Add symbol lookup cache.
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static struct symbol *
83 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
84 const char *name, const domain_enum domain);
85
86 extern initialize_file_ftype _initialize_symtab;
87
88 /* Program space key for finding name and language of "main". */
89
90 static const struct program_space_data *main_progspace_key;
91
92 /* Type of the data stored on the program space. */
93
94 struct main_info
95 {
96 /* Name of "main". */
97
98 char *name_of_main;
99
100 /* Language of "main". */
101
102 enum language language_of_main;
103 };
104
105 /* Program space key for finding its symbol cache. */
106
107 static const struct program_space_data *symbol_cache_key;
108
109 /* The default symbol cache size.
110 There is no extra cpu cost for large N (except when flushing the cache,
111 which is rare). The value here is just a first attempt. A better default
112 value may be higher or lower. A prime number can make up for a bad hash
113 computation, so that's why the number is what it is. */
114 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
115
116 /* The maximum symbol cache size.
117 There's no method to the decision of what value to use here, other than
118 there's no point in allowing a user typo to make gdb consume all memory. */
119 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
120
121 /* symbol_cache_lookup returns this if a previous lookup failed to find the
122 symbol in any objfile. */
123 #define SYMBOL_LOOKUP_FAILED ((struct symbol *) 1)
124
125 /* Recording lookups that don't find the symbol is just as important, if not
126 more so, than recording found symbols. */
127
128 enum symbol_cache_slot_state
129 {
130 SYMBOL_SLOT_UNUSED,
131 SYMBOL_SLOT_NOT_FOUND,
132 SYMBOL_SLOT_FOUND
133 };
134
135 /* Symbols don't specify global vs static block.
136 So keep them in separate caches. */
137
138 struct block_symbol_cache
139 {
140 unsigned int hits;
141 unsigned int misses;
142 unsigned int collisions;
143
144 /* SYMBOLS is a variable length array of this size.
145 One can imagine that in general one cache (global/static) should be a
146 fraction of the size of the other, but there's no data at the moment
147 on which to decide. */
148 unsigned int size;
149
150 struct symbol_cache_slot
151 {
152 enum symbol_cache_slot_state state;
153
154 /* The objfile that was current when the symbol was looked up.
155 This is only needed for global blocks, but for simplicity's sake
156 we allocate the space for both. If data shows the extra space used
157 for static blocks is a problem, we can split things up then.
158
159 Global blocks need cache lookup to include the objfile context because
160 we need to account for gdbarch_iterate_over_objfiles_in_search_order
161 which can traverse objfiles in, effectively, any order, depending on
162 the current objfile, thus affecting which symbol is found. Normally,
163 only the current objfile is searched first, and then the rest are
164 searched in recorded order; but putting cache lookup inside
165 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
166 Instead we just make the current objfile part of the context of
167 cache lookup. This means we can record the same symbol multiple times,
168 each with a different "current objfile" that was in effect when the
169 lookup was saved in the cache, but cache space is pretty cheap. */
170 const struct objfile *objfile_context;
171
172 union
173 {
174 struct symbol *found;
175 struct
176 {
177 char *name;
178 domain_enum domain;
179 } not_found;
180 } value;
181 } symbols[1];
182 };
183
184 /* The symbol cache.
185
186 Searching for symbols in the static and global blocks over multiple objfiles
187 again and again can be slow, as can searching very big objfiles. This is a
188 simple cache to improve symbol lookup performance, which is critical to
189 overall gdb performance.
190
191 Symbols are hashed on the name, its domain, and block.
192 They are also hashed on their objfile for objfile-specific lookups. */
193
194 struct symbol_cache
195 {
196 struct block_symbol_cache *global_symbols;
197 struct block_symbol_cache *static_symbols;
198 };
199
200 /* When non-zero, print debugging messages related to symtab creation. */
201 unsigned int symtab_create_debug = 0;
202
203 /* When non-zero, print debugging messages related to symbol lookup. */
204 unsigned int symbol_lookup_debug = 0;
205
206 /* The size of the cache is staged here. */
207 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
208
209 /* The current value of the symbol cache size.
210 This is saved so that if the user enters a value too big we can restore
211 the original value from here. */
212 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
213
214 /* Non-zero if a file may be known by two different basenames.
215 This is the uncommon case, and significantly slows down gdb.
216 Default set to "off" to not slow down the common case. */
217 int basenames_may_differ = 0;
218
219 /* Allow the user to configure the debugger behavior with respect
220 to multiple-choice menus when more than one symbol matches during
221 a symbol lookup. */
222
223 const char multiple_symbols_ask[] = "ask";
224 const char multiple_symbols_all[] = "all";
225 const char multiple_symbols_cancel[] = "cancel";
226 static const char *const multiple_symbols_modes[] =
227 {
228 multiple_symbols_ask,
229 multiple_symbols_all,
230 multiple_symbols_cancel,
231 NULL
232 };
233 static const char *multiple_symbols_mode = multiple_symbols_all;
234
235 /* Read-only accessor to AUTO_SELECT_MODE. */
236
237 const char *
238 multiple_symbols_select_mode (void)
239 {
240 return multiple_symbols_mode;
241 }
242
243 /* Block in which the most recently searched-for symbol was found.
244 Might be better to make this a parameter to lookup_symbol and
245 value_of_this. */
246
247 const struct block *block_found;
248
249 /* Return the name of a domain_enum. */
250
251 const char *
252 domain_name (domain_enum e)
253 {
254 switch (e)
255 {
256 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
257 case VAR_DOMAIN: return "VAR_DOMAIN";
258 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
259 case MODULE_DOMAIN: return "MODULE_DOMAIN";
260 case LABEL_DOMAIN: return "LABEL_DOMAIN";
261 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
262 default: gdb_assert_not_reached ("bad domain_enum");
263 }
264 }
265
266 /* Return the name of a search_domain . */
267
268 const char *
269 search_domain_name (enum search_domain e)
270 {
271 switch (e)
272 {
273 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
274 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
275 case TYPES_DOMAIN: return "TYPES_DOMAIN";
276 case ALL_DOMAIN: return "ALL_DOMAIN";
277 default: gdb_assert_not_reached ("bad search_domain");
278 }
279 }
280
281 /* See symtab.h. */
282
283 struct symtab *
284 compunit_primary_filetab (const struct compunit_symtab *cust)
285 {
286 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
287
288 /* The primary file symtab is the first one in the list. */
289 return COMPUNIT_FILETABS (cust);
290 }
291
292 /* See symtab.h. */
293
294 enum language
295 compunit_language (const struct compunit_symtab *cust)
296 {
297 struct symtab *symtab = compunit_primary_filetab (cust);
298
299 /* The language of the compunit symtab is the language of its primary
300 source file. */
301 return SYMTAB_LANGUAGE (symtab);
302 }
303
304 /* See whether FILENAME matches SEARCH_NAME using the rule that we
305 advertise to the user. (The manual's description of linespecs
306 describes what we advertise). Returns true if they match, false
307 otherwise. */
308
309 int
310 compare_filenames_for_search (const char *filename, const char *search_name)
311 {
312 int len = strlen (filename);
313 size_t search_len = strlen (search_name);
314
315 if (len < search_len)
316 return 0;
317
318 /* The tail of FILENAME must match. */
319 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
320 return 0;
321
322 /* Either the names must completely match, or the character
323 preceding the trailing SEARCH_NAME segment of FILENAME must be a
324 directory separator.
325
326 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
327 cannot match FILENAME "/path//dir/file.c" - as user has requested
328 absolute path. The sama applies for "c:\file.c" possibly
329 incorrectly hypothetically matching "d:\dir\c:\file.c".
330
331 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
332 compatible with SEARCH_NAME "file.c". In such case a compiler had
333 to put the "c:file.c" name into debug info. Such compatibility
334 works only on GDB built for DOS host. */
335 return (len == search_len
336 || (!IS_ABSOLUTE_PATH (search_name)
337 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
338 || (HAS_DRIVE_SPEC (filename)
339 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
340 }
341
342 /* Check for a symtab of a specific name by searching some symtabs.
343 This is a helper function for callbacks of iterate_over_symtabs.
344
345 If NAME is not absolute, then REAL_PATH is NULL
346 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
347
348 The return value, NAME, REAL_PATH, CALLBACK, and DATA
349 are identical to the `map_symtabs_matching_filename' method of
350 quick_symbol_functions.
351
352 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
353 Each symtab within the specified compunit symtab is also searched.
354 AFTER_LAST is one past the last compunit symtab to search; NULL means to
355 search until the end of the list. */
356
357 int
358 iterate_over_some_symtabs (const char *name,
359 const char *real_path,
360 int (*callback) (struct symtab *symtab,
361 void *data),
362 void *data,
363 struct compunit_symtab *first,
364 struct compunit_symtab *after_last)
365 {
366 struct compunit_symtab *cust;
367 struct symtab *s;
368 const char* base_name = lbasename (name);
369
370 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
371 {
372 ALL_COMPUNIT_FILETABS (cust, s)
373 {
374 if (compare_filenames_for_search (s->filename, name))
375 {
376 if (callback (s, data))
377 return 1;
378 continue;
379 }
380
381 /* Before we invoke realpath, which can get expensive when many
382 files are involved, do a quick comparison of the basenames. */
383 if (! basenames_may_differ
384 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
385 continue;
386
387 if (compare_filenames_for_search (symtab_to_fullname (s), name))
388 {
389 if (callback (s, data))
390 return 1;
391 continue;
392 }
393
394 /* If the user gave us an absolute path, try to find the file in
395 this symtab and use its absolute path. */
396 if (real_path != NULL)
397 {
398 const char *fullname = symtab_to_fullname (s);
399
400 gdb_assert (IS_ABSOLUTE_PATH (real_path));
401 gdb_assert (IS_ABSOLUTE_PATH (name));
402 if (FILENAME_CMP (real_path, fullname) == 0)
403 {
404 if (callback (s, data))
405 return 1;
406 continue;
407 }
408 }
409 }
410 }
411
412 return 0;
413 }
414
415 /* Check for a symtab of a specific name; first in symtabs, then in
416 psymtabs. *If* there is no '/' in the name, a match after a '/'
417 in the symtab filename will also work.
418
419 Calls CALLBACK with each symtab that is found and with the supplied
420 DATA. If CALLBACK returns true, the search stops. */
421
422 void
423 iterate_over_symtabs (const char *name,
424 int (*callback) (struct symtab *symtab,
425 void *data),
426 void *data)
427 {
428 struct objfile *objfile;
429 char *real_path = NULL;
430 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
431
432 /* Here we are interested in canonicalizing an absolute path, not
433 absolutizing a relative path. */
434 if (IS_ABSOLUTE_PATH (name))
435 {
436 real_path = gdb_realpath (name);
437 make_cleanup (xfree, real_path);
438 gdb_assert (IS_ABSOLUTE_PATH (real_path));
439 }
440
441 ALL_OBJFILES (objfile)
442 {
443 if (iterate_over_some_symtabs (name, real_path, callback, data,
444 objfile->compunit_symtabs, NULL))
445 {
446 do_cleanups (cleanups);
447 return;
448 }
449 }
450
451 /* Same search rules as above apply here, but now we look thru the
452 psymtabs. */
453
454 ALL_OBJFILES (objfile)
455 {
456 if (objfile->sf
457 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
458 name,
459 real_path,
460 callback,
461 data))
462 {
463 do_cleanups (cleanups);
464 return;
465 }
466 }
467
468 do_cleanups (cleanups);
469 }
470
471 /* The callback function used by lookup_symtab. */
472
473 static int
474 lookup_symtab_callback (struct symtab *symtab, void *data)
475 {
476 struct symtab **result_ptr = data;
477
478 *result_ptr = symtab;
479 return 1;
480 }
481
482 /* A wrapper for iterate_over_symtabs that returns the first matching
483 symtab, or NULL. */
484
485 struct symtab *
486 lookup_symtab (const char *name)
487 {
488 struct symtab *result = NULL;
489
490 iterate_over_symtabs (name, lookup_symtab_callback, &result);
491 return result;
492 }
493
494 \f
495 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
496 full method name, which consist of the class name (from T), the unadorned
497 method name from METHOD_ID, and the signature for the specific overload,
498 specified by SIGNATURE_ID. Note that this function is g++ specific. */
499
500 char *
501 gdb_mangle_name (struct type *type, int method_id, int signature_id)
502 {
503 int mangled_name_len;
504 char *mangled_name;
505 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
506 struct fn_field *method = &f[signature_id];
507 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
508 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
509 const char *newname = type_name_no_tag (type);
510
511 /* Does the form of physname indicate that it is the full mangled name
512 of a constructor (not just the args)? */
513 int is_full_physname_constructor;
514
515 int is_constructor;
516 int is_destructor = is_destructor_name (physname);
517 /* Need a new type prefix. */
518 char *const_prefix = method->is_const ? "C" : "";
519 char *volatile_prefix = method->is_volatile ? "V" : "";
520 char buf[20];
521 int len = (newname == NULL ? 0 : strlen (newname));
522
523 /* Nothing to do if physname already contains a fully mangled v3 abi name
524 or an operator name. */
525 if ((physname[0] == '_' && physname[1] == 'Z')
526 || is_operator_name (field_name))
527 return xstrdup (physname);
528
529 is_full_physname_constructor = is_constructor_name (physname);
530
531 is_constructor = is_full_physname_constructor
532 || (newname && strcmp (field_name, newname) == 0);
533
534 if (!is_destructor)
535 is_destructor = (strncmp (physname, "__dt", 4) == 0);
536
537 if (is_destructor || is_full_physname_constructor)
538 {
539 mangled_name = (char *) xmalloc (strlen (physname) + 1);
540 strcpy (mangled_name, physname);
541 return mangled_name;
542 }
543
544 if (len == 0)
545 {
546 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
547 }
548 else if (physname[0] == 't' || physname[0] == 'Q')
549 {
550 /* The physname for template and qualified methods already includes
551 the class name. */
552 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
553 newname = NULL;
554 len = 0;
555 }
556 else
557 {
558 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
559 volatile_prefix, len);
560 }
561 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
562 + strlen (buf) + len + strlen (physname) + 1);
563
564 mangled_name = (char *) xmalloc (mangled_name_len);
565 if (is_constructor)
566 mangled_name[0] = '\0';
567 else
568 strcpy (mangled_name, field_name);
569
570 strcat (mangled_name, buf);
571 /* If the class doesn't have a name, i.e. newname NULL, then we just
572 mangle it using 0 for the length of the class. Thus it gets mangled
573 as something starting with `::' rather than `classname::'. */
574 if (newname != NULL)
575 strcat (mangled_name, newname);
576
577 strcat (mangled_name, physname);
578 return (mangled_name);
579 }
580
581 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
582 correctly allocated. */
583
584 void
585 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
586 const char *name,
587 struct obstack *obstack)
588 {
589 if (gsymbol->language == language_ada)
590 {
591 if (name == NULL)
592 {
593 gsymbol->ada_mangled = 0;
594 gsymbol->language_specific.obstack = obstack;
595 }
596 else
597 {
598 gsymbol->ada_mangled = 1;
599 gsymbol->language_specific.mangled_lang.demangled_name = name;
600 }
601 }
602 else
603 gsymbol->language_specific.mangled_lang.demangled_name = name;
604 }
605
606 /* Return the demangled name of GSYMBOL. */
607
608 const char *
609 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
610 {
611 if (gsymbol->language == language_ada)
612 {
613 if (!gsymbol->ada_mangled)
614 return NULL;
615 /* Fall through. */
616 }
617
618 return gsymbol->language_specific.mangled_lang.demangled_name;
619 }
620
621 \f
622 /* Initialize the language dependent portion of a symbol
623 depending upon the language for the symbol. */
624
625 void
626 symbol_set_language (struct general_symbol_info *gsymbol,
627 enum language language,
628 struct obstack *obstack)
629 {
630 gsymbol->language = language;
631 if (gsymbol->language == language_cplus
632 || gsymbol->language == language_d
633 || gsymbol->language == language_go
634 || gsymbol->language == language_java
635 || gsymbol->language == language_objc
636 || gsymbol->language == language_fortran)
637 {
638 symbol_set_demangled_name (gsymbol, NULL, obstack);
639 }
640 else if (gsymbol->language == language_ada)
641 {
642 gdb_assert (gsymbol->ada_mangled == 0);
643 gsymbol->language_specific.obstack = obstack;
644 }
645 else
646 {
647 memset (&gsymbol->language_specific, 0,
648 sizeof (gsymbol->language_specific));
649 }
650 }
651
652 /* Functions to initialize a symbol's mangled name. */
653
654 /* Objects of this type are stored in the demangled name hash table. */
655 struct demangled_name_entry
656 {
657 const char *mangled;
658 char demangled[1];
659 };
660
661 /* Hash function for the demangled name hash. */
662
663 static hashval_t
664 hash_demangled_name_entry (const void *data)
665 {
666 const struct demangled_name_entry *e = data;
667
668 return htab_hash_string (e->mangled);
669 }
670
671 /* Equality function for the demangled name hash. */
672
673 static int
674 eq_demangled_name_entry (const void *a, const void *b)
675 {
676 const struct demangled_name_entry *da = a;
677 const struct demangled_name_entry *db = b;
678
679 return strcmp (da->mangled, db->mangled) == 0;
680 }
681
682 /* Create the hash table used for demangled names. Each hash entry is
683 a pair of strings; one for the mangled name and one for the demangled
684 name. The entry is hashed via just the mangled name. */
685
686 static void
687 create_demangled_names_hash (struct objfile *objfile)
688 {
689 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
690 The hash table code will round this up to the next prime number.
691 Choosing a much larger table size wastes memory, and saves only about
692 1% in symbol reading. */
693
694 objfile->per_bfd->demangled_names_hash = htab_create_alloc
695 (256, hash_demangled_name_entry, eq_demangled_name_entry,
696 NULL, xcalloc, xfree);
697 }
698
699 /* Try to determine the demangled name for a symbol, based on the
700 language of that symbol. If the language is set to language_auto,
701 it will attempt to find any demangling algorithm that works and
702 then set the language appropriately. The returned name is allocated
703 by the demangler and should be xfree'd. */
704
705 static char *
706 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
707 const char *mangled)
708 {
709 char *demangled = NULL;
710
711 if (gsymbol->language == language_unknown)
712 gsymbol->language = language_auto;
713
714 if (gsymbol->language == language_objc
715 || gsymbol->language == language_auto)
716 {
717 demangled =
718 objc_demangle (mangled, 0);
719 if (demangled != NULL)
720 {
721 gsymbol->language = language_objc;
722 return demangled;
723 }
724 }
725 if (gsymbol->language == language_cplus
726 || gsymbol->language == language_auto)
727 {
728 demangled =
729 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
730 if (demangled != NULL)
731 {
732 gsymbol->language = language_cplus;
733 return demangled;
734 }
735 }
736 if (gsymbol->language == language_java)
737 {
738 demangled =
739 gdb_demangle (mangled,
740 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
741 if (demangled != NULL)
742 {
743 gsymbol->language = language_java;
744 return demangled;
745 }
746 }
747 if (gsymbol->language == language_d
748 || gsymbol->language == language_auto)
749 {
750 demangled = d_demangle(mangled, 0);
751 if (demangled != NULL)
752 {
753 gsymbol->language = language_d;
754 return demangled;
755 }
756 }
757 /* FIXME(dje): Continually adding languages here is clumsy.
758 Better to just call la_demangle if !auto, and if auto then call
759 a utility routine that tries successive languages in turn and reports
760 which one it finds. I realize the la_demangle options may be different
761 for different languages but there's already a FIXME for that. */
762 if (gsymbol->language == language_go
763 || gsymbol->language == language_auto)
764 {
765 demangled = go_demangle (mangled, 0);
766 if (demangled != NULL)
767 {
768 gsymbol->language = language_go;
769 return demangled;
770 }
771 }
772
773 /* We could support `gsymbol->language == language_fortran' here to provide
774 module namespaces also for inferiors with only minimal symbol table (ELF
775 symbols). Just the mangling standard is not standardized across compilers
776 and there is no DW_AT_producer available for inferiors with only the ELF
777 symbols to check the mangling kind. */
778
779 /* Check for Ada symbols last. See comment below explaining why. */
780
781 if (gsymbol->language == language_auto)
782 {
783 const char *demangled = ada_decode (mangled);
784
785 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
786 {
787 /* Set the gsymbol language to Ada, but still return NULL.
788 Two reasons for that:
789
790 1. For Ada, we prefer computing the symbol's decoded name
791 on the fly rather than pre-compute it, in order to save
792 memory (Ada projects are typically very large).
793
794 2. There are some areas in the definition of the GNAT
795 encoding where, with a bit of bad luck, we might be able
796 to decode a non-Ada symbol, generating an incorrect
797 demangled name (Eg: names ending with "TB" for instance
798 are identified as task bodies and so stripped from
799 the decoded name returned).
800
801 Returning NULL, here, helps us get a little bit of
802 the best of both worlds. Because we're last, we should
803 not affect any of the other languages that were able to
804 demangle the symbol before us; we get to correctly tag
805 Ada symbols as such; and even if we incorrectly tagged
806 a non-Ada symbol, which should be rare, any routing
807 through the Ada language should be transparent (Ada
808 tries to behave much like C/C++ with non-Ada symbols). */
809 gsymbol->language = language_ada;
810 return NULL;
811 }
812 }
813
814 return NULL;
815 }
816
817 /* Set both the mangled and demangled (if any) names for GSYMBOL based
818 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
819 objfile's obstack; but if COPY_NAME is 0 and if NAME is
820 NUL-terminated, then this function assumes that NAME is already
821 correctly saved (either permanently or with a lifetime tied to the
822 objfile), and it will not be copied.
823
824 The hash table corresponding to OBJFILE is used, and the memory
825 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
826 so the pointer can be discarded after calling this function. */
827
828 /* We have to be careful when dealing with Java names: when we run
829 into a Java minimal symbol, we don't know it's a Java symbol, so it
830 gets demangled as a C++ name. This is unfortunate, but there's not
831 much we can do about it: but when demangling partial symbols and
832 regular symbols, we'd better not reuse the wrong demangled name.
833 (See PR gdb/1039.) We solve this by putting a distinctive prefix
834 on Java names when storing them in the hash table. */
835
836 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
837 don't mind the Java prefix so much: different languages have
838 different demangling requirements, so it's only natural that we
839 need to keep language data around in our demangling cache. But
840 it's not good that the minimal symbol has the wrong demangled name.
841 Unfortunately, I can't think of any easy solution to that
842 problem. */
843
844 #define JAVA_PREFIX "##JAVA$$"
845 #define JAVA_PREFIX_LEN 8
846
847 void
848 symbol_set_names (struct general_symbol_info *gsymbol,
849 const char *linkage_name, int len, int copy_name,
850 struct objfile *objfile)
851 {
852 struct demangled_name_entry **slot;
853 /* A 0-terminated copy of the linkage name. */
854 const char *linkage_name_copy;
855 /* A copy of the linkage name that might have a special Java prefix
856 added to it, for use when looking names up in the hash table. */
857 const char *lookup_name;
858 /* The length of lookup_name. */
859 int lookup_len;
860 struct demangled_name_entry entry;
861 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
862
863 if (gsymbol->language == language_ada)
864 {
865 /* In Ada, we do the symbol lookups using the mangled name, so
866 we can save some space by not storing the demangled name.
867
868 As a side note, we have also observed some overlap between
869 the C++ mangling and Ada mangling, similarly to what has
870 been observed with Java. Because we don't store the demangled
871 name with the symbol, we don't need to use the same trick
872 as Java. */
873 if (!copy_name)
874 gsymbol->name = linkage_name;
875 else
876 {
877 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
878
879 memcpy (name, linkage_name, len);
880 name[len] = '\0';
881 gsymbol->name = name;
882 }
883 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
884
885 return;
886 }
887
888 if (per_bfd->demangled_names_hash == NULL)
889 create_demangled_names_hash (objfile);
890
891 /* The stabs reader generally provides names that are not
892 NUL-terminated; most of the other readers don't do this, so we
893 can just use the given copy, unless we're in the Java case. */
894 if (gsymbol->language == language_java)
895 {
896 char *alloc_name;
897
898 lookup_len = len + JAVA_PREFIX_LEN;
899 alloc_name = alloca (lookup_len + 1);
900 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
901 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
902 alloc_name[lookup_len] = '\0';
903
904 lookup_name = alloc_name;
905 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
906 }
907 else if (linkage_name[len] != '\0')
908 {
909 char *alloc_name;
910
911 lookup_len = len;
912 alloc_name = alloca (lookup_len + 1);
913 memcpy (alloc_name, linkage_name, len);
914 alloc_name[lookup_len] = '\0';
915
916 lookup_name = alloc_name;
917 linkage_name_copy = alloc_name;
918 }
919 else
920 {
921 lookup_len = len;
922 lookup_name = linkage_name;
923 linkage_name_copy = linkage_name;
924 }
925
926 entry.mangled = lookup_name;
927 slot = ((struct demangled_name_entry **)
928 htab_find_slot (per_bfd->demangled_names_hash,
929 &entry, INSERT));
930
931 /* If this name is not in the hash table, add it. */
932 if (*slot == NULL
933 /* A C version of the symbol may have already snuck into the table.
934 This happens to, e.g., main.init (__go_init_main). Cope. */
935 || (gsymbol->language == language_go
936 && (*slot)->demangled[0] == '\0'))
937 {
938 char *demangled_name = symbol_find_demangled_name (gsymbol,
939 linkage_name_copy);
940 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
941
942 /* Suppose we have demangled_name==NULL, copy_name==0, and
943 lookup_name==linkage_name. In this case, we already have the
944 mangled name saved, and we don't have a demangled name. So,
945 you might think we could save a little space by not recording
946 this in the hash table at all.
947
948 It turns out that it is actually important to still save such
949 an entry in the hash table, because storing this name gives
950 us better bcache hit rates for partial symbols. */
951 if (!copy_name && lookup_name == linkage_name)
952 {
953 *slot = obstack_alloc (&per_bfd->storage_obstack,
954 offsetof (struct demangled_name_entry,
955 demangled)
956 + demangled_len + 1);
957 (*slot)->mangled = lookup_name;
958 }
959 else
960 {
961 char *mangled_ptr;
962
963 /* If we must copy the mangled name, put it directly after
964 the demangled name so we can have a single
965 allocation. */
966 *slot = obstack_alloc (&per_bfd->storage_obstack,
967 offsetof (struct demangled_name_entry,
968 demangled)
969 + lookup_len + demangled_len + 2);
970 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
971 strcpy (mangled_ptr, lookup_name);
972 (*slot)->mangled = mangled_ptr;
973 }
974
975 if (demangled_name != NULL)
976 {
977 strcpy ((*slot)->demangled, demangled_name);
978 xfree (demangled_name);
979 }
980 else
981 (*slot)->demangled[0] = '\0';
982 }
983
984 gsymbol->name = (*slot)->mangled + lookup_len - len;
985 if ((*slot)->demangled[0] != '\0')
986 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
987 &per_bfd->storage_obstack);
988 else
989 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
990 }
991
992 /* Return the source code name of a symbol. In languages where
993 demangling is necessary, this is the demangled name. */
994
995 const char *
996 symbol_natural_name (const struct general_symbol_info *gsymbol)
997 {
998 switch (gsymbol->language)
999 {
1000 case language_cplus:
1001 case language_d:
1002 case language_go:
1003 case language_java:
1004 case language_objc:
1005 case language_fortran:
1006 if (symbol_get_demangled_name (gsymbol) != NULL)
1007 return symbol_get_demangled_name (gsymbol);
1008 break;
1009 case language_ada:
1010 return ada_decode_symbol (gsymbol);
1011 default:
1012 break;
1013 }
1014 return gsymbol->name;
1015 }
1016
1017 /* Return the demangled name for a symbol based on the language for
1018 that symbol. If no demangled name exists, return NULL. */
1019
1020 const char *
1021 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1022 {
1023 const char *dem_name = NULL;
1024
1025 switch (gsymbol->language)
1026 {
1027 case language_cplus:
1028 case language_d:
1029 case language_go:
1030 case language_java:
1031 case language_objc:
1032 case language_fortran:
1033 dem_name = symbol_get_demangled_name (gsymbol);
1034 break;
1035 case language_ada:
1036 dem_name = ada_decode_symbol (gsymbol);
1037 break;
1038 default:
1039 break;
1040 }
1041 return dem_name;
1042 }
1043
1044 /* Return the search name of a symbol---generally the demangled or
1045 linkage name of the symbol, depending on how it will be searched for.
1046 If there is no distinct demangled name, then returns the same value
1047 (same pointer) as SYMBOL_LINKAGE_NAME. */
1048
1049 const char *
1050 symbol_search_name (const struct general_symbol_info *gsymbol)
1051 {
1052 if (gsymbol->language == language_ada)
1053 return gsymbol->name;
1054 else
1055 return symbol_natural_name (gsymbol);
1056 }
1057
1058 /* Initialize the structure fields to zero values. */
1059
1060 void
1061 init_sal (struct symtab_and_line *sal)
1062 {
1063 memset (sal, 0, sizeof (*sal));
1064 }
1065 \f
1066
1067 /* Return 1 if the two sections are the same, or if they could
1068 plausibly be copies of each other, one in an original object
1069 file and another in a separated debug file. */
1070
1071 int
1072 matching_obj_sections (struct obj_section *obj_first,
1073 struct obj_section *obj_second)
1074 {
1075 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1076 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1077 struct objfile *obj;
1078
1079 /* If they're the same section, then they match. */
1080 if (first == second)
1081 return 1;
1082
1083 /* If either is NULL, give up. */
1084 if (first == NULL || second == NULL)
1085 return 0;
1086
1087 /* This doesn't apply to absolute symbols. */
1088 if (first->owner == NULL || second->owner == NULL)
1089 return 0;
1090
1091 /* If they're in the same object file, they must be different sections. */
1092 if (first->owner == second->owner)
1093 return 0;
1094
1095 /* Check whether the two sections are potentially corresponding. They must
1096 have the same size, address, and name. We can't compare section indexes,
1097 which would be more reliable, because some sections may have been
1098 stripped. */
1099 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1100 return 0;
1101
1102 /* In-memory addresses may start at a different offset, relativize them. */
1103 if (bfd_get_section_vma (first->owner, first)
1104 - bfd_get_start_address (first->owner)
1105 != bfd_get_section_vma (second->owner, second)
1106 - bfd_get_start_address (second->owner))
1107 return 0;
1108
1109 if (bfd_get_section_name (first->owner, first) == NULL
1110 || bfd_get_section_name (second->owner, second) == NULL
1111 || strcmp (bfd_get_section_name (first->owner, first),
1112 bfd_get_section_name (second->owner, second)) != 0)
1113 return 0;
1114
1115 /* Otherwise check that they are in corresponding objfiles. */
1116
1117 ALL_OBJFILES (obj)
1118 if (obj->obfd == first->owner)
1119 break;
1120 gdb_assert (obj != NULL);
1121
1122 if (obj->separate_debug_objfile != NULL
1123 && obj->separate_debug_objfile->obfd == second->owner)
1124 return 1;
1125 if (obj->separate_debug_objfile_backlink != NULL
1126 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1127 return 1;
1128
1129 return 0;
1130 }
1131
1132 /* See symtab.h. */
1133
1134 void
1135 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1136 {
1137 struct objfile *objfile;
1138 struct bound_minimal_symbol msymbol;
1139
1140 /* If we know that this is not a text address, return failure. This is
1141 necessary because we loop based on texthigh and textlow, which do
1142 not include the data ranges. */
1143 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1144 if (msymbol.minsym
1145 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1146 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1147 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1148 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1149 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1150 return;
1151
1152 ALL_OBJFILES (objfile)
1153 {
1154 struct compunit_symtab *cust = NULL;
1155
1156 if (objfile->sf)
1157 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1158 pc, section, 0);
1159 if (cust)
1160 return;
1161 }
1162 }
1163 \f
1164 /* Hash function for the symbol cache. */
1165
1166 static unsigned int
1167 hash_symbol_entry (const struct objfile *objfile_context,
1168 const char *name, domain_enum domain)
1169 {
1170 unsigned int hash = (uintptr_t) objfile_context;
1171
1172 if (name != NULL)
1173 hash += htab_hash_string (name);
1174
1175 hash += domain;
1176
1177 return hash;
1178 }
1179
1180 /* Equality function for the symbol cache. */
1181
1182 static int
1183 eq_symbol_entry (const struct symbol_cache_slot *slot,
1184 const struct objfile *objfile_context,
1185 const char *name, domain_enum domain)
1186 {
1187 const char *slot_name;
1188 domain_enum slot_domain;
1189
1190 if (slot->state == SYMBOL_SLOT_UNUSED)
1191 return 0;
1192
1193 if (slot->objfile_context != objfile_context)
1194 return 0;
1195
1196 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1197 {
1198 slot_name = slot->value.not_found.name;
1199 slot_domain = slot->value.not_found.domain;
1200 }
1201 else
1202 {
1203 slot_name = SYMBOL_LINKAGE_NAME (slot->value.found);
1204 slot_domain = SYMBOL_DOMAIN (slot->value.found);
1205 }
1206
1207 /* NULL names match. */
1208 if (slot_name == NULL && name == NULL)
1209 ;
1210 else if (slot_name != NULL && name != NULL)
1211 {
1212 if (strcmp (slot_name, name) != 0)
1213 return 0;
1214 }
1215 else
1216 {
1217 /* Only one name is NULL. */
1218 return 0;
1219 }
1220
1221 if (slot_domain != domain)
1222 return 0;
1223
1224 return 1;
1225 }
1226
1227 /* Given a cache of size SIZE, return the size of the struct (with variable
1228 length array) in bytes. */
1229
1230 static size_t
1231 symbol_cache_byte_size (unsigned int size)
1232 {
1233 return (sizeof (struct block_symbol_cache)
1234 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1235 }
1236
1237 /* Resize CACHE. */
1238
1239 static void
1240 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1241 {
1242 /* If there's no change in size, don't do anything.
1243 All caches have the same size, so we can just compare with the size
1244 of the global symbols cache. */
1245 if ((cache->global_symbols != NULL
1246 && cache->global_symbols->size == new_size)
1247 || (cache->global_symbols == NULL
1248 && new_size == 0))
1249 return;
1250
1251 xfree (cache->global_symbols);
1252 xfree (cache->static_symbols);
1253
1254 if (new_size == 0)
1255 {
1256 cache->global_symbols = NULL;
1257 cache->static_symbols = NULL;
1258 }
1259 else
1260 {
1261 size_t total_size = symbol_cache_byte_size (new_size);
1262
1263 cache->global_symbols = xcalloc (1, total_size);
1264 cache->static_symbols = xcalloc (1, total_size);
1265 cache->global_symbols->size = new_size;
1266 cache->static_symbols->size = new_size;
1267 }
1268 }
1269
1270 /* Make a symbol cache of size SIZE. */
1271
1272 static struct symbol_cache *
1273 make_symbol_cache (unsigned int size)
1274 {
1275 struct symbol_cache *cache;
1276
1277 cache = XCNEW (struct symbol_cache);
1278 resize_symbol_cache (cache, symbol_cache_size);
1279 return cache;
1280 }
1281
1282 /* Free the space used by CACHE. */
1283
1284 static void
1285 free_symbol_cache (struct symbol_cache *cache)
1286 {
1287 xfree (cache->global_symbols);
1288 xfree (cache->static_symbols);
1289 xfree (cache);
1290 }
1291
1292 /* Return the symbol cache of PSPACE.
1293 Create one if it doesn't exist yet. */
1294
1295 static struct symbol_cache *
1296 get_symbol_cache (struct program_space *pspace)
1297 {
1298 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1299
1300 if (cache == NULL)
1301 {
1302 cache = make_symbol_cache (symbol_cache_size);
1303 set_program_space_data (pspace, symbol_cache_key, cache);
1304 }
1305
1306 return cache;
1307 }
1308
1309 /* Delete the symbol cache of PSPACE.
1310 Called when PSPACE is destroyed. */
1311
1312 static void
1313 symbol_cache_cleanup (struct program_space *pspace, void *data)
1314 {
1315 struct symbol_cache *cache = data;
1316
1317 free_symbol_cache (cache);
1318 }
1319
1320 /* Set the size of the symbol cache in all program spaces. */
1321
1322 static void
1323 set_symbol_cache_size (unsigned int new_size)
1324 {
1325 struct program_space *pspace;
1326
1327 ALL_PSPACES (pspace)
1328 {
1329 struct symbol_cache *cache
1330 = program_space_data (pspace, symbol_cache_key);
1331
1332 /* The pspace could have been created but not have a cache yet. */
1333 if (cache != NULL)
1334 resize_symbol_cache (cache, new_size);
1335 }
1336 }
1337
1338 /* Called when symbol-cache-size is set. */
1339
1340 static void
1341 set_symbol_cache_size_handler (char *args, int from_tty,
1342 struct cmd_list_element *c)
1343 {
1344 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1345 {
1346 /* Restore the previous value.
1347 This is the value the "show" command prints. */
1348 new_symbol_cache_size = symbol_cache_size;
1349
1350 error (_("Symbol cache size is too large, max is %u."),
1351 MAX_SYMBOL_CACHE_SIZE);
1352 }
1353 symbol_cache_size = new_symbol_cache_size;
1354
1355 set_symbol_cache_size (symbol_cache_size);
1356 }
1357
1358 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1359 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1360 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1361 failed (and thus this one will too), or NULL if the symbol is not present
1362 in the cache.
1363 *BSC_PTR, *SLOT_PTR are set to the cache and slot of the symbol, whether
1364 found or not found. */
1365
1366 static struct symbol *
1367 symbol_cache_lookup (struct symbol_cache *cache,
1368 struct objfile *objfile_context, int block,
1369 const char *name, domain_enum domain,
1370 struct block_symbol_cache **bsc_ptr,
1371 struct symbol_cache_slot **slot_ptr)
1372 {
1373 struct block_symbol_cache *bsc;
1374 unsigned int hash;
1375 struct symbol_cache_slot *slot;
1376
1377 if (block == GLOBAL_BLOCK)
1378 bsc = cache->global_symbols;
1379 else
1380 bsc = cache->static_symbols;
1381 if (bsc == NULL)
1382 {
1383 *bsc_ptr = NULL;
1384 *slot_ptr = NULL;
1385 return NULL;
1386 }
1387
1388 hash = hash_symbol_entry (objfile_context, name, domain);
1389 slot = bsc->symbols + hash % bsc->size;
1390 *bsc_ptr = bsc;
1391 *slot_ptr = slot;
1392
1393 if (eq_symbol_entry (slot, objfile_context, name, domain))
1394 {
1395 if (symbol_lookup_debug)
1396 fprintf_unfiltered (gdb_stdlog,
1397 "%s block symbol cache hit%s for %s, %s\n",
1398 block == GLOBAL_BLOCK ? "Global" : "Static",
1399 slot->state == SYMBOL_SLOT_NOT_FOUND
1400 ? " (not found)" : "",
1401 name, domain_name (domain));
1402 ++bsc->hits;
1403 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1404 return SYMBOL_LOOKUP_FAILED;
1405 return slot->value.found;
1406 }
1407
1408 if (symbol_lookup_debug)
1409 {
1410 fprintf_unfiltered (gdb_stdlog,
1411 "%s block symbol cache miss for %s, %s\n",
1412 block == GLOBAL_BLOCK ? "Global" : "Static",
1413 name, domain_name (domain));
1414 }
1415 ++bsc->misses;
1416 return NULL;
1417 }
1418
1419 /* Clear out SLOT. */
1420
1421 static void
1422 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1423 {
1424 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1425 xfree (slot->value.not_found.name);
1426 slot->state = SYMBOL_SLOT_UNUSED;
1427 }
1428
1429 /* Mark SYMBOL as found in SLOT. */
1430
1431 static void
1432 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1433 struct symbol_cache_slot *slot,
1434 struct objfile *objfile, struct symbol *symbol)
1435 {
1436 if (bsc == NULL)
1437 return;
1438 if (slot->state != SYMBOL_SLOT_UNUSED)
1439 {
1440 ++bsc->collisions;
1441 symbol_cache_clear_slot (slot);
1442 }
1443 slot->state = SYMBOL_SLOT_FOUND;
1444 slot->objfile_context = objfile;
1445 slot->value.found = symbol;
1446 }
1447
1448 /* Mark symbol NAME, DOMAIN as not found in SLOT. */
1449
1450 static void
1451 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1452 struct symbol_cache_slot *slot,
1453 struct objfile *objfile_context,
1454 const char *name, domain_enum domain)
1455 {
1456 if (bsc == NULL)
1457 return;
1458 if (slot->state != SYMBOL_SLOT_UNUSED)
1459 {
1460 ++bsc->collisions;
1461 symbol_cache_clear_slot (slot);
1462 }
1463 slot->state = SYMBOL_SLOT_NOT_FOUND;
1464 slot->objfile_context = objfile_context;
1465 slot->value.not_found.name = xstrdup (name);
1466 slot->value.not_found.domain = domain;
1467 }
1468
1469 /* Flush the symbol cache of PSPACE. */
1470
1471 static void
1472 symbol_cache_flush (struct program_space *pspace)
1473 {
1474 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1475 int pass;
1476 size_t total_size;
1477
1478 if (cache == NULL)
1479 return;
1480 if (cache->global_symbols == NULL)
1481 {
1482 gdb_assert (symbol_cache_size == 0);
1483 gdb_assert (cache->static_symbols == NULL);
1484 return;
1485 }
1486
1487 /* If the cache is untouched since the last flush, early exit.
1488 This is important for performance during the startup of a program linked
1489 with 100s (or 1000s) of shared libraries. */
1490 if (cache->global_symbols->misses == 0
1491 && cache->static_symbols->misses == 0)
1492 return;
1493
1494 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1495 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1496
1497 for (pass = 0; pass < 2; ++pass)
1498 {
1499 struct block_symbol_cache *bsc
1500 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1501 unsigned int i;
1502
1503 for (i = 0; i < bsc->size; ++i)
1504 symbol_cache_clear_slot (&bsc->symbols[i]);
1505 }
1506
1507 cache->global_symbols->hits = 0;
1508 cache->global_symbols->misses = 0;
1509 cache->global_symbols->collisions = 0;
1510 cache->static_symbols->hits = 0;
1511 cache->static_symbols->misses = 0;
1512 cache->static_symbols->collisions = 0;
1513 }
1514
1515 /* Dump CACHE. */
1516
1517 static void
1518 symbol_cache_dump (const struct symbol_cache *cache)
1519 {
1520 int pass;
1521
1522 if (cache->global_symbols == NULL)
1523 {
1524 printf_filtered (" <disabled>\n");
1525 return;
1526 }
1527
1528 for (pass = 0; pass < 2; ++pass)
1529 {
1530 const struct block_symbol_cache *bsc
1531 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1532 unsigned int i;
1533
1534 if (pass == 0)
1535 printf_filtered ("Global symbols:\n");
1536 else
1537 printf_filtered ("Static symbols:\n");
1538
1539 for (i = 0; i < bsc->size; ++i)
1540 {
1541 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1542
1543 QUIT;
1544
1545 switch (slot->state)
1546 {
1547 case SYMBOL_SLOT_UNUSED:
1548 break;
1549 case SYMBOL_SLOT_NOT_FOUND:
1550 printf_filtered (" [%-4u] = %s, %s (not found)\n", i,
1551 host_address_to_string (slot->objfile_context),
1552 slot->value.not_found.name);
1553 break;
1554 case SYMBOL_SLOT_FOUND:
1555 printf_filtered (" [%-4u] = %s, %s\n", i,
1556 host_address_to_string (slot->objfile_context),
1557 SYMBOL_PRINT_NAME (slot->value.found));
1558 break;
1559 }
1560 }
1561 }
1562 }
1563
1564 /* The "mt print symbol-cache" command. */
1565
1566 static void
1567 maintenance_print_symbol_cache (char *args, int from_tty)
1568 {
1569 struct program_space *pspace;
1570
1571 ALL_PSPACES (pspace)
1572 {
1573 struct symbol_cache *cache;
1574
1575 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1576 pspace->num,
1577 pspace->symfile_object_file != NULL
1578 ? objfile_name (pspace->symfile_object_file)
1579 : "(no object file)");
1580
1581 /* If the cache hasn't been created yet, avoid creating one. */
1582 cache = program_space_data (pspace, symbol_cache_key);
1583 if (cache == NULL)
1584 printf_filtered (" <empty>\n");
1585 else
1586 symbol_cache_dump (cache);
1587 }
1588 }
1589
1590 /* The "mt flush-symbol-cache" command. */
1591
1592 static void
1593 maintenance_flush_symbol_cache (char *args, int from_tty)
1594 {
1595 struct program_space *pspace;
1596
1597 ALL_PSPACES (pspace)
1598 {
1599 symbol_cache_flush (pspace);
1600 }
1601 }
1602
1603 /* Print usage statistics of CACHE. */
1604
1605 static void
1606 symbol_cache_stats (struct symbol_cache *cache)
1607 {
1608 int pass;
1609
1610 if (cache->global_symbols == NULL)
1611 {
1612 printf_filtered (" <disabled>\n");
1613 return;
1614 }
1615
1616 for (pass = 0; pass < 2; ++pass)
1617 {
1618 const struct block_symbol_cache *bsc
1619 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1620
1621 QUIT;
1622
1623 if (pass == 0)
1624 printf_filtered ("Global block cache stats:\n");
1625 else
1626 printf_filtered ("Static block cache stats:\n");
1627
1628 printf_filtered (" size: %u\n", bsc->size);
1629 printf_filtered (" hits: %u\n", bsc->hits);
1630 printf_filtered (" misses: %u\n", bsc->misses);
1631 printf_filtered (" collisions: %u\n", bsc->collisions);
1632 }
1633 }
1634
1635 /* The "mt print symbol-cache-statistics" command. */
1636
1637 static void
1638 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1639 {
1640 struct program_space *pspace;
1641
1642 ALL_PSPACES (pspace)
1643 {
1644 struct symbol_cache *cache;
1645
1646 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1647 pspace->num,
1648 pspace->symfile_object_file != NULL
1649 ? objfile_name (pspace->symfile_object_file)
1650 : "(no object file)");
1651
1652 /* If the cache hasn't been created yet, avoid creating one. */
1653 cache = program_space_data (pspace, symbol_cache_key);
1654 if (cache == NULL)
1655 printf_filtered (" empty, no stats available\n");
1656 else
1657 symbol_cache_stats (cache);
1658 }
1659 }
1660
1661 /* This module's 'new_objfile' observer. */
1662
1663 static void
1664 symtab_new_objfile_observer (struct objfile *objfile)
1665 {
1666 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1667 symbol_cache_flush (current_program_space);
1668 }
1669
1670 /* This module's 'free_objfile' observer. */
1671
1672 static void
1673 symtab_free_objfile_observer (struct objfile *objfile)
1674 {
1675 symbol_cache_flush (objfile->pspace);
1676 }
1677 \f
1678 /* Debug symbols usually don't have section information. We need to dig that
1679 out of the minimal symbols and stash that in the debug symbol. */
1680
1681 void
1682 fixup_section (struct general_symbol_info *ginfo,
1683 CORE_ADDR addr, struct objfile *objfile)
1684 {
1685 struct minimal_symbol *msym;
1686
1687 /* First, check whether a minimal symbol with the same name exists
1688 and points to the same address. The address check is required
1689 e.g. on PowerPC64, where the minimal symbol for a function will
1690 point to the function descriptor, while the debug symbol will
1691 point to the actual function code. */
1692 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1693 if (msym)
1694 ginfo->section = MSYMBOL_SECTION (msym);
1695 else
1696 {
1697 /* Static, function-local variables do appear in the linker
1698 (minimal) symbols, but are frequently given names that won't
1699 be found via lookup_minimal_symbol(). E.g., it has been
1700 observed in frv-uclinux (ELF) executables that a static,
1701 function-local variable named "foo" might appear in the
1702 linker symbols as "foo.6" or "foo.3". Thus, there is no
1703 point in attempting to extend the lookup-by-name mechanism to
1704 handle this case due to the fact that there can be multiple
1705 names.
1706
1707 So, instead, search the section table when lookup by name has
1708 failed. The ``addr'' and ``endaddr'' fields may have already
1709 been relocated. If so, the relocation offset (i.e. the
1710 ANOFFSET value) needs to be subtracted from these values when
1711 performing the comparison. We unconditionally subtract it,
1712 because, when no relocation has been performed, the ANOFFSET
1713 value will simply be zero.
1714
1715 The address of the symbol whose section we're fixing up HAS
1716 NOT BEEN adjusted (relocated) yet. It can't have been since
1717 the section isn't yet known and knowing the section is
1718 necessary in order to add the correct relocation value. In
1719 other words, we wouldn't even be in this function (attempting
1720 to compute the section) if it were already known.
1721
1722 Note that it is possible to search the minimal symbols
1723 (subtracting the relocation value if necessary) to find the
1724 matching minimal symbol, but this is overkill and much less
1725 efficient. It is not necessary to find the matching minimal
1726 symbol, only its section.
1727
1728 Note that this technique (of doing a section table search)
1729 can fail when unrelocated section addresses overlap. For
1730 this reason, we still attempt a lookup by name prior to doing
1731 a search of the section table. */
1732
1733 struct obj_section *s;
1734 int fallback = -1;
1735
1736 ALL_OBJFILE_OSECTIONS (objfile, s)
1737 {
1738 int idx = s - objfile->sections;
1739 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1740
1741 if (fallback == -1)
1742 fallback = idx;
1743
1744 if (obj_section_addr (s) - offset <= addr
1745 && addr < obj_section_endaddr (s) - offset)
1746 {
1747 ginfo->section = idx;
1748 return;
1749 }
1750 }
1751
1752 /* If we didn't find the section, assume it is in the first
1753 section. If there is no allocated section, then it hardly
1754 matters what we pick, so just pick zero. */
1755 if (fallback == -1)
1756 ginfo->section = 0;
1757 else
1758 ginfo->section = fallback;
1759 }
1760 }
1761
1762 struct symbol *
1763 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1764 {
1765 CORE_ADDR addr;
1766
1767 if (!sym)
1768 return NULL;
1769
1770 if (!SYMBOL_OBJFILE_OWNED (sym))
1771 return sym;
1772
1773 /* We either have an OBJFILE, or we can get at it from the sym's
1774 symtab. Anything else is a bug. */
1775 gdb_assert (objfile || symbol_symtab (sym));
1776
1777 if (objfile == NULL)
1778 objfile = symbol_objfile (sym);
1779
1780 if (SYMBOL_OBJ_SECTION (objfile, sym))
1781 return sym;
1782
1783 /* We should have an objfile by now. */
1784 gdb_assert (objfile);
1785
1786 switch (SYMBOL_CLASS (sym))
1787 {
1788 case LOC_STATIC:
1789 case LOC_LABEL:
1790 addr = SYMBOL_VALUE_ADDRESS (sym);
1791 break;
1792 case LOC_BLOCK:
1793 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1794 break;
1795
1796 default:
1797 /* Nothing else will be listed in the minsyms -- no use looking
1798 it up. */
1799 return sym;
1800 }
1801
1802 fixup_section (&sym->ginfo, addr, objfile);
1803
1804 return sym;
1805 }
1806
1807 /* Compute the demangled form of NAME as used by the various symbol
1808 lookup functions. The result is stored in *RESULT_NAME. Returns a
1809 cleanup which can be used to clean up the result.
1810
1811 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1812 Normally, Ada symbol lookups are performed using the encoded name
1813 rather than the demangled name, and so it might seem to make sense
1814 for this function to return an encoded version of NAME.
1815 Unfortunately, we cannot do this, because this function is used in
1816 circumstances where it is not appropriate to try to encode NAME.
1817 For instance, when displaying the frame info, we demangle the name
1818 of each parameter, and then perform a symbol lookup inside our
1819 function using that demangled name. In Ada, certain functions
1820 have internally-generated parameters whose name contain uppercase
1821 characters. Encoding those name would result in those uppercase
1822 characters to become lowercase, and thus cause the symbol lookup
1823 to fail. */
1824
1825 struct cleanup *
1826 demangle_for_lookup (const char *name, enum language lang,
1827 const char **result_name)
1828 {
1829 char *demangled_name = NULL;
1830 const char *modified_name = NULL;
1831 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1832
1833 modified_name = name;
1834
1835 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1836 lookup, so we can always binary search. */
1837 if (lang == language_cplus)
1838 {
1839 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1840 if (demangled_name)
1841 {
1842 modified_name = demangled_name;
1843 make_cleanup (xfree, demangled_name);
1844 }
1845 else
1846 {
1847 /* If we were given a non-mangled name, canonicalize it
1848 according to the language (so far only for C++). */
1849 demangled_name = cp_canonicalize_string (name);
1850 if (demangled_name)
1851 {
1852 modified_name = demangled_name;
1853 make_cleanup (xfree, demangled_name);
1854 }
1855 }
1856 }
1857 else if (lang == language_java)
1858 {
1859 demangled_name = gdb_demangle (name,
1860 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1861 if (demangled_name)
1862 {
1863 modified_name = demangled_name;
1864 make_cleanup (xfree, demangled_name);
1865 }
1866 }
1867 else if (lang == language_d)
1868 {
1869 demangled_name = d_demangle (name, 0);
1870 if (demangled_name)
1871 {
1872 modified_name = demangled_name;
1873 make_cleanup (xfree, demangled_name);
1874 }
1875 }
1876 else if (lang == language_go)
1877 {
1878 demangled_name = go_demangle (name, 0);
1879 if (demangled_name)
1880 {
1881 modified_name = demangled_name;
1882 make_cleanup (xfree, demangled_name);
1883 }
1884 }
1885
1886 *result_name = modified_name;
1887 return cleanup;
1888 }
1889
1890 /* See symtab.h.
1891
1892 This function (or rather its subordinates) have a bunch of loops and
1893 it would seem to be attractive to put in some QUIT's (though I'm not really
1894 sure whether it can run long enough to be really important). But there
1895 are a few calls for which it would appear to be bad news to quit
1896 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1897 that there is C++ code below which can error(), but that probably
1898 doesn't affect these calls since they are looking for a known
1899 variable and thus can probably assume it will never hit the C++
1900 code). */
1901
1902 struct symbol *
1903 lookup_symbol_in_language (const char *name, const struct block *block,
1904 const domain_enum domain, enum language lang,
1905 struct field_of_this_result *is_a_field_of_this)
1906 {
1907 const char *modified_name;
1908 struct symbol *returnval;
1909 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1910
1911 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1912 is_a_field_of_this);
1913 do_cleanups (cleanup);
1914
1915 return returnval;
1916 }
1917
1918 /* See symtab.h. */
1919
1920 struct symbol *
1921 lookup_symbol (const char *name, const struct block *block,
1922 domain_enum domain,
1923 struct field_of_this_result *is_a_field_of_this)
1924 {
1925 return lookup_symbol_in_language (name, block, domain,
1926 current_language->la_language,
1927 is_a_field_of_this);
1928 }
1929
1930 /* See symtab.h. */
1931
1932 struct symbol *
1933 lookup_language_this (const struct language_defn *lang,
1934 const struct block *block)
1935 {
1936 if (lang->la_name_of_this == NULL || block == NULL)
1937 return NULL;
1938
1939 if (symbol_lookup_debug > 1)
1940 {
1941 struct objfile *objfile = lookup_objfile_from_block (block);
1942
1943 fprintf_unfiltered (gdb_stdlog,
1944 "lookup_language_this (%s, %s (objfile %s))",
1945 lang->la_name, host_address_to_string (block),
1946 objfile_debug_name (objfile));
1947 }
1948
1949 while (block)
1950 {
1951 struct symbol *sym;
1952
1953 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1954 if (sym != NULL)
1955 {
1956 if (symbol_lookup_debug > 1)
1957 {
1958 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1959 SYMBOL_PRINT_NAME (sym),
1960 host_address_to_string (sym),
1961 host_address_to_string (block));
1962 }
1963 block_found = block;
1964 return sym;
1965 }
1966 if (BLOCK_FUNCTION (block))
1967 break;
1968 block = BLOCK_SUPERBLOCK (block);
1969 }
1970
1971 if (symbol_lookup_debug > 1)
1972 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1973 return NULL;
1974 }
1975
1976 /* Given TYPE, a structure/union,
1977 return 1 if the component named NAME from the ultimate target
1978 structure/union is defined, otherwise, return 0. */
1979
1980 static int
1981 check_field (struct type *type, const char *name,
1982 struct field_of_this_result *is_a_field_of_this)
1983 {
1984 int i;
1985
1986 /* The type may be a stub. */
1987 CHECK_TYPEDEF (type);
1988
1989 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1990 {
1991 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1992
1993 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1994 {
1995 is_a_field_of_this->type = type;
1996 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1997 return 1;
1998 }
1999 }
2000
2001 /* C++: If it was not found as a data field, then try to return it
2002 as a pointer to a method. */
2003
2004 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2005 {
2006 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2007 {
2008 is_a_field_of_this->type = type;
2009 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2010 return 1;
2011 }
2012 }
2013
2014 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2015 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2016 return 1;
2017
2018 return 0;
2019 }
2020
2021 /* Behave like lookup_symbol except that NAME is the natural name
2022 (e.g., demangled name) of the symbol that we're looking for. */
2023
2024 static struct symbol *
2025 lookup_symbol_aux (const char *name, const struct block *block,
2026 const domain_enum domain, enum language language,
2027 struct field_of_this_result *is_a_field_of_this)
2028 {
2029 struct symbol *sym;
2030 const struct language_defn *langdef;
2031
2032 if (symbol_lookup_debug)
2033 {
2034 struct objfile *objfile = lookup_objfile_from_block (block);
2035
2036 fprintf_unfiltered (gdb_stdlog,
2037 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2038 name, host_address_to_string (block),
2039 objfile != NULL
2040 ? objfile_debug_name (objfile) : "NULL",
2041 domain_name (domain), language_str (language));
2042 }
2043
2044 /* Initialize block_found so that the language la_lookup_symbol_nonlocal
2045 routines don't have to set it (to NULL) if a primitive type is found.
2046 We do this early so that block_found is also NULL if no symbol is
2047 found (though this is not part of the API, and callers cannot assume
2048 this). */
2049 block_found = NULL;
2050
2051 /* Make sure we do something sensible with is_a_field_of_this, since
2052 the callers that set this parameter to some non-null value will
2053 certainly use it later. If we don't set it, the contents of
2054 is_a_field_of_this are undefined. */
2055 if (is_a_field_of_this != NULL)
2056 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2057
2058 /* Search specified block and its superiors. Don't search
2059 STATIC_BLOCK or GLOBAL_BLOCK. */
2060
2061 sym = lookup_local_symbol (name, block, domain, language);
2062 if (sym != NULL)
2063 {
2064 if (symbol_lookup_debug)
2065 {
2066 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2067 host_address_to_string (sym));
2068 }
2069 return sym;
2070 }
2071
2072 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2073 check to see if NAME is a field of `this'. */
2074
2075 langdef = language_def (language);
2076
2077 /* Don't do this check if we are searching for a struct. It will
2078 not be found by check_field, but will be found by other
2079 means. */
2080 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2081 {
2082 struct symbol *sym = lookup_language_this (langdef, block);
2083
2084 if (sym)
2085 {
2086 struct type *t = sym->type;
2087
2088 /* I'm not really sure that type of this can ever
2089 be typedefed; just be safe. */
2090 CHECK_TYPEDEF (t);
2091 if (TYPE_CODE (t) == TYPE_CODE_PTR
2092 || TYPE_CODE (t) == TYPE_CODE_REF)
2093 t = TYPE_TARGET_TYPE (t);
2094
2095 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2096 && TYPE_CODE (t) != TYPE_CODE_UNION)
2097 error (_("Internal error: `%s' is not an aggregate"),
2098 langdef->la_name_of_this);
2099
2100 if (check_field (t, name, is_a_field_of_this))
2101 {
2102 if (symbol_lookup_debug)
2103 {
2104 fprintf_unfiltered (gdb_stdlog,
2105 "lookup_symbol_aux (...) = NULL\n");
2106 }
2107 return NULL;
2108 }
2109 }
2110 }
2111
2112 /* Now do whatever is appropriate for LANGUAGE to look
2113 up static and global variables. */
2114
2115 sym = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2116 if (sym != NULL)
2117 {
2118 if (symbol_lookup_debug)
2119 {
2120 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2121 host_address_to_string (sym));
2122 }
2123 return sym;
2124 }
2125
2126 /* Now search all static file-level symbols. Not strictly correct,
2127 but more useful than an error. */
2128
2129 sym = lookup_static_symbol (name, domain);
2130 if (symbol_lookup_debug)
2131 {
2132 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2133 sym != NULL ? host_address_to_string (sym) : "NULL");
2134 }
2135 return sym;
2136 }
2137
2138 /* Check to see if the symbol is defined in BLOCK or its superiors.
2139 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2140
2141 static struct symbol *
2142 lookup_local_symbol (const char *name, const struct block *block,
2143 const domain_enum domain,
2144 enum language language)
2145 {
2146 struct symbol *sym;
2147 const struct block *static_block = block_static_block (block);
2148 const char *scope = block_scope (block);
2149
2150 /* Check if either no block is specified or it's a global block. */
2151
2152 if (static_block == NULL)
2153 return NULL;
2154
2155 while (block != static_block)
2156 {
2157 sym = lookup_symbol_in_block (name, block, domain);
2158 if (sym != NULL)
2159 return sym;
2160
2161 if (language == language_cplus || language == language_fortran)
2162 {
2163 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
2164 domain);
2165 if (sym != NULL)
2166 return sym;
2167 }
2168
2169 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2170 break;
2171 block = BLOCK_SUPERBLOCK (block);
2172 }
2173
2174 /* We've reached the end of the function without finding a result. */
2175
2176 return NULL;
2177 }
2178
2179 /* See symtab.h. */
2180
2181 struct objfile *
2182 lookup_objfile_from_block (const struct block *block)
2183 {
2184 struct objfile *obj;
2185 struct compunit_symtab *cust;
2186
2187 if (block == NULL)
2188 return NULL;
2189
2190 block = block_global_block (block);
2191 /* Look through all blockvectors. */
2192 ALL_COMPUNITS (obj, cust)
2193 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2194 GLOBAL_BLOCK))
2195 {
2196 if (obj->separate_debug_objfile_backlink)
2197 obj = obj->separate_debug_objfile_backlink;
2198
2199 return obj;
2200 }
2201
2202 return NULL;
2203 }
2204
2205 /* See symtab.h. */
2206
2207 struct symbol *
2208 lookup_symbol_in_block (const char *name, const struct block *block,
2209 const domain_enum domain)
2210 {
2211 struct symbol *sym;
2212
2213 if (symbol_lookup_debug > 1)
2214 {
2215 struct objfile *objfile = lookup_objfile_from_block (block);
2216
2217 fprintf_unfiltered (gdb_stdlog,
2218 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2219 name, host_address_to_string (block),
2220 objfile_debug_name (objfile),
2221 domain_name (domain));
2222 }
2223
2224 sym = block_lookup_symbol (block, name, domain);
2225 if (sym)
2226 {
2227 if (symbol_lookup_debug > 1)
2228 {
2229 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2230 host_address_to_string (sym));
2231 }
2232 block_found = block;
2233 return fixup_symbol_section (sym, NULL);
2234 }
2235
2236 if (symbol_lookup_debug > 1)
2237 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2238 return NULL;
2239 }
2240
2241 /* See symtab.h. */
2242
2243 struct symbol *
2244 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2245 const char *name,
2246 const domain_enum domain)
2247 {
2248 struct objfile *objfile;
2249
2250 for (objfile = main_objfile;
2251 objfile;
2252 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2253 {
2254 struct symbol *sym = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2255 name, domain);
2256
2257 if (sym != NULL)
2258 return sym;
2259 }
2260
2261 return NULL;
2262 }
2263
2264 /* Check to see if the symbol is defined in one of the OBJFILE's
2265 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2266 depending on whether or not we want to search global symbols or
2267 static symbols. */
2268
2269 static struct symbol *
2270 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2271 const char *name, const domain_enum domain)
2272 {
2273 struct compunit_symtab *cust;
2274
2275 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2276
2277 if (symbol_lookup_debug > 1)
2278 {
2279 fprintf_unfiltered (gdb_stdlog,
2280 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2281 objfile_debug_name (objfile),
2282 block_index == GLOBAL_BLOCK
2283 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2284 name, domain_name (domain));
2285 }
2286
2287 ALL_OBJFILE_COMPUNITS (objfile, cust)
2288 {
2289 const struct blockvector *bv;
2290 const struct block *block;
2291 struct symbol *sym;
2292
2293 bv = COMPUNIT_BLOCKVECTOR (cust);
2294 block = BLOCKVECTOR_BLOCK (bv, block_index);
2295 sym = block_lookup_symbol_primary (block, name, domain);
2296 if (sym)
2297 {
2298 if (symbol_lookup_debug > 1)
2299 {
2300 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2301 host_address_to_string (sym),
2302 host_address_to_string (block));
2303 }
2304 block_found = block;
2305 return fixup_symbol_section (sym, objfile);
2306 }
2307 }
2308
2309 if (symbol_lookup_debug > 1)
2310 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2311 return NULL;
2312 }
2313
2314 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2315 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2316 and all associated separate debug objfiles.
2317
2318 Normally we only look in OBJFILE, and not any separate debug objfiles
2319 because the outer loop will cause them to be searched too. This case is
2320 different. Here we're called from search_symbols where it will only
2321 call us for the the objfile that contains a matching minsym. */
2322
2323 static struct symbol *
2324 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2325 const char *linkage_name,
2326 domain_enum domain)
2327 {
2328 enum language lang = current_language->la_language;
2329 const char *modified_name;
2330 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2331 &modified_name);
2332 struct objfile *main_objfile, *cur_objfile;
2333
2334 if (objfile->separate_debug_objfile_backlink)
2335 main_objfile = objfile->separate_debug_objfile_backlink;
2336 else
2337 main_objfile = objfile;
2338
2339 for (cur_objfile = main_objfile;
2340 cur_objfile;
2341 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2342 {
2343 struct symbol *sym;
2344
2345 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2346 modified_name, domain);
2347 if (sym == NULL)
2348 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2349 modified_name, domain);
2350 if (sym != NULL)
2351 {
2352 do_cleanups (cleanup);
2353 return sym;
2354 }
2355 }
2356
2357 do_cleanups (cleanup);
2358 return NULL;
2359 }
2360
2361 /* A helper function that throws an exception when a symbol was found
2362 in a psymtab but not in a symtab. */
2363
2364 static void ATTRIBUTE_NORETURN
2365 error_in_psymtab_expansion (int block_index, const char *name,
2366 struct compunit_symtab *cust)
2367 {
2368 error (_("\
2369 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2370 %s may be an inlined function, or may be a template function\n \
2371 (if a template, try specifying an instantiation: %s<type>)."),
2372 block_index == GLOBAL_BLOCK ? "global" : "static",
2373 name,
2374 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2375 name, name);
2376 }
2377
2378 /* A helper function for various lookup routines that interfaces with
2379 the "quick" symbol table functions. */
2380
2381 static struct symbol *
2382 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2383 const char *name, const domain_enum domain)
2384 {
2385 struct compunit_symtab *cust;
2386 const struct blockvector *bv;
2387 const struct block *block;
2388 struct symbol *sym;
2389
2390 if (!objfile->sf)
2391 return NULL;
2392
2393 if (symbol_lookup_debug > 1)
2394 {
2395 fprintf_unfiltered (gdb_stdlog,
2396 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2397 objfile_debug_name (objfile),
2398 block_index == GLOBAL_BLOCK
2399 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2400 name, domain_name (domain));
2401 }
2402
2403 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2404 if (cust == NULL)
2405 {
2406 if (symbol_lookup_debug > 1)
2407 {
2408 fprintf_unfiltered (gdb_stdlog,
2409 "lookup_symbol_via_quick_fns (...) = NULL\n");
2410 }
2411 return NULL;
2412 }
2413
2414 bv = COMPUNIT_BLOCKVECTOR (cust);
2415 block = BLOCKVECTOR_BLOCK (bv, block_index);
2416 sym = block_lookup_symbol (block, name, domain);
2417 if (!sym)
2418 error_in_psymtab_expansion (block_index, name, cust);
2419
2420 if (symbol_lookup_debug > 1)
2421 {
2422 fprintf_unfiltered (gdb_stdlog,
2423 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2424 host_address_to_string (sym),
2425 host_address_to_string (block));
2426 }
2427
2428 block_found = block;
2429 return fixup_symbol_section (sym, objfile);
2430 }
2431
2432 /* See symtab.h. */
2433
2434 struct symbol *
2435 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2436 const char *name,
2437 const struct block *block,
2438 const domain_enum domain)
2439 {
2440 struct symbol *sym;
2441
2442 /* NOTE: carlton/2003-05-19: The comments below were written when
2443 this (or what turned into this) was part of lookup_symbol_aux;
2444 I'm much less worried about these questions now, since these
2445 decisions have turned out well, but I leave these comments here
2446 for posterity. */
2447
2448 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2449 not it would be appropriate to search the current global block
2450 here as well. (That's what this code used to do before the
2451 is_a_field_of_this check was moved up.) On the one hand, it's
2452 redundant with the lookup in all objfiles search that happens
2453 next. On the other hand, if decode_line_1 is passed an argument
2454 like filename:var, then the user presumably wants 'var' to be
2455 searched for in filename. On the third hand, there shouldn't be
2456 multiple global variables all of which are named 'var', and it's
2457 not like decode_line_1 has ever restricted its search to only
2458 global variables in a single filename. All in all, only
2459 searching the static block here seems best: it's correct and it's
2460 cleanest. */
2461
2462 /* NOTE: carlton/2002-12-05: There's also a possible performance
2463 issue here: if you usually search for global symbols in the
2464 current file, then it would be slightly better to search the
2465 current global block before searching all the symtabs. But there
2466 are other factors that have a much greater effect on performance
2467 than that one, so I don't think we should worry about that for
2468 now. */
2469
2470 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2471 the current objfile. Searching the current objfile first is useful
2472 for both matching user expectations as well as performance. */
2473
2474 sym = lookup_symbol_in_static_block (name, block, domain);
2475 if (sym != NULL)
2476 return sym;
2477
2478 /* If we didn't find a definition for a builtin type in the static block,
2479 search for it now. This is actually the right thing to do and can be
2480 a massive performance win. E.g., when debugging a program with lots of
2481 shared libraries we could search all of them only to find out the
2482 builtin type isn't defined in any of them. This is common for types
2483 like "void". */
2484 if (domain == VAR_DOMAIN)
2485 {
2486 struct gdbarch *gdbarch;
2487
2488 if (block == NULL)
2489 gdbarch = target_gdbarch ();
2490 else
2491 gdbarch = block_gdbarch (block);
2492 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
2493 if (sym != NULL)
2494 return sym;
2495 }
2496
2497 return lookup_global_symbol (name, block, domain);
2498 }
2499
2500 /* See symtab.h. */
2501
2502 struct symbol *
2503 lookup_symbol_in_static_block (const char *name,
2504 const struct block *block,
2505 const domain_enum domain)
2506 {
2507 const struct block *static_block = block_static_block (block);
2508 struct symbol *sym;
2509
2510 if (static_block == NULL)
2511 return NULL;
2512
2513 if (symbol_lookup_debug)
2514 {
2515 struct objfile *objfile = lookup_objfile_from_block (static_block);
2516
2517 fprintf_unfiltered (gdb_stdlog,
2518 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2519 " %s)\n",
2520 name,
2521 host_address_to_string (block),
2522 objfile_debug_name (objfile),
2523 domain_name (domain));
2524 }
2525
2526 sym = lookup_symbol_in_block (name, static_block, domain);
2527 if (symbol_lookup_debug)
2528 {
2529 fprintf_unfiltered (gdb_stdlog,
2530 "lookup_symbol_in_static_block (...) = %s\n",
2531 sym != NULL ? host_address_to_string (sym) : "NULL");
2532 }
2533 return sym;
2534 }
2535
2536 /* Perform the standard symbol lookup of NAME in OBJFILE:
2537 1) First search expanded symtabs, and if not found
2538 2) Search the "quick" symtabs (partial or .gdb_index).
2539 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2540
2541 static struct symbol *
2542 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2543 const char *name, const domain_enum domain)
2544 {
2545 struct symbol *result;
2546
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2551 objfile_debug_name (objfile),
2552 block_index == GLOBAL_BLOCK
2553 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2554 name, domain_name (domain));
2555 }
2556
2557 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2558 name, domain);
2559 if (result != NULL)
2560 {
2561 if (symbol_lookup_debug)
2562 {
2563 fprintf_unfiltered (gdb_stdlog,
2564 "lookup_symbol_in_objfile (...) = %s"
2565 " (in symtabs)\n",
2566 host_address_to_string (result));
2567 }
2568 return result;
2569 }
2570
2571 result = lookup_symbol_via_quick_fns (objfile, block_index,
2572 name, domain);
2573 if (symbol_lookup_debug)
2574 {
2575 fprintf_unfiltered (gdb_stdlog,
2576 "lookup_symbol_in_objfile (...) = %s%s\n",
2577 result != NULL
2578 ? host_address_to_string (result)
2579 : "NULL",
2580 result != NULL ? " (via quick fns)" : "");
2581 }
2582 return result;
2583 }
2584
2585 /* See symtab.h. */
2586
2587 struct symbol *
2588 lookup_static_symbol (const char *name, const domain_enum domain)
2589 {
2590 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2591 struct objfile *objfile;
2592 struct symbol *result;
2593 struct block_symbol_cache *bsc;
2594 struct symbol_cache_slot *slot;
2595
2596 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2597 NULL for OBJFILE_CONTEXT. */
2598 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2599 &bsc, &slot);
2600 if (result != NULL)
2601 {
2602 if (result == SYMBOL_LOOKUP_FAILED)
2603 return NULL;
2604 return result;
2605 }
2606
2607 ALL_OBJFILES (objfile)
2608 {
2609 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2610 if (result != NULL)
2611 {
2612 /* Still pass NULL for OBJFILE_CONTEXT here. */
2613 symbol_cache_mark_found (bsc, slot, NULL, result);
2614 return result;
2615 }
2616 }
2617
2618 /* Still pass NULL for OBJFILE_CONTEXT here. */
2619 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2620 return NULL;
2621 }
2622
2623 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2624
2625 struct global_sym_lookup_data
2626 {
2627 /* The name of the symbol we are searching for. */
2628 const char *name;
2629
2630 /* The domain to use for our search. */
2631 domain_enum domain;
2632
2633 /* The field where the callback should store the symbol if found.
2634 It should be initialized to NULL before the search is started. */
2635 struct symbol *result;
2636 };
2637
2638 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2639 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2640 OBJFILE. The arguments for the search are passed via CB_DATA,
2641 which in reality is a pointer to struct global_sym_lookup_data. */
2642
2643 static int
2644 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2645 void *cb_data)
2646 {
2647 struct global_sym_lookup_data *data =
2648 (struct global_sym_lookup_data *) cb_data;
2649
2650 gdb_assert (data->result == NULL);
2651
2652 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2653 data->name, data->domain);
2654
2655 /* If we found a match, tell the iterator to stop. Otherwise,
2656 keep going. */
2657 return (data->result != NULL);
2658 }
2659
2660 /* See symtab.h. */
2661
2662 struct symbol *
2663 lookup_global_symbol (const char *name,
2664 const struct block *block,
2665 const domain_enum domain)
2666 {
2667 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2668 struct symbol *sym;
2669 struct objfile *objfile;
2670 struct global_sym_lookup_data lookup_data;
2671 struct block_symbol_cache *bsc;
2672 struct symbol_cache_slot *slot;
2673
2674 objfile = lookup_objfile_from_block (block);
2675
2676 /* First see if we can find the symbol in the cache.
2677 This works because we use the current objfile to qualify the lookup. */
2678 sym = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2679 &bsc, &slot);
2680 if (sym != NULL)
2681 {
2682 if (sym == SYMBOL_LOOKUP_FAILED)
2683 return NULL;
2684 return sym;
2685 }
2686
2687 /* Call library-specific lookup procedure. */
2688 if (objfile != NULL)
2689 sym = solib_global_lookup (objfile, name, domain);
2690
2691 /* If that didn't work go a global search (of global blocks, heh). */
2692 if (sym == NULL)
2693 {
2694 memset (&lookup_data, 0, sizeof (lookup_data));
2695 lookup_data.name = name;
2696 lookup_data.domain = domain;
2697 gdbarch_iterate_over_objfiles_in_search_order
2698 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2699 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2700 sym = lookup_data.result;
2701 }
2702
2703 if (sym != NULL)
2704 symbol_cache_mark_found (bsc, slot, objfile, sym);
2705 else
2706 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2707
2708 return sym;
2709 }
2710
2711 int
2712 symbol_matches_domain (enum language symbol_language,
2713 domain_enum symbol_domain,
2714 domain_enum domain)
2715 {
2716 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2717 A Java class declaration also defines a typedef for the class.
2718 Similarly, any Ada type declaration implicitly defines a typedef. */
2719 if (symbol_language == language_cplus
2720 || symbol_language == language_d
2721 || symbol_language == language_java
2722 || symbol_language == language_ada)
2723 {
2724 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2725 && symbol_domain == STRUCT_DOMAIN)
2726 return 1;
2727 }
2728 /* For all other languages, strict match is required. */
2729 return (symbol_domain == domain);
2730 }
2731
2732 /* See symtab.h. */
2733
2734 struct type *
2735 lookup_transparent_type (const char *name)
2736 {
2737 return current_language->la_lookup_transparent_type (name);
2738 }
2739
2740 /* A helper for basic_lookup_transparent_type that interfaces with the
2741 "quick" symbol table functions. */
2742
2743 static struct type *
2744 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2745 const char *name)
2746 {
2747 struct compunit_symtab *cust;
2748 const struct blockvector *bv;
2749 struct block *block;
2750 struct symbol *sym;
2751
2752 if (!objfile->sf)
2753 return NULL;
2754 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2755 STRUCT_DOMAIN);
2756 if (cust == NULL)
2757 return NULL;
2758
2759 bv = COMPUNIT_BLOCKVECTOR (cust);
2760 block = BLOCKVECTOR_BLOCK (bv, block_index);
2761 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2762 if (!sym)
2763 error_in_psymtab_expansion (block_index, name, cust);
2764
2765 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2766 return SYMBOL_TYPE (sym);
2767
2768 return NULL;
2769 }
2770
2771 /* The standard implementation of lookup_transparent_type. This code
2772 was modeled on lookup_symbol -- the parts not relevant to looking
2773 up types were just left out. In particular it's assumed here that
2774 types are available in STRUCT_DOMAIN and only in file-static or
2775 global blocks. */
2776
2777 struct type *
2778 basic_lookup_transparent_type (const char *name)
2779 {
2780 struct symbol *sym;
2781 struct compunit_symtab *cust;
2782 const struct blockvector *bv;
2783 struct objfile *objfile;
2784 struct block *block;
2785 struct type *t;
2786
2787 /* Now search all the global symbols. Do the symtab's first, then
2788 check the psymtab's. If a psymtab indicates the existence
2789 of the desired name as a global, then do psymtab-to-symtab
2790 conversion on the fly and return the found symbol. */
2791
2792 ALL_OBJFILES (objfile)
2793 {
2794 ALL_OBJFILE_COMPUNITS (objfile, cust)
2795 {
2796 bv = COMPUNIT_BLOCKVECTOR (cust);
2797 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2798 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2799 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2800 {
2801 return SYMBOL_TYPE (sym);
2802 }
2803 }
2804 }
2805
2806 ALL_OBJFILES (objfile)
2807 {
2808 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2809 if (t)
2810 return t;
2811 }
2812
2813 /* Now search the static file-level symbols.
2814 Not strictly correct, but more useful than an error.
2815 Do the symtab's first, then
2816 check the psymtab's. If a psymtab indicates the existence
2817 of the desired name as a file-level static, then do psymtab-to-symtab
2818 conversion on the fly and return the found symbol. */
2819
2820 ALL_OBJFILES (objfile)
2821 {
2822 ALL_OBJFILE_COMPUNITS (objfile, cust)
2823 {
2824 bv = COMPUNIT_BLOCKVECTOR (cust);
2825 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2826 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2827 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2828 {
2829 return SYMBOL_TYPE (sym);
2830 }
2831 }
2832 }
2833
2834 ALL_OBJFILES (objfile)
2835 {
2836 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2837 if (t)
2838 return t;
2839 }
2840
2841 return (struct type *) 0;
2842 }
2843
2844 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2845
2846 For each symbol that matches, CALLBACK is called. The symbol and
2847 DATA are passed to the callback.
2848
2849 If CALLBACK returns zero, the iteration ends. Otherwise, the
2850 search continues. */
2851
2852 void
2853 iterate_over_symbols (const struct block *block, const char *name,
2854 const domain_enum domain,
2855 symbol_found_callback_ftype *callback,
2856 void *data)
2857 {
2858 struct block_iterator iter;
2859 struct symbol *sym;
2860
2861 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2862 {
2863 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2864 SYMBOL_DOMAIN (sym), domain))
2865 {
2866 if (!callback (sym, data))
2867 return;
2868 }
2869 }
2870 }
2871
2872 /* Find the compunit symtab associated with PC and SECTION.
2873 This will read in debug info as necessary. */
2874
2875 struct compunit_symtab *
2876 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2877 {
2878 struct compunit_symtab *cust;
2879 struct compunit_symtab *best_cust = NULL;
2880 struct objfile *objfile;
2881 CORE_ADDR distance = 0;
2882 struct bound_minimal_symbol msymbol;
2883
2884 /* If we know that this is not a text address, return failure. This is
2885 necessary because we loop based on the block's high and low code
2886 addresses, which do not include the data ranges, and because
2887 we call find_pc_sect_psymtab which has a similar restriction based
2888 on the partial_symtab's texthigh and textlow. */
2889 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2890 if (msymbol.minsym
2891 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2892 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2893 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2894 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2895 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2896 return NULL;
2897
2898 /* Search all symtabs for the one whose file contains our address, and which
2899 is the smallest of all the ones containing the address. This is designed
2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2903
2904 This happens for native ecoff format, where code from included files
2905 gets its own symtab. The symtab for the included file should have
2906 been read in already via the dependency mechanism.
2907 It might be swifter to create several symtabs with the same name
2908 like xcoff does (I'm not sure).
2909
2910 It also happens for objfiles that have their functions reordered.
2911 For these, the symtab we are looking for is not necessarily read in. */
2912
2913 ALL_COMPUNITS (objfile, cust)
2914 {
2915 struct block *b;
2916 const struct blockvector *bv;
2917
2918 bv = COMPUNIT_BLOCKVECTOR (cust);
2919 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2920
2921 if (BLOCK_START (b) <= pc
2922 && BLOCK_END (b) > pc
2923 && (distance == 0
2924 || BLOCK_END (b) - BLOCK_START (b) < distance))
2925 {
2926 /* For an objfile that has its functions reordered,
2927 find_pc_psymtab will find the proper partial symbol table
2928 and we simply return its corresponding symtab. */
2929 /* In order to better support objfiles that contain both
2930 stabs and coff debugging info, we continue on if a psymtab
2931 can't be found. */
2932 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2933 {
2934 struct compunit_symtab *result;
2935
2936 result
2937 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2938 msymbol,
2939 pc, section,
2940 0);
2941 if (result != NULL)
2942 return result;
2943 }
2944 if (section != 0)
2945 {
2946 struct block_iterator iter;
2947 struct symbol *sym = NULL;
2948
2949 ALL_BLOCK_SYMBOLS (b, iter, sym)
2950 {
2951 fixup_symbol_section (sym, objfile);
2952 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2953 section))
2954 break;
2955 }
2956 if (sym == NULL)
2957 continue; /* No symbol in this symtab matches
2958 section. */
2959 }
2960 distance = BLOCK_END (b) - BLOCK_START (b);
2961 best_cust = cust;
2962 }
2963 }
2964
2965 if (best_cust != NULL)
2966 return best_cust;
2967
2968 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2969
2970 ALL_OBJFILES (objfile)
2971 {
2972 struct compunit_symtab *result;
2973
2974 if (!objfile->sf)
2975 continue;
2976 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2977 msymbol,
2978 pc, section,
2979 1);
2980 if (result != NULL)
2981 return result;
2982 }
2983
2984 return NULL;
2985 }
2986
2987 /* Find the compunit symtab associated with PC.
2988 This will read in debug info as necessary.
2989 Backward compatibility, no section. */
2990
2991 struct compunit_symtab *
2992 find_pc_compunit_symtab (CORE_ADDR pc)
2993 {
2994 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2995 }
2996 \f
2997
2998 /* Find the source file and line number for a given PC value and SECTION.
2999 Return a structure containing a symtab pointer, a line number,
3000 and a pc range for the entire source line.
3001 The value's .pc field is NOT the specified pc.
3002 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3003 use the line that ends there. Otherwise, in that case, the line
3004 that begins there is used. */
3005
3006 /* The big complication here is that a line may start in one file, and end just
3007 before the start of another file. This usually occurs when you #include
3008 code in the middle of a subroutine. To properly find the end of a line's PC
3009 range, we must search all symtabs associated with this compilation unit, and
3010 find the one whose first PC is closer than that of the next line in this
3011 symtab. */
3012
3013 /* If it's worth the effort, we could be using a binary search. */
3014
3015 struct symtab_and_line
3016 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3017 {
3018 struct compunit_symtab *cust;
3019 struct symtab *iter_s;
3020 struct linetable *l;
3021 int len;
3022 int i;
3023 struct linetable_entry *item;
3024 struct symtab_and_line val;
3025 const struct blockvector *bv;
3026 struct bound_minimal_symbol msymbol;
3027
3028 /* Info on best line seen so far, and where it starts, and its file. */
3029
3030 struct linetable_entry *best = NULL;
3031 CORE_ADDR best_end = 0;
3032 struct symtab *best_symtab = 0;
3033
3034 /* Store here the first line number
3035 of a file which contains the line at the smallest pc after PC.
3036 If we don't find a line whose range contains PC,
3037 we will use a line one less than this,
3038 with a range from the start of that file to the first line's pc. */
3039 struct linetable_entry *alt = NULL;
3040
3041 /* Info on best line seen in this file. */
3042
3043 struct linetable_entry *prev;
3044
3045 /* If this pc is not from the current frame,
3046 it is the address of the end of a call instruction.
3047 Quite likely that is the start of the following statement.
3048 But what we want is the statement containing the instruction.
3049 Fudge the pc to make sure we get that. */
3050
3051 init_sal (&val); /* initialize to zeroes */
3052
3053 val.pspace = current_program_space;
3054
3055 /* It's tempting to assume that, if we can't find debugging info for
3056 any function enclosing PC, that we shouldn't search for line
3057 number info, either. However, GAS can emit line number info for
3058 assembly files --- very helpful when debugging hand-written
3059 assembly code. In such a case, we'd have no debug info for the
3060 function, but we would have line info. */
3061
3062 if (notcurrent)
3063 pc -= 1;
3064
3065 /* elz: added this because this function returned the wrong
3066 information if the pc belongs to a stub (import/export)
3067 to call a shlib function. This stub would be anywhere between
3068 two functions in the target, and the line info was erroneously
3069 taken to be the one of the line before the pc. */
3070
3071 /* RT: Further explanation:
3072
3073 * We have stubs (trampolines) inserted between procedures.
3074 *
3075 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3076 * exists in the main image.
3077 *
3078 * In the minimal symbol table, we have a bunch of symbols
3079 * sorted by start address. The stubs are marked as "trampoline",
3080 * the others appear as text. E.g.:
3081 *
3082 * Minimal symbol table for main image
3083 * main: code for main (text symbol)
3084 * shr1: stub (trampoline symbol)
3085 * foo: code for foo (text symbol)
3086 * ...
3087 * Minimal symbol table for "shr1" image:
3088 * ...
3089 * shr1: code for shr1 (text symbol)
3090 * ...
3091 *
3092 * So the code below is trying to detect if we are in the stub
3093 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3094 * and if found, do the symbolization from the real-code address
3095 * rather than the stub address.
3096 *
3097 * Assumptions being made about the minimal symbol table:
3098 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3099 * if we're really in the trampoline.s If we're beyond it (say
3100 * we're in "foo" in the above example), it'll have a closer
3101 * symbol (the "foo" text symbol for example) and will not
3102 * return the trampoline.
3103 * 2. lookup_minimal_symbol_text() will find a real text symbol
3104 * corresponding to the trampoline, and whose address will
3105 * be different than the trampoline address. I put in a sanity
3106 * check for the address being the same, to avoid an
3107 * infinite recursion.
3108 */
3109 msymbol = lookup_minimal_symbol_by_pc (pc);
3110 if (msymbol.minsym != NULL)
3111 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3112 {
3113 struct bound_minimal_symbol mfunsym
3114 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3115 NULL);
3116
3117 if (mfunsym.minsym == NULL)
3118 /* I eliminated this warning since it is coming out
3119 * in the following situation:
3120 * gdb shmain // test program with shared libraries
3121 * (gdb) break shr1 // function in shared lib
3122 * Warning: In stub for ...
3123 * In the above situation, the shared lib is not loaded yet,
3124 * so of course we can't find the real func/line info,
3125 * but the "break" still works, and the warning is annoying.
3126 * So I commented out the warning. RT */
3127 /* warning ("In stub for %s; unable to find real function/line info",
3128 SYMBOL_LINKAGE_NAME (msymbol)); */
3129 ;
3130 /* fall through */
3131 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3132 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3133 /* Avoid infinite recursion */
3134 /* See above comment about why warning is commented out. */
3135 /* warning ("In stub for %s; unable to find real function/line info",
3136 SYMBOL_LINKAGE_NAME (msymbol)); */
3137 ;
3138 /* fall through */
3139 else
3140 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3141 }
3142
3143
3144 cust = find_pc_sect_compunit_symtab (pc, section);
3145 if (cust == NULL)
3146 {
3147 /* If no symbol information, return previous pc. */
3148 if (notcurrent)
3149 pc++;
3150 val.pc = pc;
3151 return val;
3152 }
3153
3154 bv = COMPUNIT_BLOCKVECTOR (cust);
3155
3156 /* Look at all the symtabs that share this blockvector.
3157 They all have the same apriori range, that we found was right;
3158 but they have different line tables. */
3159
3160 ALL_COMPUNIT_FILETABS (cust, iter_s)
3161 {
3162 /* Find the best line in this symtab. */
3163 l = SYMTAB_LINETABLE (iter_s);
3164 if (!l)
3165 continue;
3166 len = l->nitems;
3167 if (len <= 0)
3168 {
3169 /* I think len can be zero if the symtab lacks line numbers
3170 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3171 I'm not sure which, and maybe it depends on the symbol
3172 reader). */
3173 continue;
3174 }
3175
3176 prev = NULL;
3177 item = l->item; /* Get first line info. */
3178
3179 /* Is this file's first line closer than the first lines of other files?
3180 If so, record this file, and its first line, as best alternate. */
3181 if (item->pc > pc && (!alt || item->pc < alt->pc))
3182 alt = item;
3183
3184 for (i = 0; i < len; i++, item++)
3185 {
3186 /* Leave prev pointing to the linetable entry for the last line
3187 that started at or before PC. */
3188 if (item->pc > pc)
3189 break;
3190
3191 prev = item;
3192 }
3193
3194 /* At this point, prev points at the line whose start addr is <= pc, and
3195 item points at the next line. If we ran off the end of the linetable
3196 (pc >= start of the last line), then prev == item. If pc < start of
3197 the first line, prev will not be set. */
3198
3199 /* Is this file's best line closer than the best in the other files?
3200 If so, record this file, and its best line, as best so far. Don't
3201 save prev if it represents the end of a function (i.e. line number
3202 0) instead of a real line. */
3203
3204 if (prev && prev->line && (!best || prev->pc > best->pc))
3205 {
3206 best = prev;
3207 best_symtab = iter_s;
3208
3209 /* Discard BEST_END if it's before the PC of the current BEST. */
3210 if (best_end <= best->pc)
3211 best_end = 0;
3212 }
3213
3214 /* If another line (denoted by ITEM) is in the linetable and its
3215 PC is after BEST's PC, but before the current BEST_END, then
3216 use ITEM's PC as the new best_end. */
3217 if (best && i < len && item->pc > best->pc
3218 && (best_end == 0 || best_end > item->pc))
3219 best_end = item->pc;
3220 }
3221
3222 if (!best_symtab)
3223 {
3224 /* If we didn't find any line number info, just return zeros.
3225 We used to return alt->line - 1 here, but that could be
3226 anywhere; if we don't have line number info for this PC,
3227 don't make some up. */
3228 val.pc = pc;
3229 }
3230 else if (best->line == 0)
3231 {
3232 /* If our best fit is in a range of PC's for which no line
3233 number info is available (line number is zero) then we didn't
3234 find any valid line information. */
3235 val.pc = pc;
3236 }
3237 else
3238 {
3239 val.symtab = best_symtab;
3240 val.line = best->line;
3241 val.pc = best->pc;
3242 if (best_end && (!alt || best_end < alt->pc))
3243 val.end = best_end;
3244 else if (alt)
3245 val.end = alt->pc;
3246 else
3247 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3248 }
3249 val.section = section;
3250 return val;
3251 }
3252
3253 /* Backward compatibility (no section). */
3254
3255 struct symtab_and_line
3256 find_pc_line (CORE_ADDR pc, int notcurrent)
3257 {
3258 struct obj_section *section;
3259
3260 section = find_pc_overlay (pc);
3261 if (pc_in_unmapped_range (pc, section))
3262 pc = overlay_mapped_address (pc, section);
3263 return find_pc_sect_line (pc, section, notcurrent);
3264 }
3265
3266 /* See symtab.h. */
3267
3268 struct symtab *
3269 find_pc_line_symtab (CORE_ADDR pc)
3270 {
3271 struct symtab_and_line sal;
3272
3273 /* This always passes zero for NOTCURRENT to find_pc_line.
3274 There are currently no callers that ever pass non-zero. */
3275 sal = find_pc_line (pc, 0);
3276 return sal.symtab;
3277 }
3278 \f
3279 /* Find line number LINE in any symtab whose name is the same as
3280 SYMTAB.
3281
3282 If found, return the symtab that contains the linetable in which it was
3283 found, set *INDEX to the index in the linetable of the best entry
3284 found, and set *EXACT_MATCH nonzero if the value returned is an
3285 exact match.
3286
3287 If not found, return NULL. */
3288
3289 struct symtab *
3290 find_line_symtab (struct symtab *symtab, int line,
3291 int *index, int *exact_match)
3292 {
3293 int exact = 0; /* Initialized here to avoid a compiler warning. */
3294
3295 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3296 so far seen. */
3297
3298 int best_index;
3299 struct linetable *best_linetable;
3300 struct symtab *best_symtab;
3301
3302 /* First try looking it up in the given symtab. */
3303 best_linetable = SYMTAB_LINETABLE (symtab);
3304 best_symtab = symtab;
3305 best_index = find_line_common (best_linetable, line, &exact, 0);
3306 if (best_index < 0 || !exact)
3307 {
3308 /* Didn't find an exact match. So we better keep looking for
3309 another symtab with the same name. In the case of xcoff,
3310 multiple csects for one source file (produced by IBM's FORTRAN
3311 compiler) produce multiple symtabs (this is unavoidable
3312 assuming csects can be at arbitrary places in memory and that
3313 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3314
3315 /* BEST is the smallest linenumber > LINE so far seen,
3316 or 0 if none has been seen so far.
3317 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3318 int best;
3319
3320 struct objfile *objfile;
3321 struct compunit_symtab *cu;
3322 struct symtab *s;
3323
3324 if (best_index >= 0)
3325 best = best_linetable->item[best_index].line;
3326 else
3327 best = 0;
3328
3329 ALL_OBJFILES (objfile)
3330 {
3331 if (objfile->sf)
3332 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3333 symtab_to_fullname (symtab));
3334 }
3335
3336 ALL_FILETABS (objfile, cu, s)
3337 {
3338 struct linetable *l;
3339 int ind;
3340
3341 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3342 continue;
3343 if (FILENAME_CMP (symtab_to_fullname (symtab),
3344 symtab_to_fullname (s)) != 0)
3345 continue;
3346 l = SYMTAB_LINETABLE (s);
3347 ind = find_line_common (l, line, &exact, 0);
3348 if (ind >= 0)
3349 {
3350 if (exact)
3351 {
3352 best_index = ind;
3353 best_linetable = l;
3354 best_symtab = s;
3355 goto done;
3356 }
3357 if (best == 0 || l->item[ind].line < best)
3358 {
3359 best = l->item[ind].line;
3360 best_index = ind;
3361 best_linetable = l;
3362 best_symtab = s;
3363 }
3364 }
3365 }
3366 }
3367 done:
3368 if (best_index < 0)
3369 return NULL;
3370
3371 if (index)
3372 *index = best_index;
3373 if (exact_match)
3374 *exact_match = exact;
3375
3376 return best_symtab;
3377 }
3378
3379 /* Given SYMTAB, returns all the PCs function in the symtab that
3380 exactly match LINE. Returns NULL if there are no exact matches,
3381 but updates BEST_ITEM in this case. */
3382
3383 VEC (CORE_ADDR) *
3384 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3385 struct linetable_entry **best_item)
3386 {
3387 int start = 0;
3388 VEC (CORE_ADDR) *result = NULL;
3389
3390 /* First, collect all the PCs that are at this line. */
3391 while (1)
3392 {
3393 int was_exact;
3394 int idx;
3395
3396 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3397 start);
3398 if (idx < 0)
3399 break;
3400
3401 if (!was_exact)
3402 {
3403 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3404
3405 if (*best_item == NULL || item->line < (*best_item)->line)
3406 *best_item = item;
3407
3408 break;
3409 }
3410
3411 VEC_safe_push (CORE_ADDR, result,
3412 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3413 start = idx + 1;
3414 }
3415
3416 return result;
3417 }
3418
3419 \f
3420 /* Set the PC value for a given source file and line number and return true.
3421 Returns zero for invalid line number (and sets the PC to 0).
3422 The source file is specified with a struct symtab. */
3423
3424 int
3425 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3426 {
3427 struct linetable *l;
3428 int ind;
3429
3430 *pc = 0;
3431 if (symtab == 0)
3432 return 0;
3433
3434 symtab = find_line_symtab (symtab, line, &ind, NULL);
3435 if (symtab != NULL)
3436 {
3437 l = SYMTAB_LINETABLE (symtab);
3438 *pc = l->item[ind].pc;
3439 return 1;
3440 }
3441 else
3442 return 0;
3443 }
3444
3445 /* Find the range of pc values in a line.
3446 Store the starting pc of the line into *STARTPTR
3447 and the ending pc (start of next line) into *ENDPTR.
3448 Returns 1 to indicate success.
3449 Returns 0 if could not find the specified line. */
3450
3451 int
3452 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3453 CORE_ADDR *endptr)
3454 {
3455 CORE_ADDR startaddr;
3456 struct symtab_and_line found_sal;
3457
3458 startaddr = sal.pc;
3459 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3460 return 0;
3461
3462 /* This whole function is based on address. For example, if line 10 has
3463 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3464 "info line *0x123" should say the line goes from 0x100 to 0x200
3465 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3466 This also insures that we never give a range like "starts at 0x134
3467 and ends at 0x12c". */
3468
3469 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3470 if (found_sal.line != sal.line)
3471 {
3472 /* The specified line (sal) has zero bytes. */
3473 *startptr = found_sal.pc;
3474 *endptr = found_sal.pc;
3475 }
3476 else
3477 {
3478 *startptr = found_sal.pc;
3479 *endptr = found_sal.end;
3480 }
3481 return 1;
3482 }
3483
3484 /* Given a line table and a line number, return the index into the line
3485 table for the pc of the nearest line whose number is >= the specified one.
3486 Return -1 if none is found. The value is >= 0 if it is an index.
3487 START is the index at which to start searching the line table.
3488
3489 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3490
3491 static int
3492 find_line_common (struct linetable *l, int lineno,
3493 int *exact_match, int start)
3494 {
3495 int i;
3496 int len;
3497
3498 /* BEST is the smallest linenumber > LINENO so far seen,
3499 or 0 if none has been seen so far.
3500 BEST_INDEX identifies the item for it. */
3501
3502 int best_index = -1;
3503 int best = 0;
3504
3505 *exact_match = 0;
3506
3507 if (lineno <= 0)
3508 return -1;
3509 if (l == 0)
3510 return -1;
3511
3512 len = l->nitems;
3513 for (i = start; i < len; i++)
3514 {
3515 struct linetable_entry *item = &(l->item[i]);
3516
3517 if (item->line == lineno)
3518 {
3519 /* Return the first (lowest address) entry which matches. */
3520 *exact_match = 1;
3521 return i;
3522 }
3523
3524 if (item->line > lineno && (best == 0 || item->line < best))
3525 {
3526 best = item->line;
3527 best_index = i;
3528 }
3529 }
3530
3531 /* If we got here, we didn't get an exact match. */
3532 return best_index;
3533 }
3534
3535 int
3536 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3537 {
3538 struct symtab_and_line sal;
3539
3540 sal = find_pc_line (pc, 0);
3541 *startptr = sal.pc;
3542 *endptr = sal.end;
3543 return sal.symtab != 0;
3544 }
3545
3546 /* Given a function symbol SYM, find the symtab and line for the start
3547 of the function.
3548 If the argument FUNFIRSTLINE is nonzero, we want the first line
3549 of real code inside the function. */
3550
3551 struct symtab_and_line
3552 find_function_start_sal (struct symbol *sym, int funfirstline)
3553 {
3554 struct symtab_and_line sal;
3555 struct obj_section *section;
3556
3557 fixup_symbol_section (sym, NULL);
3558 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3559 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3560
3561 /* We always should have a line for the function start address.
3562 If we don't, something is odd. Create a plain SAL refering
3563 just the PC and hope that skip_prologue_sal (if requested)
3564 can find a line number for after the prologue. */
3565 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3566 {
3567 init_sal (&sal);
3568 sal.pspace = current_program_space;
3569 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3570 sal.section = section;
3571 }
3572
3573 if (funfirstline)
3574 skip_prologue_sal (&sal);
3575
3576 return sal;
3577 }
3578
3579 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3580 address for that function that has an entry in SYMTAB's line info
3581 table. If such an entry cannot be found, return FUNC_ADDR
3582 unaltered. */
3583
3584 static CORE_ADDR
3585 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3586 {
3587 CORE_ADDR func_start, func_end;
3588 struct linetable *l;
3589 int i;
3590
3591 /* Give up if this symbol has no lineinfo table. */
3592 l = SYMTAB_LINETABLE (symtab);
3593 if (l == NULL)
3594 return func_addr;
3595
3596 /* Get the range for the function's PC values, or give up if we
3597 cannot, for some reason. */
3598 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3599 return func_addr;
3600
3601 /* Linetable entries are ordered by PC values, see the commentary in
3602 symtab.h where `struct linetable' is defined. Thus, the first
3603 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3604 address we are looking for. */
3605 for (i = 0; i < l->nitems; i++)
3606 {
3607 struct linetable_entry *item = &(l->item[i]);
3608
3609 /* Don't use line numbers of zero, they mark special entries in
3610 the table. See the commentary on symtab.h before the
3611 definition of struct linetable. */
3612 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3613 return item->pc;
3614 }
3615
3616 return func_addr;
3617 }
3618
3619 /* Adjust SAL to the first instruction past the function prologue.
3620 If the PC was explicitly specified, the SAL is not changed.
3621 If the line number was explicitly specified, at most the SAL's PC
3622 is updated. If SAL is already past the prologue, then do nothing. */
3623
3624 void
3625 skip_prologue_sal (struct symtab_and_line *sal)
3626 {
3627 struct symbol *sym;
3628 struct symtab_and_line start_sal;
3629 struct cleanup *old_chain;
3630 CORE_ADDR pc, saved_pc;
3631 struct obj_section *section;
3632 const char *name;
3633 struct objfile *objfile;
3634 struct gdbarch *gdbarch;
3635 const struct block *b, *function_block;
3636 int force_skip, skip;
3637
3638 /* Do not change the SAL if PC was specified explicitly. */
3639 if (sal->explicit_pc)
3640 return;
3641
3642 old_chain = save_current_space_and_thread ();
3643 switch_to_program_space_and_thread (sal->pspace);
3644
3645 sym = find_pc_sect_function (sal->pc, sal->section);
3646 if (sym != NULL)
3647 {
3648 fixup_symbol_section (sym, NULL);
3649
3650 objfile = symbol_objfile (sym);
3651 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3652 section = SYMBOL_OBJ_SECTION (objfile, sym);
3653 name = SYMBOL_LINKAGE_NAME (sym);
3654 }
3655 else
3656 {
3657 struct bound_minimal_symbol msymbol
3658 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3659
3660 if (msymbol.minsym == NULL)
3661 {
3662 do_cleanups (old_chain);
3663 return;
3664 }
3665
3666 objfile = msymbol.objfile;
3667 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3668 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3669 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3670 }
3671
3672 gdbarch = get_objfile_arch (objfile);
3673
3674 /* Process the prologue in two passes. In the first pass try to skip the
3675 prologue (SKIP is true) and verify there is a real need for it (indicated
3676 by FORCE_SKIP). If no such reason was found run a second pass where the
3677 prologue is not skipped (SKIP is false). */
3678
3679 skip = 1;
3680 force_skip = 1;
3681
3682 /* Be conservative - allow direct PC (without skipping prologue) only if we
3683 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3684 have to be set by the caller so we use SYM instead. */
3685 if (sym != NULL
3686 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3687 force_skip = 0;
3688
3689 saved_pc = pc;
3690 do
3691 {
3692 pc = saved_pc;
3693
3694 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3695 so that gdbarch_skip_prologue has something unique to work on. */
3696 if (section_is_overlay (section) && !section_is_mapped (section))
3697 pc = overlay_unmapped_address (pc, section);
3698
3699 /* Skip "first line" of function (which is actually its prologue). */
3700 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3701 if (gdbarch_skip_entrypoint_p (gdbarch))
3702 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3703 if (skip)
3704 pc = gdbarch_skip_prologue (gdbarch, pc);
3705
3706 /* For overlays, map pc back into its mapped VMA range. */
3707 pc = overlay_mapped_address (pc, section);
3708
3709 /* Calculate line number. */
3710 start_sal = find_pc_sect_line (pc, section, 0);
3711
3712 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3713 line is still part of the same function. */
3714 if (skip && start_sal.pc != pc
3715 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3716 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3717 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3718 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3719 {
3720 /* First pc of next line */
3721 pc = start_sal.end;
3722 /* Recalculate the line number (might not be N+1). */
3723 start_sal = find_pc_sect_line (pc, section, 0);
3724 }
3725
3726 /* On targets with executable formats that don't have a concept of
3727 constructors (ELF with .init has, PE doesn't), gcc emits a call
3728 to `__main' in `main' between the prologue and before user
3729 code. */
3730 if (gdbarch_skip_main_prologue_p (gdbarch)
3731 && name && strcmp_iw (name, "main") == 0)
3732 {
3733 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3734 /* Recalculate the line number (might not be N+1). */
3735 start_sal = find_pc_sect_line (pc, section, 0);
3736 force_skip = 1;
3737 }
3738 }
3739 while (!force_skip && skip--);
3740
3741 /* If we still don't have a valid source line, try to find the first
3742 PC in the lineinfo table that belongs to the same function. This
3743 happens with COFF debug info, which does not seem to have an
3744 entry in lineinfo table for the code after the prologue which has
3745 no direct relation to source. For example, this was found to be
3746 the case with the DJGPP target using "gcc -gcoff" when the
3747 compiler inserted code after the prologue to make sure the stack
3748 is aligned. */
3749 if (!force_skip && sym && start_sal.symtab == NULL)
3750 {
3751 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3752 /* Recalculate the line number. */
3753 start_sal = find_pc_sect_line (pc, section, 0);
3754 }
3755
3756 do_cleanups (old_chain);
3757
3758 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3759 forward SAL to the end of the prologue. */
3760 if (sal->pc >= pc)
3761 return;
3762
3763 sal->pc = pc;
3764 sal->section = section;
3765
3766 /* Unless the explicit_line flag was set, update the SAL line
3767 and symtab to correspond to the modified PC location. */
3768 if (sal->explicit_line)
3769 return;
3770
3771 sal->symtab = start_sal.symtab;
3772 sal->line = start_sal.line;
3773 sal->end = start_sal.end;
3774
3775 /* Check if we are now inside an inlined function. If we can,
3776 use the call site of the function instead. */
3777 b = block_for_pc_sect (sal->pc, sal->section);
3778 function_block = NULL;
3779 while (b != NULL)
3780 {
3781 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3782 function_block = b;
3783 else if (BLOCK_FUNCTION (b) != NULL)
3784 break;
3785 b = BLOCK_SUPERBLOCK (b);
3786 }
3787 if (function_block != NULL
3788 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3789 {
3790 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3791 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3792 }
3793 }
3794
3795 /* Given PC at the function's start address, attempt to find the
3796 prologue end using SAL information. Return zero if the skip fails.
3797
3798 A non-optimized prologue traditionally has one SAL for the function
3799 and a second for the function body. A single line function has
3800 them both pointing at the same line.
3801
3802 An optimized prologue is similar but the prologue may contain
3803 instructions (SALs) from the instruction body. Need to skip those
3804 while not getting into the function body.
3805
3806 The functions end point and an increasing SAL line are used as
3807 indicators of the prologue's endpoint.
3808
3809 This code is based on the function refine_prologue_limit
3810 (found in ia64). */
3811
3812 CORE_ADDR
3813 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3814 {
3815 struct symtab_and_line prologue_sal;
3816 CORE_ADDR start_pc;
3817 CORE_ADDR end_pc;
3818 const struct block *bl;
3819
3820 /* Get an initial range for the function. */
3821 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3822 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3823
3824 prologue_sal = find_pc_line (start_pc, 0);
3825 if (prologue_sal.line != 0)
3826 {
3827 /* For languages other than assembly, treat two consecutive line
3828 entries at the same address as a zero-instruction prologue.
3829 The GNU assembler emits separate line notes for each instruction
3830 in a multi-instruction macro, but compilers generally will not
3831 do this. */
3832 if (prologue_sal.symtab->language != language_asm)
3833 {
3834 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3835 int idx = 0;
3836
3837 /* Skip any earlier lines, and any end-of-sequence marker
3838 from a previous function. */
3839 while (linetable->item[idx].pc != prologue_sal.pc
3840 || linetable->item[idx].line == 0)
3841 idx++;
3842
3843 if (idx+1 < linetable->nitems
3844 && linetable->item[idx+1].line != 0
3845 && linetable->item[idx+1].pc == start_pc)
3846 return start_pc;
3847 }
3848
3849 /* If there is only one sal that covers the entire function,
3850 then it is probably a single line function, like
3851 "foo(){}". */
3852 if (prologue_sal.end >= end_pc)
3853 return 0;
3854
3855 while (prologue_sal.end < end_pc)
3856 {
3857 struct symtab_and_line sal;
3858
3859 sal = find_pc_line (prologue_sal.end, 0);
3860 if (sal.line == 0)
3861 break;
3862 /* Assume that a consecutive SAL for the same (or larger)
3863 line mark the prologue -> body transition. */
3864 if (sal.line >= prologue_sal.line)
3865 break;
3866 /* Likewise if we are in a different symtab altogether
3867 (e.g. within a file included via #include).  */
3868 if (sal.symtab != prologue_sal.symtab)
3869 break;
3870
3871 /* The line number is smaller. Check that it's from the
3872 same function, not something inlined. If it's inlined,
3873 then there is no point comparing the line numbers. */
3874 bl = block_for_pc (prologue_sal.end);
3875 while (bl)
3876 {
3877 if (block_inlined_p (bl))
3878 break;
3879 if (BLOCK_FUNCTION (bl))
3880 {
3881 bl = NULL;
3882 break;
3883 }
3884 bl = BLOCK_SUPERBLOCK (bl);
3885 }
3886 if (bl != NULL)
3887 break;
3888
3889 /* The case in which compiler's optimizer/scheduler has
3890 moved instructions into the prologue. We look ahead in
3891 the function looking for address ranges whose
3892 corresponding line number is less the first one that we
3893 found for the function. This is more conservative then
3894 refine_prologue_limit which scans a large number of SALs
3895 looking for any in the prologue. */
3896 prologue_sal = sal;
3897 }
3898 }
3899
3900 if (prologue_sal.end < end_pc)
3901 /* Return the end of this line, or zero if we could not find a
3902 line. */
3903 return prologue_sal.end;
3904 else
3905 /* Don't return END_PC, which is past the end of the function. */
3906 return prologue_sal.pc;
3907 }
3908 \f
3909 /* If P is of the form "operator[ \t]+..." where `...' is
3910 some legitimate operator text, return a pointer to the
3911 beginning of the substring of the operator text.
3912 Otherwise, return "". */
3913
3914 static const char *
3915 operator_chars (const char *p, const char **end)
3916 {
3917 *end = "";
3918 if (strncmp (p, "operator", 8))
3919 return *end;
3920 p += 8;
3921
3922 /* Don't get faked out by `operator' being part of a longer
3923 identifier. */
3924 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3925 return *end;
3926
3927 /* Allow some whitespace between `operator' and the operator symbol. */
3928 while (*p == ' ' || *p == '\t')
3929 p++;
3930
3931 /* Recognize 'operator TYPENAME'. */
3932
3933 if (isalpha (*p) || *p == '_' || *p == '$')
3934 {
3935 const char *q = p + 1;
3936
3937 while (isalnum (*q) || *q == '_' || *q == '$')
3938 q++;
3939 *end = q;
3940 return p;
3941 }
3942
3943 while (*p)
3944 switch (*p)
3945 {
3946 case '\\': /* regexp quoting */
3947 if (p[1] == '*')
3948 {
3949 if (p[2] == '=') /* 'operator\*=' */
3950 *end = p + 3;
3951 else /* 'operator\*' */
3952 *end = p + 2;
3953 return p;
3954 }
3955 else if (p[1] == '[')
3956 {
3957 if (p[2] == ']')
3958 error (_("mismatched quoting on brackets, "
3959 "try 'operator\\[\\]'"));
3960 else if (p[2] == '\\' && p[3] == ']')
3961 {
3962 *end = p + 4; /* 'operator\[\]' */
3963 return p;
3964 }
3965 else
3966 error (_("nothing is allowed between '[' and ']'"));
3967 }
3968 else
3969 {
3970 /* Gratuitous qoute: skip it and move on. */
3971 p++;
3972 continue;
3973 }
3974 break;
3975 case '!':
3976 case '=':
3977 case '*':
3978 case '/':
3979 case '%':
3980 case '^':
3981 if (p[1] == '=')
3982 *end = p + 2;
3983 else
3984 *end = p + 1;
3985 return p;
3986 case '<':
3987 case '>':
3988 case '+':
3989 case '-':
3990 case '&':
3991 case '|':
3992 if (p[0] == '-' && p[1] == '>')
3993 {
3994 /* Struct pointer member operator 'operator->'. */
3995 if (p[2] == '*')
3996 {
3997 *end = p + 3; /* 'operator->*' */
3998 return p;
3999 }
4000 else if (p[2] == '\\')
4001 {
4002 *end = p + 4; /* Hopefully 'operator->\*' */
4003 return p;
4004 }
4005 else
4006 {
4007 *end = p + 2; /* 'operator->' */
4008 return p;
4009 }
4010 }
4011 if (p[1] == '=' || p[1] == p[0])
4012 *end = p + 2;
4013 else
4014 *end = p + 1;
4015 return p;
4016 case '~':
4017 case ',':
4018 *end = p + 1;
4019 return p;
4020 case '(':
4021 if (p[1] != ')')
4022 error (_("`operator ()' must be specified "
4023 "without whitespace in `()'"));
4024 *end = p + 2;
4025 return p;
4026 case '?':
4027 if (p[1] != ':')
4028 error (_("`operator ?:' must be specified "
4029 "without whitespace in `?:'"));
4030 *end = p + 2;
4031 return p;
4032 case '[':
4033 if (p[1] != ']')
4034 error (_("`operator []' must be specified "
4035 "without whitespace in `[]'"));
4036 *end = p + 2;
4037 return p;
4038 default:
4039 error (_("`operator %s' not supported"), p);
4040 break;
4041 }
4042
4043 *end = "";
4044 return *end;
4045 }
4046 \f
4047
4048 /* Cache to watch for file names already seen by filename_seen. */
4049
4050 struct filename_seen_cache
4051 {
4052 /* Table of files seen so far. */
4053 htab_t tab;
4054 /* Initial size of the table. It automagically grows from here. */
4055 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4056 };
4057
4058 /* filename_seen_cache constructor. */
4059
4060 static struct filename_seen_cache *
4061 create_filename_seen_cache (void)
4062 {
4063 struct filename_seen_cache *cache;
4064
4065 cache = XNEW (struct filename_seen_cache);
4066 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4067 filename_hash, filename_eq,
4068 NULL, xcalloc, xfree);
4069
4070 return cache;
4071 }
4072
4073 /* Empty the cache, but do not delete it. */
4074
4075 static void
4076 clear_filename_seen_cache (struct filename_seen_cache *cache)
4077 {
4078 htab_empty (cache->tab);
4079 }
4080
4081 /* filename_seen_cache destructor.
4082 This takes a void * argument as it is generally used as a cleanup. */
4083
4084 static void
4085 delete_filename_seen_cache (void *ptr)
4086 {
4087 struct filename_seen_cache *cache = ptr;
4088
4089 htab_delete (cache->tab);
4090 xfree (cache);
4091 }
4092
4093 /* If FILE is not already in the table of files in CACHE, return zero;
4094 otherwise return non-zero. Optionally add FILE to the table if ADD
4095 is non-zero.
4096
4097 NOTE: We don't manage space for FILE, we assume FILE lives as long
4098 as the caller needs. */
4099
4100 static int
4101 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4102 {
4103 void **slot;
4104
4105 /* Is FILE in tab? */
4106 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4107 if (*slot != NULL)
4108 return 1;
4109
4110 /* No; maybe add it to tab. */
4111 if (add)
4112 *slot = (char *) file;
4113
4114 return 0;
4115 }
4116
4117 /* Data structure to maintain printing state for output_source_filename. */
4118
4119 struct output_source_filename_data
4120 {
4121 /* Cache of what we've seen so far. */
4122 struct filename_seen_cache *filename_seen_cache;
4123
4124 /* Flag of whether we're printing the first one. */
4125 int first;
4126 };
4127
4128 /* Slave routine for sources_info. Force line breaks at ,'s.
4129 NAME is the name to print.
4130 DATA contains the state for printing and watching for duplicates. */
4131
4132 static void
4133 output_source_filename (const char *name,
4134 struct output_source_filename_data *data)
4135 {
4136 /* Since a single source file can result in several partial symbol
4137 tables, we need to avoid printing it more than once. Note: if
4138 some of the psymtabs are read in and some are not, it gets
4139 printed both under "Source files for which symbols have been
4140 read" and "Source files for which symbols will be read in on
4141 demand". I consider this a reasonable way to deal with the
4142 situation. I'm not sure whether this can also happen for
4143 symtabs; it doesn't hurt to check. */
4144
4145 /* Was NAME already seen? */
4146 if (filename_seen (data->filename_seen_cache, name, 1))
4147 {
4148 /* Yes; don't print it again. */
4149 return;
4150 }
4151
4152 /* No; print it and reset *FIRST. */
4153 if (! data->first)
4154 printf_filtered (", ");
4155 data->first = 0;
4156
4157 wrap_here ("");
4158 fputs_filtered (name, gdb_stdout);
4159 }
4160
4161 /* A callback for map_partial_symbol_filenames. */
4162
4163 static void
4164 output_partial_symbol_filename (const char *filename, const char *fullname,
4165 void *data)
4166 {
4167 output_source_filename (fullname ? fullname : filename, data);
4168 }
4169
4170 static void
4171 sources_info (char *ignore, int from_tty)
4172 {
4173 struct compunit_symtab *cu;
4174 struct symtab *s;
4175 struct objfile *objfile;
4176 struct output_source_filename_data data;
4177 struct cleanup *cleanups;
4178
4179 if (!have_full_symbols () && !have_partial_symbols ())
4180 {
4181 error (_("No symbol table is loaded. Use the \"file\" command."));
4182 }
4183
4184 data.filename_seen_cache = create_filename_seen_cache ();
4185 cleanups = make_cleanup (delete_filename_seen_cache,
4186 data.filename_seen_cache);
4187
4188 printf_filtered ("Source files for which symbols have been read in:\n\n");
4189
4190 data.first = 1;
4191 ALL_FILETABS (objfile, cu, s)
4192 {
4193 const char *fullname = symtab_to_fullname (s);
4194
4195 output_source_filename (fullname, &data);
4196 }
4197 printf_filtered ("\n\n");
4198
4199 printf_filtered ("Source files for which symbols "
4200 "will be read in on demand:\n\n");
4201
4202 clear_filename_seen_cache (data.filename_seen_cache);
4203 data.first = 1;
4204 map_symbol_filenames (output_partial_symbol_filename, &data,
4205 1 /*need_fullname*/);
4206 printf_filtered ("\n");
4207
4208 do_cleanups (cleanups);
4209 }
4210
4211 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4212 non-zero compare only lbasename of FILES. */
4213
4214 static int
4215 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4216 {
4217 int i;
4218
4219 if (file != NULL && nfiles != 0)
4220 {
4221 for (i = 0; i < nfiles; i++)
4222 {
4223 if (compare_filenames_for_search (file, (basenames
4224 ? lbasename (files[i])
4225 : files[i])))
4226 return 1;
4227 }
4228 }
4229 else if (nfiles == 0)
4230 return 1;
4231 return 0;
4232 }
4233
4234 /* Free any memory associated with a search. */
4235
4236 void
4237 free_search_symbols (struct symbol_search *symbols)
4238 {
4239 struct symbol_search *p;
4240 struct symbol_search *next;
4241
4242 for (p = symbols; p != NULL; p = next)
4243 {
4244 next = p->next;
4245 xfree (p);
4246 }
4247 }
4248
4249 static void
4250 do_free_search_symbols_cleanup (void *symbolsp)
4251 {
4252 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4253
4254 free_search_symbols (symbols);
4255 }
4256
4257 struct cleanup *
4258 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4259 {
4260 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4261 }
4262
4263 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4264 sort symbols, not minimal symbols. */
4265
4266 static int
4267 compare_search_syms (const void *sa, const void *sb)
4268 {
4269 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4270 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4271 int c;
4272
4273 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4274 symbol_symtab (sym_b->symbol)->filename);
4275 if (c != 0)
4276 return c;
4277
4278 if (sym_a->block != sym_b->block)
4279 return sym_a->block - sym_b->block;
4280
4281 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4282 SYMBOL_PRINT_NAME (sym_b->symbol));
4283 }
4284
4285 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4286 The duplicates are freed, and the new list is returned in
4287 *NEW_HEAD, *NEW_TAIL. */
4288
4289 static void
4290 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4291 struct symbol_search **new_head,
4292 struct symbol_search **new_tail)
4293 {
4294 struct symbol_search **symbols, *symp, *old_next;
4295 int i, j, nunique;
4296
4297 gdb_assert (found != NULL && nfound > 0);
4298
4299 /* Build an array out of the list so we can easily sort them. */
4300 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
4301 * nfound);
4302 symp = found;
4303 for (i = 0; i < nfound; i++)
4304 {
4305 gdb_assert (symp != NULL);
4306 gdb_assert (symp->block >= 0 && symp->block <= 1);
4307 symbols[i] = symp;
4308 symp = symp->next;
4309 }
4310 gdb_assert (symp == NULL);
4311
4312 qsort (symbols, nfound, sizeof (struct symbol_search *),
4313 compare_search_syms);
4314
4315 /* Collapse out the dups. */
4316 for (i = 1, j = 1; i < nfound; ++i)
4317 {
4318 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4319 symbols[j++] = symbols[i];
4320 else
4321 xfree (symbols[i]);
4322 }
4323 nunique = j;
4324 symbols[j - 1]->next = NULL;
4325
4326 /* Rebuild the linked list. */
4327 for (i = 0; i < nunique - 1; i++)
4328 symbols[i]->next = symbols[i + 1];
4329 symbols[nunique - 1]->next = NULL;
4330
4331 *new_head = symbols[0];
4332 *new_tail = symbols[nunique - 1];
4333 xfree (symbols);
4334 }
4335
4336 /* An object of this type is passed as the user_data to the
4337 expand_symtabs_matching method. */
4338 struct search_symbols_data
4339 {
4340 int nfiles;
4341 const char **files;
4342
4343 /* It is true if PREG contains valid data, false otherwise. */
4344 unsigned preg_p : 1;
4345 regex_t preg;
4346 };
4347
4348 /* A callback for expand_symtabs_matching. */
4349
4350 static int
4351 search_symbols_file_matches (const char *filename, void *user_data,
4352 int basenames)
4353 {
4354 struct search_symbols_data *data = user_data;
4355
4356 return file_matches (filename, data->files, data->nfiles, basenames);
4357 }
4358
4359 /* A callback for expand_symtabs_matching. */
4360
4361 static int
4362 search_symbols_name_matches (const char *symname, void *user_data)
4363 {
4364 struct search_symbols_data *data = user_data;
4365
4366 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4367 }
4368
4369 /* Search the symbol table for matches to the regular expression REGEXP,
4370 returning the results in *MATCHES.
4371
4372 Only symbols of KIND are searched:
4373 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4374 and constants (enums)
4375 FUNCTIONS_DOMAIN - search all functions
4376 TYPES_DOMAIN - search all type names
4377 ALL_DOMAIN - an internal error for this function
4378
4379 free_search_symbols should be called when *MATCHES is no longer needed.
4380
4381 Within each file the results are sorted locally; each symtab's global and
4382 static blocks are separately alphabetized.
4383 Duplicate entries are removed. */
4384
4385 void
4386 search_symbols (const char *regexp, enum search_domain kind,
4387 int nfiles, const char *files[],
4388 struct symbol_search **matches)
4389 {
4390 struct compunit_symtab *cust;
4391 const struct blockvector *bv;
4392 struct block *b;
4393 int i = 0;
4394 struct block_iterator iter;
4395 struct symbol *sym;
4396 struct objfile *objfile;
4397 struct minimal_symbol *msymbol;
4398 int found_misc = 0;
4399 static const enum minimal_symbol_type types[]
4400 = {mst_data, mst_text, mst_abs};
4401 static const enum minimal_symbol_type types2[]
4402 = {mst_bss, mst_file_text, mst_abs};
4403 static const enum minimal_symbol_type types3[]
4404 = {mst_file_data, mst_solib_trampoline, mst_abs};
4405 static const enum minimal_symbol_type types4[]
4406 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4407 enum minimal_symbol_type ourtype;
4408 enum minimal_symbol_type ourtype2;
4409 enum minimal_symbol_type ourtype3;
4410 enum minimal_symbol_type ourtype4;
4411 struct symbol_search *found;
4412 struct symbol_search *tail;
4413 struct search_symbols_data datum;
4414 int nfound;
4415
4416 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4417 CLEANUP_CHAIN is freed only in the case of an error. */
4418 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4419 struct cleanup *retval_chain;
4420
4421 gdb_assert (kind <= TYPES_DOMAIN);
4422
4423 ourtype = types[kind];
4424 ourtype2 = types2[kind];
4425 ourtype3 = types3[kind];
4426 ourtype4 = types4[kind];
4427
4428 *matches = NULL;
4429 datum.preg_p = 0;
4430
4431 if (regexp != NULL)
4432 {
4433 /* Make sure spacing is right for C++ operators.
4434 This is just a courtesy to make the matching less sensitive
4435 to how many spaces the user leaves between 'operator'
4436 and <TYPENAME> or <OPERATOR>. */
4437 const char *opend;
4438 const char *opname = operator_chars (regexp, &opend);
4439 int errcode;
4440
4441 if (*opname)
4442 {
4443 int fix = -1; /* -1 means ok; otherwise number of
4444 spaces needed. */
4445
4446 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4447 {
4448 /* There should 1 space between 'operator' and 'TYPENAME'. */
4449 if (opname[-1] != ' ' || opname[-2] == ' ')
4450 fix = 1;
4451 }
4452 else
4453 {
4454 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4455 if (opname[-1] == ' ')
4456 fix = 0;
4457 }
4458 /* If wrong number of spaces, fix it. */
4459 if (fix >= 0)
4460 {
4461 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4462
4463 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4464 regexp = tmp;
4465 }
4466 }
4467
4468 errcode = regcomp (&datum.preg, regexp,
4469 REG_NOSUB | (case_sensitivity == case_sensitive_off
4470 ? REG_ICASE : 0));
4471 if (errcode != 0)
4472 {
4473 char *err = get_regcomp_error (errcode, &datum.preg);
4474
4475 make_cleanup (xfree, err);
4476 error (_("Invalid regexp (%s): %s"), err, regexp);
4477 }
4478 datum.preg_p = 1;
4479 make_regfree_cleanup (&datum.preg);
4480 }
4481
4482 /* Search through the partial symtabs *first* for all symbols
4483 matching the regexp. That way we don't have to reproduce all of
4484 the machinery below. */
4485
4486 datum.nfiles = nfiles;
4487 datum.files = files;
4488 expand_symtabs_matching ((nfiles == 0
4489 ? NULL
4490 : search_symbols_file_matches),
4491 search_symbols_name_matches,
4492 kind, &datum);
4493
4494 /* Here, we search through the minimal symbol tables for functions
4495 and variables that match, and force their symbols to be read.
4496 This is in particular necessary for demangled variable names,
4497 which are no longer put into the partial symbol tables.
4498 The symbol will then be found during the scan of symtabs below.
4499
4500 For functions, find_pc_symtab should succeed if we have debug info
4501 for the function, for variables we have to call
4502 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4503 has debug info.
4504 If the lookup fails, set found_misc so that we will rescan to print
4505 any matching symbols without debug info.
4506 We only search the objfile the msymbol came from, we no longer search
4507 all objfiles. In large programs (1000s of shared libs) searching all
4508 objfiles is not worth the pain. */
4509
4510 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4511 {
4512 ALL_MSYMBOLS (objfile, msymbol)
4513 {
4514 QUIT;
4515
4516 if (msymbol->created_by_gdb)
4517 continue;
4518
4519 if (MSYMBOL_TYPE (msymbol) == ourtype
4520 || MSYMBOL_TYPE (msymbol) == ourtype2
4521 || MSYMBOL_TYPE (msymbol) == ourtype3
4522 || MSYMBOL_TYPE (msymbol) == ourtype4)
4523 {
4524 if (!datum.preg_p
4525 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4526 NULL, 0) == 0)
4527 {
4528 /* Note: An important side-effect of these lookup functions
4529 is to expand the symbol table if msymbol is found, for the
4530 benefit of the next loop on ALL_COMPUNITS. */
4531 if (kind == FUNCTIONS_DOMAIN
4532 ? (find_pc_compunit_symtab
4533 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4534 : (lookup_symbol_in_objfile_from_linkage_name
4535 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4536 == NULL))
4537 found_misc = 1;
4538 }
4539 }
4540 }
4541 }
4542
4543 found = NULL;
4544 tail = NULL;
4545 nfound = 0;
4546 retval_chain = make_cleanup_free_search_symbols (&found);
4547
4548 ALL_COMPUNITS (objfile, cust)
4549 {
4550 bv = COMPUNIT_BLOCKVECTOR (cust);
4551 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4552 {
4553 b = BLOCKVECTOR_BLOCK (bv, i);
4554 ALL_BLOCK_SYMBOLS (b, iter, sym)
4555 {
4556 struct symtab *real_symtab = symbol_symtab (sym);
4557
4558 QUIT;
4559
4560 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4561 a substring of symtab_to_fullname as it may contain "./" etc. */
4562 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4563 || ((basenames_may_differ
4564 || file_matches (lbasename (real_symtab->filename),
4565 files, nfiles, 1))
4566 && file_matches (symtab_to_fullname (real_symtab),
4567 files, nfiles, 0)))
4568 && ((!datum.preg_p
4569 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4570 NULL, 0) == 0)
4571 && ((kind == VARIABLES_DOMAIN
4572 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4573 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4574 && SYMBOL_CLASS (sym) != LOC_BLOCK
4575 /* LOC_CONST can be used for more than just enums,
4576 e.g., c++ static const members.
4577 We only want to skip enums here. */
4578 && !(SYMBOL_CLASS (sym) == LOC_CONST
4579 && (TYPE_CODE (SYMBOL_TYPE (sym))
4580 == TYPE_CODE_ENUM)))
4581 || (kind == FUNCTIONS_DOMAIN
4582 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4583 || (kind == TYPES_DOMAIN
4584 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4585 {
4586 /* match */
4587 struct symbol_search *psr = (struct symbol_search *)
4588 xmalloc (sizeof (struct symbol_search));
4589 psr->block = i;
4590 psr->symbol = sym;
4591 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
4592 psr->next = NULL;
4593 if (tail == NULL)
4594 found = psr;
4595 else
4596 tail->next = psr;
4597 tail = psr;
4598 nfound ++;
4599 }
4600 }
4601 }
4602 }
4603
4604 if (found != NULL)
4605 {
4606 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4607 /* Note: nfound is no longer useful beyond this point. */
4608 }
4609
4610 /* If there are no eyes, avoid all contact. I mean, if there are
4611 no debug symbols, then add matching minsyms. */
4612
4613 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4614 {
4615 ALL_MSYMBOLS (objfile, msymbol)
4616 {
4617 QUIT;
4618
4619 if (msymbol->created_by_gdb)
4620 continue;
4621
4622 if (MSYMBOL_TYPE (msymbol) == ourtype
4623 || MSYMBOL_TYPE (msymbol) == ourtype2
4624 || MSYMBOL_TYPE (msymbol) == ourtype3
4625 || MSYMBOL_TYPE (msymbol) == ourtype4)
4626 {
4627 if (!datum.preg_p
4628 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4629 NULL, 0) == 0)
4630 {
4631 /* For functions we can do a quick check of whether the
4632 symbol might be found via find_pc_symtab. */
4633 if (kind != FUNCTIONS_DOMAIN
4634 || (find_pc_compunit_symtab
4635 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4636 {
4637 if (lookup_symbol_in_objfile_from_linkage_name
4638 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4639 == NULL)
4640 {
4641 /* match */
4642 struct symbol_search *psr = (struct symbol_search *)
4643 xmalloc (sizeof (struct symbol_search));
4644 psr->block = i;
4645 psr->msymbol.minsym = msymbol;
4646 psr->msymbol.objfile = objfile;
4647 psr->symbol = NULL;
4648 psr->next = NULL;
4649 if (tail == NULL)
4650 found = psr;
4651 else
4652 tail->next = psr;
4653 tail = psr;
4654 }
4655 }
4656 }
4657 }
4658 }
4659 }
4660
4661 discard_cleanups (retval_chain);
4662 do_cleanups (old_chain);
4663 *matches = found;
4664 }
4665
4666 /* Helper function for symtab_symbol_info, this function uses
4667 the data returned from search_symbols() to print information
4668 regarding the match to gdb_stdout. */
4669
4670 static void
4671 print_symbol_info (enum search_domain kind,
4672 struct symbol *sym,
4673 int block, const char *last)
4674 {
4675 struct symtab *s = symbol_symtab (sym);
4676 const char *s_filename = symtab_to_filename_for_display (s);
4677
4678 if (last == NULL || filename_cmp (last, s_filename) != 0)
4679 {
4680 fputs_filtered ("\nFile ", gdb_stdout);
4681 fputs_filtered (s_filename, gdb_stdout);
4682 fputs_filtered (":\n", gdb_stdout);
4683 }
4684
4685 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4686 printf_filtered ("static ");
4687
4688 /* Typedef that is not a C++ class. */
4689 if (kind == TYPES_DOMAIN
4690 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4691 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4692 /* variable, func, or typedef-that-is-c++-class. */
4693 else if (kind < TYPES_DOMAIN
4694 || (kind == TYPES_DOMAIN
4695 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4696 {
4697 type_print (SYMBOL_TYPE (sym),
4698 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4699 ? "" : SYMBOL_PRINT_NAME (sym)),
4700 gdb_stdout, 0);
4701
4702 printf_filtered (";\n");
4703 }
4704 }
4705
4706 /* This help function for symtab_symbol_info() prints information
4707 for non-debugging symbols to gdb_stdout. */
4708
4709 static void
4710 print_msymbol_info (struct bound_minimal_symbol msymbol)
4711 {
4712 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4713 char *tmp;
4714
4715 if (gdbarch_addr_bit (gdbarch) <= 32)
4716 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4717 & (CORE_ADDR) 0xffffffff,
4718 8);
4719 else
4720 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4721 16);
4722 printf_filtered ("%s %s\n",
4723 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4724 }
4725
4726 /* This is the guts of the commands "info functions", "info types", and
4727 "info variables". It calls search_symbols to find all matches and then
4728 print_[m]symbol_info to print out some useful information about the
4729 matches. */
4730
4731 static void
4732 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4733 {
4734 static const char * const classnames[] =
4735 {"variable", "function", "type"};
4736 struct symbol_search *symbols;
4737 struct symbol_search *p;
4738 struct cleanup *old_chain;
4739 const char *last_filename = NULL;
4740 int first = 1;
4741
4742 gdb_assert (kind <= TYPES_DOMAIN);
4743
4744 /* Must make sure that if we're interrupted, symbols gets freed. */
4745 search_symbols (regexp, kind, 0, NULL, &symbols);
4746 old_chain = make_cleanup_free_search_symbols (&symbols);
4747
4748 if (regexp != NULL)
4749 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4750 classnames[kind], regexp);
4751 else
4752 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4753
4754 for (p = symbols; p != NULL; p = p->next)
4755 {
4756 QUIT;
4757
4758 if (p->msymbol.minsym != NULL)
4759 {
4760 if (first)
4761 {
4762 printf_filtered (_("\nNon-debugging symbols:\n"));
4763 first = 0;
4764 }
4765 print_msymbol_info (p->msymbol);
4766 }
4767 else
4768 {
4769 print_symbol_info (kind,
4770 p->symbol,
4771 p->block,
4772 last_filename);
4773 last_filename
4774 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4775 }
4776 }
4777
4778 do_cleanups (old_chain);
4779 }
4780
4781 static void
4782 variables_info (char *regexp, int from_tty)
4783 {
4784 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4785 }
4786
4787 static void
4788 functions_info (char *regexp, int from_tty)
4789 {
4790 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4791 }
4792
4793
4794 static void
4795 types_info (char *regexp, int from_tty)
4796 {
4797 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4798 }
4799
4800 /* Breakpoint all functions matching regular expression. */
4801
4802 void
4803 rbreak_command_wrapper (char *regexp, int from_tty)
4804 {
4805 rbreak_command (regexp, from_tty);
4806 }
4807
4808 /* A cleanup function that calls end_rbreak_breakpoints. */
4809
4810 static void
4811 do_end_rbreak_breakpoints (void *ignore)
4812 {
4813 end_rbreak_breakpoints ();
4814 }
4815
4816 static void
4817 rbreak_command (char *regexp, int from_tty)
4818 {
4819 struct symbol_search *ss;
4820 struct symbol_search *p;
4821 struct cleanup *old_chain;
4822 char *string = NULL;
4823 int len = 0;
4824 const char **files = NULL;
4825 const char *file_name;
4826 int nfiles = 0;
4827
4828 if (regexp)
4829 {
4830 char *colon = strchr (regexp, ':');
4831
4832 if (colon && *(colon + 1) != ':')
4833 {
4834 int colon_index;
4835 char *local_name;
4836
4837 colon_index = colon - regexp;
4838 local_name = alloca (colon_index + 1);
4839 memcpy (local_name, regexp, colon_index);
4840 local_name[colon_index--] = 0;
4841 while (isspace (local_name[colon_index]))
4842 local_name[colon_index--] = 0;
4843 file_name = local_name;
4844 files = &file_name;
4845 nfiles = 1;
4846 regexp = skip_spaces (colon + 1);
4847 }
4848 }
4849
4850 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4851 old_chain = make_cleanup_free_search_symbols (&ss);
4852 make_cleanup (free_current_contents, &string);
4853
4854 start_rbreak_breakpoints ();
4855 make_cleanup (do_end_rbreak_breakpoints, NULL);
4856 for (p = ss; p != NULL; p = p->next)
4857 {
4858 if (p->msymbol.minsym == NULL)
4859 {
4860 struct symtab *symtab = symbol_symtab (p->symbol);
4861 const char *fullname = symtab_to_fullname (symtab);
4862
4863 int newlen = (strlen (fullname)
4864 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4865 + 4);
4866
4867 if (newlen > len)
4868 {
4869 string = xrealloc (string, newlen);
4870 len = newlen;
4871 }
4872 strcpy (string, fullname);
4873 strcat (string, ":'");
4874 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4875 strcat (string, "'");
4876 break_command (string, from_tty);
4877 print_symbol_info (FUNCTIONS_DOMAIN,
4878 p->symbol,
4879 p->block,
4880 symtab_to_filename_for_display (symtab));
4881 }
4882 else
4883 {
4884 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4885
4886 if (newlen > len)
4887 {
4888 string = xrealloc (string, newlen);
4889 len = newlen;
4890 }
4891 strcpy (string, "'");
4892 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4893 strcat (string, "'");
4894
4895 break_command (string, from_tty);
4896 printf_filtered ("<function, no debug info> %s;\n",
4897 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4898 }
4899 }
4900
4901 do_cleanups (old_chain);
4902 }
4903 \f
4904
4905 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4906
4907 Either sym_text[sym_text_len] != '(' and then we search for any
4908 symbol starting with SYM_TEXT text.
4909
4910 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4911 be terminated at that point. Partial symbol tables do not have parameters
4912 information. */
4913
4914 static int
4915 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4916 {
4917 int (*ncmp) (const char *, const char *, size_t);
4918
4919 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4920
4921 if (ncmp (name, sym_text, sym_text_len) != 0)
4922 return 0;
4923
4924 if (sym_text[sym_text_len] == '(')
4925 {
4926 /* User searches for `name(someth...'. Require NAME to be terminated.
4927 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4928 present but accept even parameters presence. In this case this
4929 function is in fact strcmp_iw but whitespace skipping is not supported
4930 for tab completion. */
4931
4932 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4933 return 0;
4934 }
4935
4936 return 1;
4937 }
4938
4939 /* Free any memory associated with a completion list. */
4940
4941 static void
4942 free_completion_list (VEC (char_ptr) **list_ptr)
4943 {
4944 int i;
4945 char *p;
4946
4947 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4948 xfree (p);
4949 VEC_free (char_ptr, *list_ptr);
4950 }
4951
4952 /* Callback for make_cleanup. */
4953
4954 static void
4955 do_free_completion_list (void *list)
4956 {
4957 free_completion_list (list);
4958 }
4959
4960 /* Helper routine for make_symbol_completion_list. */
4961
4962 static VEC (char_ptr) *return_val;
4963
4964 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4965 completion_list_add_name \
4966 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4967
4968 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4969 completion_list_add_name \
4970 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4971
4972 /* Test to see if the symbol specified by SYMNAME (which is already
4973 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4974 characters. If so, add it to the current completion list. */
4975
4976 static void
4977 completion_list_add_name (const char *symname,
4978 const char *sym_text, int sym_text_len,
4979 const char *text, const char *word)
4980 {
4981 /* Clip symbols that cannot match. */
4982 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4983 return;
4984
4985 /* We have a match for a completion, so add SYMNAME to the current list
4986 of matches. Note that the name is moved to freshly malloc'd space. */
4987
4988 {
4989 char *new;
4990
4991 if (word == sym_text)
4992 {
4993 new = xmalloc (strlen (symname) + 5);
4994 strcpy (new, symname);
4995 }
4996 else if (word > sym_text)
4997 {
4998 /* Return some portion of symname. */
4999 new = xmalloc (strlen (symname) + 5);
5000 strcpy (new, symname + (word - sym_text));
5001 }
5002 else
5003 {
5004 /* Return some of SYM_TEXT plus symname. */
5005 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
5006 strncpy (new, word, sym_text - word);
5007 new[sym_text - word] = '\0';
5008 strcat (new, symname);
5009 }
5010
5011 VEC_safe_push (char_ptr, return_val, new);
5012 }
5013 }
5014
5015 /* ObjC: In case we are completing on a selector, look as the msymbol
5016 again and feed all the selectors into the mill. */
5017
5018 static void
5019 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5020 const char *sym_text, int sym_text_len,
5021 const char *text, const char *word)
5022 {
5023 static char *tmp = NULL;
5024 static unsigned int tmplen = 0;
5025
5026 const char *method, *category, *selector;
5027 char *tmp2 = NULL;
5028
5029 method = MSYMBOL_NATURAL_NAME (msymbol);
5030
5031 /* Is it a method? */
5032 if ((method[0] != '-') && (method[0] != '+'))
5033 return;
5034
5035 if (sym_text[0] == '[')
5036 /* Complete on shortened method method. */
5037 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5038
5039 while ((strlen (method) + 1) >= tmplen)
5040 {
5041 if (tmplen == 0)
5042 tmplen = 1024;
5043 else
5044 tmplen *= 2;
5045 tmp = xrealloc (tmp, tmplen);
5046 }
5047 selector = strchr (method, ' ');
5048 if (selector != NULL)
5049 selector++;
5050
5051 category = strchr (method, '(');
5052
5053 if ((category != NULL) && (selector != NULL))
5054 {
5055 memcpy (tmp, method, (category - method));
5056 tmp[category - method] = ' ';
5057 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5058 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5059 if (sym_text[0] == '[')
5060 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5061 }
5062
5063 if (selector != NULL)
5064 {
5065 /* Complete on selector only. */
5066 strcpy (tmp, selector);
5067 tmp2 = strchr (tmp, ']');
5068 if (tmp2 != NULL)
5069 *tmp2 = '\0';
5070
5071 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5072 }
5073 }
5074
5075 /* Break the non-quoted text based on the characters which are in
5076 symbols. FIXME: This should probably be language-specific. */
5077
5078 static const char *
5079 language_search_unquoted_string (const char *text, const char *p)
5080 {
5081 for (; p > text; --p)
5082 {
5083 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5084 continue;
5085 else
5086 {
5087 if ((current_language->la_language == language_objc))
5088 {
5089 if (p[-1] == ':') /* Might be part of a method name. */
5090 continue;
5091 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5092 p -= 2; /* Beginning of a method name. */
5093 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5094 { /* Might be part of a method name. */
5095 const char *t = p;
5096
5097 /* Seeing a ' ' or a '(' is not conclusive evidence
5098 that we are in the middle of a method name. However,
5099 finding "-[" or "+[" should be pretty un-ambiguous.
5100 Unfortunately we have to find it now to decide. */
5101
5102 while (t > text)
5103 if (isalnum (t[-1]) || t[-1] == '_' ||
5104 t[-1] == ' ' || t[-1] == ':' ||
5105 t[-1] == '(' || t[-1] == ')')
5106 --t;
5107 else
5108 break;
5109
5110 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5111 p = t - 2; /* Method name detected. */
5112 /* Else we leave with p unchanged. */
5113 }
5114 }
5115 break;
5116 }
5117 }
5118 return p;
5119 }
5120
5121 static void
5122 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5123 int sym_text_len, const char *text,
5124 const char *word)
5125 {
5126 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5127 {
5128 struct type *t = SYMBOL_TYPE (sym);
5129 enum type_code c = TYPE_CODE (t);
5130 int j;
5131
5132 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5133 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5134 if (TYPE_FIELD_NAME (t, j))
5135 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5136 sym_text, sym_text_len, text, word);
5137 }
5138 }
5139
5140 /* Type of the user_data argument passed to add_macro_name or
5141 symbol_completion_matcher. The contents are simply whatever is
5142 needed by completion_list_add_name. */
5143 struct add_name_data
5144 {
5145 const char *sym_text;
5146 int sym_text_len;
5147 const char *text;
5148 const char *word;
5149 };
5150
5151 /* A callback used with macro_for_each and macro_for_each_in_scope.
5152 This adds a macro's name to the current completion list. */
5153
5154 static void
5155 add_macro_name (const char *name, const struct macro_definition *ignore,
5156 struct macro_source_file *ignore2, int ignore3,
5157 void *user_data)
5158 {
5159 struct add_name_data *datum = (struct add_name_data *) user_data;
5160
5161 completion_list_add_name (name,
5162 datum->sym_text, datum->sym_text_len,
5163 datum->text, datum->word);
5164 }
5165
5166 /* A callback for expand_symtabs_matching. */
5167
5168 static int
5169 symbol_completion_matcher (const char *name, void *user_data)
5170 {
5171 struct add_name_data *datum = (struct add_name_data *) user_data;
5172
5173 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5174 }
5175
5176 VEC (char_ptr) *
5177 default_make_symbol_completion_list_break_on (const char *text,
5178 const char *word,
5179 const char *break_on,
5180 enum type_code code)
5181 {
5182 /* Problem: All of the symbols have to be copied because readline
5183 frees them. I'm not going to worry about this; hopefully there
5184 won't be that many. */
5185
5186 struct symbol *sym;
5187 struct compunit_symtab *cust;
5188 struct minimal_symbol *msymbol;
5189 struct objfile *objfile;
5190 const struct block *b;
5191 const struct block *surrounding_static_block, *surrounding_global_block;
5192 struct block_iterator iter;
5193 /* The symbol we are completing on. Points in same buffer as text. */
5194 const char *sym_text;
5195 /* Length of sym_text. */
5196 int sym_text_len;
5197 struct add_name_data datum;
5198 struct cleanup *back_to;
5199
5200 /* Now look for the symbol we are supposed to complete on. */
5201 {
5202 const char *p;
5203 char quote_found;
5204 const char *quote_pos = NULL;
5205
5206 /* First see if this is a quoted string. */
5207 quote_found = '\0';
5208 for (p = text; *p != '\0'; ++p)
5209 {
5210 if (quote_found != '\0')
5211 {
5212 if (*p == quote_found)
5213 /* Found close quote. */
5214 quote_found = '\0';
5215 else if (*p == '\\' && p[1] == quote_found)
5216 /* A backslash followed by the quote character
5217 doesn't end the string. */
5218 ++p;
5219 }
5220 else if (*p == '\'' || *p == '"')
5221 {
5222 quote_found = *p;
5223 quote_pos = p;
5224 }
5225 }
5226 if (quote_found == '\'')
5227 /* A string within single quotes can be a symbol, so complete on it. */
5228 sym_text = quote_pos + 1;
5229 else if (quote_found == '"')
5230 /* A double-quoted string is never a symbol, nor does it make sense
5231 to complete it any other way. */
5232 {
5233 return NULL;
5234 }
5235 else
5236 {
5237 /* It is not a quoted string. Break it based on the characters
5238 which are in symbols. */
5239 while (p > text)
5240 {
5241 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5242 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5243 --p;
5244 else
5245 break;
5246 }
5247 sym_text = p;
5248 }
5249 }
5250
5251 sym_text_len = strlen (sym_text);
5252
5253 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5254
5255 if (current_language->la_language == language_cplus
5256 || current_language->la_language == language_java
5257 || current_language->la_language == language_fortran)
5258 {
5259 /* These languages may have parameters entered by user but they are never
5260 present in the partial symbol tables. */
5261
5262 const char *cs = memchr (sym_text, '(', sym_text_len);
5263
5264 if (cs)
5265 sym_text_len = cs - sym_text;
5266 }
5267 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5268
5269 return_val = NULL;
5270 back_to = make_cleanup (do_free_completion_list, &return_val);
5271
5272 datum.sym_text = sym_text;
5273 datum.sym_text_len = sym_text_len;
5274 datum.text = text;
5275 datum.word = word;
5276
5277 /* Look through the partial symtabs for all symbols which begin
5278 by matching SYM_TEXT. Expand all CUs that you find to the list.
5279 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
5280 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
5281 &datum);
5282
5283 /* At this point scan through the misc symbol vectors and add each
5284 symbol you find to the list. Eventually we want to ignore
5285 anything that isn't a text symbol (everything else will be
5286 handled by the psymtab code above). */
5287
5288 if (code == TYPE_CODE_UNDEF)
5289 {
5290 ALL_MSYMBOLS (objfile, msymbol)
5291 {
5292 QUIT;
5293 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5294 word);
5295
5296 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5297 word);
5298 }
5299 }
5300
5301 /* Search upwards from currently selected frame (so that we can
5302 complete on local vars). Also catch fields of types defined in
5303 this places which match our text string. Only complete on types
5304 visible from current context. */
5305
5306 b = get_selected_block (0);
5307 surrounding_static_block = block_static_block (b);
5308 surrounding_global_block = block_global_block (b);
5309 if (surrounding_static_block != NULL)
5310 while (b != surrounding_static_block)
5311 {
5312 QUIT;
5313
5314 ALL_BLOCK_SYMBOLS (b, iter, sym)
5315 {
5316 if (code == TYPE_CODE_UNDEF)
5317 {
5318 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5319 word);
5320 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5321 word);
5322 }
5323 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5324 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5325 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5326 word);
5327 }
5328
5329 /* Stop when we encounter an enclosing function. Do not stop for
5330 non-inlined functions - the locals of the enclosing function
5331 are in scope for a nested function. */
5332 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5333 break;
5334 b = BLOCK_SUPERBLOCK (b);
5335 }
5336
5337 /* Add fields from the file's types; symbols will be added below. */
5338
5339 if (code == TYPE_CODE_UNDEF)
5340 {
5341 if (surrounding_static_block != NULL)
5342 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5343 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5344
5345 if (surrounding_global_block != NULL)
5346 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5347 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5348 }
5349
5350 /* Go through the symtabs and check the externs and statics for
5351 symbols which match. */
5352
5353 ALL_COMPUNITS (objfile, cust)
5354 {
5355 QUIT;
5356 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK);
5357 ALL_BLOCK_SYMBOLS (b, iter, sym)
5358 {
5359 if (code == TYPE_CODE_UNDEF
5360 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5361 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5362 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5363 }
5364 }
5365
5366 ALL_COMPUNITS (objfile, cust)
5367 {
5368 QUIT;
5369 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK);
5370 ALL_BLOCK_SYMBOLS (b, iter, sym)
5371 {
5372 if (code == TYPE_CODE_UNDEF
5373 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5374 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5375 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5376 }
5377 }
5378
5379 /* Skip macros if we are completing a struct tag -- arguable but
5380 usually what is expected. */
5381 if (current_language->la_macro_expansion == macro_expansion_c
5382 && code == TYPE_CODE_UNDEF)
5383 {
5384 struct macro_scope *scope;
5385
5386 /* Add any macros visible in the default scope. Note that this
5387 may yield the occasional wrong result, because an expression
5388 might be evaluated in a scope other than the default. For
5389 example, if the user types "break file:line if <TAB>", the
5390 resulting expression will be evaluated at "file:line" -- but
5391 at there does not seem to be a way to detect this at
5392 completion time. */
5393 scope = default_macro_scope ();
5394 if (scope)
5395 {
5396 macro_for_each_in_scope (scope->file, scope->line,
5397 add_macro_name, &datum);
5398 xfree (scope);
5399 }
5400
5401 /* User-defined macros are always visible. */
5402 macro_for_each (macro_user_macros, add_macro_name, &datum);
5403 }
5404
5405 discard_cleanups (back_to);
5406 return (return_val);
5407 }
5408
5409 VEC (char_ptr) *
5410 default_make_symbol_completion_list (const char *text, const char *word,
5411 enum type_code code)
5412 {
5413 return default_make_symbol_completion_list_break_on (text, word, "", code);
5414 }
5415
5416 /* Return a vector of all symbols (regardless of class) which begin by
5417 matching TEXT. If the answer is no symbols, then the return value
5418 is NULL. */
5419
5420 VEC (char_ptr) *
5421 make_symbol_completion_list (const char *text, const char *word)
5422 {
5423 return current_language->la_make_symbol_completion_list (text, word,
5424 TYPE_CODE_UNDEF);
5425 }
5426
5427 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5428 symbols whose type code is CODE. */
5429
5430 VEC (char_ptr) *
5431 make_symbol_completion_type (const char *text, const char *word,
5432 enum type_code code)
5433 {
5434 gdb_assert (code == TYPE_CODE_UNION
5435 || code == TYPE_CODE_STRUCT
5436 || code == TYPE_CODE_ENUM);
5437 return current_language->la_make_symbol_completion_list (text, word, code);
5438 }
5439
5440 /* Like make_symbol_completion_list, but suitable for use as a
5441 completion function. */
5442
5443 VEC (char_ptr) *
5444 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5445 const char *text, const char *word)
5446 {
5447 return make_symbol_completion_list (text, word);
5448 }
5449
5450 /* Like make_symbol_completion_list, but returns a list of symbols
5451 defined in a source file FILE. */
5452
5453 VEC (char_ptr) *
5454 make_file_symbol_completion_list (const char *text, const char *word,
5455 const char *srcfile)
5456 {
5457 struct symbol *sym;
5458 struct symtab *s;
5459 struct block *b;
5460 struct block_iterator iter;
5461 /* The symbol we are completing on. Points in same buffer as text. */
5462 const char *sym_text;
5463 /* Length of sym_text. */
5464 int sym_text_len;
5465
5466 /* Now look for the symbol we are supposed to complete on.
5467 FIXME: This should be language-specific. */
5468 {
5469 const char *p;
5470 char quote_found;
5471 const char *quote_pos = NULL;
5472
5473 /* First see if this is a quoted string. */
5474 quote_found = '\0';
5475 for (p = text; *p != '\0'; ++p)
5476 {
5477 if (quote_found != '\0')
5478 {
5479 if (*p == quote_found)
5480 /* Found close quote. */
5481 quote_found = '\0';
5482 else if (*p == '\\' && p[1] == quote_found)
5483 /* A backslash followed by the quote character
5484 doesn't end the string. */
5485 ++p;
5486 }
5487 else if (*p == '\'' || *p == '"')
5488 {
5489 quote_found = *p;
5490 quote_pos = p;
5491 }
5492 }
5493 if (quote_found == '\'')
5494 /* A string within single quotes can be a symbol, so complete on it. */
5495 sym_text = quote_pos + 1;
5496 else if (quote_found == '"')
5497 /* A double-quoted string is never a symbol, nor does it make sense
5498 to complete it any other way. */
5499 {
5500 return NULL;
5501 }
5502 else
5503 {
5504 /* Not a quoted string. */
5505 sym_text = language_search_unquoted_string (text, p);
5506 }
5507 }
5508
5509 sym_text_len = strlen (sym_text);
5510
5511 return_val = NULL;
5512
5513 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5514 in). */
5515 s = lookup_symtab (srcfile);
5516 if (s == NULL)
5517 {
5518 /* Maybe they typed the file with leading directories, while the
5519 symbol tables record only its basename. */
5520 const char *tail = lbasename (srcfile);
5521
5522 if (tail > srcfile)
5523 s = lookup_symtab (tail);
5524 }
5525
5526 /* If we have no symtab for that file, return an empty list. */
5527 if (s == NULL)
5528 return (return_val);
5529
5530 /* Go through this symtab and check the externs and statics for
5531 symbols which match. */
5532
5533 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5534 ALL_BLOCK_SYMBOLS (b, iter, sym)
5535 {
5536 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5537 }
5538
5539 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5540 ALL_BLOCK_SYMBOLS (b, iter, sym)
5541 {
5542 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5543 }
5544
5545 return (return_val);
5546 }
5547
5548 /* A helper function for make_source_files_completion_list. It adds
5549 another file name to a list of possible completions, growing the
5550 list as necessary. */
5551
5552 static void
5553 add_filename_to_list (const char *fname, const char *text, const char *word,
5554 VEC (char_ptr) **list)
5555 {
5556 char *new;
5557 size_t fnlen = strlen (fname);
5558
5559 if (word == text)
5560 {
5561 /* Return exactly fname. */
5562 new = xmalloc (fnlen + 5);
5563 strcpy (new, fname);
5564 }
5565 else if (word > text)
5566 {
5567 /* Return some portion of fname. */
5568 new = xmalloc (fnlen + 5);
5569 strcpy (new, fname + (word - text));
5570 }
5571 else
5572 {
5573 /* Return some of TEXT plus fname. */
5574 new = xmalloc (fnlen + (text - word) + 5);
5575 strncpy (new, word, text - word);
5576 new[text - word] = '\0';
5577 strcat (new, fname);
5578 }
5579 VEC_safe_push (char_ptr, *list, new);
5580 }
5581
5582 static int
5583 not_interesting_fname (const char *fname)
5584 {
5585 static const char *illegal_aliens[] = {
5586 "_globals_", /* inserted by coff_symtab_read */
5587 NULL
5588 };
5589 int i;
5590
5591 for (i = 0; illegal_aliens[i]; i++)
5592 {
5593 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5594 return 1;
5595 }
5596 return 0;
5597 }
5598
5599 /* An object of this type is passed as the user_data argument to
5600 map_partial_symbol_filenames. */
5601 struct add_partial_filename_data
5602 {
5603 struct filename_seen_cache *filename_seen_cache;
5604 const char *text;
5605 const char *word;
5606 int text_len;
5607 VEC (char_ptr) **list;
5608 };
5609
5610 /* A callback for map_partial_symbol_filenames. */
5611
5612 static void
5613 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5614 void *user_data)
5615 {
5616 struct add_partial_filename_data *data = user_data;
5617
5618 if (not_interesting_fname (filename))
5619 return;
5620 if (!filename_seen (data->filename_seen_cache, filename, 1)
5621 && filename_ncmp (filename, data->text, data->text_len) == 0)
5622 {
5623 /* This file matches for a completion; add it to the
5624 current list of matches. */
5625 add_filename_to_list (filename, data->text, data->word, data->list);
5626 }
5627 else
5628 {
5629 const char *base_name = lbasename (filename);
5630
5631 if (base_name != filename
5632 && !filename_seen (data->filename_seen_cache, base_name, 1)
5633 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5634 add_filename_to_list (base_name, data->text, data->word, data->list);
5635 }
5636 }
5637
5638 /* Return a vector of all source files whose names begin with matching
5639 TEXT. The file names are looked up in the symbol tables of this
5640 program. If the answer is no matchess, then the return value is
5641 NULL. */
5642
5643 VEC (char_ptr) *
5644 make_source_files_completion_list (const char *text, const char *word)
5645 {
5646 struct compunit_symtab *cu;
5647 struct symtab *s;
5648 struct objfile *objfile;
5649 size_t text_len = strlen (text);
5650 VEC (char_ptr) *list = NULL;
5651 const char *base_name;
5652 struct add_partial_filename_data datum;
5653 struct filename_seen_cache *filename_seen_cache;
5654 struct cleanup *back_to, *cache_cleanup;
5655
5656 if (!have_full_symbols () && !have_partial_symbols ())
5657 return list;
5658
5659 back_to = make_cleanup (do_free_completion_list, &list);
5660
5661 filename_seen_cache = create_filename_seen_cache ();
5662 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5663 filename_seen_cache);
5664
5665 ALL_FILETABS (objfile, cu, s)
5666 {
5667 if (not_interesting_fname (s->filename))
5668 continue;
5669 if (!filename_seen (filename_seen_cache, s->filename, 1)
5670 && filename_ncmp (s->filename, text, text_len) == 0)
5671 {
5672 /* This file matches for a completion; add it to the current
5673 list of matches. */
5674 add_filename_to_list (s->filename, text, word, &list);
5675 }
5676 else
5677 {
5678 /* NOTE: We allow the user to type a base name when the
5679 debug info records leading directories, but not the other
5680 way around. This is what subroutines of breakpoint
5681 command do when they parse file names. */
5682 base_name = lbasename (s->filename);
5683 if (base_name != s->filename
5684 && !filename_seen (filename_seen_cache, base_name, 1)
5685 && filename_ncmp (base_name, text, text_len) == 0)
5686 add_filename_to_list (base_name, text, word, &list);
5687 }
5688 }
5689
5690 datum.filename_seen_cache = filename_seen_cache;
5691 datum.text = text;
5692 datum.word = word;
5693 datum.text_len = text_len;
5694 datum.list = &list;
5695 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5696 0 /*need_fullname*/);
5697
5698 do_cleanups (cache_cleanup);
5699 discard_cleanups (back_to);
5700
5701 return list;
5702 }
5703 \f
5704 /* Track MAIN */
5705
5706 /* Return the "main_info" object for the current program space. If
5707 the object has not yet been created, create it and fill in some
5708 default values. */
5709
5710 static struct main_info *
5711 get_main_info (void)
5712 {
5713 struct main_info *info = program_space_data (current_program_space,
5714 main_progspace_key);
5715
5716 if (info == NULL)
5717 {
5718 /* It may seem strange to store the main name in the progspace
5719 and also in whatever objfile happens to see a main name in
5720 its debug info. The reason for this is mainly historical:
5721 gdb returned "main" as the name even if no function named
5722 "main" was defined the program; and this approach lets us
5723 keep compatibility. */
5724 info = XCNEW (struct main_info);
5725 info->language_of_main = language_unknown;
5726 set_program_space_data (current_program_space, main_progspace_key,
5727 info);
5728 }
5729
5730 return info;
5731 }
5732
5733 /* A cleanup to destroy a struct main_info when a progspace is
5734 destroyed. */
5735
5736 static void
5737 main_info_cleanup (struct program_space *pspace, void *data)
5738 {
5739 struct main_info *info = data;
5740
5741 if (info != NULL)
5742 xfree (info->name_of_main);
5743 xfree (info);
5744 }
5745
5746 static void
5747 set_main_name (const char *name, enum language lang)
5748 {
5749 struct main_info *info = get_main_info ();
5750
5751 if (info->name_of_main != NULL)
5752 {
5753 xfree (info->name_of_main);
5754 info->name_of_main = NULL;
5755 info->language_of_main = language_unknown;
5756 }
5757 if (name != NULL)
5758 {
5759 info->name_of_main = xstrdup (name);
5760 info->language_of_main = lang;
5761 }
5762 }
5763
5764 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5765 accordingly. */
5766
5767 static void
5768 find_main_name (void)
5769 {
5770 const char *new_main_name;
5771 struct objfile *objfile;
5772
5773 /* First check the objfiles to see whether a debuginfo reader has
5774 picked up the appropriate main name. Historically the main name
5775 was found in a more or less random way; this approach instead
5776 relies on the order of objfile creation -- which still isn't
5777 guaranteed to get the correct answer, but is just probably more
5778 accurate. */
5779 ALL_OBJFILES (objfile)
5780 {
5781 if (objfile->per_bfd->name_of_main != NULL)
5782 {
5783 set_main_name (objfile->per_bfd->name_of_main,
5784 objfile->per_bfd->language_of_main);
5785 return;
5786 }
5787 }
5788
5789 /* Try to see if the main procedure is in Ada. */
5790 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5791 be to add a new method in the language vector, and call this
5792 method for each language until one of them returns a non-empty
5793 name. This would allow us to remove this hard-coded call to
5794 an Ada function. It is not clear that this is a better approach
5795 at this point, because all methods need to be written in a way
5796 such that false positives never be returned. For instance, it is
5797 important that a method does not return a wrong name for the main
5798 procedure if the main procedure is actually written in a different
5799 language. It is easy to guaranty this with Ada, since we use a
5800 special symbol generated only when the main in Ada to find the name
5801 of the main procedure. It is difficult however to see how this can
5802 be guarantied for languages such as C, for instance. This suggests
5803 that order of call for these methods becomes important, which means
5804 a more complicated approach. */
5805 new_main_name = ada_main_name ();
5806 if (new_main_name != NULL)
5807 {
5808 set_main_name (new_main_name, language_ada);
5809 return;
5810 }
5811
5812 new_main_name = d_main_name ();
5813 if (new_main_name != NULL)
5814 {
5815 set_main_name (new_main_name, language_d);
5816 return;
5817 }
5818
5819 new_main_name = go_main_name ();
5820 if (new_main_name != NULL)
5821 {
5822 set_main_name (new_main_name, language_go);
5823 return;
5824 }
5825
5826 new_main_name = pascal_main_name ();
5827 if (new_main_name != NULL)
5828 {
5829 set_main_name (new_main_name, language_pascal);
5830 return;
5831 }
5832
5833 /* The languages above didn't identify the name of the main procedure.
5834 Fallback to "main". */
5835 set_main_name ("main", language_unknown);
5836 }
5837
5838 char *
5839 main_name (void)
5840 {
5841 struct main_info *info = get_main_info ();
5842
5843 if (info->name_of_main == NULL)
5844 find_main_name ();
5845
5846 return info->name_of_main;
5847 }
5848
5849 /* Return the language of the main function. If it is not known,
5850 return language_unknown. */
5851
5852 enum language
5853 main_language (void)
5854 {
5855 struct main_info *info = get_main_info ();
5856
5857 if (info->name_of_main == NULL)
5858 find_main_name ();
5859
5860 return info->language_of_main;
5861 }
5862
5863 /* Handle ``executable_changed'' events for the symtab module. */
5864
5865 static void
5866 symtab_observer_executable_changed (void)
5867 {
5868 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5869 set_main_name (NULL, language_unknown);
5870 }
5871
5872 /* Return 1 if the supplied producer string matches the ARM RealView
5873 compiler (armcc). */
5874
5875 int
5876 producer_is_realview (const char *producer)
5877 {
5878 static const char *const arm_idents[] = {
5879 "ARM C Compiler, ADS",
5880 "Thumb C Compiler, ADS",
5881 "ARM C++ Compiler, ADS",
5882 "Thumb C++ Compiler, ADS",
5883 "ARM/Thumb C/C++ Compiler, RVCT",
5884 "ARM C/C++ Compiler, RVCT"
5885 };
5886 int i;
5887
5888 if (producer == NULL)
5889 return 0;
5890
5891 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5892 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5893 return 1;
5894
5895 return 0;
5896 }
5897
5898 \f
5899
5900 /* The next index to hand out in response to a registration request. */
5901
5902 static int next_aclass_value = LOC_FINAL_VALUE;
5903
5904 /* The maximum number of "aclass" registrations we support. This is
5905 constant for convenience. */
5906 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5907
5908 /* The objects representing the various "aclass" values. The elements
5909 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5910 elements are those registered at gdb initialization time. */
5911
5912 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5913
5914 /* The globally visible pointer. This is separate from 'symbol_impl'
5915 so that it can be const. */
5916
5917 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5918
5919 /* Make sure we saved enough room in struct symbol. */
5920
5921 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5922
5923 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5924 is the ops vector associated with this index. This returns the new
5925 index, which should be used as the aclass_index field for symbols
5926 of this type. */
5927
5928 int
5929 register_symbol_computed_impl (enum address_class aclass,
5930 const struct symbol_computed_ops *ops)
5931 {
5932 int result = next_aclass_value++;
5933
5934 gdb_assert (aclass == LOC_COMPUTED);
5935 gdb_assert (result < MAX_SYMBOL_IMPLS);
5936 symbol_impl[result].aclass = aclass;
5937 symbol_impl[result].ops_computed = ops;
5938
5939 /* Sanity check OPS. */
5940 gdb_assert (ops != NULL);
5941 gdb_assert (ops->tracepoint_var_ref != NULL);
5942 gdb_assert (ops->describe_location != NULL);
5943 gdb_assert (ops->read_needs_frame != NULL);
5944 gdb_assert (ops->read_variable != NULL);
5945
5946 return result;
5947 }
5948
5949 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5950 OPS is the ops vector associated with this index. This returns the
5951 new index, which should be used as the aclass_index field for symbols
5952 of this type. */
5953
5954 int
5955 register_symbol_block_impl (enum address_class aclass,
5956 const struct symbol_block_ops *ops)
5957 {
5958 int result = next_aclass_value++;
5959
5960 gdb_assert (aclass == LOC_BLOCK);
5961 gdb_assert (result < MAX_SYMBOL_IMPLS);
5962 symbol_impl[result].aclass = aclass;
5963 symbol_impl[result].ops_block = ops;
5964
5965 /* Sanity check OPS. */
5966 gdb_assert (ops != NULL);
5967 gdb_assert (ops->find_frame_base_location != NULL);
5968
5969 return result;
5970 }
5971
5972 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5973 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5974 this index. This returns the new index, which should be used as
5975 the aclass_index field for symbols of this type. */
5976
5977 int
5978 register_symbol_register_impl (enum address_class aclass,
5979 const struct symbol_register_ops *ops)
5980 {
5981 int result = next_aclass_value++;
5982
5983 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5984 gdb_assert (result < MAX_SYMBOL_IMPLS);
5985 symbol_impl[result].aclass = aclass;
5986 symbol_impl[result].ops_register = ops;
5987
5988 return result;
5989 }
5990
5991 /* Initialize elements of 'symbol_impl' for the constants in enum
5992 address_class. */
5993
5994 static void
5995 initialize_ordinary_address_classes (void)
5996 {
5997 int i;
5998
5999 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6000 symbol_impl[i].aclass = i;
6001 }
6002
6003 \f
6004
6005 /* Helper function to initialize the fields of an objfile-owned symbol.
6006 It assumed that *SYM is already all zeroes. */
6007
6008 static void
6009 initialize_objfile_symbol_1 (struct symbol *sym)
6010 {
6011 SYMBOL_OBJFILE_OWNED (sym) = 1;
6012 SYMBOL_SECTION (sym) = -1;
6013 }
6014
6015 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6016
6017 void
6018 initialize_objfile_symbol (struct symbol *sym)
6019 {
6020 memset (sym, 0, sizeof (*sym));
6021 initialize_objfile_symbol_1 (sym);
6022 }
6023
6024 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6025 obstack. */
6026
6027 struct symbol *
6028 allocate_symbol (struct objfile *objfile)
6029 {
6030 struct symbol *result;
6031
6032 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6033 initialize_objfile_symbol_1 (result);
6034
6035 return result;
6036 }
6037
6038 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6039 obstack. */
6040
6041 struct template_symbol *
6042 allocate_template_symbol (struct objfile *objfile)
6043 {
6044 struct template_symbol *result;
6045
6046 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6047 initialize_objfile_symbol_1 (&result->base);
6048
6049 return result;
6050 }
6051
6052 /* See symtab.h. */
6053
6054 struct objfile *
6055 symbol_objfile (const struct symbol *symbol)
6056 {
6057 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6058 return SYMTAB_OBJFILE (symbol->owner.symtab);
6059 }
6060
6061 /* See symtab.h. */
6062
6063 struct gdbarch *
6064 symbol_arch (const struct symbol *symbol)
6065 {
6066 if (!SYMBOL_OBJFILE_OWNED (symbol))
6067 return symbol->owner.arch;
6068 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6069 }
6070
6071 /* See symtab.h. */
6072
6073 struct symtab *
6074 symbol_symtab (const struct symbol *symbol)
6075 {
6076 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6077 return symbol->owner.symtab;
6078 }
6079
6080 /* See symtab.h. */
6081
6082 void
6083 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6084 {
6085 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6086 symbol->owner.symtab = symtab;
6087 }
6088
6089 \f
6090
6091 void
6092 _initialize_symtab (void)
6093 {
6094 initialize_ordinary_address_classes ();
6095
6096 main_progspace_key
6097 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6098
6099 symbol_cache_key
6100 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6101
6102 add_info ("variables", variables_info, _("\
6103 All global and static variable names, or those matching REGEXP."));
6104 if (dbx_commands)
6105 add_com ("whereis", class_info, variables_info, _("\
6106 All global and static variable names, or those matching REGEXP."));
6107
6108 add_info ("functions", functions_info,
6109 _("All function names, or those matching REGEXP."));
6110
6111 /* FIXME: This command has at least the following problems:
6112 1. It prints builtin types (in a very strange and confusing fashion).
6113 2. It doesn't print right, e.g. with
6114 typedef struct foo *FOO
6115 type_print prints "FOO" when we want to make it (in this situation)
6116 print "struct foo *".
6117 I also think "ptype" or "whatis" is more likely to be useful (but if
6118 there is much disagreement "info types" can be fixed). */
6119 add_info ("types", types_info,
6120 _("All type names, or those matching REGEXP."));
6121
6122 add_info ("sources", sources_info,
6123 _("Source files in the program."));
6124
6125 add_com ("rbreak", class_breakpoint, rbreak_command,
6126 _("Set a breakpoint for all functions matching REGEXP."));
6127
6128 if (xdb_commands)
6129 {
6130 add_com ("lf", class_info, sources_info,
6131 _("Source files in the program"));
6132 add_com ("lg", class_info, variables_info, _("\
6133 All global and static variable names, or those matching REGEXP."));
6134 }
6135
6136 add_setshow_enum_cmd ("multiple-symbols", no_class,
6137 multiple_symbols_modes, &multiple_symbols_mode,
6138 _("\
6139 Set the debugger behavior when more than one symbol are possible matches\n\
6140 in an expression."), _("\
6141 Show how the debugger handles ambiguities in expressions."), _("\
6142 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6143 NULL, NULL, &setlist, &showlist);
6144
6145 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6146 &basenames_may_differ, _("\
6147 Set whether a source file may have multiple base names."), _("\
6148 Show whether a source file may have multiple base names."), _("\
6149 (A \"base name\" is the name of a file with the directory part removed.\n\
6150 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6151 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6152 before comparing them. Canonicalization is an expensive operation,\n\
6153 but it allows the same file be known by more than one base name.\n\
6154 If not set (the default), all source files are assumed to have just\n\
6155 one base name, and gdb will do file name comparisons more efficiently."),
6156 NULL, NULL,
6157 &setlist, &showlist);
6158
6159 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6160 _("Set debugging of symbol table creation."),
6161 _("Show debugging of symbol table creation."), _("\
6162 When enabled (non-zero), debugging messages are printed when building\n\
6163 symbol tables. A value of 1 (one) normally provides enough information.\n\
6164 A value greater than 1 provides more verbose information."),
6165 NULL,
6166 NULL,
6167 &setdebuglist, &showdebuglist);
6168
6169 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6170 _("\
6171 Set debugging of symbol lookup."), _("\
6172 Show debugging of symbol lookup."), _("\
6173 When enabled (non-zero), symbol lookups are logged."),
6174 NULL, NULL,
6175 &setdebuglist, &showdebuglist);
6176
6177 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6178 &new_symbol_cache_size,
6179 _("Set the size of the symbol cache."),
6180 _("Show the size of the symbol cache."), _("\
6181 The size of the symbol cache.\n\
6182 If zero then the symbol cache is disabled."),
6183 set_symbol_cache_size_handler, NULL,
6184 &maintenance_set_cmdlist,
6185 &maintenance_show_cmdlist);
6186
6187 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6188 _("Dump the symbol cache for each program space."),
6189 &maintenanceprintlist);
6190
6191 add_cmd ("symbol-cache-statistics", class_maintenance,
6192 maintenance_print_symbol_cache_statistics,
6193 _("Print symbol cache statistics for each program space."),
6194 &maintenanceprintlist);
6195
6196 add_cmd ("flush-symbol-cache", class_maintenance,
6197 maintenance_flush_symbol_cache,
6198 _("Flush the symbol cache for each program space."),
6199 &maintenancelist);
6200
6201 observer_attach_executable_changed (symtab_observer_executable_changed);
6202 observer_attach_new_objfile (symtab_new_objfile_observer);
6203 observer_attach_free_objfile (symtab_free_objfile_observer);
6204 }