Don't allow NULL as an argument to block_global_block
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2/call-site.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "gdbcore.h"
25 #include "frame.h"
26 #include "target.h"
27 #include "value.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcmd.h"
31 #include "gdbsupport/gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "source.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
39 #include "d-lang.h"
40 #include "ada-lang.h"
41 #include "go-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44 #include "cli/cli-utils.h"
45 #include "cli/cli-style.h"
46 #include "cli/cli-cmds.h"
47 #include "fnmatch.h"
48 #include "hashtab.h"
49 #include "typeprint.h"
50
51 #include "gdbsupport/gdb_obstack.h"
52 #include "block.h"
53 #include "dictionary.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include <sys/stat.h>
58 #include <ctype.h>
59 #include "cp-abi.h"
60 #include "cp-support.h"
61 #include "observable.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "parser-defs.h"
67 #include "completer.h"
68 #include "progspace-and-thread.h"
69 #include "gdbsupport/gdb_optional.h"
70 #include "filename-seen-cache.h"
71 #include "arch-utils.h"
72 #include <algorithm>
73 #include "gdbsupport/gdb_string_view.h"
74 #include "gdbsupport/pathstuff.h"
75 #include "gdbsupport/common-utils.h"
76
77 /* Forward declarations for local functions. */
78
79 static void rbreak_command (const char *, int);
80
81 static int find_line_common (struct linetable *, int, int *, int);
82
83 static struct block_symbol
84 lookup_symbol_aux (const char *name,
85 symbol_name_match_type match_type,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 struct field_of_this_result *);
90
91 static
92 struct block_symbol lookup_local_symbol (const char *name,
93 symbol_name_match_type match_type,
94 const struct block *block,
95 const domain_enum domain,
96 enum language language);
97
98 static struct block_symbol
99 lookup_symbol_in_objfile (struct objfile *objfile,
100 enum block_enum block_index,
101 const char *name, const domain_enum domain);
102
103 /* Type of the data stored on the program space. */
104
105 struct main_info
106 {
107 /* Name of "main". */
108
109 std::string name_of_main;
110
111 /* Language of "main". */
112
113 enum language language_of_main = language_unknown;
114 };
115
116 /* Program space key for finding name and language of "main". */
117
118 static const registry<program_space>::key<main_info> main_progspace_key;
119
120 /* The default symbol cache size.
121 There is no extra cpu cost for large N (except when flushing the cache,
122 which is rare). The value here is just a first attempt. A better default
123 value may be higher or lower. A prime number can make up for a bad hash
124 computation, so that's why the number is what it is. */
125 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
126
127 /* The maximum symbol cache size.
128 There's no method to the decision of what value to use here, other than
129 there's no point in allowing a user typo to make gdb consume all memory. */
130 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
131
132 /* symbol_cache_lookup returns this if a previous lookup failed to find the
133 symbol in any objfile. */
134 #define SYMBOL_LOOKUP_FAILED \
135 ((struct block_symbol) {(struct symbol *) 1, NULL})
136 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
137
138 /* Recording lookups that don't find the symbol is just as important, if not
139 more so, than recording found symbols. */
140
141 enum symbol_cache_slot_state
142 {
143 SYMBOL_SLOT_UNUSED,
144 SYMBOL_SLOT_NOT_FOUND,
145 SYMBOL_SLOT_FOUND
146 };
147
148 struct symbol_cache_slot
149 {
150 enum symbol_cache_slot_state state;
151
152 /* The objfile that was current when the symbol was looked up.
153 This is only needed for global blocks, but for simplicity's sake
154 we allocate the space for both. If data shows the extra space used
155 for static blocks is a problem, we can split things up then.
156
157 Global blocks need cache lookup to include the objfile context because
158 we need to account for gdbarch_iterate_over_objfiles_in_search_order
159 which can traverse objfiles in, effectively, any order, depending on
160 the current objfile, thus affecting which symbol is found. Normally,
161 only the current objfile is searched first, and then the rest are
162 searched in recorded order; but putting cache lookup inside
163 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
164 Instead we just make the current objfile part of the context of
165 cache lookup. This means we can record the same symbol multiple times,
166 each with a different "current objfile" that was in effect when the
167 lookup was saved in the cache, but cache space is pretty cheap. */
168 const struct objfile *objfile_context;
169
170 union
171 {
172 struct block_symbol found;
173 struct
174 {
175 char *name;
176 domain_enum domain;
177 } not_found;
178 } value;
179 };
180
181 /* Clear out SLOT. */
182
183 static void
184 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
185 {
186 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
187 xfree (slot->value.not_found.name);
188 slot->state = SYMBOL_SLOT_UNUSED;
189 }
190
191 /* Symbols don't specify global vs static block.
192 So keep them in separate caches. */
193
194 struct block_symbol_cache
195 {
196 unsigned int hits;
197 unsigned int misses;
198 unsigned int collisions;
199
200 /* SYMBOLS is a variable length array of this size.
201 One can imagine that in general one cache (global/static) should be a
202 fraction of the size of the other, but there's no data at the moment
203 on which to decide. */
204 unsigned int size;
205
206 struct symbol_cache_slot symbols[1];
207 };
208
209 /* Clear all slots of BSC and free BSC. */
210
211 static void
212 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
213 {
214 if (bsc != nullptr)
215 {
216 for (unsigned int i = 0; i < bsc->size; i++)
217 symbol_cache_clear_slot (&bsc->symbols[i]);
218 xfree (bsc);
219 }
220 }
221
222 /* The symbol cache.
223
224 Searching for symbols in the static and global blocks over multiple objfiles
225 again and again can be slow, as can searching very big objfiles. This is a
226 simple cache to improve symbol lookup performance, which is critical to
227 overall gdb performance.
228
229 Symbols are hashed on the name, its domain, and block.
230 They are also hashed on their objfile for objfile-specific lookups. */
231
232 struct symbol_cache
233 {
234 symbol_cache () = default;
235
236 ~symbol_cache ()
237 {
238 destroy_block_symbol_cache (global_symbols);
239 destroy_block_symbol_cache (static_symbols);
240 }
241
242 struct block_symbol_cache *global_symbols = nullptr;
243 struct block_symbol_cache *static_symbols = nullptr;
244 };
245
246 /* Program space key for finding its symbol cache. */
247
248 static const registry<program_space>::key<symbol_cache> symbol_cache_key;
249
250 /* When non-zero, print debugging messages related to symtab creation. */
251 unsigned int symtab_create_debug = 0;
252
253 /* When non-zero, print debugging messages related to symbol lookup. */
254 unsigned int symbol_lookup_debug = 0;
255
256 /* The size of the cache is staged here. */
257 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
258
259 /* The current value of the symbol cache size.
260 This is saved so that if the user enters a value too big we can restore
261 the original value from here. */
262 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* True if a file may be known by two different basenames.
265 This is the uncommon case, and significantly slows down gdb.
266 Default set to "off" to not slow down the common case. */
267 bool basenames_may_differ = false;
268
269 /* Allow the user to configure the debugger behavior with respect
270 to multiple-choice menus when more than one symbol matches during
271 a symbol lookup. */
272
273 const char multiple_symbols_ask[] = "ask";
274 const char multiple_symbols_all[] = "all";
275 const char multiple_symbols_cancel[] = "cancel";
276 static const char *const multiple_symbols_modes[] =
277 {
278 multiple_symbols_ask,
279 multiple_symbols_all,
280 multiple_symbols_cancel,
281 NULL
282 };
283 static const char *multiple_symbols_mode = multiple_symbols_all;
284
285 /* When TRUE, ignore the prologue-end flag in linetable_entry when searching
286 for the SAL past a function prologue. */
287 static bool ignore_prologue_end_flag = false;
288
289 /* Read-only accessor to AUTO_SELECT_MODE. */
290
291 const char *
292 multiple_symbols_select_mode (void)
293 {
294 return multiple_symbols_mode;
295 }
296
297 /* Return the name of a domain_enum. */
298
299 const char *
300 domain_name (domain_enum e)
301 {
302 switch (e)
303 {
304 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
305 case VAR_DOMAIN: return "VAR_DOMAIN";
306 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
307 case MODULE_DOMAIN: return "MODULE_DOMAIN";
308 case LABEL_DOMAIN: return "LABEL_DOMAIN";
309 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
310 default: gdb_assert_not_reached ("bad domain_enum");
311 }
312 }
313
314 /* Return the name of a search_domain . */
315
316 const char *
317 search_domain_name (enum search_domain e)
318 {
319 switch (e)
320 {
321 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
322 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
323 case TYPES_DOMAIN: return "TYPES_DOMAIN";
324 case MODULES_DOMAIN: return "MODULES_DOMAIN";
325 case ALL_DOMAIN: return "ALL_DOMAIN";
326 default: gdb_assert_not_reached ("bad search_domain");
327 }
328 }
329
330 /* See symtab.h. */
331
332 call_site *
333 compunit_symtab::find_call_site (CORE_ADDR pc) const
334 {
335 if (m_call_site_htab == nullptr)
336 return nullptr;
337
338 CORE_ADDR delta = this->objfile ()->text_section_offset ();
339 CORE_ADDR unrelocated_pc = pc - delta;
340
341 struct call_site call_site_local (unrelocated_pc, nullptr, nullptr);
342 void **slot
343 = htab_find_slot (m_call_site_htab, &call_site_local, NO_INSERT);
344 if (slot == nullptr)
345 return nullptr;
346
347 return (call_site *) *slot;
348 }
349
350 /* See symtab.h. */
351
352 void
353 compunit_symtab::set_call_site_htab (htab_t call_site_htab)
354 {
355 gdb_assert (m_call_site_htab == nullptr);
356 m_call_site_htab = call_site_htab;
357 }
358
359 /* See symtab.h. */
360
361 void
362 compunit_symtab::set_primary_filetab (symtab *primary_filetab)
363 {
364 symtab *prev_filetab = nullptr;
365
366 /* Move PRIMARY_FILETAB to the head of the filetab list. */
367 for (symtab *filetab : this->filetabs ())
368 {
369 if (filetab == primary_filetab)
370 {
371 if (prev_filetab != nullptr)
372 {
373 prev_filetab->next = primary_filetab->next;
374 primary_filetab->next = m_filetabs;
375 m_filetabs = primary_filetab;
376 }
377
378 break;
379 }
380
381 prev_filetab = filetab;
382 }
383
384 gdb_assert (primary_filetab == m_filetabs);
385 }
386
387 /* See symtab.h. */
388
389 struct symtab *
390 compunit_symtab::primary_filetab () const
391 {
392 gdb_assert (m_filetabs != nullptr);
393
394 /* The primary file symtab is the first one in the list. */
395 return m_filetabs;
396 }
397
398 /* See symtab.h. */
399
400 enum language
401 compunit_symtab::language () const
402 {
403 struct symtab *symtab = primary_filetab ();
404
405 /* The language of the compunit symtab is the language of its
406 primary source file. */
407 return symtab->language ();
408 }
409
410 /* The relocated address of the minimal symbol, using the section
411 offsets from OBJFILE. */
412
413 CORE_ADDR
414 minimal_symbol::value_address (objfile *objfile) const
415 {
416 if (this->maybe_copied)
417 return get_msymbol_address (objfile, this);
418 else
419 return (this->value_raw_address ()
420 + objfile->section_offsets[this->section_index ()]);
421 }
422
423 /* See symtab.h. */
424
425 bool
426 minimal_symbol::data_p () const
427 {
428 return m_type == mst_data
429 || m_type == mst_bss
430 || m_type == mst_abs
431 || m_type == mst_file_data
432 || m_type == mst_file_bss;
433 }
434
435 /* See symtab.h. */
436
437 bool
438 minimal_symbol::text_p () const
439 {
440 return m_type == mst_text
441 || m_type == mst_text_gnu_ifunc
442 || m_type == mst_data_gnu_ifunc
443 || m_type == mst_slot_got_plt
444 || m_type == mst_solib_trampoline
445 || m_type == mst_file_text;
446 }
447
448 /* See whether FILENAME matches SEARCH_NAME using the rule that we
449 advertise to the user. (The manual's description of linespecs
450 describes what we advertise). Returns true if they match, false
451 otherwise. */
452
453 bool
454 compare_filenames_for_search (const char *filename, const char *search_name)
455 {
456 int len = strlen (filename);
457 size_t search_len = strlen (search_name);
458
459 if (len < search_len)
460 return false;
461
462 /* The tail of FILENAME must match. */
463 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
464 return false;
465
466 /* Either the names must completely match, or the character
467 preceding the trailing SEARCH_NAME segment of FILENAME must be a
468 directory separator.
469
470 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
471 cannot match FILENAME "/path//dir/file.c" - as user has requested
472 absolute path. The sama applies for "c:\file.c" possibly
473 incorrectly hypothetically matching "d:\dir\c:\file.c".
474
475 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
476 compatible with SEARCH_NAME "file.c". In such case a compiler had
477 to put the "c:file.c" name into debug info. Such compatibility
478 works only on GDB built for DOS host. */
479 return (len == search_len
480 || (!IS_ABSOLUTE_PATH (search_name)
481 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
482 || (HAS_DRIVE_SPEC (filename)
483 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
484 }
485
486 /* Same as compare_filenames_for_search, but for glob-style patterns.
487 Heads up on the order of the arguments. They match the order of
488 compare_filenames_for_search, but it's the opposite of the order of
489 arguments to gdb_filename_fnmatch. */
490
491 bool
492 compare_glob_filenames_for_search (const char *filename,
493 const char *search_name)
494 {
495 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
496 all /s have to be explicitly specified. */
497 int file_path_elements = count_path_elements (filename);
498 int search_path_elements = count_path_elements (search_name);
499
500 if (search_path_elements > file_path_elements)
501 return false;
502
503 if (IS_ABSOLUTE_PATH (search_name))
504 {
505 return (search_path_elements == file_path_elements
506 && gdb_filename_fnmatch (search_name, filename,
507 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
508 }
509
510 {
511 const char *file_to_compare
512 = strip_leading_path_elements (filename,
513 file_path_elements - search_path_elements);
514
515 return gdb_filename_fnmatch (search_name, file_to_compare,
516 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
517 }
518 }
519
520 /* Check for a symtab of a specific name by searching some symtabs.
521 This is a helper function for callbacks of iterate_over_symtabs.
522
523 If NAME is not absolute, then REAL_PATH is NULL
524 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
525
526 The return value, NAME, REAL_PATH and CALLBACK are identical to the
527 `map_symtabs_matching_filename' method of quick_symbol_functions.
528
529 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
530 Each symtab within the specified compunit symtab is also searched.
531 AFTER_LAST is one past the last compunit symtab to search; NULL means to
532 search until the end of the list. */
533
534 bool
535 iterate_over_some_symtabs (const char *name,
536 const char *real_path,
537 struct compunit_symtab *first,
538 struct compunit_symtab *after_last,
539 gdb::function_view<bool (symtab *)> callback)
540 {
541 struct compunit_symtab *cust;
542 const char* base_name = lbasename (name);
543
544 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
545 {
546 for (symtab *s : cust->filetabs ())
547 {
548 if (compare_filenames_for_search (s->filename, name))
549 {
550 if (callback (s))
551 return true;
552 continue;
553 }
554
555 /* Before we invoke realpath, which can get expensive when many
556 files are involved, do a quick comparison of the basenames. */
557 if (! basenames_may_differ
558 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
559 continue;
560
561 if (compare_filenames_for_search (symtab_to_fullname (s), name))
562 {
563 if (callback (s))
564 return true;
565 continue;
566 }
567
568 /* If the user gave us an absolute path, try to find the file in
569 this symtab and use its absolute path. */
570 if (real_path != NULL)
571 {
572 const char *fullname = symtab_to_fullname (s);
573
574 gdb_assert (IS_ABSOLUTE_PATH (real_path));
575 gdb_assert (IS_ABSOLUTE_PATH (name));
576 gdb::unique_xmalloc_ptr<char> fullname_real_path
577 = gdb_realpath (fullname);
578 fullname = fullname_real_path.get ();
579 if (FILENAME_CMP (real_path, fullname) == 0)
580 {
581 if (callback (s))
582 return true;
583 continue;
584 }
585 }
586 }
587 }
588
589 return false;
590 }
591
592 /* Check for a symtab of a specific name; first in symtabs, then in
593 psymtabs. *If* there is no '/' in the name, a match after a '/'
594 in the symtab filename will also work.
595
596 Calls CALLBACK with each symtab that is found. If CALLBACK returns
597 true, the search stops. */
598
599 void
600 iterate_over_symtabs (const char *name,
601 gdb::function_view<bool (symtab *)> callback)
602 {
603 gdb::unique_xmalloc_ptr<char> real_path;
604
605 /* Here we are interested in canonicalizing an absolute path, not
606 absolutizing a relative path. */
607 if (IS_ABSOLUTE_PATH (name))
608 {
609 real_path = gdb_realpath (name);
610 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
611 }
612
613 for (objfile *objfile : current_program_space->objfiles ())
614 {
615 if (iterate_over_some_symtabs (name, real_path.get (),
616 objfile->compunit_symtabs, NULL,
617 callback))
618 return;
619 }
620
621 /* Same search rules as above apply here, but now we look thru the
622 psymtabs. */
623
624 for (objfile *objfile : current_program_space->objfiles ())
625 {
626 if (objfile->map_symtabs_matching_filename (name, real_path.get (),
627 callback))
628 return;
629 }
630 }
631
632 /* A wrapper for iterate_over_symtabs that returns the first matching
633 symtab, or NULL. */
634
635 struct symtab *
636 lookup_symtab (const char *name)
637 {
638 struct symtab *result = NULL;
639
640 iterate_over_symtabs (name, [&] (symtab *symtab)
641 {
642 result = symtab;
643 return true;
644 });
645
646 return result;
647 }
648
649 \f
650 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
651 full method name, which consist of the class name (from T), the unadorned
652 method name from METHOD_ID, and the signature for the specific overload,
653 specified by SIGNATURE_ID. Note that this function is g++ specific. */
654
655 char *
656 gdb_mangle_name (struct type *type, int method_id, int signature_id)
657 {
658 int mangled_name_len;
659 char *mangled_name;
660 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
661 struct fn_field *method = &f[signature_id];
662 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
663 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
664 const char *newname = type->name ();
665
666 /* Does the form of physname indicate that it is the full mangled name
667 of a constructor (not just the args)? */
668 int is_full_physname_constructor;
669
670 int is_constructor;
671 int is_destructor = is_destructor_name (physname);
672 /* Need a new type prefix. */
673 const char *const_prefix = method->is_const ? "C" : "";
674 const char *volatile_prefix = method->is_volatile ? "V" : "";
675 char buf[20];
676 int len = (newname == NULL ? 0 : strlen (newname));
677
678 /* Nothing to do if physname already contains a fully mangled v3 abi name
679 or an operator name. */
680 if ((physname[0] == '_' && physname[1] == 'Z')
681 || is_operator_name (field_name))
682 return xstrdup (physname);
683
684 is_full_physname_constructor = is_constructor_name (physname);
685
686 is_constructor = is_full_physname_constructor
687 || (newname && strcmp (field_name, newname) == 0);
688
689 if (!is_destructor)
690 is_destructor = (startswith (physname, "__dt"));
691
692 if (is_destructor || is_full_physname_constructor)
693 {
694 mangled_name = (char *) xmalloc (strlen (physname) + 1);
695 strcpy (mangled_name, physname);
696 return mangled_name;
697 }
698
699 if (len == 0)
700 {
701 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
702 }
703 else if (physname[0] == 't' || physname[0] == 'Q')
704 {
705 /* The physname for template and qualified methods already includes
706 the class name. */
707 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
708 newname = NULL;
709 len = 0;
710 }
711 else
712 {
713 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
714 volatile_prefix, len);
715 }
716 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
717 + strlen (buf) + len + strlen (physname) + 1);
718
719 mangled_name = (char *) xmalloc (mangled_name_len);
720 if (is_constructor)
721 mangled_name[0] = '\0';
722 else
723 strcpy (mangled_name, field_name);
724
725 strcat (mangled_name, buf);
726 /* If the class doesn't have a name, i.e. newname NULL, then we just
727 mangle it using 0 for the length of the class. Thus it gets mangled
728 as something starting with `::' rather than `classname::'. */
729 if (newname != NULL)
730 strcat (mangled_name, newname);
731
732 strcat (mangled_name, physname);
733 return (mangled_name);
734 }
735
736 /* See symtab.h. */
737
738 void
739 general_symbol_info::set_demangled_name (const char *name,
740 struct obstack *obstack)
741 {
742 if (language () == language_ada)
743 {
744 if (name == NULL)
745 {
746 ada_mangled = 0;
747 language_specific.obstack = obstack;
748 }
749 else
750 {
751 ada_mangled = 1;
752 language_specific.demangled_name = name;
753 }
754 }
755 else
756 language_specific.demangled_name = name;
757 }
758
759 \f
760 /* Initialize the language dependent portion of a symbol
761 depending upon the language for the symbol. */
762
763 void
764 general_symbol_info::set_language (enum language language,
765 struct obstack *obstack)
766 {
767 m_language = language;
768 if (language == language_cplus
769 || language == language_d
770 || language == language_go
771 || language == language_objc
772 || language == language_fortran)
773 {
774 set_demangled_name (NULL, obstack);
775 }
776 else if (language == language_ada)
777 {
778 gdb_assert (ada_mangled == 0);
779 language_specific.obstack = obstack;
780 }
781 else
782 {
783 memset (&language_specific, 0, sizeof (language_specific));
784 }
785 }
786
787 /* Functions to initialize a symbol's mangled name. */
788
789 /* Objects of this type are stored in the demangled name hash table. */
790 struct demangled_name_entry
791 {
792 demangled_name_entry (gdb::string_view mangled_name)
793 : mangled (mangled_name) {}
794
795 gdb::string_view mangled;
796 enum language language;
797 gdb::unique_xmalloc_ptr<char> demangled;
798 };
799
800 /* Hash function for the demangled name hash. */
801
802 static hashval_t
803 hash_demangled_name_entry (const void *data)
804 {
805 const struct demangled_name_entry *e
806 = (const struct demangled_name_entry *) data;
807
808 return gdb::string_view_hash () (e->mangled);
809 }
810
811 /* Equality function for the demangled name hash. */
812
813 static int
814 eq_demangled_name_entry (const void *a, const void *b)
815 {
816 const struct demangled_name_entry *da
817 = (const struct demangled_name_entry *) a;
818 const struct demangled_name_entry *db
819 = (const struct demangled_name_entry *) b;
820
821 return da->mangled == db->mangled;
822 }
823
824 static void
825 free_demangled_name_entry (void *data)
826 {
827 struct demangled_name_entry *e
828 = (struct demangled_name_entry *) data;
829
830 e->~demangled_name_entry();
831 }
832
833 /* Create the hash table used for demangled names. Each hash entry is
834 a pair of strings; one for the mangled name and one for the demangled
835 name. The entry is hashed via just the mangled name. */
836
837 static void
838 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
839 {
840 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
841 The hash table code will round this up to the next prime number.
842 Choosing a much larger table size wastes memory, and saves only about
843 1% in symbol reading. However, if the minsym count is already
844 initialized (e.g. because symbol name setting was deferred to
845 a background thread) we can initialize the hashtable with a count
846 based on that, because we will almost certainly have at least that
847 many entries. If we have a nonzero number but less than 256,
848 we still stay with 256 to have some space for psymbols, etc. */
849
850 /* htab will expand the table when it is 3/4th full, so we account for that
851 here. +2 to round up. */
852 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
853 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
854
855 per_bfd->demangled_names_hash.reset (htab_create_alloc
856 (count, hash_demangled_name_entry, eq_demangled_name_entry,
857 free_demangled_name_entry, xcalloc, xfree));
858 }
859
860 /* See symtab.h */
861
862 gdb::unique_xmalloc_ptr<char>
863 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
864 const char *mangled)
865 {
866 gdb::unique_xmalloc_ptr<char> demangled;
867 int i;
868
869 if (gsymbol->language () == language_unknown)
870 gsymbol->m_language = language_auto;
871
872 if (gsymbol->language () != language_auto)
873 {
874 const struct language_defn *lang = language_def (gsymbol->language ());
875
876 lang->sniff_from_mangled_name (mangled, &demangled);
877 return demangled;
878 }
879
880 for (i = language_unknown; i < nr_languages; ++i)
881 {
882 enum language l = (enum language) i;
883 const struct language_defn *lang = language_def (l);
884
885 if (lang->sniff_from_mangled_name (mangled, &demangled))
886 {
887 gsymbol->m_language = l;
888 return demangled;
889 }
890 }
891
892 return NULL;
893 }
894
895 /* Set both the mangled and demangled (if any) names for GSYMBOL based
896 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
897 objfile's obstack; but if COPY_NAME is 0 and if NAME is
898 NUL-terminated, then this function assumes that NAME is already
899 correctly saved (either permanently or with a lifetime tied to the
900 objfile), and it will not be copied.
901
902 The hash table corresponding to OBJFILE is used, and the memory
903 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
904 so the pointer can be discarded after calling this function. */
905
906 void
907 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
908 bool copy_name,
909 objfile_per_bfd_storage *per_bfd,
910 gdb::optional<hashval_t> hash)
911 {
912 struct demangled_name_entry **slot;
913
914 if (language () == language_ada)
915 {
916 /* In Ada, we do the symbol lookups using the mangled name, so
917 we can save some space by not storing the demangled name. */
918 if (!copy_name)
919 m_name = linkage_name.data ();
920 else
921 m_name = obstack_strndup (&per_bfd->storage_obstack,
922 linkage_name.data (),
923 linkage_name.length ());
924 set_demangled_name (NULL, &per_bfd->storage_obstack);
925
926 return;
927 }
928
929 if (per_bfd->demangled_names_hash == NULL)
930 create_demangled_names_hash (per_bfd);
931
932 struct demangled_name_entry entry (linkage_name);
933 if (!hash.has_value ())
934 hash = hash_demangled_name_entry (&entry);
935 slot = ((struct demangled_name_entry **)
936 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
937 &entry, *hash, INSERT));
938
939 /* The const_cast is safe because the only reason it is already
940 initialized is if we purposefully set it from a background
941 thread to avoid doing the work here. However, it is still
942 allocated from the heap and needs to be freed by us, just
943 like if we called symbol_find_demangled_name here. If this is
944 nullptr, we call symbol_find_demangled_name below, but we put
945 this smart pointer here to be sure that we don't leak this name. */
946 gdb::unique_xmalloc_ptr<char> demangled_name
947 (const_cast<char *> (language_specific.demangled_name));
948
949 /* If this name is not in the hash table, add it. */
950 if (*slot == NULL
951 /* A C version of the symbol may have already snuck into the table.
952 This happens to, e.g., main.init (__go_init_main). Cope. */
953 || (language () == language_go && (*slot)->demangled == nullptr))
954 {
955 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
956 to true if the string might not be nullterminated. We have to make
957 this copy because demangling needs a nullterminated string. */
958 gdb::string_view linkage_name_copy;
959 if (copy_name)
960 {
961 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
962 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
963 alloc_name[linkage_name.length ()] = '\0';
964
965 linkage_name_copy = gdb::string_view (alloc_name,
966 linkage_name.length ());
967 }
968 else
969 linkage_name_copy = linkage_name;
970
971 if (demangled_name.get () == nullptr)
972 demangled_name
973 = symbol_find_demangled_name (this, linkage_name_copy.data ());
974
975 /* Suppose we have demangled_name==NULL, copy_name==0, and
976 linkage_name_copy==linkage_name. In this case, we already have the
977 mangled name saved, and we don't have a demangled name. So,
978 you might think we could save a little space by not recording
979 this in the hash table at all.
980
981 It turns out that it is actually important to still save such
982 an entry in the hash table, because storing this name gives
983 us better bcache hit rates for partial symbols. */
984 if (!copy_name)
985 {
986 *slot
987 = ((struct demangled_name_entry *)
988 obstack_alloc (&per_bfd->storage_obstack,
989 sizeof (demangled_name_entry)));
990 new (*slot) demangled_name_entry (linkage_name);
991 }
992 else
993 {
994 /* If we must copy the mangled name, put it directly after
995 the struct so we can have a single allocation. */
996 *slot
997 = ((struct demangled_name_entry *)
998 obstack_alloc (&per_bfd->storage_obstack,
999 sizeof (demangled_name_entry)
1000 + linkage_name.length () + 1));
1001 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
1002 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
1003 mangled_ptr [linkage_name.length ()] = '\0';
1004 new (*slot) demangled_name_entry
1005 (gdb::string_view (mangled_ptr, linkage_name.length ()));
1006 }
1007 (*slot)->demangled = std::move (demangled_name);
1008 (*slot)->language = language ();
1009 }
1010 else if (language () == language_unknown || language () == language_auto)
1011 m_language = (*slot)->language;
1012
1013 m_name = (*slot)->mangled.data ();
1014 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
1015 }
1016
1017 /* See symtab.h. */
1018
1019 const char *
1020 general_symbol_info::natural_name () const
1021 {
1022 switch (language ())
1023 {
1024 case language_cplus:
1025 case language_d:
1026 case language_go:
1027 case language_objc:
1028 case language_fortran:
1029 case language_rust:
1030 if (language_specific.demangled_name != nullptr)
1031 return language_specific.demangled_name;
1032 break;
1033 case language_ada:
1034 return ada_decode_symbol (this);
1035 default:
1036 break;
1037 }
1038 return linkage_name ();
1039 }
1040
1041 /* See symtab.h. */
1042
1043 const char *
1044 general_symbol_info::demangled_name () const
1045 {
1046 const char *dem_name = NULL;
1047
1048 switch (language ())
1049 {
1050 case language_cplus:
1051 case language_d:
1052 case language_go:
1053 case language_objc:
1054 case language_fortran:
1055 case language_rust:
1056 dem_name = language_specific.demangled_name;
1057 break;
1058 case language_ada:
1059 dem_name = ada_decode_symbol (this);
1060 break;
1061 default:
1062 break;
1063 }
1064 return dem_name;
1065 }
1066
1067 /* See symtab.h. */
1068
1069 const char *
1070 general_symbol_info::search_name () const
1071 {
1072 if (language () == language_ada)
1073 return linkage_name ();
1074 else
1075 return natural_name ();
1076 }
1077
1078 /* See symtab.h. */
1079
1080 struct obj_section *
1081 general_symbol_info::obj_section (const struct objfile *objfile) const
1082 {
1083 if (section_index () >= 0)
1084 return &objfile->sections[section_index ()];
1085 return nullptr;
1086 }
1087
1088 /* See symtab.h. */
1089
1090 bool
1091 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1092 const lookup_name_info &name)
1093 {
1094 symbol_name_matcher_ftype *name_match
1095 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1096 return name_match (gsymbol->search_name (), name, NULL);
1097 }
1098
1099 \f
1100
1101 /* Return true if the two sections are the same, or if they could
1102 plausibly be copies of each other, one in an original object
1103 file and another in a separated debug file. */
1104
1105 bool
1106 matching_obj_sections (struct obj_section *obj_first,
1107 struct obj_section *obj_second)
1108 {
1109 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1110 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1111
1112 /* If they're the same section, then they match. */
1113 if (first == second)
1114 return true;
1115
1116 /* If either is NULL, give up. */
1117 if (first == NULL || second == NULL)
1118 return false;
1119
1120 /* This doesn't apply to absolute symbols. */
1121 if (first->owner == NULL || second->owner == NULL)
1122 return false;
1123
1124 /* If they're in the same object file, they must be different sections. */
1125 if (first->owner == second->owner)
1126 return false;
1127
1128 /* Check whether the two sections are potentially corresponding. They must
1129 have the same size, address, and name. We can't compare section indexes,
1130 which would be more reliable, because some sections may have been
1131 stripped. */
1132 if (bfd_section_size (first) != bfd_section_size (second))
1133 return false;
1134
1135 /* In-memory addresses may start at a different offset, relativize them. */
1136 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1137 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1138 return false;
1139
1140 if (bfd_section_name (first) == NULL
1141 || bfd_section_name (second) == NULL
1142 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1143 return false;
1144
1145 /* Otherwise check that they are in corresponding objfiles. */
1146
1147 struct objfile *obj = NULL;
1148 for (objfile *objfile : current_program_space->objfiles ())
1149 if (objfile->obfd == first->owner)
1150 {
1151 obj = objfile;
1152 break;
1153 }
1154 gdb_assert (obj != NULL);
1155
1156 if (obj->separate_debug_objfile != NULL
1157 && obj->separate_debug_objfile->obfd == second->owner)
1158 return true;
1159 if (obj->separate_debug_objfile_backlink != NULL
1160 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1161 return true;
1162
1163 return false;
1164 }
1165
1166 /* See symtab.h. */
1167
1168 void
1169 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1170 {
1171 struct bound_minimal_symbol msymbol;
1172
1173 /* If we know that this is not a text address, return failure. This is
1174 necessary because we loop based on texthigh and textlow, which do
1175 not include the data ranges. */
1176 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1177 if (msymbol.minsym && msymbol.minsym->data_p ())
1178 return;
1179
1180 for (objfile *objfile : current_program_space->objfiles ())
1181 {
1182 struct compunit_symtab *cust
1183 = objfile->find_pc_sect_compunit_symtab (msymbol, pc, section, 0);
1184 if (cust)
1185 return;
1186 }
1187 }
1188 \f
1189 /* Hash function for the symbol cache. */
1190
1191 static unsigned int
1192 hash_symbol_entry (const struct objfile *objfile_context,
1193 const char *name, domain_enum domain)
1194 {
1195 unsigned int hash = (uintptr_t) objfile_context;
1196
1197 if (name != NULL)
1198 hash += htab_hash_string (name);
1199
1200 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1201 to map to the same slot. */
1202 if (domain == STRUCT_DOMAIN)
1203 hash += VAR_DOMAIN * 7;
1204 else
1205 hash += domain * 7;
1206
1207 return hash;
1208 }
1209
1210 /* Equality function for the symbol cache. */
1211
1212 static int
1213 eq_symbol_entry (const struct symbol_cache_slot *slot,
1214 const struct objfile *objfile_context,
1215 const char *name, domain_enum domain)
1216 {
1217 const char *slot_name;
1218 domain_enum slot_domain;
1219
1220 if (slot->state == SYMBOL_SLOT_UNUSED)
1221 return 0;
1222
1223 if (slot->objfile_context != objfile_context)
1224 return 0;
1225
1226 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1227 {
1228 slot_name = slot->value.not_found.name;
1229 slot_domain = slot->value.not_found.domain;
1230 }
1231 else
1232 {
1233 slot_name = slot->value.found.symbol->search_name ();
1234 slot_domain = slot->value.found.symbol->domain ();
1235 }
1236
1237 /* NULL names match. */
1238 if (slot_name == NULL && name == NULL)
1239 {
1240 /* But there's no point in calling symbol_matches_domain in the
1241 SYMBOL_SLOT_FOUND case. */
1242 if (slot_domain != domain)
1243 return 0;
1244 }
1245 else if (slot_name != NULL && name != NULL)
1246 {
1247 /* It's important that we use the same comparison that was done
1248 the first time through. If the slot records a found symbol,
1249 then this means using the symbol name comparison function of
1250 the symbol's language with symbol->search_name (). See
1251 dictionary.c. It also means using symbol_matches_domain for
1252 found symbols. See block.c.
1253
1254 If the slot records a not-found symbol, then require a precise match.
1255 We could still be lax with whitespace like strcmp_iw though. */
1256
1257 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1258 {
1259 if (strcmp (slot_name, name) != 0)
1260 return 0;
1261 if (slot_domain != domain)
1262 return 0;
1263 }
1264 else
1265 {
1266 struct symbol *sym = slot->value.found.symbol;
1267 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1268
1269 if (!symbol_matches_search_name (sym, lookup_name))
1270 return 0;
1271
1272 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1273 return 0;
1274 }
1275 }
1276 else
1277 {
1278 /* Only one name is NULL. */
1279 return 0;
1280 }
1281
1282 return 1;
1283 }
1284
1285 /* Given a cache of size SIZE, return the size of the struct (with variable
1286 length array) in bytes. */
1287
1288 static size_t
1289 symbol_cache_byte_size (unsigned int size)
1290 {
1291 return (sizeof (struct block_symbol_cache)
1292 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1293 }
1294
1295 /* Resize CACHE. */
1296
1297 static void
1298 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1299 {
1300 /* If there's no change in size, don't do anything.
1301 All caches have the same size, so we can just compare with the size
1302 of the global symbols cache. */
1303 if ((cache->global_symbols != NULL
1304 && cache->global_symbols->size == new_size)
1305 || (cache->global_symbols == NULL
1306 && new_size == 0))
1307 return;
1308
1309 destroy_block_symbol_cache (cache->global_symbols);
1310 destroy_block_symbol_cache (cache->static_symbols);
1311
1312 if (new_size == 0)
1313 {
1314 cache->global_symbols = NULL;
1315 cache->static_symbols = NULL;
1316 }
1317 else
1318 {
1319 size_t total_size = symbol_cache_byte_size (new_size);
1320
1321 cache->global_symbols
1322 = (struct block_symbol_cache *) xcalloc (1, total_size);
1323 cache->static_symbols
1324 = (struct block_symbol_cache *) xcalloc (1, total_size);
1325 cache->global_symbols->size = new_size;
1326 cache->static_symbols->size = new_size;
1327 }
1328 }
1329
1330 /* Return the symbol cache of PSPACE.
1331 Create one if it doesn't exist yet. */
1332
1333 static struct symbol_cache *
1334 get_symbol_cache (struct program_space *pspace)
1335 {
1336 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1337
1338 if (cache == NULL)
1339 {
1340 cache = symbol_cache_key.emplace (pspace);
1341 resize_symbol_cache (cache, symbol_cache_size);
1342 }
1343
1344 return cache;
1345 }
1346
1347 /* Set the size of the symbol cache in all program spaces. */
1348
1349 static void
1350 set_symbol_cache_size (unsigned int new_size)
1351 {
1352 for (struct program_space *pspace : program_spaces)
1353 {
1354 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1355
1356 /* The pspace could have been created but not have a cache yet. */
1357 if (cache != NULL)
1358 resize_symbol_cache (cache, new_size);
1359 }
1360 }
1361
1362 /* Called when symbol-cache-size is set. */
1363
1364 static void
1365 set_symbol_cache_size_handler (const char *args, int from_tty,
1366 struct cmd_list_element *c)
1367 {
1368 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1369 {
1370 /* Restore the previous value.
1371 This is the value the "show" command prints. */
1372 new_symbol_cache_size = symbol_cache_size;
1373
1374 error (_("Symbol cache size is too large, max is %u."),
1375 MAX_SYMBOL_CACHE_SIZE);
1376 }
1377 symbol_cache_size = new_symbol_cache_size;
1378
1379 set_symbol_cache_size (symbol_cache_size);
1380 }
1381
1382 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1383 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1384 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1385 failed (and thus this one will too), or NULL if the symbol is not present
1386 in the cache.
1387 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1388 can be used to save the result of a full lookup attempt. */
1389
1390 static struct block_symbol
1391 symbol_cache_lookup (struct symbol_cache *cache,
1392 struct objfile *objfile_context, enum block_enum block,
1393 const char *name, domain_enum domain,
1394 struct block_symbol_cache **bsc_ptr,
1395 struct symbol_cache_slot **slot_ptr)
1396 {
1397 struct block_symbol_cache *bsc;
1398 unsigned int hash;
1399 struct symbol_cache_slot *slot;
1400
1401 if (block == GLOBAL_BLOCK)
1402 bsc = cache->global_symbols;
1403 else
1404 bsc = cache->static_symbols;
1405 if (bsc == NULL)
1406 {
1407 *bsc_ptr = NULL;
1408 *slot_ptr = NULL;
1409 return {};
1410 }
1411
1412 hash = hash_symbol_entry (objfile_context, name, domain);
1413 slot = bsc->symbols + hash % bsc->size;
1414
1415 *bsc_ptr = bsc;
1416 *slot_ptr = slot;
1417
1418 if (eq_symbol_entry (slot, objfile_context, name, domain))
1419 {
1420 symbol_lookup_debug_printf ("%s block symbol cache hit%s for %s, %s",
1421 block == GLOBAL_BLOCK ? "Global" : "Static",
1422 slot->state == SYMBOL_SLOT_NOT_FOUND
1423 ? " (not found)" : "", name,
1424 domain_name (domain));
1425 ++bsc->hits;
1426 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1427 return SYMBOL_LOOKUP_FAILED;
1428 return slot->value.found;
1429 }
1430
1431 /* Symbol is not present in the cache. */
1432
1433 symbol_lookup_debug_printf ("%s block symbol cache miss for %s, %s",
1434 block == GLOBAL_BLOCK ? "Global" : "Static",
1435 name, domain_name (domain));
1436 ++bsc->misses;
1437 return {};
1438 }
1439
1440 /* Mark SYMBOL as found in SLOT.
1441 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1442 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1443 necessarily the objfile the symbol was found in. */
1444
1445 static void
1446 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1447 struct symbol_cache_slot *slot,
1448 struct objfile *objfile_context,
1449 struct symbol *symbol,
1450 const struct block *block)
1451 {
1452 if (bsc == NULL)
1453 return;
1454 if (slot->state != SYMBOL_SLOT_UNUSED)
1455 {
1456 ++bsc->collisions;
1457 symbol_cache_clear_slot (slot);
1458 }
1459 slot->state = SYMBOL_SLOT_FOUND;
1460 slot->objfile_context = objfile_context;
1461 slot->value.found.symbol = symbol;
1462 slot->value.found.block = block;
1463 }
1464
1465 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1466 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1467 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1468
1469 static void
1470 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1471 struct symbol_cache_slot *slot,
1472 struct objfile *objfile_context,
1473 const char *name, domain_enum domain)
1474 {
1475 if (bsc == NULL)
1476 return;
1477 if (slot->state != SYMBOL_SLOT_UNUSED)
1478 {
1479 ++bsc->collisions;
1480 symbol_cache_clear_slot (slot);
1481 }
1482 slot->state = SYMBOL_SLOT_NOT_FOUND;
1483 slot->objfile_context = objfile_context;
1484 slot->value.not_found.name = xstrdup (name);
1485 slot->value.not_found.domain = domain;
1486 }
1487
1488 /* Flush the symbol cache of PSPACE. */
1489
1490 static void
1491 symbol_cache_flush (struct program_space *pspace)
1492 {
1493 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1494 int pass;
1495
1496 if (cache == NULL)
1497 return;
1498 if (cache->global_symbols == NULL)
1499 {
1500 gdb_assert (symbol_cache_size == 0);
1501 gdb_assert (cache->static_symbols == NULL);
1502 return;
1503 }
1504
1505 /* If the cache is untouched since the last flush, early exit.
1506 This is important for performance during the startup of a program linked
1507 with 100s (or 1000s) of shared libraries. */
1508 if (cache->global_symbols->misses == 0
1509 && cache->static_symbols->misses == 0)
1510 return;
1511
1512 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1513 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1514
1515 for (pass = 0; pass < 2; ++pass)
1516 {
1517 struct block_symbol_cache *bsc
1518 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1519 unsigned int i;
1520
1521 for (i = 0; i < bsc->size; ++i)
1522 symbol_cache_clear_slot (&bsc->symbols[i]);
1523 }
1524
1525 cache->global_symbols->hits = 0;
1526 cache->global_symbols->misses = 0;
1527 cache->global_symbols->collisions = 0;
1528 cache->static_symbols->hits = 0;
1529 cache->static_symbols->misses = 0;
1530 cache->static_symbols->collisions = 0;
1531 }
1532
1533 /* Dump CACHE. */
1534
1535 static void
1536 symbol_cache_dump (const struct symbol_cache *cache)
1537 {
1538 int pass;
1539
1540 if (cache->global_symbols == NULL)
1541 {
1542 gdb_printf (" <disabled>\n");
1543 return;
1544 }
1545
1546 for (pass = 0; pass < 2; ++pass)
1547 {
1548 const struct block_symbol_cache *bsc
1549 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1550 unsigned int i;
1551
1552 if (pass == 0)
1553 gdb_printf ("Global symbols:\n");
1554 else
1555 gdb_printf ("Static symbols:\n");
1556
1557 for (i = 0; i < bsc->size; ++i)
1558 {
1559 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1560
1561 QUIT;
1562
1563 switch (slot->state)
1564 {
1565 case SYMBOL_SLOT_UNUSED:
1566 break;
1567 case SYMBOL_SLOT_NOT_FOUND:
1568 gdb_printf (" [%4u] = %s, %s %s (not found)\n", i,
1569 host_address_to_string (slot->objfile_context),
1570 slot->value.not_found.name,
1571 domain_name (slot->value.not_found.domain));
1572 break;
1573 case SYMBOL_SLOT_FOUND:
1574 {
1575 struct symbol *found = slot->value.found.symbol;
1576 const struct objfile *context = slot->objfile_context;
1577
1578 gdb_printf (" [%4u] = %s, %s %s\n", i,
1579 host_address_to_string (context),
1580 found->print_name (),
1581 domain_name (found->domain ()));
1582 break;
1583 }
1584 }
1585 }
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache (const char *args, int from_tty)
1593 {
1594 for (struct program_space *pspace : program_spaces)
1595 {
1596 struct symbol_cache *cache;
1597
1598 gdb_printf (_("Symbol cache for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 gdb_printf (" <empty>\n");
1608 else
1609 symbol_cache_dump (cache);
1610 }
1611 }
1612
1613 /* The "mt flush-symbol-cache" command. */
1614
1615 static void
1616 maintenance_flush_symbol_cache (const char *args, int from_tty)
1617 {
1618 for (struct program_space *pspace : program_spaces)
1619 {
1620 symbol_cache_flush (pspace);
1621 }
1622 }
1623
1624 /* Print usage statistics of CACHE. */
1625
1626 static void
1627 symbol_cache_stats (struct symbol_cache *cache)
1628 {
1629 int pass;
1630
1631 if (cache->global_symbols == NULL)
1632 {
1633 gdb_printf (" <disabled>\n");
1634 return;
1635 }
1636
1637 for (pass = 0; pass < 2; ++pass)
1638 {
1639 const struct block_symbol_cache *bsc
1640 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1641
1642 QUIT;
1643
1644 if (pass == 0)
1645 gdb_printf ("Global block cache stats:\n");
1646 else
1647 gdb_printf ("Static block cache stats:\n");
1648
1649 gdb_printf (" size: %u\n", bsc->size);
1650 gdb_printf (" hits: %u\n", bsc->hits);
1651 gdb_printf (" misses: %u\n", bsc->misses);
1652 gdb_printf (" collisions: %u\n", bsc->collisions);
1653 }
1654 }
1655
1656 /* The "mt print symbol-cache-statistics" command. */
1657
1658 static void
1659 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1660 {
1661 for (struct program_space *pspace : program_spaces)
1662 {
1663 struct symbol_cache *cache;
1664
1665 gdb_printf (_("Symbol cache statistics for pspace %d\n%s:\n"),
1666 pspace->num,
1667 pspace->symfile_object_file != NULL
1668 ? objfile_name (pspace->symfile_object_file)
1669 : "(no object file)");
1670
1671 /* If the cache hasn't been created yet, avoid creating one. */
1672 cache = symbol_cache_key.get (pspace);
1673 if (cache == NULL)
1674 gdb_printf (" empty, no stats available\n");
1675 else
1676 symbol_cache_stats (cache);
1677 }
1678 }
1679
1680 /* This module's 'new_objfile' observer. */
1681
1682 static void
1683 symtab_new_objfile_observer (struct objfile *objfile)
1684 {
1685 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1686 symbol_cache_flush (current_program_space);
1687 }
1688
1689 /* This module's 'free_objfile' observer. */
1690
1691 static void
1692 symtab_free_objfile_observer (struct objfile *objfile)
1693 {
1694 symbol_cache_flush (objfile->pspace);
1695 }
1696 \f
1697 /* See symtab.h. */
1698
1699 void
1700 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1701 {
1702 gdb_assert (sym != nullptr);
1703 gdb_assert (sym->is_objfile_owned ());
1704 gdb_assert (objfile != nullptr);
1705 gdb_assert (sym->section_index () == -1);
1706
1707 /* Note that if this ends up as -1, fixup_section will handle that
1708 reasonably well. So, it's fine to use the objfile's section
1709 index without doing the check that is done by the wrapper macros
1710 like SECT_OFF_TEXT. */
1711 int fallback;
1712 switch (sym->aclass ())
1713 {
1714 case LOC_STATIC:
1715 fallback = objfile->sect_index_data;
1716 break;
1717
1718 case LOC_LABEL:
1719 fallback = objfile->sect_index_text;
1720 break;
1721
1722 default:
1723 /* Nothing else will be listed in the minsyms -- no use looking
1724 it up. */
1725 return;
1726 }
1727
1728 CORE_ADDR addr = sym->value_address ();
1729
1730 struct minimal_symbol *msym;
1731
1732 /* First, check whether a minimal symbol with the same name exists
1733 and points to the same address. The address check is required
1734 e.g. on PowerPC64, where the minimal symbol for a function will
1735 point to the function descriptor, while the debug symbol will
1736 point to the actual function code. */
1737 msym = lookup_minimal_symbol_by_pc_name (addr, sym->linkage_name (),
1738 objfile);
1739 if (msym)
1740 sym->set_section_index (msym->section_index ());
1741 else
1742 {
1743 /* Static, function-local variables do appear in the linker
1744 (minimal) symbols, but are frequently given names that won't
1745 be found via lookup_minimal_symbol(). E.g., it has been
1746 observed in frv-uclinux (ELF) executables that a static,
1747 function-local variable named "foo" might appear in the
1748 linker symbols as "foo.6" or "foo.3". Thus, there is no
1749 point in attempting to extend the lookup-by-name mechanism to
1750 handle this case due to the fact that there can be multiple
1751 names.
1752
1753 So, instead, search the section table when lookup by name has
1754 failed. The ``addr'' and ``endaddr'' fields may have already
1755 been relocated. If so, the relocation offset needs to be
1756 subtracted from these values when performing the comparison.
1757 We unconditionally subtract it, because, when no relocation
1758 has been performed, the value will simply be zero.
1759
1760 The address of the symbol whose section we're fixing up HAS
1761 NOT BEEN adjusted (relocated) yet. It can't have been since
1762 the section isn't yet known and knowing the section is
1763 necessary in order to add the correct relocation value. In
1764 other words, we wouldn't even be in this function (attempting
1765 to compute the section) if it were already known.
1766
1767 Note that it is possible to search the minimal symbols
1768 (subtracting the relocation value if necessary) to find the
1769 matching minimal symbol, but this is overkill and much less
1770 efficient. It is not necessary to find the matching minimal
1771 symbol, only its section.
1772
1773 Note that this technique (of doing a section table search)
1774 can fail when unrelocated section addresses overlap. For
1775 this reason, we still attempt a lookup by name prior to doing
1776 a search of the section table. */
1777
1778 struct obj_section *s;
1779
1780 ALL_OBJFILE_OSECTIONS (objfile, s)
1781 {
1782 if ((bfd_section_flags (s->the_bfd_section) & SEC_ALLOC) == 0)
1783 continue;
1784
1785 int idx = s - objfile->sections;
1786 CORE_ADDR offset = objfile->section_offsets[idx];
1787
1788 if (fallback == -1)
1789 fallback = idx;
1790
1791 if (s->addr () - offset <= addr && addr < s->endaddr () - offset)
1792 {
1793 sym->set_section_index (idx);
1794 return;
1795 }
1796 }
1797
1798 /* If we didn't find the section, assume it is in the first
1799 section. If there is no allocated section, then it hardly
1800 matters what we pick, so just pick zero. */
1801 if (fallback == -1)
1802 sym->set_section_index (0);
1803 else
1804 sym->set_section_index (fallback);
1805 }
1806 }
1807
1808 /* See symtab.h. */
1809
1810 demangle_for_lookup_info::demangle_for_lookup_info
1811 (const lookup_name_info &lookup_name, language lang)
1812 {
1813 demangle_result_storage storage;
1814
1815 if (lookup_name.ignore_parameters () && lang == language_cplus)
1816 {
1817 gdb::unique_xmalloc_ptr<char> without_params
1818 = cp_remove_params_if_any (lookup_name.c_str (),
1819 lookup_name.completion_mode ());
1820
1821 if (without_params != NULL)
1822 {
1823 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1824 m_demangled_name = demangle_for_lookup (without_params.get (),
1825 lang, storage);
1826 return;
1827 }
1828 }
1829
1830 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1831 m_demangled_name = lookup_name.c_str ();
1832 else
1833 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1834 lang, storage);
1835 }
1836
1837 /* See symtab.h. */
1838
1839 const lookup_name_info &
1840 lookup_name_info::match_any ()
1841 {
1842 /* Lookup any symbol that "" would complete. I.e., this matches all
1843 symbol names. */
1844 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1845 true);
1846
1847 return lookup_name;
1848 }
1849
1850 /* Compute the demangled form of NAME as used by the various symbol
1851 lookup functions. The result can either be the input NAME
1852 directly, or a pointer to a buffer owned by the STORAGE object.
1853
1854 For Ada, this function just returns NAME, unmodified.
1855 Normally, Ada symbol lookups are performed using the encoded name
1856 rather than the demangled name, and so it might seem to make sense
1857 for this function to return an encoded version of NAME.
1858 Unfortunately, we cannot do this, because this function is used in
1859 circumstances where it is not appropriate to try to encode NAME.
1860 For instance, when displaying the frame info, we demangle the name
1861 of each parameter, and then perform a symbol lookup inside our
1862 function using that demangled name. In Ada, certain functions
1863 have internally-generated parameters whose name contain uppercase
1864 characters. Encoding those name would result in those uppercase
1865 characters to become lowercase, and thus cause the symbol lookup
1866 to fail. */
1867
1868 const char *
1869 demangle_for_lookup (const char *name, enum language lang,
1870 demangle_result_storage &storage)
1871 {
1872 /* If we are using C++, D, or Go, demangle the name before doing a
1873 lookup, so we can always binary search. */
1874 if (lang == language_cplus)
1875 {
1876 gdb::unique_xmalloc_ptr<char> demangled_name
1877 = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1878 if (demangled_name != NULL)
1879 return storage.set_malloc_ptr (std::move (demangled_name));
1880
1881 /* If we were given a non-mangled name, canonicalize it
1882 according to the language (so far only for C++). */
1883 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1884 if (canon != nullptr)
1885 return storage.set_malloc_ptr (std::move (canon));
1886 }
1887 else if (lang == language_d)
1888 {
1889 gdb::unique_xmalloc_ptr<char> demangled_name = d_demangle (name, 0);
1890 if (demangled_name != NULL)
1891 return storage.set_malloc_ptr (std::move (demangled_name));
1892 }
1893 else if (lang == language_go)
1894 {
1895 gdb::unique_xmalloc_ptr<char> demangled_name
1896 = language_def (language_go)->demangle_symbol (name, 0);
1897 if (demangled_name != NULL)
1898 return storage.set_malloc_ptr (std::move (demangled_name));
1899 }
1900
1901 return name;
1902 }
1903
1904 /* See symtab.h. */
1905
1906 unsigned int
1907 search_name_hash (enum language language, const char *search_name)
1908 {
1909 return language_def (language)->search_name_hash (search_name);
1910 }
1911
1912 /* See symtab.h.
1913
1914 This function (or rather its subordinates) have a bunch of loops and
1915 it would seem to be attractive to put in some QUIT's (though I'm not really
1916 sure whether it can run long enough to be really important). But there
1917 are a few calls for which it would appear to be bad news to quit
1918 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1919 that there is C++ code below which can error(), but that probably
1920 doesn't affect these calls since they are looking for a known
1921 variable and thus can probably assume it will never hit the C++
1922 code). */
1923
1924 struct block_symbol
1925 lookup_symbol_in_language (const char *name, const struct block *block,
1926 const domain_enum domain, enum language lang,
1927 struct field_of_this_result *is_a_field_of_this)
1928 {
1929 SYMBOL_LOOKUP_SCOPED_DEBUG_ENTER_EXIT;
1930
1931 demangle_result_storage storage;
1932 const char *modified_name = demangle_for_lookup (name, lang, storage);
1933
1934 return lookup_symbol_aux (modified_name,
1935 symbol_name_match_type::FULL,
1936 block, domain, lang,
1937 is_a_field_of_this);
1938 }
1939
1940 /* See symtab.h. */
1941
1942 struct block_symbol
1943 lookup_symbol (const char *name, const struct block *block,
1944 domain_enum domain,
1945 struct field_of_this_result *is_a_field_of_this)
1946 {
1947 return lookup_symbol_in_language (name, block, domain,
1948 current_language->la_language,
1949 is_a_field_of_this);
1950 }
1951
1952 /* See symtab.h. */
1953
1954 struct block_symbol
1955 lookup_symbol_search_name (const char *search_name, const struct block *block,
1956 domain_enum domain)
1957 {
1958 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1959 block, domain, language_asm, NULL);
1960 }
1961
1962 /* See symtab.h. */
1963
1964 struct block_symbol
1965 lookup_language_this (const struct language_defn *lang,
1966 const struct block *block)
1967 {
1968 if (lang->name_of_this () == NULL || block == NULL)
1969 return {};
1970
1971 symbol_lookup_debug_printf_v ("lookup_language_this (%s, %s (objfile %s))",
1972 lang->name (), host_address_to_string (block),
1973 objfile_debug_name (block_objfile (block)));
1974
1975 while (block)
1976 {
1977 struct symbol *sym;
1978
1979 sym = block_lookup_symbol (block, lang->name_of_this (),
1980 symbol_name_match_type::SEARCH_NAME,
1981 VAR_DOMAIN);
1982 if (sym != NULL)
1983 {
1984 symbol_lookup_debug_printf_v
1985 ("lookup_language_this (...) = %s (%s, block %s)",
1986 sym->print_name (), host_address_to_string (sym),
1987 host_address_to_string (block));
1988 return (struct block_symbol) {sym, block};
1989 }
1990 if (block->function ())
1991 break;
1992 block = block->superblock ();
1993 }
1994
1995 symbol_lookup_debug_printf_v ("lookup_language_this (...) = NULL");
1996 return {};
1997 }
1998
1999 /* Given TYPE, a structure/union,
2000 return 1 if the component named NAME from the ultimate target
2001 structure/union is defined, otherwise, return 0. */
2002
2003 static int
2004 check_field (struct type *type, const char *name,
2005 struct field_of_this_result *is_a_field_of_this)
2006 {
2007 int i;
2008
2009 /* The type may be a stub. */
2010 type = check_typedef (type);
2011
2012 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
2013 {
2014 const char *t_field_name = type->field (i).name ();
2015
2016 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2017 {
2018 is_a_field_of_this->type = type;
2019 is_a_field_of_this->field = &type->field (i);
2020 return 1;
2021 }
2022 }
2023
2024 /* C++: If it was not found as a data field, then try to return it
2025 as a pointer to a method. */
2026
2027 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2028 {
2029 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2030 {
2031 is_a_field_of_this->type = type;
2032 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2033 return 1;
2034 }
2035 }
2036
2037 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2038 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2039 return 1;
2040
2041 return 0;
2042 }
2043
2044 /* Behave like lookup_symbol except that NAME is the natural name
2045 (e.g., demangled name) of the symbol that we're looking for. */
2046
2047 static struct block_symbol
2048 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2049 const struct block *block,
2050 const domain_enum domain, enum language language,
2051 struct field_of_this_result *is_a_field_of_this)
2052 {
2053 SYMBOL_LOOKUP_SCOPED_DEBUG_ENTER_EXIT;
2054
2055 struct block_symbol result;
2056 const struct language_defn *langdef;
2057
2058 if (symbol_lookup_debug)
2059 {
2060 struct objfile *objfile = (block == nullptr
2061 ? nullptr : block_objfile (block));
2062
2063 symbol_lookup_debug_printf
2064 ("demangled symbol name = \"%s\", block @ %s (objfile %s)",
2065 name, host_address_to_string (block),
2066 objfile != NULL ? objfile_debug_name (objfile) : "NULL");
2067 symbol_lookup_debug_printf
2068 ("domain name = \"%s\", language = \"%s\")",
2069 domain_name (domain), language_str (language));
2070 }
2071
2072 /* Make sure we do something sensible with is_a_field_of_this, since
2073 the callers that set this parameter to some non-null value will
2074 certainly use it later. If we don't set it, the contents of
2075 is_a_field_of_this are undefined. */
2076 if (is_a_field_of_this != NULL)
2077 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2078
2079 /* Search specified block and its superiors. Don't search
2080 STATIC_BLOCK or GLOBAL_BLOCK. */
2081
2082 result = lookup_local_symbol (name, match_type, block, domain, language);
2083 if (result.symbol != NULL)
2084 {
2085 symbol_lookup_debug_printf
2086 ("found symbol @ %s (using lookup_local_symbol)",
2087 host_address_to_string (result.symbol));
2088 return result;
2089 }
2090
2091 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2092 check to see if NAME is a field of `this'. */
2093
2094 langdef = language_def (language);
2095
2096 /* Don't do this check if we are searching for a struct. It will
2097 not be found by check_field, but will be found by other
2098 means. */
2099 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2100 {
2101 result = lookup_language_this (langdef, block);
2102
2103 if (result.symbol)
2104 {
2105 struct type *t = result.symbol->type ();
2106
2107 /* I'm not really sure that type of this can ever
2108 be typedefed; just be safe. */
2109 t = check_typedef (t);
2110 if (t->is_pointer_or_reference ())
2111 t = t->target_type ();
2112
2113 if (t->code () != TYPE_CODE_STRUCT
2114 && t->code () != TYPE_CODE_UNION)
2115 error (_("Internal error: `%s' is not an aggregate"),
2116 langdef->name_of_this ());
2117
2118 if (check_field (t, name, is_a_field_of_this))
2119 {
2120 symbol_lookup_debug_printf ("no symbol found");
2121 return {};
2122 }
2123 }
2124 }
2125
2126 /* Now do whatever is appropriate for LANGUAGE to look
2127 up static and global variables. */
2128
2129 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2130 if (result.symbol != NULL)
2131 {
2132 symbol_lookup_debug_printf
2133 ("found symbol @ %s (using language lookup_symbol_nonlocal)",
2134 host_address_to_string (result.symbol));
2135 return result;
2136 }
2137
2138 /* Now search all static file-level symbols. Not strictly correct,
2139 but more useful than an error. */
2140
2141 result = lookup_static_symbol (name, domain);
2142 symbol_lookup_debug_printf
2143 ("found symbol @ %s (using lookup_static_symbol)",
2144 result.symbol != NULL ? host_address_to_string (result.symbol) : "NULL");
2145 return result;
2146 }
2147
2148 /* Check to see if the symbol is defined in BLOCK or its superiors.
2149 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2150
2151 static struct block_symbol
2152 lookup_local_symbol (const char *name,
2153 symbol_name_match_type match_type,
2154 const struct block *block,
2155 const domain_enum domain,
2156 enum language language)
2157 {
2158 if (block == nullptr)
2159 return {};
2160
2161 struct symbol *sym;
2162 const struct block *static_block = block_static_block (block);
2163 const char *scope = block_scope (block);
2164
2165 /* Check if it's a global block. */
2166 if (static_block == nullptr)
2167 return {};
2168
2169 while (block != static_block)
2170 {
2171 sym = lookup_symbol_in_block (name, match_type, block, domain);
2172 if (sym != NULL)
2173 return (struct block_symbol) {sym, block};
2174
2175 if (language == language_cplus || language == language_fortran)
2176 {
2177 struct block_symbol blocksym
2178 = cp_lookup_symbol_imports_or_template (scope, name, block,
2179 domain);
2180
2181 if (blocksym.symbol != NULL)
2182 return blocksym;
2183 }
2184
2185 if (block->function () != NULL && block_inlined_p (block))
2186 break;
2187 block = block->superblock ();
2188 }
2189
2190 /* We've reached the end of the function without finding a result. */
2191
2192 return {};
2193 }
2194
2195 /* See symtab.h. */
2196
2197 struct symbol *
2198 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2199 const struct block *block,
2200 const domain_enum domain)
2201 {
2202 struct symbol *sym;
2203
2204 if (symbol_lookup_debug)
2205 {
2206 struct objfile *objfile
2207 = block == nullptr ? nullptr : block_objfile (block);
2208
2209 symbol_lookup_debug_printf_v
2210 ("lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2211 name, host_address_to_string (block),
2212 objfile != nullptr ? objfile_debug_name (objfile) : "NULL",
2213 domain_name (domain));
2214 }
2215
2216 sym = block_lookup_symbol (block, name, match_type, domain);
2217 if (sym)
2218 {
2219 symbol_lookup_debug_printf_v ("lookup_symbol_in_block (...) = %s",
2220 host_address_to_string (sym));
2221 return sym;
2222 }
2223
2224 symbol_lookup_debug_printf_v ("lookup_symbol_in_block (...) = NULL");
2225 return NULL;
2226 }
2227
2228 /* See symtab.h. */
2229
2230 struct block_symbol
2231 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2232 enum block_enum block_index,
2233 const char *name,
2234 const domain_enum domain)
2235 {
2236 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2237
2238 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2239 {
2240 struct block_symbol result
2241 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2242
2243 if (result.symbol != nullptr)
2244 return result;
2245 }
2246
2247 return {};
2248 }
2249
2250 /* Check to see if the symbol is defined in one of the OBJFILE's
2251 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2252 depending on whether or not we want to search global symbols or
2253 static symbols. */
2254
2255 static struct block_symbol
2256 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2257 enum block_enum block_index, const char *name,
2258 const domain_enum domain)
2259 {
2260 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2261
2262 symbol_lookup_debug_printf_v
2263 ("lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2264 objfile_debug_name (objfile),
2265 block_index == GLOBAL_BLOCK ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2266 name, domain_name (domain));
2267
2268 struct block_symbol other;
2269 other.symbol = NULL;
2270 for (compunit_symtab *cust : objfile->compunits ())
2271 {
2272 const struct blockvector *bv;
2273 const struct block *block;
2274 struct block_symbol result;
2275
2276 bv = cust->blockvector ();
2277 block = bv->block (block_index);
2278 result.symbol = block_lookup_symbol_primary (block, name, domain);
2279 result.block = block;
2280 if (result.symbol == NULL)
2281 continue;
2282 if (best_symbol (result.symbol, domain))
2283 {
2284 other = result;
2285 break;
2286 }
2287 if (symbol_matches_domain (result.symbol->language (),
2288 result.symbol->domain (), domain))
2289 {
2290 struct symbol *better
2291 = better_symbol (other.symbol, result.symbol, domain);
2292 if (better != other.symbol)
2293 {
2294 other.symbol = better;
2295 other.block = block;
2296 }
2297 }
2298 }
2299
2300 if (other.symbol != NULL)
2301 {
2302 symbol_lookup_debug_printf_v
2303 ("lookup_symbol_in_objfile_symtabs (...) = %s (block %s)",
2304 host_address_to_string (other.symbol),
2305 host_address_to_string (other.block));
2306 return other;
2307 }
2308
2309 symbol_lookup_debug_printf_v
2310 ("lookup_symbol_in_objfile_symtabs (...) = NULL");
2311 return {};
2312 }
2313
2314 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2315 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2316 and all associated separate debug objfiles.
2317
2318 Normally we only look in OBJFILE, and not any separate debug objfiles
2319 because the outer loop will cause them to be searched too. This case is
2320 different. Here we're called from search_symbols where it will only
2321 call us for the objfile that contains a matching minsym. */
2322
2323 static struct block_symbol
2324 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2325 const char *linkage_name,
2326 domain_enum domain)
2327 {
2328 enum language lang = current_language->la_language;
2329 struct objfile *main_objfile;
2330
2331 demangle_result_storage storage;
2332 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2333
2334 if (objfile->separate_debug_objfile_backlink)
2335 main_objfile = objfile->separate_debug_objfile_backlink;
2336 else
2337 main_objfile = objfile;
2338
2339 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2340 {
2341 struct block_symbol result;
2342
2343 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2344 modified_name, domain);
2345 if (result.symbol == NULL)
2346 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2347 modified_name, domain);
2348 if (result.symbol != NULL)
2349 return result;
2350 }
2351
2352 return {};
2353 }
2354
2355 /* A helper function that throws an exception when a symbol was found
2356 in a psymtab but not in a symtab. */
2357
2358 static void ATTRIBUTE_NORETURN
2359 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2360 struct compunit_symtab *cust)
2361 {
2362 error (_("\
2363 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2364 %s may be an inlined function, or may be a template function\n \
2365 (if a template, try specifying an instantiation: %s<type>)."),
2366 block_index == GLOBAL_BLOCK ? "global" : "static",
2367 name,
2368 symtab_to_filename_for_display (cust->primary_filetab ()),
2369 name, name);
2370 }
2371
2372 /* A helper function for various lookup routines that interfaces with
2373 the "quick" symbol table functions. */
2374
2375 static struct block_symbol
2376 lookup_symbol_via_quick_fns (struct objfile *objfile,
2377 enum block_enum block_index, const char *name,
2378 const domain_enum domain)
2379 {
2380 struct compunit_symtab *cust;
2381 const struct blockvector *bv;
2382 const struct block *block;
2383 struct block_symbol result;
2384
2385 symbol_lookup_debug_printf_v
2386 ("lookup_symbol_via_quick_fns (%s, %s, %s, %s)",
2387 objfile_debug_name (objfile),
2388 block_index == GLOBAL_BLOCK ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2389 name, domain_name (domain));
2390
2391 cust = objfile->lookup_symbol (block_index, name, domain);
2392 if (cust == NULL)
2393 {
2394 symbol_lookup_debug_printf_v
2395 ("lookup_symbol_via_quick_fns (...) = NULL");
2396 return {};
2397 }
2398
2399 bv = cust->blockvector ();
2400 block = bv->block (block_index);
2401 result.symbol = block_lookup_symbol (block, name,
2402 symbol_name_match_type::FULL, domain);
2403 if (result.symbol == NULL)
2404 error_in_psymtab_expansion (block_index, name, cust);
2405
2406 symbol_lookup_debug_printf_v
2407 ("lookup_symbol_via_quick_fns (...) = %s (block %s)",
2408 host_address_to_string (result.symbol),
2409 host_address_to_string (block));
2410
2411 result.block = block;
2412 return result;
2413 }
2414
2415 /* See language.h. */
2416
2417 struct block_symbol
2418 language_defn::lookup_symbol_nonlocal (const char *name,
2419 const struct block *block,
2420 const domain_enum domain) const
2421 {
2422 struct block_symbol result;
2423
2424 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2425 the current objfile. Searching the current objfile first is useful
2426 for both matching user expectations as well as performance. */
2427
2428 result = lookup_symbol_in_static_block (name, block, domain);
2429 if (result.symbol != NULL)
2430 return result;
2431
2432 /* If we didn't find a definition for a builtin type in the static block,
2433 search for it now. This is actually the right thing to do and can be
2434 a massive performance win. E.g., when debugging a program with lots of
2435 shared libraries we could search all of them only to find out the
2436 builtin type isn't defined in any of them. This is common for types
2437 like "void". */
2438 if (domain == VAR_DOMAIN)
2439 {
2440 struct gdbarch *gdbarch;
2441
2442 if (block == NULL)
2443 gdbarch = target_gdbarch ();
2444 else
2445 gdbarch = block_gdbarch (block);
2446 result.symbol = language_lookup_primitive_type_as_symbol (this,
2447 gdbarch, name);
2448 result.block = NULL;
2449 if (result.symbol != NULL)
2450 return result;
2451 }
2452
2453 return lookup_global_symbol (name, block, domain);
2454 }
2455
2456 /* See symtab.h. */
2457
2458 struct block_symbol
2459 lookup_symbol_in_static_block (const char *name,
2460 const struct block *block,
2461 const domain_enum domain)
2462 {
2463 if (block == nullptr)
2464 return {};
2465
2466 const struct block *static_block = block_static_block (block);
2467 struct symbol *sym;
2468
2469 if (static_block == NULL)
2470 return {};
2471
2472 if (symbol_lookup_debug)
2473 {
2474 struct objfile *objfile = (block == nullptr
2475 ? nullptr : block_objfile (block));
2476
2477 symbol_lookup_debug_printf
2478 ("lookup_symbol_in_static_block (%s, %s (objfile %s), %s)",
2479 name, host_address_to_string (block),
2480 objfile != nullptr ? objfile_debug_name (objfile) : "NULL",
2481 domain_name (domain));
2482 }
2483
2484 sym = lookup_symbol_in_block (name,
2485 symbol_name_match_type::FULL,
2486 static_block, domain);
2487 symbol_lookup_debug_printf ("lookup_symbol_in_static_block (...) = %s",
2488 sym != NULL
2489 ? host_address_to_string (sym) : "NULL");
2490 return (struct block_symbol) {sym, static_block};
2491 }
2492
2493 /* Perform the standard symbol lookup of NAME in OBJFILE:
2494 1) First search expanded symtabs, and if not found
2495 2) Search the "quick" symtabs (partial or .gdb_index).
2496 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2497
2498 static struct block_symbol
2499 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2500 const char *name, const domain_enum domain)
2501 {
2502 struct block_symbol result;
2503
2504 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2505
2506 symbol_lookup_debug_printf ("lookup_symbol_in_objfile (%s, %s, %s, %s)",
2507 objfile_debug_name (objfile),
2508 block_index == GLOBAL_BLOCK
2509 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2510 name, domain_name (domain));
2511
2512 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2513 name, domain);
2514 if (result.symbol != NULL)
2515 {
2516 symbol_lookup_debug_printf
2517 ("lookup_symbol_in_objfile (...) = %s (in symtabs)",
2518 host_address_to_string (result.symbol));
2519 return result;
2520 }
2521
2522 result = lookup_symbol_via_quick_fns (objfile, block_index,
2523 name, domain);
2524 symbol_lookup_debug_printf ("lookup_symbol_in_objfile (...) = %s%s",
2525 result.symbol != NULL
2526 ? host_address_to_string (result.symbol)
2527 : "NULL",
2528 result.symbol != NULL ? " (via quick fns)"
2529 : "");
2530 return result;
2531 }
2532
2533 /* This function contains the common code of lookup_{global,static}_symbol.
2534 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2535 the objfile to start the lookup in. */
2536
2537 static struct block_symbol
2538 lookup_global_or_static_symbol (const char *name,
2539 enum block_enum block_index,
2540 struct objfile *objfile,
2541 const domain_enum domain)
2542 {
2543 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2544 struct block_symbol result;
2545 struct block_symbol_cache *bsc;
2546 struct symbol_cache_slot *slot;
2547
2548 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2549 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2550
2551 /* First see if we can find the symbol in the cache.
2552 This works because we use the current objfile to qualify the lookup. */
2553 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2554 &bsc, &slot);
2555 if (result.symbol != NULL)
2556 {
2557 if (SYMBOL_LOOKUP_FAILED_P (result))
2558 return {};
2559 return result;
2560 }
2561
2562 /* Do a global search (of global blocks, heh). */
2563 if (result.symbol == NULL)
2564 gdbarch_iterate_over_objfiles_in_search_order
2565 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2566 [&result, block_index, name, domain] (struct objfile *objfile_iter)
2567 {
2568 result = lookup_symbol_in_objfile (objfile_iter, block_index,
2569 name, domain);
2570 return result.symbol != nullptr;
2571 },
2572 objfile);
2573
2574 if (result.symbol != NULL)
2575 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2576 else
2577 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2578
2579 return result;
2580 }
2581
2582 /* See symtab.h. */
2583
2584 struct block_symbol
2585 lookup_static_symbol (const char *name, const domain_enum domain)
2586 {
2587 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2588 }
2589
2590 /* See symtab.h. */
2591
2592 struct block_symbol
2593 lookup_global_symbol (const char *name,
2594 const struct block *block,
2595 const domain_enum domain)
2596 {
2597 /* If a block was passed in, we want to search the corresponding
2598 global block first. This yields "more expected" behavior, and is
2599 needed to support 'FILENAME'::VARIABLE lookups. */
2600 const struct block *global_block
2601 = block == nullptr ? nullptr : block_global_block (block);
2602 symbol *sym = NULL;
2603 if (global_block != nullptr)
2604 {
2605 sym = lookup_symbol_in_block (name,
2606 symbol_name_match_type::FULL,
2607 global_block, domain);
2608 if (sym != NULL && best_symbol (sym, domain))
2609 return { sym, global_block };
2610 }
2611
2612 struct objfile *objfile = nullptr;
2613 if (block != nullptr)
2614 {
2615 objfile = block_objfile (block);
2616 if (objfile->separate_debug_objfile_backlink != nullptr)
2617 objfile = objfile->separate_debug_objfile_backlink;
2618 }
2619
2620 block_symbol bs
2621 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2622 if (better_symbol (sym, bs.symbol, domain) == sym)
2623 return { sym, global_block };
2624 else
2625 return bs;
2626 }
2627
2628 bool
2629 symbol_matches_domain (enum language symbol_language,
2630 domain_enum symbol_domain,
2631 domain_enum domain)
2632 {
2633 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2634 Similarly, any Ada type declaration implicitly defines a typedef. */
2635 if (symbol_language == language_cplus
2636 || symbol_language == language_d
2637 || symbol_language == language_ada
2638 || symbol_language == language_rust)
2639 {
2640 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2641 && symbol_domain == STRUCT_DOMAIN)
2642 return true;
2643 }
2644 /* For all other languages, strict match is required. */
2645 return (symbol_domain == domain);
2646 }
2647
2648 /* See symtab.h. */
2649
2650 struct type *
2651 lookup_transparent_type (const char *name)
2652 {
2653 return current_language->lookup_transparent_type (name);
2654 }
2655
2656 /* A helper for basic_lookup_transparent_type that interfaces with the
2657 "quick" symbol table functions. */
2658
2659 static struct type *
2660 basic_lookup_transparent_type_quick (struct objfile *objfile,
2661 enum block_enum block_index,
2662 const char *name)
2663 {
2664 struct compunit_symtab *cust;
2665 const struct blockvector *bv;
2666 const struct block *block;
2667 struct symbol *sym;
2668
2669 cust = objfile->lookup_symbol (block_index, name, STRUCT_DOMAIN);
2670 if (cust == NULL)
2671 return NULL;
2672
2673 bv = cust->blockvector ();
2674 block = bv->block (block_index);
2675 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2676 block_find_non_opaque_type, NULL);
2677 if (sym == NULL)
2678 error_in_psymtab_expansion (block_index, name, cust);
2679 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2680 return sym->type ();
2681 }
2682
2683 /* Subroutine of basic_lookup_transparent_type to simplify it.
2684 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2685 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2686
2687 static struct type *
2688 basic_lookup_transparent_type_1 (struct objfile *objfile,
2689 enum block_enum block_index,
2690 const char *name)
2691 {
2692 const struct blockvector *bv;
2693 const struct block *block;
2694 const struct symbol *sym;
2695
2696 for (compunit_symtab *cust : objfile->compunits ())
2697 {
2698 bv = cust->blockvector ();
2699 block = bv->block (block_index);
2700 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2701 block_find_non_opaque_type, NULL);
2702 if (sym != NULL)
2703 {
2704 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2705 return sym->type ();
2706 }
2707 }
2708
2709 return NULL;
2710 }
2711
2712 /* The standard implementation of lookup_transparent_type. This code
2713 was modeled on lookup_symbol -- the parts not relevant to looking
2714 up types were just left out. In particular it's assumed here that
2715 types are available in STRUCT_DOMAIN and only in file-static or
2716 global blocks. */
2717
2718 struct type *
2719 basic_lookup_transparent_type (const char *name)
2720 {
2721 struct type *t;
2722
2723 /* Now search all the global symbols. Do the symtab's first, then
2724 check the psymtab's. If a psymtab indicates the existence
2725 of the desired name as a global, then do psymtab-to-symtab
2726 conversion on the fly and return the found symbol. */
2727
2728 for (objfile *objfile : current_program_space->objfiles ())
2729 {
2730 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2731 if (t)
2732 return t;
2733 }
2734
2735 for (objfile *objfile : current_program_space->objfiles ())
2736 {
2737 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2738 if (t)
2739 return t;
2740 }
2741
2742 /* Now search the static file-level symbols.
2743 Not strictly correct, but more useful than an error.
2744 Do the symtab's first, then
2745 check the psymtab's. If a psymtab indicates the existence
2746 of the desired name as a file-level static, then do psymtab-to-symtab
2747 conversion on the fly and return the found symbol. */
2748
2749 for (objfile *objfile : current_program_space->objfiles ())
2750 {
2751 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2752 if (t)
2753 return t;
2754 }
2755
2756 for (objfile *objfile : current_program_space->objfiles ())
2757 {
2758 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2759 if (t)
2760 return t;
2761 }
2762
2763 return (struct type *) 0;
2764 }
2765
2766 /* See symtab.h. */
2767
2768 bool
2769 iterate_over_symbols (const struct block *block,
2770 const lookup_name_info &name,
2771 const domain_enum domain,
2772 gdb::function_view<symbol_found_callback_ftype> callback)
2773 {
2774 struct block_iterator iter;
2775 struct symbol *sym;
2776
2777 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2778 {
2779 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
2780 {
2781 struct block_symbol block_sym = {sym, block};
2782
2783 if (!callback (&block_sym))
2784 return false;
2785 }
2786 }
2787 return true;
2788 }
2789
2790 /* See symtab.h. */
2791
2792 bool
2793 iterate_over_symbols_terminated
2794 (const struct block *block,
2795 const lookup_name_info &name,
2796 const domain_enum domain,
2797 gdb::function_view<symbol_found_callback_ftype> callback)
2798 {
2799 if (!iterate_over_symbols (block, name, domain, callback))
2800 return false;
2801 struct block_symbol block_sym = {nullptr, block};
2802 return callback (&block_sym);
2803 }
2804
2805 /* Find the compunit symtab associated with PC and SECTION.
2806 This will read in debug info as necessary. */
2807
2808 struct compunit_symtab *
2809 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2810 {
2811 struct compunit_symtab *best_cust = NULL;
2812 CORE_ADDR best_cust_range = 0;
2813 struct bound_minimal_symbol msymbol;
2814
2815 /* If we know that this is not a text address, return failure. This is
2816 necessary because we loop based on the block's high and low code
2817 addresses, which do not include the data ranges, and because
2818 we call find_pc_sect_psymtab which has a similar restriction based
2819 on the partial_symtab's texthigh and textlow. */
2820 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2821 if (msymbol.minsym && msymbol.minsym->data_p ())
2822 return NULL;
2823
2824 /* Search all symtabs for the one whose file contains our address, and which
2825 is the smallest of all the ones containing the address. This is designed
2826 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2827 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2828 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2829
2830 This happens for native ecoff format, where code from included files
2831 gets its own symtab. The symtab for the included file should have
2832 been read in already via the dependency mechanism.
2833 It might be swifter to create several symtabs with the same name
2834 like xcoff does (I'm not sure).
2835
2836 It also happens for objfiles that have their functions reordered.
2837 For these, the symtab we are looking for is not necessarily read in. */
2838
2839 for (objfile *obj_file : current_program_space->objfiles ())
2840 {
2841 for (compunit_symtab *cust : obj_file->compunits ())
2842 {
2843 const struct blockvector *bv = cust->blockvector ();
2844 const struct block *global_block = bv->global_block ();
2845 CORE_ADDR start = global_block->start ();
2846 CORE_ADDR end = global_block->end ();
2847 bool in_range_p = start <= pc && pc < end;
2848 if (!in_range_p)
2849 continue;
2850
2851 if (bv->map () != nullptr)
2852 {
2853 if (bv->map ()->find (pc) == nullptr)
2854 continue;
2855
2856 return cust;
2857 }
2858
2859 CORE_ADDR range = end - start;
2860 if (best_cust != nullptr
2861 && range >= best_cust_range)
2862 /* Cust doesn't have a smaller range than best_cust, skip it. */
2863 continue;
2864
2865 /* For an objfile that has its functions reordered,
2866 find_pc_psymtab will find the proper partial symbol table
2867 and we simply return its corresponding symtab. */
2868 /* In order to better support objfiles that contain both
2869 stabs and coff debugging info, we continue on if a psymtab
2870 can't be found. */
2871 if ((obj_file->flags & OBJF_REORDERED) != 0)
2872 {
2873 struct compunit_symtab *result;
2874
2875 result
2876 = obj_file->find_pc_sect_compunit_symtab (msymbol,
2877 pc,
2878 section,
2879 0);
2880 if (result != NULL)
2881 return result;
2882 }
2883
2884 if (section != 0)
2885 {
2886 struct symbol *sym = NULL;
2887 struct block_iterator iter;
2888
2889 for (int b_index = GLOBAL_BLOCK;
2890 b_index <= STATIC_BLOCK && sym == NULL;
2891 ++b_index)
2892 {
2893 const struct block *b = bv->block (b_index);
2894 ALL_BLOCK_SYMBOLS (b, iter, sym)
2895 {
2896 if (matching_obj_sections (sym->obj_section (obj_file),
2897 section))
2898 break;
2899 }
2900 }
2901 if (sym == NULL)
2902 continue; /* No symbol in this symtab matches
2903 section. */
2904 }
2905
2906 /* Cust is best found sofar, save it. */
2907 best_cust = cust;
2908 best_cust_range = range;
2909 }
2910 }
2911
2912 if (best_cust != NULL)
2913 return best_cust;
2914
2915 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2916
2917 for (objfile *objf : current_program_space->objfiles ())
2918 {
2919 struct compunit_symtab *result
2920 = objf->find_pc_sect_compunit_symtab (msymbol, pc, section, 1);
2921 if (result != NULL)
2922 return result;
2923 }
2924
2925 return NULL;
2926 }
2927
2928 /* Find the compunit symtab associated with PC.
2929 This will read in debug info as necessary.
2930 Backward compatibility, no section. */
2931
2932 struct compunit_symtab *
2933 find_pc_compunit_symtab (CORE_ADDR pc)
2934 {
2935 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2936 }
2937
2938 /* See symtab.h. */
2939
2940 struct symbol *
2941 find_symbol_at_address (CORE_ADDR address)
2942 {
2943 /* A helper function to search a given symtab for a symbol matching
2944 ADDR. */
2945 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
2946 {
2947 const struct blockvector *bv = symtab->blockvector ();
2948
2949 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
2950 {
2951 const struct block *b = bv->block (i);
2952 struct block_iterator iter;
2953 struct symbol *sym;
2954
2955 ALL_BLOCK_SYMBOLS (b, iter, sym)
2956 {
2957 if (sym->aclass () == LOC_STATIC
2958 && sym->value_address () == addr)
2959 return sym;
2960 }
2961 }
2962 return nullptr;
2963 };
2964
2965 for (objfile *objfile : current_program_space->objfiles ())
2966 {
2967 /* If this objfile was read with -readnow, then we need to
2968 search the symtabs directly. */
2969 if ((objfile->flags & OBJF_READNOW) != 0)
2970 {
2971 for (compunit_symtab *symtab : objfile->compunits ())
2972 {
2973 struct symbol *sym = search_symtab (symtab, address);
2974 if (sym != nullptr)
2975 return sym;
2976 }
2977 }
2978 else
2979 {
2980 struct compunit_symtab *symtab
2981 = objfile->find_compunit_symtab_by_address (address);
2982 if (symtab != NULL)
2983 {
2984 struct symbol *sym = search_symtab (symtab, address);
2985 if (sym != nullptr)
2986 return sym;
2987 }
2988 }
2989 }
2990
2991 return NULL;
2992 }
2993
2994 \f
2995
2996 /* Find the source file and line number for a given PC value and SECTION.
2997 Return a structure containing a symtab pointer, a line number,
2998 and a pc range for the entire source line.
2999 The value's .pc field is NOT the specified pc.
3000 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3001 use the line that ends there. Otherwise, in that case, the line
3002 that begins there is used. */
3003
3004 /* The big complication here is that a line may start in one file, and end just
3005 before the start of another file. This usually occurs when you #include
3006 code in the middle of a subroutine. To properly find the end of a line's PC
3007 range, we must search all symtabs associated with this compilation unit, and
3008 find the one whose first PC is closer than that of the next line in this
3009 symtab. */
3010
3011 struct symtab_and_line
3012 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3013 {
3014 struct compunit_symtab *cust;
3015 struct linetable *l;
3016 int len;
3017 struct linetable_entry *item;
3018 const struct blockvector *bv;
3019 struct bound_minimal_symbol msymbol;
3020
3021 /* Info on best line seen so far, and where it starts, and its file. */
3022
3023 struct linetable_entry *best = NULL;
3024 CORE_ADDR best_end = 0;
3025 struct symtab *best_symtab = 0;
3026
3027 /* Store here the first line number
3028 of a file which contains the line at the smallest pc after PC.
3029 If we don't find a line whose range contains PC,
3030 we will use a line one less than this,
3031 with a range from the start of that file to the first line's pc. */
3032 struct linetable_entry *alt = NULL;
3033
3034 /* Info on best line seen in this file. */
3035
3036 struct linetable_entry *prev;
3037
3038 /* If this pc is not from the current frame,
3039 it is the address of the end of a call instruction.
3040 Quite likely that is the start of the following statement.
3041 But what we want is the statement containing the instruction.
3042 Fudge the pc to make sure we get that. */
3043
3044 /* It's tempting to assume that, if we can't find debugging info for
3045 any function enclosing PC, that we shouldn't search for line
3046 number info, either. However, GAS can emit line number info for
3047 assembly files --- very helpful when debugging hand-written
3048 assembly code. In such a case, we'd have no debug info for the
3049 function, but we would have line info. */
3050
3051 if (notcurrent)
3052 pc -= 1;
3053
3054 /* elz: added this because this function returned the wrong
3055 information if the pc belongs to a stub (import/export)
3056 to call a shlib function. This stub would be anywhere between
3057 two functions in the target, and the line info was erroneously
3058 taken to be the one of the line before the pc. */
3059
3060 /* RT: Further explanation:
3061
3062 * We have stubs (trampolines) inserted between procedures.
3063 *
3064 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3065 * exists in the main image.
3066 *
3067 * In the minimal symbol table, we have a bunch of symbols
3068 * sorted by start address. The stubs are marked as "trampoline",
3069 * the others appear as text. E.g.:
3070 *
3071 * Minimal symbol table for main image
3072 * main: code for main (text symbol)
3073 * shr1: stub (trampoline symbol)
3074 * foo: code for foo (text symbol)
3075 * ...
3076 * Minimal symbol table for "shr1" image:
3077 * ...
3078 * shr1: code for shr1 (text symbol)
3079 * ...
3080 *
3081 * So the code below is trying to detect if we are in the stub
3082 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3083 * and if found, do the symbolization from the real-code address
3084 * rather than the stub address.
3085 *
3086 * Assumptions being made about the minimal symbol table:
3087 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3088 * if we're really in the trampoline.s If we're beyond it (say
3089 * we're in "foo" in the above example), it'll have a closer
3090 * symbol (the "foo" text symbol for example) and will not
3091 * return the trampoline.
3092 * 2. lookup_minimal_symbol_text() will find a real text symbol
3093 * corresponding to the trampoline, and whose address will
3094 * be different than the trampoline address. I put in a sanity
3095 * check for the address being the same, to avoid an
3096 * infinite recursion.
3097 */
3098 msymbol = lookup_minimal_symbol_by_pc (pc);
3099 if (msymbol.minsym != NULL)
3100 if (msymbol.minsym->type () == mst_solib_trampoline)
3101 {
3102 struct bound_minimal_symbol mfunsym
3103 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3104 NULL);
3105
3106 if (mfunsym.minsym == NULL)
3107 /* I eliminated this warning since it is coming out
3108 * in the following situation:
3109 * gdb shmain // test program with shared libraries
3110 * (gdb) break shr1 // function in shared lib
3111 * Warning: In stub for ...
3112 * In the above situation, the shared lib is not loaded yet,
3113 * so of course we can't find the real func/line info,
3114 * but the "break" still works, and the warning is annoying.
3115 * So I commented out the warning. RT */
3116 /* warning ("In stub for %s; unable to find real function/line info",
3117 msymbol->linkage_name ()); */
3118 ;
3119 /* fall through */
3120 else if (mfunsym.value_address ()
3121 == msymbol.value_address ())
3122 /* Avoid infinite recursion */
3123 /* See above comment about why warning is commented out. */
3124 /* warning ("In stub for %s; unable to find real function/line info",
3125 msymbol->linkage_name ()); */
3126 ;
3127 /* fall through */
3128 else
3129 {
3130 /* Detect an obvious case of infinite recursion. If this
3131 should occur, we'd like to know about it, so error out,
3132 fatally. */
3133 if (mfunsym.value_address () == pc)
3134 internal_error (_("Infinite recursion detected in find_pc_sect_line;"
3135 "please file a bug report"));
3136
3137 return find_pc_line (mfunsym.value_address (), 0);
3138 }
3139 }
3140
3141 symtab_and_line val;
3142 val.pspace = current_program_space;
3143
3144 cust = find_pc_sect_compunit_symtab (pc, section);
3145 if (cust == NULL)
3146 {
3147 /* If no symbol information, return previous pc. */
3148 if (notcurrent)
3149 pc++;
3150 val.pc = pc;
3151 return val;
3152 }
3153
3154 bv = cust->blockvector ();
3155
3156 /* Look at all the symtabs that share this blockvector.
3157 They all have the same apriori range, that we found was right;
3158 but they have different line tables. */
3159
3160 for (symtab *iter_s : cust->filetabs ())
3161 {
3162 /* Find the best line in this symtab. */
3163 l = iter_s->linetable ();
3164 if (!l)
3165 continue;
3166 len = l->nitems;
3167 if (len <= 0)
3168 {
3169 /* I think len can be zero if the symtab lacks line numbers
3170 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3171 I'm not sure which, and maybe it depends on the symbol
3172 reader). */
3173 continue;
3174 }
3175
3176 prev = NULL;
3177 item = l->item; /* Get first line info. */
3178
3179 /* Is this file's first line closer than the first lines of other files?
3180 If so, record this file, and its first line, as best alternate. */
3181 if (item->pc > pc && (!alt || item->pc < alt->pc))
3182 alt = item;
3183
3184 auto pc_compare = [](const CORE_ADDR & comp_pc,
3185 const struct linetable_entry & lhs)->bool
3186 {
3187 return comp_pc < lhs.pc;
3188 };
3189
3190 struct linetable_entry *first = item;
3191 struct linetable_entry *last = item + len;
3192 item = std::upper_bound (first, last, pc, pc_compare);
3193 if (item != first)
3194 prev = item - 1; /* Found a matching item. */
3195
3196 /* At this point, prev points at the line whose start addr is <= pc, and
3197 item points at the next line. If we ran off the end of the linetable
3198 (pc >= start of the last line), then prev == item. If pc < start of
3199 the first line, prev will not be set. */
3200
3201 /* Is this file's best line closer than the best in the other files?
3202 If so, record this file, and its best line, as best so far. Don't
3203 save prev if it represents the end of a function (i.e. line number
3204 0) instead of a real line. */
3205
3206 if (prev && prev->line && (!best || prev->pc > best->pc))
3207 {
3208 best = prev;
3209 best_symtab = iter_s;
3210
3211 /* If during the binary search we land on a non-statement entry,
3212 scan backward through entries at the same address to see if
3213 there is an entry marked as is-statement. In theory this
3214 duplication should have been removed from the line table
3215 during construction, this is just a double check. If the line
3216 table has had the duplication removed then this should be
3217 pretty cheap. */
3218 if (!best->is_stmt)
3219 {
3220 struct linetable_entry *tmp = best;
3221 while (tmp > first && (tmp - 1)->pc == tmp->pc
3222 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3223 --tmp;
3224 if (tmp->is_stmt)
3225 best = tmp;
3226 }
3227
3228 /* Discard BEST_END if it's before the PC of the current BEST. */
3229 if (best_end <= best->pc)
3230 best_end = 0;
3231 }
3232
3233 /* If another line (denoted by ITEM) is in the linetable and its
3234 PC is after BEST's PC, but before the current BEST_END, then
3235 use ITEM's PC as the new best_end. */
3236 if (best && item < last && item->pc > best->pc
3237 && (best_end == 0 || best_end > item->pc))
3238 best_end = item->pc;
3239 }
3240
3241 if (!best_symtab)
3242 {
3243 /* If we didn't find any line number info, just return zeros.
3244 We used to return alt->line - 1 here, but that could be
3245 anywhere; if we don't have line number info for this PC,
3246 don't make some up. */
3247 val.pc = pc;
3248 }
3249 else if (best->line == 0)
3250 {
3251 /* If our best fit is in a range of PC's for which no line
3252 number info is available (line number is zero) then we didn't
3253 find any valid line information. */
3254 val.pc = pc;
3255 }
3256 else
3257 {
3258 val.is_stmt = best->is_stmt;
3259 val.symtab = best_symtab;
3260 val.line = best->line;
3261 val.pc = best->pc;
3262 if (best_end && (!alt || best_end < alt->pc))
3263 val.end = best_end;
3264 else if (alt)
3265 val.end = alt->pc;
3266 else
3267 val.end = bv->global_block ()->end ();
3268 }
3269 val.section = section;
3270 return val;
3271 }
3272
3273 /* Backward compatibility (no section). */
3274
3275 struct symtab_and_line
3276 find_pc_line (CORE_ADDR pc, int notcurrent)
3277 {
3278 struct obj_section *section;
3279
3280 section = find_pc_overlay (pc);
3281 if (!pc_in_unmapped_range (pc, section))
3282 return find_pc_sect_line (pc, section, notcurrent);
3283
3284 /* If the original PC was an unmapped address then we translate this to a
3285 mapped address in order to lookup the sal. However, as the user
3286 passed us an unmapped address it makes more sense to return a result
3287 that has the pc and end fields translated to unmapped addresses. */
3288 pc = overlay_mapped_address (pc, section);
3289 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3290 sal.pc = overlay_unmapped_address (sal.pc, section);
3291 sal.end = overlay_unmapped_address (sal.end, section);
3292 return sal;
3293 }
3294
3295 /* See symtab.h. */
3296
3297 struct symtab *
3298 find_pc_line_symtab (CORE_ADDR pc)
3299 {
3300 struct symtab_and_line sal;
3301
3302 /* This always passes zero for NOTCURRENT to find_pc_line.
3303 There are currently no callers that ever pass non-zero. */
3304 sal = find_pc_line (pc, 0);
3305 return sal.symtab;
3306 }
3307 \f
3308 /* Find line number LINE in any symtab whose name is the same as
3309 SYMTAB.
3310
3311 If found, return the symtab that contains the linetable in which it was
3312 found, set *INDEX to the index in the linetable of the best entry
3313 found, and set *EXACT_MATCH to true if the value returned is an
3314 exact match.
3315
3316 If not found, return NULL. */
3317
3318 struct symtab *
3319 find_line_symtab (struct symtab *sym_tab, int line,
3320 int *index, bool *exact_match)
3321 {
3322 int exact = 0; /* Initialized here to avoid a compiler warning. */
3323
3324 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3325 so far seen. */
3326
3327 int best_index;
3328 struct linetable *best_linetable;
3329 struct symtab *best_symtab;
3330
3331 /* First try looking it up in the given symtab. */
3332 best_linetable = sym_tab->linetable ();
3333 best_symtab = sym_tab;
3334 best_index = find_line_common (best_linetable, line, &exact, 0);
3335 if (best_index < 0 || !exact)
3336 {
3337 /* Didn't find an exact match. So we better keep looking for
3338 another symtab with the same name. In the case of xcoff,
3339 multiple csects for one source file (produced by IBM's FORTRAN
3340 compiler) produce multiple symtabs (this is unavoidable
3341 assuming csects can be at arbitrary places in memory and that
3342 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3343
3344 /* BEST is the smallest linenumber > LINE so far seen,
3345 or 0 if none has been seen so far.
3346 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3347 int best;
3348
3349 if (best_index >= 0)
3350 best = best_linetable->item[best_index].line;
3351 else
3352 best = 0;
3353
3354 for (objfile *objfile : current_program_space->objfiles ())
3355 objfile->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab));
3356
3357 for (objfile *objfile : current_program_space->objfiles ())
3358 {
3359 for (compunit_symtab *cu : objfile->compunits ())
3360 {
3361 for (symtab *s : cu->filetabs ())
3362 {
3363 struct linetable *l;
3364 int ind;
3365
3366 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3367 continue;
3368 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3369 symtab_to_fullname (s)) != 0)
3370 continue;
3371 l = s->linetable ();
3372 ind = find_line_common (l, line, &exact, 0);
3373 if (ind >= 0)
3374 {
3375 if (exact)
3376 {
3377 best_index = ind;
3378 best_linetable = l;
3379 best_symtab = s;
3380 goto done;
3381 }
3382 if (best == 0 || l->item[ind].line < best)
3383 {
3384 best = l->item[ind].line;
3385 best_index = ind;
3386 best_linetable = l;
3387 best_symtab = s;
3388 }
3389 }
3390 }
3391 }
3392 }
3393 }
3394 done:
3395 if (best_index < 0)
3396 return NULL;
3397
3398 if (index)
3399 *index = best_index;
3400 if (exact_match)
3401 *exact_match = (exact != 0);
3402
3403 return best_symtab;
3404 }
3405
3406 /* Given SYMTAB, returns all the PCs function in the symtab that
3407 exactly match LINE. Returns an empty vector if there are no exact
3408 matches, but updates BEST_ITEM in this case. */
3409
3410 std::vector<CORE_ADDR>
3411 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3412 struct linetable_entry **best_item)
3413 {
3414 int start = 0;
3415 std::vector<CORE_ADDR> result;
3416
3417 /* First, collect all the PCs that are at this line. */
3418 while (1)
3419 {
3420 int was_exact;
3421 int idx;
3422
3423 idx = find_line_common (symtab->linetable (), line, &was_exact,
3424 start);
3425 if (idx < 0)
3426 break;
3427
3428 if (!was_exact)
3429 {
3430 struct linetable_entry *item = &symtab->linetable ()->item[idx];
3431
3432 if (*best_item == NULL
3433 || (item->line < (*best_item)->line && item->is_stmt))
3434 *best_item = item;
3435
3436 break;
3437 }
3438
3439 result.push_back (symtab->linetable ()->item[idx].pc);
3440 start = idx + 1;
3441 }
3442
3443 return result;
3444 }
3445
3446 \f
3447 /* Set the PC value for a given source file and line number and return true.
3448 Returns false for invalid line number (and sets the PC to 0).
3449 The source file is specified with a struct symtab. */
3450
3451 bool
3452 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3453 {
3454 struct linetable *l;
3455 int ind;
3456
3457 *pc = 0;
3458 if (symtab == 0)
3459 return false;
3460
3461 symtab = find_line_symtab (symtab, line, &ind, NULL);
3462 if (symtab != NULL)
3463 {
3464 l = symtab->linetable ();
3465 *pc = l->item[ind].pc;
3466 return true;
3467 }
3468 else
3469 return false;
3470 }
3471
3472 /* Find the range of pc values in a line.
3473 Store the starting pc of the line into *STARTPTR
3474 and the ending pc (start of next line) into *ENDPTR.
3475 Returns true to indicate success.
3476 Returns false if could not find the specified line. */
3477
3478 bool
3479 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3480 CORE_ADDR *endptr)
3481 {
3482 CORE_ADDR startaddr;
3483 struct symtab_and_line found_sal;
3484
3485 startaddr = sal.pc;
3486 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3487 return false;
3488
3489 /* This whole function is based on address. For example, if line 10 has
3490 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3491 "info line *0x123" should say the line goes from 0x100 to 0x200
3492 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3493 This also insures that we never give a range like "starts at 0x134
3494 and ends at 0x12c". */
3495
3496 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3497 if (found_sal.line != sal.line)
3498 {
3499 /* The specified line (sal) has zero bytes. */
3500 *startptr = found_sal.pc;
3501 *endptr = found_sal.pc;
3502 }
3503 else
3504 {
3505 *startptr = found_sal.pc;
3506 *endptr = found_sal.end;
3507 }
3508 return true;
3509 }
3510
3511 /* Given a line table and a line number, return the index into the line
3512 table for the pc of the nearest line whose number is >= the specified one.
3513 Return -1 if none is found. The value is >= 0 if it is an index.
3514 START is the index at which to start searching the line table.
3515
3516 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3517
3518 static int
3519 find_line_common (struct linetable *l, int lineno,
3520 int *exact_match, int start)
3521 {
3522 int i;
3523 int len;
3524
3525 /* BEST is the smallest linenumber > LINENO so far seen,
3526 or 0 if none has been seen so far.
3527 BEST_INDEX identifies the item for it. */
3528
3529 int best_index = -1;
3530 int best = 0;
3531
3532 *exact_match = 0;
3533
3534 if (lineno <= 0)
3535 return -1;
3536 if (l == 0)
3537 return -1;
3538
3539 len = l->nitems;
3540 for (i = start; i < len; i++)
3541 {
3542 struct linetable_entry *item = &(l->item[i]);
3543
3544 /* Ignore non-statements. */
3545 if (!item->is_stmt)
3546 continue;
3547
3548 if (item->line == lineno)
3549 {
3550 /* Return the first (lowest address) entry which matches. */
3551 *exact_match = 1;
3552 return i;
3553 }
3554
3555 if (item->line > lineno && (best == 0 || item->line < best))
3556 {
3557 best = item->line;
3558 best_index = i;
3559 }
3560 }
3561
3562 /* If we got here, we didn't get an exact match. */
3563 return best_index;
3564 }
3565
3566 bool
3567 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3568 {
3569 struct symtab_and_line sal;
3570
3571 sal = find_pc_line (pc, 0);
3572 *startptr = sal.pc;
3573 *endptr = sal.end;
3574 return sal.symtab != 0;
3575 }
3576
3577 /* Helper for find_function_start_sal. Does most of the work, except
3578 setting the sal's symbol. */
3579
3580 static symtab_and_line
3581 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3582 bool funfirstline)
3583 {
3584 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3585
3586 if (funfirstline && sal.symtab != NULL
3587 && (sal.symtab->compunit ()->locations_valid ()
3588 || sal.symtab->language () == language_asm))
3589 {
3590 struct gdbarch *gdbarch = sal.symtab->compunit ()->objfile ()->arch ();
3591
3592 sal.pc = func_addr;
3593 if (gdbarch_skip_entrypoint_p (gdbarch))
3594 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3595 return sal;
3596 }
3597
3598 /* We always should have a line for the function start address.
3599 If we don't, something is odd. Create a plain SAL referring
3600 just the PC and hope that skip_prologue_sal (if requested)
3601 can find a line number for after the prologue. */
3602 if (sal.pc < func_addr)
3603 {
3604 sal = {};
3605 sal.pspace = current_program_space;
3606 sal.pc = func_addr;
3607 sal.section = section;
3608 }
3609
3610 if (funfirstline)
3611 skip_prologue_sal (&sal);
3612
3613 return sal;
3614 }
3615
3616 /* See symtab.h. */
3617
3618 symtab_and_line
3619 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3620 bool funfirstline)
3621 {
3622 symtab_and_line sal
3623 = find_function_start_sal_1 (func_addr, section, funfirstline);
3624
3625 /* find_function_start_sal_1 does a linetable search, so it finds
3626 the symtab and linenumber, but not a symbol. Fill in the
3627 function symbol too. */
3628 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3629
3630 return sal;
3631 }
3632
3633 /* See symtab.h. */
3634
3635 symtab_and_line
3636 find_function_start_sal (symbol *sym, bool funfirstline)
3637 {
3638 symtab_and_line sal
3639 = find_function_start_sal_1 (sym->value_block ()->entry_pc (),
3640 sym->obj_section (sym->objfile ()),
3641 funfirstline);
3642 sal.symbol = sym;
3643 return sal;
3644 }
3645
3646
3647 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3648 address for that function that has an entry in SYMTAB's line info
3649 table. If such an entry cannot be found, return FUNC_ADDR
3650 unaltered. */
3651
3652 static CORE_ADDR
3653 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3654 {
3655 CORE_ADDR func_start, func_end;
3656 struct linetable *l;
3657 int i;
3658
3659 /* Give up if this symbol has no lineinfo table. */
3660 l = symtab->linetable ();
3661 if (l == NULL)
3662 return func_addr;
3663
3664 /* Get the range for the function's PC values, or give up if we
3665 cannot, for some reason. */
3666 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3667 return func_addr;
3668
3669 /* Linetable entries are ordered by PC values, see the commentary in
3670 symtab.h where `struct linetable' is defined. Thus, the first
3671 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3672 address we are looking for. */
3673 for (i = 0; i < l->nitems; i++)
3674 {
3675 struct linetable_entry *item = &(l->item[i]);
3676
3677 /* Don't use line numbers of zero, they mark special entries in
3678 the table. See the commentary on symtab.h before the
3679 definition of struct linetable. */
3680 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3681 return item->pc;
3682 }
3683
3684 return func_addr;
3685 }
3686
3687 /* Try to locate the address where a breakpoint should be placed past the
3688 prologue of function starting at FUNC_ADDR using the line table.
3689
3690 Return the address associated with the first entry in the line-table for
3691 the function starting at FUNC_ADDR which has prologue_end set to true if
3692 such entry exist, otherwise return an empty optional. */
3693
3694 static gdb::optional<CORE_ADDR>
3695 skip_prologue_using_linetable (CORE_ADDR func_addr)
3696 {
3697 CORE_ADDR start_pc, end_pc;
3698
3699 if (!find_pc_partial_function (func_addr, nullptr, &start_pc, &end_pc))
3700 return {};
3701
3702 const struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
3703 if (prologue_sal.symtab != nullptr
3704 && prologue_sal.symtab->language () != language_asm)
3705 {
3706 struct linetable *linetable = prologue_sal.symtab->linetable ();
3707
3708 auto it = std::lower_bound
3709 (linetable->item, linetable->item + linetable->nitems, start_pc,
3710 [] (const linetable_entry &lte, CORE_ADDR pc) -> bool
3711 {
3712 return lte.pc < pc;
3713 });
3714
3715 for (;
3716 it < linetable->item + linetable->nitems && it->pc <= end_pc;
3717 it++)
3718 if (it->prologue_end)
3719 return {it->pc};
3720 }
3721
3722 return {};
3723 }
3724
3725 /* Adjust SAL to the first instruction past the function prologue.
3726 If the PC was explicitly specified, the SAL is not changed.
3727 If the line number was explicitly specified then the SAL can still be
3728 updated, unless the language for SAL is assembler, in which case the SAL
3729 will be left unchanged.
3730 If SAL is already past the prologue, then do nothing. */
3731
3732 void
3733 skip_prologue_sal (struct symtab_and_line *sal)
3734 {
3735 struct symbol *sym;
3736 struct symtab_and_line start_sal;
3737 CORE_ADDR pc, saved_pc;
3738 struct obj_section *section;
3739 const char *name;
3740 struct objfile *objfile;
3741 struct gdbarch *gdbarch;
3742 const struct block *b, *function_block;
3743 int force_skip, skip;
3744
3745 /* Do not change the SAL if PC was specified explicitly. */
3746 if (sal->explicit_pc)
3747 return;
3748
3749 /* In assembly code, if the user asks for a specific line then we should
3750 not adjust the SAL. The user already has instruction level
3751 visibility in this case, so selecting a line other than one requested
3752 is likely to be the wrong choice. */
3753 if (sal->symtab != nullptr
3754 && sal->explicit_line
3755 && sal->symtab->language () == language_asm)
3756 return;
3757
3758 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3759
3760 switch_to_program_space_and_thread (sal->pspace);
3761
3762 sym = find_pc_sect_function (sal->pc, sal->section);
3763 if (sym != NULL)
3764 {
3765 objfile = sym->objfile ();
3766 pc = sym->value_block ()->entry_pc ();
3767 section = sym->obj_section (objfile);
3768 name = sym->linkage_name ();
3769 }
3770 else
3771 {
3772 struct bound_minimal_symbol msymbol
3773 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3774
3775 if (msymbol.minsym == NULL)
3776 return;
3777
3778 objfile = msymbol.objfile;
3779 pc = msymbol.value_address ();
3780 section = msymbol.minsym->obj_section (objfile);
3781 name = msymbol.minsym->linkage_name ();
3782 }
3783
3784 gdbarch = objfile->arch ();
3785
3786 /* Process the prologue in two passes. In the first pass try to skip the
3787 prologue (SKIP is true) and verify there is a real need for it (indicated
3788 by FORCE_SKIP). If no such reason was found run a second pass where the
3789 prologue is not skipped (SKIP is false). */
3790
3791 skip = 1;
3792 force_skip = 1;
3793
3794 /* Be conservative - allow direct PC (without skipping prologue) only if we
3795 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3796 have to be set by the caller so we use SYM instead. */
3797 if (sym != NULL
3798 && sym->symtab ()->compunit ()->locations_valid ())
3799 force_skip = 0;
3800
3801 saved_pc = pc;
3802 do
3803 {
3804 pc = saved_pc;
3805
3806 /* Check if the compiler explicitly indicated where a breakpoint should
3807 be placed to skip the prologue. */
3808 if (!ignore_prologue_end_flag && skip)
3809 {
3810 gdb::optional<CORE_ADDR> linetable_pc
3811 = skip_prologue_using_linetable (pc);
3812 if (linetable_pc)
3813 {
3814 pc = *linetable_pc;
3815 start_sal = find_pc_sect_line (pc, section, 0);
3816 force_skip = 1;
3817 continue;
3818 }
3819 }
3820
3821 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3822 so that gdbarch_skip_prologue has something unique to work on. */
3823 if (section_is_overlay (section) && !section_is_mapped (section))
3824 pc = overlay_unmapped_address (pc, section);
3825
3826 /* Skip "first line" of function (which is actually its prologue). */
3827 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3828 if (gdbarch_skip_entrypoint_p (gdbarch))
3829 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3830 if (skip)
3831 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3832
3833 /* For overlays, map pc back into its mapped VMA range. */
3834 pc = overlay_mapped_address (pc, section);
3835
3836 /* Calculate line number. */
3837 start_sal = find_pc_sect_line (pc, section, 0);
3838
3839 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3840 line is still part of the same function. */
3841 if (skip && start_sal.pc != pc
3842 && (sym ? (sym->value_block ()->entry_pc () <= start_sal.end
3843 && start_sal.end < sym->value_block()->end ())
3844 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3845 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3846 {
3847 /* First pc of next line */
3848 pc = start_sal.end;
3849 /* Recalculate the line number (might not be N+1). */
3850 start_sal = find_pc_sect_line (pc, section, 0);
3851 }
3852
3853 /* On targets with executable formats that don't have a concept of
3854 constructors (ELF with .init has, PE doesn't), gcc emits a call
3855 to `__main' in `main' between the prologue and before user
3856 code. */
3857 if (gdbarch_skip_main_prologue_p (gdbarch)
3858 && name && strcmp_iw (name, "main") == 0)
3859 {
3860 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3861 /* Recalculate the line number (might not be N+1). */
3862 start_sal = find_pc_sect_line (pc, section, 0);
3863 force_skip = 1;
3864 }
3865 }
3866 while (!force_skip && skip--);
3867
3868 /* If we still don't have a valid source line, try to find the first
3869 PC in the lineinfo table that belongs to the same function. This
3870 happens with COFF debug info, which does not seem to have an
3871 entry in lineinfo table for the code after the prologue which has
3872 no direct relation to source. For example, this was found to be
3873 the case with the DJGPP target using "gcc -gcoff" when the
3874 compiler inserted code after the prologue to make sure the stack
3875 is aligned. */
3876 if (!force_skip && sym && start_sal.symtab == NULL)
3877 {
3878 pc = skip_prologue_using_lineinfo (pc, sym->symtab ());
3879 /* Recalculate the line number. */
3880 start_sal = find_pc_sect_line (pc, section, 0);
3881 }
3882
3883 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3884 forward SAL to the end of the prologue. */
3885 if (sal->pc >= pc)
3886 return;
3887
3888 sal->pc = pc;
3889 sal->section = section;
3890 sal->symtab = start_sal.symtab;
3891 sal->line = start_sal.line;
3892 sal->end = start_sal.end;
3893
3894 /* Check if we are now inside an inlined function. If we can,
3895 use the call site of the function instead. */
3896 b = block_for_pc_sect (sal->pc, sal->section);
3897 function_block = NULL;
3898 while (b != NULL)
3899 {
3900 if (b->function () != NULL && block_inlined_p (b))
3901 function_block = b;
3902 else if (b->function () != NULL)
3903 break;
3904 b = b->superblock ();
3905 }
3906 if (function_block != NULL
3907 && function_block->function ()->line () != 0)
3908 {
3909 sal->line = function_block->function ()->line ();
3910 sal->symtab = function_block->function ()->symtab ();
3911 }
3912 }
3913
3914 /* Given PC at the function's start address, attempt to find the
3915 prologue end using SAL information. Return zero if the skip fails.
3916
3917 A non-optimized prologue traditionally has one SAL for the function
3918 and a second for the function body. A single line function has
3919 them both pointing at the same line.
3920
3921 An optimized prologue is similar but the prologue may contain
3922 instructions (SALs) from the instruction body. Need to skip those
3923 while not getting into the function body.
3924
3925 The functions end point and an increasing SAL line are used as
3926 indicators of the prologue's endpoint.
3927
3928 This code is based on the function refine_prologue_limit
3929 (found in ia64). */
3930
3931 CORE_ADDR
3932 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3933 {
3934 struct symtab_and_line prologue_sal;
3935 CORE_ADDR start_pc;
3936 CORE_ADDR end_pc;
3937 const struct block *bl;
3938
3939 /* Get an initial range for the function. */
3940 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3941 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3942
3943 prologue_sal = find_pc_line (start_pc, 0);
3944 if (prologue_sal.line != 0)
3945 {
3946 /* For languages other than assembly, treat two consecutive line
3947 entries at the same address as a zero-instruction prologue.
3948 The GNU assembler emits separate line notes for each instruction
3949 in a multi-instruction macro, but compilers generally will not
3950 do this. */
3951 if (prologue_sal.symtab->language () != language_asm)
3952 {
3953 struct linetable *linetable = prologue_sal.symtab->linetable ();
3954 int idx = 0;
3955
3956 /* Skip any earlier lines, and any end-of-sequence marker
3957 from a previous function. */
3958 while (linetable->item[idx].pc != prologue_sal.pc
3959 || linetable->item[idx].line == 0)
3960 idx++;
3961
3962 if (idx+1 < linetable->nitems
3963 && linetable->item[idx+1].line != 0
3964 && linetable->item[idx+1].pc == start_pc)
3965 return start_pc;
3966 }
3967
3968 /* If there is only one sal that covers the entire function,
3969 then it is probably a single line function, like
3970 "foo(){}". */
3971 if (prologue_sal.end >= end_pc)
3972 return 0;
3973
3974 while (prologue_sal.end < end_pc)
3975 {
3976 struct symtab_and_line sal;
3977
3978 sal = find_pc_line (prologue_sal.end, 0);
3979 if (sal.line == 0)
3980 break;
3981 /* Assume that a consecutive SAL for the same (or larger)
3982 line mark the prologue -> body transition. */
3983 if (sal.line >= prologue_sal.line)
3984 break;
3985 /* Likewise if we are in a different symtab altogether
3986 (e.g. within a file included via #include).  */
3987 if (sal.symtab != prologue_sal.symtab)
3988 break;
3989
3990 /* The line number is smaller. Check that it's from the
3991 same function, not something inlined. If it's inlined,
3992 then there is no point comparing the line numbers. */
3993 bl = block_for_pc (prologue_sal.end);
3994 while (bl)
3995 {
3996 if (block_inlined_p (bl))
3997 break;
3998 if (bl->function ())
3999 {
4000 bl = NULL;
4001 break;
4002 }
4003 bl = bl->superblock ();
4004 }
4005 if (bl != NULL)
4006 break;
4007
4008 /* The case in which compiler's optimizer/scheduler has
4009 moved instructions into the prologue. We look ahead in
4010 the function looking for address ranges whose
4011 corresponding line number is less the first one that we
4012 found for the function. This is more conservative then
4013 refine_prologue_limit which scans a large number of SALs
4014 looking for any in the prologue. */
4015 prologue_sal = sal;
4016 }
4017 }
4018
4019 if (prologue_sal.end < end_pc)
4020 /* Return the end of this line, or zero if we could not find a
4021 line. */
4022 return prologue_sal.end;
4023 else
4024 /* Don't return END_PC, which is past the end of the function. */
4025 return prologue_sal.pc;
4026 }
4027
4028 /* See symtab.h. */
4029
4030 symbol *
4031 find_function_alias_target (bound_minimal_symbol msymbol)
4032 {
4033 CORE_ADDR func_addr;
4034 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4035 return NULL;
4036
4037 symbol *sym = find_pc_function (func_addr);
4038 if (sym != NULL
4039 && sym->aclass () == LOC_BLOCK
4040 && sym->value_block ()->entry_pc () == func_addr)
4041 return sym;
4042
4043 return NULL;
4044 }
4045
4046 \f
4047 /* If P is of the form "operator[ \t]+..." where `...' is
4048 some legitimate operator text, return a pointer to the
4049 beginning of the substring of the operator text.
4050 Otherwise, return "". */
4051
4052 static const char *
4053 operator_chars (const char *p, const char **end)
4054 {
4055 *end = "";
4056 if (!startswith (p, CP_OPERATOR_STR))
4057 return *end;
4058 p += CP_OPERATOR_LEN;
4059
4060 /* Don't get faked out by `operator' being part of a longer
4061 identifier. */
4062 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4063 return *end;
4064
4065 /* Allow some whitespace between `operator' and the operator symbol. */
4066 while (*p == ' ' || *p == '\t')
4067 p++;
4068
4069 /* Recognize 'operator TYPENAME'. */
4070
4071 if (isalpha (*p) || *p == '_' || *p == '$')
4072 {
4073 const char *q = p + 1;
4074
4075 while (isalnum (*q) || *q == '_' || *q == '$')
4076 q++;
4077 *end = q;
4078 return p;
4079 }
4080
4081 while (*p)
4082 switch (*p)
4083 {
4084 case '\\': /* regexp quoting */
4085 if (p[1] == '*')
4086 {
4087 if (p[2] == '=') /* 'operator\*=' */
4088 *end = p + 3;
4089 else /* 'operator\*' */
4090 *end = p + 2;
4091 return p;
4092 }
4093 else if (p[1] == '[')
4094 {
4095 if (p[2] == ']')
4096 error (_("mismatched quoting on brackets, "
4097 "try 'operator\\[\\]'"));
4098 else if (p[2] == '\\' && p[3] == ']')
4099 {
4100 *end = p + 4; /* 'operator\[\]' */
4101 return p;
4102 }
4103 else
4104 error (_("nothing is allowed between '[' and ']'"));
4105 }
4106 else
4107 {
4108 /* Gratuitous quote: skip it and move on. */
4109 p++;
4110 continue;
4111 }
4112 break;
4113 case '!':
4114 case '=':
4115 case '*':
4116 case '/':
4117 case '%':
4118 case '^':
4119 if (p[1] == '=')
4120 *end = p + 2;
4121 else
4122 *end = p + 1;
4123 return p;
4124 case '<':
4125 case '>':
4126 case '+':
4127 case '-':
4128 case '&':
4129 case '|':
4130 if (p[0] == '-' && p[1] == '>')
4131 {
4132 /* Struct pointer member operator 'operator->'. */
4133 if (p[2] == '*')
4134 {
4135 *end = p + 3; /* 'operator->*' */
4136 return p;
4137 }
4138 else if (p[2] == '\\')
4139 {
4140 *end = p + 4; /* Hopefully 'operator->\*' */
4141 return p;
4142 }
4143 else
4144 {
4145 *end = p + 2; /* 'operator->' */
4146 return p;
4147 }
4148 }
4149 if (p[1] == '=' || p[1] == p[0])
4150 *end = p + 2;
4151 else
4152 *end = p + 1;
4153 return p;
4154 case '~':
4155 case ',':
4156 *end = p + 1;
4157 return p;
4158 case '(':
4159 if (p[1] != ')')
4160 error (_("`operator ()' must be specified "
4161 "without whitespace in `()'"));
4162 *end = p + 2;
4163 return p;
4164 case '?':
4165 if (p[1] != ':')
4166 error (_("`operator ?:' must be specified "
4167 "without whitespace in `?:'"));
4168 *end = p + 2;
4169 return p;
4170 case '[':
4171 if (p[1] != ']')
4172 error (_("`operator []' must be specified "
4173 "without whitespace in `[]'"));
4174 *end = p + 2;
4175 return p;
4176 default:
4177 error (_("`operator %s' not supported"), p);
4178 break;
4179 }
4180
4181 *end = "";
4182 return *end;
4183 }
4184 \f
4185
4186 /* See class declaration. */
4187
4188 info_sources_filter::info_sources_filter (match_on match_type,
4189 const char *regexp)
4190 : m_match_type (match_type),
4191 m_regexp (regexp)
4192 {
4193 /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */
4194 if (m_regexp != nullptr && *m_regexp != '\0')
4195 {
4196 gdb_assert (m_regexp != nullptr);
4197
4198 int cflags = REG_NOSUB;
4199 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4200 cflags |= REG_ICASE;
4201 #endif
4202 m_c_regexp.emplace (m_regexp, cflags, _("Invalid regexp"));
4203 }
4204 }
4205
4206 /* See class declaration. */
4207
4208 bool
4209 info_sources_filter::matches (const char *fullname) const
4210 {
4211 /* Does it match regexp? */
4212 if (m_c_regexp.has_value ())
4213 {
4214 const char *to_match;
4215 std::string dirname;
4216
4217 switch (m_match_type)
4218 {
4219 case match_on::DIRNAME:
4220 dirname = ldirname (fullname);
4221 to_match = dirname.c_str ();
4222 break;
4223 case match_on::BASENAME:
4224 to_match = lbasename (fullname);
4225 break;
4226 case match_on::FULLNAME:
4227 to_match = fullname;
4228 break;
4229 default:
4230 gdb_assert_not_reached ("bad m_match_type");
4231 }
4232
4233 if (m_c_regexp->exec (to_match, 0, NULL, 0) != 0)
4234 return false;
4235 }
4236
4237 return true;
4238 }
4239
4240 /* Data structure to maintain the state used for printing the results of
4241 the 'info sources' command. */
4242
4243 struct output_source_filename_data
4244 {
4245 /* Create an object for displaying the results of the 'info sources'
4246 command to UIOUT. FILTER must remain valid and unchanged for the
4247 lifetime of this object as this object retains a reference to FILTER. */
4248 output_source_filename_data (struct ui_out *uiout,
4249 const info_sources_filter &filter)
4250 : m_filter (filter),
4251 m_uiout (uiout)
4252 { /* Nothing. */ }
4253
4254 DISABLE_COPY_AND_ASSIGN (output_source_filename_data);
4255
4256 /* Reset enough state of this object so we can match against a new set of
4257 files. The existing regular expression is retained though. */
4258 void reset_output ()
4259 {
4260 m_first = true;
4261 m_filename_seen_cache.clear ();
4262 }
4263
4264 /* Worker for sources_info, outputs the file name formatted for either
4265 cli or mi (based on the current_uiout). In cli mode displays
4266 FULLNAME with a comma separating this name from any previously
4267 printed name (line breaks are added at the comma). In MI mode
4268 outputs a tuple containing DISP_NAME (the files display name),
4269 FULLNAME, and EXPANDED_P (true when this file is from a fully
4270 expanded symtab, otherwise false). */
4271 void output (const char *disp_name, const char *fullname, bool expanded_p);
4272
4273 /* An overload suitable for use as a callback to
4274 quick_symbol_functions::map_symbol_filenames. */
4275 void operator() (const char *filename, const char *fullname)
4276 {
4277 /* The false here indicates that this file is from an unexpanded
4278 symtab. */
4279 output (filename, fullname, false);
4280 }
4281
4282 /* Return true if at least one filename has been printed (after a call to
4283 output) since either this object was created, or the last call to
4284 reset_output. */
4285 bool printed_filename_p () const
4286 {
4287 return !m_first;
4288 }
4289
4290 private:
4291
4292 /* Flag of whether we're printing the first one. */
4293 bool m_first = true;
4294
4295 /* Cache of what we've seen so far. */
4296 filename_seen_cache m_filename_seen_cache;
4297
4298 /* How source filename should be filtered. */
4299 const info_sources_filter &m_filter;
4300
4301 /* The object to which output is sent. */
4302 struct ui_out *m_uiout;
4303 };
4304
4305 /* See comment in class declaration above. */
4306
4307 void
4308 output_source_filename_data::output (const char *disp_name,
4309 const char *fullname,
4310 bool expanded_p)
4311 {
4312 /* Since a single source file can result in several partial symbol
4313 tables, we need to avoid printing it more than once. Note: if
4314 some of the psymtabs are read in and some are not, it gets
4315 printed both under "Source files for which symbols have been
4316 read" and "Source files for which symbols will be read in on
4317 demand". I consider this a reasonable way to deal with the
4318 situation. I'm not sure whether this can also happen for
4319 symtabs; it doesn't hurt to check. */
4320
4321 /* Was NAME already seen? If so, then don't print it again. */
4322 if (m_filename_seen_cache.seen (fullname))
4323 return;
4324
4325 /* If the filter rejects this file then don't print it. */
4326 if (!m_filter.matches (fullname))
4327 return;
4328
4329 ui_out_emit_tuple ui_emitter (m_uiout, nullptr);
4330
4331 /* Print it and reset *FIRST. */
4332 if (!m_first)
4333 m_uiout->text (", ");
4334 m_first = false;
4335
4336 m_uiout->wrap_hint (0);
4337 if (m_uiout->is_mi_like_p ())
4338 {
4339 m_uiout->field_string ("file", disp_name, file_name_style.style ());
4340 if (fullname != nullptr)
4341 m_uiout->field_string ("fullname", fullname,
4342 file_name_style.style ());
4343 m_uiout->field_string ("debug-fully-read",
4344 (expanded_p ? "true" : "false"));
4345 }
4346 else
4347 {
4348 if (fullname == nullptr)
4349 fullname = disp_name;
4350 m_uiout->field_string ("fullname", fullname,
4351 file_name_style.style ());
4352 }
4353 }
4354
4355 /* For the 'info sources' command, what part of the file names should we be
4356 matching the user supplied regular expression against? */
4357
4358 struct filename_partial_match_opts
4359 {
4360 /* Only match the directory name part. */
4361 bool dirname = false;
4362
4363 /* Only match the basename part. */
4364 bool basename = false;
4365 };
4366
4367 using isrc_flag_option_def
4368 = gdb::option::flag_option_def<filename_partial_match_opts>;
4369
4370 static const gdb::option::option_def info_sources_option_defs[] = {
4371
4372 isrc_flag_option_def {
4373 "dirname",
4374 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4375 N_("Show only the files having a dirname matching REGEXP."),
4376 },
4377
4378 isrc_flag_option_def {
4379 "basename",
4380 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4381 N_("Show only the files having a basename matching REGEXP."),
4382 },
4383
4384 };
4385
4386 /* Create an option_def_group for the "info sources" options, with
4387 ISRC_OPTS as context. */
4388
4389 static inline gdb::option::option_def_group
4390 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4391 {
4392 return {{info_sources_option_defs}, isrc_opts};
4393 }
4394
4395 /* Completer for "info sources". */
4396
4397 static void
4398 info_sources_command_completer (cmd_list_element *ignore,
4399 completion_tracker &tracker,
4400 const char *text, const char *word)
4401 {
4402 const auto group = make_info_sources_options_def_group (nullptr);
4403 if (gdb::option::complete_options
4404 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4405 return;
4406 }
4407
4408 /* See symtab.h. */
4409
4410 void
4411 info_sources_worker (struct ui_out *uiout,
4412 bool group_by_objfile,
4413 const info_sources_filter &filter)
4414 {
4415 output_source_filename_data data (uiout, filter);
4416
4417 ui_out_emit_list results_emitter (uiout, "files");
4418 gdb::optional<ui_out_emit_tuple> output_tuple;
4419 gdb::optional<ui_out_emit_list> sources_list;
4420
4421 gdb_assert (group_by_objfile || uiout->is_mi_like_p ());
4422
4423 for (objfile *objfile : current_program_space->objfiles ())
4424 {
4425 if (group_by_objfile)
4426 {
4427 output_tuple.emplace (uiout, nullptr);
4428 uiout->field_string ("filename", objfile_name (objfile),
4429 file_name_style.style ());
4430 uiout->text (":\n");
4431 bool debug_fully_readin = !objfile->has_unexpanded_symtabs ();
4432 if (uiout->is_mi_like_p ())
4433 {
4434 const char *debug_info_state;
4435 if (objfile_has_symbols (objfile))
4436 {
4437 if (debug_fully_readin)
4438 debug_info_state = "fully-read";
4439 else
4440 debug_info_state = "partially-read";
4441 }
4442 else
4443 debug_info_state = "none";
4444 current_uiout->field_string ("debug-info", debug_info_state);
4445 }
4446 else
4447 {
4448 if (!debug_fully_readin)
4449 uiout->text ("(Full debug information has not yet been read "
4450 "for this file.)\n");
4451 if (!objfile_has_symbols (objfile))
4452 uiout->text ("(Objfile has no debug information.)\n");
4453 uiout->text ("\n");
4454 }
4455 sources_list.emplace (uiout, "sources");
4456 }
4457
4458 for (compunit_symtab *cu : objfile->compunits ())
4459 {
4460 for (symtab *s : cu->filetabs ())
4461 {
4462 const char *file = symtab_to_filename_for_display (s);
4463 const char *fullname = symtab_to_fullname (s);
4464 data.output (file, fullname, true);
4465 }
4466 }
4467
4468 if (group_by_objfile)
4469 {
4470 objfile->map_symbol_filenames (data, true /* need_fullname */);
4471 if (data.printed_filename_p ())
4472 uiout->text ("\n\n");
4473 data.reset_output ();
4474 sources_list.reset ();
4475 output_tuple.reset ();
4476 }
4477 }
4478
4479 if (!group_by_objfile)
4480 {
4481 data.reset_output ();
4482 map_symbol_filenames (data, true /*need_fullname*/);
4483 }
4484 }
4485
4486 /* Implement the 'info sources' command. */
4487
4488 static void
4489 info_sources_command (const char *args, int from_tty)
4490 {
4491 if (!have_full_symbols () && !have_partial_symbols ())
4492 error (_("No symbol table is loaded. Use the \"file\" command."));
4493
4494 filename_partial_match_opts match_opts;
4495 auto group = make_info_sources_options_def_group (&match_opts);
4496 gdb::option::process_options
4497 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4498
4499 if (match_opts.dirname && match_opts.basename)
4500 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4501
4502 const char *regex = nullptr;
4503 if (args != NULL && *args != '\000')
4504 regex = args;
4505
4506 if ((match_opts.dirname || match_opts.basename) && regex == nullptr)
4507 error (_("Missing REGEXP for 'info sources'."));
4508
4509 info_sources_filter::match_on match_type;
4510 if (match_opts.dirname)
4511 match_type = info_sources_filter::match_on::DIRNAME;
4512 else if (match_opts.basename)
4513 match_type = info_sources_filter::match_on::BASENAME;
4514 else
4515 match_type = info_sources_filter::match_on::FULLNAME;
4516
4517 info_sources_filter filter (match_type, regex);
4518 info_sources_worker (current_uiout, true, filter);
4519 }
4520
4521 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4522 true compare only lbasename of FILENAMES. */
4523
4524 static bool
4525 file_matches (const char *file, const std::vector<const char *> &filenames,
4526 bool basenames)
4527 {
4528 if (filenames.empty ())
4529 return true;
4530
4531 for (const char *name : filenames)
4532 {
4533 name = (basenames ? lbasename (name) : name);
4534 if (compare_filenames_for_search (file, name))
4535 return true;
4536 }
4537
4538 return false;
4539 }
4540
4541 /* Helper function for std::sort on symbol_search objects. Can only sort
4542 symbols, not minimal symbols. */
4543
4544 int
4545 symbol_search::compare_search_syms (const symbol_search &sym_a,
4546 const symbol_search &sym_b)
4547 {
4548 int c;
4549
4550 c = FILENAME_CMP (sym_a.symbol->symtab ()->filename,
4551 sym_b.symbol->symtab ()->filename);
4552 if (c != 0)
4553 return c;
4554
4555 if (sym_a.block != sym_b.block)
4556 return sym_a.block - sym_b.block;
4557
4558 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4559 }
4560
4561 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4562 If SYM has no symbol_type or symbol_name, returns false. */
4563
4564 bool
4565 treg_matches_sym_type_name (const compiled_regex &treg,
4566 const struct symbol *sym)
4567 {
4568 struct type *sym_type;
4569 std::string printed_sym_type_name;
4570
4571 symbol_lookup_debug_printf_v ("treg_matches_sym_type_name, sym %s",
4572 sym->natural_name ());
4573
4574 sym_type = sym->type ();
4575 if (sym_type == NULL)
4576 return false;
4577
4578 {
4579 scoped_switch_to_sym_language_if_auto l (sym);
4580
4581 printed_sym_type_name = type_to_string (sym_type);
4582 }
4583
4584 symbol_lookup_debug_printf_v ("sym_type_name %s",
4585 printed_sym_type_name.c_str ());
4586
4587 if (printed_sym_type_name.empty ())
4588 return false;
4589
4590 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4591 }
4592
4593 /* See symtab.h. */
4594
4595 bool
4596 global_symbol_searcher::is_suitable_msymbol
4597 (const enum search_domain kind, const minimal_symbol *msymbol)
4598 {
4599 switch (msymbol->type ())
4600 {
4601 case mst_data:
4602 case mst_bss:
4603 case mst_file_data:
4604 case mst_file_bss:
4605 return kind == VARIABLES_DOMAIN;
4606 case mst_text:
4607 case mst_file_text:
4608 case mst_solib_trampoline:
4609 case mst_text_gnu_ifunc:
4610 return kind == FUNCTIONS_DOMAIN;
4611 default:
4612 return false;
4613 }
4614 }
4615
4616 /* See symtab.h. */
4617
4618 bool
4619 global_symbol_searcher::expand_symtabs
4620 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4621 {
4622 enum search_domain kind = m_kind;
4623 bool found_msymbol = false;
4624
4625 auto do_file_match = [&] (const char *filename, bool basenames)
4626 {
4627 return file_matches (filename, filenames, basenames);
4628 };
4629 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher = nullptr;
4630 if (!filenames.empty ())
4631 file_matcher = do_file_match;
4632
4633 objfile->expand_symtabs_matching
4634 (file_matcher,
4635 &lookup_name_info::match_any (),
4636 [&] (const char *symname)
4637 {
4638 return (!preg.has_value ()
4639 || preg->exec (symname, 0, NULL, 0) == 0);
4640 },
4641 NULL,
4642 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
4643 UNDEF_DOMAIN,
4644 kind);
4645
4646 /* Here, we search through the minimal symbol tables for functions and
4647 variables that match, and force their symbols to be read. This is in
4648 particular necessary for demangled variable names, which are no longer
4649 put into the partial symbol tables. The symbol will then be found
4650 during the scan of symtabs later.
4651
4652 For functions, find_pc_symtab should succeed if we have debug info for
4653 the function, for variables we have to call
4654 lookup_symbol_in_objfile_from_linkage_name to determine if the
4655 variable has debug info. If the lookup fails, set found_msymbol so
4656 that we will rescan to print any matching symbols without debug info.
4657 We only search the objfile the msymbol came from, we no longer search
4658 all objfiles. In large programs (1000s of shared libs) searching all
4659 objfiles is not worth the pain. */
4660 if (filenames.empty ()
4661 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4662 {
4663 for (minimal_symbol *msymbol : objfile->msymbols ())
4664 {
4665 QUIT;
4666
4667 if (msymbol->created_by_gdb)
4668 continue;
4669
4670 if (is_suitable_msymbol (kind, msymbol))
4671 {
4672 if (!preg.has_value ()
4673 || preg->exec (msymbol->natural_name (), 0,
4674 NULL, 0) == 0)
4675 {
4676 /* An important side-effect of these lookup functions is
4677 to expand the symbol table if msymbol is found, later
4678 in the process we will add matching symbols or
4679 msymbols to the results list, and that requires that
4680 the symbols tables are expanded. */
4681 if (kind == FUNCTIONS_DOMAIN
4682 ? (find_pc_compunit_symtab
4683 (msymbol->value_address (objfile)) == NULL)
4684 : (lookup_symbol_in_objfile_from_linkage_name
4685 (objfile, msymbol->linkage_name (),
4686 VAR_DOMAIN)
4687 .symbol == NULL))
4688 found_msymbol = true;
4689 }
4690 }
4691 }
4692 }
4693
4694 return found_msymbol;
4695 }
4696
4697 /* See symtab.h. */
4698
4699 bool
4700 global_symbol_searcher::add_matching_symbols
4701 (objfile *objfile,
4702 const gdb::optional<compiled_regex> &preg,
4703 const gdb::optional<compiled_regex> &treg,
4704 std::set<symbol_search> *result_set) const
4705 {
4706 enum search_domain kind = m_kind;
4707
4708 /* Add matching symbols (if not already present). */
4709 for (compunit_symtab *cust : objfile->compunits ())
4710 {
4711 const struct blockvector *bv = cust->blockvector ();
4712
4713 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4714 {
4715 struct block_iterator iter;
4716 struct symbol *sym;
4717 const struct block *b = bv->block (block);
4718
4719 ALL_BLOCK_SYMBOLS (b, iter, sym)
4720 {
4721 struct symtab *real_symtab = sym->symtab ();
4722
4723 QUIT;
4724
4725 /* Check first sole REAL_SYMTAB->FILENAME. It does
4726 not need to be a substring of symtab_to_fullname as
4727 it may contain "./" etc. */
4728 if ((file_matches (real_symtab->filename, filenames, false)
4729 || ((basenames_may_differ
4730 || file_matches (lbasename (real_symtab->filename),
4731 filenames, true))
4732 && file_matches (symtab_to_fullname (real_symtab),
4733 filenames, false)))
4734 && ((!preg.has_value ()
4735 || preg->exec (sym->natural_name (), 0,
4736 NULL, 0) == 0)
4737 && ((kind == VARIABLES_DOMAIN
4738 && sym->aclass () != LOC_TYPEDEF
4739 && sym->aclass () != LOC_UNRESOLVED
4740 && sym->aclass () != LOC_BLOCK
4741 /* LOC_CONST can be used for more than
4742 just enums, e.g., c++ static const
4743 members. We only want to skip enums
4744 here. */
4745 && !(sym->aclass () == LOC_CONST
4746 && (sym->type ()->code ()
4747 == TYPE_CODE_ENUM))
4748 && (!treg.has_value ()
4749 || treg_matches_sym_type_name (*treg, sym)))
4750 || (kind == FUNCTIONS_DOMAIN
4751 && sym->aclass () == LOC_BLOCK
4752 && (!treg.has_value ()
4753 || treg_matches_sym_type_name (*treg,
4754 sym)))
4755 || (kind == TYPES_DOMAIN
4756 && sym->aclass () == LOC_TYPEDEF
4757 && sym->domain () != MODULE_DOMAIN)
4758 || (kind == MODULES_DOMAIN
4759 && sym->domain () == MODULE_DOMAIN
4760 && sym->line () != 0))))
4761 {
4762 if (result_set->size () < m_max_search_results)
4763 {
4764 /* Match, insert if not already in the results. */
4765 symbol_search ss (block, sym);
4766 if (result_set->find (ss) == result_set->end ())
4767 result_set->insert (ss);
4768 }
4769 else
4770 return false;
4771 }
4772 }
4773 }
4774 }
4775
4776 return true;
4777 }
4778
4779 /* See symtab.h. */
4780
4781 bool
4782 global_symbol_searcher::add_matching_msymbols
4783 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4784 std::vector<symbol_search> *results) const
4785 {
4786 enum search_domain kind = m_kind;
4787
4788 for (minimal_symbol *msymbol : objfile->msymbols ())
4789 {
4790 QUIT;
4791
4792 if (msymbol->created_by_gdb)
4793 continue;
4794
4795 if (is_suitable_msymbol (kind, msymbol))
4796 {
4797 if (!preg.has_value ()
4798 || preg->exec (msymbol->natural_name (), 0,
4799 NULL, 0) == 0)
4800 {
4801 /* For functions we can do a quick check of whether the
4802 symbol might be found via find_pc_symtab. */
4803 if (kind != FUNCTIONS_DOMAIN
4804 || (find_pc_compunit_symtab
4805 (msymbol->value_address (objfile)) == NULL))
4806 {
4807 if (lookup_symbol_in_objfile_from_linkage_name
4808 (objfile, msymbol->linkage_name (),
4809 VAR_DOMAIN).symbol == NULL)
4810 {
4811 /* Matching msymbol, add it to the results list. */
4812 if (results->size () < m_max_search_results)
4813 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4814 else
4815 return false;
4816 }
4817 }
4818 }
4819 }
4820 }
4821
4822 return true;
4823 }
4824
4825 /* See symtab.h. */
4826
4827 std::vector<symbol_search>
4828 global_symbol_searcher::search () const
4829 {
4830 gdb::optional<compiled_regex> preg;
4831 gdb::optional<compiled_regex> treg;
4832
4833 gdb_assert (m_kind != ALL_DOMAIN);
4834
4835 if (m_symbol_name_regexp != NULL)
4836 {
4837 const char *symbol_name_regexp = m_symbol_name_regexp;
4838 std::string symbol_name_regexp_holder;
4839
4840 /* Make sure spacing is right for C++ operators.
4841 This is just a courtesy to make the matching less sensitive
4842 to how many spaces the user leaves between 'operator'
4843 and <TYPENAME> or <OPERATOR>. */
4844 const char *opend;
4845 const char *opname = operator_chars (symbol_name_regexp, &opend);
4846
4847 if (*opname)
4848 {
4849 int fix = -1; /* -1 means ok; otherwise number of
4850 spaces needed. */
4851
4852 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4853 {
4854 /* There should 1 space between 'operator' and 'TYPENAME'. */
4855 if (opname[-1] != ' ' || opname[-2] == ' ')
4856 fix = 1;
4857 }
4858 else
4859 {
4860 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4861 if (opname[-1] == ' ')
4862 fix = 0;
4863 }
4864 /* If wrong number of spaces, fix it. */
4865 if (fix >= 0)
4866 {
4867 symbol_name_regexp_holder
4868 = string_printf ("operator%.*s%s", fix, " ", opname);
4869 symbol_name_regexp = symbol_name_regexp_holder.c_str ();
4870 }
4871 }
4872
4873 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4874 ? REG_ICASE : 0);
4875 preg.emplace (symbol_name_regexp, cflags,
4876 _("Invalid regexp"));
4877 }
4878
4879 if (m_symbol_type_regexp != NULL)
4880 {
4881 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4882 ? REG_ICASE : 0);
4883 treg.emplace (m_symbol_type_regexp, cflags,
4884 _("Invalid regexp"));
4885 }
4886
4887 bool found_msymbol = false;
4888 std::set<symbol_search> result_set;
4889 for (objfile *objfile : current_program_space->objfiles ())
4890 {
4891 /* Expand symtabs within objfile that possibly contain matching
4892 symbols. */
4893 found_msymbol |= expand_symtabs (objfile, preg);
4894
4895 /* Find matching symbols within OBJFILE and add them in to the
4896 RESULT_SET set. Use a set here so that we can easily detect
4897 duplicates as we go, and can therefore track how many unique
4898 matches we have found so far. */
4899 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4900 break;
4901 }
4902
4903 /* Convert the result set into a sorted result list, as std::set is
4904 defined to be sorted then no explicit call to std::sort is needed. */
4905 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4906
4907 /* If there are no debug symbols, then add matching minsyms. But if the
4908 user wants to see symbols matching a type regexp, then never give a
4909 minimal symbol, as we assume that a minimal symbol does not have a
4910 type. */
4911 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4912 && !m_exclude_minsyms
4913 && !treg.has_value ())
4914 {
4915 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4916 for (objfile *objfile : current_program_space->objfiles ())
4917 if (!add_matching_msymbols (objfile, preg, &result))
4918 break;
4919 }
4920
4921 return result;
4922 }
4923
4924 /* See symtab.h. */
4925
4926 std::string
4927 symbol_to_info_string (struct symbol *sym, int block,
4928 enum search_domain kind)
4929 {
4930 std::string str;
4931
4932 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4933
4934 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4935 str += "static ";
4936
4937 /* Typedef that is not a C++ class. */
4938 if (kind == TYPES_DOMAIN
4939 && sym->domain () != STRUCT_DOMAIN)
4940 {
4941 string_file tmp_stream;
4942
4943 /* FIXME: For C (and C++) we end up with a difference in output here
4944 between how a typedef is printed, and non-typedefs are printed.
4945 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4946 appear C-like, while TYPE_PRINT doesn't.
4947
4948 For the struct printing case below, things are worse, we force
4949 printing of the ";" in this function, which is going to be wrong
4950 for languages that don't require a ";" between statements. */
4951 if (sym->type ()->code () == TYPE_CODE_TYPEDEF)
4952 typedef_print (sym->type (), sym, &tmp_stream);
4953 else
4954 type_print (sym->type (), "", &tmp_stream, -1);
4955 str += tmp_stream.string ();
4956 }
4957 /* variable, func, or typedef-that-is-c++-class. */
4958 else if (kind < TYPES_DOMAIN
4959 || (kind == TYPES_DOMAIN
4960 && sym->domain () == STRUCT_DOMAIN))
4961 {
4962 string_file tmp_stream;
4963
4964 type_print (sym->type (),
4965 (sym->aclass () == LOC_TYPEDEF
4966 ? "" : sym->print_name ()),
4967 &tmp_stream, 0);
4968
4969 str += tmp_stream.string ();
4970 str += ";";
4971 }
4972 /* Printing of modules is currently done here, maybe at some future
4973 point we might want a language specific method to print the module
4974 symbol so that we can customise the output more. */
4975 else if (kind == MODULES_DOMAIN)
4976 str += sym->print_name ();
4977
4978 return str;
4979 }
4980
4981 /* Helper function for symbol info commands, for example 'info functions',
4982 'info variables', etc. KIND is the kind of symbol we searched for, and
4983 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4984 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4985 print file and line number information for the symbol as well. Skip
4986 printing the filename if it matches LAST. */
4987
4988 static void
4989 print_symbol_info (enum search_domain kind,
4990 struct symbol *sym,
4991 int block, const char *last)
4992 {
4993 scoped_switch_to_sym_language_if_auto l (sym);
4994 struct symtab *s = sym->symtab ();
4995
4996 if (last != NULL)
4997 {
4998 const char *s_filename = symtab_to_filename_for_display (s);
4999
5000 if (filename_cmp (last, s_filename) != 0)
5001 {
5002 gdb_printf (_("\nFile %ps:\n"),
5003 styled_string (file_name_style.style (),
5004 s_filename));
5005 }
5006
5007 if (sym->line () != 0)
5008 gdb_printf ("%d:\t", sym->line ());
5009 else
5010 gdb_puts ("\t");
5011 }
5012
5013 std::string str = symbol_to_info_string (sym, block, kind);
5014 gdb_printf ("%s\n", str.c_str ());
5015 }
5016
5017 /* This help function for symtab_symbol_info() prints information
5018 for non-debugging symbols to gdb_stdout. */
5019
5020 static void
5021 print_msymbol_info (struct bound_minimal_symbol msymbol)
5022 {
5023 struct gdbarch *gdbarch = msymbol.objfile->arch ();
5024 char *tmp;
5025
5026 if (gdbarch_addr_bit (gdbarch) <= 32)
5027 tmp = hex_string_custom (msymbol.value_address ()
5028 & (CORE_ADDR) 0xffffffff,
5029 8);
5030 else
5031 tmp = hex_string_custom (msymbol.value_address (),
5032 16);
5033
5034 ui_file_style sym_style = (msymbol.minsym->text_p ()
5035 ? function_name_style.style ()
5036 : ui_file_style ());
5037
5038 gdb_printf (_("%ps %ps\n"),
5039 styled_string (address_style.style (), tmp),
5040 styled_string (sym_style, msymbol.minsym->print_name ()));
5041 }
5042
5043 /* This is the guts of the commands "info functions", "info types", and
5044 "info variables". It calls search_symbols to find all matches and then
5045 print_[m]symbol_info to print out some useful information about the
5046 matches. */
5047
5048 static void
5049 symtab_symbol_info (bool quiet, bool exclude_minsyms,
5050 const char *regexp, enum search_domain kind,
5051 const char *t_regexp, int from_tty)
5052 {
5053 static const char * const classnames[] =
5054 {"variable", "function", "type", "module"};
5055 const char *last_filename = "";
5056 int first = 1;
5057
5058 gdb_assert (kind != ALL_DOMAIN);
5059
5060 if (regexp != nullptr && *regexp == '\0')
5061 regexp = nullptr;
5062
5063 global_symbol_searcher spec (kind, regexp);
5064 spec.set_symbol_type_regexp (t_regexp);
5065 spec.set_exclude_minsyms (exclude_minsyms);
5066 std::vector<symbol_search> symbols = spec.search ();
5067
5068 if (!quiet)
5069 {
5070 if (regexp != NULL)
5071 {
5072 if (t_regexp != NULL)
5073 gdb_printf
5074 (_("All %ss matching regular expression \"%s\""
5075 " with type matching regular expression \"%s\":\n"),
5076 classnames[kind], regexp, t_regexp);
5077 else
5078 gdb_printf (_("All %ss matching regular expression \"%s\":\n"),
5079 classnames[kind], regexp);
5080 }
5081 else
5082 {
5083 if (t_regexp != NULL)
5084 gdb_printf
5085 (_("All defined %ss"
5086 " with type matching regular expression \"%s\" :\n"),
5087 classnames[kind], t_regexp);
5088 else
5089 gdb_printf (_("All defined %ss:\n"), classnames[kind]);
5090 }
5091 }
5092
5093 for (const symbol_search &p : symbols)
5094 {
5095 QUIT;
5096
5097 if (p.msymbol.minsym != NULL)
5098 {
5099 if (first)
5100 {
5101 if (!quiet)
5102 gdb_printf (_("\nNon-debugging symbols:\n"));
5103 first = 0;
5104 }
5105 print_msymbol_info (p.msymbol);
5106 }
5107 else
5108 {
5109 print_symbol_info (kind,
5110 p.symbol,
5111 p.block,
5112 last_filename);
5113 last_filename
5114 = symtab_to_filename_for_display (p.symbol->symtab ());
5115 }
5116 }
5117 }
5118
5119 /* Structure to hold the values of the options used by the 'info variables'
5120 and 'info functions' commands. These correspond to the -q, -t, and -n
5121 options. */
5122
5123 struct info_vars_funcs_options
5124 {
5125 bool quiet = false;
5126 bool exclude_minsyms = false;
5127 std::string type_regexp;
5128 };
5129
5130 /* The options used by the 'info variables' and 'info functions'
5131 commands. */
5132
5133 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5134 gdb::option::boolean_option_def<info_vars_funcs_options> {
5135 "q",
5136 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5137 nullptr, /* show_cmd_cb */
5138 nullptr /* set_doc */
5139 },
5140
5141 gdb::option::boolean_option_def<info_vars_funcs_options> {
5142 "n",
5143 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5144 nullptr, /* show_cmd_cb */
5145 nullptr /* set_doc */
5146 },
5147
5148 gdb::option::string_option_def<info_vars_funcs_options> {
5149 "t",
5150 [] (info_vars_funcs_options *opt) { return &opt->type_regexp; },
5151 nullptr, /* show_cmd_cb */
5152 nullptr /* set_doc */
5153 }
5154 };
5155
5156 /* Returns the option group used by 'info variables' and 'info
5157 functions'. */
5158
5159 static gdb::option::option_def_group
5160 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5161 {
5162 return {{info_vars_funcs_options_defs}, opts};
5163 }
5164
5165 /* Command completer for 'info variables' and 'info functions'. */
5166
5167 static void
5168 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5169 completion_tracker &tracker,
5170 const char *text, const char * /* word */)
5171 {
5172 const auto group
5173 = make_info_vars_funcs_options_def_group (nullptr);
5174 if (gdb::option::complete_options
5175 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5176 return;
5177
5178 const char *word = advance_to_expression_complete_word_point (tracker, text);
5179 symbol_completer (ignore, tracker, text, word);
5180 }
5181
5182 /* Implement the 'info variables' command. */
5183
5184 static void
5185 info_variables_command (const char *args, int from_tty)
5186 {
5187 info_vars_funcs_options opts;
5188 auto grp = make_info_vars_funcs_options_def_group (&opts);
5189 gdb::option::process_options
5190 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5191 if (args != nullptr && *args == '\0')
5192 args = nullptr;
5193
5194 symtab_symbol_info
5195 (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5196 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5197 from_tty);
5198 }
5199
5200 /* Implement the 'info functions' command. */
5201
5202 static void
5203 info_functions_command (const char *args, int from_tty)
5204 {
5205 info_vars_funcs_options opts;
5206
5207 auto grp = make_info_vars_funcs_options_def_group (&opts);
5208 gdb::option::process_options
5209 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5210 if (args != nullptr && *args == '\0')
5211 args = nullptr;
5212
5213 symtab_symbol_info
5214 (opts.quiet, opts.exclude_minsyms, args, FUNCTIONS_DOMAIN,
5215 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5216 from_tty);
5217 }
5218
5219 /* Holds the -q option for the 'info types' command. */
5220
5221 struct info_types_options
5222 {
5223 bool quiet = false;
5224 };
5225
5226 /* The options used by the 'info types' command. */
5227
5228 static const gdb::option::option_def info_types_options_defs[] = {
5229 gdb::option::boolean_option_def<info_types_options> {
5230 "q",
5231 [] (info_types_options *opt) { return &opt->quiet; },
5232 nullptr, /* show_cmd_cb */
5233 nullptr /* set_doc */
5234 }
5235 };
5236
5237 /* Returns the option group used by 'info types'. */
5238
5239 static gdb::option::option_def_group
5240 make_info_types_options_def_group (info_types_options *opts)
5241 {
5242 return {{info_types_options_defs}, opts};
5243 }
5244
5245 /* Implement the 'info types' command. */
5246
5247 static void
5248 info_types_command (const char *args, int from_tty)
5249 {
5250 info_types_options opts;
5251
5252 auto grp = make_info_types_options_def_group (&opts);
5253 gdb::option::process_options
5254 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5255 if (args != nullptr && *args == '\0')
5256 args = nullptr;
5257 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5258 }
5259
5260 /* Command completer for 'info types' command. */
5261
5262 static void
5263 info_types_command_completer (struct cmd_list_element *ignore,
5264 completion_tracker &tracker,
5265 const char *text, const char * /* word */)
5266 {
5267 const auto group
5268 = make_info_types_options_def_group (nullptr);
5269 if (gdb::option::complete_options
5270 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5271 return;
5272
5273 const char *word = advance_to_expression_complete_word_point (tracker, text);
5274 symbol_completer (ignore, tracker, text, word);
5275 }
5276
5277 /* Implement the 'info modules' command. */
5278
5279 static void
5280 info_modules_command (const char *args, int from_tty)
5281 {
5282 info_types_options opts;
5283
5284 auto grp = make_info_types_options_def_group (&opts);
5285 gdb::option::process_options
5286 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5287 if (args != nullptr && *args == '\0')
5288 args = nullptr;
5289 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5290 from_tty);
5291 }
5292
5293 static void
5294 rbreak_command (const char *regexp, int from_tty)
5295 {
5296 std::string string;
5297 const char *file_name = nullptr;
5298
5299 if (regexp != nullptr)
5300 {
5301 const char *colon = strchr (regexp, ':');
5302
5303 /* Ignore the colon if it is part of a Windows drive. */
5304 if (HAS_DRIVE_SPEC (regexp)
5305 && (regexp[2] == '/' || regexp[2] == '\\'))
5306 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5307
5308 if (colon && *(colon + 1) != ':')
5309 {
5310 int colon_index;
5311 char *local_name;
5312
5313 colon_index = colon - regexp;
5314 local_name = (char *) alloca (colon_index + 1);
5315 memcpy (local_name, regexp, colon_index);
5316 local_name[colon_index--] = 0;
5317 while (isspace (local_name[colon_index]))
5318 local_name[colon_index--] = 0;
5319 file_name = local_name;
5320 regexp = skip_spaces (colon + 1);
5321 }
5322 }
5323
5324 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5325 if (file_name != nullptr)
5326 spec.filenames.push_back (file_name);
5327 std::vector<symbol_search> symbols = spec.search ();
5328
5329 scoped_rbreak_breakpoints finalize;
5330 for (const symbol_search &p : symbols)
5331 {
5332 if (p.msymbol.minsym == NULL)
5333 {
5334 struct symtab *symtab = p.symbol->symtab ();
5335 const char *fullname = symtab_to_fullname (symtab);
5336
5337 string = string_printf ("%s:'%s'", fullname,
5338 p.symbol->linkage_name ());
5339 break_command (&string[0], from_tty);
5340 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5341 }
5342 else
5343 {
5344 string = string_printf ("'%s'",
5345 p.msymbol.minsym->linkage_name ());
5346
5347 break_command (&string[0], from_tty);
5348 gdb_printf ("<function, no debug info> %s;\n",
5349 p.msymbol.minsym->print_name ());
5350 }
5351 }
5352 }
5353 \f
5354
5355 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5356
5357 static int
5358 compare_symbol_name (const char *symbol_name, language symbol_language,
5359 const lookup_name_info &lookup_name,
5360 completion_match_result &match_res)
5361 {
5362 const language_defn *lang = language_def (symbol_language);
5363
5364 symbol_name_matcher_ftype *name_match
5365 = lang->get_symbol_name_matcher (lookup_name);
5366
5367 return name_match (symbol_name, lookup_name, &match_res);
5368 }
5369
5370 /* See symtab.h. */
5371
5372 bool
5373 completion_list_add_name (completion_tracker &tracker,
5374 language symbol_language,
5375 const char *symname,
5376 const lookup_name_info &lookup_name,
5377 const char *text, const char *word)
5378 {
5379 completion_match_result &match_res
5380 = tracker.reset_completion_match_result ();
5381
5382 /* Clip symbols that cannot match. */
5383 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5384 return false;
5385
5386 /* Refresh SYMNAME from the match string. It's potentially
5387 different depending on language. (E.g., on Ada, the match may be
5388 the encoded symbol name wrapped in "<>"). */
5389 symname = match_res.match.match ();
5390 gdb_assert (symname != NULL);
5391
5392 /* We have a match for a completion, so add SYMNAME to the current list
5393 of matches. Note that the name is moved to freshly malloc'd space. */
5394
5395 {
5396 gdb::unique_xmalloc_ptr<char> completion
5397 = make_completion_match_str (symname, text, word);
5398
5399 /* Here we pass the match-for-lcd object to add_completion. Some
5400 languages match the user text against substrings of symbol
5401 names in some cases. E.g., in C++, "b push_ba" completes to
5402 "std::vector::push_back", "std::string::push_back", etc., and
5403 in this case we want the completion lowest common denominator
5404 to be "push_back" instead of "std::". */
5405 tracker.add_completion (std::move (completion),
5406 &match_res.match_for_lcd, text, word);
5407 }
5408
5409 return true;
5410 }
5411
5412 /* completion_list_add_name wrapper for struct symbol. */
5413
5414 static void
5415 completion_list_add_symbol (completion_tracker &tracker,
5416 symbol *sym,
5417 const lookup_name_info &lookup_name,
5418 const char *text, const char *word)
5419 {
5420 if (!completion_list_add_name (tracker, sym->language (),
5421 sym->natural_name (),
5422 lookup_name, text, word))
5423 return;
5424
5425 /* C++ function symbols include the parameters within both the msymbol
5426 name and the symbol name. The problem is that the msymbol name will
5427 describe the parameters in the most basic way, with typedefs stripped
5428 out, while the symbol name will represent the types as they appear in
5429 the program. This means we will see duplicate entries in the
5430 completion tracker. The following converts the symbol name back to
5431 the msymbol name and removes the msymbol name from the completion
5432 tracker. */
5433 if (sym->language () == language_cplus
5434 && sym->domain () == VAR_DOMAIN
5435 && sym->aclass () == LOC_BLOCK)
5436 {
5437 /* The call to canonicalize returns the empty string if the input
5438 string is already in canonical form, thanks to this we don't
5439 remove the symbol we just added above. */
5440 gdb::unique_xmalloc_ptr<char> str
5441 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5442 if (str != nullptr)
5443 tracker.remove_completion (str.get ());
5444 }
5445 }
5446
5447 /* completion_list_add_name wrapper for struct minimal_symbol. */
5448
5449 static void
5450 completion_list_add_msymbol (completion_tracker &tracker,
5451 minimal_symbol *sym,
5452 const lookup_name_info &lookup_name,
5453 const char *text, const char *word)
5454 {
5455 completion_list_add_name (tracker, sym->language (),
5456 sym->natural_name (),
5457 lookup_name, text, word);
5458 }
5459
5460
5461 /* ObjC: In case we are completing on a selector, look as the msymbol
5462 again and feed all the selectors into the mill. */
5463
5464 static void
5465 completion_list_objc_symbol (completion_tracker &tracker,
5466 struct minimal_symbol *msymbol,
5467 const lookup_name_info &lookup_name,
5468 const char *text, const char *word)
5469 {
5470 static char *tmp = NULL;
5471 static unsigned int tmplen = 0;
5472
5473 const char *method, *category, *selector;
5474 char *tmp2 = NULL;
5475
5476 method = msymbol->natural_name ();
5477
5478 /* Is it a method? */
5479 if ((method[0] != '-') && (method[0] != '+'))
5480 return;
5481
5482 if (text[0] == '[')
5483 /* Complete on shortened method method. */
5484 completion_list_add_name (tracker, language_objc,
5485 method + 1,
5486 lookup_name,
5487 text, word);
5488
5489 while ((strlen (method) + 1) >= tmplen)
5490 {
5491 if (tmplen == 0)
5492 tmplen = 1024;
5493 else
5494 tmplen *= 2;
5495 tmp = (char *) xrealloc (tmp, tmplen);
5496 }
5497 selector = strchr (method, ' ');
5498 if (selector != NULL)
5499 selector++;
5500
5501 category = strchr (method, '(');
5502
5503 if ((category != NULL) && (selector != NULL))
5504 {
5505 memcpy (tmp, method, (category - method));
5506 tmp[category - method] = ' ';
5507 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5508 completion_list_add_name (tracker, language_objc, tmp,
5509 lookup_name, text, word);
5510 if (text[0] == '[')
5511 completion_list_add_name (tracker, language_objc, tmp + 1,
5512 lookup_name, text, word);
5513 }
5514
5515 if (selector != NULL)
5516 {
5517 /* Complete on selector only. */
5518 strcpy (tmp, selector);
5519 tmp2 = strchr (tmp, ']');
5520 if (tmp2 != NULL)
5521 *tmp2 = '\0';
5522
5523 completion_list_add_name (tracker, language_objc, tmp,
5524 lookup_name, text, word);
5525 }
5526 }
5527
5528 /* Break the non-quoted text based on the characters which are in
5529 symbols. FIXME: This should probably be language-specific. */
5530
5531 static const char *
5532 language_search_unquoted_string (const char *text, const char *p)
5533 {
5534 for (; p > text; --p)
5535 {
5536 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5537 continue;
5538 else
5539 {
5540 if ((current_language->la_language == language_objc))
5541 {
5542 if (p[-1] == ':') /* Might be part of a method name. */
5543 continue;
5544 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5545 p -= 2; /* Beginning of a method name. */
5546 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5547 { /* Might be part of a method name. */
5548 const char *t = p;
5549
5550 /* Seeing a ' ' or a '(' is not conclusive evidence
5551 that we are in the middle of a method name. However,
5552 finding "-[" or "+[" should be pretty un-ambiguous.
5553 Unfortunately we have to find it now to decide. */
5554
5555 while (t > text)
5556 if (isalnum (t[-1]) || t[-1] == '_' ||
5557 t[-1] == ' ' || t[-1] == ':' ||
5558 t[-1] == '(' || t[-1] == ')')
5559 --t;
5560 else
5561 break;
5562
5563 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5564 p = t - 2; /* Method name detected. */
5565 /* Else we leave with p unchanged. */
5566 }
5567 }
5568 break;
5569 }
5570 }
5571 return p;
5572 }
5573
5574 static void
5575 completion_list_add_fields (completion_tracker &tracker,
5576 struct symbol *sym,
5577 const lookup_name_info &lookup_name,
5578 const char *text, const char *word)
5579 {
5580 if (sym->aclass () == LOC_TYPEDEF)
5581 {
5582 struct type *t = sym->type ();
5583 enum type_code c = t->code ();
5584 int j;
5585
5586 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5587 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5588 if (t->field (j).name ())
5589 completion_list_add_name (tracker, sym->language (),
5590 t->field (j).name (),
5591 lookup_name, text, word);
5592 }
5593 }
5594
5595 /* See symtab.h. */
5596
5597 bool
5598 symbol_is_function_or_method (symbol *sym)
5599 {
5600 switch (sym->type ()->code ())
5601 {
5602 case TYPE_CODE_FUNC:
5603 case TYPE_CODE_METHOD:
5604 return true;
5605 default:
5606 return false;
5607 }
5608 }
5609
5610 /* See symtab.h. */
5611
5612 bool
5613 symbol_is_function_or_method (minimal_symbol *msymbol)
5614 {
5615 switch (msymbol->type ())
5616 {
5617 case mst_text:
5618 case mst_text_gnu_ifunc:
5619 case mst_solib_trampoline:
5620 case mst_file_text:
5621 return true;
5622 default:
5623 return false;
5624 }
5625 }
5626
5627 /* See symtab.h. */
5628
5629 bound_minimal_symbol
5630 find_gnu_ifunc (const symbol *sym)
5631 {
5632 if (sym->aclass () != LOC_BLOCK)
5633 return {};
5634
5635 lookup_name_info lookup_name (sym->search_name (),
5636 symbol_name_match_type::SEARCH_NAME);
5637 struct objfile *objfile = sym->objfile ();
5638
5639 CORE_ADDR address = sym->value_block ()->entry_pc ();
5640 minimal_symbol *ifunc = NULL;
5641
5642 iterate_over_minimal_symbols (objfile, lookup_name,
5643 [&] (minimal_symbol *minsym)
5644 {
5645 if (minsym->type () == mst_text_gnu_ifunc
5646 || minsym->type () == mst_data_gnu_ifunc)
5647 {
5648 CORE_ADDR msym_addr = minsym->value_address (objfile);
5649 if (minsym->type () == mst_data_gnu_ifunc)
5650 {
5651 struct gdbarch *gdbarch = objfile->arch ();
5652 msym_addr = gdbarch_convert_from_func_ptr_addr
5653 (gdbarch, msym_addr, current_inferior ()->top_target ());
5654 }
5655 if (msym_addr == address)
5656 {
5657 ifunc = minsym;
5658 return true;
5659 }
5660 }
5661 return false;
5662 });
5663
5664 if (ifunc != NULL)
5665 return {ifunc, objfile};
5666 return {};
5667 }
5668
5669 /* Add matching symbols from SYMTAB to the current completion list. */
5670
5671 static void
5672 add_symtab_completions (struct compunit_symtab *cust,
5673 completion_tracker &tracker,
5674 complete_symbol_mode mode,
5675 const lookup_name_info &lookup_name,
5676 const char *text, const char *word,
5677 enum type_code code)
5678 {
5679 struct symbol *sym;
5680 struct block_iterator iter;
5681 int i;
5682
5683 if (cust == NULL)
5684 return;
5685
5686 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5687 {
5688 QUIT;
5689
5690 const struct block *b = cust->blockvector ()->block (i);
5691 ALL_BLOCK_SYMBOLS (b, iter, sym)
5692 {
5693 if (completion_skip_symbol (mode, sym))
5694 continue;
5695
5696 if (code == TYPE_CODE_UNDEF
5697 || (sym->domain () == STRUCT_DOMAIN
5698 && sym->type ()->code () == code))
5699 completion_list_add_symbol (tracker, sym,
5700 lookup_name,
5701 text, word);
5702 }
5703 }
5704 }
5705
5706 void
5707 default_collect_symbol_completion_matches_break_on
5708 (completion_tracker &tracker, complete_symbol_mode mode,
5709 symbol_name_match_type name_match_type,
5710 const char *text, const char *word,
5711 const char *break_on, enum type_code code)
5712 {
5713 /* Problem: All of the symbols have to be copied because readline
5714 frees them. I'm not going to worry about this; hopefully there
5715 won't be that many. */
5716
5717 struct symbol *sym;
5718 const struct block *b;
5719 const struct block *surrounding_static_block, *surrounding_global_block;
5720 struct block_iterator iter;
5721 /* The symbol we are completing on. Points in same buffer as text. */
5722 const char *sym_text;
5723
5724 /* Now look for the symbol we are supposed to complete on. */
5725 if (mode == complete_symbol_mode::LINESPEC)
5726 sym_text = text;
5727 else
5728 {
5729 const char *p;
5730 char quote_found;
5731 const char *quote_pos = NULL;
5732
5733 /* First see if this is a quoted string. */
5734 quote_found = '\0';
5735 for (p = text; *p != '\0'; ++p)
5736 {
5737 if (quote_found != '\0')
5738 {
5739 if (*p == quote_found)
5740 /* Found close quote. */
5741 quote_found = '\0';
5742 else if (*p == '\\' && p[1] == quote_found)
5743 /* A backslash followed by the quote character
5744 doesn't end the string. */
5745 ++p;
5746 }
5747 else if (*p == '\'' || *p == '"')
5748 {
5749 quote_found = *p;
5750 quote_pos = p;
5751 }
5752 }
5753 if (quote_found == '\'')
5754 /* A string within single quotes can be a symbol, so complete on it. */
5755 sym_text = quote_pos + 1;
5756 else if (quote_found == '"')
5757 /* A double-quoted string is never a symbol, nor does it make sense
5758 to complete it any other way. */
5759 {
5760 return;
5761 }
5762 else
5763 {
5764 /* It is not a quoted string. Break it based on the characters
5765 which are in symbols. */
5766 while (p > text)
5767 {
5768 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5769 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5770 --p;
5771 else
5772 break;
5773 }
5774 sym_text = p;
5775 }
5776 }
5777
5778 lookup_name_info lookup_name (sym_text, name_match_type, true);
5779
5780 /* At this point scan through the misc symbol vectors and add each
5781 symbol you find to the list. Eventually we want to ignore
5782 anything that isn't a text symbol (everything else will be
5783 handled by the psymtab code below). */
5784
5785 if (code == TYPE_CODE_UNDEF)
5786 {
5787 for (objfile *objfile : current_program_space->objfiles ())
5788 {
5789 for (minimal_symbol *msymbol : objfile->msymbols ())
5790 {
5791 QUIT;
5792
5793 if (completion_skip_symbol (mode, msymbol))
5794 continue;
5795
5796 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5797 sym_text, word);
5798
5799 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5800 sym_text, word);
5801 }
5802 }
5803 }
5804
5805 /* Add completions for all currently loaded symbol tables. */
5806 for (objfile *objfile : current_program_space->objfiles ())
5807 {
5808 for (compunit_symtab *cust : objfile->compunits ())
5809 add_symtab_completions (cust, tracker, mode, lookup_name,
5810 sym_text, word, code);
5811 }
5812
5813 /* Look through the partial symtabs for all symbols which begin by
5814 matching SYM_TEXT. Expand all CUs that you find to the list. */
5815 expand_symtabs_matching (NULL,
5816 lookup_name,
5817 NULL,
5818 [&] (compunit_symtab *symtab) /* expansion notify */
5819 {
5820 add_symtab_completions (symtab,
5821 tracker, mode, lookup_name,
5822 sym_text, word, code);
5823 return true;
5824 },
5825 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
5826 ALL_DOMAIN);
5827
5828 /* Search upwards from currently selected frame (so that we can
5829 complete on local vars). Also catch fields of types defined in
5830 this places which match our text string. Only complete on types
5831 visible from current context. */
5832
5833 b = get_selected_block (0);
5834 surrounding_static_block = b == nullptr ? nullptr : block_static_block (b);
5835 surrounding_global_block = b == nullptr : nullptr : block_global_block (b);
5836 if (surrounding_static_block != NULL)
5837 while (b != surrounding_static_block)
5838 {
5839 QUIT;
5840
5841 ALL_BLOCK_SYMBOLS (b, iter, sym)
5842 {
5843 if (code == TYPE_CODE_UNDEF)
5844 {
5845 completion_list_add_symbol (tracker, sym, lookup_name,
5846 sym_text, word);
5847 completion_list_add_fields (tracker, sym, lookup_name,
5848 sym_text, word);
5849 }
5850 else if (sym->domain () == STRUCT_DOMAIN
5851 && sym->type ()->code () == code)
5852 completion_list_add_symbol (tracker, sym, lookup_name,
5853 sym_text, word);
5854 }
5855
5856 /* Stop when we encounter an enclosing function. Do not stop for
5857 non-inlined functions - the locals of the enclosing function
5858 are in scope for a nested function. */
5859 if (b->function () != NULL && block_inlined_p (b))
5860 break;
5861 b = b->superblock ();
5862 }
5863
5864 /* Add fields from the file's types; symbols will be added below. */
5865
5866 if (code == TYPE_CODE_UNDEF)
5867 {
5868 if (surrounding_static_block != NULL)
5869 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5870 completion_list_add_fields (tracker, sym, lookup_name,
5871 sym_text, word);
5872
5873 if (surrounding_global_block != NULL)
5874 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5875 completion_list_add_fields (tracker, sym, lookup_name,
5876 sym_text, word);
5877 }
5878
5879 /* Skip macros if we are completing a struct tag -- arguable but
5880 usually what is expected. */
5881 if (current_language->macro_expansion () == macro_expansion_c
5882 && code == TYPE_CODE_UNDEF)
5883 {
5884 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5885
5886 /* This adds a macro's name to the current completion list. */
5887 auto add_macro_name = [&] (const char *macro_name,
5888 const macro_definition *,
5889 macro_source_file *,
5890 int)
5891 {
5892 completion_list_add_name (tracker, language_c, macro_name,
5893 lookup_name, sym_text, word);
5894 };
5895
5896 /* Add any macros visible in the default scope. Note that this
5897 may yield the occasional wrong result, because an expression
5898 might be evaluated in a scope other than the default. For
5899 example, if the user types "break file:line if <TAB>", the
5900 resulting expression will be evaluated at "file:line" -- but
5901 at there does not seem to be a way to detect this at
5902 completion time. */
5903 scope = default_macro_scope ();
5904 if (scope)
5905 macro_for_each_in_scope (scope->file, scope->line,
5906 add_macro_name);
5907
5908 /* User-defined macros are always visible. */
5909 macro_for_each (macro_user_macros, add_macro_name);
5910 }
5911 }
5912
5913 /* Collect all symbols (regardless of class) which begin by matching
5914 TEXT. */
5915
5916 void
5917 collect_symbol_completion_matches (completion_tracker &tracker,
5918 complete_symbol_mode mode,
5919 symbol_name_match_type name_match_type,
5920 const char *text, const char *word)
5921 {
5922 current_language->collect_symbol_completion_matches (tracker, mode,
5923 name_match_type,
5924 text, word,
5925 TYPE_CODE_UNDEF);
5926 }
5927
5928 /* Like collect_symbol_completion_matches, but only collect
5929 STRUCT_DOMAIN symbols whose type code is CODE. */
5930
5931 void
5932 collect_symbol_completion_matches_type (completion_tracker &tracker,
5933 const char *text, const char *word,
5934 enum type_code code)
5935 {
5936 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5937 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5938
5939 gdb_assert (code == TYPE_CODE_UNION
5940 || code == TYPE_CODE_STRUCT
5941 || code == TYPE_CODE_ENUM);
5942 current_language->collect_symbol_completion_matches (tracker, mode,
5943 name_match_type,
5944 text, word, code);
5945 }
5946
5947 /* Like collect_symbol_completion_matches, but collects a list of
5948 symbols defined in all source files named SRCFILE. */
5949
5950 void
5951 collect_file_symbol_completion_matches (completion_tracker &tracker,
5952 complete_symbol_mode mode,
5953 symbol_name_match_type name_match_type,
5954 const char *text, const char *word,
5955 const char *srcfile)
5956 {
5957 /* The symbol we are completing on. Points in same buffer as text. */
5958 const char *sym_text;
5959
5960 /* Now look for the symbol we are supposed to complete on.
5961 FIXME: This should be language-specific. */
5962 if (mode == complete_symbol_mode::LINESPEC)
5963 sym_text = text;
5964 else
5965 {
5966 const char *p;
5967 char quote_found;
5968 const char *quote_pos = NULL;
5969
5970 /* First see if this is a quoted string. */
5971 quote_found = '\0';
5972 for (p = text; *p != '\0'; ++p)
5973 {
5974 if (quote_found != '\0')
5975 {
5976 if (*p == quote_found)
5977 /* Found close quote. */
5978 quote_found = '\0';
5979 else if (*p == '\\' && p[1] == quote_found)
5980 /* A backslash followed by the quote character
5981 doesn't end the string. */
5982 ++p;
5983 }
5984 else if (*p == '\'' || *p == '"')
5985 {
5986 quote_found = *p;
5987 quote_pos = p;
5988 }
5989 }
5990 if (quote_found == '\'')
5991 /* A string within single quotes can be a symbol, so complete on it. */
5992 sym_text = quote_pos + 1;
5993 else if (quote_found == '"')
5994 /* A double-quoted string is never a symbol, nor does it make sense
5995 to complete it any other way. */
5996 {
5997 return;
5998 }
5999 else
6000 {
6001 /* Not a quoted string. */
6002 sym_text = language_search_unquoted_string (text, p);
6003 }
6004 }
6005
6006 lookup_name_info lookup_name (sym_text, name_match_type, true);
6007
6008 /* Go through symtabs for SRCFILE and check the externs and statics
6009 for symbols which match. */
6010 iterate_over_symtabs (srcfile, [&] (symtab *s)
6011 {
6012 add_symtab_completions (s->compunit (),
6013 tracker, mode, lookup_name,
6014 sym_text, word, TYPE_CODE_UNDEF);
6015 return false;
6016 });
6017 }
6018
6019 /* A helper function for make_source_files_completion_list. It adds
6020 another file name to a list of possible completions, growing the
6021 list as necessary. */
6022
6023 static void
6024 add_filename_to_list (const char *fname, const char *text, const char *word,
6025 completion_list *list)
6026 {
6027 list->emplace_back (make_completion_match_str (fname, text, word));
6028 }
6029
6030 static int
6031 not_interesting_fname (const char *fname)
6032 {
6033 static const char *illegal_aliens[] = {
6034 "_globals_", /* inserted by coff_symtab_read */
6035 NULL
6036 };
6037 int i;
6038
6039 for (i = 0; illegal_aliens[i]; i++)
6040 {
6041 if (filename_cmp (fname, illegal_aliens[i]) == 0)
6042 return 1;
6043 }
6044 return 0;
6045 }
6046
6047 /* An object of this type is passed as the callback argument to
6048 map_partial_symbol_filenames. */
6049 struct add_partial_filename_data
6050 {
6051 struct filename_seen_cache *filename_seen_cache;
6052 const char *text;
6053 const char *word;
6054 int text_len;
6055 completion_list *list;
6056
6057 void operator() (const char *filename, const char *fullname);
6058 };
6059
6060 /* A callback for map_partial_symbol_filenames. */
6061
6062 void
6063 add_partial_filename_data::operator() (const char *filename,
6064 const char *fullname)
6065 {
6066 if (not_interesting_fname (filename))
6067 return;
6068 if (!filename_seen_cache->seen (filename)
6069 && filename_ncmp (filename, text, text_len) == 0)
6070 {
6071 /* This file matches for a completion; add it to the
6072 current list of matches. */
6073 add_filename_to_list (filename, text, word, list);
6074 }
6075 else
6076 {
6077 const char *base_name = lbasename (filename);
6078
6079 if (base_name != filename
6080 && !filename_seen_cache->seen (base_name)
6081 && filename_ncmp (base_name, text, text_len) == 0)
6082 add_filename_to_list (base_name, text, word, list);
6083 }
6084 }
6085
6086 /* Return a list of all source files whose names begin with matching
6087 TEXT. The file names are looked up in the symbol tables of this
6088 program. */
6089
6090 completion_list
6091 make_source_files_completion_list (const char *text, const char *word)
6092 {
6093 size_t text_len = strlen (text);
6094 completion_list list;
6095 const char *base_name;
6096 struct add_partial_filename_data datum;
6097
6098 if (!have_full_symbols () && !have_partial_symbols ())
6099 return list;
6100
6101 filename_seen_cache filenames_seen;
6102
6103 for (objfile *objfile : current_program_space->objfiles ())
6104 {
6105 for (compunit_symtab *cu : objfile->compunits ())
6106 {
6107 for (symtab *s : cu->filetabs ())
6108 {
6109 if (not_interesting_fname (s->filename))
6110 continue;
6111 if (!filenames_seen.seen (s->filename)
6112 && filename_ncmp (s->filename, text, text_len) == 0)
6113 {
6114 /* This file matches for a completion; add it to the current
6115 list of matches. */
6116 add_filename_to_list (s->filename, text, word, &list);
6117 }
6118 else
6119 {
6120 /* NOTE: We allow the user to type a base name when the
6121 debug info records leading directories, but not the other
6122 way around. This is what subroutines of breakpoint
6123 command do when they parse file names. */
6124 base_name = lbasename (s->filename);
6125 if (base_name != s->filename
6126 && !filenames_seen.seen (base_name)
6127 && filename_ncmp (base_name, text, text_len) == 0)
6128 add_filename_to_list (base_name, text, word, &list);
6129 }
6130 }
6131 }
6132 }
6133
6134 datum.filename_seen_cache = &filenames_seen;
6135 datum.text = text;
6136 datum.word = word;
6137 datum.text_len = text_len;
6138 datum.list = &list;
6139 map_symbol_filenames (datum, false /*need_fullname*/);
6140
6141 return list;
6142 }
6143 \f
6144 /* Track MAIN */
6145
6146 /* Return the "main_info" object for the current program space. If
6147 the object has not yet been created, create it and fill in some
6148 default values. */
6149
6150 static struct main_info *
6151 get_main_info (void)
6152 {
6153 struct main_info *info = main_progspace_key.get (current_program_space);
6154
6155 if (info == NULL)
6156 {
6157 /* It may seem strange to store the main name in the progspace
6158 and also in whatever objfile happens to see a main name in
6159 its debug info. The reason for this is mainly historical:
6160 gdb returned "main" as the name even if no function named
6161 "main" was defined the program; and this approach lets us
6162 keep compatibility. */
6163 info = main_progspace_key.emplace (current_program_space);
6164 }
6165
6166 return info;
6167 }
6168
6169 static void
6170 set_main_name (const char *name, enum language lang)
6171 {
6172 struct main_info *info = get_main_info ();
6173
6174 if (!info->name_of_main.empty ())
6175 {
6176 info->name_of_main.clear ();
6177 info->language_of_main = language_unknown;
6178 }
6179 if (name != NULL)
6180 {
6181 info->name_of_main = name;
6182 info->language_of_main = lang;
6183 }
6184 }
6185
6186 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6187 accordingly. */
6188
6189 static void
6190 find_main_name (void)
6191 {
6192 const char *new_main_name;
6193
6194 /* First check the objfiles to see whether a debuginfo reader has
6195 picked up the appropriate main name. Historically the main name
6196 was found in a more or less random way; this approach instead
6197 relies on the order of objfile creation -- which still isn't
6198 guaranteed to get the correct answer, but is just probably more
6199 accurate. */
6200 for (objfile *objfile : current_program_space->objfiles ())
6201 {
6202 if (objfile->per_bfd->name_of_main != NULL)
6203 {
6204 set_main_name (objfile->per_bfd->name_of_main,
6205 objfile->per_bfd->language_of_main);
6206 return;
6207 }
6208 }
6209
6210 /* Try to see if the main procedure is in Ada. */
6211 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6212 be to add a new method in the language vector, and call this
6213 method for each language until one of them returns a non-empty
6214 name. This would allow us to remove this hard-coded call to
6215 an Ada function. It is not clear that this is a better approach
6216 at this point, because all methods need to be written in a way
6217 such that false positives never be returned. For instance, it is
6218 important that a method does not return a wrong name for the main
6219 procedure if the main procedure is actually written in a different
6220 language. It is easy to guaranty this with Ada, since we use a
6221 special symbol generated only when the main in Ada to find the name
6222 of the main procedure. It is difficult however to see how this can
6223 be guarantied for languages such as C, for instance. This suggests
6224 that order of call for these methods becomes important, which means
6225 a more complicated approach. */
6226 new_main_name = ada_main_name ();
6227 if (new_main_name != NULL)
6228 {
6229 set_main_name (new_main_name, language_ada);
6230 return;
6231 }
6232
6233 new_main_name = d_main_name ();
6234 if (new_main_name != NULL)
6235 {
6236 set_main_name (new_main_name, language_d);
6237 return;
6238 }
6239
6240 new_main_name = go_main_name ();
6241 if (new_main_name != NULL)
6242 {
6243 set_main_name (new_main_name, language_go);
6244 return;
6245 }
6246
6247 new_main_name = pascal_main_name ();
6248 if (new_main_name != NULL)
6249 {
6250 set_main_name (new_main_name, language_pascal);
6251 return;
6252 }
6253
6254 /* The languages above didn't identify the name of the main procedure.
6255 Fallback to "main". */
6256
6257 /* Try to find language for main in psymtabs. */
6258 bool symbol_found_p = false;
6259 gdbarch_iterate_over_objfiles_in_search_order
6260 (target_gdbarch (),
6261 [&symbol_found_p] (objfile *obj)
6262 {
6263 language lang
6264 = obj->lookup_global_symbol_language ("main", VAR_DOMAIN,
6265 &symbol_found_p);
6266 if (symbol_found_p)
6267 {
6268 set_main_name ("main", lang);
6269 return 1;
6270 }
6271
6272 return 0;
6273 }, nullptr);
6274
6275 if (symbol_found_p)
6276 return;
6277
6278 set_main_name ("main", language_unknown);
6279 }
6280
6281 /* See symtab.h. */
6282
6283 const char *
6284 main_name ()
6285 {
6286 struct main_info *info = get_main_info ();
6287
6288 if (info->name_of_main.empty ())
6289 find_main_name ();
6290
6291 return info->name_of_main.c_str ();
6292 }
6293
6294 /* Return the language of the main function. If it is not known,
6295 return language_unknown. */
6296
6297 enum language
6298 main_language (void)
6299 {
6300 struct main_info *info = get_main_info ();
6301
6302 if (info->name_of_main.empty ())
6303 find_main_name ();
6304
6305 return info->language_of_main;
6306 }
6307
6308 /* Handle ``executable_changed'' events for the symtab module. */
6309
6310 static void
6311 symtab_observer_executable_changed (void)
6312 {
6313 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6314 set_main_name (NULL, language_unknown);
6315 }
6316
6317 /* Return 1 if the supplied producer string matches the ARM RealView
6318 compiler (armcc). */
6319
6320 bool
6321 producer_is_realview (const char *producer)
6322 {
6323 static const char *const arm_idents[] = {
6324 "ARM C Compiler, ADS",
6325 "Thumb C Compiler, ADS",
6326 "ARM C++ Compiler, ADS",
6327 "Thumb C++ Compiler, ADS",
6328 "ARM/Thumb C/C++ Compiler, RVCT",
6329 "ARM C/C++ Compiler, RVCT"
6330 };
6331
6332 if (producer == NULL)
6333 return false;
6334
6335 for (const char *ident : arm_idents)
6336 if (startswith (producer, ident))
6337 return true;
6338
6339 return false;
6340 }
6341
6342 \f
6343
6344 /* The next index to hand out in response to a registration request. */
6345
6346 static int next_aclass_value = LOC_FINAL_VALUE;
6347
6348 /* The maximum number of "aclass" registrations we support. This is
6349 constant for convenience. */
6350 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6351
6352 /* The objects representing the various "aclass" values. The elements
6353 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6354 elements are those registered at gdb initialization time. */
6355
6356 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6357
6358 /* The globally visible pointer. This is separate from 'symbol_impl'
6359 so that it can be const. */
6360
6361 gdb::array_view<const struct symbol_impl> symbol_impls (symbol_impl);
6362
6363 /* Make sure we saved enough room in struct symbol. */
6364
6365 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6366
6367 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6368 is the ops vector associated with this index. This returns the new
6369 index, which should be used as the aclass_index field for symbols
6370 of this type. */
6371
6372 int
6373 register_symbol_computed_impl (enum address_class aclass,
6374 const struct symbol_computed_ops *ops)
6375 {
6376 int result = next_aclass_value++;
6377
6378 gdb_assert (aclass == LOC_COMPUTED);
6379 gdb_assert (result < MAX_SYMBOL_IMPLS);
6380 symbol_impl[result].aclass = aclass;
6381 symbol_impl[result].ops_computed = ops;
6382
6383 /* Sanity check OPS. */
6384 gdb_assert (ops != NULL);
6385 gdb_assert (ops->tracepoint_var_ref != NULL);
6386 gdb_assert (ops->describe_location != NULL);
6387 gdb_assert (ops->get_symbol_read_needs != NULL);
6388 gdb_assert (ops->read_variable != NULL);
6389
6390 return result;
6391 }
6392
6393 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6394 OPS is the ops vector associated with this index. This returns the
6395 new index, which should be used as the aclass_index field for symbols
6396 of this type. */
6397
6398 int
6399 register_symbol_block_impl (enum address_class aclass,
6400 const struct symbol_block_ops *ops)
6401 {
6402 int result = next_aclass_value++;
6403
6404 gdb_assert (aclass == LOC_BLOCK);
6405 gdb_assert (result < MAX_SYMBOL_IMPLS);
6406 symbol_impl[result].aclass = aclass;
6407 symbol_impl[result].ops_block = ops;
6408
6409 /* Sanity check OPS. */
6410 gdb_assert (ops != NULL);
6411 gdb_assert (ops->find_frame_base_location != NULL);
6412
6413 return result;
6414 }
6415
6416 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6417 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6418 this index. This returns the new index, which should be used as
6419 the aclass_index field for symbols of this type. */
6420
6421 int
6422 register_symbol_register_impl (enum address_class aclass,
6423 const struct symbol_register_ops *ops)
6424 {
6425 int result = next_aclass_value++;
6426
6427 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6428 gdb_assert (result < MAX_SYMBOL_IMPLS);
6429 symbol_impl[result].aclass = aclass;
6430 symbol_impl[result].ops_register = ops;
6431
6432 return result;
6433 }
6434
6435 /* Initialize elements of 'symbol_impl' for the constants in enum
6436 address_class. */
6437
6438 static void
6439 initialize_ordinary_address_classes (void)
6440 {
6441 int i;
6442
6443 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6444 symbol_impl[i].aclass = (enum address_class) i;
6445 }
6446
6447 \f
6448
6449 /* See symtab.h. */
6450
6451 struct objfile *
6452 symbol::objfile () const
6453 {
6454 gdb_assert (is_objfile_owned ());
6455 return owner.symtab->compunit ()->objfile ();
6456 }
6457
6458 /* See symtab.h. */
6459
6460 struct gdbarch *
6461 symbol::arch () const
6462 {
6463 if (!is_objfile_owned ())
6464 return owner.arch;
6465 return owner.symtab->compunit ()->objfile ()->arch ();
6466 }
6467
6468 /* See symtab.h. */
6469
6470 struct symtab *
6471 symbol::symtab () const
6472 {
6473 gdb_assert (is_objfile_owned ());
6474 return owner.symtab;
6475 }
6476
6477 /* See symtab.h. */
6478
6479 void
6480 symbol::set_symtab (struct symtab *symtab)
6481 {
6482 gdb_assert (is_objfile_owned ());
6483 owner.symtab = symtab;
6484 }
6485
6486 /* See symtab.h. */
6487
6488 CORE_ADDR
6489 get_symbol_address (const struct symbol *sym)
6490 {
6491 gdb_assert (sym->maybe_copied);
6492 gdb_assert (sym->aclass () == LOC_STATIC);
6493
6494 const char *linkage_name = sym->linkage_name ();
6495
6496 for (objfile *objfile : current_program_space->objfiles ())
6497 {
6498 if (objfile->separate_debug_objfile_backlink != nullptr)
6499 continue;
6500
6501 bound_minimal_symbol minsym
6502 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6503 if (minsym.minsym != nullptr)
6504 return minsym.value_address ();
6505 }
6506 return sym->m_value.address;
6507 }
6508
6509 /* See symtab.h. */
6510
6511 CORE_ADDR
6512 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6513 {
6514 gdb_assert (minsym->maybe_copied);
6515 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6516
6517 const char *linkage_name = minsym->linkage_name ();
6518
6519 for (objfile *objfile : current_program_space->objfiles ())
6520 {
6521 if (objfile->separate_debug_objfile_backlink == nullptr
6522 && (objfile->flags & OBJF_MAINLINE) != 0)
6523 {
6524 bound_minimal_symbol found
6525 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6526 if (found.minsym != nullptr)
6527 return found.value_address ();
6528 }
6529 }
6530 return (minsym->m_value.address
6531 + objf->section_offsets[minsym->section_index ()]);
6532 }
6533
6534 \f
6535
6536 /* Hold the sub-commands of 'info module'. */
6537
6538 static struct cmd_list_element *info_module_cmdlist = NULL;
6539
6540 /* See symtab.h. */
6541
6542 std::vector<module_symbol_search>
6543 search_module_symbols (const char *module_regexp, const char *regexp,
6544 const char *type_regexp, search_domain kind)
6545 {
6546 std::vector<module_symbol_search> results;
6547
6548 /* Search for all modules matching MODULE_REGEXP. */
6549 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6550 spec1.set_exclude_minsyms (true);
6551 std::vector<symbol_search> modules = spec1.search ();
6552
6553 /* Now search for all symbols of the required KIND matching the required
6554 regular expressions. We figure out which ones are in which modules
6555 below. */
6556 global_symbol_searcher spec2 (kind, regexp);
6557 spec2.set_symbol_type_regexp (type_regexp);
6558 spec2.set_exclude_minsyms (true);
6559 std::vector<symbol_search> symbols = spec2.search ();
6560
6561 /* Now iterate over all MODULES, checking to see which items from
6562 SYMBOLS are in each module. */
6563 for (const symbol_search &p : modules)
6564 {
6565 QUIT;
6566
6567 /* This is a module. */
6568 gdb_assert (p.symbol != nullptr);
6569
6570 std::string prefix = p.symbol->print_name ();
6571 prefix += "::";
6572
6573 for (const symbol_search &q : symbols)
6574 {
6575 if (q.symbol == nullptr)
6576 continue;
6577
6578 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6579 prefix.size ()) != 0)
6580 continue;
6581
6582 results.push_back ({p, q});
6583 }
6584 }
6585
6586 return results;
6587 }
6588
6589 /* Implement the core of both 'info module functions' and 'info module
6590 variables'. */
6591
6592 static void
6593 info_module_subcommand (bool quiet, const char *module_regexp,
6594 const char *regexp, const char *type_regexp,
6595 search_domain kind)
6596 {
6597 /* Print a header line. Don't build the header line bit by bit as this
6598 prevents internationalisation. */
6599 if (!quiet)
6600 {
6601 if (module_regexp == nullptr)
6602 {
6603 if (type_regexp == nullptr)
6604 {
6605 if (regexp == nullptr)
6606 gdb_printf ((kind == VARIABLES_DOMAIN
6607 ? _("All variables in all modules:")
6608 : _("All functions in all modules:")));
6609 else
6610 gdb_printf
6611 ((kind == VARIABLES_DOMAIN
6612 ? _("All variables matching regular expression"
6613 " \"%s\" in all modules:")
6614 : _("All functions matching regular expression"
6615 " \"%s\" in all modules:")),
6616 regexp);
6617 }
6618 else
6619 {
6620 if (regexp == nullptr)
6621 gdb_printf
6622 ((kind == VARIABLES_DOMAIN
6623 ? _("All variables with type matching regular "
6624 "expression \"%s\" in all modules:")
6625 : _("All functions with type matching regular "
6626 "expression \"%s\" in all modules:")),
6627 type_regexp);
6628 else
6629 gdb_printf
6630 ((kind == VARIABLES_DOMAIN
6631 ? _("All variables matching regular expression "
6632 "\"%s\",\n\twith type matching regular "
6633 "expression \"%s\" in all modules:")
6634 : _("All functions matching regular expression "
6635 "\"%s\",\n\twith type matching regular "
6636 "expression \"%s\" in all modules:")),
6637 regexp, type_regexp);
6638 }
6639 }
6640 else
6641 {
6642 if (type_regexp == nullptr)
6643 {
6644 if (regexp == nullptr)
6645 gdb_printf
6646 ((kind == VARIABLES_DOMAIN
6647 ? _("All variables in all modules matching regular "
6648 "expression \"%s\":")
6649 : _("All functions in all modules matching regular "
6650 "expression \"%s\":")),
6651 module_regexp);
6652 else
6653 gdb_printf
6654 ((kind == VARIABLES_DOMAIN
6655 ? _("All variables matching regular expression "
6656 "\"%s\",\n\tin all modules matching regular "
6657 "expression \"%s\":")
6658 : _("All functions matching regular expression "
6659 "\"%s\",\n\tin all modules matching regular "
6660 "expression \"%s\":")),
6661 regexp, module_regexp);
6662 }
6663 else
6664 {
6665 if (regexp == nullptr)
6666 gdb_printf
6667 ((kind == VARIABLES_DOMAIN
6668 ? _("All variables with type matching regular "
6669 "expression \"%s\"\n\tin all modules matching "
6670 "regular expression \"%s\":")
6671 : _("All functions with type matching regular "
6672 "expression \"%s\"\n\tin all modules matching "
6673 "regular expression \"%s\":")),
6674 type_regexp, module_regexp);
6675 else
6676 gdb_printf
6677 ((kind == VARIABLES_DOMAIN
6678 ? _("All variables matching regular expression "
6679 "\"%s\",\n\twith type matching regular expression "
6680 "\"%s\",\n\tin all modules matching regular "
6681 "expression \"%s\":")
6682 : _("All functions matching regular expression "
6683 "\"%s\",\n\twith type matching regular expression "
6684 "\"%s\",\n\tin all modules matching regular "
6685 "expression \"%s\":")),
6686 regexp, type_regexp, module_regexp);
6687 }
6688 }
6689 gdb_printf ("\n");
6690 }
6691
6692 /* Find all symbols of type KIND matching the given regular expressions
6693 along with the symbols for the modules in which those symbols
6694 reside. */
6695 std::vector<module_symbol_search> module_symbols
6696 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6697
6698 std::sort (module_symbols.begin (), module_symbols.end (),
6699 [] (const module_symbol_search &a, const module_symbol_search &b)
6700 {
6701 if (a.first < b.first)
6702 return true;
6703 else if (a.first == b.first)
6704 return a.second < b.second;
6705 else
6706 return false;
6707 });
6708
6709 const char *last_filename = "";
6710 const symbol *last_module_symbol = nullptr;
6711 for (const module_symbol_search &ms : module_symbols)
6712 {
6713 const symbol_search &p = ms.first;
6714 const symbol_search &q = ms.second;
6715
6716 gdb_assert (q.symbol != nullptr);
6717
6718 if (last_module_symbol != p.symbol)
6719 {
6720 gdb_printf ("\n");
6721 gdb_printf (_("Module \"%s\":\n"), p.symbol->print_name ());
6722 last_module_symbol = p.symbol;
6723 last_filename = "";
6724 }
6725
6726 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6727 last_filename);
6728 last_filename
6729 = symtab_to_filename_for_display (q.symbol->symtab ());
6730 }
6731 }
6732
6733 /* Hold the option values for the 'info module .....' sub-commands. */
6734
6735 struct info_modules_var_func_options
6736 {
6737 bool quiet = false;
6738 std::string type_regexp;
6739 std::string module_regexp;
6740 };
6741
6742 /* The options used by 'info module variables' and 'info module functions'
6743 commands. */
6744
6745 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6746 gdb::option::boolean_option_def<info_modules_var_func_options> {
6747 "q",
6748 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6749 nullptr, /* show_cmd_cb */
6750 nullptr /* set_doc */
6751 },
6752
6753 gdb::option::string_option_def<info_modules_var_func_options> {
6754 "t",
6755 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6756 nullptr, /* show_cmd_cb */
6757 nullptr /* set_doc */
6758 },
6759
6760 gdb::option::string_option_def<info_modules_var_func_options> {
6761 "m",
6762 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6763 nullptr, /* show_cmd_cb */
6764 nullptr /* set_doc */
6765 }
6766 };
6767
6768 /* Return the option group used by the 'info module ...' sub-commands. */
6769
6770 static inline gdb::option::option_def_group
6771 make_info_modules_var_func_options_def_group
6772 (info_modules_var_func_options *opts)
6773 {
6774 return {{info_modules_var_func_options_defs}, opts};
6775 }
6776
6777 /* Implements the 'info module functions' command. */
6778
6779 static void
6780 info_module_functions_command (const char *args, int from_tty)
6781 {
6782 info_modules_var_func_options opts;
6783 auto grp = make_info_modules_var_func_options_def_group (&opts);
6784 gdb::option::process_options
6785 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6786 if (args != nullptr && *args == '\0')
6787 args = nullptr;
6788
6789 info_module_subcommand
6790 (opts.quiet,
6791 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6792 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6793 FUNCTIONS_DOMAIN);
6794 }
6795
6796 /* Implements the 'info module variables' command. */
6797
6798 static void
6799 info_module_variables_command (const char *args, int from_tty)
6800 {
6801 info_modules_var_func_options opts;
6802 auto grp = make_info_modules_var_func_options_def_group (&opts);
6803 gdb::option::process_options
6804 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6805 if (args != nullptr && *args == '\0')
6806 args = nullptr;
6807
6808 info_module_subcommand
6809 (opts.quiet,
6810 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6811 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6812 VARIABLES_DOMAIN);
6813 }
6814
6815 /* Command completer for 'info module ...' sub-commands. */
6816
6817 static void
6818 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6819 completion_tracker &tracker,
6820 const char *text,
6821 const char * /* word */)
6822 {
6823
6824 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6825 if (gdb::option::complete_options
6826 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6827 return;
6828
6829 const char *word = advance_to_expression_complete_word_point (tracker, text);
6830 symbol_completer (ignore, tracker, text, word);
6831 }
6832
6833 \f
6834
6835 void _initialize_symtab ();
6836 void
6837 _initialize_symtab ()
6838 {
6839 cmd_list_element *c;
6840
6841 initialize_ordinary_address_classes ();
6842
6843 c = add_info ("variables", info_variables_command,
6844 info_print_args_help (_("\
6845 All global and static variable names or those matching REGEXPs.\n\
6846 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6847 Prints the global and static variables.\n"),
6848 _("global and static variables"),
6849 true));
6850 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6851
6852 c = add_info ("functions", info_functions_command,
6853 info_print_args_help (_("\
6854 All function names or those matching REGEXPs.\n\
6855 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6856 Prints the functions.\n"),
6857 _("functions"),
6858 true));
6859 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6860
6861 c = add_info ("types", info_types_command, _("\
6862 All type names, or those matching REGEXP.\n\
6863 Usage: info types [-q] [REGEXP]\n\
6864 Print information about all types matching REGEXP, or all types if no\n\
6865 REGEXP is given. The optional flag -q disables printing of headers."));
6866 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6867
6868 const auto info_sources_opts
6869 = make_info_sources_options_def_group (nullptr);
6870
6871 static std::string info_sources_help
6872 = gdb::option::build_help (_("\
6873 All source files in the program or those matching REGEXP.\n\
6874 Usage: info sources [OPTION]... [REGEXP]\n\
6875 By default, REGEXP is used to match anywhere in the filename.\n\
6876 \n\
6877 Options:\n\
6878 %OPTIONS%"),
6879 info_sources_opts);
6880
6881 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6882 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6883
6884 c = add_info ("modules", info_modules_command,
6885 _("All module names, or those matching REGEXP."));
6886 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6887
6888 add_basic_prefix_cmd ("module", class_info, _("\
6889 Print information about modules."),
6890 &info_module_cmdlist, 0, &infolist);
6891
6892 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6893 Display functions arranged by modules.\n\
6894 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6895 Print a summary of all functions within each Fortran module, grouped by\n\
6896 module and file. For each function the line on which the function is\n\
6897 defined is given along with the type signature and name of the function.\n\
6898 \n\
6899 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6900 listed. If MODREGEXP is provided then only functions in modules matching\n\
6901 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6902 type signature matches TYPEREGEXP are listed.\n\
6903 \n\
6904 The -q flag suppresses printing some header information."),
6905 &info_module_cmdlist);
6906 set_cmd_completer_handle_brkchars
6907 (c, info_module_var_func_command_completer);
6908
6909 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6910 Display variables arranged by modules.\n\
6911 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6912 Print a summary of all variables within each Fortran module, grouped by\n\
6913 module and file. For each variable the line on which the variable is\n\
6914 defined is given along with the type and name of the variable.\n\
6915 \n\
6916 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6917 listed. If MODREGEXP is provided then only variables in modules matching\n\
6918 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6919 type matches TYPEREGEXP are listed.\n\
6920 \n\
6921 The -q flag suppresses printing some header information."),
6922 &info_module_cmdlist);
6923 set_cmd_completer_handle_brkchars
6924 (c, info_module_var_func_command_completer);
6925
6926 add_com ("rbreak", class_breakpoint, rbreak_command,
6927 _("Set a breakpoint for all functions matching REGEXP."));
6928
6929 add_setshow_enum_cmd ("multiple-symbols", no_class,
6930 multiple_symbols_modes, &multiple_symbols_mode,
6931 _("\
6932 Set how the debugger handles ambiguities in expressions."), _("\
6933 Show how the debugger handles ambiguities in expressions."), _("\
6934 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6935 NULL, NULL, &setlist, &showlist);
6936
6937 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6938 &basenames_may_differ, _("\
6939 Set whether a source file may have multiple base names."), _("\
6940 Show whether a source file may have multiple base names."), _("\
6941 (A \"base name\" is the name of a file with the directory part removed.\n\
6942 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6943 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6944 before comparing them. Canonicalization is an expensive operation,\n\
6945 but it allows the same file be known by more than one base name.\n\
6946 If not set (the default), all source files are assumed to have just\n\
6947 one base name, and gdb will do file name comparisons more efficiently."),
6948 NULL, NULL,
6949 &setlist, &showlist);
6950
6951 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6952 _("Set debugging of symbol table creation."),
6953 _("Show debugging of symbol table creation."), _("\
6954 When enabled (non-zero), debugging messages are printed when building\n\
6955 symbol tables. A value of 1 (one) normally provides enough information.\n\
6956 A value greater than 1 provides more verbose information."),
6957 NULL,
6958 NULL,
6959 &setdebuglist, &showdebuglist);
6960
6961 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6962 _("\
6963 Set debugging of symbol lookup."), _("\
6964 Show debugging of symbol lookup."), _("\
6965 When enabled (non-zero), symbol lookups are logged."),
6966 NULL, NULL,
6967 &setdebuglist, &showdebuglist);
6968
6969 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6970 &new_symbol_cache_size,
6971 _("Set the size of the symbol cache."),
6972 _("Show the size of the symbol cache."), _("\
6973 The size of the symbol cache.\n\
6974 If zero then the symbol cache is disabled."),
6975 set_symbol_cache_size_handler, NULL,
6976 &maintenance_set_cmdlist,
6977 &maintenance_show_cmdlist);
6978
6979 add_setshow_boolean_cmd ("ignore-prologue-end-flag", no_class,
6980 &ignore_prologue_end_flag,
6981 _("Set if the PROLOGUE-END flag is ignored."),
6982 _("Show if the PROLOGUE-END flag is ignored."),
6983 _("\
6984 The PROLOGUE-END flag from the line-table entries is used to place \
6985 breakpoints past the prologue of functions. Disabeling its use use forces \
6986 the use of prologue scanners."),
6987 nullptr, nullptr,
6988 &maintenance_set_cmdlist,
6989 &maintenance_show_cmdlist);
6990
6991
6992 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6993 _("Dump the symbol cache for each program space."),
6994 &maintenanceprintlist);
6995
6996 add_cmd ("symbol-cache-statistics", class_maintenance,
6997 maintenance_print_symbol_cache_statistics,
6998 _("Print symbol cache statistics for each program space."),
6999 &maintenanceprintlist);
7000
7001 cmd_list_element *maintenance_flush_symbol_cache_cmd
7002 = add_cmd ("symbol-cache", class_maintenance,
7003 maintenance_flush_symbol_cache,
7004 _("Flush the symbol cache for each program space."),
7005 &maintenanceflushlist);
7006 c = add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd,
7007 class_maintenance, 0, &maintenancelist);
7008 deprecate_cmd (c, "maintenancelist flush symbol-cache");
7009
7010 gdb::observers::executable_changed.attach (symtab_observer_executable_changed,
7011 "symtab");
7012 gdb::observers::new_objfile.attach (symtab_new_objfile_observer, "symtab");
7013 gdb::observers::free_objfile.attach (symtab_free_objfile_observer, "symtab");
7014 }