Accelerate lookup_symbol_aux_objfile 85x
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_via_quick_fns (struct objfile *objfile,
84 int block_index,
85 const char *name,
86 const domain_enum domain);
87
88 extern initialize_file_ftype _initialize_symtab;
89
90 /* Program space key for finding name and language of "main". */
91
92 static const struct program_space_data *main_progspace_key;
93
94 /* Type of the data stored on the program space. */
95
96 struct main_info
97 {
98 /* Name of "main". */
99
100 char *name_of_main;
101
102 /* Language of "main". */
103
104 enum language language_of_main;
105 };
106
107 /* When non-zero, print debugging messages related to symtab creation. */
108 unsigned int symtab_create_debug = 0;
109
110 /* Non-zero if a file may be known by two different basenames.
111 This is the uncommon case, and significantly slows down gdb.
112 Default set to "off" to not slow down the common case. */
113 int basenames_may_differ = 0;
114
115 /* Allow the user to configure the debugger behavior with respect
116 to multiple-choice menus when more than one symbol matches during
117 a symbol lookup. */
118
119 const char multiple_symbols_ask[] = "ask";
120 const char multiple_symbols_all[] = "all";
121 const char multiple_symbols_cancel[] = "cancel";
122 static const char *const multiple_symbols_modes[] =
123 {
124 multiple_symbols_ask,
125 multiple_symbols_all,
126 multiple_symbols_cancel,
127 NULL
128 };
129 static const char *multiple_symbols_mode = multiple_symbols_all;
130
131 /* Read-only accessor to AUTO_SELECT_MODE. */
132
133 const char *
134 multiple_symbols_select_mode (void)
135 {
136 return multiple_symbols_mode;
137 }
138
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
141 value_of_this. */
142
143 const struct block *block_found;
144
145 /* Return the name of a domain_enum. */
146
147 const char *
148 domain_name (domain_enum e)
149 {
150 switch (e)
151 {
152 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
153 case VAR_DOMAIN: return "VAR_DOMAIN";
154 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
155 case LABEL_DOMAIN: return "LABEL_DOMAIN";
156 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
157 default: gdb_assert_not_reached ("bad domain_enum");
158 }
159 }
160
161 /* Return the name of a search_domain . */
162
163 const char *
164 search_domain_name (enum search_domain e)
165 {
166 switch (e)
167 {
168 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
169 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
170 case TYPES_DOMAIN: return "TYPES_DOMAIN";
171 case ALL_DOMAIN: return "ALL_DOMAIN";
172 default: gdb_assert_not_reached ("bad search_domain");
173 }
174 }
175
176 /* See symtab.h. */
177
178 struct symtab *
179 compunit_primary_filetab (const struct compunit_symtab *cust)
180 {
181 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
182
183 /* The primary file symtab is the first one in the list. */
184 return COMPUNIT_FILETABS (cust);
185 }
186
187 /* See symtab.h. */
188
189 enum language
190 compunit_language (const struct compunit_symtab *cust)
191 {
192 struct symtab *symtab = compunit_primary_filetab (cust);
193
194 /* The language of the compunit symtab is the language of its primary
195 source file. */
196 return SYMTAB_LANGUAGE (symtab);
197 }
198
199 /* See whether FILENAME matches SEARCH_NAME using the rule that we
200 advertise to the user. (The manual's description of linespecs
201 describes what we advertise). Returns true if they match, false
202 otherwise. */
203
204 int
205 compare_filenames_for_search (const char *filename, const char *search_name)
206 {
207 int len = strlen (filename);
208 size_t search_len = strlen (search_name);
209
210 if (len < search_len)
211 return 0;
212
213 /* The tail of FILENAME must match. */
214 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
215 return 0;
216
217 /* Either the names must completely match, or the character
218 preceding the trailing SEARCH_NAME segment of FILENAME must be a
219 directory separator.
220
221 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
222 cannot match FILENAME "/path//dir/file.c" - as user has requested
223 absolute path. The sama applies for "c:\file.c" possibly
224 incorrectly hypothetically matching "d:\dir\c:\file.c".
225
226 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
227 compatible with SEARCH_NAME "file.c". In such case a compiler had
228 to put the "c:file.c" name into debug info. Such compatibility
229 works only on GDB built for DOS host. */
230 return (len == search_len
231 || (!IS_ABSOLUTE_PATH (search_name)
232 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
233 || (HAS_DRIVE_SPEC (filename)
234 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
235 }
236
237 /* Check for a symtab of a specific name by searching some symtabs.
238 This is a helper function for callbacks of iterate_over_symtabs.
239
240 If NAME is not absolute, then REAL_PATH is NULL
241 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
242
243 The return value, NAME, REAL_PATH, CALLBACK, and DATA
244 are identical to the `map_symtabs_matching_filename' method of
245 quick_symbol_functions.
246
247 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
248 Each symtab within the specified compunit symtab is also searched.
249 AFTER_LAST is one past the last compunit symtab to search; NULL means to
250 search until the end of the list. */
251
252 int
253 iterate_over_some_symtabs (const char *name,
254 const char *real_path,
255 int (*callback) (struct symtab *symtab,
256 void *data),
257 void *data,
258 struct compunit_symtab *first,
259 struct compunit_symtab *after_last)
260 {
261 struct compunit_symtab *cust;
262 struct symtab *s;
263 const char* base_name = lbasename (name);
264
265 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
266 {
267 ALL_COMPUNIT_FILETABS (cust, s)
268 {
269 if (compare_filenames_for_search (s->filename, name))
270 {
271 if (callback (s, data))
272 return 1;
273 continue;
274 }
275
276 /* Before we invoke realpath, which can get expensive when many
277 files are involved, do a quick comparison of the basenames. */
278 if (! basenames_may_differ
279 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
280 continue;
281
282 if (compare_filenames_for_search (symtab_to_fullname (s), name))
283 {
284 if (callback (s, data))
285 return 1;
286 continue;
287 }
288
289 /* If the user gave us an absolute path, try to find the file in
290 this symtab and use its absolute path. */
291 if (real_path != NULL)
292 {
293 const char *fullname = symtab_to_fullname (s);
294
295 gdb_assert (IS_ABSOLUTE_PATH (real_path));
296 gdb_assert (IS_ABSOLUTE_PATH (name));
297 if (FILENAME_CMP (real_path, fullname) == 0)
298 {
299 if (callback (s, data))
300 return 1;
301 continue;
302 }
303 }
304 }
305 }
306
307 return 0;
308 }
309
310 /* Check for a symtab of a specific name; first in symtabs, then in
311 psymtabs. *If* there is no '/' in the name, a match after a '/'
312 in the symtab filename will also work.
313
314 Calls CALLBACK with each symtab that is found and with the supplied
315 DATA. If CALLBACK returns true, the search stops. */
316
317 void
318 iterate_over_symtabs (const char *name,
319 int (*callback) (struct symtab *symtab,
320 void *data),
321 void *data)
322 {
323 struct objfile *objfile;
324 char *real_path = NULL;
325 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
326
327 /* Here we are interested in canonicalizing an absolute path, not
328 absolutizing a relative path. */
329 if (IS_ABSOLUTE_PATH (name))
330 {
331 real_path = gdb_realpath (name);
332 make_cleanup (xfree, real_path);
333 gdb_assert (IS_ABSOLUTE_PATH (real_path));
334 }
335
336 ALL_OBJFILES (objfile)
337 {
338 if (iterate_over_some_symtabs (name, real_path, callback, data,
339 objfile->compunit_symtabs, NULL))
340 {
341 do_cleanups (cleanups);
342 return;
343 }
344 }
345
346 /* Same search rules as above apply here, but now we look thru the
347 psymtabs. */
348
349 ALL_OBJFILES (objfile)
350 {
351 if (objfile->sf
352 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
353 name,
354 real_path,
355 callback,
356 data))
357 {
358 do_cleanups (cleanups);
359 return;
360 }
361 }
362
363 do_cleanups (cleanups);
364 }
365
366 /* The callback function used by lookup_symtab. */
367
368 static int
369 lookup_symtab_callback (struct symtab *symtab, void *data)
370 {
371 struct symtab **result_ptr = data;
372
373 *result_ptr = symtab;
374 return 1;
375 }
376
377 /* A wrapper for iterate_over_symtabs that returns the first matching
378 symtab, or NULL. */
379
380 struct symtab *
381 lookup_symtab (const char *name)
382 {
383 struct symtab *result = NULL;
384
385 iterate_over_symtabs (name, lookup_symtab_callback, &result);
386 return result;
387 }
388
389 \f
390 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
391 full method name, which consist of the class name (from T), the unadorned
392 method name from METHOD_ID, and the signature for the specific overload,
393 specified by SIGNATURE_ID. Note that this function is g++ specific. */
394
395 char *
396 gdb_mangle_name (struct type *type, int method_id, int signature_id)
397 {
398 int mangled_name_len;
399 char *mangled_name;
400 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
401 struct fn_field *method = &f[signature_id];
402 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
403 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
404 const char *newname = type_name_no_tag (type);
405
406 /* Does the form of physname indicate that it is the full mangled name
407 of a constructor (not just the args)? */
408 int is_full_physname_constructor;
409
410 int is_constructor;
411 int is_destructor = is_destructor_name (physname);
412 /* Need a new type prefix. */
413 char *const_prefix = method->is_const ? "C" : "";
414 char *volatile_prefix = method->is_volatile ? "V" : "";
415 char buf[20];
416 int len = (newname == NULL ? 0 : strlen (newname));
417
418 /* Nothing to do if physname already contains a fully mangled v3 abi name
419 or an operator name. */
420 if ((physname[0] == '_' && physname[1] == 'Z')
421 || is_operator_name (field_name))
422 return xstrdup (physname);
423
424 is_full_physname_constructor = is_constructor_name (physname);
425
426 is_constructor = is_full_physname_constructor
427 || (newname && strcmp (field_name, newname) == 0);
428
429 if (!is_destructor)
430 is_destructor = (strncmp (physname, "__dt", 4) == 0);
431
432 if (is_destructor || is_full_physname_constructor)
433 {
434 mangled_name = (char *) xmalloc (strlen (physname) + 1);
435 strcpy (mangled_name, physname);
436 return mangled_name;
437 }
438
439 if (len == 0)
440 {
441 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
442 }
443 else if (physname[0] == 't' || physname[0] == 'Q')
444 {
445 /* The physname for template and qualified methods already includes
446 the class name. */
447 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
448 newname = NULL;
449 len = 0;
450 }
451 else
452 {
453 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
454 volatile_prefix, len);
455 }
456 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
457 + strlen (buf) + len + strlen (physname) + 1);
458
459 mangled_name = (char *) xmalloc (mangled_name_len);
460 if (is_constructor)
461 mangled_name[0] = '\0';
462 else
463 strcpy (mangled_name, field_name);
464
465 strcat (mangled_name, buf);
466 /* If the class doesn't have a name, i.e. newname NULL, then we just
467 mangle it using 0 for the length of the class. Thus it gets mangled
468 as something starting with `::' rather than `classname::'. */
469 if (newname != NULL)
470 strcat (mangled_name, newname);
471
472 strcat (mangled_name, physname);
473 return (mangled_name);
474 }
475
476 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
477 correctly allocated. */
478
479 void
480 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
481 const char *name,
482 struct obstack *obstack)
483 {
484 if (gsymbol->language == language_ada)
485 {
486 if (name == NULL)
487 {
488 gsymbol->ada_mangled = 0;
489 gsymbol->language_specific.obstack = obstack;
490 }
491 else
492 {
493 gsymbol->ada_mangled = 1;
494 gsymbol->language_specific.mangled_lang.demangled_name = name;
495 }
496 }
497 else
498 gsymbol->language_specific.mangled_lang.demangled_name = name;
499 }
500
501 /* Return the demangled name of GSYMBOL. */
502
503 const char *
504 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
505 {
506 if (gsymbol->language == language_ada)
507 {
508 if (!gsymbol->ada_mangled)
509 return NULL;
510 /* Fall through. */
511 }
512
513 return gsymbol->language_specific.mangled_lang.demangled_name;
514 }
515
516 \f
517 /* Initialize the language dependent portion of a symbol
518 depending upon the language for the symbol. */
519
520 void
521 symbol_set_language (struct general_symbol_info *gsymbol,
522 enum language language,
523 struct obstack *obstack)
524 {
525 gsymbol->language = language;
526 if (gsymbol->language == language_cplus
527 || gsymbol->language == language_d
528 || gsymbol->language == language_go
529 || gsymbol->language == language_java
530 || gsymbol->language == language_objc
531 || gsymbol->language == language_fortran)
532 {
533 symbol_set_demangled_name (gsymbol, NULL, obstack);
534 }
535 else if (gsymbol->language == language_ada)
536 {
537 gdb_assert (gsymbol->ada_mangled == 0);
538 gsymbol->language_specific.obstack = obstack;
539 }
540 else
541 {
542 memset (&gsymbol->language_specific, 0,
543 sizeof (gsymbol->language_specific));
544 }
545 }
546
547 /* Functions to initialize a symbol's mangled name. */
548
549 /* Objects of this type are stored in the demangled name hash table. */
550 struct demangled_name_entry
551 {
552 const char *mangled;
553 char demangled[1];
554 };
555
556 /* Hash function for the demangled name hash. */
557
558 static hashval_t
559 hash_demangled_name_entry (const void *data)
560 {
561 const struct demangled_name_entry *e = data;
562
563 return htab_hash_string (e->mangled);
564 }
565
566 /* Equality function for the demangled name hash. */
567
568 static int
569 eq_demangled_name_entry (const void *a, const void *b)
570 {
571 const struct demangled_name_entry *da = a;
572 const struct demangled_name_entry *db = b;
573
574 return strcmp (da->mangled, db->mangled) == 0;
575 }
576
577 /* Create the hash table used for demangled names. Each hash entry is
578 a pair of strings; one for the mangled name and one for the demangled
579 name. The entry is hashed via just the mangled name. */
580
581 static void
582 create_demangled_names_hash (struct objfile *objfile)
583 {
584 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
585 The hash table code will round this up to the next prime number.
586 Choosing a much larger table size wastes memory, and saves only about
587 1% in symbol reading. */
588
589 objfile->per_bfd->demangled_names_hash = htab_create_alloc
590 (256, hash_demangled_name_entry, eq_demangled_name_entry,
591 NULL, xcalloc, xfree);
592 }
593
594 /* Try to determine the demangled name for a symbol, based on the
595 language of that symbol. If the language is set to language_auto,
596 it will attempt to find any demangling algorithm that works and
597 then set the language appropriately. The returned name is allocated
598 by the demangler and should be xfree'd. */
599
600 static char *
601 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
602 const char *mangled)
603 {
604 char *demangled = NULL;
605
606 if (gsymbol->language == language_unknown)
607 gsymbol->language = language_auto;
608
609 if (gsymbol->language == language_objc
610 || gsymbol->language == language_auto)
611 {
612 demangled =
613 objc_demangle (mangled, 0);
614 if (demangled != NULL)
615 {
616 gsymbol->language = language_objc;
617 return demangled;
618 }
619 }
620 if (gsymbol->language == language_cplus
621 || gsymbol->language == language_auto)
622 {
623 demangled =
624 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
625 if (demangled != NULL)
626 {
627 gsymbol->language = language_cplus;
628 return demangled;
629 }
630 }
631 if (gsymbol->language == language_java)
632 {
633 demangled =
634 gdb_demangle (mangled,
635 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
636 if (demangled != NULL)
637 {
638 gsymbol->language = language_java;
639 return demangled;
640 }
641 }
642 if (gsymbol->language == language_d
643 || gsymbol->language == language_auto)
644 {
645 demangled = d_demangle(mangled, 0);
646 if (demangled != NULL)
647 {
648 gsymbol->language = language_d;
649 return demangled;
650 }
651 }
652 /* FIXME(dje): Continually adding languages here is clumsy.
653 Better to just call la_demangle if !auto, and if auto then call
654 a utility routine that tries successive languages in turn and reports
655 which one it finds. I realize the la_demangle options may be different
656 for different languages but there's already a FIXME for that. */
657 if (gsymbol->language == language_go
658 || gsymbol->language == language_auto)
659 {
660 demangled = go_demangle (mangled, 0);
661 if (demangled != NULL)
662 {
663 gsymbol->language = language_go;
664 return demangled;
665 }
666 }
667
668 /* We could support `gsymbol->language == language_fortran' here to provide
669 module namespaces also for inferiors with only minimal symbol table (ELF
670 symbols). Just the mangling standard is not standardized across compilers
671 and there is no DW_AT_producer available for inferiors with only the ELF
672 symbols to check the mangling kind. */
673
674 /* Check for Ada symbols last. See comment below explaining why. */
675
676 if (gsymbol->language == language_auto)
677 {
678 const char *demangled = ada_decode (mangled);
679
680 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
681 {
682 /* Set the gsymbol language to Ada, but still return NULL.
683 Two reasons for that:
684
685 1. For Ada, we prefer computing the symbol's decoded name
686 on the fly rather than pre-compute it, in order to save
687 memory (Ada projects are typically very large).
688
689 2. There are some areas in the definition of the GNAT
690 encoding where, with a bit of bad luck, we might be able
691 to decode a non-Ada symbol, generating an incorrect
692 demangled name (Eg: names ending with "TB" for instance
693 are identified as task bodies and so stripped from
694 the decoded name returned).
695
696 Returning NULL, here, helps us get a little bit of
697 the best of both worlds. Because we're last, we should
698 not affect any of the other languages that were able to
699 demangle the symbol before us; we get to correctly tag
700 Ada symbols as such; and even if we incorrectly tagged
701 a non-Ada symbol, which should be rare, any routing
702 through the Ada language should be transparent (Ada
703 tries to behave much like C/C++ with non-Ada symbols). */
704 gsymbol->language = language_ada;
705 return NULL;
706 }
707 }
708
709 return NULL;
710 }
711
712 /* Set both the mangled and demangled (if any) names for GSYMBOL based
713 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
714 objfile's obstack; but if COPY_NAME is 0 and if NAME is
715 NUL-terminated, then this function assumes that NAME is already
716 correctly saved (either permanently or with a lifetime tied to the
717 objfile), and it will not be copied.
718
719 The hash table corresponding to OBJFILE is used, and the memory
720 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
721 so the pointer can be discarded after calling this function. */
722
723 /* We have to be careful when dealing with Java names: when we run
724 into a Java minimal symbol, we don't know it's a Java symbol, so it
725 gets demangled as a C++ name. This is unfortunate, but there's not
726 much we can do about it: but when demangling partial symbols and
727 regular symbols, we'd better not reuse the wrong demangled name.
728 (See PR gdb/1039.) We solve this by putting a distinctive prefix
729 on Java names when storing them in the hash table. */
730
731 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
732 don't mind the Java prefix so much: different languages have
733 different demangling requirements, so it's only natural that we
734 need to keep language data around in our demangling cache. But
735 it's not good that the minimal symbol has the wrong demangled name.
736 Unfortunately, I can't think of any easy solution to that
737 problem. */
738
739 #define JAVA_PREFIX "##JAVA$$"
740 #define JAVA_PREFIX_LEN 8
741
742 void
743 symbol_set_names (struct general_symbol_info *gsymbol,
744 const char *linkage_name, int len, int copy_name,
745 struct objfile *objfile)
746 {
747 struct demangled_name_entry **slot;
748 /* A 0-terminated copy of the linkage name. */
749 const char *linkage_name_copy;
750 /* A copy of the linkage name that might have a special Java prefix
751 added to it, for use when looking names up in the hash table. */
752 const char *lookup_name;
753 /* The length of lookup_name. */
754 int lookup_len;
755 struct demangled_name_entry entry;
756 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
757
758 if (gsymbol->language == language_ada)
759 {
760 /* In Ada, we do the symbol lookups using the mangled name, so
761 we can save some space by not storing the demangled name.
762
763 As a side note, we have also observed some overlap between
764 the C++ mangling and Ada mangling, similarly to what has
765 been observed with Java. Because we don't store the demangled
766 name with the symbol, we don't need to use the same trick
767 as Java. */
768 if (!copy_name)
769 gsymbol->name = linkage_name;
770 else
771 {
772 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
773
774 memcpy (name, linkage_name, len);
775 name[len] = '\0';
776 gsymbol->name = name;
777 }
778 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
779
780 return;
781 }
782
783 if (per_bfd->demangled_names_hash == NULL)
784 create_demangled_names_hash (objfile);
785
786 /* The stabs reader generally provides names that are not
787 NUL-terminated; most of the other readers don't do this, so we
788 can just use the given copy, unless we're in the Java case. */
789 if (gsymbol->language == language_java)
790 {
791 char *alloc_name;
792
793 lookup_len = len + JAVA_PREFIX_LEN;
794 alloc_name = alloca (lookup_len + 1);
795 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
796 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
797 alloc_name[lookup_len] = '\0';
798
799 lookup_name = alloc_name;
800 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
801 }
802 else if (linkage_name[len] != '\0')
803 {
804 char *alloc_name;
805
806 lookup_len = len;
807 alloc_name = alloca (lookup_len + 1);
808 memcpy (alloc_name, linkage_name, len);
809 alloc_name[lookup_len] = '\0';
810
811 lookup_name = alloc_name;
812 linkage_name_copy = alloc_name;
813 }
814 else
815 {
816 lookup_len = len;
817 lookup_name = linkage_name;
818 linkage_name_copy = linkage_name;
819 }
820
821 entry.mangled = lookup_name;
822 slot = ((struct demangled_name_entry **)
823 htab_find_slot (per_bfd->demangled_names_hash,
824 &entry, INSERT));
825
826 /* If this name is not in the hash table, add it. */
827 if (*slot == NULL
828 /* A C version of the symbol may have already snuck into the table.
829 This happens to, e.g., main.init (__go_init_main). Cope. */
830 || (gsymbol->language == language_go
831 && (*slot)->demangled[0] == '\0'))
832 {
833 char *demangled_name = symbol_find_demangled_name (gsymbol,
834 linkage_name_copy);
835 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
836
837 /* Suppose we have demangled_name==NULL, copy_name==0, and
838 lookup_name==linkage_name. In this case, we already have the
839 mangled name saved, and we don't have a demangled name. So,
840 you might think we could save a little space by not recording
841 this in the hash table at all.
842
843 It turns out that it is actually important to still save such
844 an entry in the hash table, because storing this name gives
845 us better bcache hit rates for partial symbols. */
846 if (!copy_name && lookup_name == linkage_name)
847 {
848 *slot = obstack_alloc (&per_bfd->storage_obstack,
849 offsetof (struct demangled_name_entry,
850 demangled)
851 + demangled_len + 1);
852 (*slot)->mangled = lookup_name;
853 }
854 else
855 {
856 char *mangled_ptr;
857
858 /* If we must copy the mangled name, put it directly after
859 the demangled name so we can have a single
860 allocation. */
861 *slot = obstack_alloc (&per_bfd->storage_obstack,
862 offsetof (struct demangled_name_entry,
863 demangled)
864 + lookup_len + demangled_len + 2);
865 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
866 strcpy (mangled_ptr, lookup_name);
867 (*slot)->mangled = mangled_ptr;
868 }
869
870 if (demangled_name != NULL)
871 {
872 strcpy ((*slot)->demangled, demangled_name);
873 xfree (demangled_name);
874 }
875 else
876 (*slot)->demangled[0] = '\0';
877 }
878
879 gsymbol->name = (*slot)->mangled + lookup_len - len;
880 if ((*slot)->demangled[0] != '\0')
881 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
882 &per_bfd->storage_obstack);
883 else
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
885 }
886
887 /* Return the source code name of a symbol. In languages where
888 demangling is necessary, this is the demangled name. */
889
890 const char *
891 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 {
893 switch (gsymbol->language)
894 {
895 case language_cplus:
896 case language_d:
897 case language_go:
898 case language_java:
899 case language_objc:
900 case language_fortran:
901 if (symbol_get_demangled_name (gsymbol) != NULL)
902 return symbol_get_demangled_name (gsymbol);
903 break;
904 case language_ada:
905 return ada_decode_symbol (gsymbol);
906 default:
907 break;
908 }
909 return gsymbol->name;
910 }
911
912 /* Return the demangled name for a symbol based on the language for
913 that symbol. If no demangled name exists, return NULL. */
914
915 const char *
916 symbol_demangled_name (const struct general_symbol_info *gsymbol)
917 {
918 const char *dem_name = NULL;
919
920 switch (gsymbol->language)
921 {
922 case language_cplus:
923 case language_d:
924 case language_go:
925 case language_java:
926 case language_objc:
927 case language_fortran:
928 dem_name = symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 dem_name = ada_decode_symbol (gsymbol);
932 break;
933 default:
934 break;
935 }
936 return dem_name;
937 }
938
939 /* Return the search name of a symbol---generally the demangled or
940 linkage name of the symbol, depending on how it will be searched for.
941 If there is no distinct demangled name, then returns the same value
942 (same pointer) as SYMBOL_LINKAGE_NAME. */
943
944 const char *
945 symbol_search_name (const struct general_symbol_info *gsymbol)
946 {
947 if (gsymbol->language == language_ada)
948 return gsymbol->name;
949 else
950 return symbol_natural_name (gsymbol);
951 }
952
953 /* Initialize the structure fields to zero values. */
954
955 void
956 init_sal (struct symtab_and_line *sal)
957 {
958 memset (sal, 0, sizeof (*sal));
959 }
960 \f
961
962 /* Return 1 if the two sections are the same, or if they could
963 plausibly be copies of each other, one in an original object
964 file and another in a separated debug file. */
965
966 int
967 matching_obj_sections (struct obj_section *obj_first,
968 struct obj_section *obj_second)
969 {
970 asection *first = obj_first? obj_first->the_bfd_section : NULL;
971 asection *second = obj_second? obj_second->the_bfd_section : NULL;
972 struct objfile *obj;
973
974 /* If they're the same section, then they match. */
975 if (first == second)
976 return 1;
977
978 /* If either is NULL, give up. */
979 if (first == NULL || second == NULL)
980 return 0;
981
982 /* This doesn't apply to absolute symbols. */
983 if (first->owner == NULL || second->owner == NULL)
984 return 0;
985
986 /* If they're in the same object file, they must be different sections. */
987 if (first->owner == second->owner)
988 return 0;
989
990 /* Check whether the two sections are potentially corresponding. They must
991 have the same size, address, and name. We can't compare section indexes,
992 which would be more reliable, because some sections may have been
993 stripped. */
994 if (bfd_get_section_size (first) != bfd_get_section_size (second))
995 return 0;
996
997 /* In-memory addresses may start at a different offset, relativize them. */
998 if (bfd_get_section_vma (first->owner, first)
999 - bfd_get_start_address (first->owner)
1000 != bfd_get_section_vma (second->owner, second)
1001 - bfd_get_start_address (second->owner))
1002 return 0;
1003
1004 if (bfd_get_section_name (first->owner, first) == NULL
1005 || bfd_get_section_name (second->owner, second) == NULL
1006 || strcmp (bfd_get_section_name (first->owner, first),
1007 bfd_get_section_name (second->owner, second)) != 0)
1008 return 0;
1009
1010 /* Otherwise check that they are in corresponding objfiles. */
1011
1012 ALL_OBJFILES (obj)
1013 if (obj->obfd == first->owner)
1014 break;
1015 gdb_assert (obj != NULL);
1016
1017 if (obj->separate_debug_objfile != NULL
1018 && obj->separate_debug_objfile->obfd == second->owner)
1019 return 1;
1020 if (obj->separate_debug_objfile_backlink != NULL
1021 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1022 return 1;
1023
1024 return 0;
1025 }
1026
1027 /* See symtab.h. */
1028
1029 void
1030 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1031 {
1032 struct objfile *objfile;
1033 struct bound_minimal_symbol msymbol;
1034
1035 /* If we know that this is not a text address, return failure. This is
1036 necessary because we loop based on texthigh and textlow, which do
1037 not include the data ranges. */
1038 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1039 if (msymbol.minsym
1040 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1041 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1042 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1045 return;
1046
1047 ALL_OBJFILES (objfile)
1048 {
1049 struct compunit_symtab *cust = NULL;
1050
1051 if (objfile->sf)
1052 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1053 pc, section, 0);
1054 if (cust)
1055 return;
1056 }
1057 }
1058 \f
1059 /* Debug symbols usually don't have section information. We need to dig that
1060 out of the minimal symbols and stash that in the debug symbol. */
1061
1062 void
1063 fixup_section (struct general_symbol_info *ginfo,
1064 CORE_ADDR addr, struct objfile *objfile)
1065 {
1066 struct minimal_symbol *msym;
1067
1068 /* First, check whether a minimal symbol with the same name exists
1069 and points to the same address. The address check is required
1070 e.g. on PowerPC64, where the minimal symbol for a function will
1071 point to the function descriptor, while the debug symbol will
1072 point to the actual function code. */
1073 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1074 if (msym)
1075 ginfo->section = MSYMBOL_SECTION (msym);
1076 else
1077 {
1078 /* Static, function-local variables do appear in the linker
1079 (minimal) symbols, but are frequently given names that won't
1080 be found via lookup_minimal_symbol(). E.g., it has been
1081 observed in frv-uclinux (ELF) executables that a static,
1082 function-local variable named "foo" might appear in the
1083 linker symbols as "foo.6" or "foo.3". Thus, there is no
1084 point in attempting to extend the lookup-by-name mechanism to
1085 handle this case due to the fact that there can be multiple
1086 names.
1087
1088 So, instead, search the section table when lookup by name has
1089 failed. The ``addr'' and ``endaddr'' fields may have already
1090 been relocated. If so, the relocation offset (i.e. the
1091 ANOFFSET value) needs to be subtracted from these values when
1092 performing the comparison. We unconditionally subtract it,
1093 because, when no relocation has been performed, the ANOFFSET
1094 value will simply be zero.
1095
1096 The address of the symbol whose section we're fixing up HAS
1097 NOT BEEN adjusted (relocated) yet. It can't have been since
1098 the section isn't yet known and knowing the section is
1099 necessary in order to add the correct relocation value. In
1100 other words, we wouldn't even be in this function (attempting
1101 to compute the section) if it were already known.
1102
1103 Note that it is possible to search the minimal symbols
1104 (subtracting the relocation value if necessary) to find the
1105 matching minimal symbol, but this is overkill and much less
1106 efficient. It is not necessary to find the matching minimal
1107 symbol, only its section.
1108
1109 Note that this technique (of doing a section table search)
1110 can fail when unrelocated section addresses overlap. For
1111 this reason, we still attempt a lookup by name prior to doing
1112 a search of the section table. */
1113
1114 struct obj_section *s;
1115 int fallback = -1;
1116
1117 ALL_OBJFILE_OSECTIONS (objfile, s)
1118 {
1119 int idx = s - objfile->sections;
1120 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1121
1122 if (fallback == -1)
1123 fallback = idx;
1124
1125 if (obj_section_addr (s) - offset <= addr
1126 && addr < obj_section_endaddr (s) - offset)
1127 {
1128 ginfo->section = idx;
1129 return;
1130 }
1131 }
1132
1133 /* If we didn't find the section, assume it is in the first
1134 section. If there is no allocated section, then it hardly
1135 matters what we pick, so just pick zero. */
1136 if (fallback == -1)
1137 ginfo->section = 0;
1138 else
1139 ginfo->section = fallback;
1140 }
1141 }
1142
1143 struct symbol *
1144 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1145 {
1146 CORE_ADDR addr;
1147
1148 if (!sym)
1149 return NULL;
1150
1151 /* We either have an OBJFILE, or we can get at it from the sym's
1152 symtab. Anything else is a bug. */
1153 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1154
1155 if (objfile == NULL)
1156 objfile = SYMBOL_OBJFILE (sym);
1157
1158 if (SYMBOL_OBJ_SECTION (objfile, sym))
1159 return sym;
1160
1161 /* We should have an objfile by now. */
1162 gdb_assert (objfile);
1163
1164 switch (SYMBOL_CLASS (sym))
1165 {
1166 case LOC_STATIC:
1167 case LOC_LABEL:
1168 addr = SYMBOL_VALUE_ADDRESS (sym);
1169 break;
1170 case LOC_BLOCK:
1171 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1172 break;
1173
1174 default:
1175 /* Nothing else will be listed in the minsyms -- no use looking
1176 it up. */
1177 return sym;
1178 }
1179
1180 fixup_section (&sym->ginfo, addr, objfile);
1181
1182 return sym;
1183 }
1184
1185 /* Compute the demangled form of NAME as used by the various symbol
1186 lookup functions. The result is stored in *RESULT_NAME. Returns a
1187 cleanup which can be used to clean up the result.
1188
1189 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1190 Normally, Ada symbol lookups are performed using the encoded name
1191 rather than the demangled name, and so it might seem to make sense
1192 for this function to return an encoded version of NAME.
1193 Unfortunately, we cannot do this, because this function is used in
1194 circumstances where it is not appropriate to try to encode NAME.
1195 For instance, when displaying the frame info, we demangle the name
1196 of each parameter, and then perform a symbol lookup inside our
1197 function using that demangled name. In Ada, certain functions
1198 have internally-generated parameters whose name contain uppercase
1199 characters. Encoding those name would result in those uppercase
1200 characters to become lowercase, and thus cause the symbol lookup
1201 to fail. */
1202
1203 struct cleanup *
1204 demangle_for_lookup (const char *name, enum language lang,
1205 const char **result_name)
1206 {
1207 char *demangled_name = NULL;
1208 const char *modified_name = NULL;
1209 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1210
1211 modified_name = name;
1212
1213 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1214 lookup, so we can always binary search. */
1215 if (lang == language_cplus)
1216 {
1217 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1218 if (demangled_name)
1219 {
1220 modified_name = demangled_name;
1221 make_cleanup (xfree, demangled_name);
1222 }
1223 else
1224 {
1225 /* If we were given a non-mangled name, canonicalize it
1226 according to the language (so far only for C++). */
1227 demangled_name = cp_canonicalize_string (name);
1228 if (demangled_name)
1229 {
1230 modified_name = demangled_name;
1231 make_cleanup (xfree, demangled_name);
1232 }
1233 }
1234 }
1235 else if (lang == language_java)
1236 {
1237 demangled_name = gdb_demangle (name,
1238 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1239 if (demangled_name)
1240 {
1241 modified_name = demangled_name;
1242 make_cleanup (xfree, demangled_name);
1243 }
1244 }
1245 else if (lang == language_d)
1246 {
1247 demangled_name = d_demangle (name, 0);
1248 if (demangled_name)
1249 {
1250 modified_name = demangled_name;
1251 make_cleanup (xfree, demangled_name);
1252 }
1253 }
1254 else if (lang == language_go)
1255 {
1256 demangled_name = go_demangle (name, 0);
1257 if (demangled_name)
1258 {
1259 modified_name = demangled_name;
1260 make_cleanup (xfree, demangled_name);
1261 }
1262 }
1263
1264 *result_name = modified_name;
1265 return cleanup;
1266 }
1267
1268 /* See symtab.h.
1269
1270 This function (or rather its subordinates) have a bunch of loops and
1271 it would seem to be attractive to put in some QUIT's (though I'm not really
1272 sure whether it can run long enough to be really important). But there
1273 are a few calls for which it would appear to be bad news to quit
1274 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1275 that there is C++ code below which can error(), but that probably
1276 doesn't affect these calls since they are looking for a known
1277 variable and thus can probably assume it will never hit the C++
1278 code). */
1279
1280 struct symbol *
1281 lookup_symbol_in_language (const char *name, const struct block *block,
1282 const domain_enum domain, enum language lang,
1283 struct field_of_this_result *is_a_field_of_this)
1284 {
1285 const char *modified_name;
1286 struct symbol *returnval;
1287 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1288
1289 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1290 is_a_field_of_this);
1291 do_cleanups (cleanup);
1292
1293 return returnval;
1294 }
1295
1296 /* See symtab.h. */
1297
1298 struct symbol *
1299 lookup_symbol (const char *name, const struct block *block,
1300 domain_enum domain,
1301 struct field_of_this_result *is_a_field_of_this)
1302 {
1303 return lookup_symbol_in_language (name, block, domain,
1304 current_language->la_language,
1305 is_a_field_of_this);
1306 }
1307
1308 /* See symtab.h. */
1309
1310 struct symbol *
1311 lookup_language_this (const struct language_defn *lang,
1312 const struct block *block)
1313 {
1314 if (lang->la_name_of_this == NULL || block == NULL)
1315 return NULL;
1316
1317 while (block)
1318 {
1319 struct symbol *sym;
1320
1321 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1322 if (sym != NULL)
1323 {
1324 block_found = block;
1325 return sym;
1326 }
1327 if (BLOCK_FUNCTION (block))
1328 break;
1329 block = BLOCK_SUPERBLOCK (block);
1330 }
1331
1332 return NULL;
1333 }
1334
1335 /* Given TYPE, a structure/union,
1336 return 1 if the component named NAME from the ultimate target
1337 structure/union is defined, otherwise, return 0. */
1338
1339 static int
1340 check_field (struct type *type, const char *name,
1341 struct field_of_this_result *is_a_field_of_this)
1342 {
1343 int i;
1344
1345 /* The type may be a stub. */
1346 CHECK_TYPEDEF (type);
1347
1348 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1349 {
1350 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1351
1352 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1353 {
1354 is_a_field_of_this->type = type;
1355 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1356 return 1;
1357 }
1358 }
1359
1360 /* C++: If it was not found as a data field, then try to return it
1361 as a pointer to a method. */
1362
1363 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1364 {
1365 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1366 {
1367 is_a_field_of_this->type = type;
1368 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1369 return 1;
1370 }
1371 }
1372
1373 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1374 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1375 return 1;
1376
1377 return 0;
1378 }
1379
1380 /* Behave like lookup_symbol except that NAME is the natural name
1381 (e.g., demangled name) of the symbol that we're looking for. */
1382
1383 static struct symbol *
1384 lookup_symbol_aux (const char *name, const struct block *block,
1385 const domain_enum domain, enum language language,
1386 struct field_of_this_result *is_a_field_of_this)
1387 {
1388 struct symbol *sym;
1389 const struct language_defn *langdef;
1390
1391 /* Make sure we do something sensible with is_a_field_of_this, since
1392 the callers that set this parameter to some non-null value will
1393 certainly use it later. If we don't set it, the contents of
1394 is_a_field_of_this are undefined. */
1395 if (is_a_field_of_this != NULL)
1396 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1397
1398 /* Search specified block and its superiors. Don't search
1399 STATIC_BLOCK or GLOBAL_BLOCK. */
1400
1401 sym = lookup_local_symbol (name, block, domain, language);
1402 if (sym != NULL)
1403 return sym;
1404
1405 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1406 check to see if NAME is a field of `this'. */
1407
1408 langdef = language_def (language);
1409
1410 /* Don't do this check if we are searching for a struct. It will
1411 not be found by check_field, but will be found by other
1412 means. */
1413 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1414 {
1415 struct symbol *sym = lookup_language_this (langdef, block);
1416
1417 if (sym)
1418 {
1419 struct type *t = sym->type;
1420
1421 /* I'm not really sure that type of this can ever
1422 be typedefed; just be safe. */
1423 CHECK_TYPEDEF (t);
1424 if (TYPE_CODE (t) == TYPE_CODE_PTR
1425 || TYPE_CODE (t) == TYPE_CODE_REF)
1426 t = TYPE_TARGET_TYPE (t);
1427
1428 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1429 && TYPE_CODE (t) != TYPE_CODE_UNION)
1430 error (_("Internal error: `%s' is not an aggregate"),
1431 langdef->la_name_of_this);
1432
1433 if (check_field (t, name, is_a_field_of_this))
1434 return NULL;
1435 }
1436 }
1437
1438 /* Now do whatever is appropriate for LANGUAGE to look
1439 up static and global variables. */
1440
1441 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1442 if (sym != NULL)
1443 return sym;
1444
1445 /* Now search all static file-level symbols. Not strictly correct,
1446 but more useful than an error. */
1447
1448 return lookup_static_symbol (name, domain);
1449 }
1450
1451 /* Check to see if the symbol is defined in BLOCK or its superiors.
1452 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1453
1454 static struct symbol *
1455 lookup_local_symbol (const char *name, const struct block *block,
1456 const domain_enum domain,
1457 enum language language)
1458 {
1459 struct symbol *sym;
1460 const struct block *static_block = block_static_block (block);
1461 const char *scope = block_scope (block);
1462
1463 /* Check if either no block is specified or it's a global block. */
1464
1465 if (static_block == NULL)
1466 return NULL;
1467
1468 while (block != static_block)
1469 {
1470 sym = lookup_symbol_in_block (name, block, domain);
1471 if (sym != NULL)
1472 return sym;
1473
1474 if (language == language_cplus || language == language_fortran)
1475 {
1476 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1477 domain);
1478 if (sym != NULL)
1479 return sym;
1480 }
1481
1482 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1483 break;
1484 block = BLOCK_SUPERBLOCK (block);
1485 }
1486
1487 /* We've reached the end of the function without finding a result. */
1488
1489 return NULL;
1490 }
1491
1492 /* See symtab.h. */
1493
1494 struct objfile *
1495 lookup_objfile_from_block (const struct block *block)
1496 {
1497 struct objfile *obj;
1498 struct compunit_symtab *cust;
1499
1500 if (block == NULL)
1501 return NULL;
1502
1503 block = block_global_block (block);
1504 /* Look through all blockvectors. */
1505 ALL_COMPUNITS (obj, cust)
1506 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
1507 GLOBAL_BLOCK))
1508 {
1509 if (obj->separate_debug_objfile_backlink)
1510 obj = obj->separate_debug_objfile_backlink;
1511
1512 return obj;
1513 }
1514
1515 return NULL;
1516 }
1517
1518 /* See symtab.h. */
1519
1520 struct symbol *
1521 lookup_symbol_in_block (const char *name, const struct block *block,
1522 const domain_enum domain)
1523 {
1524 struct symbol *sym;
1525
1526 sym = block_lookup_symbol (block, name, domain);
1527 if (sym)
1528 {
1529 block_found = block;
1530 return fixup_symbol_section (sym, NULL);
1531 }
1532
1533 return NULL;
1534 }
1535
1536 /* See symtab.h. */
1537
1538 struct symbol *
1539 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1540 const char *name,
1541 const domain_enum domain)
1542 {
1543 const struct objfile *objfile;
1544
1545 for (objfile = main_objfile;
1546 objfile;
1547 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1548 {
1549 struct compunit_symtab *cust;
1550 struct symbol *sym;
1551
1552 /* Go through symtabs. */
1553 ALL_OBJFILE_COMPUNITS (objfile, cust)
1554 {
1555 const struct blockvector *bv;
1556 const struct block *block;
1557
1558 bv = COMPUNIT_BLOCKVECTOR (cust);
1559 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1560 sym = block_lookup_symbol (block, name, domain);
1561 if (sym)
1562 {
1563 block_found = block;
1564 return fixup_symbol_section (sym, (struct objfile *)objfile);
1565 }
1566 }
1567
1568 sym = lookup_symbol_via_quick_fns ((struct objfile *) objfile,
1569 GLOBAL_BLOCK, name, domain);
1570 if (sym)
1571 return sym;
1572 }
1573
1574 return NULL;
1575 }
1576
1577 /* Check to see if the symbol is defined in one of the OBJFILE's
1578 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1579 depending on whether or not we want to search global symbols or
1580 static symbols. */
1581
1582 static struct symbol *
1583 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1584 const char *name, const domain_enum domain)
1585 {
1586 struct compunit_symtab *cust;
1587
1588 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
1589
1590 ALL_OBJFILE_COMPUNITS (objfile, cust)
1591 {
1592 const struct blockvector *bv;
1593 const struct block *block;
1594 struct symbol *sym;
1595
1596 bv = COMPUNIT_BLOCKVECTOR (cust);
1597 block = BLOCKVECTOR_BLOCK (bv, block_index);
1598 sym = block_lookup_symbol_primary (block, name, domain);
1599 if (sym)
1600 {
1601 block_found = block;
1602 return fixup_symbol_section (sym, objfile);
1603 }
1604 }
1605
1606 return NULL;
1607 }
1608
1609 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1610 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1611 and all associated separate debug objfiles.
1612
1613 Normally we only look in OBJFILE, and not any separate debug objfiles
1614 because the outer loop will cause them to be searched too. This case is
1615 different. Here we're called from search_symbols where it will only
1616 call us for the the objfile that contains a matching minsym. */
1617
1618 static struct symbol *
1619 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1620 const char *linkage_name,
1621 domain_enum domain)
1622 {
1623 enum language lang = current_language->la_language;
1624 const char *modified_name;
1625 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1626 &modified_name);
1627 struct objfile *main_objfile, *cur_objfile;
1628
1629 if (objfile->separate_debug_objfile_backlink)
1630 main_objfile = objfile->separate_debug_objfile_backlink;
1631 else
1632 main_objfile = objfile;
1633
1634 for (cur_objfile = main_objfile;
1635 cur_objfile;
1636 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1637 {
1638 struct symbol *sym;
1639
1640 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1641 modified_name, domain);
1642 if (sym == NULL)
1643 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1644 modified_name, domain);
1645 if (sym != NULL)
1646 {
1647 do_cleanups (cleanup);
1648 return sym;
1649 }
1650 }
1651
1652 do_cleanups (cleanup);
1653 return NULL;
1654 }
1655
1656 /* A helper function that throws an exception when a symbol was found
1657 in a psymtab but not in a symtab. */
1658
1659 static void ATTRIBUTE_NORETURN
1660 error_in_psymtab_expansion (int block_index, const char *name,
1661 struct compunit_symtab *cust)
1662 {
1663 error (_("\
1664 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1665 %s may be an inlined function, or may be a template function\n \
1666 (if a template, try specifying an instantiation: %s<type>)."),
1667 block_index == GLOBAL_BLOCK ? "global" : "static",
1668 name,
1669 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
1670 name, name);
1671 }
1672
1673 /* A helper function for various lookup routines that interfaces with
1674 the "quick" symbol table functions. */
1675
1676 static struct symbol *
1677 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1678 const char *name, const domain_enum domain)
1679 {
1680 struct compunit_symtab *cust;
1681 const struct blockvector *bv;
1682 const struct block *block;
1683 struct symbol *sym;
1684
1685 if (!objfile->sf)
1686 return NULL;
1687 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1688 if (cust == NULL)
1689 return NULL;
1690
1691 bv = COMPUNIT_BLOCKVECTOR (cust);
1692 block = BLOCKVECTOR_BLOCK (bv, block_index);
1693 sym = block_lookup_symbol (block, name, domain);
1694 if (!sym)
1695 error_in_psymtab_expansion (block_index, name, cust);
1696 block_found = block;
1697 return fixup_symbol_section (sym, objfile);
1698 }
1699
1700 /* See symtab.h. */
1701
1702 struct symbol *
1703 basic_lookup_symbol_nonlocal (const char *name,
1704 const struct block *block,
1705 const domain_enum domain)
1706 {
1707 struct symbol *sym;
1708
1709 /* NOTE: carlton/2003-05-19: The comments below were written when
1710 this (or what turned into this) was part of lookup_symbol_aux;
1711 I'm much less worried about these questions now, since these
1712 decisions have turned out well, but I leave these comments here
1713 for posterity. */
1714
1715 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1716 not it would be appropriate to search the current global block
1717 here as well. (That's what this code used to do before the
1718 is_a_field_of_this check was moved up.) On the one hand, it's
1719 redundant with the lookup in all objfiles search that happens
1720 next. On the other hand, if decode_line_1 is passed an argument
1721 like filename:var, then the user presumably wants 'var' to be
1722 searched for in filename. On the third hand, there shouldn't be
1723 multiple global variables all of which are named 'var', and it's
1724 not like decode_line_1 has ever restricted its search to only
1725 global variables in a single filename. All in all, only
1726 searching the static block here seems best: it's correct and it's
1727 cleanest. */
1728
1729 /* NOTE: carlton/2002-12-05: There's also a possible performance
1730 issue here: if you usually search for global symbols in the
1731 current file, then it would be slightly better to search the
1732 current global block before searching all the symtabs. But there
1733 are other factors that have a much greater effect on performance
1734 than that one, so I don't think we should worry about that for
1735 now. */
1736
1737 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1738 the current objfile. Searching the current objfile first is useful
1739 for both matching user expectations as well as performance. */
1740
1741 sym = lookup_symbol_in_static_block (name, block, domain);
1742 if (sym != NULL)
1743 return sym;
1744
1745 return lookup_global_symbol (name, block, domain);
1746 }
1747
1748 /* See symtab.h. */
1749
1750 struct symbol *
1751 lookup_symbol_in_static_block (const char *name,
1752 const struct block *block,
1753 const domain_enum domain)
1754 {
1755 const struct block *static_block = block_static_block (block);
1756
1757 if (static_block != NULL)
1758 return lookup_symbol_in_block (name, static_block, domain);
1759 else
1760 return NULL;
1761 }
1762
1763 /* Perform the standard symbol lookup of NAME in OBJFILE:
1764 1) First search expanded symtabs, and if not found
1765 2) Search the "quick" symtabs (partial or .gdb_index).
1766 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1767
1768 static struct symbol *
1769 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1770 const char *name, const domain_enum domain)
1771 {
1772 struct symbol *result;
1773
1774 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1775 name, domain);
1776 if (result == NULL)
1777 {
1778 result = lookup_symbol_via_quick_fns (objfile, block_index,
1779 name, domain);
1780 }
1781
1782 return result;
1783 }
1784
1785 /* See symtab.h. */
1786
1787 struct symbol *
1788 lookup_static_symbol (const char *name, const domain_enum domain)
1789 {
1790 struct objfile *objfile;
1791 struct symbol *result;
1792
1793 ALL_OBJFILES (objfile)
1794 {
1795 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1796 if (result != NULL)
1797 return result;
1798 }
1799
1800 return NULL;
1801 }
1802
1803 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1804
1805 struct global_sym_lookup_data
1806 {
1807 /* The name of the symbol we are searching for. */
1808 const char *name;
1809
1810 /* The domain to use for our search. */
1811 domain_enum domain;
1812
1813 /* The field where the callback should store the symbol if found.
1814 It should be initialized to NULL before the search is started. */
1815 struct symbol *result;
1816 };
1817
1818 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1819 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1820 OBJFILE. The arguments for the search are passed via CB_DATA,
1821 which in reality is a pointer to struct global_sym_lookup_data. */
1822
1823 static int
1824 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1825 void *cb_data)
1826 {
1827 struct global_sym_lookup_data *data =
1828 (struct global_sym_lookup_data *) cb_data;
1829
1830 gdb_assert (data->result == NULL);
1831
1832 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1833 data->name, data->domain);
1834
1835 /* If we found a match, tell the iterator to stop. Otherwise,
1836 keep going. */
1837 return (data->result != NULL);
1838 }
1839
1840 /* See symtab.h. */
1841
1842 struct symbol *
1843 lookup_global_symbol (const char *name,
1844 const struct block *block,
1845 const domain_enum domain)
1846 {
1847 struct symbol *sym = NULL;
1848 struct objfile *objfile = NULL;
1849 struct global_sym_lookup_data lookup_data;
1850
1851 /* Call library-specific lookup procedure. */
1852 objfile = lookup_objfile_from_block (block);
1853 if (objfile != NULL)
1854 sym = solib_global_lookup (objfile, name, domain);
1855 if (sym != NULL)
1856 return sym;
1857
1858 memset (&lookup_data, 0, sizeof (lookup_data));
1859 lookup_data.name = name;
1860 lookup_data.domain = domain;
1861 gdbarch_iterate_over_objfiles_in_search_order
1862 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1863 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1864
1865 return lookup_data.result;
1866 }
1867
1868 int
1869 symbol_matches_domain (enum language symbol_language,
1870 domain_enum symbol_domain,
1871 domain_enum domain)
1872 {
1873 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1874 A Java class declaration also defines a typedef for the class.
1875 Similarly, any Ada type declaration implicitly defines a typedef. */
1876 if (symbol_language == language_cplus
1877 || symbol_language == language_d
1878 || symbol_language == language_java
1879 || symbol_language == language_ada)
1880 {
1881 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1882 && symbol_domain == STRUCT_DOMAIN)
1883 return 1;
1884 }
1885 /* For all other languages, strict match is required. */
1886 return (symbol_domain == domain);
1887 }
1888
1889 /* See symtab.h. */
1890
1891 struct type *
1892 lookup_transparent_type (const char *name)
1893 {
1894 return current_language->la_lookup_transparent_type (name);
1895 }
1896
1897 /* A helper for basic_lookup_transparent_type that interfaces with the
1898 "quick" symbol table functions. */
1899
1900 static struct type *
1901 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1902 const char *name)
1903 {
1904 struct compunit_symtab *cust;
1905 const struct blockvector *bv;
1906 struct block *block;
1907 struct symbol *sym;
1908
1909 if (!objfile->sf)
1910 return NULL;
1911 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1912 STRUCT_DOMAIN);
1913 if (cust == NULL)
1914 return NULL;
1915
1916 bv = COMPUNIT_BLOCKVECTOR (cust);
1917 block = BLOCKVECTOR_BLOCK (bv, block_index);
1918 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1919 if (!sym)
1920 error_in_psymtab_expansion (block_index, name, cust);
1921
1922 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1923 return SYMBOL_TYPE (sym);
1924
1925 return NULL;
1926 }
1927
1928 /* The standard implementation of lookup_transparent_type. This code
1929 was modeled on lookup_symbol -- the parts not relevant to looking
1930 up types were just left out. In particular it's assumed here that
1931 types are available in STRUCT_DOMAIN and only in file-static or
1932 global blocks. */
1933
1934 struct type *
1935 basic_lookup_transparent_type (const char *name)
1936 {
1937 struct symbol *sym;
1938 struct compunit_symtab *cust;
1939 const struct blockvector *bv;
1940 struct objfile *objfile;
1941 struct block *block;
1942 struct type *t;
1943
1944 /* Now search all the global symbols. Do the symtab's first, then
1945 check the psymtab's. If a psymtab indicates the existence
1946 of the desired name as a global, then do psymtab-to-symtab
1947 conversion on the fly and return the found symbol. */
1948
1949 ALL_OBJFILES (objfile)
1950 {
1951 ALL_OBJFILE_COMPUNITS (objfile, cust)
1952 {
1953 bv = COMPUNIT_BLOCKVECTOR (cust);
1954 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1955 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1956 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1957 {
1958 return SYMBOL_TYPE (sym);
1959 }
1960 }
1961 }
1962
1963 ALL_OBJFILES (objfile)
1964 {
1965 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1966 if (t)
1967 return t;
1968 }
1969
1970 /* Now search the static file-level symbols.
1971 Not strictly correct, but more useful than an error.
1972 Do the symtab's first, then
1973 check the psymtab's. If a psymtab indicates the existence
1974 of the desired name as a file-level static, then do psymtab-to-symtab
1975 conversion on the fly and return the found symbol. */
1976
1977 ALL_OBJFILES (objfile)
1978 {
1979 ALL_OBJFILE_COMPUNITS (objfile, cust)
1980 {
1981 bv = COMPUNIT_BLOCKVECTOR (cust);
1982 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1983 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1984 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1985 {
1986 return SYMBOL_TYPE (sym);
1987 }
1988 }
1989 }
1990
1991 ALL_OBJFILES (objfile)
1992 {
1993 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1994 if (t)
1995 return t;
1996 }
1997
1998 return (struct type *) 0;
1999 }
2000
2001 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2002
2003 For each symbol that matches, CALLBACK is called. The symbol and
2004 DATA are passed to the callback.
2005
2006 If CALLBACK returns zero, the iteration ends. Otherwise, the
2007 search continues. */
2008
2009 void
2010 iterate_over_symbols (const struct block *block, const char *name,
2011 const domain_enum domain,
2012 symbol_found_callback_ftype *callback,
2013 void *data)
2014 {
2015 struct block_iterator iter;
2016 struct symbol *sym;
2017
2018 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2019 {
2020 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2021 SYMBOL_DOMAIN (sym), domain))
2022 {
2023 if (!callback (sym, data))
2024 return;
2025 }
2026 }
2027 }
2028
2029 /* Find the compunit symtab associated with PC and SECTION.
2030 This will read in debug info as necessary. */
2031
2032 struct compunit_symtab *
2033 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2034 {
2035 struct compunit_symtab *cust;
2036 struct compunit_symtab *best_cust = NULL;
2037 struct objfile *objfile;
2038 CORE_ADDR distance = 0;
2039 struct bound_minimal_symbol msymbol;
2040
2041 /* If we know that this is not a text address, return failure. This is
2042 necessary because we loop based on the block's high and low code
2043 addresses, which do not include the data ranges, and because
2044 we call find_pc_sect_psymtab which has a similar restriction based
2045 on the partial_symtab's texthigh and textlow. */
2046 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2047 if (msymbol.minsym
2048 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2049 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2050 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2051 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2052 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2053 return NULL;
2054
2055 /* Search all symtabs for the one whose file contains our address, and which
2056 is the smallest of all the ones containing the address. This is designed
2057 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2058 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2059 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2060
2061 This happens for native ecoff format, where code from included files
2062 gets its own symtab. The symtab for the included file should have
2063 been read in already via the dependency mechanism.
2064 It might be swifter to create several symtabs with the same name
2065 like xcoff does (I'm not sure).
2066
2067 It also happens for objfiles that have their functions reordered.
2068 For these, the symtab we are looking for is not necessarily read in. */
2069
2070 ALL_COMPUNITS (objfile, cust)
2071 {
2072 struct block *b;
2073 const struct blockvector *bv;
2074
2075 bv = COMPUNIT_BLOCKVECTOR (cust);
2076 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2077
2078 if (BLOCK_START (b) <= pc
2079 && BLOCK_END (b) > pc
2080 && (distance == 0
2081 || BLOCK_END (b) - BLOCK_START (b) < distance))
2082 {
2083 /* For an objfile that has its functions reordered,
2084 find_pc_psymtab will find the proper partial symbol table
2085 and we simply return its corresponding symtab. */
2086 /* In order to better support objfiles that contain both
2087 stabs and coff debugging info, we continue on if a psymtab
2088 can't be found. */
2089 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2090 {
2091 struct compunit_symtab *result;
2092
2093 result
2094 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2095 msymbol,
2096 pc, section,
2097 0);
2098 if (result != NULL)
2099 return result;
2100 }
2101 if (section != 0)
2102 {
2103 struct block_iterator iter;
2104 struct symbol *sym = NULL;
2105
2106 ALL_BLOCK_SYMBOLS (b, iter, sym)
2107 {
2108 fixup_symbol_section (sym, objfile);
2109 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2110 section))
2111 break;
2112 }
2113 if (sym == NULL)
2114 continue; /* No symbol in this symtab matches
2115 section. */
2116 }
2117 distance = BLOCK_END (b) - BLOCK_START (b);
2118 best_cust = cust;
2119 }
2120 }
2121
2122 if (best_cust != NULL)
2123 return best_cust;
2124
2125 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2126
2127 ALL_OBJFILES (objfile)
2128 {
2129 struct compunit_symtab *result;
2130
2131 if (!objfile->sf)
2132 continue;
2133 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2134 msymbol,
2135 pc, section,
2136 1);
2137 if (result != NULL)
2138 return result;
2139 }
2140
2141 return NULL;
2142 }
2143
2144 /* Find the compunit symtab associated with PC.
2145 This will read in debug info as necessary.
2146 Backward compatibility, no section. */
2147
2148 struct compunit_symtab *
2149 find_pc_compunit_symtab (CORE_ADDR pc)
2150 {
2151 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2152 }
2153 \f
2154
2155 /* Find the source file and line number for a given PC value and SECTION.
2156 Return a structure containing a symtab pointer, a line number,
2157 and a pc range for the entire source line.
2158 The value's .pc field is NOT the specified pc.
2159 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2160 use the line that ends there. Otherwise, in that case, the line
2161 that begins there is used. */
2162
2163 /* The big complication here is that a line may start in one file, and end just
2164 before the start of another file. This usually occurs when you #include
2165 code in the middle of a subroutine. To properly find the end of a line's PC
2166 range, we must search all symtabs associated with this compilation unit, and
2167 find the one whose first PC is closer than that of the next line in this
2168 symtab. */
2169
2170 /* If it's worth the effort, we could be using a binary search. */
2171
2172 struct symtab_and_line
2173 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2174 {
2175 struct compunit_symtab *cust;
2176 struct symtab *iter_s;
2177 struct linetable *l;
2178 int len;
2179 int i;
2180 struct linetable_entry *item;
2181 struct symtab_and_line val;
2182 const struct blockvector *bv;
2183 struct bound_minimal_symbol msymbol;
2184
2185 /* Info on best line seen so far, and where it starts, and its file. */
2186
2187 struct linetable_entry *best = NULL;
2188 CORE_ADDR best_end = 0;
2189 struct symtab *best_symtab = 0;
2190
2191 /* Store here the first line number
2192 of a file which contains the line at the smallest pc after PC.
2193 If we don't find a line whose range contains PC,
2194 we will use a line one less than this,
2195 with a range from the start of that file to the first line's pc. */
2196 struct linetable_entry *alt = NULL;
2197
2198 /* Info on best line seen in this file. */
2199
2200 struct linetable_entry *prev;
2201
2202 /* If this pc is not from the current frame,
2203 it is the address of the end of a call instruction.
2204 Quite likely that is the start of the following statement.
2205 But what we want is the statement containing the instruction.
2206 Fudge the pc to make sure we get that. */
2207
2208 init_sal (&val); /* initialize to zeroes */
2209
2210 val.pspace = current_program_space;
2211
2212 /* It's tempting to assume that, if we can't find debugging info for
2213 any function enclosing PC, that we shouldn't search for line
2214 number info, either. However, GAS can emit line number info for
2215 assembly files --- very helpful when debugging hand-written
2216 assembly code. In such a case, we'd have no debug info for the
2217 function, but we would have line info. */
2218
2219 if (notcurrent)
2220 pc -= 1;
2221
2222 /* elz: added this because this function returned the wrong
2223 information if the pc belongs to a stub (import/export)
2224 to call a shlib function. This stub would be anywhere between
2225 two functions in the target, and the line info was erroneously
2226 taken to be the one of the line before the pc. */
2227
2228 /* RT: Further explanation:
2229
2230 * We have stubs (trampolines) inserted between procedures.
2231 *
2232 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2233 * exists in the main image.
2234 *
2235 * In the minimal symbol table, we have a bunch of symbols
2236 * sorted by start address. The stubs are marked as "trampoline",
2237 * the others appear as text. E.g.:
2238 *
2239 * Minimal symbol table for main image
2240 * main: code for main (text symbol)
2241 * shr1: stub (trampoline symbol)
2242 * foo: code for foo (text symbol)
2243 * ...
2244 * Minimal symbol table for "shr1" image:
2245 * ...
2246 * shr1: code for shr1 (text symbol)
2247 * ...
2248 *
2249 * So the code below is trying to detect if we are in the stub
2250 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2251 * and if found, do the symbolization from the real-code address
2252 * rather than the stub address.
2253 *
2254 * Assumptions being made about the minimal symbol table:
2255 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2256 * if we're really in the trampoline.s If we're beyond it (say
2257 * we're in "foo" in the above example), it'll have a closer
2258 * symbol (the "foo" text symbol for example) and will not
2259 * return the trampoline.
2260 * 2. lookup_minimal_symbol_text() will find a real text symbol
2261 * corresponding to the trampoline, and whose address will
2262 * be different than the trampoline address. I put in a sanity
2263 * check for the address being the same, to avoid an
2264 * infinite recursion.
2265 */
2266 msymbol = lookup_minimal_symbol_by_pc (pc);
2267 if (msymbol.minsym != NULL)
2268 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2269 {
2270 struct bound_minimal_symbol mfunsym
2271 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2272 NULL);
2273
2274 if (mfunsym.minsym == NULL)
2275 /* I eliminated this warning since it is coming out
2276 * in the following situation:
2277 * gdb shmain // test program with shared libraries
2278 * (gdb) break shr1 // function in shared lib
2279 * Warning: In stub for ...
2280 * In the above situation, the shared lib is not loaded yet,
2281 * so of course we can't find the real func/line info,
2282 * but the "break" still works, and the warning is annoying.
2283 * So I commented out the warning. RT */
2284 /* warning ("In stub for %s; unable to find real function/line info",
2285 SYMBOL_LINKAGE_NAME (msymbol)); */
2286 ;
2287 /* fall through */
2288 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2289 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2290 /* Avoid infinite recursion */
2291 /* See above comment about why warning is commented out. */
2292 /* warning ("In stub for %s; unable to find real function/line info",
2293 SYMBOL_LINKAGE_NAME (msymbol)); */
2294 ;
2295 /* fall through */
2296 else
2297 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2298 }
2299
2300
2301 cust = find_pc_sect_compunit_symtab (pc, section);
2302 if (cust == NULL)
2303 {
2304 /* If no symbol information, return previous pc. */
2305 if (notcurrent)
2306 pc++;
2307 val.pc = pc;
2308 return val;
2309 }
2310
2311 bv = COMPUNIT_BLOCKVECTOR (cust);
2312
2313 /* Look at all the symtabs that share this blockvector.
2314 They all have the same apriori range, that we found was right;
2315 but they have different line tables. */
2316
2317 ALL_COMPUNIT_FILETABS (cust, iter_s)
2318 {
2319 /* Find the best line in this symtab. */
2320 l = SYMTAB_LINETABLE (iter_s);
2321 if (!l)
2322 continue;
2323 len = l->nitems;
2324 if (len <= 0)
2325 {
2326 /* I think len can be zero if the symtab lacks line numbers
2327 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2328 I'm not sure which, and maybe it depends on the symbol
2329 reader). */
2330 continue;
2331 }
2332
2333 prev = NULL;
2334 item = l->item; /* Get first line info. */
2335
2336 /* Is this file's first line closer than the first lines of other files?
2337 If so, record this file, and its first line, as best alternate. */
2338 if (item->pc > pc && (!alt || item->pc < alt->pc))
2339 alt = item;
2340
2341 for (i = 0; i < len; i++, item++)
2342 {
2343 /* Leave prev pointing to the linetable entry for the last line
2344 that started at or before PC. */
2345 if (item->pc > pc)
2346 break;
2347
2348 prev = item;
2349 }
2350
2351 /* At this point, prev points at the line whose start addr is <= pc, and
2352 item points at the next line. If we ran off the end of the linetable
2353 (pc >= start of the last line), then prev == item. If pc < start of
2354 the first line, prev will not be set. */
2355
2356 /* Is this file's best line closer than the best in the other files?
2357 If so, record this file, and its best line, as best so far. Don't
2358 save prev if it represents the end of a function (i.e. line number
2359 0) instead of a real line. */
2360
2361 if (prev && prev->line && (!best || prev->pc > best->pc))
2362 {
2363 best = prev;
2364 best_symtab = iter_s;
2365
2366 /* Discard BEST_END if it's before the PC of the current BEST. */
2367 if (best_end <= best->pc)
2368 best_end = 0;
2369 }
2370
2371 /* If another line (denoted by ITEM) is in the linetable and its
2372 PC is after BEST's PC, but before the current BEST_END, then
2373 use ITEM's PC as the new best_end. */
2374 if (best && i < len && item->pc > best->pc
2375 && (best_end == 0 || best_end > item->pc))
2376 best_end = item->pc;
2377 }
2378
2379 if (!best_symtab)
2380 {
2381 /* If we didn't find any line number info, just return zeros.
2382 We used to return alt->line - 1 here, but that could be
2383 anywhere; if we don't have line number info for this PC,
2384 don't make some up. */
2385 val.pc = pc;
2386 }
2387 else if (best->line == 0)
2388 {
2389 /* If our best fit is in a range of PC's for which no line
2390 number info is available (line number is zero) then we didn't
2391 find any valid line information. */
2392 val.pc = pc;
2393 }
2394 else
2395 {
2396 val.symtab = best_symtab;
2397 val.line = best->line;
2398 val.pc = best->pc;
2399 if (best_end && (!alt || best_end < alt->pc))
2400 val.end = best_end;
2401 else if (alt)
2402 val.end = alt->pc;
2403 else
2404 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2405 }
2406 val.section = section;
2407 return val;
2408 }
2409
2410 /* Backward compatibility (no section). */
2411
2412 struct symtab_and_line
2413 find_pc_line (CORE_ADDR pc, int notcurrent)
2414 {
2415 struct obj_section *section;
2416
2417 section = find_pc_overlay (pc);
2418 if (pc_in_unmapped_range (pc, section))
2419 pc = overlay_mapped_address (pc, section);
2420 return find_pc_sect_line (pc, section, notcurrent);
2421 }
2422
2423 /* See symtab.h. */
2424
2425 struct symtab *
2426 find_pc_line_symtab (CORE_ADDR pc)
2427 {
2428 struct symtab_and_line sal;
2429
2430 /* This always passes zero for NOTCURRENT to find_pc_line.
2431 There are currently no callers that ever pass non-zero. */
2432 sal = find_pc_line (pc, 0);
2433 return sal.symtab;
2434 }
2435 \f
2436 /* Find line number LINE in any symtab whose name is the same as
2437 SYMTAB.
2438
2439 If found, return the symtab that contains the linetable in which it was
2440 found, set *INDEX to the index in the linetable of the best entry
2441 found, and set *EXACT_MATCH nonzero if the value returned is an
2442 exact match.
2443
2444 If not found, return NULL. */
2445
2446 struct symtab *
2447 find_line_symtab (struct symtab *symtab, int line,
2448 int *index, int *exact_match)
2449 {
2450 int exact = 0; /* Initialized here to avoid a compiler warning. */
2451
2452 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2453 so far seen. */
2454
2455 int best_index;
2456 struct linetable *best_linetable;
2457 struct symtab *best_symtab;
2458
2459 /* First try looking it up in the given symtab. */
2460 best_linetable = SYMTAB_LINETABLE (symtab);
2461 best_symtab = symtab;
2462 best_index = find_line_common (best_linetable, line, &exact, 0);
2463 if (best_index < 0 || !exact)
2464 {
2465 /* Didn't find an exact match. So we better keep looking for
2466 another symtab with the same name. In the case of xcoff,
2467 multiple csects for one source file (produced by IBM's FORTRAN
2468 compiler) produce multiple symtabs (this is unavoidable
2469 assuming csects can be at arbitrary places in memory and that
2470 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2471
2472 /* BEST is the smallest linenumber > LINE so far seen,
2473 or 0 if none has been seen so far.
2474 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2475 int best;
2476
2477 struct objfile *objfile;
2478 struct compunit_symtab *cu;
2479 struct symtab *s;
2480
2481 if (best_index >= 0)
2482 best = best_linetable->item[best_index].line;
2483 else
2484 best = 0;
2485
2486 ALL_OBJFILES (objfile)
2487 {
2488 if (objfile->sf)
2489 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2490 symtab_to_fullname (symtab));
2491 }
2492
2493 ALL_FILETABS (objfile, cu, s)
2494 {
2495 struct linetable *l;
2496 int ind;
2497
2498 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2499 continue;
2500 if (FILENAME_CMP (symtab_to_fullname (symtab),
2501 symtab_to_fullname (s)) != 0)
2502 continue;
2503 l = SYMTAB_LINETABLE (s);
2504 ind = find_line_common (l, line, &exact, 0);
2505 if (ind >= 0)
2506 {
2507 if (exact)
2508 {
2509 best_index = ind;
2510 best_linetable = l;
2511 best_symtab = s;
2512 goto done;
2513 }
2514 if (best == 0 || l->item[ind].line < best)
2515 {
2516 best = l->item[ind].line;
2517 best_index = ind;
2518 best_linetable = l;
2519 best_symtab = s;
2520 }
2521 }
2522 }
2523 }
2524 done:
2525 if (best_index < 0)
2526 return NULL;
2527
2528 if (index)
2529 *index = best_index;
2530 if (exact_match)
2531 *exact_match = exact;
2532
2533 return best_symtab;
2534 }
2535
2536 /* Given SYMTAB, returns all the PCs function in the symtab that
2537 exactly match LINE. Returns NULL if there are no exact matches,
2538 but updates BEST_ITEM in this case. */
2539
2540 VEC (CORE_ADDR) *
2541 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2542 struct linetable_entry **best_item)
2543 {
2544 int start = 0;
2545 VEC (CORE_ADDR) *result = NULL;
2546
2547 /* First, collect all the PCs that are at this line. */
2548 while (1)
2549 {
2550 int was_exact;
2551 int idx;
2552
2553 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
2554 start);
2555 if (idx < 0)
2556 break;
2557
2558 if (!was_exact)
2559 {
2560 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
2561
2562 if (*best_item == NULL || item->line < (*best_item)->line)
2563 *best_item = item;
2564
2565 break;
2566 }
2567
2568 VEC_safe_push (CORE_ADDR, result,
2569 SYMTAB_LINETABLE (symtab)->item[idx].pc);
2570 start = idx + 1;
2571 }
2572
2573 return result;
2574 }
2575
2576 \f
2577 /* Set the PC value for a given source file and line number and return true.
2578 Returns zero for invalid line number (and sets the PC to 0).
2579 The source file is specified with a struct symtab. */
2580
2581 int
2582 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2583 {
2584 struct linetable *l;
2585 int ind;
2586
2587 *pc = 0;
2588 if (symtab == 0)
2589 return 0;
2590
2591 symtab = find_line_symtab (symtab, line, &ind, NULL);
2592 if (symtab != NULL)
2593 {
2594 l = SYMTAB_LINETABLE (symtab);
2595 *pc = l->item[ind].pc;
2596 return 1;
2597 }
2598 else
2599 return 0;
2600 }
2601
2602 /* Find the range of pc values in a line.
2603 Store the starting pc of the line into *STARTPTR
2604 and the ending pc (start of next line) into *ENDPTR.
2605 Returns 1 to indicate success.
2606 Returns 0 if could not find the specified line. */
2607
2608 int
2609 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2610 CORE_ADDR *endptr)
2611 {
2612 CORE_ADDR startaddr;
2613 struct symtab_and_line found_sal;
2614
2615 startaddr = sal.pc;
2616 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2617 return 0;
2618
2619 /* This whole function is based on address. For example, if line 10 has
2620 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2621 "info line *0x123" should say the line goes from 0x100 to 0x200
2622 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2623 This also insures that we never give a range like "starts at 0x134
2624 and ends at 0x12c". */
2625
2626 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2627 if (found_sal.line != sal.line)
2628 {
2629 /* The specified line (sal) has zero bytes. */
2630 *startptr = found_sal.pc;
2631 *endptr = found_sal.pc;
2632 }
2633 else
2634 {
2635 *startptr = found_sal.pc;
2636 *endptr = found_sal.end;
2637 }
2638 return 1;
2639 }
2640
2641 /* Given a line table and a line number, return the index into the line
2642 table for the pc of the nearest line whose number is >= the specified one.
2643 Return -1 if none is found. The value is >= 0 if it is an index.
2644 START is the index at which to start searching the line table.
2645
2646 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2647
2648 static int
2649 find_line_common (struct linetable *l, int lineno,
2650 int *exact_match, int start)
2651 {
2652 int i;
2653 int len;
2654
2655 /* BEST is the smallest linenumber > LINENO so far seen,
2656 or 0 if none has been seen so far.
2657 BEST_INDEX identifies the item for it. */
2658
2659 int best_index = -1;
2660 int best = 0;
2661
2662 *exact_match = 0;
2663
2664 if (lineno <= 0)
2665 return -1;
2666 if (l == 0)
2667 return -1;
2668
2669 len = l->nitems;
2670 for (i = start; i < len; i++)
2671 {
2672 struct linetable_entry *item = &(l->item[i]);
2673
2674 if (item->line == lineno)
2675 {
2676 /* Return the first (lowest address) entry which matches. */
2677 *exact_match = 1;
2678 return i;
2679 }
2680
2681 if (item->line > lineno && (best == 0 || item->line < best))
2682 {
2683 best = item->line;
2684 best_index = i;
2685 }
2686 }
2687
2688 /* If we got here, we didn't get an exact match. */
2689 return best_index;
2690 }
2691
2692 int
2693 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2694 {
2695 struct symtab_and_line sal;
2696
2697 sal = find_pc_line (pc, 0);
2698 *startptr = sal.pc;
2699 *endptr = sal.end;
2700 return sal.symtab != 0;
2701 }
2702
2703 /* Given a function symbol SYM, find the symtab and line for the start
2704 of the function.
2705 If the argument FUNFIRSTLINE is nonzero, we want the first line
2706 of real code inside the function. */
2707
2708 struct symtab_and_line
2709 find_function_start_sal (struct symbol *sym, int funfirstline)
2710 {
2711 struct symtab_and_line sal;
2712
2713 fixup_symbol_section (sym, NULL);
2714 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2715 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2716
2717 /* We always should have a line for the function start address.
2718 If we don't, something is odd. Create a plain SAL refering
2719 just the PC and hope that skip_prologue_sal (if requested)
2720 can find a line number for after the prologue. */
2721 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2722 {
2723 init_sal (&sal);
2724 sal.pspace = current_program_space;
2725 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2726 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2727 }
2728
2729 if (funfirstline)
2730 skip_prologue_sal (&sal);
2731
2732 return sal;
2733 }
2734
2735 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2736 address for that function that has an entry in SYMTAB's line info
2737 table. If such an entry cannot be found, return FUNC_ADDR
2738 unaltered. */
2739
2740 static CORE_ADDR
2741 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2742 {
2743 CORE_ADDR func_start, func_end;
2744 struct linetable *l;
2745 int i;
2746
2747 /* Give up if this symbol has no lineinfo table. */
2748 l = SYMTAB_LINETABLE (symtab);
2749 if (l == NULL)
2750 return func_addr;
2751
2752 /* Get the range for the function's PC values, or give up if we
2753 cannot, for some reason. */
2754 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2755 return func_addr;
2756
2757 /* Linetable entries are ordered by PC values, see the commentary in
2758 symtab.h where `struct linetable' is defined. Thus, the first
2759 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2760 address we are looking for. */
2761 for (i = 0; i < l->nitems; i++)
2762 {
2763 struct linetable_entry *item = &(l->item[i]);
2764
2765 /* Don't use line numbers of zero, they mark special entries in
2766 the table. See the commentary on symtab.h before the
2767 definition of struct linetable. */
2768 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2769 return item->pc;
2770 }
2771
2772 return func_addr;
2773 }
2774
2775 /* Adjust SAL to the first instruction past the function prologue.
2776 If the PC was explicitly specified, the SAL is not changed.
2777 If the line number was explicitly specified, at most the SAL's PC
2778 is updated. If SAL is already past the prologue, then do nothing. */
2779
2780 void
2781 skip_prologue_sal (struct symtab_and_line *sal)
2782 {
2783 struct symbol *sym;
2784 struct symtab_and_line start_sal;
2785 struct cleanup *old_chain;
2786 CORE_ADDR pc, saved_pc;
2787 struct obj_section *section;
2788 const char *name;
2789 struct objfile *objfile;
2790 struct gdbarch *gdbarch;
2791 const struct block *b, *function_block;
2792 int force_skip, skip;
2793
2794 /* Do not change the SAL if PC was specified explicitly. */
2795 if (sal->explicit_pc)
2796 return;
2797
2798 old_chain = save_current_space_and_thread ();
2799 switch_to_program_space_and_thread (sal->pspace);
2800
2801 sym = find_pc_sect_function (sal->pc, sal->section);
2802 if (sym != NULL)
2803 {
2804 fixup_symbol_section (sym, NULL);
2805
2806 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2807 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2808 name = SYMBOL_LINKAGE_NAME (sym);
2809 objfile = SYMBOL_OBJFILE (sym);
2810 }
2811 else
2812 {
2813 struct bound_minimal_symbol msymbol
2814 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2815
2816 if (msymbol.minsym == NULL)
2817 {
2818 do_cleanups (old_chain);
2819 return;
2820 }
2821
2822 objfile = msymbol.objfile;
2823 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2824 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2825 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2826 }
2827
2828 gdbarch = get_objfile_arch (objfile);
2829
2830 /* Process the prologue in two passes. In the first pass try to skip the
2831 prologue (SKIP is true) and verify there is a real need for it (indicated
2832 by FORCE_SKIP). If no such reason was found run a second pass where the
2833 prologue is not skipped (SKIP is false). */
2834
2835 skip = 1;
2836 force_skip = 1;
2837
2838 /* Be conservative - allow direct PC (without skipping prologue) only if we
2839 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2840 have to be set by the caller so we use SYM instead. */
2841 if (sym && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (SYMBOL_SYMTAB (sym))))
2842 force_skip = 0;
2843
2844 saved_pc = pc;
2845 do
2846 {
2847 pc = saved_pc;
2848
2849 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2850 so that gdbarch_skip_prologue has something unique to work on. */
2851 if (section_is_overlay (section) && !section_is_mapped (section))
2852 pc = overlay_unmapped_address (pc, section);
2853
2854 /* Skip "first line" of function (which is actually its prologue). */
2855 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2856 if (gdbarch_skip_entrypoint_p (gdbarch))
2857 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2858 if (skip)
2859 pc = gdbarch_skip_prologue (gdbarch, pc);
2860
2861 /* For overlays, map pc back into its mapped VMA range. */
2862 pc = overlay_mapped_address (pc, section);
2863
2864 /* Calculate line number. */
2865 start_sal = find_pc_sect_line (pc, section, 0);
2866
2867 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2868 line is still part of the same function. */
2869 if (skip && start_sal.pc != pc
2870 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2871 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2872 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2873 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2874 {
2875 /* First pc of next line */
2876 pc = start_sal.end;
2877 /* Recalculate the line number (might not be N+1). */
2878 start_sal = find_pc_sect_line (pc, section, 0);
2879 }
2880
2881 /* On targets with executable formats that don't have a concept of
2882 constructors (ELF with .init has, PE doesn't), gcc emits a call
2883 to `__main' in `main' between the prologue and before user
2884 code. */
2885 if (gdbarch_skip_main_prologue_p (gdbarch)
2886 && name && strcmp_iw (name, "main") == 0)
2887 {
2888 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2889 /* Recalculate the line number (might not be N+1). */
2890 start_sal = find_pc_sect_line (pc, section, 0);
2891 force_skip = 1;
2892 }
2893 }
2894 while (!force_skip && skip--);
2895
2896 /* If we still don't have a valid source line, try to find the first
2897 PC in the lineinfo table that belongs to the same function. This
2898 happens with COFF debug info, which does not seem to have an
2899 entry in lineinfo table for the code after the prologue which has
2900 no direct relation to source. For example, this was found to be
2901 the case with the DJGPP target using "gcc -gcoff" when the
2902 compiler inserted code after the prologue to make sure the stack
2903 is aligned. */
2904 if (!force_skip && sym && start_sal.symtab == NULL)
2905 {
2906 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2907 /* Recalculate the line number. */
2908 start_sal = find_pc_sect_line (pc, section, 0);
2909 }
2910
2911 do_cleanups (old_chain);
2912
2913 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2914 forward SAL to the end of the prologue. */
2915 if (sal->pc >= pc)
2916 return;
2917
2918 sal->pc = pc;
2919 sal->section = section;
2920
2921 /* Unless the explicit_line flag was set, update the SAL line
2922 and symtab to correspond to the modified PC location. */
2923 if (sal->explicit_line)
2924 return;
2925
2926 sal->symtab = start_sal.symtab;
2927 sal->line = start_sal.line;
2928 sal->end = start_sal.end;
2929
2930 /* Check if we are now inside an inlined function. If we can,
2931 use the call site of the function instead. */
2932 b = block_for_pc_sect (sal->pc, sal->section);
2933 function_block = NULL;
2934 while (b != NULL)
2935 {
2936 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2937 function_block = b;
2938 else if (BLOCK_FUNCTION (b) != NULL)
2939 break;
2940 b = BLOCK_SUPERBLOCK (b);
2941 }
2942 if (function_block != NULL
2943 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2944 {
2945 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2946 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2947 }
2948 }
2949
2950 /* Given PC at the function's start address, attempt to find the
2951 prologue end using SAL information. Return zero if the skip fails.
2952
2953 A non-optimized prologue traditionally has one SAL for the function
2954 and a second for the function body. A single line function has
2955 them both pointing at the same line.
2956
2957 An optimized prologue is similar but the prologue may contain
2958 instructions (SALs) from the instruction body. Need to skip those
2959 while not getting into the function body.
2960
2961 The functions end point and an increasing SAL line are used as
2962 indicators of the prologue's endpoint.
2963
2964 This code is based on the function refine_prologue_limit
2965 (found in ia64). */
2966
2967 CORE_ADDR
2968 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
2969 {
2970 struct symtab_and_line prologue_sal;
2971 CORE_ADDR start_pc;
2972 CORE_ADDR end_pc;
2973 const struct block *bl;
2974
2975 /* Get an initial range for the function. */
2976 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
2977 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
2978
2979 prologue_sal = find_pc_line (start_pc, 0);
2980 if (prologue_sal.line != 0)
2981 {
2982 /* For languages other than assembly, treat two consecutive line
2983 entries at the same address as a zero-instruction prologue.
2984 The GNU assembler emits separate line notes for each instruction
2985 in a multi-instruction macro, but compilers generally will not
2986 do this. */
2987 if (prologue_sal.symtab->language != language_asm)
2988 {
2989 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
2990 int idx = 0;
2991
2992 /* Skip any earlier lines, and any end-of-sequence marker
2993 from a previous function. */
2994 while (linetable->item[idx].pc != prologue_sal.pc
2995 || linetable->item[idx].line == 0)
2996 idx++;
2997
2998 if (idx+1 < linetable->nitems
2999 && linetable->item[idx+1].line != 0
3000 && linetable->item[idx+1].pc == start_pc)
3001 return start_pc;
3002 }
3003
3004 /* If there is only one sal that covers the entire function,
3005 then it is probably a single line function, like
3006 "foo(){}". */
3007 if (prologue_sal.end >= end_pc)
3008 return 0;
3009
3010 while (prologue_sal.end < end_pc)
3011 {
3012 struct symtab_and_line sal;
3013
3014 sal = find_pc_line (prologue_sal.end, 0);
3015 if (sal.line == 0)
3016 break;
3017 /* Assume that a consecutive SAL for the same (or larger)
3018 line mark the prologue -> body transition. */
3019 if (sal.line >= prologue_sal.line)
3020 break;
3021 /* Likewise if we are in a different symtab altogether
3022 (e.g. within a file included via #include).  */
3023 if (sal.symtab != prologue_sal.symtab)
3024 break;
3025
3026 /* The line number is smaller. Check that it's from the
3027 same function, not something inlined. If it's inlined,
3028 then there is no point comparing the line numbers. */
3029 bl = block_for_pc (prologue_sal.end);
3030 while (bl)
3031 {
3032 if (block_inlined_p (bl))
3033 break;
3034 if (BLOCK_FUNCTION (bl))
3035 {
3036 bl = NULL;
3037 break;
3038 }
3039 bl = BLOCK_SUPERBLOCK (bl);
3040 }
3041 if (bl != NULL)
3042 break;
3043
3044 /* The case in which compiler's optimizer/scheduler has
3045 moved instructions into the prologue. We look ahead in
3046 the function looking for address ranges whose
3047 corresponding line number is less the first one that we
3048 found for the function. This is more conservative then
3049 refine_prologue_limit which scans a large number of SALs
3050 looking for any in the prologue. */
3051 prologue_sal = sal;
3052 }
3053 }
3054
3055 if (prologue_sal.end < end_pc)
3056 /* Return the end of this line, or zero if we could not find a
3057 line. */
3058 return prologue_sal.end;
3059 else
3060 /* Don't return END_PC, which is past the end of the function. */
3061 return prologue_sal.pc;
3062 }
3063 \f
3064 /* If P is of the form "operator[ \t]+..." where `...' is
3065 some legitimate operator text, return a pointer to the
3066 beginning of the substring of the operator text.
3067 Otherwise, return "". */
3068
3069 static const char *
3070 operator_chars (const char *p, const char **end)
3071 {
3072 *end = "";
3073 if (strncmp (p, "operator", 8))
3074 return *end;
3075 p += 8;
3076
3077 /* Don't get faked out by `operator' being part of a longer
3078 identifier. */
3079 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3080 return *end;
3081
3082 /* Allow some whitespace between `operator' and the operator symbol. */
3083 while (*p == ' ' || *p == '\t')
3084 p++;
3085
3086 /* Recognize 'operator TYPENAME'. */
3087
3088 if (isalpha (*p) || *p == '_' || *p == '$')
3089 {
3090 const char *q = p + 1;
3091
3092 while (isalnum (*q) || *q == '_' || *q == '$')
3093 q++;
3094 *end = q;
3095 return p;
3096 }
3097
3098 while (*p)
3099 switch (*p)
3100 {
3101 case '\\': /* regexp quoting */
3102 if (p[1] == '*')
3103 {
3104 if (p[2] == '=') /* 'operator\*=' */
3105 *end = p + 3;
3106 else /* 'operator\*' */
3107 *end = p + 2;
3108 return p;
3109 }
3110 else if (p[1] == '[')
3111 {
3112 if (p[2] == ']')
3113 error (_("mismatched quoting on brackets, "
3114 "try 'operator\\[\\]'"));
3115 else if (p[2] == '\\' && p[3] == ']')
3116 {
3117 *end = p + 4; /* 'operator\[\]' */
3118 return p;
3119 }
3120 else
3121 error (_("nothing is allowed between '[' and ']'"));
3122 }
3123 else
3124 {
3125 /* Gratuitous qoute: skip it and move on. */
3126 p++;
3127 continue;
3128 }
3129 break;
3130 case '!':
3131 case '=':
3132 case '*':
3133 case '/':
3134 case '%':
3135 case '^':
3136 if (p[1] == '=')
3137 *end = p + 2;
3138 else
3139 *end = p + 1;
3140 return p;
3141 case '<':
3142 case '>':
3143 case '+':
3144 case '-':
3145 case '&':
3146 case '|':
3147 if (p[0] == '-' && p[1] == '>')
3148 {
3149 /* Struct pointer member operator 'operator->'. */
3150 if (p[2] == '*')
3151 {
3152 *end = p + 3; /* 'operator->*' */
3153 return p;
3154 }
3155 else if (p[2] == '\\')
3156 {
3157 *end = p + 4; /* Hopefully 'operator->\*' */
3158 return p;
3159 }
3160 else
3161 {
3162 *end = p + 2; /* 'operator->' */
3163 return p;
3164 }
3165 }
3166 if (p[1] == '=' || p[1] == p[0])
3167 *end = p + 2;
3168 else
3169 *end = p + 1;
3170 return p;
3171 case '~':
3172 case ',':
3173 *end = p + 1;
3174 return p;
3175 case '(':
3176 if (p[1] != ')')
3177 error (_("`operator ()' must be specified "
3178 "without whitespace in `()'"));
3179 *end = p + 2;
3180 return p;
3181 case '?':
3182 if (p[1] != ':')
3183 error (_("`operator ?:' must be specified "
3184 "without whitespace in `?:'"));
3185 *end = p + 2;
3186 return p;
3187 case '[':
3188 if (p[1] != ']')
3189 error (_("`operator []' must be specified "
3190 "without whitespace in `[]'"));
3191 *end = p + 2;
3192 return p;
3193 default:
3194 error (_("`operator %s' not supported"), p);
3195 break;
3196 }
3197
3198 *end = "";
3199 return *end;
3200 }
3201 \f
3202
3203 /* Cache to watch for file names already seen by filename_seen. */
3204
3205 struct filename_seen_cache
3206 {
3207 /* Table of files seen so far. */
3208 htab_t tab;
3209 /* Initial size of the table. It automagically grows from here. */
3210 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3211 };
3212
3213 /* filename_seen_cache constructor. */
3214
3215 static struct filename_seen_cache *
3216 create_filename_seen_cache (void)
3217 {
3218 struct filename_seen_cache *cache;
3219
3220 cache = XNEW (struct filename_seen_cache);
3221 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3222 filename_hash, filename_eq,
3223 NULL, xcalloc, xfree);
3224
3225 return cache;
3226 }
3227
3228 /* Empty the cache, but do not delete it. */
3229
3230 static void
3231 clear_filename_seen_cache (struct filename_seen_cache *cache)
3232 {
3233 htab_empty (cache->tab);
3234 }
3235
3236 /* filename_seen_cache destructor.
3237 This takes a void * argument as it is generally used as a cleanup. */
3238
3239 static void
3240 delete_filename_seen_cache (void *ptr)
3241 {
3242 struct filename_seen_cache *cache = ptr;
3243
3244 htab_delete (cache->tab);
3245 xfree (cache);
3246 }
3247
3248 /* If FILE is not already in the table of files in CACHE, return zero;
3249 otherwise return non-zero. Optionally add FILE to the table if ADD
3250 is non-zero.
3251
3252 NOTE: We don't manage space for FILE, we assume FILE lives as long
3253 as the caller needs. */
3254
3255 static int
3256 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3257 {
3258 void **slot;
3259
3260 /* Is FILE in tab? */
3261 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3262 if (*slot != NULL)
3263 return 1;
3264
3265 /* No; maybe add it to tab. */
3266 if (add)
3267 *slot = (char *) file;
3268
3269 return 0;
3270 }
3271
3272 /* Data structure to maintain printing state for output_source_filename. */
3273
3274 struct output_source_filename_data
3275 {
3276 /* Cache of what we've seen so far. */
3277 struct filename_seen_cache *filename_seen_cache;
3278
3279 /* Flag of whether we're printing the first one. */
3280 int first;
3281 };
3282
3283 /* Slave routine for sources_info. Force line breaks at ,'s.
3284 NAME is the name to print.
3285 DATA contains the state for printing and watching for duplicates. */
3286
3287 static void
3288 output_source_filename (const char *name,
3289 struct output_source_filename_data *data)
3290 {
3291 /* Since a single source file can result in several partial symbol
3292 tables, we need to avoid printing it more than once. Note: if
3293 some of the psymtabs are read in and some are not, it gets
3294 printed both under "Source files for which symbols have been
3295 read" and "Source files for which symbols will be read in on
3296 demand". I consider this a reasonable way to deal with the
3297 situation. I'm not sure whether this can also happen for
3298 symtabs; it doesn't hurt to check. */
3299
3300 /* Was NAME already seen? */
3301 if (filename_seen (data->filename_seen_cache, name, 1))
3302 {
3303 /* Yes; don't print it again. */
3304 return;
3305 }
3306
3307 /* No; print it and reset *FIRST. */
3308 if (! data->first)
3309 printf_filtered (", ");
3310 data->first = 0;
3311
3312 wrap_here ("");
3313 fputs_filtered (name, gdb_stdout);
3314 }
3315
3316 /* A callback for map_partial_symbol_filenames. */
3317
3318 static void
3319 output_partial_symbol_filename (const char *filename, const char *fullname,
3320 void *data)
3321 {
3322 output_source_filename (fullname ? fullname : filename, data);
3323 }
3324
3325 static void
3326 sources_info (char *ignore, int from_tty)
3327 {
3328 struct compunit_symtab *cu;
3329 struct symtab *s;
3330 struct objfile *objfile;
3331 struct output_source_filename_data data;
3332 struct cleanup *cleanups;
3333
3334 if (!have_full_symbols () && !have_partial_symbols ())
3335 {
3336 error (_("No symbol table is loaded. Use the \"file\" command."));
3337 }
3338
3339 data.filename_seen_cache = create_filename_seen_cache ();
3340 cleanups = make_cleanup (delete_filename_seen_cache,
3341 data.filename_seen_cache);
3342
3343 printf_filtered ("Source files for which symbols have been read in:\n\n");
3344
3345 data.first = 1;
3346 ALL_FILETABS (objfile, cu, s)
3347 {
3348 const char *fullname = symtab_to_fullname (s);
3349
3350 output_source_filename (fullname, &data);
3351 }
3352 printf_filtered ("\n\n");
3353
3354 printf_filtered ("Source files for which symbols "
3355 "will be read in on demand:\n\n");
3356
3357 clear_filename_seen_cache (data.filename_seen_cache);
3358 data.first = 1;
3359 map_symbol_filenames (output_partial_symbol_filename, &data,
3360 1 /*need_fullname*/);
3361 printf_filtered ("\n");
3362
3363 do_cleanups (cleanups);
3364 }
3365
3366 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3367 non-zero compare only lbasename of FILES. */
3368
3369 static int
3370 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3371 {
3372 int i;
3373
3374 if (file != NULL && nfiles != 0)
3375 {
3376 for (i = 0; i < nfiles; i++)
3377 {
3378 if (compare_filenames_for_search (file, (basenames
3379 ? lbasename (files[i])
3380 : files[i])))
3381 return 1;
3382 }
3383 }
3384 else if (nfiles == 0)
3385 return 1;
3386 return 0;
3387 }
3388
3389 /* Free any memory associated with a search. */
3390
3391 void
3392 free_search_symbols (struct symbol_search *symbols)
3393 {
3394 struct symbol_search *p;
3395 struct symbol_search *next;
3396
3397 for (p = symbols; p != NULL; p = next)
3398 {
3399 next = p->next;
3400 xfree (p);
3401 }
3402 }
3403
3404 static void
3405 do_free_search_symbols_cleanup (void *symbolsp)
3406 {
3407 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3408
3409 free_search_symbols (symbols);
3410 }
3411
3412 struct cleanup *
3413 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3414 {
3415 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3416 }
3417
3418 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3419 sort symbols, not minimal symbols. */
3420
3421 static int
3422 compare_search_syms (const void *sa, const void *sb)
3423 {
3424 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3425 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3426 int c;
3427
3428 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3429 if (c != 0)
3430 return c;
3431
3432 if (sym_a->block != sym_b->block)
3433 return sym_a->block - sym_b->block;
3434
3435 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3436 SYMBOL_PRINT_NAME (sym_b->symbol));
3437 }
3438
3439 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3440 The duplicates are freed, and the new list is returned in
3441 *NEW_HEAD, *NEW_TAIL. */
3442
3443 static void
3444 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3445 struct symbol_search **new_head,
3446 struct symbol_search **new_tail)
3447 {
3448 struct symbol_search **symbols, *symp, *old_next;
3449 int i, j, nunique;
3450
3451 gdb_assert (found != NULL && nfound > 0);
3452
3453 /* Build an array out of the list so we can easily sort them. */
3454 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3455 * nfound);
3456 symp = found;
3457 for (i = 0; i < nfound; i++)
3458 {
3459 gdb_assert (symp != NULL);
3460 gdb_assert (symp->block >= 0 && symp->block <= 1);
3461 symbols[i] = symp;
3462 symp = symp->next;
3463 }
3464 gdb_assert (symp == NULL);
3465
3466 qsort (symbols, nfound, sizeof (struct symbol_search *),
3467 compare_search_syms);
3468
3469 /* Collapse out the dups. */
3470 for (i = 1, j = 1; i < nfound; ++i)
3471 {
3472 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3473 symbols[j++] = symbols[i];
3474 else
3475 xfree (symbols[i]);
3476 }
3477 nunique = j;
3478 symbols[j - 1]->next = NULL;
3479
3480 /* Rebuild the linked list. */
3481 for (i = 0; i < nunique - 1; i++)
3482 symbols[i]->next = symbols[i + 1];
3483 symbols[nunique - 1]->next = NULL;
3484
3485 *new_head = symbols[0];
3486 *new_tail = symbols[nunique - 1];
3487 xfree (symbols);
3488 }
3489
3490 /* An object of this type is passed as the user_data to the
3491 expand_symtabs_matching method. */
3492 struct search_symbols_data
3493 {
3494 int nfiles;
3495 const char **files;
3496
3497 /* It is true if PREG contains valid data, false otherwise. */
3498 unsigned preg_p : 1;
3499 regex_t preg;
3500 };
3501
3502 /* A callback for expand_symtabs_matching. */
3503
3504 static int
3505 search_symbols_file_matches (const char *filename, void *user_data,
3506 int basenames)
3507 {
3508 struct search_symbols_data *data = user_data;
3509
3510 return file_matches (filename, data->files, data->nfiles, basenames);
3511 }
3512
3513 /* A callback for expand_symtabs_matching. */
3514
3515 static int
3516 search_symbols_name_matches (const char *symname, void *user_data)
3517 {
3518 struct search_symbols_data *data = user_data;
3519
3520 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3521 }
3522
3523 /* Search the symbol table for matches to the regular expression REGEXP,
3524 returning the results in *MATCHES.
3525
3526 Only symbols of KIND are searched:
3527 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3528 and constants (enums)
3529 FUNCTIONS_DOMAIN - search all functions
3530 TYPES_DOMAIN - search all type names
3531 ALL_DOMAIN - an internal error for this function
3532
3533 free_search_symbols should be called when *MATCHES is no longer needed.
3534
3535 Within each file the results are sorted locally; each symtab's global and
3536 static blocks are separately alphabetized.
3537 Duplicate entries are removed. */
3538
3539 void
3540 search_symbols (const char *regexp, enum search_domain kind,
3541 int nfiles, const char *files[],
3542 struct symbol_search **matches)
3543 {
3544 struct compunit_symtab *cust;
3545 const struct blockvector *bv;
3546 struct block *b;
3547 int i = 0;
3548 struct block_iterator iter;
3549 struct symbol *sym;
3550 struct objfile *objfile;
3551 struct minimal_symbol *msymbol;
3552 int found_misc = 0;
3553 static const enum minimal_symbol_type types[]
3554 = {mst_data, mst_text, mst_abs};
3555 static const enum minimal_symbol_type types2[]
3556 = {mst_bss, mst_file_text, mst_abs};
3557 static const enum minimal_symbol_type types3[]
3558 = {mst_file_data, mst_solib_trampoline, mst_abs};
3559 static const enum minimal_symbol_type types4[]
3560 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3561 enum minimal_symbol_type ourtype;
3562 enum minimal_symbol_type ourtype2;
3563 enum minimal_symbol_type ourtype3;
3564 enum minimal_symbol_type ourtype4;
3565 struct symbol_search *found;
3566 struct symbol_search *tail;
3567 struct search_symbols_data datum;
3568 int nfound;
3569
3570 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3571 CLEANUP_CHAIN is freed only in the case of an error. */
3572 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3573 struct cleanup *retval_chain;
3574
3575 gdb_assert (kind <= TYPES_DOMAIN);
3576
3577 ourtype = types[kind];
3578 ourtype2 = types2[kind];
3579 ourtype3 = types3[kind];
3580 ourtype4 = types4[kind];
3581
3582 *matches = NULL;
3583 datum.preg_p = 0;
3584
3585 if (regexp != NULL)
3586 {
3587 /* Make sure spacing is right for C++ operators.
3588 This is just a courtesy to make the matching less sensitive
3589 to how many spaces the user leaves between 'operator'
3590 and <TYPENAME> or <OPERATOR>. */
3591 const char *opend;
3592 const char *opname = operator_chars (regexp, &opend);
3593 int errcode;
3594
3595 if (*opname)
3596 {
3597 int fix = -1; /* -1 means ok; otherwise number of
3598 spaces needed. */
3599
3600 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3601 {
3602 /* There should 1 space between 'operator' and 'TYPENAME'. */
3603 if (opname[-1] != ' ' || opname[-2] == ' ')
3604 fix = 1;
3605 }
3606 else
3607 {
3608 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3609 if (opname[-1] == ' ')
3610 fix = 0;
3611 }
3612 /* If wrong number of spaces, fix it. */
3613 if (fix >= 0)
3614 {
3615 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3616
3617 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3618 regexp = tmp;
3619 }
3620 }
3621
3622 errcode = regcomp (&datum.preg, regexp,
3623 REG_NOSUB | (case_sensitivity == case_sensitive_off
3624 ? REG_ICASE : 0));
3625 if (errcode != 0)
3626 {
3627 char *err = get_regcomp_error (errcode, &datum.preg);
3628
3629 make_cleanup (xfree, err);
3630 error (_("Invalid regexp (%s): %s"), err, regexp);
3631 }
3632 datum.preg_p = 1;
3633 make_regfree_cleanup (&datum.preg);
3634 }
3635
3636 /* Search through the partial symtabs *first* for all symbols
3637 matching the regexp. That way we don't have to reproduce all of
3638 the machinery below. */
3639
3640 datum.nfiles = nfiles;
3641 datum.files = files;
3642 expand_symtabs_matching ((nfiles == 0
3643 ? NULL
3644 : search_symbols_file_matches),
3645 search_symbols_name_matches,
3646 kind, &datum);
3647
3648 /* Here, we search through the minimal symbol tables for functions
3649 and variables that match, and force their symbols to be read.
3650 This is in particular necessary for demangled variable names,
3651 which are no longer put into the partial symbol tables.
3652 The symbol will then be found during the scan of symtabs below.
3653
3654 For functions, find_pc_symtab should succeed if we have debug info
3655 for the function, for variables we have to call
3656 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3657 has debug info.
3658 If the lookup fails, set found_misc so that we will rescan to print
3659 any matching symbols without debug info.
3660 We only search the objfile the msymbol came from, we no longer search
3661 all objfiles. In large programs (1000s of shared libs) searching all
3662 objfiles is not worth the pain. */
3663
3664 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3665 {
3666 ALL_MSYMBOLS (objfile, msymbol)
3667 {
3668 QUIT;
3669
3670 if (msymbol->created_by_gdb)
3671 continue;
3672
3673 if (MSYMBOL_TYPE (msymbol) == ourtype
3674 || MSYMBOL_TYPE (msymbol) == ourtype2
3675 || MSYMBOL_TYPE (msymbol) == ourtype3
3676 || MSYMBOL_TYPE (msymbol) == ourtype4)
3677 {
3678 if (!datum.preg_p
3679 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3680 NULL, 0) == 0)
3681 {
3682 /* Note: An important side-effect of these lookup functions
3683 is to expand the symbol table if msymbol is found, for the
3684 benefit of the next loop on ALL_COMPUNITS. */
3685 if (kind == FUNCTIONS_DOMAIN
3686 ? (find_pc_compunit_symtab
3687 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
3688 : (lookup_symbol_in_objfile_from_linkage_name
3689 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3690 == NULL))
3691 found_misc = 1;
3692 }
3693 }
3694 }
3695 }
3696
3697 found = NULL;
3698 tail = NULL;
3699 nfound = 0;
3700 retval_chain = make_cleanup_free_search_symbols (&found);
3701
3702 ALL_COMPUNITS (objfile, cust)
3703 {
3704 bv = COMPUNIT_BLOCKVECTOR (cust);
3705 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3706 {
3707 b = BLOCKVECTOR_BLOCK (bv, i);
3708 ALL_BLOCK_SYMBOLS (b, iter, sym)
3709 {
3710 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3711
3712 QUIT;
3713
3714 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3715 a substring of symtab_to_fullname as it may contain "./" etc. */
3716 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3717 || ((basenames_may_differ
3718 || file_matches (lbasename (real_symtab->filename),
3719 files, nfiles, 1))
3720 && file_matches (symtab_to_fullname (real_symtab),
3721 files, nfiles, 0)))
3722 && ((!datum.preg_p
3723 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3724 NULL, 0) == 0)
3725 && ((kind == VARIABLES_DOMAIN
3726 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3727 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3728 && SYMBOL_CLASS (sym) != LOC_BLOCK
3729 /* LOC_CONST can be used for more than just enums,
3730 e.g., c++ static const members.
3731 We only want to skip enums here. */
3732 && !(SYMBOL_CLASS (sym) == LOC_CONST
3733 && (TYPE_CODE (SYMBOL_TYPE (sym))
3734 == TYPE_CODE_ENUM)))
3735 || (kind == FUNCTIONS_DOMAIN
3736 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3737 || (kind == TYPES_DOMAIN
3738 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3739 {
3740 /* match */
3741 struct symbol_search *psr = (struct symbol_search *)
3742 xmalloc (sizeof (struct symbol_search));
3743 psr->block = i;
3744 psr->symtab = real_symtab;
3745 psr->symbol = sym;
3746 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3747 psr->next = NULL;
3748 if (tail == NULL)
3749 found = psr;
3750 else
3751 tail->next = psr;
3752 tail = psr;
3753 nfound ++;
3754 }
3755 }
3756 }
3757 }
3758
3759 if (found != NULL)
3760 {
3761 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3762 /* Note: nfound is no longer useful beyond this point. */
3763 }
3764
3765 /* If there are no eyes, avoid all contact. I mean, if there are
3766 no debug symbols, then add matching minsyms. */
3767
3768 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3769 {
3770 ALL_MSYMBOLS (objfile, msymbol)
3771 {
3772 QUIT;
3773
3774 if (msymbol->created_by_gdb)
3775 continue;
3776
3777 if (MSYMBOL_TYPE (msymbol) == ourtype
3778 || MSYMBOL_TYPE (msymbol) == ourtype2
3779 || MSYMBOL_TYPE (msymbol) == ourtype3
3780 || MSYMBOL_TYPE (msymbol) == ourtype4)
3781 {
3782 if (!datum.preg_p
3783 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3784 NULL, 0) == 0)
3785 {
3786 /* For functions we can do a quick check of whether the
3787 symbol might be found via find_pc_symtab. */
3788 if (kind != FUNCTIONS_DOMAIN
3789 || (find_pc_compunit_symtab
3790 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
3791 {
3792 if (lookup_symbol_in_objfile_from_linkage_name
3793 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3794 == NULL)
3795 {
3796 /* match */
3797 struct symbol_search *psr = (struct symbol_search *)
3798 xmalloc (sizeof (struct symbol_search));
3799 psr->block = i;
3800 psr->msymbol.minsym = msymbol;
3801 psr->msymbol.objfile = objfile;
3802 psr->symtab = NULL;
3803 psr->symbol = NULL;
3804 psr->next = NULL;
3805 if (tail == NULL)
3806 found = psr;
3807 else
3808 tail->next = psr;
3809 tail = psr;
3810 }
3811 }
3812 }
3813 }
3814 }
3815 }
3816
3817 discard_cleanups (retval_chain);
3818 do_cleanups (old_chain);
3819 *matches = found;
3820 }
3821
3822 /* Helper function for symtab_symbol_info, this function uses
3823 the data returned from search_symbols() to print information
3824 regarding the match to gdb_stdout. */
3825
3826 static void
3827 print_symbol_info (enum search_domain kind,
3828 struct symtab *s, struct symbol *sym,
3829 int block, const char *last)
3830 {
3831 const char *s_filename = symtab_to_filename_for_display (s);
3832
3833 if (last == NULL || filename_cmp (last, s_filename) != 0)
3834 {
3835 fputs_filtered ("\nFile ", gdb_stdout);
3836 fputs_filtered (s_filename, gdb_stdout);
3837 fputs_filtered (":\n", gdb_stdout);
3838 }
3839
3840 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3841 printf_filtered ("static ");
3842
3843 /* Typedef that is not a C++ class. */
3844 if (kind == TYPES_DOMAIN
3845 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3846 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3847 /* variable, func, or typedef-that-is-c++-class. */
3848 else if (kind < TYPES_DOMAIN
3849 || (kind == TYPES_DOMAIN
3850 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3851 {
3852 type_print (SYMBOL_TYPE (sym),
3853 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3854 ? "" : SYMBOL_PRINT_NAME (sym)),
3855 gdb_stdout, 0);
3856
3857 printf_filtered (";\n");
3858 }
3859 }
3860
3861 /* This help function for symtab_symbol_info() prints information
3862 for non-debugging symbols to gdb_stdout. */
3863
3864 static void
3865 print_msymbol_info (struct bound_minimal_symbol msymbol)
3866 {
3867 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3868 char *tmp;
3869
3870 if (gdbarch_addr_bit (gdbarch) <= 32)
3871 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3872 & (CORE_ADDR) 0xffffffff,
3873 8);
3874 else
3875 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3876 16);
3877 printf_filtered ("%s %s\n",
3878 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3879 }
3880
3881 /* This is the guts of the commands "info functions", "info types", and
3882 "info variables". It calls search_symbols to find all matches and then
3883 print_[m]symbol_info to print out some useful information about the
3884 matches. */
3885
3886 static void
3887 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3888 {
3889 static const char * const classnames[] =
3890 {"variable", "function", "type"};
3891 struct symbol_search *symbols;
3892 struct symbol_search *p;
3893 struct cleanup *old_chain;
3894 const char *last_filename = NULL;
3895 int first = 1;
3896
3897 gdb_assert (kind <= TYPES_DOMAIN);
3898
3899 /* Must make sure that if we're interrupted, symbols gets freed. */
3900 search_symbols (regexp, kind, 0, NULL, &symbols);
3901 old_chain = make_cleanup_free_search_symbols (&symbols);
3902
3903 if (regexp != NULL)
3904 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3905 classnames[kind], regexp);
3906 else
3907 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3908
3909 for (p = symbols; p != NULL; p = p->next)
3910 {
3911 QUIT;
3912
3913 if (p->msymbol.minsym != NULL)
3914 {
3915 if (first)
3916 {
3917 printf_filtered (_("\nNon-debugging symbols:\n"));
3918 first = 0;
3919 }
3920 print_msymbol_info (p->msymbol);
3921 }
3922 else
3923 {
3924 print_symbol_info (kind,
3925 p->symtab,
3926 p->symbol,
3927 p->block,
3928 last_filename);
3929 last_filename = symtab_to_filename_for_display (p->symtab);
3930 }
3931 }
3932
3933 do_cleanups (old_chain);
3934 }
3935
3936 static void
3937 variables_info (char *regexp, int from_tty)
3938 {
3939 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3940 }
3941
3942 static void
3943 functions_info (char *regexp, int from_tty)
3944 {
3945 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3946 }
3947
3948
3949 static void
3950 types_info (char *regexp, int from_tty)
3951 {
3952 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3953 }
3954
3955 /* Breakpoint all functions matching regular expression. */
3956
3957 void
3958 rbreak_command_wrapper (char *regexp, int from_tty)
3959 {
3960 rbreak_command (regexp, from_tty);
3961 }
3962
3963 /* A cleanup function that calls end_rbreak_breakpoints. */
3964
3965 static void
3966 do_end_rbreak_breakpoints (void *ignore)
3967 {
3968 end_rbreak_breakpoints ();
3969 }
3970
3971 static void
3972 rbreak_command (char *regexp, int from_tty)
3973 {
3974 struct symbol_search *ss;
3975 struct symbol_search *p;
3976 struct cleanup *old_chain;
3977 char *string = NULL;
3978 int len = 0;
3979 const char **files = NULL;
3980 const char *file_name;
3981 int nfiles = 0;
3982
3983 if (regexp)
3984 {
3985 char *colon = strchr (regexp, ':');
3986
3987 if (colon && *(colon + 1) != ':')
3988 {
3989 int colon_index;
3990 char *local_name;
3991
3992 colon_index = colon - regexp;
3993 local_name = alloca (colon_index + 1);
3994 memcpy (local_name, regexp, colon_index);
3995 local_name[colon_index--] = 0;
3996 while (isspace (local_name[colon_index]))
3997 local_name[colon_index--] = 0;
3998 file_name = local_name;
3999 files = &file_name;
4000 nfiles = 1;
4001 regexp = skip_spaces (colon + 1);
4002 }
4003 }
4004
4005 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4006 old_chain = make_cleanup_free_search_symbols (&ss);
4007 make_cleanup (free_current_contents, &string);
4008
4009 start_rbreak_breakpoints ();
4010 make_cleanup (do_end_rbreak_breakpoints, NULL);
4011 for (p = ss; p != NULL; p = p->next)
4012 {
4013 if (p->msymbol.minsym == NULL)
4014 {
4015 const char *fullname = symtab_to_fullname (p->symtab);
4016
4017 int newlen = (strlen (fullname)
4018 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4019 + 4);
4020
4021 if (newlen > len)
4022 {
4023 string = xrealloc (string, newlen);
4024 len = newlen;
4025 }
4026 strcpy (string, fullname);
4027 strcat (string, ":'");
4028 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4029 strcat (string, "'");
4030 break_command (string, from_tty);
4031 print_symbol_info (FUNCTIONS_DOMAIN,
4032 p->symtab,
4033 p->symbol,
4034 p->block,
4035 symtab_to_filename_for_display (p->symtab));
4036 }
4037 else
4038 {
4039 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4040
4041 if (newlen > len)
4042 {
4043 string = xrealloc (string, newlen);
4044 len = newlen;
4045 }
4046 strcpy (string, "'");
4047 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4048 strcat (string, "'");
4049
4050 break_command (string, from_tty);
4051 printf_filtered ("<function, no debug info> %s;\n",
4052 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4053 }
4054 }
4055
4056 do_cleanups (old_chain);
4057 }
4058 \f
4059
4060 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4061
4062 Either sym_text[sym_text_len] != '(' and then we search for any
4063 symbol starting with SYM_TEXT text.
4064
4065 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4066 be terminated at that point. Partial symbol tables do not have parameters
4067 information. */
4068
4069 static int
4070 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4071 {
4072 int (*ncmp) (const char *, const char *, size_t);
4073
4074 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4075
4076 if (ncmp (name, sym_text, sym_text_len) != 0)
4077 return 0;
4078
4079 if (sym_text[sym_text_len] == '(')
4080 {
4081 /* User searches for `name(someth...'. Require NAME to be terminated.
4082 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4083 present but accept even parameters presence. In this case this
4084 function is in fact strcmp_iw but whitespace skipping is not supported
4085 for tab completion. */
4086
4087 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4088 return 0;
4089 }
4090
4091 return 1;
4092 }
4093
4094 /* Free any memory associated with a completion list. */
4095
4096 static void
4097 free_completion_list (VEC (char_ptr) **list_ptr)
4098 {
4099 int i;
4100 char *p;
4101
4102 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4103 xfree (p);
4104 VEC_free (char_ptr, *list_ptr);
4105 }
4106
4107 /* Callback for make_cleanup. */
4108
4109 static void
4110 do_free_completion_list (void *list)
4111 {
4112 free_completion_list (list);
4113 }
4114
4115 /* Helper routine for make_symbol_completion_list. */
4116
4117 static VEC (char_ptr) *return_val;
4118
4119 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4120 completion_list_add_name \
4121 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4122
4123 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4124 completion_list_add_name \
4125 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4126
4127 /* Test to see if the symbol specified by SYMNAME (which is already
4128 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4129 characters. If so, add it to the current completion list. */
4130
4131 static void
4132 completion_list_add_name (const char *symname,
4133 const char *sym_text, int sym_text_len,
4134 const char *text, const char *word)
4135 {
4136 /* Clip symbols that cannot match. */
4137 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4138 return;
4139
4140 /* We have a match for a completion, so add SYMNAME to the current list
4141 of matches. Note that the name is moved to freshly malloc'd space. */
4142
4143 {
4144 char *new;
4145
4146 if (word == sym_text)
4147 {
4148 new = xmalloc (strlen (symname) + 5);
4149 strcpy (new, symname);
4150 }
4151 else if (word > sym_text)
4152 {
4153 /* Return some portion of symname. */
4154 new = xmalloc (strlen (symname) + 5);
4155 strcpy (new, symname + (word - sym_text));
4156 }
4157 else
4158 {
4159 /* Return some of SYM_TEXT plus symname. */
4160 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4161 strncpy (new, word, sym_text - word);
4162 new[sym_text - word] = '\0';
4163 strcat (new, symname);
4164 }
4165
4166 VEC_safe_push (char_ptr, return_val, new);
4167 }
4168 }
4169
4170 /* ObjC: In case we are completing on a selector, look as the msymbol
4171 again and feed all the selectors into the mill. */
4172
4173 static void
4174 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4175 const char *sym_text, int sym_text_len,
4176 const char *text, const char *word)
4177 {
4178 static char *tmp = NULL;
4179 static unsigned int tmplen = 0;
4180
4181 const char *method, *category, *selector;
4182 char *tmp2 = NULL;
4183
4184 method = MSYMBOL_NATURAL_NAME (msymbol);
4185
4186 /* Is it a method? */
4187 if ((method[0] != '-') && (method[0] != '+'))
4188 return;
4189
4190 if (sym_text[0] == '[')
4191 /* Complete on shortened method method. */
4192 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4193
4194 while ((strlen (method) + 1) >= tmplen)
4195 {
4196 if (tmplen == 0)
4197 tmplen = 1024;
4198 else
4199 tmplen *= 2;
4200 tmp = xrealloc (tmp, tmplen);
4201 }
4202 selector = strchr (method, ' ');
4203 if (selector != NULL)
4204 selector++;
4205
4206 category = strchr (method, '(');
4207
4208 if ((category != NULL) && (selector != NULL))
4209 {
4210 memcpy (tmp, method, (category - method));
4211 tmp[category - method] = ' ';
4212 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4213 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4214 if (sym_text[0] == '[')
4215 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4216 }
4217
4218 if (selector != NULL)
4219 {
4220 /* Complete on selector only. */
4221 strcpy (tmp, selector);
4222 tmp2 = strchr (tmp, ']');
4223 if (tmp2 != NULL)
4224 *tmp2 = '\0';
4225
4226 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4227 }
4228 }
4229
4230 /* Break the non-quoted text based on the characters which are in
4231 symbols. FIXME: This should probably be language-specific. */
4232
4233 static const char *
4234 language_search_unquoted_string (const char *text, const char *p)
4235 {
4236 for (; p > text; --p)
4237 {
4238 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4239 continue;
4240 else
4241 {
4242 if ((current_language->la_language == language_objc))
4243 {
4244 if (p[-1] == ':') /* Might be part of a method name. */
4245 continue;
4246 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4247 p -= 2; /* Beginning of a method name. */
4248 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4249 { /* Might be part of a method name. */
4250 const char *t = p;
4251
4252 /* Seeing a ' ' or a '(' is not conclusive evidence
4253 that we are in the middle of a method name. However,
4254 finding "-[" or "+[" should be pretty un-ambiguous.
4255 Unfortunately we have to find it now to decide. */
4256
4257 while (t > text)
4258 if (isalnum (t[-1]) || t[-1] == '_' ||
4259 t[-1] == ' ' || t[-1] == ':' ||
4260 t[-1] == '(' || t[-1] == ')')
4261 --t;
4262 else
4263 break;
4264
4265 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4266 p = t - 2; /* Method name detected. */
4267 /* Else we leave with p unchanged. */
4268 }
4269 }
4270 break;
4271 }
4272 }
4273 return p;
4274 }
4275
4276 static void
4277 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4278 int sym_text_len, const char *text,
4279 const char *word)
4280 {
4281 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4282 {
4283 struct type *t = SYMBOL_TYPE (sym);
4284 enum type_code c = TYPE_CODE (t);
4285 int j;
4286
4287 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4288 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4289 if (TYPE_FIELD_NAME (t, j))
4290 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4291 sym_text, sym_text_len, text, word);
4292 }
4293 }
4294
4295 /* Type of the user_data argument passed to add_macro_name or
4296 symbol_completion_matcher. The contents are simply whatever is
4297 needed by completion_list_add_name. */
4298 struct add_name_data
4299 {
4300 const char *sym_text;
4301 int sym_text_len;
4302 const char *text;
4303 const char *word;
4304 };
4305
4306 /* A callback used with macro_for_each and macro_for_each_in_scope.
4307 This adds a macro's name to the current completion list. */
4308
4309 static void
4310 add_macro_name (const char *name, const struct macro_definition *ignore,
4311 struct macro_source_file *ignore2, int ignore3,
4312 void *user_data)
4313 {
4314 struct add_name_data *datum = (struct add_name_data *) user_data;
4315
4316 completion_list_add_name (name,
4317 datum->sym_text, datum->sym_text_len,
4318 datum->text, datum->word);
4319 }
4320
4321 /* A callback for expand_symtabs_matching. */
4322
4323 static int
4324 symbol_completion_matcher (const char *name, void *user_data)
4325 {
4326 struct add_name_data *datum = (struct add_name_data *) user_data;
4327
4328 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4329 }
4330
4331 VEC (char_ptr) *
4332 default_make_symbol_completion_list_break_on (const char *text,
4333 const char *word,
4334 const char *break_on,
4335 enum type_code code)
4336 {
4337 /* Problem: All of the symbols have to be copied because readline
4338 frees them. I'm not going to worry about this; hopefully there
4339 won't be that many. */
4340
4341 struct symbol *sym;
4342 struct compunit_symtab *cust;
4343 struct minimal_symbol *msymbol;
4344 struct objfile *objfile;
4345 const struct block *b;
4346 const struct block *surrounding_static_block, *surrounding_global_block;
4347 struct block_iterator iter;
4348 /* The symbol we are completing on. Points in same buffer as text. */
4349 const char *sym_text;
4350 /* Length of sym_text. */
4351 int sym_text_len;
4352 struct add_name_data datum;
4353 struct cleanup *back_to;
4354
4355 /* Now look for the symbol we are supposed to complete on. */
4356 {
4357 const char *p;
4358 char quote_found;
4359 const char *quote_pos = NULL;
4360
4361 /* First see if this is a quoted string. */
4362 quote_found = '\0';
4363 for (p = text; *p != '\0'; ++p)
4364 {
4365 if (quote_found != '\0')
4366 {
4367 if (*p == quote_found)
4368 /* Found close quote. */
4369 quote_found = '\0';
4370 else if (*p == '\\' && p[1] == quote_found)
4371 /* A backslash followed by the quote character
4372 doesn't end the string. */
4373 ++p;
4374 }
4375 else if (*p == '\'' || *p == '"')
4376 {
4377 quote_found = *p;
4378 quote_pos = p;
4379 }
4380 }
4381 if (quote_found == '\'')
4382 /* A string within single quotes can be a symbol, so complete on it. */
4383 sym_text = quote_pos + 1;
4384 else if (quote_found == '"')
4385 /* A double-quoted string is never a symbol, nor does it make sense
4386 to complete it any other way. */
4387 {
4388 return NULL;
4389 }
4390 else
4391 {
4392 /* It is not a quoted string. Break it based on the characters
4393 which are in symbols. */
4394 while (p > text)
4395 {
4396 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4397 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4398 --p;
4399 else
4400 break;
4401 }
4402 sym_text = p;
4403 }
4404 }
4405
4406 sym_text_len = strlen (sym_text);
4407
4408 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4409
4410 if (current_language->la_language == language_cplus
4411 || current_language->la_language == language_java
4412 || current_language->la_language == language_fortran)
4413 {
4414 /* These languages may have parameters entered by user but they are never
4415 present in the partial symbol tables. */
4416
4417 const char *cs = memchr (sym_text, '(', sym_text_len);
4418
4419 if (cs)
4420 sym_text_len = cs - sym_text;
4421 }
4422 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4423
4424 return_val = NULL;
4425 back_to = make_cleanup (do_free_completion_list, &return_val);
4426
4427 datum.sym_text = sym_text;
4428 datum.sym_text_len = sym_text_len;
4429 datum.text = text;
4430 datum.word = word;
4431
4432 /* Look through the partial symtabs for all symbols which begin
4433 by matching SYM_TEXT. Expand all CUs that you find to the list.
4434 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4435 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4436 &datum);
4437
4438 /* At this point scan through the misc symbol vectors and add each
4439 symbol you find to the list. Eventually we want to ignore
4440 anything that isn't a text symbol (everything else will be
4441 handled by the psymtab code above). */
4442
4443 if (code == TYPE_CODE_UNDEF)
4444 {
4445 ALL_MSYMBOLS (objfile, msymbol)
4446 {
4447 QUIT;
4448 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4449 word);
4450
4451 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4452 word);
4453 }
4454 }
4455
4456 /* Search upwards from currently selected frame (so that we can
4457 complete on local vars). Also catch fields of types defined in
4458 this places which match our text string. Only complete on types
4459 visible from current context. */
4460
4461 b = get_selected_block (0);
4462 surrounding_static_block = block_static_block (b);
4463 surrounding_global_block = block_global_block (b);
4464 if (surrounding_static_block != NULL)
4465 while (b != surrounding_static_block)
4466 {
4467 QUIT;
4468
4469 ALL_BLOCK_SYMBOLS (b, iter, sym)
4470 {
4471 if (code == TYPE_CODE_UNDEF)
4472 {
4473 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4474 word);
4475 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4476 word);
4477 }
4478 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4479 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4480 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4481 word);
4482 }
4483
4484 /* Stop when we encounter an enclosing function. Do not stop for
4485 non-inlined functions - the locals of the enclosing function
4486 are in scope for a nested function. */
4487 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4488 break;
4489 b = BLOCK_SUPERBLOCK (b);
4490 }
4491
4492 /* Add fields from the file's types; symbols will be added below. */
4493
4494 if (code == TYPE_CODE_UNDEF)
4495 {
4496 if (surrounding_static_block != NULL)
4497 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4498 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4499
4500 if (surrounding_global_block != NULL)
4501 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4502 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4503 }
4504
4505 /* Go through the symtabs and check the externs and statics for
4506 symbols which match. */
4507
4508 ALL_COMPUNITS (objfile, cust)
4509 {
4510 QUIT;
4511 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK);
4512 ALL_BLOCK_SYMBOLS (b, iter, sym)
4513 {
4514 if (code == TYPE_CODE_UNDEF
4515 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4516 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4517 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4518 }
4519 }
4520
4521 ALL_COMPUNITS (objfile, cust)
4522 {
4523 QUIT;
4524 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK);
4525 ALL_BLOCK_SYMBOLS (b, iter, sym)
4526 {
4527 if (code == TYPE_CODE_UNDEF
4528 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4529 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4530 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4531 }
4532 }
4533
4534 /* Skip macros if we are completing a struct tag -- arguable but
4535 usually what is expected. */
4536 if (current_language->la_macro_expansion == macro_expansion_c
4537 && code == TYPE_CODE_UNDEF)
4538 {
4539 struct macro_scope *scope;
4540
4541 /* Add any macros visible in the default scope. Note that this
4542 may yield the occasional wrong result, because an expression
4543 might be evaluated in a scope other than the default. For
4544 example, if the user types "break file:line if <TAB>", the
4545 resulting expression will be evaluated at "file:line" -- but
4546 at there does not seem to be a way to detect this at
4547 completion time. */
4548 scope = default_macro_scope ();
4549 if (scope)
4550 {
4551 macro_for_each_in_scope (scope->file, scope->line,
4552 add_macro_name, &datum);
4553 xfree (scope);
4554 }
4555
4556 /* User-defined macros are always visible. */
4557 macro_for_each (macro_user_macros, add_macro_name, &datum);
4558 }
4559
4560 discard_cleanups (back_to);
4561 return (return_val);
4562 }
4563
4564 VEC (char_ptr) *
4565 default_make_symbol_completion_list (const char *text, const char *word,
4566 enum type_code code)
4567 {
4568 return default_make_symbol_completion_list_break_on (text, word, "", code);
4569 }
4570
4571 /* Return a vector of all symbols (regardless of class) which begin by
4572 matching TEXT. If the answer is no symbols, then the return value
4573 is NULL. */
4574
4575 VEC (char_ptr) *
4576 make_symbol_completion_list (const char *text, const char *word)
4577 {
4578 return current_language->la_make_symbol_completion_list (text, word,
4579 TYPE_CODE_UNDEF);
4580 }
4581
4582 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4583 symbols whose type code is CODE. */
4584
4585 VEC (char_ptr) *
4586 make_symbol_completion_type (const char *text, const char *word,
4587 enum type_code code)
4588 {
4589 gdb_assert (code == TYPE_CODE_UNION
4590 || code == TYPE_CODE_STRUCT
4591 || code == TYPE_CODE_ENUM);
4592 return current_language->la_make_symbol_completion_list (text, word, code);
4593 }
4594
4595 /* Like make_symbol_completion_list, but suitable for use as a
4596 completion function. */
4597
4598 VEC (char_ptr) *
4599 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4600 const char *text, const char *word)
4601 {
4602 return make_symbol_completion_list (text, word);
4603 }
4604
4605 /* Like make_symbol_completion_list, but returns a list of symbols
4606 defined in a source file FILE. */
4607
4608 VEC (char_ptr) *
4609 make_file_symbol_completion_list (const char *text, const char *word,
4610 const char *srcfile)
4611 {
4612 struct symbol *sym;
4613 struct symtab *s;
4614 struct block *b;
4615 struct block_iterator iter;
4616 /* The symbol we are completing on. Points in same buffer as text. */
4617 const char *sym_text;
4618 /* Length of sym_text. */
4619 int sym_text_len;
4620
4621 /* Now look for the symbol we are supposed to complete on.
4622 FIXME: This should be language-specific. */
4623 {
4624 const char *p;
4625 char quote_found;
4626 const char *quote_pos = NULL;
4627
4628 /* First see if this is a quoted string. */
4629 quote_found = '\0';
4630 for (p = text; *p != '\0'; ++p)
4631 {
4632 if (quote_found != '\0')
4633 {
4634 if (*p == quote_found)
4635 /* Found close quote. */
4636 quote_found = '\0';
4637 else if (*p == '\\' && p[1] == quote_found)
4638 /* A backslash followed by the quote character
4639 doesn't end the string. */
4640 ++p;
4641 }
4642 else if (*p == '\'' || *p == '"')
4643 {
4644 quote_found = *p;
4645 quote_pos = p;
4646 }
4647 }
4648 if (quote_found == '\'')
4649 /* A string within single quotes can be a symbol, so complete on it. */
4650 sym_text = quote_pos + 1;
4651 else if (quote_found == '"')
4652 /* A double-quoted string is never a symbol, nor does it make sense
4653 to complete it any other way. */
4654 {
4655 return NULL;
4656 }
4657 else
4658 {
4659 /* Not a quoted string. */
4660 sym_text = language_search_unquoted_string (text, p);
4661 }
4662 }
4663
4664 sym_text_len = strlen (sym_text);
4665
4666 return_val = NULL;
4667
4668 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4669 in). */
4670 s = lookup_symtab (srcfile);
4671 if (s == NULL)
4672 {
4673 /* Maybe they typed the file with leading directories, while the
4674 symbol tables record only its basename. */
4675 const char *tail = lbasename (srcfile);
4676
4677 if (tail > srcfile)
4678 s = lookup_symtab (tail);
4679 }
4680
4681 /* If we have no symtab for that file, return an empty list. */
4682 if (s == NULL)
4683 return (return_val);
4684
4685 /* Go through this symtab and check the externs and statics for
4686 symbols which match. */
4687
4688 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
4689 ALL_BLOCK_SYMBOLS (b, iter, sym)
4690 {
4691 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4692 }
4693
4694 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
4695 ALL_BLOCK_SYMBOLS (b, iter, sym)
4696 {
4697 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4698 }
4699
4700 return (return_val);
4701 }
4702
4703 /* A helper function for make_source_files_completion_list. It adds
4704 another file name to a list of possible completions, growing the
4705 list as necessary. */
4706
4707 static void
4708 add_filename_to_list (const char *fname, const char *text, const char *word,
4709 VEC (char_ptr) **list)
4710 {
4711 char *new;
4712 size_t fnlen = strlen (fname);
4713
4714 if (word == text)
4715 {
4716 /* Return exactly fname. */
4717 new = xmalloc (fnlen + 5);
4718 strcpy (new, fname);
4719 }
4720 else if (word > text)
4721 {
4722 /* Return some portion of fname. */
4723 new = xmalloc (fnlen + 5);
4724 strcpy (new, fname + (word - text));
4725 }
4726 else
4727 {
4728 /* Return some of TEXT plus fname. */
4729 new = xmalloc (fnlen + (text - word) + 5);
4730 strncpy (new, word, text - word);
4731 new[text - word] = '\0';
4732 strcat (new, fname);
4733 }
4734 VEC_safe_push (char_ptr, *list, new);
4735 }
4736
4737 static int
4738 not_interesting_fname (const char *fname)
4739 {
4740 static const char *illegal_aliens[] = {
4741 "_globals_", /* inserted by coff_symtab_read */
4742 NULL
4743 };
4744 int i;
4745
4746 for (i = 0; illegal_aliens[i]; i++)
4747 {
4748 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4749 return 1;
4750 }
4751 return 0;
4752 }
4753
4754 /* An object of this type is passed as the user_data argument to
4755 map_partial_symbol_filenames. */
4756 struct add_partial_filename_data
4757 {
4758 struct filename_seen_cache *filename_seen_cache;
4759 const char *text;
4760 const char *word;
4761 int text_len;
4762 VEC (char_ptr) **list;
4763 };
4764
4765 /* A callback for map_partial_symbol_filenames. */
4766
4767 static void
4768 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4769 void *user_data)
4770 {
4771 struct add_partial_filename_data *data = user_data;
4772
4773 if (not_interesting_fname (filename))
4774 return;
4775 if (!filename_seen (data->filename_seen_cache, filename, 1)
4776 && filename_ncmp (filename, data->text, data->text_len) == 0)
4777 {
4778 /* This file matches for a completion; add it to the
4779 current list of matches. */
4780 add_filename_to_list (filename, data->text, data->word, data->list);
4781 }
4782 else
4783 {
4784 const char *base_name = lbasename (filename);
4785
4786 if (base_name != filename
4787 && !filename_seen (data->filename_seen_cache, base_name, 1)
4788 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4789 add_filename_to_list (base_name, data->text, data->word, data->list);
4790 }
4791 }
4792
4793 /* Return a vector of all source files whose names begin with matching
4794 TEXT. The file names are looked up in the symbol tables of this
4795 program. If the answer is no matchess, then the return value is
4796 NULL. */
4797
4798 VEC (char_ptr) *
4799 make_source_files_completion_list (const char *text, const char *word)
4800 {
4801 struct compunit_symtab *cu;
4802 struct symtab *s;
4803 struct objfile *objfile;
4804 size_t text_len = strlen (text);
4805 VEC (char_ptr) *list = NULL;
4806 const char *base_name;
4807 struct add_partial_filename_data datum;
4808 struct filename_seen_cache *filename_seen_cache;
4809 struct cleanup *back_to, *cache_cleanup;
4810
4811 if (!have_full_symbols () && !have_partial_symbols ())
4812 return list;
4813
4814 back_to = make_cleanup (do_free_completion_list, &list);
4815
4816 filename_seen_cache = create_filename_seen_cache ();
4817 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4818 filename_seen_cache);
4819
4820 ALL_FILETABS (objfile, cu, s)
4821 {
4822 if (not_interesting_fname (s->filename))
4823 continue;
4824 if (!filename_seen (filename_seen_cache, s->filename, 1)
4825 && filename_ncmp (s->filename, text, text_len) == 0)
4826 {
4827 /* This file matches for a completion; add it to the current
4828 list of matches. */
4829 add_filename_to_list (s->filename, text, word, &list);
4830 }
4831 else
4832 {
4833 /* NOTE: We allow the user to type a base name when the
4834 debug info records leading directories, but not the other
4835 way around. This is what subroutines of breakpoint
4836 command do when they parse file names. */
4837 base_name = lbasename (s->filename);
4838 if (base_name != s->filename
4839 && !filename_seen (filename_seen_cache, base_name, 1)
4840 && filename_ncmp (base_name, text, text_len) == 0)
4841 add_filename_to_list (base_name, text, word, &list);
4842 }
4843 }
4844
4845 datum.filename_seen_cache = filename_seen_cache;
4846 datum.text = text;
4847 datum.word = word;
4848 datum.text_len = text_len;
4849 datum.list = &list;
4850 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4851 0 /*need_fullname*/);
4852
4853 do_cleanups (cache_cleanup);
4854 discard_cleanups (back_to);
4855
4856 return list;
4857 }
4858 \f
4859 /* Track MAIN */
4860
4861 /* Return the "main_info" object for the current program space. If
4862 the object has not yet been created, create it and fill in some
4863 default values. */
4864
4865 static struct main_info *
4866 get_main_info (void)
4867 {
4868 struct main_info *info = program_space_data (current_program_space,
4869 main_progspace_key);
4870
4871 if (info == NULL)
4872 {
4873 /* It may seem strange to store the main name in the progspace
4874 and also in whatever objfile happens to see a main name in
4875 its debug info. The reason for this is mainly historical:
4876 gdb returned "main" as the name even if no function named
4877 "main" was defined the program; and this approach lets us
4878 keep compatibility. */
4879 info = XCNEW (struct main_info);
4880 info->language_of_main = language_unknown;
4881 set_program_space_data (current_program_space, main_progspace_key,
4882 info);
4883 }
4884
4885 return info;
4886 }
4887
4888 /* A cleanup to destroy a struct main_info when a progspace is
4889 destroyed. */
4890
4891 static void
4892 main_info_cleanup (struct program_space *pspace, void *data)
4893 {
4894 struct main_info *info = data;
4895
4896 if (info != NULL)
4897 xfree (info->name_of_main);
4898 xfree (info);
4899 }
4900
4901 static void
4902 set_main_name (const char *name, enum language lang)
4903 {
4904 struct main_info *info = get_main_info ();
4905
4906 if (info->name_of_main != NULL)
4907 {
4908 xfree (info->name_of_main);
4909 info->name_of_main = NULL;
4910 info->language_of_main = language_unknown;
4911 }
4912 if (name != NULL)
4913 {
4914 info->name_of_main = xstrdup (name);
4915 info->language_of_main = lang;
4916 }
4917 }
4918
4919 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4920 accordingly. */
4921
4922 static void
4923 find_main_name (void)
4924 {
4925 const char *new_main_name;
4926 struct objfile *objfile;
4927
4928 /* First check the objfiles to see whether a debuginfo reader has
4929 picked up the appropriate main name. Historically the main name
4930 was found in a more or less random way; this approach instead
4931 relies on the order of objfile creation -- which still isn't
4932 guaranteed to get the correct answer, but is just probably more
4933 accurate. */
4934 ALL_OBJFILES (objfile)
4935 {
4936 if (objfile->per_bfd->name_of_main != NULL)
4937 {
4938 set_main_name (objfile->per_bfd->name_of_main,
4939 objfile->per_bfd->language_of_main);
4940 return;
4941 }
4942 }
4943
4944 /* Try to see if the main procedure is in Ada. */
4945 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4946 be to add a new method in the language vector, and call this
4947 method for each language until one of them returns a non-empty
4948 name. This would allow us to remove this hard-coded call to
4949 an Ada function. It is not clear that this is a better approach
4950 at this point, because all methods need to be written in a way
4951 such that false positives never be returned. For instance, it is
4952 important that a method does not return a wrong name for the main
4953 procedure if the main procedure is actually written in a different
4954 language. It is easy to guaranty this with Ada, since we use a
4955 special symbol generated only when the main in Ada to find the name
4956 of the main procedure. It is difficult however to see how this can
4957 be guarantied for languages such as C, for instance. This suggests
4958 that order of call for these methods becomes important, which means
4959 a more complicated approach. */
4960 new_main_name = ada_main_name ();
4961 if (new_main_name != NULL)
4962 {
4963 set_main_name (new_main_name, language_ada);
4964 return;
4965 }
4966
4967 new_main_name = d_main_name ();
4968 if (new_main_name != NULL)
4969 {
4970 set_main_name (new_main_name, language_d);
4971 return;
4972 }
4973
4974 new_main_name = go_main_name ();
4975 if (new_main_name != NULL)
4976 {
4977 set_main_name (new_main_name, language_go);
4978 return;
4979 }
4980
4981 new_main_name = pascal_main_name ();
4982 if (new_main_name != NULL)
4983 {
4984 set_main_name (new_main_name, language_pascal);
4985 return;
4986 }
4987
4988 /* The languages above didn't identify the name of the main procedure.
4989 Fallback to "main". */
4990 set_main_name ("main", language_unknown);
4991 }
4992
4993 char *
4994 main_name (void)
4995 {
4996 struct main_info *info = get_main_info ();
4997
4998 if (info->name_of_main == NULL)
4999 find_main_name ();
5000
5001 return info->name_of_main;
5002 }
5003
5004 /* Return the language of the main function. If it is not known,
5005 return language_unknown. */
5006
5007 enum language
5008 main_language (void)
5009 {
5010 struct main_info *info = get_main_info ();
5011
5012 if (info->name_of_main == NULL)
5013 find_main_name ();
5014
5015 return info->language_of_main;
5016 }
5017
5018 /* Handle ``executable_changed'' events for the symtab module. */
5019
5020 static void
5021 symtab_observer_executable_changed (void)
5022 {
5023 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5024 set_main_name (NULL, language_unknown);
5025 }
5026
5027 /* Return 1 if the supplied producer string matches the ARM RealView
5028 compiler (armcc). */
5029
5030 int
5031 producer_is_realview (const char *producer)
5032 {
5033 static const char *const arm_idents[] = {
5034 "ARM C Compiler, ADS",
5035 "Thumb C Compiler, ADS",
5036 "ARM C++ Compiler, ADS",
5037 "Thumb C++ Compiler, ADS",
5038 "ARM/Thumb C/C++ Compiler, RVCT",
5039 "ARM C/C++ Compiler, RVCT"
5040 };
5041 int i;
5042
5043 if (producer == NULL)
5044 return 0;
5045
5046 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5047 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5048 return 1;
5049
5050 return 0;
5051 }
5052
5053 \f
5054
5055 /* The next index to hand out in response to a registration request. */
5056
5057 static int next_aclass_value = LOC_FINAL_VALUE;
5058
5059 /* The maximum number of "aclass" registrations we support. This is
5060 constant for convenience. */
5061 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5062
5063 /* The objects representing the various "aclass" values. The elements
5064 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5065 elements are those registered at gdb initialization time. */
5066
5067 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5068
5069 /* The globally visible pointer. This is separate from 'symbol_impl'
5070 so that it can be const. */
5071
5072 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5073
5074 /* Make sure we saved enough room in struct symbol. */
5075
5076 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5077
5078 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5079 is the ops vector associated with this index. This returns the new
5080 index, which should be used as the aclass_index field for symbols
5081 of this type. */
5082
5083 int
5084 register_symbol_computed_impl (enum address_class aclass,
5085 const struct symbol_computed_ops *ops)
5086 {
5087 int result = next_aclass_value++;
5088
5089 gdb_assert (aclass == LOC_COMPUTED);
5090 gdb_assert (result < MAX_SYMBOL_IMPLS);
5091 symbol_impl[result].aclass = aclass;
5092 symbol_impl[result].ops_computed = ops;
5093
5094 /* Sanity check OPS. */
5095 gdb_assert (ops != NULL);
5096 gdb_assert (ops->tracepoint_var_ref != NULL);
5097 gdb_assert (ops->describe_location != NULL);
5098 gdb_assert (ops->read_needs_frame != NULL);
5099 gdb_assert (ops->read_variable != NULL);
5100
5101 return result;
5102 }
5103
5104 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5105 OPS is the ops vector associated with this index. This returns the
5106 new index, which should be used as the aclass_index field for symbols
5107 of this type. */
5108
5109 int
5110 register_symbol_block_impl (enum address_class aclass,
5111 const struct symbol_block_ops *ops)
5112 {
5113 int result = next_aclass_value++;
5114
5115 gdb_assert (aclass == LOC_BLOCK);
5116 gdb_assert (result < MAX_SYMBOL_IMPLS);
5117 symbol_impl[result].aclass = aclass;
5118 symbol_impl[result].ops_block = ops;
5119
5120 /* Sanity check OPS. */
5121 gdb_assert (ops != NULL);
5122 gdb_assert (ops->find_frame_base_location != NULL);
5123
5124 return result;
5125 }
5126
5127 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5128 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5129 this index. This returns the new index, which should be used as
5130 the aclass_index field for symbols of this type. */
5131
5132 int
5133 register_symbol_register_impl (enum address_class aclass,
5134 const struct symbol_register_ops *ops)
5135 {
5136 int result = next_aclass_value++;
5137
5138 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5139 gdb_assert (result < MAX_SYMBOL_IMPLS);
5140 symbol_impl[result].aclass = aclass;
5141 symbol_impl[result].ops_register = ops;
5142
5143 return result;
5144 }
5145
5146 /* Initialize elements of 'symbol_impl' for the constants in enum
5147 address_class. */
5148
5149 static void
5150 initialize_ordinary_address_classes (void)
5151 {
5152 int i;
5153
5154 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5155 symbol_impl[i].aclass = i;
5156 }
5157
5158 \f
5159
5160 /* Initialize the symbol SYM. */
5161
5162 void
5163 initialize_symbol (struct symbol *sym)
5164 {
5165 memset (sym, 0, sizeof (*sym));
5166 SYMBOL_SECTION (sym) = -1;
5167 }
5168
5169 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5170 obstack. */
5171
5172 struct symbol *
5173 allocate_symbol (struct objfile *objfile)
5174 {
5175 struct symbol *result;
5176
5177 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5178 SYMBOL_SECTION (result) = -1;
5179
5180 return result;
5181 }
5182
5183 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5184 obstack. */
5185
5186 struct template_symbol *
5187 allocate_template_symbol (struct objfile *objfile)
5188 {
5189 struct template_symbol *result;
5190
5191 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5192 SYMBOL_SECTION (&result->base) = -1;
5193
5194 return result;
5195 }
5196
5197 \f
5198
5199 void
5200 _initialize_symtab (void)
5201 {
5202 initialize_ordinary_address_classes ();
5203
5204 main_progspace_key
5205 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5206
5207 add_info ("variables", variables_info, _("\
5208 All global and static variable names, or those matching REGEXP."));
5209 if (dbx_commands)
5210 add_com ("whereis", class_info, variables_info, _("\
5211 All global and static variable names, or those matching REGEXP."));
5212
5213 add_info ("functions", functions_info,
5214 _("All function names, or those matching REGEXP."));
5215
5216 /* FIXME: This command has at least the following problems:
5217 1. It prints builtin types (in a very strange and confusing fashion).
5218 2. It doesn't print right, e.g. with
5219 typedef struct foo *FOO
5220 type_print prints "FOO" when we want to make it (in this situation)
5221 print "struct foo *".
5222 I also think "ptype" or "whatis" is more likely to be useful (but if
5223 there is much disagreement "info types" can be fixed). */
5224 add_info ("types", types_info,
5225 _("All type names, or those matching REGEXP."));
5226
5227 add_info ("sources", sources_info,
5228 _("Source files in the program."));
5229
5230 add_com ("rbreak", class_breakpoint, rbreak_command,
5231 _("Set a breakpoint for all functions matching REGEXP."));
5232
5233 if (xdb_commands)
5234 {
5235 add_com ("lf", class_info, sources_info,
5236 _("Source files in the program"));
5237 add_com ("lg", class_info, variables_info, _("\
5238 All global and static variable names, or those matching REGEXP."));
5239 }
5240
5241 add_setshow_enum_cmd ("multiple-symbols", no_class,
5242 multiple_symbols_modes, &multiple_symbols_mode,
5243 _("\
5244 Set the debugger behavior when more than one symbol are possible matches\n\
5245 in an expression."), _("\
5246 Show how the debugger handles ambiguities in expressions."), _("\
5247 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5248 NULL, NULL, &setlist, &showlist);
5249
5250 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5251 &basenames_may_differ, _("\
5252 Set whether a source file may have multiple base names."), _("\
5253 Show whether a source file may have multiple base names."), _("\
5254 (A \"base name\" is the name of a file with the directory part removed.\n\
5255 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5256 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5257 before comparing them. Canonicalization is an expensive operation,\n\
5258 but it allows the same file be known by more than one base name.\n\
5259 If not set (the default), all source files are assumed to have just\n\
5260 one base name, and gdb will do file name comparisons more efficiently."),
5261 NULL, NULL,
5262 &setlist, &showlist);
5263
5264 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5265 _("Set debugging of symbol table creation."),
5266 _("Show debugging of symbol table creation."), _("\
5267 When enabled (non-zero), debugging messages are printed when building\n\
5268 symbol tables. A value of 1 (one) normally provides enough information.\n\
5269 A value greater than 1 provides more verbose information."),
5270 NULL,
5271 NULL,
5272 &setdebuglist, &showdebuglist);
5273
5274 observer_attach_executable_changed (symtab_observer_executable_changed);
5275 }