lookup_symbol_in_block: Renamed from lookup_symbol_aux_block.
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_symbol_aux_local (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_aux_symtabs (int block_index,
84 const char *name,
85 const domain_enum domain);
86
87 static
88 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 unsigned int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Return the name of a domain_enum. */
151
152 const char *
153 domain_name (domain_enum e)
154 {
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case LABEL_DOMAIN: return "LABEL_DOMAIN";
161 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
162 default: gdb_assert_not_reached ("bad domain_enum");
163 }
164 }
165
166 /* Return the name of a search_domain . */
167
168 const char *
169 search_domain_name (enum search_domain e)
170 {
171 switch (e)
172 {
173 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
174 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
175 case TYPES_DOMAIN: return "TYPES_DOMAIN";
176 case ALL_DOMAIN: return "ALL_DOMAIN";
177 default: gdb_assert_not_reached ("bad search_domain");
178 }
179 }
180
181 /* Set the primary field in SYMTAB. */
182
183 void
184 set_symtab_primary (struct symtab *symtab, int primary)
185 {
186 symtab->primary = primary;
187
188 if (symtab_create_debug && primary)
189 {
190 fprintf_unfiltered (gdb_stdlog,
191 "Created primary symtab %s for %s.\n",
192 host_address_to_string (symtab),
193 symtab_to_filename_for_display (symtab));
194 }
195 }
196
197 /* See whether FILENAME matches SEARCH_NAME using the rule that we
198 advertise to the user. (The manual's description of linespecs
199 describes what we advertise). Returns true if they match, false
200 otherwise. */
201
202 int
203 compare_filenames_for_search (const char *filename, const char *search_name)
204 {
205 int len = strlen (filename);
206 size_t search_len = strlen (search_name);
207
208 if (len < search_len)
209 return 0;
210
211 /* The tail of FILENAME must match. */
212 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
213 return 0;
214
215 /* Either the names must completely match, or the character
216 preceding the trailing SEARCH_NAME segment of FILENAME must be a
217 directory separator.
218
219 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
220 cannot match FILENAME "/path//dir/file.c" - as user has requested
221 absolute path. The sama applies for "c:\file.c" possibly
222 incorrectly hypothetically matching "d:\dir\c:\file.c".
223
224 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
225 compatible with SEARCH_NAME "file.c". In such case a compiler had
226 to put the "c:file.c" name into debug info. Such compatibility
227 works only on GDB built for DOS host. */
228 return (len == search_len
229 || (!IS_ABSOLUTE_PATH (search_name)
230 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
231 || (HAS_DRIVE_SPEC (filename)
232 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
233 }
234
235 /* Check for a symtab of a specific name by searching some symtabs.
236 This is a helper function for callbacks of iterate_over_symtabs.
237
238 If NAME is not absolute, then REAL_PATH is NULL
239 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
240
241 The return value, NAME, REAL_PATH, CALLBACK, and DATA
242 are identical to the `map_symtabs_matching_filename' method of
243 quick_symbol_functions.
244
245 FIRST and AFTER_LAST indicate the range of symtabs to search.
246 AFTER_LAST is one past the last symtab to search; NULL means to
247 search until the end of the list. */
248
249 int
250 iterate_over_some_symtabs (const char *name,
251 const char *real_path,
252 int (*callback) (struct symtab *symtab,
253 void *data),
254 void *data,
255 struct symtab *first,
256 struct symtab *after_last)
257 {
258 struct symtab *s = NULL;
259 const char* base_name = lbasename (name);
260
261 for (s = first; s != NULL && s != after_last; s = s->next)
262 {
263 if (compare_filenames_for_search (s->filename, name))
264 {
265 if (callback (s, data))
266 return 1;
267 continue;
268 }
269
270 /* Before we invoke realpath, which can get expensive when many
271 files are involved, do a quick comparison of the basenames. */
272 if (! basenames_may_differ
273 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
274 continue;
275
276 if (compare_filenames_for_search (symtab_to_fullname (s), name))
277 {
278 if (callback (s, data))
279 return 1;
280 continue;
281 }
282
283 /* If the user gave us an absolute path, try to find the file in
284 this symtab and use its absolute path. */
285 if (real_path != NULL)
286 {
287 const char *fullname = symtab_to_fullname (s);
288
289 gdb_assert (IS_ABSOLUTE_PATH (real_path));
290 gdb_assert (IS_ABSOLUTE_PATH (name));
291 if (FILENAME_CMP (real_path, fullname) == 0)
292 {
293 if (callback (s, data))
294 return 1;
295 continue;
296 }
297 }
298 }
299
300 return 0;
301 }
302
303 /* Check for a symtab of a specific name; first in symtabs, then in
304 psymtabs. *If* there is no '/' in the name, a match after a '/'
305 in the symtab filename will also work.
306
307 Calls CALLBACK with each symtab that is found and with the supplied
308 DATA. If CALLBACK returns true, the search stops. */
309
310 void
311 iterate_over_symtabs (const char *name,
312 int (*callback) (struct symtab *symtab,
313 void *data),
314 void *data)
315 {
316 struct objfile *objfile;
317 char *real_path = NULL;
318 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
319
320 /* Here we are interested in canonicalizing an absolute path, not
321 absolutizing a relative path. */
322 if (IS_ABSOLUTE_PATH (name))
323 {
324 real_path = gdb_realpath (name);
325 make_cleanup (xfree, real_path);
326 gdb_assert (IS_ABSOLUTE_PATH (real_path));
327 }
328
329 ALL_OBJFILES (objfile)
330 {
331 if (iterate_over_some_symtabs (name, real_path, callback, data,
332 objfile->symtabs, NULL))
333 {
334 do_cleanups (cleanups);
335 return;
336 }
337 }
338
339 /* Same search rules as above apply here, but now we look thru the
340 psymtabs. */
341
342 ALL_OBJFILES (objfile)
343 {
344 if (objfile->sf
345 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
346 name,
347 real_path,
348 callback,
349 data))
350 {
351 do_cleanups (cleanups);
352 return;
353 }
354 }
355
356 do_cleanups (cleanups);
357 }
358
359 /* The callback function used by lookup_symtab. */
360
361 static int
362 lookup_symtab_callback (struct symtab *symtab, void *data)
363 {
364 struct symtab **result_ptr = data;
365
366 *result_ptr = symtab;
367 return 1;
368 }
369
370 /* A wrapper for iterate_over_symtabs that returns the first matching
371 symtab, or NULL. */
372
373 struct symtab *
374 lookup_symtab (const char *name)
375 {
376 struct symtab *result = NULL;
377
378 iterate_over_symtabs (name, lookup_symtab_callback, &result);
379 return result;
380 }
381
382 \f
383 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
384 full method name, which consist of the class name (from T), the unadorned
385 method name from METHOD_ID, and the signature for the specific overload,
386 specified by SIGNATURE_ID. Note that this function is g++ specific. */
387
388 char *
389 gdb_mangle_name (struct type *type, int method_id, int signature_id)
390 {
391 int mangled_name_len;
392 char *mangled_name;
393 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
394 struct fn_field *method = &f[signature_id];
395 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
396 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
397 const char *newname = type_name_no_tag (type);
398
399 /* Does the form of physname indicate that it is the full mangled name
400 of a constructor (not just the args)? */
401 int is_full_physname_constructor;
402
403 int is_constructor;
404 int is_destructor = is_destructor_name (physname);
405 /* Need a new type prefix. */
406 char *const_prefix = method->is_const ? "C" : "";
407 char *volatile_prefix = method->is_volatile ? "V" : "";
408 char buf[20];
409 int len = (newname == NULL ? 0 : strlen (newname));
410
411 /* Nothing to do if physname already contains a fully mangled v3 abi name
412 or an operator name. */
413 if ((physname[0] == '_' && physname[1] == 'Z')
414 || is_operator_name (field_name))
415 return xstrdup (physname);
416
417 is_full_physname_constructor = is_constructor_name (physname);
418
419 is_constructor = is_full_physname_constructor
420 || (newname && strcmp (field_name, newname) == 0);
421
422 if (!is_destructor)
423 is_destructor = (strncmp (physname, "__dt", 4) == 0);
424
425 if (is_destructor || is_full_physname_constructor)
426 {
427 mangled_name = (char *) xmalloc (strlen (physname) + 1);
428 strcpy (mangled_name, physname);
429 return mangled_name;
430 }
431
432 if (len == 0)
433 {
434 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
435 }
436 else if (physname[0] == 't' || physname[0] == 'Q')
437 {
438 /* The physname for template and qualified methods already includes
439 the class name. */
440 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
441 newname = NULL;
442 len = 0;
443 }
444 else
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
447 volatile_prefix, len);
448 }
449 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
450 + strlen (buf) + len + strlen (physname) + 1);
451
452 mangled_name = (char *) xmalloc (mangled_name_len);
453 if (is_constructor)
454 mangled_name[0] = '\0';
455 else
456 strcpy (mangled_name, field_name);
457
458 strcat (mangled_name, buf);
459 /* If the class doesn't have a name, i.e. newname NULL, then we just
460 mangle it using 0 for the length of the class. Thus it gets mangled
461 as something starting with `::' rather than `classname::'. */
462 if (newname != NULL)
463 strcat (mangled_name, newname);
464
465 strcat (mangled_name, physname);
466 return (mangled_name);
467 }
468
469 /* Initialize the cplus_specific structure. 'cplus_specific' should
470 only be allocated for use with cplus symbols. */
471
472 static void
473 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
474 struct obstack *obstack)
475 {
476 /* A language_specific structure should not have been previously
477 initialized. */
478 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
479 gdb_assert (obstack != NULL);
480
481 gsymbol->language_specific.cplus_specific =
482 OBSTACK_ZALLOC (obstack, struct cplus_specific);
483 }
484
485 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
486 correctly allocated. For C++ symbols a cplus_specific struct is
487 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
488 OBJFILE can be NULL. */
489
490 void
491 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
492 const char *name,
493 struct obstack *obstack)
494 {
495 if (gsymbol->language == language_cplus)
496 {
497 if (gsymbol->language_specific.cplus_specific == NULL)
498 symbol_init_cplus_specific (gsymbol, obstack);
499
500 gsymbol->language_specific.cplus_specific->demangled_name = name;
501 }
502 else if (gsymbol->language == language_ada)
503 {
504 if (name == NULL)
505 {
506 gsymbol->ada_mangled = 0;
507 gsymbol->language_specific.obstack = obstack;
508 }
509 else
510 {
511 gsymbol->ada_mangled = 1;
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
513 }
514 }
515 else
516 gsymbol->language_specific.mangled_lang.demangled_name = name;
517 }
518
519 /* Return the demangled name of GSYMBOL. */
520
521 const char *
522 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
523 {
524 if (gsymbol->language == language_cplus)
525 {
526 if (gsymbol->language_specific.cplus_specific != NULL)
527 return gsymbol->language_specific.cplus_specific->demangled_name;
528 else
529 return NULL;
530 }
531 else if (gsymbol->language == language_ada)
532 {
533 if (!gsymbol->ada_mangled)
534 return NULL;
535 /* Fall through. */
536 }
537
538 return gsymbol->language_specific.mangled_lang.demangled_name;
539 }
540
541 \f
542 /* Initialize the language dependent portion of a symbol
543 depending upon the language for the symbol. */
544
545 void
546 symbol_set_language (struct general_symbol_info *gsymbol,
547 enum language language,
548 struct obstack *obstack)
549 {
550 gsymbol->language = language;
551 if (gsymbol->language == language_d
552 || gsymbol->language == language_go
553 || gsymbol->language == language_java
554 || gsymbol->language == language_objc
555 || gsymbol->language == language_fortran)
556 {
557 symbol_set_demangled_name (gsymbol, NULL, obstack);
558 }
559 else if (gsymbol->language == language_ada)
560 {
561 gdb_assert (gsymbol->ada_mangled == 0);
562 gsymbol->language_specific.obstack = obstack;
563 }
564 else if (gsymbol->language == language_cplus)
565 gsymbol->language_specific.cplus_specific = NULL;
566 else
567 {
568 memset (&gsymbol->language_specific, 0,
569 sizeof (gsymbol->language_specific));
570 }
571 }
572
573 /* Functions to initialize a symbol's mangled name. */
574
575 /* Objects of this type are stored in the demangled name hash table. */
576 struct demangled_name_entry
577 {
578 const char *mangled;
579 char demangled[1];
580 };
581
582 /* Hash function for the demangled name hash. */
583
584 static hashval_t
585 hash_demangled_name_entry (const void *data)
586 {
587 const struct demangled_name_entry *e = data;
588
589 return htab_hash_string (e->mangled);
590 }
591
592 /* Equality function for the demangled name hash. */
593
594 static int
595 eq_demangled_name_entry (const void *a, const void *b)
596 {
597 const struct demangled_name_entry *da = a;
598 const struct demangled_name_entry *db = b;
599
600 return strcmp (da->mangled, db->mangled) == 0;
601 }
602
603 /* Create the hash table used for demangled names. Each hash entry is
604 a pair of strings; one for the mangled name and one for the demangled
605 name. The entry is hashed via just the mangled name. */
606
607 static void
608 create_demangled_names_hash (struct objfile *objfile)
609 {
610 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
611 The hash table code will round this up to the next prime number.
612 Choosing a much larger table size wastes memory, and saves only about
613 1% in symbol reading. */
614
615 objfile->per_bfd->demangled_names_hash = htab_create_alloc
616 (256, hash_demangled_name_entry, eq_demangled_name_entry,
617 NULL, xcalloc, xfree);
618 }
619
620 /* Try to determine the demangled name for a symbol, based on the
621 language of that symbol. If the language is set to language_auto,
622 it will attempt to find any demangling algorithm that works and
623 then set the language appropriately. The returned name is allocated
624 by the demangler and should be xfree'd. */
625
626 static char *
627 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
628 const char *mangled)
629 {
630 char *demangled = NULL;
631
632 if (gsymbol->language == language_unknown)
633 gsymbol->language = language_auto;
634
635 if (gsymbol->language == language_objc
636 || gsymbol->language == language_auto)
637 {
638 demangled =
639 objc_demangle (mangled, 0);
640 if (demangled != NULL)
641 {
642 gsymbol->language = language_objc;
643 return demangled;
644 }
645 }
646 if (gsymbol->language == language_cplus
647 || gsymbol->language == language_auto)
648 {
649 demangled =
650 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_cplus;
654 return demangled;
655 }
656 }
657 if (gsymbol->language == language_java)
658 {
659 demangled =
660 gdb_demangle (mangled,
661 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
662 if (demangled != NULL)
663 {
664 gsymbol->language = language_java;
665 return demangled;
666 }
667 }
668 if (gsymbol->language == language_d
669 || gsymbol->language == language_auto)
670 {
671 demangled = d_demangle(mangled, 0);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_d;
675 return demangled;
676 }
677 }
678 /* FIXME(dje): Continually adding languages here is clumsy.
679 Better to just call la_demangle if !auto, and if auto then call
680 a utility routine that tries successive languages in turn and reports
681 which one it finds. I realize the la_demangle options may be different
682 for different languages but there's already a FIXME for that. */
683 if (gsymbol->language == language_go
684 || gsymbol->language == language_auto)
685 {
686 demangled = go_demangle (mangled, 0);
687 if (demangled != NULL)
688 {
689 gsymbol->language = language_go;
690 return demangled;
691 }
692 }
693
694 /* We could support `gsymbol->language == language_fortran' here to provide
695 module namespaces also for inferiors with only minimal symbol table (ELF
696 symbols). Just the mangling standard is not standardized across compilers
697 and there is no DW_AT_producer available for inferiors with only the ELF
698 symbols to check the mangling kind. */
699
700 /* Check for Ada symbols last. See comment below explaining why. */
701
702 if (gsymbol->language == language_auto)
703 {
704 const char *demangled = ada_decode (mangled);
705
706 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
707 {
708 /* Set the gsymbol language to Ada, but still return NULL.
709 Two reasons for that:
710
711 1. For Ada, we prefer computing the symbol's decoded name
712 on the fly rather than pre-compute it, in order to save
713 memory (Ada projects are typically very large).
714
715 2. There are some areas in the definition of the GNAT
716 encoding where, with a bit of bad luck, we might be able
717 to decode a non-Ada symbol, generating an incorrect
718 demangled name (Eg: names ending with "TB" for instance
719 are identified as task bodies and so stripped from
720 the decoded name returned).
721
722 Returning NULL, here, helps us get a little bit of
723 the best of both worlds. Because we're last, we should
724 not affect any of the other languages that were able to
725 demangle the symbol before us; we get to correctly tag
726 Ada symbols as such; and even if we incorrectly tagged
727 a non-Ada symbol, which should be rare, any routing
728 through the Ada language should be transparent (Ada
729 tries to behave much like C/C++ with non-Ada symbols). */
730 gsymbol->language = language_ada;
731 return NULL;
732 }
733 }
734
735 return NULL;
736 }
737
738 /* Set both the mangled and demangled (if any) names for GSYMBOL based
739 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
740 objfile's obstack; but if COPY_NAME is 0 and if NAME is
741 NUL-terminated, then this function assumes that NAME is already
742 correctly saved (either permanently or with a lifetime tied to the
743 objfile), and it will not be copied.
744
745 The hash table corresponding to OBJFILE is used, and the memory
746 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
747 so the pointer can be discarded after calling this function. */
748
749 /* We have to be careful when dealing with Java names: when we run
750 into a Java minimal symbol, we don't know it's a Java symbol, so it
751 gets demangled as a C++ name. This is unfortunate, but there's not
752 much we can do about it: but when demangling partial symbols and
753 regular symbols, we'd better not reuse the wrong demangled name.
754 (See PR gdb/1039.) We solve this by putting a distinctive prefix
755 on Java names when storing them in the hash table. */
756
757 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
758 don't mind the Java prefix so much: different languages have
759 different demangling requirements, so it's only natural that we
760 need to keep language data around in our demangling cache. But
761 it's not good that the minimal symbol has the wrong demangled name.
762 Unfortunately, I can't think of any easy solution to that
763 problem. */
764
765 #define JAVA_PREFIX "##JAVA$$"
766 #define JAVA_PREFIX_LEN 8
767
768 void
769 symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772 {
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 /* A copy of the linkage name that might have a special Java prefix
777 added to it, for use when looking names up in the hash table. */
778 const char *lookup_name;
779 /* The length of lookup_name. */
780 int lookup_len;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name.
788
789 As a side note, we have also observed some overlap between
790 the C++ mangling and Ada mangling, similarly to what has
791 been observed with Java. Because we don't store the demangled
792 name with the symbol, we don't need to use the same trick
793 as Java. */
794 if (!copy_name)
795 gsymbol->name = linkage_name;
796 else
797 {
798 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
799
800 memcpy (name, linkage_name, len);
801 name[len] = '\0';
802 gsymbol->name = name;
803 }
804 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805
806 return;
807 }
808
809 if (per_bfd->demangled_names_hash == NULL)
810 create_demangled_names_hash (objfile);
811
812 /* The stabs reader generally provides names that are not
813 NUL-terminated; most of the other readers don't do this, so we
814 can just use the given copy, unless we're in the Java case. */
815 if (gsymbol->language == language_java)
816 {
817 char *alloc_name;
818
819 lookup_len = len + JAVA_PREFIX_LEN;
820 alloc_name = alloca (lookup_len + 1);
821 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
822 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
823 alloc_name[lookup_len] = '\0';
824
825 lookup_name = alloc_name;
826 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
827 }
828 else if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 lookup_len = len;
833 alloc_name = alloca (lookup_len + 1);
834 memcpy (alloc_name, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name;
839 }
840 else
841 {
842 lookup_len = len;
843 lookup_name = linkage_name;
844 linkage_name_copy = linkage_name;
845 }
846
847 entry.mangled = lookup_name;
848 slot = ((struct demangled_name_entry **)
849 htab_find_slot (per_bfd->demangled_names_hash,
850 &entry, INSERT));
851
852 /* If this name is not in the hash table, add it. */
853 if (*slot == NULL
854 /* A C version of the symbol may have already snuck into the table.
855 This happens to, e.g., main.init (__go_init_main). Cope. */
856 || (gsymbol->language == language_go
857 && (*slot)->demangled[0] == '\0'))
858 {
859 char *demangled_name = symbol_find_demangled_name (gsymbol,
860 linkage_name_copy);
861 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
862
863 /* Suppose we have demangled_name==NULL, copy_name==0, and
864 lookup_name==linkage_name. In this case, we already have the
865 mangled name saved, and we don't have a demangled name. So,
866 you might think we could save a little space by not recording
867 this in the hash table at all.
868
869 It turns out that it is actually important to still save such
870 an entry in the hash table, because storing this name gives
871 us better bcache hit rates for partial symbols. */
872 if (!copy_name && lookup_name == linkage_name)
873 {
874 *slot = obstack_alloc (&per_bfd->storage_obstack,
875 offsetof (struct demangled_name_entry,
876 demangled)
877 + demangled_len + 1);
878 (*slot)->mangled = lookup_name;
879 }
880 else
881 {
882 char *mangled_ptr;
883
884 /* If we must copy the mangled name, put it directly after
885 the demangled name so we can have a single
886 allocation. */
887 *slot = obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry,
889 demangled)
890 + lookup_len + demangled_len + 2);
891 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
892 strcpy (mangled_ptr, lookup_name);
893 (*slot)->mangled = mangled_ptr;
894 }
895
896 if (demangled_name != NULL)
897 {
898 strcpy ((*slot)->demangled, demangled_name);
899 xfree (demangled_name);
900 }
901 else
902 (*slot)->demangled[0] = '\0';
903 }
904
905 gsymbol->name = (*slot)->mangled + lookup_len - len;
906 if ((*slot)->demangled[0] != '\0')
907 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
908 &per_bfd->storage_obstack);
909 else
910 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
911 }
912
913 /* Return the source code name of a symbol. In languages where
914 demangling is necessary, this is the demangled name. */
915
916 const char *
917 symbol_natural_name (const struct general_symbol_info *gsymbol)
918 {
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_java:
925 case language_objc:
926 case language_fortran:
927 if (symbol_get_demangled_name (gsymbol) != NULL)
928 return symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 return ada_decode_symbol (gsymbol);
932 default:
933 break;
934 }
935 return gsymbol->name;
936 }
937
938 /* Return the demangled name for a symbol based on the language for
939 that symbol. If no demangled name exists, return NULL. */
940
941 const char *
942 symbol_demangled_name (const struct general_symbol_info *gsymbol)
943 {
944 const char *dem_name = NULL;
945
946 switch (gsymbol->language)
947 {
948 case language_cplus:
949 case language_d:
950 case language_go:
951 case language_java:
952 case language_objc:
953 case language_fortran:
954 dem_name = symbol_get_demangled_name (gsymbol);
955 break;
956 case language_ada:
957 dem_name = ada_decode_symbol (gsymbol);
958 break;
959 default:
960 break;
961 }
962 return dem_name;
963 }
964
965 /* Return the search name of a symbol---generally the demangled or
966 linkage name of the symbol, depending on how it will be searched for.
967 If there is no distinct demangled name, then returns the same value
968 (same pointer) as SYMBOL_LINKAGE_NAME. */
969
970 const char *
971 symbol_search_name (const struct general_symbol_info *gsymbol)
972 {
973 if (gsymbol->language == language_ada)
974 return gsymbol->name;
975 else
976 return symbol_natural_name (gsymbol);
977 }
978
979 /* Initialize the structure fields to zero values. */
980
981 void
982 init_sal (struct symtab_and_line *sal)
983 {
984 memset (sal, 0, sizeof (*sal));
985 }
986 \f
987
988 /* Return 1 if the two sections are the same, or if they could
989 plausibly be copies of each other, one in an original object
990 file and another in a separated debug file. */
991
992 int
993 matching_obj_sections (struct obj_section *obj_first,
994 struct obj_section *obj_second)
995 {
996 asection *first = obj_first? obj_first->the_bfd_section : NULL;
997 asection *second = obj_second? obj_second->the_bfd_section : NULL;
998 struct objfile *obj;
999
1000 /* If they're the same section, then they match. */
1001 if (first == second)
1002 return 1;
1003
1004 /* If either is NULL, give up. */
1005 if (first == NULL || second == NULL)
1006 return 0;
1007
1008 /* This doesn't apply to absolute symbols. */
1009 if (first->owner == NULL || second->owner == NULL)
1010 return 0;
1011
1012 /* If they're in the same object file, they must be different sections. */
1013 if (first->owner == second->owner)
1014 return 0;
1015
1016 /* Check whether the two sections are potentially corresponding. They must
1017 have the same size, address, and name. We can't compare section indexes,
1018 which would be more reliable, because some sections may have been
1019 stripped. */
1020 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1021 return 0;
1022
1023 /* In-memory addresses may start at a different offset, relativize them. */
1024 if (bfd_get_section_vma (first->owner, first)
1025 - bfd_get_start_address (first->owner)
1026 != bfd_get_section_vma (second->owner, second)
1027 - bfd_get_start_address (second->owner))
1028 return 0;
1029
1030 if (bfd_get_section_name (first->owner, first) == NULL
1031 || bfd_get_section_name (second->owner, second) == NULL
1032 || strcmp (bfd_get_section_name (first->owner, first),
1033 bfd_get_section_name (second->owner, second)) != 0)
1034 return 0;
1035
1036 /* Otherwise check that they are in corresponding objfiles. */
1037
1038 ALL_OBJFILES (obj)
1039 if (obj->obfd == first->owner)
1040 break;
1041 gdb_assert (obj != NULL);
1042
1043 if (obj->separate_debug_objfile != NULL
1044 && obj->separate_debug_objfile->obfd == second->owner)
1045 return 1;
1046 if (obj->separate_debug_objfile_backlink != NULL
1047 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1048 return 1;
1049
1050 return 0;
1051 }
1052
1053 struct symtab *
1054 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1055 {
1056 struct objfile *objfile;
1057 struct bound_minimal_symbol msymbol;
1058
1059 /* If we know that this is not a text address, return failure. This is
1060 necessary because we loop based on texthigh and textlow, which do
1061 not include the data ranges. */
1062 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1063 if (msymbol.minsym
1064 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1066 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1067 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1068 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1069 return NULL;
1070
1071 ALL_OBJFILES (objfile)
1072 {
1073 struct symtab *result = NULL;
1074
1075 if (objfile->sf)
1076 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1077 pc, section, 0);
1078 if (result)
1079 return result;
1080 }
1081
1082 return NULL;
1083 }
1084 \f
1085 /* Debug symbols usually don't have section information. We need to dig that
1086 out of the minimal symbols and stash that in the debug symbol. */
1087
1088 void
1089 fixup_section (struct general_symbol_info *ginfo,
1090 CORE_ADDR addr, struct objfile *objfile)
1091 {
1092 struct minimal_symbol *msym;
1093
1094 /* First, check whether a minimal symbol with the same name exists
1095 and points to the same address. The address check is required
1096 e.g. on PowerPC64, where the minimal symbol for a function will
1097 point to the function descriptor, while the debug symbol will
1098 point to the actual function code. */
1099 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1100 if (msym)
1101 ginfo->section = MSYMBOL_SECTION (msym);
1102 else
1103 {
1104 /* Static, function-local variables do appear in the linker
1105 (minimal) symbols, but are frequently given names that won't
1106 be found via lookup_minimal_symbol(). E.g., it has been
1107 observed in frv-uclinux (ELF) executables that a static,
1108 function-local variable named "foo" might appear in the
1109 linker symbols as "foo.6" or "foo.3". Thus, there is no
1110 point in attempting to extend the lookup-by-name mechanism to
1111 handle this case due to the fact that there can be multiple
1112 names.
1113
1114 So, instead, search the section table when lookup by name has
1115 failed. The ``addr'' and ``endaddr'' fields may have already
1116 been relocated. If so, the relocation offset (i.e. the
1117 ANOFFSET value) needs to be subtracted from these values when
1118 performing the comparison. We unconditionally subtract it,
1119 because, when no relocation has been performed, the ANOFFSET
1120 value will simply be zero.
1121
1122 The address of the symbol whose section we're fixing up HAS
1123 NOT BEEN adjusted (relocated) yet. It can't have been since
1124 the section isn't yet known and knowing the section is
1125 necessary in order to add the correct relocation value. In
1126 other words, we wouldn't even be in this function (attempting
1127 to compute the section) if it were already known.
1128
1129 Note that it is possible to search the minimal symbols
1130 (subtracting the relocation value if necessary) to find the
1131 matching minimal symbol, but this is overkill and much less
1132 efficient. It is not necessary to find the matching minimal
1133 symbol, only its section.
1134
1135 Note that this technique (of doing a section table search)
1136 can fail when unrelocated section addresses overlap. For
1137 this reason, we still attempt a lookup by name prior to doing
1138 a search of the section table. */
1139
1140 struct obj_section *s;
1141 int fallback = -1;
1142
1143 ALL_OBJFILE_OSECTIONS (objfile, s)
1144 {
1145 int idx = s - objfile->sections;
1146 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1147
1148 if (fallback == -1)
1149 fallback = idx;
1150
1151 if (obj_section_addr (s) - offset <= addr
1152 && addr < obj_section_endaddr (s) - offset)
1153 {
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158
1159 /* If we didn't find the section, assume it is in the first
1160 section. If there is no allocated section, then it hardly
1161 matters what we pick, so just pick zero. */
1162 if (fallback == -1)
1163 ginfo->section = 0;
1164 else
1165 ginfo->section = fallback;
1166 }
1167 }
1168
1169 struct symbol *
1170 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1171 {
1172 CORE_ADDR addr;
1173
1174 if (!sym)
1175 return NULL;
1176
1177 /* We either have an OBJFILE, or we can get at it from the sym's
1178 symtab. Anything else is a bug. */
1179 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1180
1181 if (objfile == NULL)
1182 objfile = SYMBOL_SYMTAB (sym)->objfile;
1183
1184 if (SYMBOL_OBJ_SECTION (objfile, sym))
1185 return sym;
1186
1187 /* We should have an objfile by now. */
1188 gdb_assert (objfile);
1189
1190 switch (SYMBOL_CLASS (sym))
1191 {
1192 case LOC_STATIC:
1193 case LOC_LABEL:
1194 addr = SYMBOL_VALUE_ADDRESS (sym);
1195 break;
1196 case LOC_BLOCK:
1197 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1198 break;
1199
1200 default:
1201 /* Nothing else will be listed in the minsyms -- no use looking
1202 it up. */
1203 return sym;
1204 }
1205
1206 fixup_section (&sym->ginfo, addr, objfile);
1207
1208 return sym;
1209 }
1210
1211 /* Compute the demangled form of NAME as used by the various symbol
1212 lookup functions. The result is stored in *RESULT_NAME. Returns a
1213 cleanup which can be used to clean up the result.
1214
1215 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1216 Normally, Ada symbol lookups are performed using the encoded name
1217 rather than the demangled name, and so it might seem to make sense
1218 for this function to return an encoded version of NAME.
1219 Unfortunately, we cannot do this, because this function is used in
1220 circumstances where it is not appropriate to try to encode NAME.
1221 For instance, when displaying the frame info, we demangle the name
1222 of each parameter, and then perform a symbol lookup inside our
1223 function using that demangled name. In Ada, certain functions
1224 have internally-generated parameters whose name contain uppercase
1225 characters. Encoding those name would result in those uppercase
1226 characters to become lowercase, and thus cause the symbol lookup
1227 to fail. */
1228
1229 struct cleanup *
1230 demangle_for_lookup (const char *name, enum language lang,
1231 const char **result_name)
1232 {
1233 char *demangled_name = NULL;
1234 const char *modified_name = NULL;
1235 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1236
1237 modified_name = name;
1238
1239 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1240 lookup, so we can always binary search. */
1241 if (lang == language_cplus)
1242 {
1243 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1244 if (demangled_name)
1245 {
1246 modified_name = demangled_name;
1247 make_cleanup (xfree, demangled_name);
1248 }
1249 else
1250 {
1251 /* If we were given a non-mangled name, canonicalize it
1252 according to the language (so far only for C++). */
1253 demangled_name = cp_canonicalize_string (name);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 }
1260 }
1261 else if (lang == language_java)
1262 {
1263 demangled_name = gdb_demangle (name,
1264 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1265 if (demangled_name)
1266 {
1267 modified_name = demangled_name;
1268 make_cleanup (xfree, demangled_name);
1269 }
1270 }
1271 else if (lang == language_d)
1272 {
1273 demangled_name = d_demangle (name, 0);
1274 if (demangled_name)
1275 {
1276 modified_name = demangled_name;
1277 make_cleanup (xfree, demangled_name);
1278 }
1279 }
1280 else if (lang == language_go)
1281 {
1282 demangled_name = go_demangle (name, 0);
1283 if (demangled_name)
1284 {
1285 modified_name = demangled_name;
1286 make_cleanup (xfree, demangled_name);
1287 }
1288 }
1289
1290 *result_name = modified_name;
1291 return cleanup;
1292 }
1293
1294 /* See symtab.h.
1295
1296 This function (or rather its subordinates) have a bunch of loops and
1297 it would seem to be attractive to put in some QUIT's (though I'm not really
1298 sure whether it can run long enough to be really important). But there
1299 are a few calls for which it would appear to be bad news to quit
1300 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1301 that there is C++ code below which can error(), but that probably
1302 doesn't affect these calls since they are looking for a known
1303 variable and thus can probably assume it will never hit the C++
1304 code). */
1305
1306 struct symbol *
1307 lookup_symbol_in_language (const char *name, const struct block *block,
1308 const domain_enum domain, enum language lang,
1309 struct field_of_this_result *is_a_field_of_this)
1310 {
1311 const char *modified_name;
1312 struct symbol *returnval;
1313 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1314
1315 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1316 is_a_field_of_this);
1317 do_cleanups (cleanup);
1318
1319 return returnval;
1320 }
1321
1322 /* See symtab.h. */
1323
1324 struct symbol *
1325 lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain,
1327 struct field_of_this_result *is_a_field_of_this)
1328 {
1329 return lookup_symbol_in_language (name, block, domain,
1330 current_language->la_language,
1331 is_a_field_of_this);
1332 }
1333
1334 /* See symtab.h. */
1335
1336 struct symbol *
1337 lookup_language_this (const struct language_defn *lang,
1338 const struct block *block)
1339 {
1340 if (lang->la_name_of_this == NULL || block == NULL)
1341 return NULL;
1342
1343 while (block)
1344 {
1345 struct symbol *sym;
1346
1347 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1348 if (sym != NULL)
1349 {
1350 block_found = block;
1351 return sym;
1352 }
1353 if (BLOCK_FUNCTION (block))
1354 break;
1355 block = BLOCK_SUPERBLOCK (block);
1356 }
1357
1358 return NULL;
1359 }
1360
1361 /* Given TYPE, a structure/union,
1362 return 1 if the component named NAME from the ultimate target
1363 structure/union is defined, otherwise, return 0. */
1364
1365 static int
1366 check_field (struct type *type, const char *name,
1367 struct field_of_this_result *is_a_field_of_this)
1368 {
1369 int i;
1370
1371 /* The type may be a stub. */
1372 CHECK_TYPEDEF (type);
1373
1374 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1375 {
1376 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1377
1378 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1379 {
1380 is_a_field_of_this->type = type;
1381 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1382 return 1;
1383 }
1384 }
1385
1386 /* C++: If it was not found as a data field, then try to return it
1387 as a pointer to a method. */
1388
1389 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1390 {
1391 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1392 {
1393 is_a_field_of_this->type = type;
1394 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1395 return 1;
1396 }
1397 }
1398
1399 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1400 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1401 return 1;
1402
1403 return 0;
1404 }
1405
1406 /* Behave like lookup_symbol except that NAME is the natural name
1407 (e.g., demangled name) of the symbol that we're looking for. */
1408
1409 static struct symbol *
1410 lookup_symbol_aux (const char *name, const struct block *block,
1411 const domain_enum domain, enum language language,
1412 struct field_of_this_result *is_a_field_of_this)
1413 {
1414 struct symbol *sym;
1415 const struct language_defn *langdef;
1416
1417 /* Make sure we do something sensible with is_a_field_of_this, since
1418 the callers that set this parameter to some non-null value will
1419 certainly use it later. If we don't set it, the contents of
1420 is_a_field_of_this are undefined. */
1421 if (is_a_field_of_this != NULL)
1422 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1423
1424 /* Search specified block and its superiors. Don't search
1425 STATIC_BLOCK or GLOBAL_BLOCK. */
1426
1427 sym = lookup_symbol_aux_local (name, block, domain, language);
1428 if (sym != NULL)
1429 return sym;
1430
1431 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1432 check to see if NAME is a field of `this'. */
1433
1434 langdef = language_def (language);
1435
1436 /* Don't do this check if we are searching for a struct. It will
1437 not be found by check_field, but will be found by other
1438 means. */
1439 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1440 {
1441 struct symbol *sym = lookup_language_this (langdef, block);
1442
1443 if (sym)
1444 {
1445 struct type *t = sym->type;
1446
1447 /* I'm not really sure that type of this can ever
1448 be typedefed; just be safe. */
1449 CHECK_TYPEDEF (t);
1450 if (TYPE_CODE (t) == TYPE_CODE_PTR
1451 || TYPE_CODE (t) == TYPE_CODE_REF)
1452 t = TYPE_TARGET_TYPE (t);
1453
1454 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1455 && TYPE_CODE (t) != TYPE_CODE_UNION)
1456 error (_("Internal error: `%s' is not an aggregate"),
1457 langdef->la_name_of_this);
1458
1459 if (check_field (t, name, is_a_field_of_this))
1460 return NULL;
1461 }
1462 }
1463
1464 /* Now do whatever is appropriate for LANGUAGE to look
1465 up static and global variables. */
1466
1467 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1468 if (sym != NULL)
1469 return sym;
1470
1471 /* Now search all static file-level symbols. Not strictly correct,
1472 but more useful than an error. */
1473
1474 return lookup_static_symbol (name, domain);
1475 }
1476
1477 /* See symtab.h. */
1478
1479 struct symbol *
1480 lookup_static_symbol (const char *name, const domain_enum domain)
1481 {
1482 struct objfile *objfile;
1483 struct symbol *sym;
1484
1485 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1486 if (sym != NULL)
1487 return sym;
1488
1489 ALL_OBJFILES (objfile)
1490 {
1491 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1492 if (sym != NULL)
1493 return sym;
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in BLOCK or its superiors.
1500 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1501
1502 static struct symbol *
1503 lookup_symbol_aux_local (const char *name, const struct block *block,
1504 const domain_enum domain,
1505 enum language language)
1506 {
1507 struct symbol *sym;
1508 const struct block *static_block = block_static_block (block);
1509 const char *scope = block_scope (block);
1510
1511 /* Check if either no block is specified or it's a global block. */
1512
1513 if (static_block == NULL)
1514 return NULL;
1515
1516 while (block != static_block)
1517 {
1518 sym = lookup_symbol_in_block (name, block, domain);
1519 if (sym != NULL)
1520 return sym;
1521
1522 if (language == language_cplus || language == language_fortran)
1523 {
1524 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1525 domain);
1526 if (sym != NULL)
1527 return sym;
1528 }
1529
1530 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1531 break;
1532 block = BLOCK_SUPERBLOCK (block);
1533 }
1534
1535 /* We've reached the end of the function without finding a result. */
1536
1537 return NULL;
1538 }
1539
1540 /* See symtab.h. */
1541
1542 struct objfile *
1543 lookup_objfile_from_block (const struct block *block)
1544 {
1545 struct objfile *obj;
1546 struct symtab *s;
1547
1548 if (block == NULL)
1549 return NULL;
1550
1551 block = block_global_block (block);
1552 /* Go through SYMTABS.
1553 Non-primary symtabs share the block vector with their primary symtabs
1554 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
1555 ALL_PRIMARY_SYMTABS (obj, s)
1556 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1557 {
1558 if (obj->separate_debug_objfile_backlink)
1559 obj = obj->separate_debug_objfile_backlink;
1560
1561 return obj;
1562 }
1563
1564 return NULL;
1565 }
1566
1567 /* See symtab.h. */
1568
1569 struct symbol *
1570 lookup_symbol_in_block (const char *name, const struct block *block,
1571 const domain_enum domain)
1572 {
1573 struct symbol *sym;
1574
1575 sym = block_lookup_symbol (block, name, domain);
1576 if (sym)
1577 {
1578 block_found = block;
1579 return fixup_symbol_section (sym, NULL);
1580 }
1581
1582 return NULL;
1583 }
1584
1585 /* See symtab.h. */
1586
1587 struct symbol *
1588 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1589 const char *name,
1590 const domain_enum domain)
1591 {
1592 const struct objfile *objfile;
1593 struct symbol *sym;
1594 const struct blockvector *bv;
1595 const struct block *block;
1596 struct symtab *s;
1597
1598 for (objfile = main_objfile;
1599 objfile;
1600 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1601 {
1602 /* Go through symtabs. */
1603 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1604 {
1605 bv = BLOCKVECTOR (s);
1606 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1607 sym = block_lookup_symbol (block, name, domain);
1608 if (sym)
1609 {
1610 block_found = block;
1611 return fixup_symbol_section (sym, (struct objfile *)objfile);
1612 }
1613 }
1614
1615 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1616 name, domain);
1617 if (sym)
1618 return sym;
1619 }
1620
1621 return NULL;
1622 }
1623
1624 /* Check to see if the symbol is defined in one of the OBJFILE's
1625 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1626 depending on whether or not we want to search global symbols or
1627 static symbols. */
1628
1629 static struct symbol *
1630 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1631 const char *name, const domain_enum domain)
1632 {
1633 struct symbol *sym = NULL;
1634 const struct blockvector *bv;
1635 const struct block *block;
1636 struct symtab *s;
1637
1638 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1639 {
1640 bv = BLOCKVECTOR (s);
1641 block = BLOCKVECTOR_BLOCK (bv, block_index);
1642 sym = block_lookup_symbol (block, name, domain);
1643 if (sym)
1644 {
1645 block_found = block;
1646 return fixup_symbol_section (sym, objfile);
1647 }
1648 }
1649
1650 return NULL;
1651 }
1652
1653 /* Same as lookup_symbol_aux_objfile, except that it searches all
1654 objfiles. Return the first match found. */
1655
1656 static struct symbol *
1657 lookup_symbol_aux_symtabs (int block_index, const char *name,
1658 const domain_enum domain)
1659 {
1660 struct symbol *sym;
1661 struct objfile *objfile;
1662
1663 ALL_OBJFILES (objfile)
1664 {
1665 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1666 if (sym)
1667 return sym;
1668 }
1669
1670 return NULL;
1671 }
1672
1673 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1674 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1675 and all related objfiles. */
1676
1677 static struct symbol *
1678 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1679 const char *linkage_name,
1680 domain_enum domain)
1681 {
1682 enum language lang = current_language->la_language;
1683 const char *modified_name;
1684 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1685 &modified_name);
1686 struct objfile *main_objfile, *cur_objfile;
1687
1688 if (objfile->separate_debug_objfile_backlink)
1689 main_objfile = objfile->separate_debug_objfile_backlink;
1690 else
1691 main_objfile = objfile;
1692
1693 for (cur_objfile = main_objfile;
1694 cur_objfile;
1695 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1696 {
1697 struct symbol *sym;
1698
1699 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1700 modified_name, domain);
1701 if (sym == NULL)
1702 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1703 modified_name, domain);
1704 if (sym != NULL)
1705 {
1706 do_cleanups (cleanup);
1707 return sym;
1708 }
1709 }
1710
1711 do_cleanups (cleanup);
1712 return NULL;
1713 }
1714
1715 /* A helper function that throws an exception when a symbol was found
1716 in a psymtab but not in a symtab. */
1717
1718 static void ATTRIBUTE_NORETURN
1719 error_in_psymtab_expansion (int block_index, const char *name,
1720 struct symtab *symtab)
1721 {
1722 error (_("\
1723 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1724 %s may be an inlined function, or may be a template function\n \
1725 (if a template, try specifying an instantiation: %s<type>)."),
1726 block_index == GLOBAL_BLOCK ? "global" : "static",
1727 name, symtab_to_filename_for_display (symtab), name, name);
1728 }
1729
1730 /* A helper function for lookup_symbol_aux that interfaces with the
1731 "quick" symbol table functions. */
1732
1733 static struct symbol *
1734 lookup_symbol_aux_quick (struct objfile *objfile, int block_index,
1735 const char *name, const domain_enum domain)
1736 {
1737 struct symtab *symtab;
1738 const struct blockvector *bv;
1739 const struct block *block;
1740 struct symbol *sym;
1741
1742 if (!objfile->sf)
1743 return NULL;
1744 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1745 if (!symtab)
1746 return NULL;
1747
1748 bv = BLOCKVECTOR (symtab);
1749 block = BLOCKVECTOR_BLOCK (bv, block_index);
1750 sym = block_lookup_symbol (block, name, domain);
1751 if (!sym)
1752 error_in_psymtab_expansion (block_index, name, symtab);
1753 block_found = block;
1754 return fixup_symbol_section (sym, objfile);
1755 }
1756
1757 /* See symtab.h. */
1758
1759 struct symbol *
1760 basic_lookup_symbol_nonlocal (const char *name,
1761 const struct block *block,
1762 const domain_enum domain)
1763 {
1764 struct symbol *sym;
1765
1766 /* NOTE: carlton/2003-05-19: The comments below were written when
1767 this (or what turned into this) was part of lookup_symbol_aux;
1768 I'm much less worried about these questions now, since these
1769 decisions have turned out well, but I leave these comments here
1770 for posterity. */
1771
1772 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1773 not it would be appropriate to search the current global block
1774 here as well. (That's what this code used to do before the
1775 is_a_field_of_this check was moved up.) On the one hand, it's
1776 redundant with the lookup_symbol_aux_symtabs search that happens
1777 next. On the other hand, if decode_line_1 is passed an argument
1778 like filename:var, then the user presumably wants 'var' to be
1779 searched for in filename. On the third hand, there shouldn't be
1780 multiple global variables all of which are named 'var', and it's
1781 not like decode_line_1 has ever restricted its search to only
1782 global variables in a single filename. All in all, only
1783 searching the static block here seems best: it's correct and it's
1784 cleanest. */
1785
1786 /* NOTE: carlton/2002-12-05: There's also a possible performance
1787 issue here: if you usually search for global symbols in the
1788 current file, then it would be slightly better to search the
1789 current global block before searching all the symtabs. But there
1790 are other factors that have a much greater effect on performance
1791 than that one, so I don't think we should worry about that for
1792 now. */
1793
1794 sym = lookup_symbol_in_static_block (name, block, domain);
1795 if (sym != NULL)
1796 return sym;
1797
1798 return lookup_symbol_global (name, block, domain);
1799 }
1800
1801 /* See symtab.h. */
1802
1803 struct symbol *
1804 lookup_symbol_in_static_block (const char *name,
1805 const struct block *block,
1806 const domain_enum domain)
1807 {
1808 const struct block *static_block = block_static_block (block);
1809
1810 if (static_block != NULL)
1811 return lookup_symbol_in_block (name, static_block, domain);
1812 else
1813 return NULL;
1814 }
1815
1816 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1817
1818 struct global_sym_lookup_data
1819 {
1820 /* The name of the symbol we are searching for. */
1821 const char *name;
1822
1823 /* The domain to use for our search. */
1824 domain_enum domain;
1825
1826 /* The field where the callback should store the symbol if found.
1827 It should be initialized to NULL before the search is started. */
1828 struct symbol *result;
1829 };
1830
1831 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1832 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1833 OBJFILE. The arguments for the search are passed via CB_DATA,
1834 which in reality is a pointer to struct global_sym_lookup_data. */
1835
1836 static int
1837 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1838 void *cb_data)
1839 {
1840 struct global_sym_lookup_data *data =
1841 (struct global_sym_lookup_data *) cb_data;
1842
1843 gdb_assert (data->result == NULL);
1844
1845 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1846 data->name, data->domain);
1847 if (data->result == NULL)
1848 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1849 data->name, data->domain);
1850
1851 /* If we found a match, tell the iterator to stop. Otherwise,
1852 keep going. */
1853 return (data->result != NULL);
1854 }
1855
1856 /* See symtab.h. */
1857
1858 struct symbol *
1859 lookup_symbol_global (const char *name,
1860 const struct block *block,
1861 const domain_enum domain)
1862 {
1863 struct symbol *sym = NULL;
1864 struct objfile *objfile = NULL;
1865 struct global_sym_lookup_data lookup_data;
1866
1867 /* Call library-specific lookup procedure. */
1868 objfile = lookup_objfile_from_block (block);
1869 if (objfile != NULL)
1870 sym = solib_global_lookup (objfile, name, domain);
1871 if (sym != NULL)
1872 return sym;
1873
1874 memset (&lookup_data, 0, sizeof (lookup_data));
1875 lookup_data.name = name;
1876 lookup_data.domain = domain;
1877 gdbarch_iterate_over_objfiles_in_search_order
1878 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1879 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1880
1881 return lookup_data.result;
1882 }
1883
1884 int
1885 symbol_matches_domain (enum language symbol_language,
1886 domain_enum symbol_domain,
1887 domain_enum domain)
1888 {
1889 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1890 A Java class declaration also defines a typedef for the class.
1891 Similarly, any Ada type declaration implicitly defines a typedef. */
1892 if (symbol_language == language_cplus
1893 || symbol_language == language_d
1894 || symbol_language == language_java
1895 || symbol_language == language_ada)
1896 {
1897 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1898 && symbol_domain == STRUCT_DOMAIN)
1899 return 1;
1900 }
1901 /* For all other languages, strict match is required. */
1902 return (symbol_domain == domain);
1903 }
1904
1905 /* See symtab.h. */
1906
1907 struct type *
1908 lookup_transparent_type (const char *name)
1909 {
1910 return current_language->la_lookup_transparent_type (name);
1911 }
1912
1913 /* A helper for basic_lookup_transparent_type that interfaces with the
1914 "quick" symbol table functions. */
1915
1916 static struct type *
1917 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1918 const char *name)
1919 {
1920 struct symtab *symtab;
1921 const struct blockvector *bv;
1922 struct block *block;
1923 struct symbol *sym;
1924
1925 if (!objfile->sf)
1926 return NULL;
1927 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1928 STRUCT_DOMAIN);
1929 if (!symtab)
1930 return NULL;
1931
1932 bv = BLOCKVECTOR (symtab);
1933 block = BLOCKVECTOR_BLOCK (bv, block_index);
1934 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1935 if (!sym)
1936 error_in_psymtab_expansion (block_index, name, symtab);
1937
1938 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1939 return SYMBOL_TYPE (sym);
1940
1941 return NULL;
1942 }
1943
1944 /* The standard implementation of lookup_transparent_type. This code
1945 was modeled on lookup_symbol -- the parts not relevant to looking
1946 up types were just left out. In particular it's assumed here that
1947 types are available in STRUCT_DOMAIN and only in file-static or
1948 global blocks. */
1949
1950 struct type *
1951 basic_lookup_transparent_type (const char *name)
1952 {
1953 struct symbol *sym;
1954 struct symtab *s = NULL;
1955 const struct blockvector *bv;
1956 struct objfile *objfile;
1957 struct block *block;
1958 struct type *t;
1959
1960 /* Now search all the global symbols. Do the symtab's first, then
1961 check the psymtab's. If a psymtab indicates the existence
1962 of the desired name as a global, then do psymtab-to-symtab
1963 conversion on the fly and return the found symbol. */
1964
1965 ALL_OBJFILES (objfile)
1966 {
1967 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1968 {
1969 bv = BLOCKVECTOR (s);
1970 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1971 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1972 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1973 {
1974 return SYMBOL_TYPE (sym);
1975 }
1976 }
1977 }
1978
1979 ALL_OBJFILES (objfile)
1980 {
1981 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1982 if (t)
1983 return t;
1984 }
1985
1986 /* Now search the static file-level symbols.
1987 Not strictly correct, but more useful than an error.
1988 Do the symtab's first, then
1989 check the psymtab's. If a psymtab indicates the existence
1990 of the desired name as a file-level static, then do psymtab-to-symtab
1991 conversion on the fly and return the found symbol. */
1992
1993 ALL_OBJFILES (objfile)
1994 {
1995 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1996 {
1997 bv = BLOCKVECTOR (s);
1998 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1999 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2000 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2001 {
2002 return SYMBOL_TYPE (sym);
2003 }
2004 }
2005 }
2006
2007 ALL_OBJFILES (objfile)
2008 {
2009 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2010 if (t)
2011 return t;
2012 }
2013
2014 return (struct type *) 0;
2015 }
2016
2017 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2018
2019 For each symbol that matches, CALLBACK is called. The symbol and
2020 DATA are passed to the callback.
2021
2022 If CALLBACK returns zero, the iteration ends. Otherwise, the
2023 search continues. */
2024
2025 void
2026 iterate_over_symbols (const struct block *block, const char *name,
2027 const domain_enum domain,
2028 symbol_found_callback_ftype *callback,
2029 void *data)
2030 {
2031 struct block_iterator iter;
2032 struct symbol *sym;
2033
2034 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2035 {
2036 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2037 SYMBOL_DOMAIN (sym), domain))
2038 {
2039 if (!callback (sym, data))
2040 return;
2041 }
2042 }
2043 }
2044
2045 /* Find the symtab associated with PC and SECTION. Look through the
2046 psymtabs and read in another symtab if necessary. */
2047
2048 struct symtab *
2049 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2050 {
2051 struct block *b;
2052 const struct blockvector *bv;
2053 struct symtab *s = NULL;
2054 struct symtab *best_s = NULL;
2055 struct objfile *objfile;
2056 CORE_ADDR distance = 0;
2057 struct bound_minimal_symbol msymbol;
2058
2059 /* If we know that this is not a text address, return failure. This is
2060 necessary because we loop based on the block's high and low code
2061 addresses, which do not include the data ranges, and because
2062 we call find_pc_sect_psymtab which has a similar restriction based
2063 on the partial_symtab's texthigh and textlow. */
2064 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2065 if (msymbol.minsym
2066 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2067 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2068 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2069 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2070 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2071 return NULL;
2072
2073 /* Search all symtabs for the one whose file contains our address, and which
2074 is the smallest of all the ones containing the address. This is designed
2075 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2076 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2077 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2078
2079 This happens for native ecoff format, where code from included files
2080 gets its own symtab. The symtab for the included file should have
2081 been read in already via the dependency mechanism.
2082 It might be swifter to create several symtabs with the same name
2083 like xcoff does (I'm not sure).
2084
2085 It also happens for objfiles that have their functions reordered.
2086 For these, the symtab we are looking for is not necessarily read in. */
2087
2088 ALL_PRIMARY_SYMTABS (objfile, s)
2089 {
2090 bv = BLOCKVECTOR (s);
2091 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2092
2093 if (BLOCK_START (b) <= pc
2094 && BLOCK_END (b) > pc
2095 && (distance == 0
2096 || BLOCK_END (b) - BLOCK_START (b) < distance))
2097 {
2098 /* For an objfile that has its functions reordered,
2099 find_pc_psymtab will find the proper partial symbol table
2100 and we simply return its corresponding symtab. */
2101 /* In order to better support objfiles that contain both
2102 stabs and coff debugging info, we continue on if a psymtab
2103 can't be found. */
2104 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2105 {
2106 struct symtab *result;
2107
2108 result
2109 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2110 msymbol,
2111 pc, section,
2112 0);
2113 if (result)
2114 return result;
2115 }
2116 if (section != 0)
2117 {
2118 struct block_iterator iter;
2119 struct symbol *sym = NULL;
2120
2121 ALL_BLOCK_SYMBOLS (b, iter, sym)
2122 {
2123 fixup_symbol_section (sym, objfile);
2124 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2125 section))
2126 break;
2127 }
2128 if (sym == NULL)
2129 continue; /* No symbol in this symtab matches
2130 section. */
2131 }
2132 distance = BLOCK_END (b) - BLOCK_START (b);
2133 best_s = s;
2134 }
2135 }
2136
2137 if (best_s != NULL)
2138 return (best_s);
2139
2140 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2141
2142 ALL_OBJFILES (objfile)
2143 {
2144 struct symtab *result;
2145
2146 if (!objfile->sf)
2147 continue;
2148 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2149 msymbol,
2150 pc, section,
2151 1);
2152 if (result)
2153 return result;
2154 }
2155
2156 return NULL;
2157 }
2158
2159 /* Find the symtab associated with PC. Look through the psymtabs and read
2160 in another symtab if necessary. Backward compatibility, no section. */
2161
2162 struct symtab *
2163 find_pc_symtab (CORE_ADDR pc)
2164 {
2165 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2166 }
2167 \f
2168
2169 /* Find the source file and line number for a given PC value and SECTION.
2170 Return a structure containing a symtab pointer, a line number,
2171 and a pc range for the entire source line.
2172 The value's .pc field is NOT the specified pc.
2173 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2174 use the line that ends there. Otherwise, in that case, the line
2175 that begins there is used. */
2176
2177 /* The big complication here is that a line may start in one file, and end just
2178 before the start of another file. This usually occurs when you #include
2179 code in the middle of a subroutine. To properly find the end of a line's PC
2180 range, we must search all symtabs associated with this compilation unit, and
2181 find the one whose first PC is closer than that of the next line in this
2182 symtab. */
2183
2184 /* If it's worth the effort, we could be using a binary search. */
2185
2186 struct symtab_and_line
2187 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2188 {
2189 struct symtab *s;
2190 struct linetable *l;
2191 int len;
2192 int i;
2193 struct linetable_entry *item;
2194 struct symtab_and_line val;
2195 const struct blockvector *bv;
2196 struct bound_minimal_symbol msymbol;
2197 struct objfile *objfile;
2198
2199 /* Info on best line seen so far, and where it starts, and its file. */
2200
2201 struct linetable_entry *best = NULL;
2202 CORE_ADDR best_end = 0;
2203 struct symtab *best_symtab = 0;
2204
2205 /* Store here the first line number
2206 of a file which contains the line at the smallest pc after PC.
2207 If we don't find a line whose range contains PC,
2208 we will use a line one less than this,
2209 with a range from the start of that file to the first line's pc. */
2210 struct linetable_entry *alt = NULL;
2211
2212 /* Info on best line seen in this file. */
2213
2214 struct linetable_entry *prev;
2215
2216 /* If this pc is not from the current frame,
2217 it is the address of the end of a call instruction.
2218 Quite likely that is the start of the following statement.
2219 But what we want is the statement containing the instruction.
2220 Fudge the pc to make sure we get that. */
2221
2222 init_sal (&val); /* initialize to zeroes */
2223
2224 val.pspace = current_program_space;
2225
2226 /* It's tempting to assume that, if we can't find debugging info for
2227 any function enclosing PC, that we shouldn't search for line
2228 number info, either. However, GAS can emit line number info for
2229 assembly files --- very helpful when debugging hand-written
2230 assembly code. In such a case, we'd have no debug info for the
2231 function, but we would have line info. */
2232
2233 if (notcurrent)
2234 pc -= 1;
2235
2236 /* elz: added this because this function returned the wrong
2237 information if the pc belongs to a stub (import/export)
2238 to call a shlib function. This stub would be anywhere between
2239 two functions in the target, and the line info was erroneously
2240 taken to be the one of the line before the pc. */
2241
2242 /* RT: Further explanation:
2243
2244 * We have stubs (trampolines) inserted between procedures.
2245 *
2246 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2247 * exists in the main image.
2248 *
2249 * In the minimal symbol table, we have a bunch of symbols
2250 * sorted by start address. The stubs are marked as "trampoline",
2251 * the others appear as text. E.g.:
2252 *
2253 * Minimal symbol table for main image
2254 * main: code for main (text symbol)
2255 * shr1: stub (trampoline symbol)
2256 * foo: code for foo (text symbol)
2257 * ...
2258 * Minimal symbol table for "shr1" image:
2259 * ...
2260 * shr1: code for shr1 (text symbol)
2261 * ...
2262 *
2263 * So the code below is trying to detect if we are in the stub
2264 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2265 * and if found, do the symbolization from the real-code address
2266 * rather than the stub address.
2267 *
2268 * Assumptions being made about the minimal symbol table:
2269 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2270 * if we're really in the trampoline.s If we're beyond it (say
2271 * we're in "foo" in the above example), it'll have a closer
2272 * symbol (the "foo" text symbol for example) and will not
2273 * return the trampoline.
2274 * 2. lookup_minimal_symbol_text() will find a real text symbol
2275 * corresponding to the trampoline, and whose address will
2276 * be different than the trampoline address. I put in a sanity
2277 * check for the address being the same, to avoid an
2278 * infinite recursion.
2279 */
2280 msymbol = lookup_minimal_symbol_by_pc (pc);
2281 if (msymbol.minsym != NULL)
2282 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2283 {
2284 struct bound_minimal_symbol mfunsym
2285 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2286 NULL);
2287
2288 if (mfunsym.minsym == NULL)
2289 /* I eliminated this warning since it is coming out
2290 * in the following situation:
2291 * gdb shmain // test program with shared libraries
2292 * (gdb) break shr1 // function in shared lib
2293 * Warning: In stub for ...
2294 * In the above situation, the shared lib is not loaded yet,
2295 * so of course we can't find the real func/line info,
2296 * but the "break" still works, and the warning is annoying.
2297 * So I commented out the warning. RT */
2298 /* warning ("In stub for %s; unable to find real function/line info",
2299 SYMBOL_LINKAGE_NAME (msymbol)); */
2300 ;
2301 /* fall through */
2302 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2303 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2304 /* Avoid infinite recursion */
2305 /* See above comment about why warning is commented out. */
2306 /* warning ("In stub for %s; unable to find real function/line info",
2307 SYMBOL_LINKAGE_NAME (msymbol)); */
2308 ;
2309 /* fall through */
2310 else
2311 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2312 }
2313
2314
2315 s = find_pc_sect_symtab (pc, section);
2316 if (!s)
2317 {
2318 /* If no symbol information, return previous pc. */
2319 if (notcurrent)
2320 pc++;
2321 val.pc = pc;
2322 return val;
2323 }
2324
2325 bv = BLOCKVECTOR (s);
2326 objfile = s->objfile;
2327
2328 /* Look at all the symtabs that share this blockvector.
2329 They all have the same apriori range, that we found was right;
2330 but they have different line tables. */
2331
2332 ALL_OBJFILE_SYMTABS (objfile, s)
2333 {
2334 if (BLOCKVECTOR (s) != bv)
2335 continue;
2336
2337 /* Find the best line in this symtab. */
2338 l = LINETABLE (s);
2339 if (!l)
2340 continue;
2341 len = l->nitems;
2342 if (len <= 0)
2343 {
2344 /* I think len can be zero if the symtab lacks line numbers
2345 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2346 I'm not sure which, and maybe it depends on the symbol
2347 reader). */
2348 continue;
2349 }
2350
2351 prev = NULL;
2352 item = l->item; /* Get first line info. */
2353
2354 /* Is this file's first line closer than the first lines of other files?
2355 If so, record this file, and its first line, as best alternate. */
2356 if (item->pc > pc && (!alt || item->pc < alt->pc))
2357 alt = item;
2358
2359 for (i = 0; i < len; i++, item++)
2360 {
2361 /* Leave prev pointing to the linetable entry for the last line
2362 that started at or before PC. */
2363 if (item->pc > pc)
2364 break;
2365
2366 prev = item;
2367 }
2368
2369 /* At this point, prev points at the line whose start addr is <= pc, and
2370 item points at the next line. If we ran off the end of the linetable
2371 (pc >= start of the last line), then prev == item. If pc < start of
2372 the first line, prev will not be set. */
2373
2374 /* Is this file's best line closer than the best in the other files?
2375 If so, record this file, and its best line, as best so far. Don't
2376 save prev if it represents the end of a function (i.e. line number
2377 0) instead of a real line. */
2378
2379 if (prev && prev->line && (!best || prev->pc > best->pc))
2380 {
2381 best = prev;
2382 best_symtab = s;
2383
2384 /* Discard BEST_END if it's before the PC of the current BEST. */
2385 if (best_end <= best->pc)
2386 best_end = 0;
2387 }
2388
2389 /* If another line (denoted by ITEM) is in the linetable and its
2390 PC is after BEST's PC, but before the current BEST_END, then
2391 use ITEM's PC as the new best_end. */
2392 if (best && i < len && item->pc > best->pc
2393 && (best_end == 0 || best_end > item->pc))
2394 best_end = item->pc;
2395 }
2396
2397 if (!best_symtab)
2398 {
2399 /* If we didn't find any line number info, just return zeros.
2400 We used to return alt->line - 1 here, but that could be
2401 anywhere; if we don't have line number info for this PC,
2402 don't make some up. */
2403 val.pc = pc;
2404 }
2405 else if (best->line == 0)
2406 {
2407 /* If our best fit is in a range of PC's for which no line
2408 number info is available (line number is zero) then we didn't
2409 find any valid line information. */
2410 val.pc = pc;
2411 }
2412 else
2413 {
2414 val.symtab = best_symtab;
2415 val.line = best->line;
2416 val.pc = best->pc;
2417 if (best_end && (!alt || best_end < alt->pc))
2418 val.end = best_end;
2419 else if (alt)
2420 val.end = alt->pc;
2421 else
2422 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2423 }
2424 val.section = section;
2425 return val;
2426 }
2427
2428 /* Backward compatibility (no section). */
2429
2430 struct symtab_and_line
2431 find_pc_line (CORE_ADDR pc, int notcurrent)
2432 {
2433 struct obj_section *section;
2434
2435 section = find_pc_overlay (pc);
2436 if (pc_in_unmapped_range (pc, section))
2437 pc = overlay_mapped_address (pc, section);
2438 return find_pc_sect_line (pc, section, notcurrent);
2439 }
2440 \f
2441 /* Find line number LINE in any symtab whose name is the same as
2442 SYMTAB.
2443
2444 If found, return the symtab that contains the linetable in which it was
2445 found, set *INDEX to the index in the linetable of the best entry
2446 found, and set *EXACT_MATCH nonzero if the value returned is an
2447 exact match.
2448
2449 If not found, return NULL. */
2450
2451 struct symtab *
2452 find_line_symtab (struct symtab *symtab, int line,
2453 int *index, int *exact_match)
2454 {
2455 int exact = 0; /* Initialized here to avoid a compiler warning. */
2456
2457 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2458 so far seen. */
2459
2460 int best_index;
2461 struct linetable *best_linetable;
2462 struct symtab *best_symtab;
2463
2464 /* First try looking it up in the given symtab. */
2465 best_linetable = LINETABLE (symtab);
2466 best_symtab = symtab;
2467 best_index = find_line_common (best_linetable, line, &exact, 0);
2468 if (best_index < 0 || !exact)
2469 {
2470 /* Didn't find an exact match. So we better keep looking for
2471 another symtab with the same name. In the case of xcoff,
2472 multiple csects for one source file (produced by IBM's FORTRAN
2473 compiler) produce multiple symtabs (this is unavoidable
2474 assuming csects can be at arbitrary places in memory and that
2475 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2476
2477 /* BEST is the smallest linenumber > LINE so far seen,
2478 or 0 if none has been seen so far.
2479 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2480 int best;
2481
2482 struct objfile *objfile;
2483 struct symtab *s;
2484
2485 if (best_index >= 0)
2486 best = best_linetable->item[best_index].line;
2487 else
2488 best = 0;
2489
2490 ALL_OBJFILES (objfile)
2491 {
2492 if (objfile->sf)
2493 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2494 symtab_to_fullname (symtab));
2495 }
2496
2497 ALL_SYMTABS (objfile, s)
2498 {
2499 struct linetable *l;
2500 int ind;
2501
2502 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2503 continue;
2504 if (FILENAME_CMP (symtab_to_fullname (symtab),
2505 symtab_to_fullname (s)) != 0)
2506 continue;
2507 l = LINETABLE (s);
2508 ind = find_line_common (l, line, &exact, 0);
2509 if (ind >= 0)
2510 {
2511 if (exact)
2512 {
2513 best_index = ind;
2514 best_linetable = l;
2515 best_symtab = s;
2516 goto done;
2517 }
2518 if (best == 0 || l->item[ind].line < best)
2519 {
2520 best = l->item[ind].line;
2521 best_index = ind;
2522 best_linetable = l;
2523 best_symtab = s;
2524 }
2525 }
2526 }
2527 }
2528 done:
2529 if (best_index < 0)
2530 return NULL;
2531
2532 if (index)
2533 *index = best_index;
2534 if (exact_match)
2535 *exact_match = exact;
2536
2537 return best_symtab;
2538 }
2539
2540 /* Given SYMTAB, returns all the PCs function in the symtab that
2541 exactly match LINE. Returns NULL if there are no exact matches,
2542 but updates BEST_ITEM in this case. */
2543
2544 VEC (CORE_ADDR) *
2545 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2546 struct linetable_entry **best_item)
2547 {
2548 int start = 0;
2549 VEC (CORE_ADDR) *result = NULL;
2550
2551 /* First, collect all the PCs that are at this line. */
2552 while (1)
2553 {
2554 int was_exact;
2555 int idx;
2556
2557 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2558 if (idx < 0)
2559 break;
2560
2561 if (!was_exact)
2562 {
2563 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2564
2565 if (*best_item == NULL || item->line < (*best_item)->line)
2566 *best_item = item;
2567
2568 break;
2569 }
2570
2571 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2572 start = idx + 1;
2573 }
2574
2575 return result;
2576 }
2577
2578 \f
2579 /* Set the PC value for a given source file and line number and return true.
2580 Returns zero for invalid line number (and sets the PC to 0).
2581 The source file is specified with a struct symtab. */
2582
2583 int
2584 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2585 {
2586 struct linetable *l;
2587 int ind;
2588
2589 *pc = 0;
2590 if (symtab == 0)
2591 return 0;
2592
2593 symtab = find_line_symtab (symtab, line, &ind, NULL);
2594 if (symtab != NULL)
2595 {
2596 l = LINETABLE (symtab);
2597 *pc = l->item[ind].pc;
2598 return 1;
2599 }
2600 else
2601 return 0;
2602 }
2603
2604 /* Find the range of pc values in a line.
2605 Store the starting pc of the line into *STARTPTR
2606 and the ending pc (start of next line) into *ENDPTR.
2607 Returns 1 to indicate success.
2608 Returns 0 if could not find the specified line. */
2609
2610 int
2611 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2612 CORE_ADDR *endptr)
2613 {
2614 CORE_ADDR startaddr;
2615 struct symtab_and_line found_sal;
2616
2617 startaddr = sal.pc;
2618 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2619 return 0;
2620
2621 /* This whole function is based on address. For example, if line 10 has
2622 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2623 "info line *0x123" should say the line goes from 0x100 to 0x200
2624 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2625 This also insures that we never give a range like "starts at 0x134
2626 and ends at 0x12c". */
2627
2628 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2629 if (found_sal.line != sal.line)
2630 {
2631 /* The specified line (sal) has zero bytes. */
2632 *startptr = found_sal.pc;
2633 *endptr = found_sal.pc;
2634 }
2635 else
2636 {
2637 *startptr = found_sal.pc;
2638 *endptr = found_sal.end;
2639 }
2640 return 1;
2641 }
2642
2643 /* Given a line table and a line number, return the index into the line
2644 table for the pc of the nearest line whose number is >= the specified one.
2645 Return -1 if none is found. The value is >= 0 if it is an index.
2646 START is the index at which to start searching the line table.
2647
2648 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2649
2650 static int
2651 find_line_common (struct linetable *l, int lineno,
2652 int *exact_match, int start)
2653 {
2654 int i;
2655 int len;
2656
2657 /* BEST is the smallest linenumber > LINENO so far seen,
2658 or 0 if none has been seen so far.
2659 BEST_INDEX identifies the item for it. */
2660
2661 int best_index = -1;
2662 int best = 0;
2663
2664 *exact_match = 0;
2665
2666 if (lineno <= 0)
2667 return -1;
2668 if (l == 0)
2669 return -1;
2670
2671 len = l->nitems;
2672 for (i = start; i < len; i++)
2673 {
2674 struct linetable_entry *item = &(l->item[i]);
2675
2676 if (item->line == lineno)
2677 {
2678 /* Return the first (lowest address) entry which matches. */
2679 *exact_match = 1;
2680 return i;
2681 }
2682
2683 if (item->line > lineno && (best == 0 || item->line < best))
2684 {
2685 best = item->line;
2686 best_index = i;
2687 }
2688 }
2689
2690 /* If we got here, we didn't get an exact match. */
2691 return best_index;
2692 }
2693
2694 int
2695 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2696 {
2697 struct symtab_and_line sal;
2698
2699 sal = find_pc_line (pc, 0);
2700 *startptr = sal.pc;
2701 *endptr = sal.end;
2702 return sal.symtab != 0;
2703 }
2704
2705 /* Given a function symbol SYM, find the symtab and line for the start
2706 of the function.
2707 If the argument FUNFIRSTLINE is nonzero, we want the first line
2708 of real code inside the function. */
2709
2710 struct symtab_and_line
2711 find_function_start_sal (struct symbol *sym, int funfirstline)
2712 {
2713 struct symtab_and_line sal;
2714
2715 fixup_symbol_section (sym, NULL);
2716 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2717 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2718
2719 /* We always should have a line for the function start address.
2720 If we don't, something is odd. Create a plain SAL refering
2721 just the PC and hope that skip_prologue_sal (if requested)
2722 can find a line number for after the prologue. */
2723 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2724 {
2725 init_sal (&sal);
2726 sal.pspace = current_program_space;
2727 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2728 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2729 }
2730
2731 if (funfirstline)
2732 skip_prologue_sal (&sal);
2733
2734 return sal;
2735 }
2736
2737 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2738 address for that function that has an entry in SYMTAB's line info
2739 table. If such an entry cannot be found, return FUNC_ADDR
2740 unaltered. */
2741
2742 static CORE_ADDR
2743 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2744 {
2745 CORE_ADDR func_start, func_end;
2746 struct linetable *l;
2747 int i;
2748
2749 /* Give up if this symbol has no lineinfo table. */
2750 l = LINETABLE (symtab);
2751 if (l == NULL)
2752 return func_addr;
2753
2754 /* Get the range for the function's PC values, or give up if we
2755 cannot, for some reason. */
2756 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2757 return func_addr;
2758
2759 /* Linetable entries are ordered by PC values, see the commentary in
2760 symtab.h where `struct linetable' is defined. Thus, the first
2761 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2762 address we are looking for. */
2763 for (i = 0; i < l->nitems; i++)
2764 {
2765 struct linetable_entry *item = &(l->item[i]);
2766
2767 /* Don't use line numbers of zero, they mark special entries in
2768 the table. See the commentary on symtab.h before the
2769 definition of struct linetable. */
2770 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2771 return item->pc;
2772 }
2773
2774 return func_addr;
2775 }
2776
2777 /* Adjust SAL to the first instruction past the function prologue.
2778 If the PC was explicitly specified, the SAL is not changed.
2779 If the line number was explicitly specified, at most the SAL's PC
2780 is updated. If SAL is already past the prologue, then do nothing. */
2781
2782 void
2783 skip_prologue_sal (struct symtab_and_line *sal)
2784 {
2785 struct symbol *sym;
2786 struct symtab_and_line start_sal;
2787 struct cleanup *old_chain;
2788 CORE_ADDR pc, saved_pc;
2789 struct obj_section *section;
2790 const char *name;
2791 struct objfile *objfile;
2792 struct gdbarch *gdbarch;
2793 const struct block *b, *function_block;
2794 int force_skip, skip;
2795
2796 /* Do not change the SAL if PC was specified explicitly. */
2797 if (sal->explicit_pc)
2798 return;
2799
2800 old_chain = save_current_space_and_thread ();
2801 switch_to_program_space_and_thread (sal->pspace);
2802
2803 sym = find_pc_sect_function (sal->pc, sal->section);
2804 if (sym != NULL)
2805 {
2806 fixup_symbol_section (sym, NULL);
2807
2808 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2809 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2810 name = SYMBOL_LINKAGE_NAME (sym);
2811 objfile = SYMBOL_SYMTAB (sym)->objfile;
2812 }
2813 else
2814 {
2815 struct bound_minimal_symbol msymbol
2816 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2817
2818 if (msymbol.minsym == NULL)
2819 {
2820 do_cleanups (old_chain);
2821 return;
2822 }
2823
2824 objfile = msymbol.objfile;
2825 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2826 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2827 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2828 }
2829
2830 gdbarch = get_objfile_arch (objfile);
2831
2832 /* Process the prologue in two passes. In the first pass try to skip the
2833 prologue (SKIP is true) and verify there is a real need for it (indicated
2834 by FORCE_SKIP). If no such reason was found run a second pass where the
2835 prologue is not skipped (SKIP is false). */
2836
2837 skip = 1;
2838 force_skip = 1;
2839
2840 /* Be conservative - allow direct PC (without skipping prologue) only if we
2841 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2842 have to be set by the caller so we use SYM instead. */
2843 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2844 force_skip = 0;
2845
2846 saved_pc = pc;
2847 do
2848 {
2849 pc = saved_pc;
2850
2851 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2852 so that gdbarch_skip_prologue has something unique to work on. */
2853 if (section_is_overlay (section) && !section_is_mapped (section))
2854 pc = overlay_unmapped_address (pc, section);
2855
2856 /* Skip "first line" of function (which is actually its prologue). */
2857 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2858 if (gdbarch_skip_entrypoint_p (gdbarch))
2859 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2860 if (skip)
2861 pc = gdbarch_skip_prologue (gdbarch, pc);
2862
2863 /* For overlays, map pc back into its mapped VMA range. */
2864 pc = overlay_mapped_address (pc, section);
2865
2866 /* Calculate line number. */
2867 start_sal = find_pc_sect_line (pc, section, 0);
2868
2869 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2870 line is still part of the same function. */
2871 if (skip && start_sal.pc != pc
2872 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2873 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2874 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2875 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2876 {
2877 /* First pc of next line */
2878 pc = start_sal.end;
2879 /* Recalculate the line number (might not be N+1). */
2880 start_sal = find_pc_sect_line (pc, section, 0);
2881 }
2882
2883 /* On targets with executable formats that don't have a concept of
2884 constructors (ELF with .init has, PE doesn't), gcc emits a call
2885 to `__main' in `main' between the prologue and before user
2886 code. */
2887 if (gdbarch_skip_main_prologue_p (gdbarch)
2888 && name && strcmp_iw (name, "main") == 0)
2889 {
2890 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2891 /* Recalculate the line number (might not be N+1). */
2892 start_sal = find_pc_sect_line (pc, section, 0);
2893 force_skip = 1;
2894 }
2895 }
2896 while (!force_skip && skip--);
2897
2898 /* If we still don't have a valid source line, try to find the first
2899 PC in the lineinfo table that belongs to the same function. This
2900 happens with COFF debug info, which does not seem to have an
2901 entry in lineinfo table for the code after the prologue which has
2902 no direct relation to source. For example, this was found to be
2903 the case with the DJGPP target using "gcc -gcoff" when the
2904 compiler inserted code after the prologue to make sure the stack
2905 is aligned. */
2906 if (!force_skip && sym && start_sal.symtab == NULL)
2907 {
2908 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2909 /* Recalculate the line number. */
2910 start_sal = find_pc_sect_line (pc, section, 0);
2911 }
2912
2913 do_cleanups (old_chain);
2914
2915 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2916 forward SAL to the end of the prologue. */
2917 if (sal->pc >= pc)
2918 return;
2919
2920 sal->pc = pc;
2921 sal->section = section;
2922
2923 /* Unless the explicit_line flag was set, update the SAL line
2924 and symtab to correspond to the modified PC location. */
2925 if (sal->explicit_line)
2926 return;
2927
2928 sal->symtab = start_sal.symtab;
2929 sal->line = start_sal.line;
2930 sal->end = start_sal.end;
2931
2932 /* Check if we are now inside an inlined function. If we can,
2933 use the call site of the function instead. */
2934 b = block_for_pc_sect (sal->pc, sal->section);
2935 function_block = NULL;
2936 while (b != NULL)
2937 {
2938 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2939 function_block = b;
2940 else if (BLOCK_FUNCTION (b) != NULL)
2941 break;
2942 b = BLOCK_SUPERBLOCK (b);
2943 }
2944 if (function_block != NULL
2945 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2946 {
2947 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2948 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2949 }
2950 }
2951
2952 /* Determine if PC is in the prologue of a function. The prologue is the area
2953 between the first instruction of a function, and the first executable line.
2954 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
2955
2956 If non-zero, func_start is where we think the prologue starts, possibly
2957 by previous examination of symbol table information. */
2958
2959 int
2960 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
2961 {
2962 struct symtab_and_line sal;
2963 CORE_ADDR func_addr, func_end;
2964
2965 /* We have several sources of information we can consult to figure
2966 this out.
2967 - Compilers usually emit line number info that marks the prologue
2968 as its own "source line". So the ending address of that "line"
2969 is the end of the prologue. If available, this is the most
2970 reliable method.
2971 - The minimal symbols and partial symbols, which can usually tell
2972 us the starting and ending addresses of a function.
2973 - If we know the function's start address, we can call the
2974 architecture-defined gdbarch_skip_prologue function to analyze the
2975 instruction stream and guess where the prologue ends.
2976 - Our `func_start' argument; if non-zero, this is the caller's
2977 best guess as to the function's entry point. At the time of
2978 this writing, handle_inferior_event doesn't get this right, so
2979 it should be our last resort. */
2980
2981 /* Consult the partial symbol table, to find which function
2982 the PC is in. */
2983 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2984 {
2985 CORE_ADDR prologue_end;
2986
2987 /* We don't even have minsym information, so fall back to using
2988 func_start, if given. */
2989 if (! func_start)
2990 return 1; /* We *might* be in a prologue. */
2991
2992 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
2993
2994 return func_start <= pc && pc < prologue_end;
2995 }
2996
2997 /* If we have line number information for the function, that's
2998 usually pretty reliable. */
2999 sal = find_pc_line (func_addr, 0);
3000
3001 /* Now sal describes the source line at the function's entry point,
3002 which (by convention) is the prologue. The end of that "line",
3003 sal.end, is the end of the prologue.
3004
3005 Note that, for functions whose source code is all on a single
3006 line, the line number information doesn't always end up this way.
3007 So we must verify that our purported end-of-prologue address is
3008 *within* the function, not at its start or end. */
3009 if (sal.line == 0
3010 || sal.end <= func_addr
3011 || func_end <= sal.end)
3012 {
3013 /* We don't have any good line number info, so use the minsym
3014 information, together with the architecture-specific prologue
3015 scanning code. */
3016 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3017
3018 return func_addr <= pc && pc < prologue_end;
3019 }
3020
3021 /* We have line number info, and it looks good. */
3022 return func_addr <= pc && pc < sal.end;
3023 }
3024
3025 /* Given PC at the function's start address, attempt to find the
3026 prologue end using SAL information. Return zero if the skip fails.
3027
3028 A non-optimized prologue traditionally has one SAL for the function
3029 and a second for the function body. A single line function has
3030 them both pointing at the same line.
3031
3032 An optimized prologue is similar but the prologue may contain
3033 instructions (SALs) from the instruction body. Need to skip those
3034 while not getting into the function body.
3035
3036 The functions end point and an increasing SAL line are used as
3037 indicators of the prologue's endpoint.
3038
3039 This code is based on the function refine_prologue_limit
3040 (found in ia64). */
3041
3042 CORE_ADDR
3043 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3044 {
3045 struct symtab_and_line prologue_sal;
3046 CORE_ADDR start_pc;
3047 CORE_ADDR end_pc;
3048 const struct block *bl;
3049
3050 /* Get an initial range for the function. */
3051 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3052 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3053
3054 prologue_sal = find_pc_line (start_pc, 0);
3055 if (prologue_sal.line != 0)
3056 {
3057 /* For languages other than assembly, treat two consecutive line
3058 entries at the same address as a zero-instruction prologue.
3059 The GNU assembler emits separate line notes for each instruction
3060 in a multi-instruction macro, but compilers generally will not
3061 do this. */
3062 if (prologue_sal.symtab->language != language_asm)
3063 {
3064 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3065 int idx = 0;
3066
3067 /* Skip any earlier lines, and any end-of-sequence marker
3068 from a previous function. */
3069 while (linetable->item[idx].pc != prologue_sal.pc
3070 || linetable->item[idx].line == 0)
3071 idx++;
3072
3073 if (idx+1 < linetable->nitems
3074 && linetable->item[idx+1].line != 0
3075 && linetable->item[idx+1].pc == start_pc)
3076 return start_pc;
3077 }
3078
3079 /* If there is only one sal that covers the entire function,
3080 then it is probably a single line function, like
3081 "foo(){}". */
3082 if (prologue_sal.end >= end_pc)
3083 return 0;
3084
3085 while (prologue_sal.end < end_pc)
3086 {
3087 struct symtab_and_line sal;
3088
3089 sal = find_pc_line (prologue_sal.end, 0);
3090 if (sal.line == 0)
3091 break;
3092 /* Assume that a consecutive SAL for the same (or larger)
3093 line mark the prologue -> body transition. */
3094 if (sal.line >= prologue_sal.line)
3095 break;
3096 /* Likewise if we are in a different symtab altogether
3097 (e.g. within a file included via #include).  */
3098 if (sal.symtab != prologue_sal.symtab)
3099 break;
3100
3101 /* The line number is smaller. Check that it's from the
3102 same function, not something inlined. If it's inlined,
3103 then there is no point comparing the line numbers. */
3104 bl = block_for_pc (prologue_sal.end);
3105 while (bl)
3106 {
3107 if (block_inlined_p (bl))
3108 break;
3109 if (BLOCK_FUNCTION (bl))
3110 {
3111 bl = NULL;
3112 break;
3113 }
3114 bl = BLOCK_SUPERBLOCK (bl);
3115 }
3116 if (bl != NULL)
3117 break;
3118
3119 /* The case in which compiler's optimizer/scheduler has
3120 moved instructions into the prologue. We look ahead in
3121 the function looking for address ranges whose
3122 corresponding line number is less the first one that we
3123 found for the function. This is more conservative then
3124 refine_prologue_limit which scans a large number of SALs
3125 looking for any in the prologue. */
3126 prologue_sal = sal;
3127 }
3128 }
3129
3130 if (prologue_sal.end < end_pc)
3131 /* Return the end of this line, or zero if we could not find a
3132 line. */
3133 return prologue_sal.end;
3134 else
3135 /* Don't return END_PC, which is past the end of the function. */
3136 return prologue_sal.pc;
3137 }
3138 \f
3139 /* If P is of the form "operator[ \t]+..." where `...' is
3140 some legitimate operator text, return a pointer to the
3141 beginning of the substring of the operator text.
3142 Otherwise, return "". */
3143
3144 static const char *
3145 operator_chars (const char *p, const char **end)
3146 {
3147 *end = "";
3148 if (strncmp (p, "operator", 8))
3149 return *end;
3150 p += 8;
3151
3152 /* Don't get faked out by `operator' being part of a longer
3153 identifier. */
3154 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3155 return *end;
3156
3157 /* Allow some whitespace between `operator' and the operator symbol. */
3158 while (*p == ' ' || *p == '\t')
3159 p++;
3160
3161 /* Recognize 'operator TYPENAME'. */
3162
3163 if (isalpha (*p) || *p == '_' || *p == '$')
3164 {
3165 const char *q = p + 1;
3166
3167 while (isalnum (*q) || *q == '_' || *q == '$')
3168 q++;
3169 *end = q;
3170 return p;
3171 }
3172
3173 while (*p)
3174 switch (*p)
3175 {
3176 case '\\': /* regexp quoting */
3177 if (p[1] == '*')
3178 {
3179 if (p[2] == '=') /* 'operator\*=' */
3180 *end = p + 3;
3181 else /* 'operator\*' */
3182 *end = p + 2;
3183 return p;
3184 }
3185 else if (p[1] == '[')
3186 {
3187 if (p[2] == ']')
3188 error (_("mismatched quoting on brackets, "
3189 "try 'operator\\[\\]'"));
3190 else if (p[2] == '\\' && p[3] == ']')
3191 {
3192 *end = p + 4; /* 'operator\[\]' */
3193 return p;
3194 }
3195 else
3196 error (_("nothing is allowed between '[' and ']'"));
3197 }
3198 else
3199 {
3200 /* Gratuitous qoute: skip it and move on. */
3201 p++;
3202 continue;
3203 }
3204 break;
3205 case '!':
3206 case '=':
3207 case '*':
3208 case '/':
3209 case '%':
3210 case '^':
3211 if (p[1] == '=')
3212 *end = p + 2;
3213 else
3214 *end = p + 1;
3215 return p;
3216 case '<':
3217 case '>':
3218 case '+':
3219 case '-':
3220 case '&':
3221 case '|':
3222 if (p[0] == '-' && p[1] == '>')
3223 {
3224 /* Struct pointer member operator 'operator->'. */
3225 if (p[2] == '*')
3226 {
3227 *end = p + 3; /* 'operator->*' */
3228 return p;
3229 }
3230 else if (p[2] == '\\')
3231 {
3232 *end = p + 4; /* Hopefully 'operator->\*' */
3233 return p;
3234 }
3235 else
3236 {
3237 *end = p + 2; /* 'operator->' */
3238 return p;
3239 }
3240 }
3241 if (p[1] == '=' || p[1] == p[0])
3242 *end = p + 2;
3243 else
3244 *end = p + 1;
3245 return p;
3246 case '~':
3247 case ',':
3248 *end = p + 1;
3249 return p;
3250 case '(':
3251 if (p[1] != ')')
3252 error (_("`operator ()' must be specified "
3253 "without whitespace in `()'"));
3254 *end = p + 2;
3255 return p;
3256 case '?':
3257 if (p[1] != ':')
3258 error (_("`operator ?:' must be specified "
3259 "without whitespace in `?:'"));
3260 *end = p + 2;
3261 return p;
3262 case '[':
3263 if (p[1] != ']')
3264 error (_("`operator []' must be specified "
3265 "without whitespace in `[]'"));
3266 *end = p + 2;
3267 return p;
3268 default:
3269 error (_("`operator %s' not supported"), p);
3270 break;
3271 }
3272
3273 *end = "";
3274 return *end;
3275 }
3276 \f
3277
3278 /* Cache to watch for file names already seen by filename_seen. */
3279
3280 struct filename_seen_cache
3281 {
3282 /* Table of files seen so far. */
3283 htab_t tab;
3284 /* Initial size of the table. It automagically grows from here. */
3285 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3286 };
3287
3288 /* filename_seen_cache constructor. */
3289
3290 static struct filename_seen_cache *
3291 create_filename_seen_cache (void)
3292 {
3293 struct filename_seen_cache *cache;
3294
3295 cache = XNEW (struct filename_seen_cache);
3296 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3297 filename_hash, filename_eq,
3298 NULL, xcalloc, xfree);
3299
3300 return cache;
3301 }
3302
3303 /* Empty the cache, but do not delete it. */
3304
3305 static void
3306 clear_filename_seen_cache (struct filename_seen_cache *cache)
3307 {
3308 htab_empty (cache->tab);
3309 }
3310
3311 /* filename_seen_cache destructor.
3312 This takes a void * argument as it is generally used as a cleanup. */
3313
3314 static void
3315 delete_filename_seen_cache (void *ptr)
3316 {
3317 struct filename_seen_cache *cache = ptr;
3318
3319 htab_delete (cache->tab);
3320 xfree (cache);
3321 }
3322
3323 /* If FILE is not already in the table of files in CACHE, return zero;
3324 otherwise return non-zero. Optionally add FILE to the table if ADD
3325 is non-zero.
3326
3327 NOTE: We don't manage space for FILE, we assume FILE lives as long
3328 as the caller needs. */
3329
3330 static int
3331 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3332 {
3333 void **slot;
3334
3335 /* Is FILE in tab? */
3336 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3337 if (*slot != NULL)
3338 return 1;
3339
3340 /* No; maybe add it to tab. */
3341 if (add)
3342 *slot = (char *) file;
3343
3344 return 0;
3345 }
3346
3347 /* Data structure to maintain printing state for output_source_filename. */
3348
3349 struct output_source_filename_data
3350 {
3351 /* Cache of what we've seen so far. */
3352 struct filename_seen_cache *filename_seen_cache;
3353
3354 /* Flag of whether we're printing the first one. */
3355 int first;
3356 };
3357
3358 /* Slave routine for sources_info. Force line breaks at ,'s.
3359 NAME is the name to print.
3360 DATA contains the state for printing and watching for duplicates. */
3361
3362 static void
3363 output_source_filename (const char *name,
3364 struct output_source_filename_data *data)
3365 {
3366 /* Since a single source file can result in several partial symbol
3367 tables, we need to avoid printing it more than once. Note: if
3368 some of the psymtabs are read in and some are not, it gets
3369 printed both under "Source files for which symbols have been
3370 read" and "Source files for which symbols will be read in on
3371 demand". I consider this a reasonable way to deal with the
3372 situation. I'm not sure whether this can also happen for
3373 symtabs; it doesn't hurt to check. */
3374
3375 /* Was NAME already seen? */
3376 if (filename_seen (data->filename_seen_cache, name, 1))
3377 {
3378 /* Yes; don't print it again. */
3379 return;
3380 }
3381
3382 /* No; print it and reset *FIRST. */
3383 if (! data->first)
3384 printf_filtered (", ");
3385 data->first = 0;
3386
3387 wrap_here ("");
3388 fputs_filtered (name, gdb_stdout);
3389 }
3390
3391 /* A callback for map_partial_symbol_filenames. */
3392
3393 static void
3394 output_partial_symbol_filename (const char *filename, const char *fullname,
3395 void *data)
3396 {
3397 output_source_filename (fullname ? fullname : filename, data);
3398 }
3399
3400 static void
3401 sources_info (char *ignore, int from_tty)
3402 {
3403 struct symtab *s;
3404 struct objfile *objfile;
3405 struct output_source_filename_data data;
3406 struct cleanup *cleanups;
3407
3408 if (!have_full_symbols () && !have_partial_symbols ())
3409 {
3410 error (_("No symbol table is loaded. Use the \"file\" command."));
3411 }
3412
3413 data.filename_seen_cache = create_filename_seen_cache ();
3414 cleanups = make_cleanup (delete_filename_seen_cache,
3415 data.filename_seen_cache);
3416
3417 printf_filtered ("Source files for which symbols have been read in:\n\n");
3418
3419 data.first = 1;
3420 ALL_SYMTABS (objfile, s)
3421 {
3422 const char *fullname = symtab_to_fullname (s);
3423
3424 output_source_filename (fullname, &data);
3425 }
3426 printf_filtered ("\n\n");
3427
3428 printf_filtered ("Source files for which symbols "
3429 "will be read in on demand:\n\n");
3430
3431 clear_filename_seen_cache (data.filename_seen_cache);
3432 data.first = 1;
3433 map_symbol_filenames (output_partial_symbol_filename, &data,
3434 1 /*need_fullname*/);
3435 printf_filtered ("\n");
3436
3437 do_cleanups (cleanups);
3438 }
3439
3440 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3441 non-zero compare only lbasename of FILES. */
3442
3443 static int
3444 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3445 {
3446 int i;
3447
3448 if (file != NULL && nfiles != 0)
3449 {
3450 for (i = 0; i < nfiles; i++)
3451 {
3452 if (compare_filenames_for_search (file, (basenames
3453 ? lbasename (files[i])
3454 : files[i])))
3455 return 1;
3456 }
3457 }
3458 else if (nfiles == 0)
3459 return 1;
3460 return 0;
3461 }
3462
3463 /* Free any memory associated with a search. */
3464
3465 void
3466 free_search_symbols (struct symbol_search *symbols)
3467 {
3468 struct symbol_search *p;
3469 struct symbol_search *next;
3470
3471 for (p = symbols; p != NULL; p = next)
3472 {
3473 next = p->next;
3474 xfree (p);
3475 }
3476 }
3477
3478 static void
3479 do_free_search_symbols_cleanup (void *symbolsp)
3480 {
3481 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3482
3483 free_search_symbols (symbols);
3484 }
3485
3486 struct cleanup *
3487 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3488 {
3489 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3490 }
3491
3492 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3493 sort symbols, not minimal symbols. */
3494
3495 static int
3496 compare_search_syms (const void *sa, const void *sb)
3497 {
3498 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3499 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3500 int c;
3501
3502 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3503 if (c != 0)
3504 return c;
3505
3506 if (sym_a->block != sym_b->block)
3507 return sym_a->block - sym_b->block;
3508
3509 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3510 SYMBOL_PRINT_NAME (sym_b->symbol));
3511 }
3512
3513 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3514 The duplicates are freed, and the new list is returned in
3515 *NEW_HEAD, *NEW_TAIL. */
3516
3517 static void
3518 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3519 struct symbol_search **new_head,
3520 struct symbol_search **new_tail)
3521 {
3522 struct symbol_search **symbols, *symp, *old_next;
3523 int i, j, nunique;
3524
3525 gdb_assert (found != NULL && nfound > 0);
3526
3527 /* Build an array out of the list so we can easily sort them. */
3528 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3529 * nfound);
3530 symp = found;
3531 for (i = 0; i < nfound; i++)
3532 {
3533 gdb_assert (symp != NULL);
3534 gdb_assert (symp->block >= 0 && symp->block <= 1);
3535 symbols[i] = symp;
3536 symp = symp->next;
3537 }
3538 gdb_assert (symp == NULL);
3539
3540 qsort (symbols, nfound, sizeof (struct symbol_search *),
3541 compare_search_syms);
3542
3543 /* Collapse out the dups. */
3544 for (i = 1, j = 1; i < nfound; ++i)
3545 {
3546 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3547 symbols[j++] = symbols[i];
3548 else
3549 xfree (symbols[i]);
3550 }
3551 nunique = j;
3552 symbols[j - 1]->next = NULL;
3553
3554 /* Rebuild the linked list. */
3555 for (i = 0; i < nunique - 1; i++)
3556 symbols[i]->next = symbols[i + 1];
3557 symbols[nunique - 1]->next = NULL;
3558
3559 *new_head = symbols[0];
3560 *new_tail = symbols[nunique - 1];
3561 xfree (symbols);
3562 }
3563
3564 /* An object of this type is passed as the user_data to the
3565 expand_symtabs_matching method. */
3566 struct search_symbols_data
3567 {
3568 int nfiles;
3569 const char **files;
3570
3571 /* It is true if PREG contains valid data, false otherwise. */
3572 unsigned preg_p : 1;
3573 regex_t preg;
3574 };
3575
3576 /* A callback for expand_symtabs_matching. */
3577
3578 static int
3579 search_symbols_file_matches (const char *filename, void *user_data,
3580 int basenames)
3581 {
3582 struct search_symbols_data *data = user_data;
3583
3584 return file_matches (filename, data->files, data->nfiles, basenames);
3585 }
3586
3587 /* A callback for expand_symtabs_matching. */
3588
3589 static int
3590 search_symbols_name_matches (const char *symname, void *user_data)
3591 {
3592 struct search_symbols_data *data = user_data;
3593
3594 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3595 }
3596
3597 /* Search the symbol table for matches to the regular expression REGEXP,
3598 returning the results in *MATCHES.
3599
3600 Only symbols of KIND are searched:
3601 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3602 and constants (enums)
3603 FUNCTIONS_DOMAIN - search all functions
3604 TYPES_DOMAIN - search all type names
3605 ALL_DOMAIN - an internal error for this function
3606
3607 free_search_symbols should be called when *MATCHES is no longer needed.
3608
3609 Within each file the results are sorted locally; each symtab's global and
3610 static blocks are separately alphabetized.
3611 Duplicate entries are removed. */
3612
3613 void
3614 search_symbols (const char *regexp, enum search_domain kind,
3615 int nfiles, const char *files[],
3616 struct symbol_search **matches)
3617 {
3618 struct symtab *s;
3619 const struct blockvector *bv;
3620 struct block *b;
3621 int i = 0;
3622 struct block_iterator iter;
3623 struct symbol *sym;
3624 struct objfile *objfile;
3625 struct minimal_symbol *msymbol;
3626 int found_misc = 0;
3627 static const enum minimal_symbol_type types[]
3628 = {mst_data, mst_text, mst_abs};
3629 static const enum minimal_symbol_type types2[]
3630 = {mst_bss, mst_file_text, mst_abs};
3631 static const enum minimal_symbol_type types3[]
3632 = {mst_file_data, mst_solib_trampoline, mst_abs};
3633 static const enum minimal_symbol_type types4[]
3634 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3635 enum minimal_symbol_type ourtype;
3636 enum minimal_symbol_type ourtype2;
3637 enum minimal_symbol_type ourtype3;
3638 enum minimal_symbol_type ourtype4;
3639 struct symbol_search *found;
3640 struct symbol_search *tail;
3641 struct search_symbols_data datum;
3642 int nfound;
3643
3644 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3645 CLEANUP_CHAIN is freed only in the case of an error. */
3646 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3647 struct cleanup *retval_chain;
3648
3649 gdb_assert (kind <= TYPES_DOMAIN);
3650
3651 ourtype = types[kind];
3652 ourtype2 = types2[kind];
3653 ourtype3 = types3[kind];
3654 ourtype4 = types4[kind];
3655
3656 *matches = NULL;
3657 datum.preg_p = 0;
3658
3659 if (regexp != NULL)
3660 {
3661 /* Make sure spacing is right for C++ operators.
3662 This is just a courtesy to make the matching less sensitive
3663 to how many spaces the user leaves between 'operator'
3664 and <TYPENAME> or <OPERATOR>. */
3665 const char *opend;
3666 const char *opname = operator_chars (regexp, &opend);
3667 int errcode;
3668
3669 if (*opname)
3670 {
3671 int fix = -1; /* -1 means ok; otherwise number of
3672 spaces needed. */
3673
3674 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3675 {
3676 /* There should 1 space between 'operator' and 'TYPENAME'. */
3677 if (opname[-1] != ' ' || opname[-2] == ' ')
3678 fix = 1;
3679 }
3680 else
3681 {
3682 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3683 if (opname[-1] == ' ')
3684 fix = 0;
3685 }
3686 /* If wrong number of spaces, fix it. */
3687 if (fix >= 0)
3688 {
3689 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3690
3691 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3692 regexp = tmp;
3693 }
3694 }
3695
3696 errcode = regcomp (&datum.preg, regexp,
3697 REG_NOSUB | (case_sensitivity == case_sensitive_off
3698 ? REG_ICASE : 0));
3699 if (errcode != 0)
3700 {
3701 char *err = get_regcomp_error (errcode, &datum.preg);
3702
3703 make_cleanup (xfree, err);
3704 error (_("Invalid regexp (%s): %s"), err, regexp);
3705 }
3706 datum.preg_p = 1;
3707 make_regfree_cleanup (&datum.preg);
3708 }
3709
3710 /* Search through the partial symtabs *first* for all symbols
3711 matching the regexp. That way we don't have to reproduce all of
3712 the machinery below. */
3713
3714 datum.nfiles = nfiles;
3715 datum.files = files;
3716 expand_symtabs_matching ((nfiles == 0
3717 ? NULL
3718 : search_symbols_file_matches),
3719 search_symbols_name_matches,
3720 kind, &datum);
3721
3722 /* Here, we search through the minimal symbol tables for functions
3723 and variables that match, and force their symbols to be read.
3724 This is in particular necessary for demangled variable names,
3725 which are no longer put into the partial symbol tables.
3726 The symbol will then be found during the scan of symtabs below.
3727
3728 For functions, find_pc_symtab should succeed if we have debug info
3729 for the function, for variables we have to call
3730 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3731 has debug info.
3732 If the lookup fails, set found_misc so that we will rescan to print
3733 any matching symbols without debug info.
3734 We only search the objfile the msymbol came from, we no longer search
3735 all objfiles. In large programs (1000s of shared libs) searching all
3736 objfiles is not worth the pain. */
3737
3738 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3739 {
3740 ALL_MSYMBOLS (objfile, msymbol)
3741 {
3742 QUIT;
3743
3744 if (msymbol->created_by_gdb)
3745 continue;
3746
3747 if (MSYMBOL_TYPE (msymbol) == ourtype
3748 || MSYMBOL_TYPE (msymbol) == ourtype2
3749 || MSYMBOL_TYPE (msymbol) == ourtype3
3750 || MSYMBOL_TYPE (msymbol) == ourtype4)
3751 {
3752 if (!datum.preg_p
3753 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3754 NULL, 0) == 0)
3755 {
3756 /* Note: An important side-effect of these lookup functions
3757 is to expand the symbol table if msymbol is found, for the
3758 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3759 if (kind == FUNCTIONS_DOMAIN
3760 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3761 msymbol)) == NULL
3762 : (lookup_symbol_in_objfile_from_linkage_name
3763 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3764 == NULL))
3765 found_misc = 1;
3766 }
3767 }
3768 }
3769 }
3770
3771 found = NULL;
3772 tail = NULL;
3773 nfound = 0;
3774 retval_chain = make_cleanup_free_search_symbols (&found);
3775
3776 ALL_PRIMARY_SYMTABS (objfile, s)
3777 {
3778 bv = BLOCKVECTOR (s);
3779 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3780 {
3781 b = BLOCKVECTOR_BLOCK (bv, i);
3782 ALL_BLOCK_SYMBOLS (b, iter, sym)
3783 {
3784 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3785
3786 QUIT;
3787
3788 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3789 a substring of symtab_to_fullname as it may contain "./" etc. */
3790 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3791 || ((basenames_may_differ
3792 || file_matches (lbasename (real_symtab->filename),
3793 files, nfiles, 1))
3794 && file_matches (symtab_to_fullname (real_symtab),
3795 files, nfiles, 0)))
3796 && ((!datum.preg_p
3797 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3798 NULL, 0) == 0)
3799 && ((kind == VARIABLES_DOMAIN
3800 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3801 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3802 && SYMBOL_CLASS (sym) != LOC_BLOCK
3803 /* LOC_CONST can be used for more than just enums,
3804 e.g., c++ static const members.
3805 We only want to skip enums here. */
3806 && !(SYMBOL_CLASS (sym) == LOC_CONST
3807 && TYPE_CODE (SYMBOL_TYPE (sym))
3808 == TYPE_CODE_ENUM))
3809 || (kind == FUNCTIONS_DOMAIN
3810 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3811 || (kind == TYPES_DOMAIN
3812 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3813 {
3814 /* match */
3815 struct symbol_search *psr = (struct symbol_search *)
3816 xmalloc (sizeof (struct symbol_search));
3817 psr->block = i;
3818 psr->symtab = real_symtab;
3819 psr->symbol = sym;
3820 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3821 psr->next = NULL;
3822 if (tail == NULL)
3823 found = psr;
3824 else
3825 tail->next = psr;
3826 tail = psr;
3827 nfound ++;
3828 }
3829 }
3830 }
3831 }
3832
3833 if (found != NULL)
3834 {
3835 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3836 /* Note: nfound is no longer useful beyond this point. */
3837 }
3838
3839 /* If there are no eyes, avoid all contact. I mean, if there are
3840 no debug symbols, then print directly from the msymbol_vector. */
3841
3842 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3843 {
3844 ALL_MSYMBOLS (objfile, msymbol)
3845 {
3846 QUIT;
3847
3848 if (msymbol->created_by_gdb)
3849 continue;
3850
3851 if (MSYMBOL_TYPE (msymbol) == ourtype
3852 || MSYMBOL_TYPE (msymbol) == ourtype2
3853 || MSYMBOL_TYPE (msymbol) == ourtype3
3854 || MSYMBOL_TYPE (msymbol) == ourtype4)
3855 {
3856 if (!datum.preg_p
3857 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3858 NULL, 0) == 0)
3859 {
3860 /* For functions we can do a quick check of whether the
3861 symbol might be found via find_pc_symtab. */
3862 if (kind != FUNCTIONS_DOMAIN
3863 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3864 msymbol)) == NULL)
3865 {
3866 if (lookup_symbol_in_objfile_from_linkage_name
3867 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3868 == NULL)
3869 {
3870 /* match */
3871 struct symbol_search *psr = (struct symbol_search *)
3872 xmalloc (sizeof (struct symbol_search));
3873 psr->block = i;
3874 psr->msymbol.minsym = msymbol;
3875 psr->msymbol.objfile = objfile;
3876 psr->symtab = NULL;
3877 psr->symbol = NULL;
3878 psr->next = NULL;
3879 if (tail == NULL)
3880 found = psr;
3881 else
3882 tail->next = psr;
3883 tail = psr;
3884 }
3885 }
3886 }
3887 }
3888 }
3889 }
3890
3891 discard_cleanups (retval_chain);
3892 do_cleanups (old_chain);
3893 *matches = found;
3894 }
3895
3896 /* Helper function for symtab_symbol_info, this function uses
3897 the data returned from search_symbols() to print information
3898 regarding the match to gdb_stdout. */
3899
3900 static void
3901 print_symbol_info (enum search_domain kind,
3902 struct symtab *s, struct symbol *sym,
3903 int block, const char *last)
3904 {
3905 const char *s_filename = symtab_to_filename_for_display (s);
3906
3907 if (last == NULL || filename_cmp (last, s_filename) != 0)
3908 {
3909 fputs_filtered ("\nFile ", gdb_stdout);
3910 fputs_filtered (s_filename, gdb_stdout);
3911 fputs_filtered (":\n", gdb_stdout);
3912 }
3913
3914 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3915 printf_filtered ("static ");
3916
3917 /* Typedef that is not a C++ class. */
3918 if (kind == TYPES_DOMAIN
3919 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3920 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3921 /* variable, func, or typedef-that-is-c++-class. */
3922 else if (kind < TYPES_DOMAIN
3923 || (kind == TYPES_DOMAIN
3924 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3925 {
3926 type_print (SYMBOL_TYPE (sym),
3927 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3928 ? "" : SYMBOL_PRINT_NAME (sym)),
3929 gdb_stdout, 0);
3930
3931 printf_filtered (";\n");
3932 }
3933 }
3934
3935 /* This help function for symtab_symbol_info() prints information
3936 for non-debugging symbols to gdb_stdout. */
3937
3938 static void
3939 print_msymbol_info (struct bound_minimal_symbol msymbol)
3940 {
3941 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3942 char *tmp;
3943
3944 if (gdbarch_addr_bit (gdbarch) <= 32)
3945 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3946 & (CORE_ADDR) 0xffffffff,
3947 8);
3948 else
3949 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3950 16);
3951 printf_filtered ("%s %s\n",
3952 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3953 }
3954
3955 /* This is the guts of the commands "info functions", "info types", and
3956 "info variables". It calls search_symbols to find all matches and then
3957 print_[m]symbol_info to print out some useful information about the
3958 matches. */
3959
3960 static void
3961 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3962 {
3963 static const char * const classnames[] =
3964 {"variable", "function", "type"};
3965 struct symbol_search *symbols;
3966 struct symbol_search *p;
3967 struct cleanup *old_chain;
3968 const char *last_filename = NULL;
3969 int first = 1;
3970
3971 gdb_assert (kind <= TYPES_DOMAIN);
3972
3973 /* Must make sure that if we're interrupted, symbols gets freed. */
3974 search_symbols (regexp, kind, 0, NULL, &symbols);
3975 old_chain = make_cleanup_free_search_symbols (&symbols);
3976
3977 if (regexp != NULL)
3978 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3979 classnames[kind], regexp);
3980 else
3981 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3982
3983 for (p = symbols; p != NULL; p = p->next)
3984 {
3985 QUIT;
3986
3987 if (p->msymbol.minsym != NULL)
3988 {
3989 if (first)
3990 {
3991 printf_filtered (_("\nNon-debugging symbols:\n"));
3992 first = 0;
3993 }
3994 print_msymbol_info (p->msymbol);
3995 }
3996 else
3997 {
3998 print_symbol_info (kind,
3999 p->symtab,
4000 p->symbol,
4001 p->block,
4002 last_filename);
4003 last_filename = symtab_to_filename_for_display (p->symtab);
4004 }
4005 }
4006
4007 do_cleanups (old_chain);
4008 }
4009
4010 static void
4011 variables_info (char *regexp, int from_tty)
4012 {
4013 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4014 }
4015
4016 static void
4017 functions_info (char *regexp, int from_tty)
4018 {
4019 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4020 }
4021
4022
4023 static void
4024 types_info (char *regexp, int from_tty)
4025 {
4026 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4027 }
4028
4029 /* Breakpoint all functions matching regular expression. */
4030
4031 void
4032 rbreak_command_wrapper (char *regexp, int from_tty)
4033 {
4034 rbreak_command (regexp, from_tty);
4035 }
4036
4037 /* A cleanup function that calls end_rbreak_breakpoints. */
4038
4039 static void
4040 do_end_rbreak_breakpoints (void *ignore)
4041 {
4042 end_rbreak_breakpoints ();
4043 }
4044
4045 static void
4046 rbreak_command (char *regexp, int from_tty)
4047 {
4048 struct symbol_search *ss;
4049 struct symbol_search *p;
4050 struct cleanup *old_chain;
4051 char *string = NULL;
4052 int len = 0;
4053 const char **files = NULL;
4054 const char *file_name;
4055 int nfiles = 0;
4056
4057 if (regexp)
4058 {
4059 char *colon = strchr (regexp, ':');
4060
4061 if (colon && *(colon + 1) != ':')
4062 {
4063 int colon_index;
4064 char *local_name;
4065
4066 colon_index = colon - regexp;
4067 local_name = alloca (colon_index + 1);
4068 memcpy (local_name, regexp, colon_index);
4069 local_name[colon_index--] = 0;
4070 while (isspace (local_name[colon_index]))
4071 local_name[colon_index--] = 0;
4072 file_name = local_name;
4073 files = &file_name;
4074 nfiles = 1;
4075 regexp = skip_spaces (colon + 1);
4076 }
4077 }
4078
4079 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4080 old_chain = make_cleanup_free_search_symbols (&ss);
4081 make_cleanup (free_current_contents, &string);
4082
4083 start_rbreak_breakpoints ();
4084 make_cleanup (do_end_rbreak_breakpoints, NULL);
4085 for (p = ss; p != NULL; p = p->next)
4086 {
4087 if (p->msymbol.minsym == NULL)
4088 {
4089 const char *fullname = symtab_to_fullname (p->symtab);
4090
4091 int newlen = (strlen (fullname)
4092 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4093 + 4);
4094
4095 if (newlen > len)
4096 {
4097 string = xrealloc (string, newlen);
4098 len = newlen;
4099 }
4100 strcpy (string, fullname);
4101 strcat (string, ":'");
4102 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4103 strcat (string, "'");
4104 break_command (string, from_tty);
4105 print_symbol_info (FUNCTIONS_DOMAIN,
4106 p->symtab,
4107 p->symbol,
4108 p->block,
4109 symtab_to_filename_for_display (p->symtab));
4110 }
4111 else
4112 {
4113 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4114
4115 if (newlen > len)
4116 {
4117 string = xrealloc (string, newlen);
4118 len = newlen;
4119 }
4120 strcpy (string, "'");
4121 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4122 strcat (string, "'");
4123
4124 break_command (string, from_tty);
4125 printf_filtered ("<function, no debug info> %s;\n",
4126 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4127 }
4128 }
4129
4130 do_cleanups (old_chain);
4131 }
4132 \f
4133
4134 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4135
4136 Either sym_text[sym_text_len] != '(' and then we search for any
4137 symbol starting with SYM_TEXT text.
4138
4139 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4140 be terminated at that point. Partial symbol tables do not have parameters
4141 information. */
4142
4143 static int
4144 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4145 {
4146 int (*ncmp) (const char *, const char *, size_t);
4147
4148 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4149
4150 if (ncmp (name, sym_text, sym_text_len) != 0)
4151 return 0;
4152
4153 if (sym_text[sym_text_len] == '(')
4154 {
4155 /* User searches for `name(someth...'. Require NAME to be terminated.
4156 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4157 present but accept even parameters presence. In this case this
4158 function is in fact strcmp_iw but whitespace skipping is not supported
4159 for tab completion. */
4160
4161 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4162 return 0;
4163 }
4164
4165 return 1;
4166 }
4167
4168 /* Free any memory associated with a completion list. */
4169
4170 static void
4171 free_completion_list (VEC (char_ptr) **list_ptr)
4172 {
4173 int i;
4174 char *p;
4175
4176 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4177 xfree (p);
4178 VEC_free (char_ptr, *list_ptr);
4179 }
4180
4181 /* Callback for make_cleanup. */
4182
4183 static void
4184 do_free_completion_list (void *list)
4185 {
4186 free_completion_list (list);
4187 }
4188
4189 /* Helper routine for make_symbol_completion_list. */
4190
4191 static VEC (char_ptr) *return_val;
4192
4193 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4194 completion_list_add_name \
4195 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4196
4197 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4198 completion_list_add_name \
4199 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4200
4201 /* Test to see if the symbol specified by SYMNAME (which is already
4202 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4203 characters. If so, add it to the current completion list. */
4204
4205 static void
4206 completion_list_add_name (const char *symname,
4207 const char *sym_text, int sym_text_len,
4208 const char *text, const char *word)
4209 {
4210 /* Clip symbols that cannot match. */
4211 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4212 return;
4213
4214 /* We have a match for a completion, so add SYMNAME to the current list
4215 of matches. Note that the name is moved to freshly malloc'd space. */
4216
4217 {
4218 char *new;
4219
4220 if (word == sym_text)
4221 {
4222 new = xmalloc (strlen (symname) + 5);
4223 strcpy (new, symname);
4224 }
4225 else if (word > sym_text)
4226 {
4227 /* Return some portion of symname. */
4228 new = xmalloc (strlen (symname) + 5);
4229 strcpy (new, symname + (word - sym_text));
4230 }
4231 else
4232 {
4233 /* Return some of SYM_TEXT plus symname. */
4234 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4235 strncpy (new, word, sym_text - word);
4236 new[sym_text - word] = '\0';
4237 strcat (new, symname);
4238 }
4239
4240 VEC_safe_push (char_ptr, return_val, new);
4241 }
4242 }
4243
4244 /* ObjC: In case we are completing on a selector, look as the msymbol
4245 again and feed all the selectors into the mill. */
4246
4247 static void
4248 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4249 const char *sym_text, int sym_text_len,
4250 const char *text, const char *word)
4251 {
4252 static char *tmp = NULL;
4253 static unsigned int tmplen = 0;
4254
4255 const char *method, *category, *selector;
4256 char *tmp2 = NULL;
4257
4258 method = MSYMBOL_NATURAL_NAME (msymbol);
4259
4260 /* Is it a method? */
4261 if ((method[0] != '-') && (method[0] != '+'))
4262 return;
4263
4264 if (sym_text[0] == '[')
4265 /* Complete on shortened method method. */
4266 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4267
4268 while ((strlen (method) + 1) >= tmplen)
4269 {
4270 if (tmplen == 0)
4271 tmplen = 1024;
4272 else
4273 tmplen *= 2;
4274 tmp = xrealloc (tmp, tmplen);
4275 }
4276 selector = strchr (method, ' ');
4277 if (selector != NULL)
4278 selector++;
4279
4280 category = strchr (method, '(');
4281
4282 if ((category != NULL) && (selector != NULL))
4283 {
4284 memcpy (tmp, method, (category - method));
4285 tmp[category - method] = ' ';
4286 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4287 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4288 if (sym_text[0] == '[')
4289 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4290 }
4291
4292 if (selector != NULL)
4293 {
4294 /* Complete on selector only. */
4295 strcpy (tmp, selector);
4296 tmp2 = strchr (tmp, ']');
4297 if (tmp2 != NULL)
4298 *tmp2 = '\0';
4299
4300 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4301 }
4302 }
4303
4304 /* Break the non-quoted text based on the characters which are in
4305 symbols. FIXME: This should probably be language-specific. */
4306
4307 static const char *
4308 language_search_unquoted_string (const char *text, const char *p)
4309 {
4310 for (; p > text; --p)
4311 {
4312 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4313 continue;
4314 else
4315 {
4316 if ((current_language->la_language == language_objc))
4317 {
4318 if (p[-1] == ':') /* Might be part of a method name. */
4319 continue;
4320 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4321 p -= 2; /* Beginning of a method name. */
4322 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4323 { /* Might be part of a method name. */
4324 const char *t = p;
4325
4326 /* Seeing a ' ' or a '(' is not conclusive evidence
4327 that we are in the middle of a method name. However,
4328 finding "-[" or "+[" should be pretty un-ambiguous.
4329 Unfortunately we have to find it now to decide. */
4330
4331 while (t > text)
4332 if (isalnum (t[-1]) || t[-1] == '_' ||
4333 t[-1] == ' ' || t[-1] == ':' ||
4334 t[-1] == '(' || t[-1] == ')')
4335 --t;
4336 else
4337 break;
4338
4339 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4340 p = t - 2; /* Method name detected. */
4341 /* Else we leave with p unchanged. */
4342 }
4343 }
4344 break;
4345 }
4346 }
4347 return p;
4348 }
4349
4350 static void
4351 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4352 int sym_text_len, const char *text,
4353 const char *word)
4354 {
4355 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4356 {
4357 struct type *t = SYMBOL_TYPE (sym);
4358 enum type_code c = TYPE_CODE (t);
4359 int j;
4360
4361 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4362 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4363 if (TYPE_FIELD_NAME (t, j))
4364 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4365 sym_text, sym_text_len, text, word);
4366 }
4367 }
4368
4369 /* Type of the user_data argument passed to add_macro_name or
4370 symbol_completion_matcher. The contents are simply whatever is
4371 needed by completion_list_add_name. */
4372 struct add_name_data
4373 {
4374 const char *sym_text;
4375 int sym_text_len;
4376 const char *text;
4377 const char *word;
4378 };
4379
4380 /* A callback used with macro_for_each and macro_for_each_in_scope.
4381 This adds a macro's name to the current completion list. */
4382
4383 static void
4384 add_macro_name (const char *name, const struct macro_definition *ignore,
4385 struct macro_source_file *ignore2, int ignore3,
4386 void *user_data)
4387 {
4388 struct add_name_data *datum = (struct add_name_data *) user_data;
4389
4390 completion_list_add_name (name,
4391 datum->sym_text, datum->sym_text_len,
4392 datum->text, datum->word);
4393 }
4394
4395 /* A callback for expand_symtabs_matching. */
4396
4397 static int
4398 symbol_completion_matcher (const char *name, void *user_data)
4399 {
4400 struct add_name_data *datum = (struct add_name_data *) user_data;
4401
4402 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4403 }
4404
4405 VEC (char_ptr) *
4406 default_make_symbol_completion_list_break_on (const char *text,
4407 const char *word,
4408 const char *break_on,
4409 enum type_code code)
4410 {
4411 /* Problem: All of the symbols have to be copied because readline
4412 frees them. I'm not going to worry about this; hopefully there
4413 won't be that many. */
4414
4415 struct symbol *sym;
4416 struct symtab *s;
4417 struct minimal_symbol *msymbol;
4418 struct objfile *objfile;
4419 const struct block *b;
4420 const struct block *surrounding_static_block, *surrounding_global_block;
4421 struct block_iterator iter;
4422 /* The symbol we are completing on. Points in same buffer as text. */
4423 const char *sym_text;
4424 /* Length of sym_text. */
4425 int sym_text_len;
4426 struct add_name_data datum;
4427 struct cleanup *back_to;
4428
4429 /* Now look for the symbol we are supposed to complete on. */
4430 {
4431 const char *p;
4432 char quote_found;
4433 const char *quote_pos = NULL;
4434
4435 /* First see if this is a quoted string. */
4436 quote_found = '\0';
4437 for (p = text; *p != '\0'; ++p)
4438 {
4439 if (quote_found != '\0')
4440 {
4441 if (*p == quote_found)
4442 /* Found close quote. */
4443 quote_found = '\0';
4444 else if (*p == '\\' && p[1] == quote_found)
4445 /* A backslash followed by the quote character
4446 doesn't end the string. */
4447 ++p;
4448 }
4449 else if (*p == '\'' || *p == '"')
4450 {
4451 quote_found = *p;
4452 quote_pos = p;
4453 }
4454 }
4455 if (quote_found == '\'')
4456 /* A string within single quotes can be a symbol, so complete on it. */
4457 sym_text = quote_pos + 1;
4458 else if (quote_found == '"')
4459 /* A double-quoted string is never a symbol, nor does it make sense
4460 to complete it any other way. */
4461 {
4462 return NULL;
4463 }
4464 else
4465 {
4466 /* It is not a quoted string. Break it based on the characters
4467 which are in symbols. */
4468 while (p > text)
4469 {
4470 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4471 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4472 --p;
4473 else
4474 break;
4475 }
4476 sym_text = p;
4477 }
4478 }
4479
4480 sym_text_len = strlen (sym_text);
4481
4482 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4483
4484 if (current_language->la_language == language_cplus
4485 || current_language->la_language == language_java
4486 || current_language->la_language == language_fortran)
4487 {
4488 /* These languages may have parameters entered by user but they are never
4489 present in the partial symbol tables. */
4490
4491 const char *cs = memchr (sym_text, '(', sym_text_len);
4492
4493 if (cs)
4494 sym_text_len = cs - sym_text;
4495 }
4496 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4497
4498 return_val = NULL;
4499 back_to = make_cleanup (do_free_completion_list, &return_val);
4500
4501 datum.sym_text = sym_text;
4502 datum.sym_text_len = sym_text_len;
4503 datum.text = text;
4504 datum.word = word;
4505
4506 /* Look through the partial symtabs for all symbols which begin
4507 by matching SYM_TEXT. Expand all CUs that you find to the list.
4508 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4509 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4510 &datum);
4511
4512 /* At this point scan through the misc symbol vectors and add each
4513 symbol you find to the list. Eventually we want to ignore
4514 anything that isn't a text symbol (everything else will be
4515 handled by the psymtab code above). */
4516
4517 if (code == TYPE_CODE_UNDEF)
4518 {
4519 ALL_MSYMBOLS (objfile, msymbol)
4520 {
4521 QUIT;
4522 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4523 word);
4524
4525 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4526 word);
4527 }
4528 }
4529
4530 /* Search upwards from currently selected frame (so that we can
4531 complete on local vars). Also catch fields of types defined in
4532 this places which match our text string. Only complete on types
4533 visible from current context. */
4534
4535 b = get_selected_block (0);
4536 surrounding_static_block = block_static_block (b);
4537 surrounding_global_block = block_global_block (b);
4538 if (surrounding_static_block != NULL)
4539 while (b != surrounding_static_block)
4540 {
4541 QUIT;
4542
4543 ALL_BLOCK_SYMBOLS (b, iter, sym)
4544 {
4545 if (code == TYPE_CODE_UNDEF)
4546 {
4547 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4548 word);
4549 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4550 word);
4551 }
4552 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4553 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4554 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4555 word);
4556 }
4557
4558 /* Stop when we encounter an enclosing function. Do not stop for
4559 non-inlined functions - the locals of the enclosing function
4560 are in scope for a nested function. */
4561 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4562 break;
4563 b = BLOCK_SUPERBLOCK (b);
4564 }
4565
4566 /* Add fields from the file's types; symbols will be added below. */
4567
4568 if (code == TYPE_CODE_UNDEF)
4569 {
4570 if (surrounding_static_block != NULL)
4571 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4572 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4573
4574 if (surrounding_global_block != NULL)
4575 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4576 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4577 }
4578
4579 /* Go through the symtabs and check the externs and statics for
4580 symbols which match. */
4581
4582 ALL_PRIMARY_SYMTABS (objfile, s)
4583 {
4584 QUIT;
4585 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4586 ALL_BLOCK_SYMBOLS (b, iter, sym)
4587 {
4588 if (code == TYPE_CODE_UNDEF
4589 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4590 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4591 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4592 }
4593 }
4594
4595 ALL_PRIMARY_SYMTABS (objfile, s)
4596 {
4597 QUIT;
4598 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4599 ALL_BLOCK_SYMBOLS (b, iter, sym)
4600 {
4601 if (code == TYPE_CODE_UNDEF
4602 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4603 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4604 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4605 }
4606 }
4607
4608 /* Skip macros if we are completing a struct tag -- arguable but
4609 usually what is expected. */
4610 if (current_language->la_macro_expansion == macro_expansion_c
4611 && code == TYPE_CODE_UNDEF)
4612 {
4613 struct macro_scope *scope;
4614
4615 /* Add any macros visible in the default scope. Note that this
4616 may yield the occasional wrong result, because an expression
4617 might be evaluated in a scope other than the default. For
4618 example, if the user types "break file:line if <TAB>", the
4619 resulting expression will be evaluated at "file:line" -- but
4620 at there does not seem to be a way to detect this at
4621 completion time. */
4622 scope = default_macro_scope ();
4623 if (scope)
4624 {
4625 macro_for_each_in_scope (scope->file, scope->line,
4626 add_macro_name, &datum);
4627 xfree (scope);
4628 }
4629
4630 /* User-defined macros are always visible. */
4631 macro_for_each (macro_user_macros, add_macro_name, &datum);
4632 }
4633
4634 discard_cleanups (back_to);
4635 return (return_val);
4636 }
4637
4638 VEC (char_ptr) *
4639 default_make_symbol_completion_list (const char *text, const char *word,
4640 enum type_code code)
4641 {
4642 return default_make_symbol_completion_list_break_on (text, word, "", code);
4643 }
4644
4645 /* Return a vector of all symbols (regardless of class) which begin by
4646 matching TEXT. If the answer is no symbols, then the return value
4647 is NULL. */
4648
4649 VEC (char_ptr) *
4650 make_symbol_completion_list (const char *text, const char *word)
4651 {
4652 return current_language->la_make_symbol_completion_list (text, word,
4653 TYPE_CODE_UNDEF);
4654 }
4655
4656 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4657 symbols whose type code is CODE. */
4658
4659 VEC (char_ptr) *
4660 make_symbol_completion_type (const char *text, const char *word,
4661 enum type_code code)
4662 {
4663 gdb_assert (code == TYPE_CODE_UNION
4664 || code == TYPE_CODE_STRUCT
4665 || code == TYPE_CODE_ENUM);
4666 return current_language->la_make_symbol_completion_list (text, word, code);
4667 }
4668
4669 /* Like make_symbol_completion_list, but suitable for use as a
4670 completion function. */
4671
4672 VEC (char_ptr) *
4673 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4674 const char *text, const char *word)
4675 {
4676 return make_symbol_completion_list (text, word);
4677 }
4678
4679 /* Like make_symbol_completion_list, but returns a list of symbols
4680 defined in a source file FILE. */
4681
4682 VEC (char_ptr) *
4683 make_file_symbol_completion_list (const char *text, const char *word,
4684 const char *srcfile)
4685 {
4686 struct symbol *sym;
4687 struct symtab *s;
4688 struct block *b;
4689 struct block_iterator iter;
4690 /* The symbol we are completing on. Points in same buffer as text. */
4691 const char *sym_text;
4692 /* Length of sym_text. */
4693 int sym_text_len;
4694
4695 /* Now look for the symbol we are supposed to complete on.
4696 FIXME: This should be language-specific. */
4697 {
4698 const char *p;
4699 char quote_found;
4700 const char *quote_pos = NULL;
4701
4702 /* First see if this is a quoted string. */
4703 quote_found = '\0';
4704 for (p = text; *p != '\0'; ++p)
4705 {
4706 if (quote_found != '\0')
4707 {
4708 if (*p == quote_found)
4709 /* Found close quote. */
4710 quote_found = '\0';
4711 else if (*p == '\\' && p[1] == quote_found)
4712 /* A backslash followed by the quote character
4713 doesn't end the string. */
4714 ++p;
4715 }
4716 else if (*p == '\'' || *p == '"')
4717 {
4718 quote_found = *p;
4719 quote_pos = p;
4720 }
4721 }
4722 if (quote_found == '\'')
4723 /* A string within single quotes can be a symbol, so complete on it. */
4724 sym_text = quote_pos + 1;
4725 else if (quote_found == '"')
4726 /* A double-quoted string is never a symbol, nor does it make sense
4727 to complete it any other way. */
4728 {
4729 return NULL;
4730 }
4731 else
4732 {
4733 /* Not a quoted string. */
4734 sym_text = language_search_unquoted_string (text, p);
4735 }
4736 }
4737
4738 sym_text_len = strlen (sym_text);
4739
4740 return_val = NULL;
4741
4742 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4743 in). */
4744 s = lookup_symtab (srcfile);
4745 if (s == NULL)
4746 {
4747 /* Maybe they typed the file with leading directories, while the
4748 symbol tables record only its basename. */
4749 const char *tail = lbasename (srcfile);
4750
4751 if (tail > srcfile)
4752 s = lookup_symtab (tail);
4753 }
4754
4755 /* If we have no symtab for that file, return an empty list. */
4756 if (s == NULL)
4757 return (return_val);
4758
4759 /* Go through this symtab and check the externs and statics for
4760 symbols which match. */
4761
4762 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4763 ALL_BLOCK_SYMBOLS (b, iter, sym)
4764 {
4765 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4766 }
4767
4768 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4769 ALL_BLOCK_SYMBOLS (b, iter, sym)
4770 {
4771 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4772 }
4773
4774 return (return_val);
4775 }
4776
4777 /* A helper function for make_source_files_completion_list. It adds
4778 another file name to a list of possible completions, growing the
4779 list as necessary. */
4780
4781 static void
4782 add_filename_to_list (const char *fname, const char *text, const char *word,
4783 VEC (char_ptr) **list)
4784 {
4785 char *new;
4786 size_t fnlen = strlen (fname);
4787
4788 if (word == text)
4789 {
4790 /* Return exactly fname. */
4791 new = xmalloc (fnlen + 5);
4792 strcpy (new, fname);
4793 }
4794 else if (word > text)
4795 {
4796 /* Return some portion of fname. */
4797 new = xmalloc (fnlen + 5);
4798 strcpy (new, fname + (word - text));
4799 }
4800 else
4801 {
4802 /* Return some of TEXT plus fname. */
4803 new = xmalloc (fnlen + (text - word) + 5);
4804 strncpy (new, word, text - word);
4805 new[text - word] = '\0';
4806 strcat (new, fname);
4807 }
4808 VEC_safe_push (char_ptr, *list, new);
4809 }
4810
4811 static int
4812 not_interesting_fname (const char *fname)
4813 {
4814 static const char *illegal_aliens[] = {
4815 "_globals_", /* inserted by coff_symtab_read */
4816 NULL
4817 };
4818 int i;
4819
4820 for (i = 0; illegal_aliens[i]; i++)
4821 {
4822 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4823 return 1;
4824 }
4825 return 0;
4826 }
4827
4828 /* An object of this type is passed as the user_data argument to
4829 map_partial_symbol_filenames. */
4830 struct add_partial_filename_data
4831 {
4832 struct filename_seen_cache *filename_seen_cache;
4833 const char *text;
4834 const char *word;
4835 int text_len;
4836 VEC (char_ptr) **list;
4837 };
4838
4839 /* A callback for map_partial_symbol_filenames. */
4840
4841 static void
4842 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4843 void *user_data)
4844 {
4845 struct add_partial_filename_data *data = user_data;
4846
4847 if (not_interesting_fname (filename))
4848 return;
4849 if (!filename_seen (data->filename_seen_cache, filename, 1)
4850 && filename_ncmp (filename, data->text, data->text_len) == 0)
4851 {
4852 /* This file matches for a completion; add it to the
4853 current list of matches. */
4854 add_filename_to_list (filename, data->text, data->word, data->list);
4855 }
4856 else
4857 {
4858 const char *base_name = lbasename (filename);
4859
4860 if (base_name != filename
4861 && !filename_seen (data->filename_seen_cache, base_name, 1)
4862 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4863 add_filename_to_list (base_name, data->text, data->word, data->list);
4864 }
4865 }
4866
4867 /* Return a vector of all source files whose names begin with matching
4868 TEXT. The file names are looked up in the symbol tables of this
4869 program. If the answer is no matchess, then the return value is
4870 NULL. */
4871
4872 VEC (char_ptr) *
4873 make_source_files_completion_list (const char *text, const char *word)
4874 {
4875 struct symtab *s;
4876 struct objfile *objfile;
4877 size_t text_len = strlen (text);
4878 VEC (char_ptr) *list = NULL;
4879 const char *base_name;
4880 struct add_partial_filename_data datum;
4881 struct filename_seen_cache *filename_seen_cache;
4882 struct cleanup *back_to, *cache_cleanup;
4883
4884 if (!have_full_symbols () && !have_partial_symbols ())
4885 return list;
4886
4887 back_to = make_cleanup (do_free_completion_list, &list);
4888
4889 filename_seen_cache = create_filename_seen_cache ();
4890 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4891 filename_seen_cache);
4892
4893 ALL_SYMTABS (objfile, s)
4894 {
4895 if (not_interesting_fname (s->filename))
4896 continue;
4897 if (!filename_seen (filename_seen_cache, s->filename, 1)
4898 && filename_ncmp (s->filename, text, text_len) == 0)
4899 {
4900 /* This file matches for a completion; add it to the current
4901 list of matches. */
4902 add_filename_to_list (s->filename, text, word, &list);
4903 }
4904 else
4905 {
4906 /* NOTE: We allow the user to type a base name when the
4907 debug info records leading directories, but not the other
4908 way around. This is what subroutines of breakpoint
4909 command do when they parse file names. */
4910 base_name = lbasename (s->filename);
4911 if (base_name != s->filename
4912 && !filename_seen (filename_seen_cache, base_name, 1)
4913 && filename_ncmp (base_name, text, text_len) == 0)
4914 add_filename_to_list (base_name, text, word, &list);
4915 }
4916 }
4917
4918 datum.filename_seen_cache = filename_seen_cache;
4919 datum.text = text;
4920 datum.word = word;
4921 datum.text_len = text_len;
4922 datum.list = &list;
4923 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4924 0 /*need_fullname*/);
4925
4926 do_cleanups (cache_cleanup);
4927 discard_cleanups (back_to);
4928
4929 return list;
4930 }
4931 \f
4932 /* Track MAIN */
4933
4934 /* Return the "main_info" object for the current program space. If
4935 the object has not yet been created, create it and fill in some
4936 default values. */
4937
4938 static struct main_info *
4939 get_main_info (void)
4940 {
4941 struct main_info *info = program_space_data (current_program_space,
4942 main_progspace_key);
4943
4944 if (info == NULL)
4945 {
4946 /* It may seem strange to store the main name in the progspace
4947 and also in whatever objfile happens to see a main name in
4948 its debug info. The reason for this is mainly historical:
4949 gdb returned "main" as the name even if no function named
4950 "main" was defined the program; and this approach lets us
4951 keep compatibility. */
4952 info = XCNEW (struct main_info);
4953 info->language_of_main = language_unknown;
4954 set_program_space_data (current_program_space, main_progspace_key,
4955 info);
4956 }
4957
4958 return info;
4959 }
4960
4961 /* A cleanup to destroy a struct main_info when a progspace is
4962 destroyed. */
4963
4964 static void
4965 main_info_cleanup (struct program_space *pspace, void *data)
4966 {
4967 struct main_info *info = data;
4968
4969 if (info != NULL)
4970 xfree (info->name_of_main);
4971 xfree (info);
4972 }
4973
4974 static void
4975 set_main_name (const char *name, enum language lang)
4976 {
4977 struct main_info *info = get_main_info ();
4978
4979 if (info->name_of_main != NULL)
4980 {
4981 xfree (info->name_of_main);
4982 info->name_of_main = NULL;
4983 info->language_of_main = language_unknown;
4984 }
4985 if (name != NULL)
4986 {
4987 info->name_of_main = xstrdup (name);
4988 info->language_of_main = lang;
4989 }
4990 }
4991
4992 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4993 accordingly. */
4994
4995 static void
4996 find_main_name (void)
4997 {
4998 const char *new_main_name;
4999 struct objfile *objfile;
5000
5001 /* First check the objfiles to see whether a debuginfo reader has
5002 picked up the appropriate main name. Historically the main name
5003 was found in a more or less random way; this approach instead
5004 relies on the order of objfile creation -- which still isn't
5005 guaranteed to get the correct answer, but is just probably more
5006 accurate. */
5007 ALL_OBJFILES (objfile)
5008 {
5009 if (objfile->per_bfd->name_of_main != NULL)
5010 {
5011 set_main_name (objfile->per_bfd->name_of_main,
5012 objfile->per_bfd->language_of_main);
5013 return;
5014 }
5015 }
5016
5017 /* Try to see if the main procedure is in Ada. */
5018 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5019 be to add a new method in the language vector, and call this
5020 method for each language until one of them returns a non-empty
5021 name. This would allow us to remove this hard-coded call to
5022 an Ada function. It is not clear that this is a better approach
5023 at this point, because all methods need to be written in a way
5024 such that false positives never be returned. For instance, it is
5025 important that a method does not return a wrong name for the main
5026 procedure if the main procedure is actually written in a different
5027 language. It is easy to guaranty this with Ada, since we use a
5028 special symbol generated only when the main in Ada to find the name
5029 of the main procedure. It is difficult however to see how this can
5030 be guarantied for languages such as C, for instance. This suggests
5031 that order of call for these methods becomes important, which means
5032 a more complicated approach. */
5033 new_main_name = ada_main_name ();
5034 if (new_main_name != NULL)
5035 {
5036 set_main_name (new_main_name, language_ada);
5037 return;
5038 }
5039
5040 new_main_name = d_main_name ();
5041 if (new_main_name != NULL)
5042 {
5043 set_main_name (new_main_name, language_d);
5044 return;
5045 }
5046
5047 new_main_name = go_main_name ();
5048 if (new_main_name != NULL)
5049 {
5050 set_main_name (new_main_name, language_go);
5051 return;
5052 }
5053
5054 new_main_name = pascal_main_name ();
5055 if (new_main_name != NULL)
5056 {
5057 set_main_name (new_main_name, language_pascal);
5058 return;
5059 }
5060
5061 /* The languages above didn't identify the name of the main procedure.
5062 Fallback to "main". */
5063 set_main_name ("main", language_unknown);
5064 }
5065
5066 char *
5067 main_name (void)
5068 {
5069 struct main_info *info = get_main_info ();
5070
5071 if (info->name_of_main == NULL)
5072 find_main_name ();
5073
5074 return info->name_of_main;
5075 }
5076
5077 /* Return the language of the main function. If it is not known,
5078 return language_unknown. */
5079
5080 enum language
5081 main_language (void)
5082 {
5083 struct main_info *info = get_main_info ();
5084
5085 if (info->name_of_main == NULL)
5086 find_main_name ();
5087
5088 return info->language_of_main;
5089 }
5090
5091 /* Handle ``executable_changed'' events for the symtab module. */
5092
5093 static void
5094 symtab_observer_executable_changed (void)
5095 {
5096 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5097 set_main_name (NULL, language_unknown);
5098 }
5099
5100 /* Return 1 if the supplied producer string matches the ARM RealView
5101 compiler (armcc). */
5102
5103 int
5104 producer_is_realview (const char *producer)
5105 {
5106 static const char *const arm_idents[] = {
5107 "ARM C Compiler, ADS",
5108 "Thumb C Compiler, ADS",
5109 "ARM C++ Compiler, ADS",
5110 "Thumb C++ Compiler, ADS",
5111 "ARM/Thumb C/C++ Compiler, RVCT",
5112 "ARM C/C++ Compiler, RVCT"
5113 };
5114 int i;
5115
5116 if (producer == NULL)
5117 return 0;
5118
5119 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5120 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5121 return 1;
5122
5123 return 0;
5124 }
5125
5126 \f
5127
5128 /* The next index to hand out in response to a registration request. */
5129
5130 static int next_aclass_value = LOC_FINAL_VALUE;
5131
5132 /* The maximum number of "aclass" registrations we support. This is
5133 constant for convenience. */
5134 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5135
5136 /* The objects representing the various "aclass" values. The elements
5137 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5138 elements are those registered at gdb initialization time. */
5139
5140 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5141
5142 /* The globally visible pointer. This is separate from 'symbol_impl'
5143 so that it can be const. */
5144
5145 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5146
5147 /* Make sure we saved enough room in struct symbol. */
5148
5149 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5150
5151 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5152 is the ops vector associated with this index. This returns the new
5153 index, which should be used as the aclass_index field for symbols
5154 of this type. */
5155
5156 int
5157 register_symbol_computed_impl (enum address_class aclass,
5158 const struct symbol_computed_ops *ops)
5159 {
5160 int result = next_aclass_value++;
5161
5162 gdb_assert (aclass == LOC_COMPUTED);
5163 gdb_assert (result < MAX_SYMBOL_IMPLS);
5164 symbol_impl[result].aclass = aclass;
5165 symbol_impl[result].ops_computed = ops;
5166
5167 /* Sanity check OPS. */
5168 gdb_assert (ops != NULL);
5169 gdb_assert (ops->tracepoint_var_ref != NULL);
5170 gdb_assert (ops->describe_location != NULL);
5171 gdb_assert (ops->read_needs_frame != NULL);
5172 gdb_assert (ops->read_variable != NULL);
5173
5174 return result;
5175 }
5176
5177 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5178 OPS is the ops vector associated with this index. This returns the
5179 new index, which should be used as the aclass_index field for symbols
5180 of this type. */
5181
5182 int
5183 register_symbol_block_impl (enum address_class aclass,
5184 const struct symbol_block_ops *ops)
5185 {
5186 int result = next_aclass_value++;
5187
5188 gdb_assert (aclass == LOC_BLOCK);
5189 gdb_assert (result < MAX_SYMBOL_IMPLS);
5190 symbol_impl[result].aclass = aclass;
5191 symbol_impl[result].ops_block = ops;
5192
5193 /* Sanity check OPS. */
5194 gdb_assert (ops != NULL);
5195 gdb_assert (ops->find_frame_base_location != NULL);
5196
5197 return result;
5198 }
5199
5200 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5201 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5202 this index. This returns the new index, which should be used as
5203 the aclass_index field for symbols of this type. */
5204
5205 int
5206 register_symbol_register_impl (enum address_class aclass,
5207 const struct symbol_register_ops *ops)
5208 {
5209 int result = next_aclass_value++;
5210
5211 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5212 gdb_assert (result < MAX_SYMBOL_IMPLS);
5213 symbol_impl[result].aclass = aclass;
5214 symbol_impl[result].ops_register = ops;
5215
5216 return result;
5217 }
5218
5219 /* Initialize elements of 'symbol_impl' for the constants in enum
5220 address_class. */
5221
5222 static void
5223 initialize_ordinary_address_classes (void)
5224 {
5225 int i;
5226
5227 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5228 symbol_impl[i].aclass = i;
5229 }
5230
5231 \f
5232
5233 /* Initialize the symbol SYM. */
5234
5235 void
5236 initialize_symbol (struct symbol *sym)
5237 {
5238 memset (sym, 0, sizeof (*sym));
5239 SYMBOL_SECTION (sym) = -1;
5240 }
5241
5242 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5243 obstack. */
5244
5245 struct symbol *
5246 allocate_symbol (struct objfile *objfile)
5247 {
5248 struct symbol *result;
5249
5250 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5251 SYMBOL_SECTION (result) = -1;
5252
5253 return result;
5254 }
5255
5256 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5257 obstack. */
5258
5259 struct template_symbol *
5260 allocate_template_symbol (struct objfile *objfile)
5261 {
5262 struct template_symbol *result;
5263
5264 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5265 SYMBOL_SECTION (&result->base) = -1;
5266
5267 return result;
5268 }
5269
5270 \f
5271
5272 void
5273 _initialize_symtab (void)
5274 {
5275 initialize_ordinary_address_classes ();
5276
5277 main_progspace_key
5278 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5279
5280 add_info ("variables", variables_info, _("\
5281 All global and static variable names, or those matching REGEXP."));
5282 if (dbx_commands)
5283 add_com ("whereis", class_info, variables_info, _("\
5284 All global and static variable names, or those matching REGEXP."));
5285
5286 add_info ("functions", functions_info,
5287 _("All function names, or those matching REGEXP."));
5288
5289 /* FIXME: This command has at least the following problems:
5290 1. It prints builtin types (in a very strange and confusing fashion).
5291 2. It doesn't print right, e.g. with
5292 typedef struct foo *FOO
5293 type_print prints "FOO" when we want to make it (in this situation)
5294 print "struct foo *".
5295 I also think "ptype" or "whatis" is more likely to be useful (but if
5296 there is much disagreement "info types" can be fixed). */
5297 add_info ("types", types_info,
5298 _("All type names, or those matching REGEXP."));
5299
5300 add_info ("sources", sources_info,
5301 _("Source files in the program."));
5302
5303 add_com ("rbreak", class_breakpoint, rbreak_command,
5304 _("Set a breakpoint for all functions matching REGEXP."));
5305
5306 if (xdb_commands)
5307 {
5308 add_com ("lf", class_info, sources_info,
5309 _("Source files in the program"));
5310 add_com ("lg", class_info, variables_info, _("\
5311 All global and static variable names, or those matching REGEXP."));
5312 }
5313
5314 add_setshow_enum_cmd ("multiple-symbols", no_class,
5315 multiple_symbols_modes, &multiple_symbols_mode,
5316 _("\
5317 Set the debugger behavior when more than one symbol are possible matches\n\
5318 in an expression."), _("\
5319 Show how the debugger handles ambiguities in expressions."), _("\
5320 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5321 NULL, NULL, &setlist, &showlist);
5322
5323 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5324 &basenames_may_differ, _("\
5325 Set whether a source file may have multiple base names."), _("\
5326 Show whether a source file may have multiple base names."), _("\
5327 (A \"base name\" is the name of a file with the directory part removed.\n\
5328 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5329 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5330 before comparing them. Canonicalization is an expensive operation,\n\
5331 but it allows the same file be known by more than one base name.\n\
5332 If not set (the default), all source files are assumed to have just\n\
5333 one base name, and gdb will do file name comparisons more efficiently."),
5334 NULL, NULL,
5335 &setlist, &showlist);
5336
5337 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5338 _("Set debugging of symbol table creation."),
5339 _("Show debugging of symbol table creation."), _("\
5340 When enabled (non-zero), debugging messages are printed when building\n\
5341 symbol tables. A value of 1 (one) normally provides enough information.\n\
5342 A value greater than 1 provides more verbose information."),
5343 NULL,
5344 NULL,
5345 &setdebuglist, &showdebuglist);
5346
5347 observer_attach_executable_changed (symtab_observer_executable_changed);
5348 }