gdb: remove SYMBOL_CLASS macro, add getter
[binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include <set>
27 #include "gdbsupport/gdb_vecs.h"
28 #include "gdbtypes.h"
29 #include "gdbsupport/gdb_obstack.h"
30 #include "gdbsupport/gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "gdbsupport/iterator-range.h"
37 #include "completer.h"
38 #include "gdb-demangle.h"
39
40 /* Opaque declarations. */
41 struct ui_file;
42 struct frame_info;
43 struct symbol;
44 struct obstack;
45 struct objfile;
46 struct block;
47 struct blockvector;
48 struct axs_value;
49 struct agent_expr;
50 struct program_space;
51 struct language_defn;
52 struct common_block;
53 struct obj_section;
54 struct cmd_list_element;
55 class probe;
56 struct lookup_name_info;
57
58 /* How to match a lookup name against a symbol search name. */
59 enum class symbol_name_match_type
60 {
61 /* Wild matching. Matches unqualified symbol names in all
62 namespace/module/packages, etc. */
63 WILD,
64
65 /* Full matching. The lookup name indicates a fully-qualified name,
66 and only matches symbol search names in the specified
67 namespace/module/package. */
68 FULL,
69
70 /* Search name matching. This is like FULL, but the search name did
71 not come from the user; instead it is already a search name
72 retrieved from a search_name () call.
73 For Ada, this avoids re-encoding an already-encoded search name
74 (which would potentially incorrectly lowercase letters in the
75 linkage/search name that should remain uppercase). For C++, it
76 avoids trying to demangle a name we already know is
77 demangled. */
78 SEARCH_NAME,
79
80 /* Expression matching. The same as FULL matching in most
81 languages. The same as WILD matching in Ada. */
82 EXPRESSION,
83 };
84
85 /* Hash the given symbol search name according to LANGUAGE's
86 rules. */
87 extern unsigned int search_name_hash (enum language language,
88 const char *search_name);
89
90 /* Ada-specific bits of a lookup_name_info object. This is lazily
91 constructed on demand. */
92
93 class ada_lookup_name_info final
94 {
95 public:
96 /* Construct. */
97 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
98
99 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
100 as name match type. Returns true if there's a match, false
101 otherwise. If non-NULL, store the matching results in MATCH. */
102 bool matches (const char *symbol_search_name,
103 symbol_name_match_type match_type,
104 completion_match_result *comp_match_res) const;
105
106 /* The Ada-encoded lookup name. */
107 const std::string &lookup_name () const
108 { return m_encoded_name; }
109
110 /* Return true if we're supposed to be doing a wild match look
111 up. */
112 bool wild_match_p () const
113 { return m_wild_match_p; }
114
115 /* Return true if we're looking up a name inside package
116 Standard. */
117 bool standard_p () const
118 { return m_standard_p; }
119
120 /* Return true if doing a verbatim match. */
121 bool verbatim_p () const
122 { return m_verbatim_p; }
123
124 private:
125 /* The Ada-encoded lookup name. */
126 std::string m_encoded_name;
127
128 /* Whether the user-provided lookup name was Ada encoded. If so,
129 then return encoded names in the 'matches' method's 'completion
130 match result' output. */
131 bool m_encoded_p : 1;
132
133 /* True if really doing wild matching. Even if the user requests
134 wild matching, some cases require full matching. */
135 bool m_wild_match_p : 1;
136
137 /* True if doing a verbatim match. This is true if the decoded
138 version of the symbol name is wrapped in '<'/'>'. This is an
139 escape hatch users can use to look up symbols the Ada encoding
140 does not understand. */
141 bool m_verbatim_p : 1;
142
143 /* True if the user specified a symbol name that is inside package
144 Standard. Symbol names inside package Standard are handled
145 specially. We always do a non-wild match of the symbol name
146 without the "standard__" prefix, and only search static and
147 global symbols. This was primarily introduced in order to allow
148 the user to specifically access the standard exceptions using,
149 for instance, Standard.Constraint_Error when Constraint_Error is
150 ambiguous (due to the user defining its own Constraint_Error
151 entity inside its program). */
152 bool m_standard_p : 1;
153 };
154
155 /* Language-specific bits of a lookup_name_info object, for languages
156 that do name searching using demangled names (C++/D/Go). This is
157 lazily constructed on demand. */
158
159 struct demangle_for_lookup_info final
160 {
161 public:
162 demangle_for_lookup_info (const lookup_name_info &lookup_name,
163 language lang);
164
165 /* The demangled lookup name. */
166 const std::string &lookup_name () const
167 { return m_demangled_name; }
168
169 private:
170 /* The demangled lookup name. */
171 std::string m_demangled_name;
172 };
173
174 /* Object that aggregates all information related to a symbol lookup
175 name. I.e., the name that is matched against the symbol's search
176 name. Caches per-language information so that it doesn't require
177 recomputing it for every symbol comparison, like for example the
178 Ada encoded name and the symbol's name hash for a given language.
179 The object is conceptually immutable once constructed, and thus has
180 no setters. This is to prevent some code path from tweaking some
181 property of the lookup name for some local reason and accidentally
182 altering the results of any continuing search(es).
183 lookup_name_info objects are generally passed around as a const
184 reference to reinforce that. (They're not passed around by value
185 because they're not small.) */
186 class lookup_name_info final
187 {
188 public:
189 /* We delete this overload so that the callers are required to
190 explicitly handle the lifetime of the name. */
191 lookup_name_info (std::string &&name,
192 symbol_name_match_type match_type,
193 bool completion_mode = false,
194 bool ignore_parameters = false) = delete;
195
196 /* This overload requires that NAME have a lifetime at least as long
197 as the lifetime of this object. */
198 lookup_name_info (const std::string &name,
199 symbol_name_match_type match_type,
200 bool completion_mode = false,
201 bool ignore_parameters = false)
202 : m_match_type (match_type),
203 m_completion_mode (completion_mode),
204 m_ignore_parameters (ignore_parameters),
205 m_name (name)
206 {}
207
208 /* This overload requires that NAME have a lifetime at least as long
209 as the lifetime of this object. */
210 lookup_name_info (const char *name,
211 symbol_name_match_type match_type,
212 bool completion_mode = false,
213 bool ignore_parameters = false)
214 : m_match_type (match_type),
215 m_completion_mode (completion_mode),
216 m_ignore_parameters (ignore_parameters),
217 m_name (name)
218 {}
219
220 /* Getters. See description of each corresponding field. */
221 symbol_name_match_type match_type () const { return m_match_type; }
222 bool completion_mode () const { return m_completion_mode; }
223 gdb::string_view name () const { return m_name; }
224 const bool ignore_parameters () const { return m_ignore_parameters; }
225
226 /* Like the "name" method but guarantees that the returned string is
227 \0-terminated. */
228 const char *c_str () const
229 {
230 /* Actually this is always guaranteed due to how the class is
231 constructed. */
232 return m_name.data ();
233 }
234
235 /* Return a version of this lookup name that is usable with
236 comparisons against symbols have no parameter info, such as
237 psymbols and GDB index symbols. */
238 lookup_name_info make_ignore_params () const
239 {
240 return lookup_name_info (c_str (), m_match_type, m_completion_mode,
241 true /* ignore params */);
242 }
243
244 /* Get the search name hash for searches in language LANG. */
245 unsigned int search_name_hash (language lang) const
246 {
247 /* Only compute each language's hash once. */
248 if (!m_demangled_hashes_p[lang])
249 {
250 m_demangled_hashes[lang]
251 = ::search_name_hash (lang, language_lookup_name (lang));
252 m_demangled_hashes_p[lang] = true;
253 }
254 return m_demangled_hashes[lang];
255 }
256
257 /* Get the search name for searches in language LANG. */
258 const char *language_lookup_name (language lang) const
259 {
260 switch (lang)
261 {
262 case language_ada:
263 return ada ().lookup_name ().c_str ();
264 case language_cplus:
265 return cplus ().lookup_name ().c_str ();
266 case language_d:
267 return d ().lookup_name ().c_str ();
268 case language_go:
269 return go ().lookup_name ().c_str ();
270 default:
271 return m_name.data ();
272 }
273 }
274
275 /* Get the Ada-specific lookup info. */
276 const ada_lookup_name_info &ada () const
277 {
278 maybe_init (m_ada);
279 return *m_ada;
280 }
281
282 /* Get the C++-specific lookup info. */
283 const demangle_for_lookup_info &cplus () const
284 {
285 maybe_init (m_cplus, language_cplus);
286 return *m_cplus;
287 }
288
289 /* Get the D-specific lookup info. */
290 const demangle_for_lookup_info &d () const
291 {
292 maybe_init (m_d, language_d);
293 return *m_d;
294 }
295
296 /* Get the Go-specific lookup info. */
297 const demangle_for_lookup_info &go () const
298 {
299 maybe_init (m_go, language_go);
300 return *m_go;
301 }
302
303 /* Get a reference to a lookup_name_info object that matches any
304 symbol name. */
305 static const lookup_name_info &match_any ();
306
307 private:
308 /* Initialize FIELD, if not initialized yet. */
309 template<typename Field, typename... Args>
310 void maybe_init (Field &field, Args&&... args) const
311 {
312 if (!field)
313 field.emplace (*this, std::forward<Args> (args)...);
314 }
315
316 /* The lookup info as passed to the ctor. */
317 symbol_name_match_type m_match_type;
318 bool m_completion_mode;
319 bool m_ignore_parameters;
320 gdb::string_view m_name;
321
322 /* Language-specific info. These fields are filled lazily the first
323 time a lookup is done in the corresponding language. They're
324 mutable because lookup_name_info objects are typically passed
325 around by const reference (see intro), and they're conceptually
326 "cache" that can always be reconstructed from the non-mutable
327 fields. */
328 mutable gdb::optional<ada_lookup_name_info> m_ada;
329 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
330 mutable gdb::optional<demangle_for_lookup_info> m_d;
331 mutable gdb::optional<demangle_for_lookup_info> m_go;
332
333 /* The demangled hashes. Stored in an array with one entry for each
334 possible language. The second array records whether we've
335 already computed the each language's hash. (These are separate
336 arrays instead of a single array of optional<unsigned> to avoid
337 alignment padding). */
338 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
339 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
340 };
341
342 /* Comparison function for completion symbol lookup.
343
344 Returns true if the symbol name matches against LOOKUP_NAME.
345
346 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
347
348 On success and if non-NULL, COMP_MATCH_RES->match is set to point
349 to the symbol name as should be presented to the user as a
350 completion match list element. In most languages, this is the same
351 as the symbol's search name, but in some, like Ada, the display
352 name is dynamically computed within the comparison routine.
353
354 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
355 points the part of SYMBOL_SEARCH_NAME that was considered to match
356 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
357 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
358 points to "function()" inside SYMBOL_SEARCH_NAME. */
359 typedef bool (symbol_name_matcher_ftype)
360 (const char *symbol_search_name,
361 const lookup_name_info &lookup_name,
362 completion_match_result *comp_match_res);
363
364 /* Some of the structures in this file are space critical.
365 The space-critical structures are:
366
367 struct general_symbol_info
368 struct symbol
369 struct partial_symbol
370
371 These structures are laid out to encourage good packing.
372 They use ENUM_BITFIELD and short int fields, and they order the
373 structure members so that fields less than a word are next
374 to each other so they can be packed together. */
375
376 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
377 all the space critical structures (plus struct minimal_symbol).
378 Memory usage dropped from 99360768 bytes to 90001408 bytes.
379 I measured this with before-and-after tests of
380 "HEAD-old-gdb -readnow HEAD-old-gdb" and
381 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
382 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
383 typing "maint space 1" at the first command prompt.
384
385 Here is another measurement (from andrew c):
386 # no /usr/lib/debug, just plain glibc, like a normal user
387 gdb HEAD-old-gdb
388 (gdb) break internal_error
389 (gdb) run
390 (gdb) maint internal-error
391 (gdb) backtrace
392 (gdb) maint space 1
393
394 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
395 gdb HEAD 2003-08-19 space used: 8904704
396 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
397 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
398
399 The third line shows the savings from the optimizations in symtab.h.
400 The fourth line shows the savings from the optimizations in
401 gdbtypes.h. Both optimizations are in gdb HEAD now.
402
403 --chastain 2003-08-21 */
404
405 /* Define a structure for the information that is common to all symbol types,
406 including minimal symbols, partial symbols, and full symbols. In a
407 multilanguage environment, some language specific information may need to
408 be recorded along with each symbol. */
409
410 /* This structure is space critical. See space comments at the top. */
411
412 struct general_symbol_info
413 {
414 /* Short version as to when to use which name accessor:
415 Use natural_name () to refer to the name of the symbol in the original
416 source code. Use linkage_name () if you want to know what the linker
417 thinks the symbol's name is. Use print_name () for output. Use
418 demangled_name () if you specifically need to know whether natural_name ()
419 and linkage_name () are different. */
420
421 const char *linkage_name () const
422 { return m_name; }
423
424 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
425 the original source code. In languages like C++ where symbols may
426 be mangled for ease of manipulation by the linker, this is the
427 demangled name. */
428 const char *natural_name () const;
429
430 /* Returns a version of the name of a symbol that is
431 suitable for output. In C++ this is the "demangled" form of the
432 name if demangle is on and the "mangled" form of the name if
433 demangle is off. In other languages this is just the symbol name.
434 The result should never be NULL. Don't use this for internal
435 purposes (e.g. storing in a hashtable): it's only suitable for output. */
436 const char *print_name () const
437 { return demangle ? natural_name () : linkage_name (); }
438
439 /* Return the demangled name for a symbol based on the language for
440 that symbol. If no demangled name exists, return NULL. */
441 const char *demangled_name () const;
442
443 /* Returns the name to be used when sorting and searching symbols.
444 In C++, we search for the demangled form of a name,
445 and so sort symbols accordingly. In Ada, however, we search by mangled
446 name. If there is no distinct demangled name, then this
447 returns the same value (same pointer) as linkage_name (). */
448 const char *search_name () const;
449
450 /* Set just the linkage name of a symbol; do not try to demangle
451 it. Used for constructs which do not have a mangled name,
452 e.g. struct tags. Unlike compute_and_set_names, linkage_name must
453 be terminated and either already on the objfile's obstack or
454 permanently allocated. */
455 void set_linkage_name (const char *linkage_name)
456 { m_name = linkage_name; }
457
458 /* Set the demangled name of this symbol to NAME. NAME must be
459 already correctly allocated. If the symbol's language is Ada,
460 then the name is ignored and the obstack is set. */
461 void set_demangled_name (const char *name, struct obstack *obstack);
462
463 enum language language () const
464 { return m_language; }
465
466 /* Initializes the language dependent portion of a symbol
467 depending upon the language for the symbol. */
468 void set_language (enum language language, struct obstack *obstack);
469
470 /* Set the linkage and natural names of a symbol, by demangling
471 the linkage name. If linkage_name may not be nullterminated,
472 copy_name must be set to true. */
473 void compute_and_set_names (gdb::string_view linkage_name, bool copy_name,
474 struct objfile_per_bfd_storage *per_bfd,
475 gdb::optional<hashval_t> hash
476 = gdb::optional<hashval_t> ());
477
478 /* Name of the symbol. This is a required field. Storage for the
479 name is allocated on the objfile_obstack for the associated
480 objfile. For languages like C++ that make a distinction between
481 the mangled name and demangled name, this is the mangled
482 name. */
483
484 const char *m_name;
485
486 /* Value of the symbol. Which member of this union to use, and what
487 it means, depends on what kind of symbol this is and its
488 SYMBOL_CLASS. See comments there for more details. All of these
489 are in host byte order (though what they point to might be in
490 target byte order, e.g. LOC_CONST_BYTES). */
491
492 union
493 {
494 LONGEST ivalue;
495
496 const struct block *block;
497
498 const gdb_byte *bytes;
499
500 CORE_ADDR address;
501
502 /* A common block. Used with LOC_COMMON_BLOCK. */
503
504 const struct common_block *common_block;
505
506 /* For opaque typedef struct chain. */
507
508 struct symbol *chain;
509 }
510 value;
511
512 /* Since one and only one language can apply, wrap the language specific
513 information inside a union. */
514
515 union
516 {
517 /* A pointer to an obstack that can be used for storage associated
518 with this symbol. This is only used by Ada, and only when the
519 'ada_mangled' field is zero. */
520 struct obstack *obstack;
521
522 /* This is used by languages which wish to store a demangled name.
523 currently used by Ada, C++, and Objective C. */
524 const char *demangled_name;
525 }
526 language_specific;
527
528 /* Record the source code language that applies to this symbol.
529 This is used to select one of the fields from the language specific
530 union above. */
531
532 ENUM_BITFIELD(language) m_language : LANGUAGE_BITS;
533
534 /* This is only used by Ada. If set, then the 'demangled_name' field
535 of language_specific is valid. Otherwise, the 'obstack' field is
536 valid. */
537 unsigned int ada_mangled : 1;
538
539 /* Which section is this symbol in? This is an index into
540 section_offsets for this objfile. Negative means that the symbol
541 does not get relocated relative to a section. */
542
543 short m_section;
544
545 /* Set the index into the obj_section list (within the containing
546 objfile) for the section that contains this symbol. See M_SECTION
547 for more details. */
548
549 void set_section_index (short idx)
550 { m_section = idx; }
551
552 /* Return the index into the obj_section list (within the containing
553 objfile) for the section that contains this symbol. See M_SECTION
554 for more details. */
555
556 short section_index () const
557 { return m_section; }
558
559 /* Return the obj_section from OBJFILE for this symbol. The symbol
560 returned is based on the SECTION member variable, and can be nullptr
561 if SECTION is negative. */
562
563 struct obj_section *obj_section (const struct objfile *objfile) const;
564 };
565
566 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
567
568 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
569 SYM. If SYM appears in the main program's minimal symbols, then
570 that minsym's address is returned; otherwise, SYM's address is
571 returned. This should generally only be used via the
572 SYMBOL_VALUE_ADDRESS macro. */
573
574 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
575
576 /* Note that these macros only work with symbol, not partial_symbol. */
577
578 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
579 #define SYMBOL_VALUE_ADDRESS(symbol) \
580 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
581 : ((symbol)->value.address))
582 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
583 ((symbol)->value.address = (new_value))
584 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
585 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
586 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
587 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
588
589 /* Try to determine the demangled name for a symbol, based on the
590 language of that symbol. If the language is set to language_auto,
591 it will attempt to find any demangling algorithm that works and
592 then set the language appropriately. The returned name is allocated
593 by the demangler and should be xfree'd. */
594
595 extern gdb::unique_xmalloc_ptr<char> symbol_find_demangled_name
596 (struct general_symbol_info *gsymbol, const char *mangled);
597
598 /* Return true if NAME matches the "search" name of GSYMBOL, according
599 to the symbol's language. */
600 extern bool symbol_matches_search_name
601 (const struct general_symbol_info *gsymbol,
602 const lookup_name_info &name);
603
604 /* Compute the hash of the given symbol search name of a symbol of
605 language LANGUAGE. */
606 extern unsigned int search_name_hash (enum language language,
607 const char *search_name);
608
609 /* Classification types for a minimal symbol. These should be taken as
610 "advisory only", since if gdb can't easily figure out a
611 classification it simply selects mst_unknown. It may also have to
612 guess when it can't figure out which is a better match between two
613 types (mst_data versus mst_bss) for example. Since the minimal
614 symbol info is sometimes derived from the BFD library's view of a
615 file, we need to live with what information bfd supplies. */
616
617 enum minimal_symbol_type
618 {
619 mst_unknown = 0, /* Unknown type, the default */
620 mst_text, /* Generally executable instructions */
621
622 /* A GNU ifunc symbol, in the .text section. GDB uses to know
623 whether the user is setting a breakpoint on a GNU ifunc function,
624 and thus GDB needs to actually set the breakpoint on the target
625 function. It is also used to know whether the program stepped
626 into an ifunc resolver -- the resolver may get a separate
627 symbol/alias under a different name, but it'll have the same
628 address as the ifunc symbol. */
629 mst_text_gnu_ifunc, /* Executable code returning address
630 of executable code */
631
632 /* A GNU ifunc function descriptor symbol, in a data section
633 (typically ".opd"). Seen on architectures that use function
634 descriptors, like PPC64/ELFv1. In this case, this symbol's value
635 is the address of the descriptor. There'll be a corresponding
636 mst_text_gnu_ifunc synthetic symbol for the text/entry
637 address. */
638 mst_data_gnu_ifunc, /* Executable code returning address
639 of executable code */
640
641 mst_slot_got_plt, /* GOT entries for .plt sections */
642 mst_data, /* Generally initialized data */
643 mst_bss, /* Generally uninitialized data */
644 mst_abs, /* Generally absolute (nonrelocatable) */
645 /* GDB uses mst_solib_trampoline for the start address of a shared
646 library trampoline entry. Breakpoints for shared library functions
647 are put there if the shared library is not yet loaded.
648 After the shared library is loaded, lookup_minimal_symbol will
649 prefer the minimal symbol from the shared library (usually
650 a mst_text symbol) over the mst_solib_trampoline symbol, and the
651 breakpoints will be moved to their true address in the shared
652 library via breakpoint_re_set. */
653 mst_solib_trampoline, /* Shared library trampoline code */
654 /* For the mst_file* types, the names are only guaranteed to be unique
655 within a given .o file. */
656 mst_file_text, /* Static version of mst_text */
657 mst_file_data, /* Static version of mst_data */
658 mst_file_bss, /* Static version of mst_bss */
659 nr_minsym_types
660 };
661
662 /* The number of enum minimal_symbol_type values, with some padding for
663 reasonable growth. */
664 #define MINSYM_TYPE_BITS 4
665 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
666
667 /* Define a simple structure used to hold some very basic information about
668 all defined global symbols (text, data, bss, abs, etc). The only required
669 information is the general_symbol_info.
670
671 In many cases, even if a file was compiled with no special options for
672 debugging at all, as long as was not stripped it will contain sufficient
673 information to build a useful minimal symbol table using this structure.
674 Even when a file contains enough debugging information to build a full
675 symbol table, these minimal symbols are still useful for quickly mapping
676 between names and addresses, and vice versa. They are also sometimes
677 used to figure out what full symbol table entries need to be read in. */
678
679 struct minimal_symbol : public general_symbol_info
680 {
681 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
682 information to calculate the end of the partial symtab based on the
683 address of the last symbol plus the size of the last symbol. */
684
685 unsigned long size;
686
687 /* Which source file is this symbol in? Only relevant for mst_file_*. */
688 const char *filename;
689
690 /* Classification type for this minimal symbol. */
691
692 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
693
694 /* Non-zero if this symbol was created by gdb.
695 Such symbols do not appear in the output of "info var|fun". */
696 unsigned int created_by_gdb : 1;
697
698 /* Two flag bits provided for the use of the target. */
699 unsigned int target_flag_1 : 1;
700 unsigned int target_flag_2 : 1;
701
702 /* Nonzero iff the size of the minimal symbol has been set.
703 Symbol size information can sometimes not be determined, because
704 the object file format may not carry that piece of information. */
705 unsigned int has_size : 1;
706
707 /* For data symbols only, if this is set, then the symbol might be
708 subject to copy relocation. In this case, a minimal symbol
709 matching the symbol's linkage name is first looked for in the
710 main objfile. If found, then that address is used; otherwise the
711 address in this symbol is used. */
712
713 unsigned maybe_copied : 1;
714
715 /* Non-zero if this symbol ever had its demangled name set (even if
716 it was set to NULL). */
717 unsigned int name_set : 1;
718
719 /* Minimal symbols with the same hash key are kept on a linked
720 list. This is the link. */
721
722 struct minimal_symbol *hash_next;
723
724 /* Minimal symbols are stored in two different hash tables. This is
725 the `next' pointer for the demangled hash table. */
726
727 struct minimal_symbol *demangled_hash_next;
728
729 /* True if this symbol is of some data type. */
730
731 bool data_p () const;
732
733 /* True if MSYMBOL is of some text type. */
734
735 bool text_p () const;
736 };
737
738 /* Return the address of MINSYM, which comes from OBJF. The
739 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
740 main program's minimal symbols, then that minsym's address is
741 returned; otherwise, MINSYM's address is returned. This should
742 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
743
744 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
745 const struct minimal_symbol *minsym);
746
747 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
748 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
749 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
750 #define SET_MSYMBOL_SIZE(msymbol, sz) \
751 do \
752 { \
753 (msymbol)->size = sz; \
754 (msymbol)->has_size = 1; \
755 } while (0)
756 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
757 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
758
759 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
760 /* The unrelocated address of the minimal symbol. */
761 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
762 /* The relocated address of the minimal symbol, using the section
763 offsets from OBJFILE. */
764 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
765 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
766 : ((symbol)->value.address \
767 + (objfile)->section_offsets[(symbol)->section_index ()]))
768 /* For a bound minsym, we can easily compute the address directly. */
769 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
770 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
771 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
772 ((symbol)->value.address = (new_value))
773 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
774 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
775 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
776
777 #include "minsyms.h"
778
779 \f
780
781 /* Represent one symbol name; a variable, constant, function or typedef. */
782
783 /* Different name domains for symbols. Looking up a symbol specifies a
784 domain and ignores symbol definitions in other name domains. */
785
786 typedef enum domain_enum_tag
787 {
788 /* UNDEF_DOMAIN is used when a domain has not been discovered or
789 none of the following apply. This usually indicates an error either
790 in the symbol information or in gdb's handling of symbols. */
791
792 UNDEF_DOMAIN,
793
794 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
795 function names, typedef names and enum type values. */
796
797 VAR_DOMAIN,
798
799 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
800 Thus, if `struct foo' is used in a C program, it produces a symbol named
801 `foo' in the STRUCT_DOMAIN. */
802
803 STRUCT_DOMAIN,
804
805 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
806
807 MODULE_DOMAIN,
808
809 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
810
811 LABEL_DOMAIN,
812
813 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
814 They also always use LOC_COMMON_BLOCK. */
815 COMMON_BLOCK_DOMAIN,
816
817 /* This must remain last. */
818 NR_DOMAINS
819 } domain_enum;
820
821 /* The number of bits in a symbol used to represent the domain. */
822
823 #define SYMBOL_DOMAIN_BITS 3
824 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
825
826 extern const char *domain_name (domain_enum);
827
828 /* Searching domains, used when searching for symbols. Element numbers are
829 hardcoded in GDB, check all enum uses before changing it. */
830
831 enum search_domain
832 {
833 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
834 TYPES_DOMAIN. */
835 VARIABLES_DOMAIN = 0,
836
837 /* All functions -- for some reason not methods, though. */
838 FUNCTIONS_DOMAIN = 1,
839
840 /* All defined types */
841 TYPES_DOMAIN = 2,
842
843 /* All modules. */
844 MODULES_DOMAIN = 3,
845
846 /* Any type. */
847 ALL_DOMAIN = 4
848 };
849
850 extern const char *search_domain_name (enum search_domain);
851
852 /* An address-class says where to find the value of a symbol. */
853
854 enum address_class
855 {
856 /* Not used; catches errors. */
857
858 LOC_UNDEF,
859
860 /* Value is constant int SYMBOL_VALUE, host byteorder. */
861
862 LOC_CONST,
863
864 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
865
866 LOC_STATIC,
867
868 /* Value is in register. SYMBOL_VALUE is the register number
869 in the original debug format. SYMBOL_REGISTER_OPS holds a
870 function that can be called to transform this into the
871 actual register number this represents in a specific target
872 architecture (gdbarch).
873
874 For some symbol formats (stabs, for some compilers at least),
875 the compiler generates two symbols, an argument and a register.
876 In some cases we combine them to a single LOC_REGISTER in symbol
877 reading, but currently not for all cases (e.g. it's passed on the
878 stack and then loaded into a register). */
879
880 LOC_REGISTER,
881
882 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
883
884 LOC_ARG,
885
886 /* Value address is at SYMBOL_VALUE offset in arglist. */
887
888 LOC_REF_ARG,
889
890 /* Value is in specified register. Just like LOC_REGISTER except the
891 register holds the address of the argument instead of the argument
892 itself. This is currently used for the passing of structs and unions
893 on sparc and hppa. It is also used for call by reference where the
894 address is in a register, at least by mipsread.c. */
895
896 LOC_REGPARM_ADDR,
897
898 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
899
900 LOC_LOCAL,
901
902 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
903 STRUCT_DOMAIN all have this class. */
904
905 LOC_TYPEDEF,
906
907 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
908
909 LOC_LABEL,
910
911 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
912 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
913 of the block. Function names have this class. */
914
915 LOC_BLOCK,
916
917 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
918 target byte order. */
919
920 LOC_CONST_BYTES,
921
922 /* Value is at fixed address, but the address of the variable has
923 to be determined from the minimal symbol table whenever the
924 variable is referenced.
925 This happens if debugging information for a global symbol is
926 emitted and the corresponding minimal symbol is defined
927 in another object file or runtime common storage.
928 The linker might even remove the minimal symbol if the global
929 symbol is never referenced, in which case the symbol remains
930 unresolved.
931
932 GDB would normally find the symbol in the minimal symbol table if it will
933 not find it in the full symbol table. But a reference to an external
934 symbol in a local block shadowing other definition requires full symbol
935 without possibly having its address available for LOC_STATIC. Testcase
936 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
937
938 This is also used for thread local storage (TLS) variables. In this case,
939 the address of the TLS variable must be determined when the variable is
940 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
941 of the TLS variable in the thread local storage of the shared
942 library/object. */
943
944 LOC_UNRESOLVED,
945
946 /* The variable does not actually exist in the program.
947 The value is ignored. */
948
949 LOC_OPTIMIZED_OUT,
950
951 /* The variable's address is computed by a set of location
952 functions (see "struct symbol_computed_ops" below). */
953 LOC_COMPUTED,
954
955 /* The variable uses general_symbol_info->value->common_block field.
956 It also always uses COMMON_BLOCK_DOMAIN. */
957 LOC_COMMON_BLOCK,
958
959 /* Not used, just notes the boundary of the enum. */
960 LOC_FINAL_VALUE
961 };
962
963 /* The number of bits needed for values in enum address_class, with some
964 padding for reasonable growth, and room for run-time registered address
965 classes. See symtab.c:MAX_SYMBOL_IMPLS.
966 This is a #define so that we can have a assertion elsewhere to
967 verify that we have reserved enough space for synthetic address
968 classes. */
969 #define SYMBOL_ACLASS_BITS 5
970 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
971
972 /* The methods needed to implement LOC_COMPUTED. These methods can
973 use the symbol's .aux_value for additional per-symbol information.
974
975 At present this is only used to implement location expressions. */
976
977 struct symbol_computed_ops
978 {
979
980 /* Return the value of the variable SYMBOL, relative to the stack
981 frame FRAME. If the variable has been optimized out, return
982 zero.
983
984 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
985 FRAME may be zero. */
986
987 struct value *(*read_variable) (struct symbol * symbol,
988 struct frame_info * frame);
989
990 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
991 entry. SYMBOL should be a function parameter, otherwise
992 NO_ENTRY_VALUE_ERROR will be thrown. */
993 struct value *(*read_variable_at_entry) (struct symbol *symbol,
994 struct frame_info *frame);
995
996 /* Find the "symbol_needs_kind" value for the given symbol. This
997 value determines whether reading the symbol needs memory (e.g., a
998 global variable), just registers (a thread-local), or a frame (a
999 local variable). */
1000 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
1001
1002 /* Write to STREAM a natural-language description of the location of
1003 SYMBOL, in the context of ADDR. */
1004 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
1005 struct ui_file * stream);
1006
1007 /* Non-zero if this symbol's address computation is dependent on PC. */
1008 unsigned char location_has_loclist;
1009
1010 /* Tracepoint support. Append bytecodes to the tracepoint agent
1011 expression AX that push the address of the object SYMBOL. Set
1012 VALUE appropriately. Note --- for objects in registers, this
1013 needn't emit any code; as long as it sets VALUE properly, then
1014 the caller will generate the right code in the process of
1015 treating this as an lvalue or rvalue. */
1016
1017 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1018 struct axs_value *value);
1019
1020 /* Generate C code to compute the location of SYMBOL. The C code is
1021 emitted to STREAM. GDBARCH is the current architecture and PC is
1022 the PC at which SYMBOL's location should be evaluated.
1023 REGISTERS_USED is a vector indexed by register number; the
1024 generator function should set an element in this vector if the
1025 corresponding register is needed by the location computation.
1026 The generated C code must assign the location to a local
1027 variable; this variable's name is RESULT_NAME. */
1028
1029 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1030 struct gdbarch *gdbarch,
1031 std::vector<bool> &registers_used,
1032 CORE_ADDR pc, const char *result_name);
1033
1034 };
1035
1036 /* The methods needed to implement LOC_BLOCK for inferior functions.
1037 These methods can use the symbol's .aux_value for additional
1038 per-symbol information. */
1039
1040 struct symbol_block_ops
1041 {
1042 /* Fill in *START and *LENGTH with DWARF block data of function
1043 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1044 zero if such location is not valid for PC; *START is left
1045 uninitialized in such case. */
1046 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1047 const gdb_byte **start, size_t *length);
1048
1049 /* Return the frame base address. FRAME is the frame for which we want to
1050 compute the base address while FRAMEFUNC is the symbol for the
1051 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1052 information we need).
1053
1054 This method is designed to work with static links (nested functions
1055 handling). Static links are function properties whose evaluation returns
1056 the frame base address for the enclosing frame. However, there are
1057 multiple definitions for "frame base": the content of the frame base
1058 register, the CFA as defined by DWARF unwinding information, ...
1059
1060 So this specific method is supposed to compute the frame base address such
1061 as for nested functions, the static link computes the same address. For
1062 instance, considering DWARF debugging information, the static link is
1063 computed with DW_AT_static_link and this method must be used to compute
1064 the corresponding DW_AT_frame_base attribute. */
1065 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1066 struct frame_info *frame);
1067 };
1068
1069 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1070
1071 struct symbol_register_ops
1072 {
1073 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1074 };
1075
1076 /* Objects of this type are used to find the address class and the
1077 various computed ops vectors of a symbol. */
1078
1079 struct symbol_impl
1080 {
1081 enum address_class aclass;
1082
1083 /* Used with LOC_COMPUTED. */
1084 const struct symbol_computed_ops *ops_computed;
1085
1086 /* Used with LOC_BLOCK. */
1087 const struct symbol_block_ops *ops_block;
1088
1089 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1090 const struct symbol_register_ops *ops_register;
1091 };
1092
1093 /* struct symbol has some subclasses. This enum is used to
1094 differentiate between them. */
1095
1096 enum symbol_subclass_kind
1097 {
1098 /* Plain struct symbol. */
1099 SYMBOL_NONE,
1100
1101 /* struct template_symbol. */
1102 SYMBOL_TEMPLATE,
1103
1104 /* struct rust_vtable_symbol. */
1105 SYMBOL_RUST_VTABLE
1106 };
1107
1108 extern const struct symbol_impl *symbol_impls;
1109
1110 /* This structure is space critical. See space comments at the top. */
1111
1112 struct symbol : public general_symbol_info, public allocate_on_obstack
1113 {
1114 symbol ()
1115 /* Class-initialization of bitfields is only allowed in C++20. */
1116 : domain (UNDEF_DOMAIN),
1117 m_aclass_index (0),
1118 is_objfile_owned (1),
1119 is_argument (0),
1120 is_inlined (0),
1121 maybe_copied (0),
1122 subclass (SYMBOL_NONE),
1123 artificial (false)
1124 {
1125 /* We can't use an initializer list for members of a base class, and
1126 general_symbol_info needs to stay a POD type. */
1127 m_name = nullptr;
1128 value.ivalue = 0;
1129 language_specific.obstack = nullptr;
1130 m_language = language_unknown;
1131 ada_mangled = 0;
1132 m_section = -1;
1133 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1134 initialization of unions, so we initialize it manually here. */
1135 owner.symtab = nullptr;
1136 }
1137
1138 symbol (const symbol &) = default;
1139 symbol &operator= (const symbol &) = default;
1140
1141 unsigned int aclass_index () const
1142 {
1143 return m_aclass_index;
1144 }
1145
1146 void set_aclass_index (unsigned int aclass_index)
1147 {
1148 m_aclass_index = aclass_index;
1149 }
1150
1151 const symbol_impl &impl () const
1152 {
1153 return symbol_impls[this->aclass_index ()];
1154 }
1155
1156 address_class aclass () const
1157 {
1158 return this->impl ().aclass;
1159 }
1160
1161 /* Data type of value */
1162
1163 struct type *type = nullptr;
1164
1165 /* The owner of this symbol.
1166 Which one to use is defined by symbol.is_objfile_owned. */
1167
1168 union
1169 {
1170 /* The symbol table containing this symbol. This is the file associated
1171 with LINE. It can be NULL during symbols read-in but it is never NULL
1172 during normal operation. */
1173 struct symtab *symtab;
1174
1175 /* For types defined by the architecture. */
1176 struct gdbarch *arch;
1177 } owner;
1178
1179 /* Domain code. */
1180
1181 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1182
1183 /* Address class. This holds an index into the 'symbol_impls'
1184 table. The actual enum address_class value is stored there,
1185 alongside any per-class ops vectors. */
1186
1187 unsigned int m_aclass_index : SYMBOL_ACLASS_BITS;
1188
1189 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1190 Otherwise symbol is arch-owned, use owner.arch. */
1191
1192 unsigned int is_objfile_owned : 1;
1193
1194 /* Whether this is an argument. */
1195
1196 unsigned is_argument : 1;
1197
1198 /* Whether this is an inlined function (class LOC_BLOCK only). */
1199 unsigned is_inlined : 1;
1200
1201 /* For LOC_STATIC only, if this is set, then the symbol might be
1202 subject to copy relocation. In this case, a minimal symbol
1203 matching the symbol's linkage name is first looked for in the
1204 main objfile. If found, then that address is used; otherwise the
1205 address in this symbol is used. */
1206
1207 unsigned maybe_copied : 1;
1208
1209 /* The concrete type of this symbol. */
1210
1211 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1212
1213 /* Whether this symbol is artificial. */
1214
1215 bool artificial : 1;
1216
1217 /* Line number of this symbol's definition, except for inlined
1218 functions. For an inlined function (class LOC_BLOCK and
1219 SYMBOL_INLINED set) this is the line number of the function's call
1220 site. Inlined function symbols are not definitions, and they are
1221 never found by symbol table lookup.
1222 If this symbol is arch-owned, LINE shall be zero.
1223
1224 FIXME: Should we really make the assumption that nobody will try
1225 to debug files longer than 64K lines? What about machine
1226 generated programs? */
1227
1228 unsigned short line = 0;
1229
1230 /* An arbitrary data pointer, allowing symbol readers to record
1231 additional information on a per-symbol basis. Note that this data
1232 must be allocated using the same obstack as the symbol itself. */
1233 /* So far it is only used by:
1234 LOC_COMPUTED: to find the location information
1235 LOC_BLOCK (DWARF2 function): information used internally by the
1236 DWARF 2 code --- specifically, the location expression for the frame
1237 base for this function. */
1238 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1239 to add a magic symbol to the block containing this information,
1240 or to have a generic debug info annotation slot for symbols. */
1241
1242 void *aux_value = nullptr;
1243
1244 struct symbol *hash_next = nullptr;
1245 };
1246
1247 /* Several lookup functions return both a symbol and the block in which the
1248 symbol is found. This structure is used in these cases. */
1249
1250 struct block_symbol
1251 {
1252 /* The symbol that was found, or NULL if no symbol was found. */
1253 struct symbol *symbol;
1254
1255 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1256 defined. */
1257 const struct block *block;
1258 };
1259
1260 /* Note: There is no accessor macro for symbol.owner because it is
1261 "private". */
1262
1263 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1264 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1265 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1266 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1267 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1268 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1269 #define SYMBOL_TYPE(symbol) (symbol)->type
1270 #define SYMBOL_LINE(symbol) (symbol)->line
1271 #define SYMBOL_COMPUTED_OPS(symbol) ((symbol)->impl ().ops_computed)
1272 #define SYMBOL_BLOCK_OPS(symbol) ((symbol)->impl ().ops_block)
1273 #define SYMBOL_REGISTER_OPS(symbol) ((symbol)->impl ().ops_register)
1274 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1275
1276 extern int register_symbol_computed_impl (enum address_class,
1277 const struct symbol_computed_ops *);
1278
1279 extern int register_symbol_block_impl (enum address_class aclass,
1280 const struct symbol_block_ops *ops);
1281
1282 extern int register_symbol_register_impl (enum address_class,
1283 const struct symbol_register_ops *);
1284
1285 /* Return the OBJFILE of SYMBOL.
1286 It is an error to call this if symbol.is_objfile_owned is false, which
1287 only happens for architecture-provided types. */
1288
1289 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1290
1291 /* Return the ARCH of SYMBOL. */
1292
1293 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1294
1295 /* Return the SYMTAB of SYMBOL.
1296 It is an error to call this if symbol.is_objfile_owned is false, which
1297 only happens for architecture-provided types. */
1298
1299 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1300
1301 /* Set the symtab of SYMBOL to SYMTAB.
1302 It is an error to call this if symbol.is_objfile_owned is false, which
1303 only happens for architecture-provided types. */
1304
1305 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1306
1307 /* An instance of this type is used to represent a C++ template
1308 function. A symbol is really of this type iff
1309 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1310
1311 struct template_symbol : public symbol
1312 {
1313 /* The number of template arguments. */
1314 int n_template_arguments = 0;
1315
1316 /* The template arguments. This is an array with
1317 N_TEMPLATE_ARGUMENTS elements. */
1318 struct symbol **template_arguments = nullptr;
1319 };
1320
1321 /* A symbol that represents a Rust virtual table object. */
1322
1323 struct rust_vtable_symbol : public symbol
1324 {
1325 /* The concrete type for which this vtable was created; that is, in
1326 "impl Trait for Type", this is "Type". */
1327 struct type *concrete_type = nullptr;
1328 };
1329
1330 \f
1331 /* Each item represents a line-->pc (or the reverse) mapping. This is
1332 somewhat more wasteful of space than one might wish, but since only
1333 the files which are actually debugged are read in to core, we don't
1334 waste much space. */
1335
1336 struct linetable_entry
1337 {
1338 /* The line number for this entry. */
1339 int line;
1340
1341 /* True if this PC is a good location to place a breakpoint for LINE. */
1342 unsigned is_stmt : 1;
1343
1344 /* The address for this entry. */
1345 CORE_ADDR pc;
1346 };
1347
1348 /* The order of entries in the linetable is significant. They should
1349 be sorted by increasing values of the pc field. If there is more than
1350 one entry for a given pc, then I'm not sure what should happen (and
1351 I not sure whether we currently handle it the best way).
1352
1353 Example: a C for statement generally looks like this
1354
1355 10 0x100 - for the init/test part of a for stmt.
1356 20 0x200
1357 30 0x300
1358 10 0x400 - for the increment part of a for stmt.
1359
1360 If an entry has a line number of zero, it marks the start of a PC
1361 range for which no line number information is available. It is
1362 acceptable, though wasteful of table space, for such a range to be
1363 zero length. */
1364
1365 struct linetable
1366 {
1367 int nitems;
1368
1369 /* Actually NITEMS elements. If you don't like this use of the
1370 `struct hack', you can shove it up your ANSI (seriously, if the
1371 committee tells us how to do it, we can probably go along). */
1372 struct linetable_entry item[1];
1373 };
1374
1375 /* How to relocate the symbols from each section in a symbol file.
1376 The ordering and meaning of the offsets is file-type-dependent;
1377 typically it is indexed by section numbers or symbol types or
1378 something like that. */
1379
1380 typedef std::vector<CORE_ADDR> section_offsets;
1381
1382 /* Each source file or header is represented by a struct symtab.
1383 The name "symtab" is historical, another name for it is "filetab".
1384 These objects are chained through the `next' field. */
1385
1386 struct symtab
1387 {
1388 struct compunit_symtab *compunit () const
1389 {
1390 return m_compunit;
1391 }
1392
1393 void set_compunit (struct compunit_symtab *compunit)
1394 {
1395 m_compunit = compunit;
1396 }
1397
1398 struct linetable *linetable () const
1399 {
1400 return m_linetable;
1401 }
1402
1403 void set_linetable (struct linetable *linetable)
1404 {
1405 m_linetable = linetable;
1406 }
1407
1408 enum language language () const
1409 {
1410 return m_language;
1411 }
1412
1413 void set_language (enum language language)
1414 {
1415 m_language = language;
1416 }
1417
1418 const struct blockvector *blockvector () const;
1419
1420 struct objfile *objfile () const;
1421
1422 program_space *pspace () const;
1423
1424 const char *dirname () const;
1425
1426 /* Unordered chain of all filetabs in the compunit, with the exception
1427 that the "main" source file is the first entry in the list. */
1428
1429 struct symtab *next;
1430
1431 /* Backlink to containing compunit symtab. */
1432
1433 struct compunit_symtab *m_compunit;
1434
1435 /* Table mapping core addresses to line numbers for this file.
1436 Can be NULL if none. Never shared between different symtabs. */
1437
1438 struct linetable *m_linetable;
1439
1440 /* Name of this source file. This pointer is never NULL. */
1441
1442 const char *filename;
1443
1444 /* Language of this source file. */
1445
1446 enum language m_language;
1447
1448 /* Full name of file as found by searching the source path.
1449 NULL if not yet known. */
1450
1451 char *fullname;
1452 };
1453
1454 /* A range adapter to allowing iterating over all the file tables in a list. */
1455
1456 using symtab_range = next_range<symtab>;
1457
1458 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1459 as the list of all source files (what gdb has historically associated with
1460 the term "symtab").
1461 Additional information is recorded here that is common to all symtabs in a
1462 compilation unit (DWARF or otherwise).
1463
1464 Example:
1465 For the case of a program built out of these files:
1466
1467 foo.c
1468 foo1.h
1469 foo2.h
1470 bar.c
1471 foo1.h
1472 bar.h
1473
1474 This is recorded as:
1475
1476 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1477 | |
1478 v v
1479 foo.c bar.c
1480 | |
1481 v v
1482 foo1.h foo1.h
1483 | |
1484 v v
1485 foo2.h bar.h
1486 | |
1487 v v
1488 NULL NULL
1489
1490 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1491 and the files foo.c, etc. are struct symtab objects. */
1492
1493 struct compunit_symtab
1494 {
1495 struct objfile *objfile () const
1496 {
1497 return m_objfile;
1498 }
1499
1500 void set_objfile (struct objfile *objfile)
1501 {
1502 m_objfile = objfile;
1503 }
1504
1505 symtab_range filetabs () const
1506 {
1507 return symtab_range (m_filetabs);
1508 }
1509
1510 void add_filetab (symtab *filetab)
1511 {
1512 if (m_filetabs == nullptr)
1513 {
1514 m_filetabs = filetab;
1515 m_last_filetab = filetab;
1516 }
1517 else
1518 {
1519 m_last_filetab->next = filetab;
1520 m_last_filetab = filetab;
1521 }
1522 }
1523
1524 const char *debugformat () const
1525 {
1526 return m_debugformat;
1527 }
1528
1529 void set_debugformat (const char *debugformat)
1530 {
1531 m_debugformat = debugformat;
1532 }
1533
1534 const char *producer () const
1535 {
1536 return m_producer;
1537 }
1538
1539 void set_producer (const char *producer)
1540 {
1541 m_producer = producer;
1542 }
1543
1544 const char *dirname () const
1545 {
1546 return m_dirname;
1547 }
1548
1549 void set_dirname (const char *dirname)
1550 {
1551 m_dirname = dirname;
1552 }
1553
1554 const struct blockvector *blockvector () const
1555 {
1556 return m_blockvector;
1557 }
1558
1559 void set_blockvector (const struct blockvector *blockvector)
1560 {
1561 m_blockvector = blockvector;
1562 }
1563
1564 int block_line_section () const
1565 {
1566 return m_block_line_section;
1567 }
1568
1569 void set_block_line_section (int block_line_section)
1570 {
1571 m_block_line_section = block_line_section;
1572 }
1573
1574 bool locations_valid () const
1575 {
1576 return m_locations_valid;
1577 }
1578
1579 void set_locations_valid (bool locations_valid)
1580 {
1581 m_locations_valid = locations_valid;
1582 }
1583
1584 bool epilogue_unwind_valid () const
1585 {
1586 return m_epilogue_unwind_valid;
1587 }
1588
1589 void set_epilogue_unwind_valid (bool epilogue_unwind_valid)
1590 {
1591 m_epilogue_unwind_valid = epilogue_unwind_valid;
1592 }
1593
1594 struct macro_table *macro_table () const
1595 {
1596 return m_macro_table;
1597 }
1598
1599 void set_macro_table (struct macro_table *macro_table)
1600 {
1601 m_macro_table = macro_table;
1602 }
1603
1604 /* Make PRIMARY_FILETAB the primary filetab of this compunit symtab.
1605
1606 PRIMARY_FILETAB must already be a filetab of this compunit symtab. */
1607
1608 void set_primary_filetab (symtab *primary_filetab);
1609
1610 /* Return the primary filetab of the compunit. */
1611 symtab *primary_filetab () const;
1612
1613 /* Set m_call_site_htab. */
1614 void set_call_site_htab (htab_t call_site_htab);
1615
1616 /* Find call_site info for PC. */
1617 call_site *find_call_site (CORE_ADDR pc) const;
1618
1619 /* Unordered chain of all compunit symtabs of this objfile. */
1620 struct compunit_symtab *next;
1621
1622 /* Object file from which this symtab information was read. */
1623 struct objfile *m_objfile;
1624
1625 /* Name of the symtab.
1626 This is *not* intended to be a usable filename, and is
1627 for debugging purposes only. */
1628 const char *name;
1629
1630 /* Unordered list of file symtabs, except that by convention the "main"
1631 source file (e.g., .c, .cc) is guaranteed to be first.
1632 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1633 or header (e.g., .h). */
1634 symtab *m_filetabs;
1635
1636 /* Last entry in FILETABS list.
1637 Subfiles are added to the end of the list so they accumulate in order,
1638 with the main source subfile living at the front.
1639 The main reason is so that the main source file symtab is at the head
1640 of the list, and the rest appear in order for debugging convenience. */
1641 symtab *m_last_filetab;
1642
1643 /* Non-NULL string that identifies the format of the debugging information,
1644 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1645 for automated testing of gdb but may also be information that is
1646 useful to the user. */
1647 const char *m_debugformat;
1648
1649 /* String of producer version information, or NULL if we don't know. */
1650 const char *m_producer;
1651
1652 /* Directory in which it was compiled, or NULL if we don't know. */
1653 const char *m_dirname;
1654
1655 /* List of all symbol scope blocks for this symtab. It is shared among
1656 all symtabs in a given compilation unit. */
1657 const struct blockvector *m_blockvector;
1658
1659 /* Section in objfile->section_offsets for the blockvector and
1660 the linetable. Probably always SECT_OFF_TEXT. */
1661 int m_block_line_section;
1662
1663 /* Symtab has been compiled with both optimizations and debug info so that
1664 GDB may stop skipping prologues as variables locations are valid already
1665 at function entry points. */
1666 unsigned int m_locations_valid : 1;
1667
1668 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1669 instruction). This is supported by GCC since 4.5.0. */
1670 unsigned int m_epilogue_unwind_valid : 1;
1671
1672 /* struct call_site entries for this compilation unit or NULL. */
1673 htab_t m_call_site_htab;
1674
1675 /* The macro table for this symtab. Like the blockvector, this
1676 is shared between different symtabs in a given compilation unit.
1677 It's debatable whether it *should* be shared among all the symtabs in
1678 the given compilation unit, but it currently is. */
1679 struct macro_table *m_macro_table;
1680
1681 /* If non-NULL, then this points to a NULL-terminated vector of
1682 included compunits. When searching the static or global
1683 block of this compunit, the corresponding block of all
1684 included compunits will also be searched. Note that this
1685 list must be flattened -- the symbol reader is responsible for
1686 ensuring that this vector contains the transitive closure of all
1687 included compunits. */
1688 struct compunit_symtab **includes;
1689
1690 /* If this is an included compunit, this points to one includer
1691 of the table. This user is considered the canonical compunit
1692 containing this one. An included compunit may itself be
1693 included by another. */
1694 struct compunit_symtab *user;
1695 };
1696
1697 using compunit_symtab_range = next_range<compunit_symtab>;
1698
1699 inline const struct blockvector *
1700 symtab::blockvector () const
1701 {
1702 return this->compunit ()->blockvector ();
1703 }
1704
1705 inline struct objfile *
1706 symtab::objfile () const
1707 {
1708 return this->compunit ()->objfile ();
1709 }
1710
1711 inline const char *
1712 symtab::dirname () const
1713 {
1714 return this->compunit ()->dirname ();
1715 }
1716
1717 /* Return the language of CUST. */
1718
1719 extern enum language compunit_language (const struct compunit_symtab *cust);
1720
1721 /* Return true if this symtab is the "main" symtab of its compunit_symtab. */
1722
1723 static inline bool
1724 is_main_symtab_of_compunit_symtab (struct symtab *symtab)
1725 {
1726 return symtab == symtab->compunit ()->primary_filetab ();
1727 }
1728 \f
1729
1730 /* The virtual function table is now an array of structures which have the
1731 form { int16 offset, delta; void *pfn; }.
1732
1733 In normal virtual function tables, OFFSET is unused.
1734 DELTA is the amount which is added to the apparent object's base
1735 address in order to point to the actual object to which the
1736 virtual function should be applied.
1737 PFN is a pointer to the virtual function.
1738
1739 Note that this macro is g++ specific (FIXME). */
1740
1741 #define VTBL_FNADDR_OFFSET 2
1742
1743 /* External variables and functions for the objects described above. */
1744
1745 /* True if we are nested inside psymtab_to_symtab. */
1746
1747 extern int currently_reading_symtab;
1748
1749 /* symtab.c lookup functions */
1750
1751 extern const char multiple_symbols_ask[];
1752 extern const char multiple_symbols_all[];
1753 extern const char multiple_symbols_cancel[];
1754
1755 const char *multiple_symbols_select_mode (void);
1756
1757 bool symbol_matches_domain (enum language symbol_language,
1758 domain_enum symbol_domain,
1759 domain_enum domain);
1760
1761 /* lookup a symbol table by source file name. */
1762
1763 extern struct symtab *lookup_symtab (const char *);
1764
1765 /* An object of this type is passed as the 'is_a_field_of_this'
1766 argument to lookup_symbol and lookup_symbol_in_language. */
1767
1768 struct field_of_this_result
1769 {
1770 /* The type in which the field was found. If this is NULL then the
1771 symbol was not found in 'this'. If non-NULL, then one of the
1772 other fields will be non-NULL as well. */
1773
1774 struct type *type;
1775
1776 /* If the symbol was found as an ordinary field of 'this', then this
1777 is non-NULL and points to the particular field. */
1778
1779 struct field *field;
1780
1781 /* If the symbol was found as a function field of 'this', then this
1782 is non-NULL and points to the particular field. */
1783
1784 struct fn_fieldlist *fn_field;
1785 };
1786
1787 /* Find the definition for a specified symbol name NAME
1788 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1789 if non-NULL or from global/static blocks if BLOCK is NULL.
1790 Returns the struct symbol pointer, or NULL if no symbol is found.
1791 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1792 NAME is a field of the current implied argument `this'. If so fill in the
1793 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1794 The symbol's section is fixed up if necessary. */
1795
1796 extern struct block_symbol
1797 lookup_symbol_in_language (const char *,
1798 const struct block *,
1799 const domain_enum,
1800 enum language,
1801 struct field_of_this_result *);
1802
1803 /* Same as lookup_symbol_in_language, but using the current language. */
1804
1805 extern struct block_symbol lookup_symbol (const char *,
1806 const struct block *,
1807 const domain_enum,
1808 struct field_of_this_result *);
1809
1810 /* Find the definition for a specified symbol search name in domain
1811 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1812 global/static blocks if BLOCK is NULL. The passed-in search name
1813 should not come from the user; instead it should already be a
1814 search name as retrieved from a search_name () call. See definition of
1815 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1816 pointer, or NULL if no symbol is found. The symbol's section is
1817 fixed up if necessary. */
1818
1819 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1820 const struct block *block,
1821 domain_enum domain);
1822
1823 /* Some helper functions for languages that need to write their own
1824 lookup_symbol_nonlocal functions. */
1825
1826 /* Lookup a symbol in the static block associated to BLOCK, if there
1827 is one; do nothing if BLOCK is NULL or a global block.
1828 Upon success fixes up the symbol's section if necessary. */
1829
1830 extern struct block_symbol
1831 lookup_symbol_in_static_block (const char *name,
1832 const struct block *block,
1833 const domain_enum domain);
1834
1835 /* Search all static file-level symbols for NAME from DOMAIN.
1836 Upon success fixes up the symbol's section if necessary. */
1837
1838 extern struct block_symbol lookup_static_symbol (const char *name,
1839 const domain_enum domain);
1840
1841 /* Lookup a symbol in all files' global blocks.
1842
1843 If BLOCK is non-NULL then it is used for two things:
1844 1) If a target-specific lookup routine for libraries exists, then use the
1845 routine for the objfile of BLOCK, and
1846 2) The objfile of BLOCK is used to assist in determining the search order
1847 if the target requires it.
1848 See gdbarch_iterate_over_objfiles_in_search_order.
1849
1850 Upon success fixes up the symbol's section if necessary. */
1851
1852 extern struct block_symbol
1853 lookup_global_symbol (const char *name,
1854 const struct block *block,
1855 const domain_enum domain);
1856
1857 /* Lookup a symbol in block BLOCK.
1858 Upon success fixes up the symbol's section if necessary. */
1859
1860 extern struct symbol *
1861 lookup_symbol_in_block (const char *name,
1862 symbol_name_match_type match_type,
1863 const struct block *block,
1864 const domain_enum domain);
1865
1866 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1867 found, or NULL if not found. */
1868
1869 extern struct block_symbol
1870 lookup_language_this (const struct language_defn *lang,
1871 const struct block *block);
1872
1873 /* Lookup a [struct, union, enum] by name, within a specified block. */
1874
1875 extern struct type *lookup_struct (const char *, const struct block *);
1876
1877 extern struct type *lookup_union (const char *, const struct block *);
1878
1879 extern struct type *lookup_enum (const char *, const struct block *);
1880
1881 /* from blockframe.c: */
1882
1883 /* lookup the function symbol corresponding to the address. The
1884 return value will not be an inlined function; the containing
1885 function will be returned instead. */
1886
1887 extern struct symbol *find_pc_function (CORE_ADDR);
1888
1889 /* lookup the function corresponding to the address and section. The
1890 return value will not be an inlined function; the containing
1891 function will be returned instead. */
1892
1893 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1894
1895 /* lookup the function symbol corresponding to the address and
1896 section. The return value will be the closest enclosing function,
1897 which might be an inline function. */
1898
1899 extern struct symbol *find_pc_sect_containing_function
1900 (CORE_ADDR pc, struct obj_section *section);
1901
1902 /* Find the symbol at the given address. Returns NULL if no symbol
1903 found. Only exact matches for ADDRESS are considered. */
1904
1905 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1906
1907 /* Finds the "function" (text symbol) that is smaller than PC but
1908 greatest of all of the potential text symbols in SECTION. Sets
1909 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1910 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1911 function (exclusive). If the optional parameter BLOCK is non-null,
1912 then set *BLOCK to the address of the block corresponding to the
1913 function symbol, if such a symbol could be found during the lookup;
1914 nullptr is used as a return value for *BLOCK if no block is found.
1915 This function either succeeds or fails (not halfway succeeds). If
1916 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1917 information and returns true. If it fails, it sets *NAME, *ADDRESS
1918 and *ENDADDR to zero and returns false.
1919
1920 If the function in question occupies non-contiguous ranges,
1921 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1922 to the start and end of the range in which PC is found. Thus
1923 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1924 from other functions might be found).
1925
1926 This property allows find_pc_partial_function to be used (as it had
1927 been prior to the introduction of non-contiguous range support) by
1928 various tdep files for finding a start address and limit address
1929 for prologue analysis. This still isn't ideal, however, because we
1930 probably shouldn't be doing prologue analysis (in which
1931 instructions are scanned to determine frame size and stack layout)
1932 for any range that doesn't contain the entry pc. Moreover, a good
1933 argument can be made that prologue analysis ought to be performed
1934 starting from the entry pc even when PC is within some other range.
1935 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1936 limits of the entry pc range, but that will cause the
1937 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1938 callers of find_pc_partial_function expect this condition to hold.
1939
1940 Callers which require the start and/or end addresses for the range
1941 containing the entry pc should instead call
1942 find_function_entry_range_from_pc. */
1943
1944 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1945 CORE_ADDR *address, CORE_ADDR *endaddr,
1946 const struct block **block = nullptr);
1947
1948 /* Like find_pc_partial_function, above, but returns the underlying
1949 general_symbol_info (rather than the name) as an out parameter. */
1950
1951 extern bool find_pc_partial_function_sym
1952 (CORE_ADDR pc, const general_symbol_info **sym,
1953 CORE_ADDR *address, CORE_ADDR *endaddr,
1954 const struct block **block = nullptr);
1955
1956 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1957 set to start and end addresses of the range containing the entry pc.
1958
1959 Note that it is not necessarily the case that (for non-NULL ADDRESS
1960 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1961 hold.
1962
1963 See comment for find_pc_partial_function, above, for further
1964 explanation. */
1965
1966 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1967 const char **name,
1968 CORE_ADDR *address,
1969 CORE_ADDR *endaddr);
1970
1971 /* Return the type of a function with its first instruction exactly at
1972 the PC address. Return NULL otherwise. */
1973
1974 extern struct type *find_function_type (CORE_ADDR pc);
1975
1976 /* See if we can figure out the function's actual type from the type
1977 that the resolver returns. RESOLVER_FUNADDR is the address of the
1978 ifunc resolver. */
1979
1980 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1981
1982 /* Find the GNU ifunc minimal symbol that matches SYM. */
1983 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1984
1985 extern void clear_pc_function_cache (void);
1986
1987 /* Expand symtab containing PC, SECTION if not already expanded. */
1988
1989 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1990
1991 /* lookup full symbol table by address. */
1992
1993 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1994
1995 /* lookup full symbol table by address and section. */
1996
1997 extern struct compunit_symtab *
1998 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1999
2000 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
2001
2002 extern void reread_symbols (int from_tty);
2003
2004 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
2005 The type returned must not be opaque -- i.e., must have at least one field
2006 defined. */
2007
2008 extern struct type *lookup_transparent_type (const char *);
2009
2010 extern struct type *basic_lookup_transparent_type (const char *);
2011
2012 /* Macro for name of symbol to indicate a file compiled with gcc. */
2013 #ifndef GCC_COMPILED_FLAG_SYMBOL
2014 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
2015 #endif
2016
2017 /* Macro for name of symbol to indicate a file compiled with gcc2. */
2018 #ifndef GCC2_COMPILED_FLAG_SYMBOL
2019 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
2020 #endif
2021
2022 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
2023
2024 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
2025 for ELF symbol files. */
2026
2027 struct gnu_ifunc_fns
2028 {
2029 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
2030 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
2031
2032 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
2033 bool (*gnu_ifunc_resolve_name) (const char *function_name,
2034 CORE_ADDR *function_address_p);
2035
2036 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
2037 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
2038
2039 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
2040 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
2041 };
2042
2043 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
2044 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
2045 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
2046 #define gnu_ifunc_resolver_return_stop \
2047 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
2048
2049 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
2050
2051 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
2052
2053 struct symtab_and_line
2054 {
2055 /* The program space of this sal. */
2056 struct program_space *pspace = NULL;
2057
2058 struct symtab *symtab = NULL;
2059 struct symbol *symbol = NULL;
2060 struct obj_section *section = NULL;
2061 struct minimal_symbol *msymbol = NULL;
2062 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
2063 0 is never a valid line number; it is used to indicate that line number
2064 information is not available. */
2065 int line = 0;
2066
2067 CORE_ADDR pc = 0;
2068 CORE_ADDR end = 0;
2069 bool explicit_pc = false;
2070 bool explicit_line = false;
2071
2072 /* If the line number information is valid, then this indicates if this
2073 line table entry had the is-stmt flag set or not. */
2074 bool is_stmt = false;
2075
2076 /* The probe associated with this symtab_and_line. */
2077 probe *prob = NULL;
2078 /* If PROBE is not NULL, then this is the objfile in which the probe
2079 originated. */
2080 struct objfile *objfile = NULL;
2081 };
2082
2083 \f
2084
2085 /* Given a pc value, return line number it is in. Second arg nonzero means
2086 if pc is on the boundary use the previous statement's line number. */
2087
2088 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
2089
2090 /* Same function, but specify a section as well as an address. */
2091
2092 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
2093 struct obj_section *, int);
2094
2095 /* Wrapper around find_pc_line to just return the symtab. */
2096
2097 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
2098
2099 /* Given a symtab and line number, return the pc there. */
2100
2101 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
2102
2103 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
2104 CORE_ADDR *);
2105
2106 extern void resolve_sal_pc (struct symtab_and_line *);
2107
2108 /* solib.c */
2109
2110 extern void clear_solib (void);
2111
2112 /* The reason we're calling into a completion match list collector
2113 function. */
2114 enum class complete_symbol_mode
2115 {
2116 /* Completing an expression. */
2117 EXPRESSION,
2118
2119 /* Completing a linespec. */
2120 LINESPEC,
2121 };
2122
2123 extern void default_collect_symbol_completion_matches_break_on
2124 (completion_tracker &tracker,
2125 complete_symbol_mode mode,
2126 symbol_name_match_type name_match_type,
2127 const char *text, const char *word, const char *break_on,
2128 enum type_code code);
2129 extern void collect_symbol_completion_matches
2130 (completion_tracker &tracker,
2131 complete_symbol_mode mode,
2132 symbol_name_match_type name_match_type,
2133 const char *, const char *);
2134 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
2135 const char *, const char *,
2136 enum type_code);
2137
2138 extern void collect_file_symbol_completion_matches
2139 (completion_tracker &tracker,
2140 complete_symbol_mode,
2141 symbol_name_match_type name_match_type,
2142 const char *, const char *, const char *);
2143
2144 extern completion_list
2145 make_source_files_completion_list (const char *, const char *);
2146
2147 /* Return whether SYM is a function/method, as opposed to a data symbol. */
2148
2149 extern bool symbol_is_function_or_method (symbol *sym);
2150
2151 /* Return whether MSYMBOL is a function/method, as opposed to a data
2152 symbol */
2153
2154 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
2155
2156 /* Return whether SYM should be skipped in completion mode MODE. In
2157 linespec mode, we're only interested in functions/methods. */
2158
2159 template<typename Symbol>
2160 static bool
2161 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
2162 {
2163 return (mode == complete_symbol_mode::LINESPEC
2164 && !symbol_is_function_or_method (sym));
2165 }
2166
2167 /* symtab.c */
2168
2169 bool matching_obj_sections (struct obj_section *, struct obj_section *);
2170
2171 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
2172
2173 /* Given a function symbol SYM, find the symtab and line for the start
2174 of the function. If FUNFIRSTLINE is true, we want the first line
2175 of real code inside the function. */
2176 extern symtab_and_line find_function_start_sal (symbol *sym, bool
2177 funfirstline);
2178
2179 /* Same, but start with a function address/section instead of a
2180 symbol. */
2181 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
2182 obj_section *section,
2183 bool funfirstline);
2184
2185 extern void skip_prologue_sal (struct symtab_and_line *);
2186
2187 /* symtab.c */
2188
2189 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2190 CORE_ADDR func_addr);
2191
2192 extern struct symbol *fixup_symbol_section (struct symbol *,
2193 struct objfile *);
2194
2195 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2196 the same address. Returns NULL if not found. This is necessary in
2197 case a function is an alias to some other function, because debug
2198 information is only emitted for the alias target function's
2199 definition, not for the alias. */
2200 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2201
2202 /* Symbol searching */
2203
2204 /* When using the symbol_searcher struct to search for symbols, a vector of
2205 the following structs is returned. */
2206 struct symbol_search
2207 {
2208 symbol_search (int block_, struct symbol *symbol_)
2209 : block (block_),
2210 symbol (symbol_)
2211 {
2212 msymbol.minsym = nullptr;
2213 msymbol.objfile = nullptr;
2214 }
2215
2216 symbol_search (int block_, struct minimal_symbol *minsym,
2217 struct objfile *objfile)
2218 : block (block_),
2219 symbol (nullptr)
2220 {
2221 msymbol.minsym = minsym;
2222 msymbol.objfile = objfile;
2223 }
2224
2225 bool operator< (const symbol_search &other) const
2226 {
2227 return compare_search_syms (*this, other) < 0;
2228 }
2229
2230 bool operator== (const symbol_search &other) const
2231 {
2232 return compare_search_syms (*this, other) == 0;
2233 }
2234
2235 /* The block in which the match was found. Could be, for example,
2236 STATIC_BLOCK or GLOBAL_BLOCK. */
2237 int block;
2238
2239 /* Information describing what was found.
2240
2241 If symbol is NOT NULL, then information was found for this match. */
2242 struct symbol *symbol;
2243
2244 /* If msymbol is non-null, then a match was made on something for
2245 which only minimal_symbols exist. */
2246 struct bound_minimal_symbol msymbol;
2247
2248 private:
2249
2250 static int compare_search_syms (const symbol_search &sym_a,
2251 const symbol_search &sym_b);
2252 };
2253
2254 /* In order to search for global symbols of a particular kind matching
2255 particular regular expressions, create an instance of this structure and
2256 call the SEARCH member function. */
2257 class global_symbol_searcher
2258 {
2259 public:
2260
2261 /* Constructor. */
2262 global_symbol_searcher (enum search_domain kind,
2263 const char *symbol_name_regexp)
2264 : m_kind (kind),
2265 m_symbol_name_regexp (symbol_name_regexp)
2266 {
2267 /* The symbol searching is designed to only find one kind of thing. */
2268 gdb_assert (m_kind != ALL_DOMAIN);
2269 }
2270
2271 /* Set the optional regexp that matches against the symbol type. */
2272 void set_symbol_type_regexp (const char *regexp)
2273 {
2274 m_symbol_type_regexp = regexp;
2275 }
2276
2277 /* Set the flag to exclude minsyms from the search results. */
2278 void set_exclude_minsyms (bool exclude_minsyms)
2279 {
2280 m_exclude_minsyms = exclude_minsyms;
2281 }
2282
2283 /* Set the maximum number of search results to be returned. */
2284 void set_max_search_results (size_t max_search_results)
2285 {
2286 m_max_search_results = max_search_results;
2287 }
2288
2289 /* Search the symbols from all objfiles in the current program space
2290 looking for matches as defined by the current state of this object.
2291
2292 Within each file the results are sorted locally; each symtab's global
2293 and static blocks are separately alphabetized. Duplicate entries are
2294 removed. */
2295 std::vector<symbol_search> search () const;
2296
2297 /* The set of source files to search in for matching symbols. This is
2298 currently public so that it can be populated after this object has
2299 been constructed. */
2300 std::vector<const char *> filenames;
2301
2302 private:
2303 /* The kind of symbols are we searching for.
2304 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2305 names, and constants (enums).
2306 FUNCTIONS_DOMAIN - Search all functions..
2307 TYPES_DOMAIN - Search all type names.
2308 MODULES_DOMAIN - Search all Fortran modules.
2309 ALL_DOMAIN - Not valid for this function. */
2310 enum search_domain m_kind;
2311
2312 /* Regular expression to match against the symbol name. */
2313 const char *m_symbol_name_regexp = nullptr;
2314
2315 /* Regular expression to match against the symbol type. */
2316 const char *m_symbol_type_regexp = nullptr;
2317
2318 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2319 be included in the results, otherwise they are excluded. */
2320 bool m_exclude_minsyms = false;
2321
2322 /* Maximum number of search results. We currently impose a hard limit
2323 of SIZE_MAX, there is no "unlimited". */
2324 size_t m_max_search_results = SIZE_MAX;
2325
2326 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2327 true if any msymbols were seen that we should later consider adding to
2328 the results list. */
2329 bool expand_symtabs (objfile *objfile,
2330 const gdb::optional<compiled_regex> &preg) const;
2331
2332 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2333 of type M_KIND, to the results set RESULTS_SET. Return false if we
2334 stop adding results early due to having already found too many results
2335 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2336 Returning true does not indicate that any results were added, just
2337 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2338 bool add_matching_symbols (objfile *objfile,
2339 const gdb::optional<compiled_regex> &preg,
2340 const gdb::optional<compiled_regex> &treg,
2341 std::set<symbol_search> *result_set) const;
2342
2343 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2344 vector RESULTS. Return false if we stop adding results early due to
2345 having already found too many results (based on max search results
2346 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2347 does not indicate that any results were added, just that we didn't
2348 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2349 bool add_matching_msymbols (objfile *objfile,
2350 const gdb::optional<compiled_regex> &preg,
2351 std::vector<symbol_search> *results) const;
2352
2353 /* Return true if MSYMBOL is of type KIND. */
2354 static bool is_suitable_msymbol (const enum search_domain kind,
2355 const minimal_symbol *msymbol);
2356 };
2357
2358 /* When searching for Fortran symbols within modules (functions/variables)
2359 we return a vector of this type. The first item in the pair is the
2360 module symbol, and the second item is the symbol for the function or
2361 variable we found. */
2362 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2363
2364 /* Searches the symbols to find function and variables symbols (depending
2365 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2366 name of the module, REGEXP matches against the name of the symbol within
2367 the module, and TYPE_REGEXP matches against the type of the symbol
2368 within the module. */
2369 extern std::vector<module_symbol_search> search_module_symbols
2370 (const char *module_regexp, const char *regexp,
2371 const char *type_regexp, search_domain kind);
2372
2373 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2374 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2375 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2376 the type of symbol that was searched for which gave us SYM. */
2377
2378 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2379 enum search_domain kind);
2380
2381 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2382 const struct symbol *sym);
2383
2384 /* The name of the ``main'' function. */
2385 extern const char *main_name ();
2386 extern enum language main_language (void);
2387
2388 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2389 as specified by BLOCK_INDEX.
2390 This searches MAIN_OBJFILE as well as any associated separate debug info
2391 objfiles of MAIN_OBJFILE.
2392 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2393 Upon success fixes up the symbol's section if necessary. */
2394
2395 extern struct block_symbol
2396 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2397 enum block_enum block_index,
2398 const char *name,
2399 const domain_enum domain);
2400
2401 /* Return 1 if the supplied producer string matches the ARM RealView
2402 compiler (armcc). */
2403 bool producer_is_realview (const char *producer);
2404
2405 void fixup_section (struct general_symbol_info *ginfo,
2406 CORE_ADDR addr, struct objfile *objfile);
2407
2408 extern unsigned int symtab_create_debug;
2409
2410 extern unsigned int symbol_lookup_debug;
2411
2412 extern bool basenames_may_differ;
2413
2414 bool compare_filenames_for_search (const char *filename,
2415 const char *search_name);
2416
2417 bool compare_glob_filenames_for_search (const char *filename,
2418 const char *search_name);
2419
2420 bool iterate_over_some_symtabs (const char *name,
2421 const char *real_path,
2422 struct compunit_symtab *first,
2423 struct compunit_symtab *after_last,
2424 gdb::function_view<bool (symtab *)> callback);
2425
2426 void iterate_over_symtabs (const char *name,
2427 gdb::function_view<bool (symtab *)> callback);
2428
2429
2430 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2431 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2432
2433 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2434 is called once per matching symbol SYM. The callback should return
2435 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2436 iterating, or false to indicate that the iteration should end. */
2437
2438 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2439
2440 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2441
2442 For each symbol that matches, CALLBACK is called. The symbol is
2443 passed to the callback.
2444
2445 If CALLBACK returns false, the iteration ends and this function
2446 returns false. Otherwise, the search continues, and the function
2447 eventually returns true. */
2448
2449 bool iterate_over_symbols (const struct block *block,
2450 const lookup_name_info &name,
2451 const domain_enum domain,
2452 gdb::function_view<symbol_found_callback_ftype> callback);
2453
2454 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2455 true, then calls CALLBACK one additional time with a block_symbol
2456 that has a valid block but a NULL symbol. */
2457
2458 bool iterate_over_symbols_terminated
2459 (const struct block *block,
2460 const lookup_name_info &name,
2461 const domain_enum domain,
2462 gdb::function_view<symbol_found_callback_ftype> callback);
2463
2464 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2465 either returns a const char * pointer that points to either of the
2466 fields of this type, or a pointer to the input NAME. This is done
2467 this way to avoid depending on the precise details of the storage
2468 for the string. */
2469 class demangle_result_storage
2470 {
2471 public:
2472
2473 /* Swap the malloc storage to STR, and return a pointer to the
2474 beginning of the new string. */
2475 const char *set_malloc_ptr (gdb::unique_xmalloc_ptr<char> &&str)
2476 {
2477 m_malloc = std::move (str);
2478 return m_malloc.get ();
2479 }
2480
2481 /* Set the malloc storage to now point at PTR. Any previous malloc
2482 storage is released. */
2483 const char *set_malloc_ptr (char *ptr)
2484 {
2485 m_malloc.reset (ptr);
2486 return ptr;
2487 }
2488
2489 private:
2490
2491 /* The storage. */
2492 gdb::unique_xmalloc_ptr<char> m_malloc;
2493 };
2494
2495 const char *
2496 demangle_for_lookup (const char *name, enum language lang,
2497 demangle_result_storage &storage);
2498
2499 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2500 SYMNAME (which is already demangled for C++ symbols) matches
2501 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2502 the current completion list and return true. Otherwise, return
2503 false. */
2504 bool completion_list_add_name (completion_tracker &tracker,
2505 language symbol_language,
2506 const char *symname,
2507 const lookup_name_info &lookup_name,
2508 const char *text, const char *word);
2509
2510 /* A simple symbol searching class. */
2511
2512 class symbol_searcher
2513 {
2514 public:
2515 /* Returns the symbols found for the search. */
2516 const std::vector<block_symbol> &
2517 matching_symbols () const
2518 {
2519 return m_symbols;
2520 }
2521
2522 /* Returns the minimal symbols found for the search. */
2523 const std::vector<bound_minimal_symbol> &
2524 matching_msymbols () const
2525 {
2526 return m_minimal_symbols;
2527 }
2528
2529 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2530 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2531 to search all symtabs and program spaces. */
2532 void find_all_symbols (const std::string &name,
2533 const struct language_defn *language,
2534 enum search_domain search_domain,
2535 std::vector<symtab *> *search_symtabs,
2536 struct program_space *search_pspace);
2537
2538 /* Reset this object to perform another search. */
2539 void reset ()
2540 {
2541 m_symbols.clear ();
2542 m_minimal_symbols.clear ();
2543 }
2544
2545 private:
2546 /* Matching debug symbols. */
2547 std::vector<block_symbol> m_symbols;
2548
2549 /* Matching non-debug symbols. */
2550 std::vector<bound_minimal_symbol> m_minimal_symbols;
2551 };
2552
2553 /* Class used to encapsulate the filename filtering for the "info sources"
2554 command. */
2555
2556 struct info_sources_filter
2557 {
2558 /* If filename filtering is being used (see M_C_REGEXP) then which part
2559 of the filename is being filtered against? */
2560 enum class match_on
2561 {
2562 /* Match against the full filename. */
2563 FULLNAME,
2564
2565 /* Match only against the directory part of the full filename. */
2566 DIRNAME,
2567
2568 /* Match only against the basename part of the full filename. */
2569 BASENAME
2570 };
2571
2572 /* Create a filter of MATCH_TYPE using regular expression REGEXP. If
2573 REGEXP is nullptr then all files will match the filter and MATCH_TYPE
2574 is ignored.
2575
2576 The string pointed too by REGEXP must remain live and unchanged for
2577 this lifetime of this object as the object only retains a copy of the
2578 pointer. */
2579 info_sources_filter (match_on match_type, const char *regexp);
2580
2581 DISABLE_COPY_AND_ASSIGN (info_sources_filter);
2582
2583 /* Does FULLNAME match the filter defined by this object, return true if
2584 it does, otherwise, return false. If there is no filtering defined
2585 then this function will always return true. */
2586 bool matches (const char *fullname) const;
2587
2588 private:
2589
2590 /* The type of filtering in place. */
2591 match_on m_match_type;
2592
2593 /* Points to the original regexp used to create this filter. */
2594 const char *m_regexp;
2595
2596 /* A compiled version of M_REGEXP. This object is only given a value if
2597 M_REGEXP is not nullptr and is not the empty string. */
2598 gdb::optional<compiled_regex> m_c_regexp;
2599 };
2600
2601 /* Perform the core of the 'info sources' command.
2602
2603 FILTER is used to perform regular expression based filtering on the
2604 source files that will be displayed.
2605
2606 Output is written to UIOUT in CLI or MI style as appropriate. */
2607
2608 extern void info_sources_worker (struct ui_out *uiout,
2609 bool group_by_objfile,
2610 const info_sources_filter &filter);
2611
2612 #endif /* !defined(SYMTAB_H) */