symtab *cust;
1679 const struct blockvector *bv;
1680 const struct block *block;
1681 struct symbol *sym;
1682
1683 if (!objfile->sf)
1684 return NULL;
1685 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1686 if (cust == NULL)
1687 return NULL;
1688
1689 bv = COMPUNIT_BLOCKVECTOR (cust);
1690 block = BLOCKVECTOR_BLOCK (bv, block_index);
1691 sym = block_lookup_symbol (block, name, domain);
1692 if (!sym)
1693 error_in_psymtab_expansion (block_index, name, cust);
1694 block_found = block;
1695 return fixup_symbol_section (sym, objfile);
1696 }
1697
1698 /* See symtab.h. */
1699
1700 struct symbol *
1701 basic_lookup_symbol_nonlocal (const char *name,
1702 const struct block *block,
1703 const domain_enum domain)
1704 {
1705 struct symbol *sym;
1706
1707 /* NOTE: carlton/2003-05-19: The comments below were written when
1708 this (or what turned into this) was part of lookup_symbol_aux;
1709 I'm much less worried about these questions now, since these
1710 decisions have turned out well, but I leave these comments here
1711 for posterity. */
1712
1713 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1714 not it would be appropriate to search the current global block
1715 here as well. (That's what this code used to do before the
1716 is_a_field_of_this check was moved up.) On the one hand, it's
1717 redundant with the lookup in all objfiles search that happens
1718 next. On the other hand, if decode_line_1 is passed an argument
1719 like filename:var, then the user presumably wants 'var' to be
1720 searched for in filename. On the third hand, there shouldn't be
1721 multiple global variables all of which are named 'var', and it's
1722 not like decode_line_1 has ever restricted its search to only
1723 global variables in a single filename. All in all, only
1724 searching the static block here seems best: it's correct and it's
1725 cleanest. */
1726
1727 /* NOTE: carlton/2002-12-05: There's also a possible performance
1728 issue here: if you usually search for global symbols in the
1729 current file, then it would be slightly better to search the
1730 current global block before searching all the symtabs. But there
1731 are other factors that have a much greater effect on performance
1732 than that one, so I don't think we should worry about that for
1733 now. */
1734
1735 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1736 the current objfile. Searching the current objfile first is useful
1737 for both matching user expectations as well as performance. */
1738
1739 sym = lookup_symbol_in_static_block (name, block, domain);
1740 if (sym != NULL)
1741 return sym;
1742
1743 return lookup_global_symbol (name, block, domain);
1744 }
1745
1746 /* See symtab.h. */
1747
1748 struct symbol *
1749 lookup_symbol_in_static_block (const char *name,
1750 const struct block *block,
1751 const domain_enum domain)
1752 {
1753 const struct block *static_block = block_static_block (block);
1754
1755 if (static_block != NULL)
1756 return lookup_symbol_in_block (name, static_block, domain);
1757 else
1758 return NULL;
1759 }
1760
1761 /* Perform the standard symbol lookup of NAME in OBJFILE:
1762 1) First search expanded symtabs, and if not found
1763 2) Search the "quick" symtabs (partial or .gdb_index).
1764 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1765
1766 static struct symbol *
1767 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1768 const char *name, const domain_enum domain)
1769 {
1770 struct symbol *result;
1771
1772 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1773 name, domain);
1774 if (result == NULL)
1775 {
1776 result = lookup_symbol_via_quick_fns (objfile, block_index,
1777 name, domain);
1778 }
1779
1780 return result;
1781 }
1782
1783 /* See symtab.h. */
1784
1785 struct symbol *
1786 lookup_static_symbol (const char *name, const domain_enum domain)
1787 {
1788 struct objfile *objfile;
1789 struct symbol *result;
1790
1791 ALL_OBJFILES (objfile)
1792 {
1793 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1794 if (result != NULL)
1795 return result;
1796 }
1797
1798 return NULL;
1799 }
1800
1801 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1802
1803 struct global_sym_lookup_data
1804 {
1805 /* The name of the symbol we are searching for. */
1806 const char *name;
1807
1808 /* The domain to use for our search. */
1809 domain_enum domain;
1810
1811 /* The field where the callback should store the symbol if found.
1812 It should be initialized to NULL before the search is started. */
1813 struct symbol *result;
1814 };
1815
1816 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1817 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1818 OBJFILE. The arguments for the search are passed via CB_DATA,
1819 which in reality is a pointer to struct global_sym_lookup_data. */
1820
1821 static int
1822 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1823 void *cb_data)
1824 {
1825 struct global_sym_lookup_data *data =
1826 (struct global_sym_lookup_data *) cb_data;
1827
1828 gdb_assert (data->result == NULL);
1829
1830 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1831 data->name, data->domain);
1832
1833 /* If we found a match, tell the iterator to stop. Otherwise,
1834 keep going. */
1835 return (data->result != NULL);
1836 }
1837
1838 /* See symtab.h. */
1839
1840 struct symbol *
1841 lookup_global_symbol (const char *name,
1842 const struct block *block,
1843 const domain_enum domain)
1844 {
1845 struct symbol *sym = NULL;
1846 struct objfile *objfile = NULL;
1847 struct global_sym_lookup_data lookup_data;
1848
1849 /* Call library-specific lookup procedure. */
1850 objfile = lookup_objfile_from_block (block);
1851 if (objfile != NULL)
1852 sym = solib_global_lookup (objfile, name, domain);
1853 if (sym != NULL)
1854 return sym;
1855
1856 memset (&lookup_data, 0, sizeof (lookup_data));
1857 lookup_data.name = name;
1858 lookup_data.domain = domain;
1859 gdbarch_iterate_over_objfiles_in_search_order
1860 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1861 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1862
1863 return lookup_data.result;
1864 }
1865
1866 int
1867 symbol_matches_domain (enum language symbol_language,
1868 domain_enum symbol_domain,
1869 domain_enum domain)
1870 {
1871 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1872 A Java class declaration also defines a typedef for the class.
1873 Similarly, any Ada type declaration implicitly defines a typedef. */
1874 if (symbol_language == language_cplus
1875 || symbol_language == language_d
1876 || symbol_language == language_java
1877 || symbol_language == language_ada)
1878 {
1879 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1880 && symbol_domain == STRUCT_DOMAIN)
1881 return 1;
1882 }
1883 /* For all other languages, strict match is required. */
1884 return (symbol_domain == domain);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct type *
1890 lookup_transparent_type (const char *name)
1891 {
1892 return current_language->la_lookup_transparent_type (name);
1893 }
1894
1895 /* A helper for basic_lookup_transparent_type that interfaces with the
1896 "quick" symbol table functions. */
1897
1898 static struct type *
1899 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1900 const char *name)
1901 {
1902 struct compunit_symtab *cust;
1903 const struct blockvector *bv;
1904 struct block *block;
1905 struct symbol *sym;
1906
1907 if (!objfile->sf)
1908 return NULL;
1909 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1910 STRUCT_DOMAIN);
1911 if (cust == NULL)
1912 return NULL;
1913
1914 bv = COMPUNIT_BLOCKVECTOR (cust);
1915 block = BLOCKVECTOR_BLOCK (bv, block_index);
1916 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1917 if (!sym)
1918 error_in_psymtab_expansion (block_index, name, cust);
1919
1920 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1921 return SYMBOL_TYPE (sym);
1922
1923 return NULL;
1924 }
1925
1926 /* The standard implementation of lookup_transparent_type. This code
1927 was modeled on lookup_symbol -- the parts not relevant to looking
1928 up types were just left out. In particular it's assumed here that
1929 types are available in STRUCT_DOMAIN and only in file-static or
1930 global blocks. */
1931
1932 struct type *
1933 basic_lookup_transparent_type (const char *name)
1934 {
1935 struct symbol *sym;
1936 struct compunit_symtab *cust;
1937 const struct blockvector *bv;
1938 struct objfile *objfile;
1939 struct block *block;
1940 struct type *t;
1941
1942 /* Now search all the global symbols. Do the symtab's first, then
1943 check the psymtab's. If a psymtab indicates the existence
1944 of the desired name as a global, then do psymtab-to-symtab
1945 conversion on the fly and return the found symbol. */
1946
1947 ALL_OBJFILES (objfile)
1948 {
1949 ALL_OBJFILE_COMPUNITS (objfile, cust)
1950 {
1951 bv = COMPUNIT_BLOCKVECTOR (cust);
1952 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1953 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1954 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1955 {
1956 return SYMBOL_TYPE (sym);
1957 }
1958 }
1959 }
1960
1961 ALL_OBJFILES (objfile)
1962 {
1963 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1964 if (t)
1965 return t;
1966 }
1967
1968 /* Now search the static file-level symbols.
1969 Not strictly correct, but more useful than an error.
1970 Do the symtab's first, then
1971 check the psymtab's. If a psymtab indicates the existence
1972 of the desired name as a file-level static, then do psymtab-to-symtab
1973 conversion on the fly and return the found symbol. */
1974
1975 ALL_OBJFILES (objfile)
1976 {
1977 ALL_OBJFILE_COMPUNITS (objfile, cust)
1978 {
1979 bv = COMPUNIT_BLOCKVECTOR (cust);
1980 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1981 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1982 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1983 {
1984 return SYMBOL_TYPE (sym);
1985 }
1986 }
1987 }
1988
1989 ALL_OBJFILES (objfile)
1990 {
1991 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1992 if (t)
1993 return t;
1994 }
1995
1996 return (struct type *) 0;
1997 }
1998
1999 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2000
2001 For each symbol that matches, CALLBACK is called. The symbol and
2002 DATA are passed to the callback.
2003
2004 If CALLBACK returns zero, the iteration ends. Otherwise, the
2005 search continues. */
2006
2007 void
2008 iterate_over_symbols (const struct block *block, const char *name,
2009 const domain_enum domain,
2010 symbol_found_callback_ftype *callback,
2011 void *data)
2012 {
2013 struct block_iterator iter;
2014 struct symbol *sym;
2015
2016 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2017 {
2018 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2019 SYMBOL_DOMAIN (sym), domain))
2020 {
2021 if (!callback (sym, data))
2022 return;
2023 }
2024 }
2025 }
2026
2027 /* Find the compunit symtab associated with PC and SECTION.
2028 This will read in debug info as necessary. */
2029
2030 struct compunit_symtab *
2031 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2032 {
2033 struct compunit_symtab *cust;
2034 struct compunit_symtab *best_cust = NULL;
2035 struct objfile *objfile;
2036 CORE_ADDR distance = 0;
2037 struct bound_minimal_symbol msymbol;
2038
2039 /* If we know that this is not a text address, return failure. This is
2040 necessary because we loop based on the block's high and low code
2041 addresses, which do not include the data ranges, and because
2042 we call find_pc_sect_psymtab which has a similar restriction based
2043 on the partial_symtab's texthigh and textlow. */
2044 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2045 if (msymbol.minsym
2046 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2047 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2048 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2049 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2050 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2051 return NULL;
2052
2053 /* Search all symtabs for the one whose file contains our address, and which
2054 is the smallest of all the ones containing the address. This is designed
2055 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2056 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2057 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2058
2059 This happens for native ecoff format, where code from included files
2060 gets its own symtab. The symtab for the included file should have
2061 been read in already via the dependency mechanism.
2062 It might be swifter to create several symtabs with the same name
2063 like xcoff does (I'm not sure).
2064
2065 It also happens for objfiles that have their functions reordered.
2066 For these, the symtab we are looking for is not necessarily read in. */
2067
2068 ALL_COMPUNITS (objfile, cust)
2069 {
2070 struct block *b;
2071 const struct blockvector *bv;
2072
2073 bv = COMPUNIT_BLOCKVECTOR (cust);
2074 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2075
2076 if (BLOCK_START (b) <= pc
2077 && BLOCK_END (b) > pc
2078 && (distance == 0
2079 || BLOCK_END (b) - BLOCK_START (b) < distance))
2080 {
2081 /* For an objfile that has its functions reordered,
2082 find_pc_psymtab will find the proper partial symbol table
2083 and we simply return its corresponding symtab. */
2084 /* In order to better support objfiles that contain both
2085 stabs and coff debugging info, we continue on if a psymtab
2086 can't be found. */
2087 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2088 {
2089 struct compunit_symtab *result;
2090
2091 result
2092 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2093 msymbol,
2094 pc, section,
2095 0);
2096 if (result != NULL)
2097 return result;
2098 }
2099 if (section != 0)
2100 {
2101 struct block_iterator iter;
2102 struct symbol *sym = NULL;
2103
2104 ALL_BLOCK_SYMBOLS (b, iter, sym)
2105 {
2106 fixup_symbol_section (sym, objfile);
2107 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2108 section))
2109 break;
2110 }
2111 if (sym == NULL)
2112 continue; /* No symbol in this symtab matches
2113 section. */
2114 }
2115 distance = BLOCK_END (b) - BLOCK_START (b);
2116 best_cust = cust;
2117 }
2118 }
2119
2120 if (best_cust != NULL)
2121 return best_cust;
2122
2123 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2124
2125 ALL_OBJFILES (objfile)
2126 {
2127 struct compunit_symtab *result;
2128
2129 if (!objfile->sf)
2130 continue;
2131 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2132 msymbol,
2133 pc, section,
2134 1);
2135 if (result != NULL)
2136 return result;
2137 }
2138
2139 return NULL;
2140 }
2141
2142 /* Find the compunit symtab associated with PC.
2143 This will read in debug info as necessary.
2144 Backward compatibility, no section. */
2145
2146 struct compunit_symtab *
2147 find_pc_compunit_symtab (CORE_ADDR pc)
2148 {
2149 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2150 }
2151 \f
2152
2153 /* Find the source file and line number for a given PC value and SECTION.
2154 Return a structure containing a symtab pointer, a line number,
2155 and a pc range for the entire source line.
2156 The value's .pc field is NOT the specified pc.
2157 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2158 use the line that ends there. Otherwise, in that case, the line
2159 that begins there is used. */
2160
2161 /* The big complication here is that a line may start in one file, and end just
2162 before the start of another file. This usually occurs when you #include
2163 code in the middle of a subroutine. To properly find the end of a line's PC
2164 range, we must search all symtabs associated with this compilation unit, and
2165 find the one whose first PC is closer than that of the next line in this
2166 symtab. */
2167
2168 /* If it's worth the effort, we could be using a binary search. */
2169
2170 struct symtab_and_line
2171 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2172 {
2173 struct compunit_symtab *cust;
2174 struct symtab *iter_s;
2175 struct linetable *l;
2176 int len;
2177 int i;
2178 struct linetable_entry *item;
2179 struct symtab_and_line val;
2180 const struct blockvector *bv;
2181 struct bound_minimal_symbol msymbol;
2182
2183 /* Info on best line seen so far, and where it starts, and its file. */
2184
2185 struct linetable_entry *best = NULL;
2186 CORE_ADDR best_end = 0;
2187 struct symtab *best_symtab = 0;
2188
2189 /* Store here the first line number
2190 of a file which contains the line at the smallest pc after PC.
2191 If we don't find a line whose range contains PC,
2192 we will use a line one less than this,
2193 with a range from the start of that file to the first line's pc. */
2194 struct linetable_entry *alt = NULL;
2195
2196 /* Info on best line seen in this file. */
2197
2198 struct linetable_entry *prev;
2199
2200 /* If this pc is not from the current frame,
2201 it is the address of the end of a call instruction.
2202 Quite likely that is the start of the following statement.
2203 But what we want is the statement containing the instruction.
2204 Fudge the pc to make sure we get that. */
2205
2206 init_sal (&val); /* initialize to zeroes */
2207
2208 val.pspace = current_program_space;
2209
2210 /* It's tempting to assume that, if we can't find debugging info for
2211 any function enclosing PC, that we shouldn't search for line
2212 number info, either. However, GAS can emit line number info for
2213 assembly files --- very helpful when debugging hand-written
2214 assembly code. In such a case, we'd have no debug info for the
2215 function, but we would have line info. */
2216
2217 if (notcurrent)
2218 pc -= 1;
2219
2220 /* elz: added this because this function returned the wrong
2221 information if the pc belongs to a stub (import/export)
2222 to call a shlib function. This stub would be anywhere between
2223 two functions in the target, and the line info was erroneously
2224 taken to be the one of the line before the pc. */
2225
2226 /* RT: Further explanation:
2227
2228 * We have stubs (trampolines) inserted between procedures.
2229 *
2230 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2231 * exists in the main image.
2232 *
2233 * In the minimal symbol table, we have a bunch of symbols
2234 * sorted by start address. The stubs are marked as "trampoline",
2235 * the others appear as text. E.g.:
2236 *
2237 * Minimal symbol table for main image
2238 * main: code for main (text symbol)
2239 * shr1: stub (trampoline symbol)
2240 * foo: code for foo (text symbol)
2241 * ...
2242 * Minimal symbol table for "shr1" image:
2243 * ...
2244 * shr1: code for shr1 (text symbol)
2245 * ...
2246 *
2247 * So the code below is trying to detect if we are in the stub
2248 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2249 * and if found, do the symbolization from the real-code address
2250 * rather than the stub address.
2251 *
2252 * Assumptions being made about the minimal symbol table:
2253 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2254 * if we're really in the trampoline.s If we're beyond it (say
2255 * we're in "foo" in the above example), it'll have a closer
2256 * symbol (the "foo" text symbol for example) and will not
2257 * return the trampoline.
2258 * 2. lookup_minimal_symbol_text() will find a real text symbol
2259 * corresponding to the trampoline, and whose address will
2260 * be different than the trampoline address. I put in a sanity
2261 * check for the address being the same, to avoid an
2262 * infinite recursion.
2263 */
2264 msymbol = lookup_minimal_symbol_by_pc (pc);
2265 if (msymbol.minsym != NULL)
2266 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2267 {
2268 struct bound_minimal_symbol mfunsym
2269 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2270 NULL);
2271
2272 if (mfunsym.minsym == NULL)
2273 /* I eliminated this warning since it is coming out
2274 * in the following situation:
2275 * gdb shmain // test program with shared libraries
2276 * (gdb) break shr1 // function in shared lib
2277 * Warning: In stub for ...
2278 * In the above situation, the shared lib is not loaded yet,
2279 * so of course we can't find the real func/line info,
2280 * but the "break" still works, and the warning is annoying.
2281 * So I commented out the warning. RT */
2282 /* warning ("In stub for %s; unable to find real function/line info",
2283 SYMBOL_LINKAGE_NAME (msymbol)); */
2284 ;
2285 /* fall through */
2286 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2287 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2288 /* Avoid infinite recursion */
2289 /* See above comment about why warning is commented out. */
2290 /* warning ("In stub for %s; unable to find real function/line info",
2291 SYMBOL_LINKAGE_NAME (msymbol)); */
2292 ;
2293 /* fall through */
2294 else
2295 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2296 }
2297
2298
2299 cust = find_pc_sect_compunit_symtab (pc, section);
2300 if (cust == NULL)
2301 {
2302 /* If no symbol information, return previous pc. */
2303 if (notcurrent)
2304 pc++;
2305 val.pc = pc;
2306 return val;
2307 }
2308
2309 bv = COMPUNIT_BLOCKVECTOR (cust);
2310
2311 /* Look at all the symtabs that share this blockvector.
2312 They all have the same apriori range, that we found was right;
2313 but they have different line tables. */
2314
2315 ALL_COMPUNIT_FILETABS (cust, iter_s)
2316 {
2317 /* Find the best line in this symtab. */
2318 l = SYMTAB_LINETABLE (iter_s);
2319 if (!l)
2320 continue;
2321 len = l->nitems;
2322 if (len <= 0)
2323 {
2324 /* I think len can be zero if the symtab lacks line numbers
2325 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2326 I'm not sure which, and maybe it depends on the symbol
2327 reader). */
2328 continue;
2329 }
2330
2331 prev = NULL;
2332 item = l->item; /* Get first line info. */
2333
2334 /* Is this file's first line closer than the first lines of other files?
2335 If so, record this file, and its first line, as best alternate. */
2336 if (item->pc > pc && (!alt || item->pc < alt->pc))
2337 alt = item;
2338
2339 for (i = 0; i < len; i++, item++)
2340 {
2341 /* Leave prev pointing to the linetable entry for the last line
2342 that started at or before PC. */
2343 if (item->pc > pc)
2344 break;
2345
2346 prev = item;
2347 }
2348
2349 /* At this point, prev points at the line whose start addr is <= pc, and
2350 item points at the next line. If we ran off the end of the linetable
2351 (pc >= start of the last line), then prev == item. If pc < start of
2352 the first line, prev will not be set. */
2353
2354 /* Is this file's best line closer than the best in the other files?
2355 If so, record this file, and its best line, as best so far. Don't
2356 save prev if it represents the end of a function (i.e. line number
2357 0) instead of a real line. */
2358
2359 if (prev && prev->line && (!best || prev->pc > best->pc))
2360 {
2361 best = prev;
2362 best_symtab = iter_s;
2363
2364 /* Discard BEST_END if it's before the PC of the current BEST. */
2365 if (best_end <= best->pc)
2366 best_end = 0;
2367 }
2368
2369 /* If another line (denoted by ITEM) is in the linetable and its
2370 PC is after BEST's PC, but before the current BEST_END, then
2371 use ITEM's PC as the new best_end. */
2372 if (best && i < len && item->pc > best->pc
2373 && (best_end == 0 || best_end > item->pc))
2374 best_end = item->pc;
2375 }
2376
2377 if (!best_symtab)
2378 {
2379 /* If we didn't find any line number info, just return zeros.
2380 We used to return alt->line - 1 here, but that could be
2381 anywhere; if we don't have line number info for this PC,
2382 don't make some up. */
2383 val.pc = pc;
2384 }
2385 else if (best->line == 0)
2386 {
2387 /* If our best fit is in a range of PC's for which no line
2388 number info is available (line number is zero) then we didn't
2389 find any valid line information. */
2390 val.pc = pc;
2391 }
2392 else
2393 {
2394 val.symtab = best_symtab;
2395 val.line = best->line;
2396 val.pc = best->pc;
2397 if (best_end && (!alt || best_end < alt->pc))
2398 val.end = best_end;
2399 else if (alt)
2400 val.end = alt->pc;
2401 else
2402 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2403 }
2404 val.section = section;
2405 return val;
2406 }
2407
2408 /* Backward compatibility (no section). */
2409
2410 struct symtab_and_line
2411 find_pc_line (CORE_ADDR pc, int notcurrent)
2412 {
2413 struct obj_section *section;
2414
2415 section = find_pc_overlay (pc);
2416 if (pc_in_unmapped_range (pc, section))
2417 pc = overlay_mapped_address (pc, section);
2418 return find_pc_sect_line (pc, section, notcurrent);
2419 }
2420
2421 /* See symtab.h. */
2422
2423 struct symtab *
2424 find_pc_line_symtab (CORE_ADDR pc)
2425 {
2426 struct symtab_and_line sal;
2427
2428 /* This always passes zero for NOTCURRENT to find_pc_line.
2429 There are currently no callers that ever pass non-zero. */
2430 sal = find_pc_line (pc, 0);
2431 return sal.symtab;
2432 }
2433 \f
2434 /* Find line number LINE in any symtab whose name is the same as
2435 SYMTAB.
2436
2437 If found, return the symtab that contains the linetable in which it was
2438 found, set *INDEX to the index in the linetable of the best entry
2439 found, and set *EXACT_MATCH nonzero if the value returned is an
2440 exact match.
2441
2442 If not found, return NULL. */
2443
2444 struct symtab *
2445 find_line_symtab (struct symtab *symtab, int line,
2446 int *index, int *exact_match)
2447 {
2448 int exact = 0; /* Initialized here to avoid a compiler warning. */
2449
2450 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2451 so far seen. */
2452
2453 int best_index;
2454 struct linetable *best_linetable;
2455 struct symtab *best_symtab;
2456
2457 /* First try looking it up in the given symtab. */
2458 best_linetable = SYMTAB_LINETABLE (symtab);
2459 best_symtab = symtab;
2460 best_index = find_line_common (best_linetable, line, &exact, 0);
2461 if (best_index < 0 || !exact)
2462 {
2463 /* Didn't find an exact match. So we better keep looking for
2464 another symtab with the same name. In the case of xcoff,
2465 multiple csects for one source file (produced by IBM's FORTRAN
2466 compiler) produce multiple symtabs (this is unavoidable
2467 assuming csects can be at arbitrary places in memory and that
2468 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2469
2470 /* BEST is the smallest linenumber > LINE so far seen,
2471 or 0 if none has been seen so far.
2472 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2473 int best;
2474
2475 struct objfile *objfile;
2476 struct compunit_symtab *cu;
2477 struct symtab *s;
2478
2479 if (best_index >= 0)
2480 best = best_linetable->item[best_index].line;
2481 else
2482 best = 0;
2483
2484 ALL_OBJFILES (objfile)
2485 {
2486 if (objfile->sf)
2487 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2488 symtab_to_fullname (symtab));
2489 }
2490
2491 ALL_FILETABS (objfile, cu, s)
2492 {
2493 struct linetable *l;
2494 int ind;
2495
2496 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2497 continue;
2498 if (FILENAME_CMP (symtab_to_fullname (symtab),
2499 symtab_to_fullname (s)) != 0)
2500 continue;
2501 l = SYMTAB_LINETABLE (s);
2502 ind = find_line_common (l, line, &exact, 0);
2503 if (ind >= 0)
2504 {
2505 if (exact)
2506 {
2507 best_index = ind;
2508 best_linetable = l;
2509 best_symtab = s;
2510 goto done;
2511 }
2512 if (best == 0 || l->item[ind].line < best)
2513 {
2514 best = l->item[ind].line;
2515 best_index = ind;
2516 best_linetable = l;
2517 best_symtab = s;
2518 }
2519 }
2520 }
2521 }
2522 done:
2523 if (best_index < 0)
2524 return NULL;
2525
2526 if (index)
2527 *index = best_index;
2528 if (exact_match)
2529 *exact_match = exact;
2530
2531 return best_symtab;
2532 }
2533
2534 /* Given SYMTAB, returns all the PCs function in the symtab that
2535 exactly match LINE. Returns NULL if there are no exact matches,
2536 but updates BEST_ITEM in this case. */
2537
2538 VEC (CORE_ADDR) *
2539 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2540 struct linetable_entry **best_item)
2541 {
2542 int start = 0;
2543 VEC (CORE_ADDR) *result = NULL;
2544
2545 /* First, collect all the PCs that are at this line. */
2546 while (1)
2547 {
2548 int was_exact;
2549 int idx;
2550
2551 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
2552 start);
2553 if (idx < 0)
2554 break;
2555
2556 if (!was_exact)
2557 {
2558 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
2559
2560 if (*best_item == NULL || item->line < (*best_item)->line)
2561 *best_item = item;
2562
2563 break;
2564 }
2565
2566 VEC_safe_push (CORE_ADDR, result,
2567 SYMTAB_LINETABLE (symtab)->item[idx].pc);
2568 start = idx + 1;
2569 }
2570
2571 return result;
2572 }
2573
2574 \f
2575 /* Set the PC value for a given source file and line number and return true.
2576 Returns zero for invalid line number (and sets the PC to 0).
2577 The source file is specified with a struct symtab. */
2578
2579 int
2580 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2581 {
2582 struct linetable *l;
2583 int ind;
2584
2585 *pc = 0;
2586 if (symtab == 0)
2587 return 0;
2588
2589 symtab = find_line_symtab (symtab, line, &ind, NULL);
2590 if (symtab != NULL)
2591 {
2592 l = SYMTAB_LINETABLE (symtab);
2593 *pc = l->item[ind].pc;
2594 return 1;
2595 }
2596 else
2597 return 0;
2598 }
2599
2600 /* Find the range of pc values in a line.
2601 Store the starting pc of the line into *STARTPTR
2602 and the ending pc (start of next line) into *ENDPTR.
2603 Returns 1 to indicate success.
2604 Returns 0 if could not find the specified line. */
2605
2606 int
2607 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2608 CORE_ADDR *endptr)
2609 {
2610 CORE_ADDR startaddr;
2611 struct symtab_and_line found_sal;
2612
2613 startaddr = sal.pc;
2614 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2615 return 0;
2616
2617 /* This whole function is based on address. For example, if line 10 has
2618 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2619 "info line *0x123" should say the line goes from 0x100 to 0x200
2620 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2621 This also insures that we never give a range like "starts at 0x134
2622 and ends at 0x12c". */
2623
2624 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2625 if (found_sal.line != sal.line)
2626 {
2627 /* The specified line (sal) has zero bytes. */
2628 *startptr = found_sal.pc;
2629 *endptr = found_sal.pc;
2630 }
2631 else
2632 {
2633 *startptr = found_sal.pc;
2634 *endptr = found_sal.end;
2635 }
2636 return 1;
2637 }
2638
2639 /* Given a line table and a line number, return the index into the line
2640 table for the pc of the nearest line whose number is >= the specified one.
2641 Return -1 if none is found. The value is >= 0 if it is an index.
2642 START is the index at which to start searching the line table.
2643
2644 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2645
2646 static int
2647 find_line_common (struct linetable *l, int lineno,
2648 int *exact_match, int start)
2649 {
2650 int i;
2651 int len;
2652
2653 /* BEST is the smallest linenumber > LINENO so far seen,
2654 or 0 if none has been seen so far.
2655 BEST_INDEX identifies the item for it. */
2656
2657 int best_index = -1;
2658 int best = 0;
2659
2660 *exact_match = 0;
2661
2662 if (lineno <= 0)
2663 return -1;
2664 if (l == 0)
2665 return -1;
2666
2667 len = l->nitems;
2668 for (i = start; i < len; i++)
2669 {
2670 struct linetable_entry *item = &(l->item[i]);
2671
2672 if (item->line == lineno)
2673 {
2674 /* Return the first (lowest address) entry which matches. */
2675 *exact_match = 1;
2676 return i;
2677 }
2678
2679 if (item->line > lineno && (best == 0 || item->line < best))
2680 {
2681 best = item->line;
2682 best_index = i;
2683 }
2684 }
2685
2686 /* If we got here, we didn't get an exact match. */
2687 return best_index;
2688 }
2689
2690 int
2691 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2692 {
2693 struct symtab_and_line sal;
2694
2695 sal = find_pc_line (pc, 0);
2696 *startptr = sal.pc;
2697 *endptr = sal.end;
2698 return sal.symtab != 0;
2699 }
2700
2701 /* Given a function symbol SYM, find the symtab and line for the start
2702 of the function.
2703 If the argument FUNFIRSTLINE is nonzero, we want the first line
2704 of real code inside the function. */
2705
2706 struct symtab_and_line
2707 find_function_start_sal (struct symbol *sym, int funfirstline)
2708 {
2709 struct symtab_and_line sal;
2710
2711 fixup_symbol_section (sym, NULL);
2712 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2713 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2714
2715 /* We always should have a line for the function start address.
2716 If we don't, something is odd. Create a plain SAL refering
2717 just the PC and hope that skip_prologue_sal (if requested)
2718 can find a line number for after the prologue. */
2719 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2720 {
2721 init_sal (&sal);
2722 sal.pspace = current_program_space;
2723 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2724 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2725 }
2726
2727 if (funfirstline)
2728 skip_prologue_sal (&sal);
2729
2730 return sal;
2731 }
2732
2733 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2734 address for that function that has an entry in SYMTAB's line info
2735 table. If such an entry cannot be found, return FUNC_ADDR
2736 unaltered. */
2737
2738 static CORE_ADDR
2739 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2740 {
2741 CORE_ADDR func_start, func_end;
2742 struct linetable *l;
2743 int i;
2744
2745 /* Give up if this symbol has no lineinfo table. */
2746 l = SYMTAB_LINETABLE (symtab);
2747 if (l == NULL)
2748 return func_addr;
2749
2750 /* Get the range for the function's PC values, or give up if we
2751 cannot, for some reason. */
2752 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2753 return func_addr;
2754
2755 /* Linetable entries are ordered by PC values, see the commentary in
2756 symtab.h where `struct linetable' is defined. Thus, the first
2757 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2758 address we are looking for. */
2759 for (i = 0; i < l->nitems; i++)
2760 {
2761 struct linetable_entry *item = &(l->item[i]);
2762
2763 /* Don't use line numbers of zero, they mark special entries in
2764 the table. See the commentary on symtab.h before the
2765 definition of struct linetable. */
2766 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2767 return item->pc;
2768 }
2769
2770 return func_addr;
2771 }
2772
2773 /* Adjust SAL to the first instruction past the function prologue.
2774 If the PC was explicitly specified, the SAL is not changed.
2775 If the line number was explicitly specified, at most the SAL's PC
2776 is updated. If SAL is already past the prologue, then do nothing. */
2777
2778 void
2779 skip_prologue_sal (struct symtab_and_line *sal)
2780 {
2781 struct symbol *sym;
2782 struct symtab_and_line start_sal;
2783 struct cleanup *old_chain;
2784 CORE_ADDR pc, saved_pc;
2785 struct obj_section *section;
2786 const char *name;
2787 struct objfile *objfile;
2788 struct gdbarch *gdbarch;
2789 const struct block *b, *function_block;
2790 int force_skip, skip;
2791
2792 /* Do not change the SAL if PC was specified explicitly. */
2793 if (sal->explicit_pc)
2794 return;
2795
2796 old_chain = save_current_space_and_thread ();
2797 switch_to_program_space_and_thread (sal->pspace);
2798
2799 sym = find_pc_sect_function (sal->pc, sal->section);
2800 if (sym != NULL)
2801 {
2802 fixup_symbol_section (sym, NULL);
2803
2804 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2805 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2806 name = SYMBOL_LINKAGE_NAME (sym);
2807 objfile = SYMBOL_OBJFILE (sym);
2808 }
2809 else
2810 {
2811 struct bound_minimal_symbol msymbol
2812 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2813
2814 if (msymbol.minsym == NULL)
2815 {
2816 do_cleanups (old_chain);
2817 return;
2818 }
2819
2820 objfile = msymbol.objfile;
2821 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2822 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2823 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2824 }
2825
2826 gdbarch = get_objfile_arch (objfile);
2827
2828 /* Process the prologue in two passes. In the first pass try to skip the
2829 prologue (SKIP is true) and verify there is a real need for it (indicated
2830 by FORCE_SKIP). If no such reason was found run a second pass where the
2831 prologue is not skipped (SKIP is false). */
2832
2833 skip = 1;
2834 force_skip = 1;
2835
2836 /* Be conservative - allow direct PC (without skipping prologue) only if we
2837 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2838 have to be set by the caller so we use SYM instead. */
2839 if (sym && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (SYMBOL_SYMTAB (sym))))
2840 force_skip = 0;
2841
2842 saved_pc = pc;
2843 do
2844 {
2845 pc = saved_pc;
2846
2847 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2848 so that gdbarch_skip_prologue has something unique to work on. */
2849 if (section_is_overlay (section) && !section_is_mapped (section))
2850 pc = overlay_unmapped_address (pc, section);
2851
2852 /* Skip "first line" of function (which is actually its prologue). */
2853 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2854 if (gdbarch_skip_entrypoint_p (gdbarch))
2855 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2856 if (skip)
2857 pc = gdbarch_skip_prologue (gdbarch, pc);
2858
2859 /* For overlays, map pc back into its mapped VMA range. */
2860 pc = overlay_mapped_address (pc, section);
2861
2862 /* Calculate line number. */
2863 start_sal = find_pc_sect_line (pc, section, 0);
2864
2865 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2866 line is still part of the same function. */
2867 if (skip && start_sal.pc != pc
2868 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2869 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2870 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2871 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2872 {
2873 /* First pc of next line */
2874 pc = start_sal.end;
2875 /* Recalculate the line number (might not be N+1). */
2876 start_sal = find_pc_sect_line (pc, section, 0);
2877 }
2878
2879 /* On targets with executable formats that don't have a concept of
2880 constructors (ELF with .init has, PE doesn't), gcc emits a call
2881 to `__main' in `main' between the prologue and before user
2882 code. */
2883 if (gdbarch_skip_main_prologue_p (gdbarch)
2884 && name && strcmp_iw (name, "main") == 0)
2885 {
2886 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2887 /* Recalculate the line number (might not be N+1). */
2888 start_sal = find_pc_sect_line (pc, section, 0);
2889 force_skip = 1;
2890 }
2891 }
2892 while (!force_skip && skip--);
2893
2894 /* If we still don't have a valid source line, try to find the first
2895 PC in the lineinfo table that belongs to the same function. This
2896 happens with COFF debug info, which does not seem to have an
2897 entry in lineinfo table for the code after the prologue which has
2898 no direct relation to source. For example, this was found to be
2899 the case with the DJGPP target using "gcc -gcoff" when the
2900 compiler inserted code after the prologue to make sure the stack
2901 is aligned. */
2902 if (!force_skip && sym && start_sal.symtab == NULL)
2903 {
2904 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2905 /* Recalculate the line number. */
2906 start_sal = find_pc_sect_line (pc, section, 0);
2907 }
2908
2909 do_cleanups (old_chain);
2910
2911 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2912 forward SAL to the end of the prologue. */
2913 if (sal->pc >= pc)
2914 return;
2915
2916 sal->pc = pc;
2917 sal->section = section;
2918
2919 /* Unless the explicit_line flag was set, update the SAL line
2920 and symtab to correspond to the modified PC location. */
2921 if (sal->explicit_line)
2922 return;
2923
2924 sal->symtab = start_sal.symtab;
2925 sal->line = start_sal.line;
2926 sal->end = start_sal.end;
2927
2928 /* Check if we are now inside an inlined function. If we can,
2929 use the call site of the function instead. */
2930 b = block_for_pc_sect (sal->pc, sal->section);
2931 function_block = NULL;
2932 while (b != NULL)
2933 {
2934 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2935 function_block = b;
2936 else if (BLOCK_FUNCTION (b) != NULL)
2937 break;
2938 b = BLOCK_SUPERBLOCK (b);
2939 }
2940 if (function_block != NULL
2941 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2942 {
2943 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2944 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2945 }
2946 }
2947
2948 /* Given PC at the function's start address, attempt to find the
2949 prologue end using SAL information. Return zero if the skip fails.
2950
2951 A non-optimized prologue traditionally has one SAL for the function
2952 and a second for the function body. A single line function has
2953 them both pointing at the same line.
2954
2955 An optimized prologue is similar but the prologue may contain
2956 instructions (SALs) from the instruction body. Need to skip those
2957 while not getting into the function body.
2958
2959 The functions end point and an increasing SAL line are used as
2960 indicators of the prologue's endpoint.
2961
2962 This code is based on the function refine_prologue_limit
2963 (found in ia64). */
2964
2965 CORE_ADDR
2966 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
2967 {
2968 struct symtab_and_line prologue_sal;
2969 CORE_ADDR start_pc;
2970 CORE_ADDR end_pc;
2971 const struct block *bl;
2972
2973 /* Get an initial range for the function. */
2974 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
2975 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
2976
2977 prologue_sal = find_pc_line (start_pc, 0);
2978 if (prologue_sal.line != 0)
2979 {
2980 /* For languages other than assembly, treat two consecutive line
2981 entries at the same address as a zero-instruction prologue.
2982 The GNU assembler emits separate line notes for each instruction
2983 in a multi-instruction macro, but compilers generally will not
2984 do this. */
2985 if (prologue_sal.symtab->language != language_asm)
2986 {
2987 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
2988 int idx = 0;
2989
2990 /* Skip any earlier lines, and any end-of-sequence marker
2991 from a previous function. */
2992 while (linetable->item[idx].pc != prologue_sal.pc
2993 || linetable->item[idx].line == 0)
2994 idx++;
2995
2996 if (idx+1 < linetable->nitems
2997 && linetable->item[idx+1].line != 0
2998 && linetable->item[idx+1].pc == start_pc)
2999 return start_pc;
3000 }
3001
3002 /* If there is only one sal that covers the entire function,
3003 then it is probably a single line function, like
3004 "foo(){}". */
3005 if (prologue_sal.end >= end_pc)
3006 return 0;
3007
3008 while (prologue_sal.end < end_pc)
3009 {
3010 struct symtab_and_line sal;
3011
3012 sal = find_pc_line (prologue_sal.end, 0);
3013 if (sal.line == 0)
3014 break;
3015 /* Assume that a consecutive SAL for the same (or larger)
3016 line mark the prologue -> body transition. */
3017 if (sal.line >= prologue_sal.line)
3018 break;
3019 /* Likewise if we are in a different symtab altogether
3020 (e.g. within a file included via #include).  */
3021 if (sal.symtab != prologue_sal.symtab)
3022 break;
3023
3024 /* The line number is smaller. Check that it's from the
3025 same function, not something inlined. If it's inlined,
3026 then there is no point comparing the line numbers. */
3027 bl = block_for_pc (prologue_sal.end);
3028 while (bl)
3029 {
3030 if (block_inlined_p (bl))
3031 break;
3032 if (BLOCK_FUNCTION (bl))
3033 {
3034 bl = NULL;
3035 break;
3036 }
3037 bl = BLOCK_SUPERBLOCK (bl);
3038 }
3039 if (bl != NULL)
3040 break;
3041
3042 /* The case in which compiler's optimizer/scheduler has
3043 moved instructions into the prologue. We look ahead in
3044 the function looking for address ranges whose
3045 corresponding line number is less the first one that we
3046 found for the function. This is more conservative then
3047 refine_prologue_limit which scans a large number of SALs
3048 looking for any in the prologue. */
3049 prologue_sal = sal;
3050 }
3051 }
3052
3053 if (prologue_sal.end < end_pc)
3054 /* Return the end of this line, or zero if we could not find a
3055 line. */
3056 return prologue_sal.end;
3057 else
3058 /* Don't return END_PC, which is past the end of the function. */
3059 return prologue_sal.pc;
3060 }
3061 \f
3062 /* If P is of the form "operator[ \t]+..." where `...' is
3063 some legitimate operator text, return a pointer to the
3064 beginning of the substring of the operator text.
3065 Otherwise, return "". */
3066
3067 static const char *
3068 operator_chars (const char *p, const char **end)
3069 {
3070 *end = "";
3071 if (strncmp (p, "operator", 8))
3072 return *end;
3073 p += 8;
3074
3075 /* Don't get faked out by `operator' being part of a longer
3076 identifier. */
3077 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3078 return *end;
3079
3080 /* Allow some whitespace between `operator' and the operator symbol. */
3081 while (*p == ' ' || *p == '\t')
3082 p++;
3083
3084 /* Recognize 'operator TYPENAME'. */
3085
3086 if (isalpha (*p) || *p == '_' || *p == '$')
3087 {
3088 const char *q = p + 1;
3089
3090 while (isalnum (*q) || *q == '_' || *q == '$')
3091 q++;
3092 *end = q;
3093 return p;
3094 }
3095
3096 while (*p)
3097 switch (*p)
3098 {
3099 case '\\': /* regexp quoting */
3100 if (p[1] == '*')
3101 {
3102 if (p[2] == '=') /* 'operator\*=' */
3103 *end = p + 3;
3104 else /* 'operator\*' */
3105 *end = p + 2;
3106 return p;
3107 }
3108 else if (p[1] == '[')
3109 {
3110 if (p[2] == ']')
3111 error (_("mismatched quoting on brackets, "
3112 "try 'operator\\[\\]'"));
3113 else if (p[2] == '\\' && p[3] == ']')
3114 {
3115 *end = p + 4; /* 'operator\[\]' */
3116 return p;
3117 }
3118 else
3119 error (_("nothing is allowed between '[' and ']'"));
3120 }
3121 else
3122 {
3123 /* Gratuitous qoute: skip it and move on. */
3124 p++;
3125 continue;
3126 }
3127 break;
3128 case '!':
3129 case '=':
3130 case '*':
3131 case '/':
3132 case '%':
3133 case '^':
3134 if (p[1] == '=')
3135 *end = p + 2;
3136 else
3137 *end = p + 1;
3138 return p;
3139 case '<':
3140 case '>':
3141 case '+':
3142 case '-':
3143 case '&':
3144 case '|':
3145 if (p[0] == '-' && p[1] == '>')
3146 {
3147 /* Struct pointer member operator 'operator->'. */
3148 if (p[2] == '*')
3149 {
3150 *end = p + 3; /* 'operator->*' */
3151 return p;
3152 }
3153 else if (p[2] == '\\')
3154 {
3155 *end = p + 4; /* Hopefully 'operator->\*' */
3156 return p;
3157 }
3158 else
3159 {
3160 *end = p + 2; /* 'operator->' */
3161 return p;
3162 }
3163 }
3164 if (p[1] == '=' || p[1] == p[0])
3165 *end = p + 2;
3166 else
3167 *end = p + 1;
3168 return p;
3169 case '~':
3170 case ',':
3171 *end = p + 1;
3172 return p;
3173 case '(':
3174 if (p[1] != ')')
3175 error (_("`operator ()' must be specified "
3176 "without whitespace in `()'"));
3177 *end = p + 2;
3178 return p;
3179 case '?':
3180 if (p[1] != ':')
3181 error (_("`operator ?:' must be specified "
3182 "without whitespace in `?:'"));
3183 *end = p + 2;
3184 return p;
3185 case '[':
3186 if (p[1] != ']')
3187 error (_("`operator []' must be specified "
3188 "without whitespace in `[]'"));
3189 *end = p + 2;
3190 return p;
3191 default:
3192 error (_("`operator %s' not supported"), p);
3193 break;
3194 }
3195
3196 *end = "";
3197 return *end;
3198 }
3199 \f
3200
3201 /* Cache to watch for file names already seen by filename_seen. */
3202
3203 struct filename_seen_cache
3204 {
3205 /* Table of files seen so far. */
3206 htab_t tab;
3207 /* Initial size of the table. It automagically grows from here. */
3208 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3209 };
3210
3211 /* filename_seen_cache constructor. */
3212
3213 static struct filename_seen_cache *
3214 create_filename_seen_cache (void)
3215 {
3216 struct filename_seen_cache *cache;
3217
3218 cache = XNEW (struct filename_seen_cache);
3219 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3220 filename_hash, filename_eq,
3221 NULL, xcalloc, xfree);
3222
3223 return cache;
3224 }
3225
3226 /* Empty the cache, but do not delete it. */
3227
3228 static void
3229 clear_filename_seen_cache (struct filename_seen_cache *cache)
3230 {
3231 htab_empty (cache->tab);
3232 }
3233
3234 /* filename_seen_cache destructor.
3235 This takes a void * argument as it is generally used as a cleanup. */
3236
3237 static void
3238 delete_filename_seen_cache (void *ptr)
3239 {
3240 struct filename_seen_cache *cache = ptr;
3241
3242 htab_delete (cache->tab);
3243 xfree (cache);
3244 }
3245
3246 /* If FILE is not already in the table of files in CACHE, return zero;
3247 otherwise return non-zero. Optionally add FILE to the table if ADD
3248 is non-zero.
3249
3250 NOTE: We don't manage space for FILE, we assume FILE lives as long
3251 as the caller needs. */
3252
3253 static int
3254 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3255 {
3256 void **slot;
3257
3258 /* Is FILE in tab? */
3259 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3260 if (*slot != NULL)
3261 return 1;
3262
3263 /* No; maybe add it to tab. */
3264 if (add)
3265 *slot = (char *) file;
3266
3267 return 0;
3268 }
3269
3270 /* Data structure to maintain printing state for output_source_filename. */
3271
3272 struct output_source_filename_data
3273 {
3274 /* Cache of what we've seen so far. */
3275 struct filename_seen_cache *filename_seen_cache;
3276
3277 /* Flag of whether we're printing the first one. */
3278 int first;
3279 };
3280
3281 /* Slave routine for sources_info. Force line breaks at ,'s.
3282 NAME is the name to print.
3283 DATA contains the state for printing and watching for duplicates. */
3284
3285 static void
3286 output_source_filename (const char *name,
3287 struct output_source_filename_data *data)
3288 {
3289 /* Since a single source file can result in several partial symbol
3290 tables, we need to avoid printing it more than once. Note: if
3291 some of the psymtabs are read in and some are not, it gets
3292 printed both under "Source files for which symbols have been
3293 read" and "Source files for which symbols will be read in on
3294 demand". I consider this a reasonable way to deal with the
3295 situation. I'm not sure whether this can also happen for
3296 symtabs; it doesn't hurt to check. */
3297
3298 /* Was NAME already seen? */
3299 if (filename_seen (data->filename_seen_cache, name, 1))
3300 {
3301 /* Yes; don't print it again. */
3302 return;
3303 }
3304
3305 /* No; print it and reset *FIRST. */
3306 if (! data->first)
3307 printf_filtered (", ");
3308 data->first = 0;
3309
3310 wrap_here ("");
3311 fputs_filtered (name, gdb_stdout);
3312 }
3313
3314 /* A callback for map_partial_symbol_filenames. */
3315
3316 static void
3317 output_partial_symbol_filename (const char *filename, const char *fullname,
3318 void *data)
3319 {
3320 output_source_filename (fullname ? fullname : filename, data);
3321 }
3322
3323 static void
3324 sources_info (char *ignore, int from_tty)
3325 {
3326 struct compunit_symtab *cu;
3327 struct symtab *s;
3328 struct objfile *objfile;
3329 struct output_source_filename_data data;
3330 struct cleanup *cleanups;
3331
3332 if (!have_full_symbols () && !have_partial_symbols ())
3333 {
3334 error (_("No symbol table is loaded. Use the \"file\" command."));
3335 }
3336
3337 data.filename_seen_cache = create_filename_seen_cache ();
3338 cleanups = make_cleanup (delete_filename_seen_cache,
3339 data.filename_seen_cache);
3340
3341 printf_filtered ("Source files for which symbols have been read in:\n\n");
3342
3343 data.first = 1;
3344 ALL_FILETABS (objfile, cu, s)
3345 {
3346 const char *fullname = symtab_to_fullname (s);
3347
3348 output_source_filename (fullname, &data);
3349 }
3350 printf_filtered ("\n\n");
3351
3352 printf_filtered ("Source files for which symbols "
3353 "will be read in on demand:\n\n");
3354
3355 clear_filename_seen_cache (data.filename_seen_cache);
3356 data.first = 1;
3357 map_symbol_filenames (output_partial_symbol_filename, &data,
3358 1 /*need_fullname*/);
3359 printf_filtered ("\n");
3360
3361 do_cleanups (cleanups);
3362 }
3363
3364 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3365 non-zero compare only lbasename of FILES. */
3366
3367 static int
3368 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3369 {
3370 int i;
3371
3372 if (file != NULL && nfiles != 0)
3373 {
3374 for (i = 0; i < nfiles; i++)
3375 {
3376 if (compare_filenames_for_search (file, (basenames
3377 ? lbasename (files[i])
3378 : files[i])))
3379 return 1;
3380 }
3381 }
3382 else if (nfiles == 0)
3383 return 1;
3384 return 0;
3385 }
3386
3387 /* Free any memory associated with a search. */
3388
3389 void
3390 free_search_symbols (struct symbol_search *symbols)
3391 {
3392 struct symbol_search *p;
3393 struct symbol_search *next;
3394
3395 for (p = symbols; p != NULL; p = next)
3396 {
3397 next = p->next;
3398 xfree (p);
3399 }
3400 }
3401
3402 static void
3403 do_free_search_symbols_cleanup (void *symbolsp)
3404 {
3405 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3406
3407 free_search_symbols (symbols);
3408 }
3409
3410 struct cleanup *
3411 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3412 {
3413 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3414 }
3415
3416 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3417 sort symbols, not minimal symbols. */
3418
3419 static int
3420 compare_search_syms (const void *sa, const void *sb)
3421 {
3422 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3423 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3424 int c;
3425
3426 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3427 if (c != 0)
3428 return c;
3429
3430 if (sym_a->block != sym_b->block)
3431 return sym_a->block - sym_b->block;
3432
3433 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3434 SYMBOL_PRINT_NAME (sym_b->symbol));
3435 }
3436
3437 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3438 The duplicates are freed, and the new list is returned in
3439 *NEW_HEAD, *NEW_TAIL. */
3440
3441 static void
3442 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3443 struct symbol_search **new_head,
3444 struct symbol_search **new_tail)
3445 {
3446 struct symbol_search **symbols, *symp, *old_next;
3447 int i, j, nunique;
3448
3449 gdb_assert (found != NULL && nfound > 0);
3450
3451 /* Build an array out of the list so we can easily sort them. */
3452 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3453 * nfound);
3454 symp = found;
3455 for (i = 0; i < nfound; i++)
3456 {
3457 gdb_assert (symp != NULL);
3458 gdb_assert (symp->block >= 0 && symp->block <= 1);
3459 symbols[i] = symp;
3460 symp = symp->next;
3461 }
3462 gdb_assert (symp == NULL);
3463
3464 qsort (symbols, nfound, sizeof (struct symbol_search *),
3465 compare_search_syms);
3466
3467 /* Collapse out the dups. */
3468 for (i = 1, j = 1; i < nfound; ++i)
3469 {
3470 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3471 symbols[j++] = symbols[i];
3472 else
3473 xfree (symbols[i]);
3474 }
3475 nunique = j;
3476 symbols[j - 1]->next = NULL;
3477
3478 /* Rebuild the linked list. */
3479 for (i = 0; i < nunique - 1; i++)
3480 symbols[i]->next = symbols[i + 1];
3481 symbols[nunique - 1]->next = NULL;
3482
3483 *new_head = symbols[0];
3484 *new_tail = symbols[nunique - 1];
3485 xfree (symbols);
3486 }
3487
3488 /* An object of this type is passed as the user_data to the
3489 expand_symtabs_matching method. */
3490 struct search_symbols_data
3491 {
3492 int nfiles;
3493 const char **files;
3494
3495 /* It is true if PREG contains valid data, false otherwise. */
3496 unsigned preg_p : 1;
3497 regex_t preg;
3498 };
3499
3500 /* A callback for expand_symtabs_matching. */
3501
3502 static int
3503 search_symbols_file_matches (const char *filename, void *user_data,
3504 int basenames)
3505 {
3506 struct search_symbols_data *data = user_data;
3507
3508 return file_matches (filename, data->files, data->nfiles, basenames);
3509 }
3510
3511 /* A callback for expand_symtabs_matching. */
3512
3513 static int
3514 search_symbols_name_matches (const char *symname, void *user_data)
3515 {
3516 struct search_symbols_data *data = user_data;
3517
3518 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3519 }
3520
3521 /* Search the symbol table for matches to the regular expression REGEXP,
3522 returning the results in *MATCHES.
3523
3524 Only symbols of KIND are searched:
3525 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3526 and constants (enums)
3527 FUNCTIONS_DOMAIN - search all functions
3528 TYPES_DOMAIN - search all type names
3529 ALL_DOMAIN - an internal error for this function
3530
3531 free_search_symbols should be called when *MATCHES is no longer needed.
3532
3533 Within each file the results are sorted locally; each symtab's global and
3534 static blocks are separately alphabetized.
3535 Duplicate entries are removed. */
3536
3537 void
3538 search_symbols (const char *regexp, enum search_domain kind,
3539 int nfiles, const char *files[],
3540 struct symbol_search **matches)
3541 {
3542 struct compunit_symtab *cust;
3543 const struct blockvector *bv;
3544 struct block *b;
3545 int i = 0;
3546 struct block_iterator iter;
3547 struct symbol *sym;
3548 struct objfile *objfile;
3549 struct minimal_symbol *msymbol;
3550 int found_misc = 0;
3551 static const enum minimal_symbol_type types[]
3552 = {mst_data, mst_text, mst_abs};
3553 static const enum minimal_symbol_type types2[]
3554 = {mst_bss, mst_file_text, mst_abs};
3555 static const enum minimal_symbol_type types3[]
3556 = {mst_file_data, mst_solib_trampoline, mst_abs};
3557 static const enum minimal_symbol_type types4[]
3558 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3559 enum minimal_symbol_type ourtype;
3560 enum minimal_symbol_type ourtype2;
3561 enum minimal_symbol_type ourtype3;
3562 enum minimal_symbol_type ourtype4;
3563 struct symbol_search *found;
3564 struct symbol_search *tail;
3565 struct search_symbols_data datum;
3566 int nfound;
3567
3568 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3569 CLEANUP_CHAIN is freed only in the case of an error. */
3570 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3571 struct cleanup *retval_chain;
3572
3573 gdb_assert (kind <= TYPES_DOMAIN);
3574
3575 ourtype = types[kind];
3576 ourtype2 = types2[kind];
3577 ourtype3 = types3[kind];
3578 ourtype4 = types4[kind];
3579
3580 *matches = NULL;
3581 datum.preg_p = 0;
3582
3583 if (regexp != NULL)
3584 {
3585 /* Make sure spacing is right for C++ operators.
3586 This is just a courtesy to make the matching less sensitive
3587 to how many spaces the user leaves between 'operator'
3588 and <TYPENAME> or <OPERATOR>. */
3589 const char *opend;
3590 const char *opname = operator_chars (regexp, &opend);
3591 int errcode;
3592
3593 if (*opname)
3594 {
3595 int fix = -1; /* -1 means ok; otherwise number of
3596 spaces needed. */
3597
3598 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3599 {
3600 /* There should 1 space between 'operator' and 'TYPENAME'. */
3601 if (opname[-1] != ' ' || opname[-2] == ' ')
3602 fix = 1;
3603 }
3604 else
3605 {
3606 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3607 if (opname[-1] == ' ')
3608 fix = 0;
3609 }
3610 /* If wrong number of spaces, fix it. */
3611 if (fix >= 0)
3612 {
3613 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3614
3615 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3616 regexp = tmp;
3617 }
3618 }
3619
3620 errcode = regcomp (&datum.preg, regexp,
3621 REG_NOSUB | (case_sensitivity == case_sensitive_off
3622 ? REG_ICASE : 0));
3623 if (errcode != 0)
3624 {
3625 char *err = get_regcomp_error (errcode, &datum.preg);
3626
3627 make_cleanup (xfree, err);
3628 error (_("Invalid regexp (%s): %s"), err, regexp);
3629 }
3630 datum.preg_p = 1;
3631 make_regfree_cleanup (&datum.preg);
3632 }
3633
3634 /* Search through the partial symtabs *first* for all symbols
3635 matching the regexp. That way we don't have to reproduce all of
3636 the machinery below. */
3637
3638 datum.nfiles = nfiles;
3639 datum.files = files;
3640 expand_symtabs_matching ((nfiles == 0
3641 ? NULL
3642 : search_symbols_file_matches),
3643 search_symbols_name_matches,
3644 kind, &datum);
3645
3646 /* Here, we search through the minimal symbol tables for functions
3647 and variables that match, and force their symbols to be read.
3648 This is in particular necessary for demangled variable names,
3649 which are no longer put into the partial symbol tables.
3650 The symbol will then be found during the scan of symtabs below.
3651
3652 For functions, find_pc_symtab should succeed if we have debug info
3653 for the function, for variables we have to call
3654 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3655 has debug info.
3656 If the lookup fails, set found_misc so that we will rescan to print
3657 any matching symbols without debug info.
3658 We only search the objfile the msymbol came from, we no longer search
3659 all objfiles. In large programs (1000s of shared libs) searching all
3660 objfiles is not worth the pain. */
3661
3662 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3663 {
3664 ALL_MSYMBOLS (objfile, msymbol)
3665 {
3666 QUIT;
3667
3668 if (msymbol->created_by_gdb)
3669 continue;
3670
3671 if (MSYMBOL_TYPE (msymbol) == ourtype
3672 || MSYMBOL_TYPE (msymbol) == ourtype2
3673 || MSYMBOL_TYPE (msymbol) == ourtype3
3674 || MSYMBOL_TYPE (msymbol) == ourtype4)
3675 {
3676 if (!datum.preg_p
3677 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3678 NULL, 0) == 0)
3679 {
3680 /* Note: An important side-effect of these lookup functions
3681 is to expand the symbol table if msymbol is found, for the
3682 benefit of the next loop on ALL_COMPUNITS. */
3683 if (kind == FUNCTIONS_DOMAIN
3684 ? (find_pc_compunit_symtab
3685 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
3686 : (lookup_symbol_in_objfile_from_linkage_name
3687 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3688 == NULL))
3689 found_misc = 1;
3690 }
3691 }
3692 }
3693 }
3694
3695 found = NULL;
3696 tail = NULL;
3697 nfound = 0;
3698 retval_chain = make_cleanup_free_search_symbols (&found);
3699
3700 ALL_COMPUNITS (objfile, cust)
3701 {
3702 bv = COMPUNIT_BLOCKVECTOR (cust);
3703 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3704 {
3705 b = BLOCKVECTOR_BLOCK (bv, i);
3706 ALL_BLOCK_SYMBOLS (b, iter, sym)
3707 {
3708 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3709
3710 QUIT;
3711
3712 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3713 a substring of symtab_to_fullname as it may contain "./" etc. */
3714 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3715 || ((basenames_may_differ
3716 || file_matches (lbasename (real_symtab->filename),
3717 files, nfiles, 1))
3718 && file_matches (symtab_to_fullname (real_symtab),
3719 files, nfiles, 0)))
3720 && ((!datum.preg_p
3721 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3722 NULL, 0) == 0)
3723 && ((kind == VARIABLES_DOMAIN
3724 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3725 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3726 && SYMBOL_CLASS (sym) != LOC_BLOCK
3727 /* LOC_CONST can be used for more than just enums,
3728 e.g., c++ static const members.
3729 We only want to skip enums here. */
3730 && !(SYMBOL_CLASS (sym) == LOC_CONST
3731 && (TYPE_CODE (SYMBOL_TYPE (sym))
3732 == TYPE_CODE_ENUM)))
3733 || (kind == FUNCTIONS_DOMAIN
3734 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3735 || (kind == TYPES_DOMAIN
3736 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3737 {
3738 /* match */
3739 struct symbol_search *psr = (struct symbol_search *)
3740 xmalloc (sizeof (struct symbol_search));
3741 psr->block = i;
3742 psr->symtab = real_symtab;
3743 psr->symbol = sym;
3744 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3745 psr->next = NULL;
3746 if (tail == NULL)
3747 found = psr;
3748 else
3749 tail->next = psr;
3750 tail = psr;
3751 nfound ++;
3752 }
3753 }
3754 }
3755 }
3756
3757 if (found != NULL)
3758 {
3759 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3760 /* Note: nfound is no longer useful beyond this point. */
3761 }
3762
3763 /* If there are no eyes, avoid all contact. I mean, if there are
3764 no debug symbols, then add matching minsyms. */
3765
3766 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3767 {
3768 ALL_MSYMBOLS (objfile, msymbol)
3769 {
3770 QUIT;
3771
3772 if (msymbol->created_by_gdb)
3773 continue;
3774
3775 if (MSYMBOL_TYPE (msymbol) == ourtype
3776 || MSYMBOL_TYPE (msymbol) == ourtype2
3777 || MSYMBOL_TYPE (msymbol) == ourtype3
3778 || MSYMBOL_TYPE (msymbol) == ourtype4)
3779 {
3780 if (!datum.preg_p
3781 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3782 NULL, 0) == 0)
3783 {
3784 /* For functions we can do a quick check of whether the
3785 symbol might be found via find_pc_symtab. */
3786 if (kind != FUNCTIONS_DOMAIN
3787 || (find_pc_compunit_symtab
3788 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
3789 {
3790 if (lookup_symbol_in_objfile_from_linkage_name
3791 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3792 == NULL)
3793 {
3794 /* match */
3795 struct symbol_search *psr = (struct symbol_search *)
3796 xmalloc (sizeof (struct symbol_search));
3797 psr->block = i;
3798 psr->msymbol.minsym = msymbol;
3799 psr->msymbol.objfile = objfile;
3800 psr->symtab = NULL;
3801 psr->symbol = NULL;
3802 psr->next = NULL;
3803 if (tail == NULL)
3804 found = psr;
3805 else
3806 tail->next = psr;
3807 tail = psr;
3808 }
3809 }
3810 }
3811 }
3812 }
3813 }
3814
3815 discard_cleanups (retval_chain);
3816 do_cleanups (old_chain);
3817 *matches = found;
3818 }
3819
3820 /* Helper function for symtab_symbol_info, this function uses
3821 the data returned from search_symbols() to print information
3822 regarding the match to gdb_stdout. */
3823
3824 static void
3825 print_symbol_info (enum search_domain kind,
3826 struct symtab *s, struct symbol *sym,
3827 int block, const char *last)
3828 {
3829 const char *s_filename = symtab_to_filename_for_display (s);
3830
3831 if (last == NULL || filename_cmp (last, s_filename) != 0)
3832 {
3833 fputs_filtered ("\nFile ", gdb_stdout);
3834 fputs_filtered (s_filename, gdb_stdout);
3835 fputs_filtered (":\n", gdb_stdout);
3836 }
3837
3838 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3839 printf_filtered ("static ");
3840
3841 /* Typedef that is not a C++ class. */
3842 if (kind == TYPES_DOMAIN
3843 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3844 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3845 /* variable, func, or typedef-that-is-c++-class. */
3846 else if (kind < TYPES_DOMAIN
3847 || (kind == TYPES_DOMAIN
3848 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3849 {
3850 type_print (SYMBOL_TYPE (sym),
3851 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3852 ? "" : SYMBOL_PRINT_NAME (sym)),
3853 gdb_stdout, 0);
3854
3855 printf_filtered (";\n");
3856 }
3857 }
3858
3859 /* This help function for symtab_symbol_info() prints information
3860 for non-debugging symbols to gdb_stdout. */
3861
3862 static void
3863 print_msymbol_info (struct bound_minimal_symbol msymbol)
3864 {
3865 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3866 char *tmp;
3867
3868 if (gdbarch_addr_bit (gdbarch) <= 32)
3869 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3870 & (CORE_ADDR) 0xffffffff,
3871 8);
3872 else
3873 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3874 16);
3875 printf_filtered ("%s %s\n",
3876 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3877 }
3878
3879 /* This is the guts of the commands "info functions", "info types", and
3880 "info variables". It calls search_symbols to find all matches and then
3881 print_[m]symbol_info to print out some useful information about the
3882 matches. */
3883
3884 static void
3885 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3886 {
3887 static const char * const classnames[] =
3888 {"variable", "function", "type"};
3889 struct symbol_search *symbols;
3890 struct symbol_search *p;
3891 struct cleanup *old_chain;
3892 const char *last_filename = NULL;
3893 int first = 1;
3894
3895 gdb_assert (kind <= TYPES_DOMAIN);
3896
3897 /* Must make sure that if we're interrupted, symbols gets freed. */
3898 search_symbols (regexp, kind, 0, NULL, &symbols);
3899 old_chain = make_cleanup_free_search_symbols (&symbols);
3900
3901 if (regexp != NULL)
3902 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3903 classnames[kind], regexp);
3904 else
3905 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3906
3907 for (p = symbols; p != NULL; p = p->next)
3908 {
3909 QUIT;
3910
3911 if (p->msymbol.minsym != NULL)
3912 {
3913 if (first)
3914 {
3915 printf_filtered (_("\nNon-debugging symbols:\n"));
3916 first = 0;
3917 }
3918 print_msymbol_info (p->msymbol);
3919 }
3920 else
3921 {
3922 print_symbol_info (kind,
3923 p->symtab,
3924 p->symbol,
3925 p->block,
3926 last_filename);
3927 last_filename = symtab_to_filename_for_display (p->symtab);
3928 }
3929 }
3930
3931 do_cleanups (old_chain);
3932 }
3933
3934 static void
3935 variables_info (char *regexp, int from_tty)
3936 {
3937 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3938 }
3939
3940 static void
3941 functions_info (char *regexp, int from_tty)
3942 {
3943 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3944 }
3945
3946
3947 static void
3948 types_info (char *regexp, int from_tty)
3949 {
3950 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3951 }
3952
3953 /* Breakpoint all functions matching regular expression. */
3954
3955 void
3956 rbreak_command_wrapper (char *regexp, int from_tty)
3957 {
3958 rbreak_command (regexp, from_tty);
3959 }
3960
3961 /* A cleanup function that calls end_rbreak_breakpoints. */
3962
3963 static void
3964 do_end_rbreak_breakpoints (void *ignore)
3965 {
3966 end_rbreak_breakpoints ();
3967 }
3968
3969 static void
3970 rbreak_command (char *regexp, int from_tty)
3971 {
3972 struct symbol_search *ss;
3973 struct symbol_search *p;
3974 struct cleanup *old_chain;
3975 char *string = NULL;
3976 int len = 0;
3977 const char **files = NULL;
3978 const char *file_name;
3979 int nfiles = 0;
3980
3981 if (regexp)
3982 {
3983 char *colon = strchr (regexp, ':');
3984
3985 if (colon && *(colon + 1) != ':')
3986 {
3987 int colon_index;
3988 char *local_name;
3989
3990 colon_index = colon - regexp;
3991 local_name = alloca (colon_index + 1);
3992 memcpy (local_name, regexp, colon_index);
3993 local_name[colon_index--] = 0;
3994 while (isspace (local_name[colon_index]))
3995 local_name[colon_index--] = 0;
3996 file_name = local_name;
3997 files = &file_name;
3998 nfiles = 1;
3999 regexp = skip_spaces (colon + 1);
4000 }
4001 }
4002
4003 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4004 old_chain = make_cleanup_free_search_symbols (&ss);
4005 make_cleanup (free_current_contents, &string);
4006
4007 start_rbreak_breakpoints ();
4008 make_cleanup (do_end_rbreak_breakpoints, NULL);
4009 for (p = ss; p != NULL; p = p->next)
4010 {
4011 if (p->msymbol.minsym == NULL)
4012 {
4013 const char *fullname = symtab_to_fullname (p->symtab);
4014
4015 int newlen = (strlen (fullname)
4016 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4017 + 4);
4018
4019 if (newlen > len)
4020 {
4021 string = xrealloc (string, newlen);
4022 len = newlen;
4023 }
4024 strcpy (string, fullname);
4025 strcat (string, ":'");
4026 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4027 strcat (string, "'");
4028 break_command (string, from_tty);
4029 print_symbol_info (FUNCTIONS_DOMAIN,
4030 p->symtab,
4031 p->symbol,
4032 p->block,
4033 symtab_to_filename_for_display (p->symtab));
4034 }
4035 else
4036 {
4037 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4038
4039 if (newlen > len)
4040 {
4041 string = xrealloc (string, newlen);
4042 len = newlen;
4043 }
4044 strcpy (string, "'");
4045 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4046 strcat (string, "'");
4047
4048 break_command (string, from_tty);
4049 printf_filtered ("<function, no debug info> %s;\n",
4050 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4051 }
4052 }
4053
4054 do_cleanups (old_chain);
4055 }
4056 \f
4057
4058 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4059
4060 Either sym_text[sym_text_len] != '(' and then we search for any
4061 symbol starting with SYM_TEXT text.
4062
4063 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4064 be terminated at that point. Partial symbol tables do not have parameters
4065 information. */
4066
4067 static int
4068 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4069 {
4070 int (*ncmp) (const char *, const char *, size_t);
4071
4072 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4073
4074 if (ncmp (name, sym_text, sym_text_len) != 0)
4075 return 0;
4076
4077 if (sym_text[sym_text_len] == '(')
4078 {
4079 /* User searches for `name(someth...'. Require NAME to be terminated.
4080 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4081 present but accept even parameters presence. In this case this
4082 function is in fact strcmp_iw but whitespace skipping is not supported
4083 for tab completion. */
4084
4085 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4086 return 0;
4087 }
4088
4089 return 1;
4090 }
4091
4092 /* Free any memory associated with a completion list. */
4093
4094 static void
4095 free_completion_list (VEC (char_ptr) **list_ptr)
4096 {
4097 int i;
4098 char *p;
4099
4100 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4101 xfree (p);
4102 VEC_free (char_ptr, *list_ptr);
4103 }
4104
4105 /* Callback for make_cleanup. */
4106
4107 static void
4108 do_free_completion_list (void *list)
4109 {
4110 free_completion_list (list);
4111 }
4112
4113 /* Helper routine for make_symbol_completion_list. */
4114
4115 static VEC (char_ptr) *return_val;
4116
4117 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4118 completion_list_add_name \
4119 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4120
4121 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4122 completion_list_add_name \
4123 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4124
4125 /* Test to see if the symbol specified by SYMNAME (which is already
4126 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4127 characters. If so, add it to the current completion list. */
4128
4129 static void
4130 completion_list_add_name (const char *symname,
4131 const char *sym_text, int sym_text_len,
4132 const char *text, const char *word)
4133 {
4134 /* Clip symbols that cannot match. */
4135 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4136 return;
4137
4138 /* We have a match for a completion, so add SYMNAME to the current list
4139 of matches. Note that the name is moved to freshly malloc'd space. */
4140
4141 {
4142 char *new;
4143
4144 if (word == sym_text)
4145 {
4146 new = xmalloc (strlen (symname) + 5);
4147 strcpy (new, symname);
4148 }
4149 else if (word > sym_text)
4150 {
4151 /* Return some portion of symname. */
4152 new = xmalloc (strlen (symname) + 5);
4153 strcpy (new, symname + (word - sym_text));
4154 }
4155 else
4156 {
4157 /* Return some of SYM_TEXT plus symname. */
4158 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4159 strncpy (new, word, sym_text - word);
4160 new[sym_text - word] = '\0';
4161 strcat (new, symname);
4162 }
4163
4164 VEC_safe_push (char_ptr, return_val, new);
4165 }
4166 }
4167
4168 /* ObjC: In case we are completing on a selector, look as the msymbol
4169 again and feed all the selectors into the mill. */
4170
4171 static void
4172 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4173 const char *sym_text, int sym_text_len,
4174 const char *text, const char *word)
4175 {
4176 static char *tmp = NULL;
4177 static unsigned int tmplen = 0;
4178
4179 const char *method, *category, *selector;
4180 char *tmp2 = NULL;
4181
4182 method = MSYMBOL_NATURAL_NAME (msymbol);
4183
4184 /* Is it a method? */
4185 if ((method[0] != '-') && (method[0] != '+'))
4186 return;
4187
4188 if (sym_text[0] == '[')
4189 /* Complete on shortened method method. */
4190 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4191
4192 while ((strlen (method) + 1) >= tmplen)
4193 {
4194 if (tmplen == 0)
4195 tmplen = 1024;
4196 else
4197 tmplen *= 2;
4198 tmp = xrealloc (tmp, tmplen);
4199 }
4200 selector = strchr (method, ' ');
4201 if (selector != NULL)
4202 selector++;
4203
4204 category = strchr (method, '(');
4205
4206 if ((category != NULL) && (selector != NULL))
4207 {
4208 memcpy (tmp, method, (category - method));
4209 tmp[category - method] = ' ';
4210 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4211 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4212 if (sym_text[0] == '[')
4213 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4214 }
4215
4216 if (selector != NULL)
4217 {
4218 /* Complete on selector only. */
4219 strcpy (tmp, selector);
4220 tmp2 = strchr (tmp, ']');
4221 if (tmp2 != NULL)
4222 *tmp2 = '\0';
4223
4224 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4225 }
4226 }
4227
4228 /* Break the non-quoted text based on the characters which are in
4229 symbols. FIXME: This should probably be language-specific. */
4230
4231 static const char *
4232 language_search_unquoted_string (const char *text, const char *p)
4233 {
4234 for (; p > text; --p)
4235 {
4236 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4237 continue;
4238 else
4239 {
4240 if ((current_language->la_language == language_objc))
4241 {
4242 if (p[-1] == ':') /* Might be part of a method name. */
4243 continue;
4244 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4245 p -= 2; /* Beginning of a method name. */
4246 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4247 { /* Might be part of a method name. */
4248 const char *t = p;
4249
4250 /* Seeing a ' ' or a '(' is not conclusive evidence
4251 that we are in the middle of a method name. However,
4252 finding "-[" or "+[" should be pretty un-ambiguous.
4253 Unfortunately we have to find it now to decide. */
4254
4255 while (t > text)
4256 if (isalnum (t[-1]) || t[-1] == '_' ||
4257 t[-1] == ' ' || t[-1] == ':' ||
4258 t[-1] == '(' || t[-1] == ')')
4259 --t;
4260 else
4261 break;
4262
4263 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4264 p = t - 2; /* Method name detected. */
4265 /* Else we leave with p unchanged. */
4266 }
4267 }
4268 break;
4269 }
4270 }
4271 return p;
4272 }
4273
4274 static void
4275 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4276 int sym_text_len, const char *text,
4277 const char *word)
4278 {
4279 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4280 {
4281 struct type *t = SYMBOL_TYPE (sym);
4282 enum type_code c = TYPE_CODE (t);
4283 int j;
4284
4285 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4286 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4287 if (TYPE_FIELD_NAME (t, j))
4288 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4289 sym_text, sym_text_len, text, word);
4290 }
4291 }
4292
4293 /* Type of the user_data argument passed to add_macro_name or
4294 symbol_completion_matcher. The contents are simply whatever is
4295 needed by completion_list_add_name. */
4296 struct add_name_data
4297 {
4298 const char *sym_text;
4299 int sym_text_len;
4300 const char *text;
4301 const char *word;
4302 };
4303
4304 /* A callback used with macro_for_each and macro_for_each_in_scope.
4305 This adds a macro's name to the current completion list. */
4306
4307 static void
4308 add_macro_name (const char *name, const struct macro_definition *ignore,
4309 struct macro_source_file *ignore2, int ignore3,
4310 void *user_data)
4311 {
4312 struct add_name_data *datum = (struct add_name_data *) user_data;
4313
4314 completion_list_add_name (name,
4315 datum->sym_text, datum->sym_text_len,
4316 datum->text, datum->word);
4317 }
4318
4319 /* A callback for expand_symtabs_matching. */
4320
4321 static int
4322 symbol_completion_matcher (const char *name, void *user_data)
4323 {
4324 struct add_name_data *datum = (struct add_name_data *) user_data;
4325
4326 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4327 }
4328
4329 VEC (char_ptr) *
4330 default_make_symbol_completion_list_break_on (const char *text,
4331 const char *word,
4332 const char *break_on,
4333 enum type_code code)
4334 {
4335 /* Problem: All of the symbols have to be copied because readline
4336 frees them. I'm not going to worry about this; hopefully there
4337 won't be that many. */
4338
4339 struct symbol *sym;
4340 struct compunit_symtab *cust;
4341 struct minimal_symbol *msymbol;
4342 struct objfile *objfile;
4343 const struct block *b;
4344 const struct block *surrounding_static_block, *surrounding_global_block;
4345 struct block_iterator iter;
4346 /* The symbol we are completing on. Points in same buffer as text. */
4347 const char *sym_text;
4348 /* Length of sym_text. */
4349 int sym_text_len;
4350 struct add_name_data datum;
4351 struct cleanup *back_to;
4352
4353 /* Now look for the symbol we are supposed to complete on. */
4354 {
4355 const char *p;
4356 char quote_found;
4357 const char *quote_pos = NULL;
4358
4359 /* First see if this is a quoted string. */
4360 quote_found = '\0';
4361 for (p = text; *p != '\0'; ++p)
4362 {
4363 if (quote_found != '\0')
4364 {
4365 if (*p == quote_found)
4366 /* Found close quote. */
4367 quote_found = '\0';
4368 else if (*p == '\\' && p[1] == quote_found)
4369 /* A backslash followed by the quote character
4370 doesn't end the string. */
4371 ++p;
4372 }
4373 else if (*p == '\'' || *p == '"')
4374 {
4375 quote_found = *p;
4376 quote_pos = p;
4377 }
4378 }
4379 if (quote_found == '\'')
4380 /* A string within single quotes can be a symbol, so complete on it. */
4381 sym_text = quote_pos + 1;
4382 else if (quote_found == '"')
4383 /* A double-quoted string is never a symbol, nor does it make sense
4384 to complete it any other way. */
4385 {
4386 return NULL;
4387 }
4388 else
4389 {
4390 /* It is not a quoted string. Break it based on the characters
4391 which are in symbols. */
4392 while (p > text)
4393 {
4394 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4395 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4396 --p;
4397 else
4398 break;
4399 }
4400 sym_text = p;
4401 }
4402 }
4403
4404 sym_text_len = strlen (sym_text);
4405
4406 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4407
4408 if (current_language->la_language == language_cplus
4409 || current_language->la_language == language_java
4410 || current_language->la_language == language_fortran)
4411 {
4412 /* These languages may have parameters entered by user but they are never
4413 present in the partial symbol tables. */
4414
4415 const char *cs = memchr (sym_text, '(', sym_text_len);
4416
4417 if (cs)
4418 sym_text_len = cs - sym_text;
4419 }
4420 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4421
4422 return_val = NULL;
4423 back_to = make_cleanup (do_free_completion_list, &return_val);
4424
4425 datum.sym_text = sym_text;
4426 datum.sym_text_len = sym_text_len;
4427 datum.text = text;
4428 datum.word = word;
4429
4430 /* Look through the partial symtabs for all symbols which begin
4431 by matching SYM_TEXT. Expand all CUs that you find to the list.
4432 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4433 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4434 &datum);
4435
4436 /* At this point scan through the misc symbol vectors and add each
4437 symbol you find to the list. Eventually we want to ignore
4438 anything that isn't a text symbol (everything else will be
4439 handled by the psymtab code above). */
4440
4441 if (code == TYPE_CODE_UNDEF)
4442 {
4443 ALL_MSYMBOLS (objfile, msymbol)
4444 {
4445 QUIT;
4446 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4447 word);
4448
4449 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4450 word);
4451 }
4452 }
4453
4454 /* Search upwards from currently selected frame (so that we can
4455 complete on local vars). Also catch fields of types defined in
4456 this places which match our text string. Only complete on types
4457 visible from current context. */
4458
4459 b = get_selected_block (0);
4460 surrounding_static_block = block_static_block (b);
4461 surrounding_global_block = block_global_block (b);
4462 if (surrounding_static_block != NULL)
4463 while (b != surrounding_static_block)
4464 {
4465 QUIT;
4466
4467 ALL_BLOCK_SYMBOLS (b, iter, sym)
4468 {
4469 if (code == TYPE_CODE_UNDEF)
4470 {
4471 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4472 word);
4473 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4474 word);
4475 }
4476 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4477 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4478 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4479 word);
4480 }
4481
4482 /* Stop when we encounter an enclosing function. Do not stop for
4483 non-inlined functions - the locals of the enclosing function
4484 are in scope for a nested function. */
4485 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4486 break;
4487 b = BLOCK_SUPERBLOCK (b);
4488 }
4489
4490 /* Add fields from the file's types; symbols will be added below. */
4491
4492 if (code == TYPE_CODE_UNDEF)
4493 {
4494 if (surrounding_static_block != NULL)
4495 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4496 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4497
4498 if (surrounding_global_block != NULL)
4499 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4500 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4501 }
4502
4503 /* Go through the symtabs and check the externs and statics for
4504 symbols which match. */
4505
4506 ALL_COMPUNITS (objfile, cust)
4507 {
4508 QUIT;
4509 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK);
4510 ALL_BLOCK_SYMBOLS (b, iter, sym)
4511 {
4512 if (code == TYPE_CODE_UNDEF
4513 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4514 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4515 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4516 }
4517 }
4518
4519 ALL_COMPUNITS (objfile, cust)
4520 {
4521 QUIT;
4522 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK);
4523 ALL_BLOCK_SYMBOLS (b, iter, sym)
4524 {
4525 if (code == TYPE_CODE_UNDEF
4526 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4527 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4528 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4529 }
4530 }
4531
4532 /* Skip macros if we are completing a struct tag -- arguable but
4533 usually what is expected. */
4534 if (current_language->la_macro_expansion == macro_expansion_c
4535 && code == TYPE_CODE_UNDEF)
4536 {
4537 struct macro_scope *scope;
4538
4539 /* Add any macros visible in the default scope. Note that this
4540 may yield the occasional wrong result, because an expression
4541 might be evaluated in a scope other than the default. For
4542 example, if the user types "break file:line if <TAB>", the
4543 resulting expression will be evaluated at "file:line" -- but
4544 at there does not seem to be a way to detect this at
4545 completion time. */
4546 scope = default_macro_scope ();
4547 if (scope)
4548 {
4549 macro_for_each_in_scope (scope->file, scope->line,
4550 add_macro_name, &datum);
4551 xfree (scope);
4552 }
4553
4554 /* User-defined macros are always visible. */
4555 macro_for_each (macro_user_macros, add_macro_name, &datum);
4556 }
4557
4558 discard_cleanups (back_to);
4559 return (return_val);
4560 }
4561
4562 VEC (char_ptr) *
4563 default_make_symbol_completion_list (const char *text, const char *word,
4564 enum type_code code)
4565 {
4566 return default_make_symbol_completion_list_break_on (text, word, "", code);
4567 }
4568
4569 /* Return a vector of all symbols (regardless of class) which begin by
4570 matching TEXT. If the answer is no symbols, then the return value
4571 is NULL. */
4572
4573 VEC (char_ptr) *
4574 make_symbol_completion_list (const char *text, const char *word)
4575 {
4576 return current_language->la_make_symbol_completion_list (text, word,
4577 TYPE_CODE_UNDEF);
4578 }
4579
4580 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4581 symbols whose type code is CODE. */
4582
4583 VEC (char_ptr) *
4584 make_symbol_completion_type (const char *text, const char *word,
4585 enum type_code code)
4586 {
4587 gdb_assert (code == TYPE_CODE_UNION
4588 || code == TYPE_CODE_STRUCT
4589 || code == TYPE_CODE_ENUM);
4590 return current_language->la_make_symbol_completion_list (text, word, code);
4591 }
4592
4593 /* Like make_symbol_completion_list, but suitable for use as a
4594 completion function. */
4595
4596 VEC (char_ptr) *
4597 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4598 const char *text, const char *word)
4599 {
4600 return make_symbol_completion_list (text, word);
4601 }
4602
4603 /* Like make_symbol_completion_list, but returns a list of symbols
4604 defined in a source file FILE. */
4605
4606 VEC (char_ptr) *
4607 make_file_symbol_completion_list (const char *text, const char *word,
4608 const char *srcfile)
4609 {
4610 struct symbol *sym;
4611 struct symtab *s;
4612 struct block *b;
4613 struct block_iterator iter;
4614 /* The symbol we are completing on. Points in same buffer as text. */
4615 const char *sym_text;
4616 /* Length of sym_text. */
4617 int sym_text_len;
4618
4619 /* Now look for the symbol we are supposed to complete on.
4620 FIXME: This should be language-specific. */
4621 {
4622 const char *p;
4623 char quote_found;
4624 const char *quote_pos = NULL;
4625
4626 /* First see if this is a quoted string. */
4627 quote_found = '\0';
4628 for (p = text; *p != '\0'; ++p)
4629 {
4630 if (quote_found != '\0')
4631 {
4632 if (*p == quote_found)
4633 /* Found close quote. */
4634 quote_found = '\0';
4635 else if (*p == '\\' && p[1] == quote_found)
4636 /* A backslash followed by the quote character
4637 doesn't end the string. */
4638 ++p;
4639 }
4640 else if (*p == '\'' || *p == '"')
4641 {
4642 quote_found = *p;
4643 quote_pos = p;
4644 }
4645 }
4646 if (quote_found == '\'')
4647 /* A string within single quotes can be a symbol, so complete on it. */
4648 sym_text = quote_pos + 1;
4649 else if (quote_found == '"')
4650 /* A double-quoted string is never a symbol, nor does it make sense
4651 to complete it any other way. */
4652 {
4653 return NULL;
4654 }
4655 else
4656 {
4657 /* Not a quoted string. */
4658 sym_text = language_search_unquoted_string (text, p);
4659 }
4660 }
4661
4662 sym_text_len = strlen (sym_text);
4663
4664 return_val = NULL;
4665
4666 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4667 in). */
4668 s = lookup_symtab (srcfile);
4669 if (s == NULL)
4670 {
4671 /* Maybe they typed the file with leading directories, while the
4672 symbol tables record only its basename. */
4673 const char *tail = lbasename (srcfile);
4674
4675 if (tail > srcfile)
4676 s = lookup_symtab (tail);
4677 }
4678
4679 /* If we have no symtab for that file, return an empty list. */
4680 if (s == NULL)
4681 return (return_val);
4682
4683 /* Go through this symtab and check the externs and statics for
4684 symbols which match. */
4685
4686 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
4687 ALL_BLOCK_SYMBOLS (b, iter, sym)
4688 {
4689 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4690 }
4691
4692 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
4693 ALL_BLOCK_SYMBOLS (b, iter, sym)
4694 {
4695 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4696 }
4697
4698 return (return_val);
4699 }
4700
4701 /* A helper function for make_source_files_completion_list. It adds
4702 another file name to a list of possible completions, growing the
4703 list as necessary. */
4704
4705 static void
4706 add_filename_to_list (const char *fname, const char *text, const char *word,
4707 VEC (char_ptr) **list)
4708 {
4709 char *new;
4710 size_t fnlen = strlen (fname);
4711
4712 if (word == text)
4713 {
4714 /* Return exactly fname. */
4715 new = xmalloc (fnlen + 5);
4716 strcpy (new, fname);
4717 }
4718 else if (word > text)
4719 {
4720 /* Return some portion of fname. */
4721 new = xmalloc (fnlen + 5);
4722 strcpy (new, fname + (word - text));
4723 }
4724 else
4725 {
4726 /* Return some of TEXT plus fname. */
4727 new = xmalloc (fnlen + (text - word) + 5);
4728 strncpy (new, word, text - word);
4729 new[text - word] = '\0';
4730 strcat (new, fname);
4731 }
4732 VEC_safe_push (char_ptr, *list, new);
4733 }
4734
4735 static int
4736 not_interesting_fname (const char *fname)
4737 {
4738 static const char *illegal_aliens[] = {
4739 "_globals_", /* inserted by coff_symtab_read */
4740 NULL
4741 };
4742 int i;
4743
4744 for (i = 0; illegal_aliens[i]; i++)
4745 {
4746 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4747 return 1;
4748 }
4749 return 0;
4750 }
4751
4752 /* An object of this type is passed as the user_data argument to
4753 map_partial_symbol_filenames. */
4754 struct add_partial_filename_data
4755 {
4756 struct filename_seen_cache *filename_seen_cache;
4757 const char *text;
4758 const char *word;
4759 int text_len;
4760 VEC (char_ptr) **list;
4761 };
4762
4763 /* A callback for map_partial_symbol_filenames. */
4764
4765 static void
4766 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4767 void *user_data)
4768 {
4769 struct add_partial_filename_data *data = user_data;
4770
4771 if (not_interesting_fname (filename))
4772 return;
4773 if (!filename_seen (data->filename_seen_cache, filename, 1)
4774 && filename_ncmp (filename, data->text, data->text_len) == 0)
4775 {
4776 /* This file matches for a completion; add it to the
4777 current list of matches. */
4778 add_filename_to_list (filename, data->text, data->word, data->list);
4779 }
4780 else
4781 {
4782 const char *base_name = lbasename (filename);
4783
4784 if (base_name != filename
4785 && !filename_seen (data->filename_seen_cache, base_name, 1)
4786 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4787 add_filename_to_list (base_name, data->text, data->word, data->list);
4788 }
4789 }
4790
4791 /* Return a vector of all source files whose names begin with matching
4792 TEXT. The file names are looked up in the symbol tables of this
4793 program. If the answer is no matchess, then the return value is
4794 NULL. */
4795
4796 VEC (char_ptr) *
4797 make_source_files_completion_list (const char *text, const char *word)
4798 {
4799 struct compunit_symtab *cu;
4800 struct symtab *s;
4801 struct objfile *objfile;
4802 size_t text_len = strlen (text);
4803 VEC (char_ptr) *list = NULL;
4804 const char *base_name;
4805 struct add_partial_filename_data datum;
4806 struct filename_seen_cache *filename_seen_cache;
4807 struct cleanup *back_to, *cache_cleanup;
4808
4809 if (!have_full_symbols () && !have_partial_symbols ())
4810 return list;
4811
4812 back_to = make_cleanup (do_free_completion_list, &list);
4813
4814 filename_seen_cache = create_filename_seen_cache ();
4815 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4816 filename_seen_cache);
4817
4818 ALL_FILETABS (objfile, cu, s)
4819 {
4820 if (not_interesting_fname (s->filename))
4821 continue;
4822 if (!filename_seen (filename_seen_cache, s->filename, 1)
4823 && filename_ncmp (s->filename, text, text_len) == 0)
4824 {
4825 /* This file matches for a completion; add it to the current
4826 list of matches. */
4827 add_filename_to_list (s->filename, text, word, &list);
4828 }
4829 else
4830 {
4831 /* NOTE: We allow the user to type a base name when the
4832 debug info records leading directories, but not the other
4833 way around. This is what subroutines of breakpoint
4834 command do when they parse file names. */
4835 base_name = lbasename (s->filename);
4836 if (base_name != s->filename
4837 && !filename_seen (filename_seen_cache, base_name, 1)
4838 && filename_ncmp (base_name, text, text_len) == 0)
4839 add_filename_to_list (base_name, text, word, &list);
4840 }
4841 }
4842
4843 datum.filename_seen_cache = filename_seen_cache;
4844 datum.text = text;
4845 datum.word = word;
4846 datum.text_len = text_len;
4847 datum.list = &list;
4848 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4849 0 /*need_fullname*/);
4850
4851 do_cleanups (cache_cleanup);
4852 discard_cleanups (back_to);
4853
4854 return list;
4855 }
4856 \f
4857 /* Track MAIN */
4858
4859 /* Return the "main_info" object for the current program space. If
4860 the object has not yet been created, create it and fill in some
4861 default values. */
4862
4863 static struct main_info *
4864 get_main_info (void)
4865 {
4866 struct main_info *info = program_space_data (current_program_space,
4867 main_progspace_key);
4868
4869 if (info == NULL)
4870 {
4871 /* It may seem strange to store the main name in the progspace
4872 and also in whatever objfile happens to see a main name in
4873 its debug info. The reason for this is mainly historical:
4874 gdb returned "main" as the name even if no function named
4875 "main" was defined the program; and this approach lets us
4876 keep compatibility. */
4877 info = XCNEW (struct main_info);
4878 info->language_of_main = language_unknown;
4879 set_program_space_data (current_program_space, main_progspace_key,
4880 info);
4881 }
4882
4883 return info;
4884 }
4885
4886 /* A cleanup to destroy a struct main_info when a progspace is
4887 destroyed. */
4888
4889 static void
4890 main_info_cleanup (struct program_space *pspace, void *data)
4891 {
4892 struct main_info *info = data;
4893
4894 if (info != NULL)
4895 xfree (info->name_of_main);
4896 xfree (info);
4897 }
4898
4899 static void
4900 set_main_name (const char *name, enum language lang)
4901 {
4902 struct main_info *info = get_main_info ();
4903
4904 if (info->name_of_main != NULL)
4905 {
4906 xfree (info->name_of_main);
4907 info->name_of_main = NULL;
4908 info->language_of_main = language_unknown;
4909 }
4910 if (name != NULL)
4911 {
4912 info->name_of_main = xstrdup (name);
4913 info->language_of_main = lang;
4914 }
4915 }
4916
4917 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4918 accordingly. */
4919
4920 static void
4921 find_main_name (void)
4922 {
4923 const char *new_main_name;
4924 struct objfile *objfile;
4925
4926 /* First check the objfiles to see whether a debuginfo reader has
4927 picked up the appropriate main name. Historically the main name
4928 was found in a more or less random way; this approach instead
4929 relies on the order of objfile creation -- which still isn't
4930 guaranteed to get the correct answer, but is just probably more
4931 accurate. */
4932 ALL_OBJFILES (objfile)
4933 {
4934 if (objfile->per_bfd->name_of_main != NULL)
4935 {
4936 set_main_name (objfile->per_bfd->name_of_main,
4937 objfile->per_bfd->language_of_main);
4938 return;
4939 }
4940 }
4941
4942 /* Try to see if the main procedure is in Ada. */
4943 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4944 be to add a new method in the language vector, and call this
4945 method for each language until one of them returns a non-empty
4946 name. This would allow us to remove this hard-coded call to
4947 an Ada function. It is not clear that this is a better approach
4948 at this point, because all methods need to be written in a way
4949 such that false positives never be returned. For instance, it is
4950 important that a method does not return a wrong name for the main
4951 procedure if the main procedure is actually written in a different
4952 language. It is easy to guaranty this with Ada, since we use a
4953 special symbol generated only when the main in Ada to find the name
4954 of the main procedure. It is difficult however to see how this can
4955 be guarantied for languages such as C, for instance. This suggests
4956 that order of call for these methods becomes important, which means
4957 a more complicated approach. */
4958 new_main_name = ada_main_name ();
4959 if (new_main_name != NULL)
4960 {
4961 set_main_name (new_main_name, language_ada);
4962 return;
4963 }
4964
4965 new_main_name = d_main_name ();
4966 if (new_main_name != NULL)
4967 {
4968 set_main_name (new_main_name, language_d);
4969 return;
4970 }
4971
4972 new_main_name = go_main_name ();
4973 if (new_main_name != NULL)
4974 {
4975 set_main_name (new_main_name, language_go);
4976 return;
4977 }
4978
4979 new_main_name = pascal_main_name ();
4980 if (new_main_name != NULL)
4981 {
4982 set_main_name (new_main_name, language_pascal);
4983 return;
4984 }
4985
4986 /* The languages above didn't identify the name of the main procedure.
4987 Fallback to "main". */
4988 set_main_name ("main", language_unknown);
4989 }
4990
4991 char *
4992 main_name (void)
4993 {
4994 struct main_info *info = get_main_info ();
4995
4996 if (info->name_of_main == NULL)
4997 find_main_name ();
4998
4999 return info->name_of_main;
5000 }
5001
5002 /* Return the language of the main function. If it is not known,
5003 return language_unknown. */
5004
5005 enum language
5006 main_language (void)
5007 {
5008 struct main_info *info = get_main_info ();
5009
5010 if (info->name_of_main == NULL)
5011 find_main_name ();
5012
5013 return info->language_of_main;
5014 }
5015
5016 /* Handle ``executable_changed'' events for the symtab module. */
5017
5018 static void
5019 symtab_observer_executable_changed (void)
5020 {
5021 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5022 set_main_name (NULL, language_unknown);
5023 }
5024
5025 /* Return 1 if the supplied producer string matches the ARM RealView
5026 compiler (armcc). */
5027
5028 int
5029 producer_is_realview (const char *producer)
5030 {
5031 static const char *const arm_idents[] = {
5032 "ARM C Compiler, ADS",
5033 "Thumb C Compiler, ADS",
5034 "ARM C++ Compiler, ADS",
5035 "Thumb C++ Compiler, ADS",
5036 "ARM/Thumb C/C++ Compiler, RVCT",
5037 "ARM C/C++ Compiler, RVCT"
5038 };
5039 int i;
5040
5041 if (producer == NULL)
5042 return 0;
5043
5044 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5045 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5046 return 1;
5047
5048 return 0;
5049 }
5050
5051 \f
5052
5053 /* The next index to hand out in response to a registration request. */
5054
5055 static int next_aclass_value = LOC_FINAL_VALUE;
5056
5057 /* The maximum number of "aclass" registrations we support. This is
5058 constant for convenience. */
5059 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5060
5061 /* The objects representing the various "aclass" values. The elements
5062 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5063 elements are those registered at gdb initialization time. */
5064
5065 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5066
5067 /* The globally visible pointer. This is separate from 'symbol_impl'
5068 so that it can be const. */
5069
5070 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5071
5072 /* Make sure we saved enough room in struct symbol. */
5073
5074 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5075
5076 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5077 is the ops vector associated with this index. This returns the new
5078 index, which should be used as the aclass_index field for symbols
5079 of this type. */
5080
5081 int
5082 register_symbol_computed_impl (enum address_class aclass,
5083 const struct symbol_computed_ops *ops)
5084 {
5085 int result = next_aclass_value++;
5086
5087 gdb_assert (aclass == LOC_COMPUTED);
5088 gdb_assert (result < MAX_SYMBOL_IMPLS);
5089 symbol_impl[result].aclass = aclass;
5090 symbol_impl[result].ops_computed = ops;
5091
5092 /* Sanity check OPS. */
5093 gdb_assert (ops != NULL);
5094 gdb_assert (ops->tracepoint_var_ref != NULL);
5095 gdb_assert (ops->describe_location != NULL);
5096 gdb_assert (ops->read_needs_frame != NULL);
5097 gdb_assert (ops->read_variable != NULL);
5098
5099 return result;
5100 }
5101
5102 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5103 OPS is the ops vector associated with this index. This returns the
5104 new index, which should be used as the aclass_index field for symbols
5105 of this type. */
5106
5107 int
5108 register_symbol_block_impl (enum address_class aclass,
5109 const struct symbol_block_ops *ops)
5110 {
5111 int result = next_aclass_value++;
5112
5113 gdb_assert (aclass == LOC_BLOCK);
5114 gdb_assert (result < MAX_SYMBOL_IMPLS);
5115 symbol_impl[result].aclass = aclass;
5116 symbol_impl[result].ops_block = ops;
5117
5118 /* Sanity check OPS. */
5119 gdb_assert (ops != NULL);
5120 gdb_assert (ops->find_frame_base_location != NULL);
5121
5122 return result;
5123 }
5124
5125 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5126 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5127 this index. This returns the new index, which should be used as
5128 the aclass_index field for symbols of this type. */
5129
5130 int
5131 register_symbol_register_impl (enum address_class aclass,
5132 const struct symbol_register_ops *ops)
5133 {
5134 int result = next_aclass_value++;
5135
5136 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5137 gdb_assert (result < MAX_SYMBOL_IMPLS);
5138 symbol_impl[result].aclass = aclass;
5139 symbol_impl[result].ops_register = ops;
5140
5141 return result;
5142 }
5143
5144 /* Initialize elements of 'symbol_impl' for the constants in enum
5145 address_class. */
5146
5147 static void
5148 initialize_ordinary_address_classes (void)
5149 {
5150 int i;
5151
5152 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5153 symbol_impl[i].aclass = i;
5154 }
5155
5156 \f
5157
5158 /* Initialize the symbol SYM. */
5159
5160 void
5161 initialize_symbol (struct symbol *sym)
5162 {
5163 memset (sym, 0, sizeof (*sym));
5164 SYMBOL_SECTION (sym) = -1;
5165 }
5166
5167 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5168 obstack. */
5169
5170 struct symbol *
5171 allocate_symbol (struct objfile *objfile)
5172 {
5173 struct symbol *result;
5174
5175 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5176 SYMBOL_SECTION (result) = -1;
5177
5178 return result;
5179 }
5180
5181 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5182 obstack. */
5183
5184 struct template_symbol *
5185 allocate_template_symbol (struct objfile *objfile)
5186 {
5187 struct template_symbol *result;
5188
5189 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5190 SYMBOL_SECTION (&result->base) = -1;
5191
5192 return result;
5193 }
5194
5195 \f
5196
5197 void
5198 _initialize_symtab (void)
5199 {
5200 initialize_ordinary_address_classes ();
5201
5202 main_progspace_key
5203 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5204
5205 add_info ("variables", variables_info, _("\
5206 All global and static variable names, or those matching REGEXP."));
5207 if (dbx_commands)
5208 add_com ("whereis", class_info, variables_info, _("\
5209 All global and static variable names, or those matching REGEXP."));
5210
5211 add_info ("functions", functions_info,
5212 _("All function names, or those matching REGEXP."));
5213
5214 /* FIXME: This command has at least the following problems:
5215 1. It prints builtin types (in a very strange and confusing fashion).
5216 2. It doesn't print right, e.g. with
5217 typedef struct foo *FOO
5218 type_print prints "FOO" when we want to make it (in this situation)
5219 print "struct foo *".
5220 I also think "ptype" or "whatis" is more likely to be useful (but if
5221 there is much disagreement "info types" can be fixed). */
5222 add_info ("types", types_info,
5223 _("All type names, or those matching REGEXP."));
5224
5225 add_info ("sources", sources_info,
5226 _("Source files in the program."));
5227
5228 add_com ("rbreak", class_breakpoint, rbreak_command,
5229 _("Set a breakpoint for all functions matching REGEXP."));
5230
5231 if (xdb_commands)
5232 {
5233 add_com ("lf", class_info, sources_info,
5234 _("Source files in the program"));
5235 add_com ("lg", class_info, variables_info, _("\
5236 All global and static variable names, or those matching REGEXP."));
5237 }
5238
5239 add_setshow_enum_cmd ("multiple-symbols", no_class,
5240 multiple_symbols_modes, &multiple_symbols_mode,
5241 _("\
5242 Set the debugger behavior when more than one symbol are possible matches\n\
5243 in an expression."), _("\
5244 Show how the debugger handles ambiguities in expressions."), _("\
5245 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5246 NULL, NULL, &setlist, &showlist);
5247
5248 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5249 &basenames_may_differ, _("\
5250 Set whether a source file may have multiple base names."), _("\
5251 Show whether a source file may have multiple base names."), _("\
5252 (A \"base name\" is the name of a file with the directory part removed.\n\
5253 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5254 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5255 before comparing them. Canonicalization is an expensive operation,\n\
5256 but it allows the same file be known by more than one base name.\n\
5257 If not set (the default), all source files are assumed to have just\n\
5258 one base name, and gdb will do file name comparisons more efficiently."),
5259 NULL, NULL,
5260 &setlist, &showlist);
5261
5262 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5263 _("Set debugging of symbol table creation."),
5264 _("Show debugging of symbol table creation."), _("\
5265 When enabled (non-zero), debugging messages are printed when building\n\
5266 symbol tables. A value of 1 (one) normally provides enough information.\n\
5267 A value greater than 1 provides more verbose information."),
5268 NULL,
5269 NULL,
5270 &setdebuglist, &showdebuglist);
5271
5272 observer_attach_executable_changed (symtab_observer_executable_changed);
5273 }