gdb: remove MSYMBOL_TYPE macro
[binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include <set>
27 #include "gdbsupport/gdb_vecs.h"
28 #include "gdbtypes.h"
29 #include "gdbsupport/gdb_obstack.h"
30 #include "gdbsupport/gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "gdbsupport/iterator-range.h"
37 #include "completer.h"
38 #include "gdb-demangle.h"
39
40 /* Opaque declarations. */
41 struct ui_file;
42 struct frame_info;
43 struct symbol;
44 struct obstack;
45 struct objfile;
46 struct block;
47 struct blockvector;
48 struct axs_value;
49 struct agent_expr;
50 struct program_space;
51 struct language_defn;
52 struct common_block;
53 struct obj_section;
54 struct cmd_list_element;
55 class probe;
56 struct lookup_name_info;
57
58 /* How to match a lookup name against a symbol search name. */
59 enum class symbol_name_match_type
60 {
61 /* Wild matching. Matches unqualified symbol names in all
62 namespace/module/packages, etc. */
63 WILD,
64
65 /* Full matching. The lookup name indicates a fully-qualified name,
66 and only matches symbol search names in the specified
67 namespace/module/package. */
68 FULL,
69
70 /* Search name matching. This is like FULL, but the search name did
71 not come from the user; instead it is already a search name
72 retrieved from a search_name () call.
73 For Ada, this avoids re-encoding an already-encoded search name
74 (which would potentially incorrectly lowercase letters in the
75 linkage/search name that should remain uppercase). For C++, it
76 avoids trying to demangle a name we already know is
77 demangled. */
78 SEARCH_NAME,
79
80 /* Expression matching. The same as FULL matching in most
81 languages. The same as WILD matching in Ada. */
82 EXPRESSION,
83 };
84
85 /* Hash the given symbol search name according to LANGUAGE's
86 rules. */
87 extern unsigned int search_name_hash (enum language language,
88 const char *search_name);
89
90 /* Ada-specific bits of a lookup_name_info object. This is lazily
91 constructed on demand. */
92
93 class ada_lookup_name_info final
94 {
95 public:
96 /* Construct. */
97 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
98
99 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
100 as name match type. Returns true if there's a match, false
101 otherwise. If non-NULL, store the matching results in MATCH. */
102 bool matches (const char *symbol_search_name,
103 symbol_name_match_type match_type,
104 completion_match_result *comp_match_res) const;
105
106 /* The Ada-encoded lookup name. */
107 const std::string &lookup_name () const
108 { return m_encoded_name; }
109
110 /* Return true if we're supposed to be doing a wild match look
111 up. */
112 bool wild_match_p () const
113 { return m_wild_match_p; }
114
115 /* Return true if we're looking up a name inside package
116 Standard. */
117 bool standard_p () const
118 { return m_standard_p; }
119
120 /* Return true if doing a verbatim match. */
121 bool verbatim_p () const
122 { return m_verbatim_p; }
123
124 private:
125 /* The Ada-encoded lookup name. */
126 std::string m_encoded_name;
127
128 /* Whether the user-provided lookup name was Ada encoded. If so,
129 then return encoded names in the 'matches' method's 'completion
130 match result' output. */
131 bool m_encoded_p : 1;
132
133 /* True if really doing wild matching. Even if the user requests
134 wild matching, some cases require full matching. */
135 bool m_wild_match_p : 1;
136
137 /* True if doing a verbatim match. This is true if the decoded
138 version of the symbol name is wrapped in '<'/'>'. This is an
139 escape hatch users can use to look up symbols the Ada encoding
140 does not understand. */
141 bool m_verbatim_p : 1;
142
143 /* True if the user specified a symbol name that is inside package
144 Standard. Symbol names inside package Standard are handled
145 specially. We always do a non-wild match of the symbol name
146 without the "standard__" prefix, and only search static and
147 global symbols. This was primarily introduced in order to allow
148 the user to specifically access the standard exceptions using,
149 for instance, Standard.Constraint_Error when Constraint_Error is
150 ambiguous (due to the user defining its own Constraint_Error
151 entity inside its program). */
152 bool m_standard_p : 1;
153 };
154
155 /* Language-specific bits of a lookup_name_info object, for languages
156 that do name searching using demangled names (C++/D/Go). This is
157 lazily constructed on demand. */
158
159 struct demangle_for_lookup_info final
160 {
161 public:
162 demangle_for_lookup_info (const lookup_name_info &lookup_name,
163 language lang);
164
165 /* The demangled lookup name. */
166 const std::string &lookup_name () const
167 { return m_demangled_name; }
168
169 private:
170 /* The demangled lookup name. */
171 std::string m_demangled_name;
172 };
173
174 /* Object that aggregates all information related to a symbol lookup
175 name. I.e., the name that is matched against the symbol's search
176 name. Caches per-language information so that it doesn't require
177 recomputing it for every symbol comparison, like for example the
178 Ada encoded name and the symbol's name hash for a given language.
179 The object is conceptually immutable once constructed, and thus has
180 no setters. This is to prevent some code path from tweaking some
181 property of the lookup name for some local reason and accidentally
182 altering the results of any continuing search(es).
183 lookup_name_info objects are generally passed around as a const
184 reference to reinforce that. (They're not passed around by value
185 because they're not small.) */
186 class lookup_name_info final
187 {
188 public:
189 /* We delete this overload so that the callers are required to
190 explicitly handle the lifetime of the name. */
191 lookup_name_info (std::string &&name,
192 symbol_name_match_type match_type,
193 bool completion_mode = false,
194 bool ignore_parameters = false) = delete;
195
196 /* This overload requires that NAME have a lifetime at least as long
197 as the lifetime of this object. */
198 lookup_name_info (const std::string &name,
199 symbol_name_match_type match_type,
200 bool completion_mode = false,
201 bool ignore_parameters = false)
202 : m_match_type (match_type),
203 m_completion_mode (completion_mode),
204 m_ignore_parameters (ignore_parameters),
205 m_name (name)
206 {}
207
208 /* This overload requires that NAME have a lifetime at least as long
209 as the lifetime of this object. */
210 lookup_name_info (const char *name,
211 symbol_name_match_type match_type,
212 bool completion_mode = false,
213 bool ignore_parameters = false)
214 : m_match_type (match_type),
215 m_completion_mode (completion_mode),
216 m_ignore_parameters (ignore_parameters),
217 m_name (name)
218 {}
219
220 /* Getters. See description of each corresponding field. */
221 symbol_name_match_type match_type () const { return m_match_type; }
222 bool completion_mode () const { return m_completion_mode; }
223 gdb::string_view name () const { return m_name; }
224 const bool ignore_parameters () const { return m_ignore_parameters; }
225
226 /* Like the "name" method but guarantees that the returned string is
227 \0-terminated. */
228 const char *c_str () const
229 {
230 /* Actually this is always guaranteed due to how the class is
231 constructed. */
232 return m_name.data ();
233 }
234
235 /* Return a version of this lookup name that is usable with
236 comparisons against symbols have no parameter info, such as
237 psymbols and GDB index symbols. */
238 lookup_name_info make_ignore_params () const
239 {
240 return lookup_name_info (c_str (), m_match_type, m_completion_mode,
241 true /* ignore params */);
242 }
243
244 /* Get the search name hash for searches in language LANG. */
245 unsigned int search_name_hash (language lang) const
246 {
247 /* Only compute each language's hash once. */
248 if (!m_demangled_hashes_p[lang])
249 {
250 m_demangled_hashes[lang]
251 = ::search_name_hash (lang, language_lookup_name (lang));
252 m_demangled_hashes_p[lang] = true;
253 }
254 return m_demangled_hashes[lang];
255 }
256
257 /* Get the search name for searches in language LANG. */
258 const char *language_lookup_name (language lang) const
259 {
260 switch (lang)
261 {
262 case language_ada:
263 return ada ().lookup_name ().c_str ();
264 case language_cplus:
265 return cplus ().lookup_name ().c_str ();
266 case language_d:
267 return d ().lookup_name ().c_str ();
268 case language_go:
269 return go ().lookup_name ().c_str ();
270 default:
271 return m_name.data ();
272 }
273 }
274
275 /* Get the Ada-specific lookup info. */
276 const ada_lookup_name_info &ada () const
277 {
278 maybe_init (m_ada);
279 return *m_ada;
280 }
281
282 /* Get the C++-specific lookup info. */
283 const demangle_for_lookup_info &cplus () const
284 {
285 maybe_init (m_cplus, language_cplus);
286 return *m_cplus;
287 }
288
289 /* Get the D-specific lookup info. */
290 const demangle_for_lookup_info &d () const
291 {
292 maybe_init (m_d, language_d);
293 return *m_d;
294 }
295
296 /* Get the Go-specific lookup info. */
297 const demangle_for_lookup_info &go () const
298 {
299 maybe_init (m_go, language_go);
300 return *m_go;
301 }
302
303 /* Get a reference to a lookup_name_info object that matches any
304 symbol name. */
305 static const lookup_name_info &match_any ();
306
307 private:
308 /* Initialize FIELD, if not initialized yet. */
309 template<typename Field, typename... Args>
310 void maybe_init (Field &field, Args&&... args) const
311 {
312 if (!field)
313 field.emplace (*this, std::forward<Args> (args)...);
314 }
315
316 /* The lookup info as passed to the ctor. */
317 symbol_name_match_type m_match_type;
318 bool m_completion_mode;
319 bool m_ignore_parameters;
320 gdb::string_view m_name;
321
322 /* Language-specific info. These fields are filled lazily the first
323 time a lookup is done in the corresponding language. They're
324 mutable because lookup_name_info objects are typically passed
325 around by const reference (see intro), and they're conceptually
326 "cache" that can always be reconstructed from the non-mutable
327 fields. */
328 mutable gdb::optional<ada_lookup_name_info> m_ada;
329 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
330 mutable gdb::optional<demangle_for_lookup_info> m_d;
331 mutable gdb::optional<demangle_for_lookup_info> m_go;
332
333 /* The demangled hashes. Stored in an array with one entry for each
334 possible language. The second array records whether we've
335 already computed the each language's hash. (These are separate
336 arrays instead of a single array of optional<unsigned> to avoid
337 alignment padding). */
338 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
339 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
340 };
341
342 /* Comparison function for completion symbol lookup.
343
344 Returns true if the symbol name matches against LOOKUP_NAME.
345
346 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
347
348 On success and if non-NULL, COMP_MATCH_RES->match is set to point
349 to the symbol name as should be presented to the user as a
350 completion match list element. In most languages, this is the same
351 as the symbol's search name, but in some, like Ada, the display
352 name is dynamically computed within the comparison routine.
353
354 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
355 points the part of SYMBOL_SEARCH_NAME that was considered to match
356 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
357 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
358 points to "function()" inside SYMBOL_SEARCH_NAME. */
359 typedef bool (symbol_name_matcher_ftype)
360 (const char *symbol_search_name,
361 const lookup_name_info &lookup_name,
362 completion_match_result *comp_match_res);
363
364 /* Some of the structures in this file are space critical.
365 The space-critical structures are:
366
367 struct general_symbol_info
368 struct symbol
369 struct partial_symbol
370
371 These structures are laid out to encourage good packing.
372 They use ENUM_BITFIELD and short int fields, and they order the
373 structure members so that fields less than a word are next
374 to each other so they can be packed together. */
375
376 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
377 all the space critical structures (plus struct minimal_symbol).
378 Memory usage dropped from 99360768 bytes to 90001408 bytes.
379 I measured this with before-and-after tests of
380 "HEAD-old-gdb -readnow HEAD-old-gdb" and
381 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
382 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
383 typing "maint space 1" at the first command prompt.
384
385 Here is another measurement (from andrew c):
386 # no /usr/lib/debug, just plain glibc, like a normal user
387 gdb HEAD-old-gdb
388 (gdb) break internal_error
389 (gdb) run
390 (gdb) maint internal-error
391 (gdb) backtrace
392 (gdb) maint space 1
393
394 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
395 gdb HEAD 2003-08-19 space used: 8904704
396 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
397 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
398
399 The third line shows the savings from the optimizations in symtab.h.
400 The fourth line shows the savings from the optimizations in
401 gdbtypes.h. Both optimizations are in gdb HEAD now.
402
403 --chastain 2003-08-21 */
404
405 /* Define a structure for the information that is common to all symbol types,
406 including minimal symbols, partial symbols, and full symbols. In a
407 multilanguage environment, some language specific information may need to
408 be recorded along with each symbol. */
409
410 /* This structure is space critical. See space comments at the top. */
411
412 struct general_symbol_info
413 {
414 /* Short version as to when to use which name accessor:
415 Use natural_name () to refer to the name of the symbol in the original
416 source code. Use linkage_name () if you want to know what the linker
417 thinks the symbol's name is. Use print_name () for output. Use
418 demangled_name () if you specifically need to know whether natural_name ()
419 and linkage_name () are different. */
420
421 const char *linkage_name () const
422 { return m_name; }
423
424 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
425 the original source code. In languages like C++ where symbols may
426 be mangled for ease of manipulation by the linker, this is the
427 demangled name. */
428 const char *natural_name () const;
429
430 /* Returns a version of the name of a symbol that is
431 suitable for output. In C++ this is the "demangled" form of the
432 name if demangle is on and the "mangled" form of the name if
433 demangle is off. In other languages this is just the symbol name.
434 The result should never be NULL. Don't use this for internal
435 purposes (e.g. storing in a hashtable): it's only suitable for output. */
436 const char *print_name () const
437 { return demangle ? natural_name () : linkage_name (); }
438
439 /* Return the demangled name for a symbol based on the language for
440 that symbol. If no demangled name exists, return NULL. */
441 const char *demangled_name () const;
442
443 /* Returns the name to be used when sorting and searching symbols.
444 In C++, we search for the demangled form of a name,
445 and so sort symbols accordingly. In Ada, however, we search by mangled
446 name. If there is no distinct demangled name, then this
447 returns the same value (same pointer) as linkage_name (). */
448 const char *search_name () const;
449
450 /* Set just the linkage name of a symbol; do not try to demangle
451 it. Used for constructs which do not have a mangled name,
452 e.g. struct tags. Unlike compute_and_set_names, linkage_name must
453 be terminated and either already on the objfile's obstack or
454 permanently allocated. */
455 void set_linkage_name (const char *linkage_name)
456 { m_name = linkage_name; }
457
458 /* Set the demangled name of this symbol to NAME. NAME must be
459 already correctly allocated. If the symbol's language is Ada,
460 then the name is ignored and the obstack is set. */
461 void set_demangled_name (const char *name, struct obstack *obstack);
462
463 enum language language () const
464 { return m_language; }
465
466 /* Initializes the language dependent portion of a symbol
467 depending upon the language for the symbol. */
468 void set_language (enum language language, struct obstack *obstack);
469
470 /* Set the linkage and natural names of a symbol, by demangling
471 the linkage name. If linkage_name may not be nullterminated,
472 copy_name must be set to true. */
473 void compute_and_set_names (gdb::string_view linkage_name, bool copy_name,
474 struct objfile_per_bfd_storage *per_bfd,
475 gdb::optional<hashval_t> hash
476 = gdb::optional<hashval_t> ());
477
478 CORE_ADDR value_address () const
479 {
480 return m_value.address;
481 }
482
483 void set_value_address (CORE_ADDR address)
484 {
485 m_value.address = address;
486 }
487
488 /* Name of the symbol. This is a required field. Storage for the
489 name is allocated on the objfile_obstack for the associated
490 objfile. For languages like C++ that make a distinction between
491 the mangled name and demangled name, this is the mangled
492 name. */
493
494 const char *m_name;
495
496 /* Value of the symbol. Which member of this union to use, and what
497 it means, depends on what kind of symbol this is and its
498 SYMBOL_CLASS. See comments there for more details. All of these
499 are in host byte order (though what they point to might be in
500 target byte order, e.g. LOC_CONST_BYTES). */
501
502 union
503 {
504 LONGEST ivalue;
505
506 const struct block *block;
507
508 const gdb_byte *bytes;
509
510 CORE_ADDR address;
511
512 /* A common block. Used with LOC_COMMON_BLOCK. */
513
514 const struct common_block *common_block;
515
516 /* For opaque typedef struct chain. */
517
518 struct symbol *chain;
519 }
520 m_value;
521
522 /* Since one and only one language can apply, wrap the language specific
523 information inside a union. */
524
525 union
526 {
527 /* A pointer to an obstack that can be used for storage associated
528 with this symbol. This is only used by Ada, and only when the
529 'ada_mangled' field is zero. */
530 struct obstack *obstack;
531
532 /* This is used by languages which wish to store a demangled name.
533 currently used by Ada, C++, and Objective C. */
534 const char *demangled_name;
535 }
536 language_specific;
537
538 /* Record the source code language that applies to this symbol.
539 This is used to select one of the fields from the language specific
540 union above. */
541
542 ENUM_BITFIELD(language) m_language : LANGUAGE_BITS;
543
544 /* This is only used by Ada. If set, then the 'demangled_name' field
545 of language_specific is valid. Otherwise, the 'obstack' field is
546 valid. */
547 unsigned int ada_mangled : 1;
548
549 /* Which section is this symbol in? This is an index into
550 section_offsets for this objfile. Negative means that the symbol
551 does not get relocated relative to a section. */
552
553 short m_section;
554
555 /* Set the index into the obj_section list (within the containing
556 objfile) for the section that contains this symbol. See M_SECTION
557 for more details. */
558
559 void set_section_index (short idx)
560 { m_section = idx; }
561
562 /* Return the index into the obj_section list (within the containing
563 objfile) for the section that contains this symbol. See M_SECTION
564 for more details. */
565
566 short section_index () const
567 { return m_section; }
568
569 /* Return the obj_section from OBJFILE for this symbol. The symbol
570 returned is based on the SECTION member variable, and can be nullptr
571 if SECTION is negative. */
572
573 struct obj_section *obj_section (const struct objfile *objfile) const;
574 };
575
576 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
577
578 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
579 SYM. If SYM appears in the main program's minimal symbols, then
580 that minsym's address is returned; otherwise, SYM's address is
581 returned. This should generally only be used via the
582 SYMBOL_VALUE_ADDRESS macro. */
583
584 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
585
586 /* Try to determine the demangled name for a symbol, based on the
587 language of that symbol. If the language is set to language_auto,
588 it will attempt to find any demangling algorithm that works and
589 then set the language appropriately. The returned name is allocated
590 by the demangler and should be xfree'd. */
591
592 extern gdb::unique_xmalloc_ptr<char> symbol_find_demangled_name
593 (struct general_symbol_info *gsymbol, const char *mangled);
594
595 /* Return true if NAME matches the "search" name of GSYMBOL, according
596 to the symbol's language. */
597 extern bool symbol_matches_search_name
598 (const struct general_symbol_info *gsymbol,
599 const lookup_name_info &name);
600
601 /* Compute the hash of the given symbol search name of a symbol of
602 language LANGUAGE. */
603 extern unsigned int search_name_hash (enum language language,
604 const char *search_name);
605
606 /* Classification types for a minimal symbol. These should be taken as
607 "advisory only", since if gdb can't easily figure out a
608 classification it simply selects mst_unknown. It may also have to
609 guess when it can't figure out which is a better match between two
610 types (mst_data versus mst_bss) for example. Since the minimal
611 symbol info is sometimes derived from the BFD library's view of a
612 file, we need to live with what information bfd supplies. */
613
614 enum minimal_symbol_type
615 {
616 mst_unknown = 0, /* Unknown type, the default */
617 mst_text, /* Generally executable instructions */
618
619 /* A GNU ifunc symbol, in the .text section. GDB uses to know
620 whether the user is setting a breakpoint on a GNU ifunc function,
621 and thus GDB needs to actually set the breakpoint on the target
622 function. It is also used to know whether the program stepped
623 into an ifunc resolver -- the resolver may get a separate
624 symbol/alias under a different name, but it'll have the same
625 address as the ifunc symbol. */
626 mst_text_gnu_ifunc, /* Executable code returning address
627 of executable code */
628
629 /* A GNU ifunc function descriptor symbol, in a data section
630 (typically ".opd"). Seen on architectures that use function
631 descriptors, like PPC64/ELFv1. In this case, this symbol's value
632 is the address of the descriptor. There'll be a corresponding
633 mst_text_gnu_ifunc synthetic symbol for the text/entry
634 address. */
635 mst_data_gnu_ifunc, /* Executable code returning address
636 of executable code */
637
638 mst_slot_got_plt, /* GOT entries for .plt sections */
639 mst_data, /* Generally initialized data */
640 mst_bss, /* Generally uninitialized data */
641 mst_abs, /* Generally absolute (nonrelocatable) */
642 /* GDB uses mst_solib_trampoline for the start address of a shared
643 library trampoline entry. Breakpoints for shared library functions
644 are put there if the shared library is not yet loaded.
645 After the shared library is loaded, lookup_minimal_symbol will
646 prefer the minimal symbol from the shared library (usually
647 a mst_text symbol) over the mst_solib_trampoline symbol, and the
648 breakpoints will be moved to their true address in the shared
649 library via breakpoint_re_set. */
650 mst_solib_trampoline, /* Shared library trampoline code */
651 /* For the mst_file* types, the names are only guaranteed to be unique
652 within a given .o file. */
653 mst_file_text, /* Static version of mst_text */
654 mst_file_data, /* Static version of mst_data */
655 mst_file_bss, /* Static version of mst_bss */
656 nr_minsym_types
657 };
658
659 /* The number of enum minimal_symbol_type values, with some padding for
660 reasonable growth. */
661 #define MINSYM_TYPE_BITS 4
662 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
663
664 /* Return the address of MINSYM, which comes from OBJF. The
665 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
666 main program's minimal symbols, then that minsym's address is
667 returned; otherwise, MINSYM's address is returned. This should
668 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
669
670 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
671 const struct minimal_symbol *minsym);
672
673 /* Define a simple structure used to hold some very basic information about
674 all defined global symbols (text, data, bss, abs, etc). The only required
675 information is the general_symbol_info.
676
677 In many cases, even if a file was compiled with no special options for
678 debugging at all, as long as was not stripped it will contain sufficient
679 information to build a useful minimal symbol table using this structure.
680 Even when a file contains enough debugging information to build a full
681 symbol table, these minimal symbols are still useful for quickly mapping
682 between names and addresses, and vice versa. They are also sometimes
683 used to figure out what full symbol table entries need to be read in. */
684
685 struct minimal_symbol : public general_symbol_info
686 {
687 LONGEST value_longest () const
688 {
689 return m_value.ivalue;
690 }
691
692 /* The relocated address of the minimal symbol, using the section
693 offsets from OBJFILE. */
694 CORE_ADDR value_address (objfile *objfile) const;
695
696 /* The unrelocated address of the minimal symbol. */
697 CORE_ADDR value_raw_address () const
698 {
699 return m_value.address;
700 }
701
702 /* Return this minimal symbol's type. */
703
704 minimal_symbol_type type () const
705 {
706 return m_type;
707 }
708
709 /* Set this minimal symbol's type. */
710
711 void set_type (minimal_symbol_type type)
712 {
713 m_type = type;
714 }
715
716 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
717 information to calculate the end of the partial symtab based on the
718 address of the last symbol plus the size of the last symbol. */
719
720 unsigned long size;
721
722 /* Which source file is this symbol in? Only relevant for mst_file_*. */
723 const char *filename;
724
725 /* Classification type for this minimal symbol. */
726
727 ENUM_BITFIELD(minimal_symbol_type) m_type : MINSYM_TYPE_BITS;
728
729 /* Non-zero if this symbol was created by gdb.
730 Such symbols do not appear in the output of "info var|fun". */
731 unsigned int created_by_gdb : 1;
732
733 /* Two flag bits provided for the use of the target. */
734 unsigned int target_flag_1 : 1;
735 unsigned int target_flag_2 : 1;
736
737 /* Nonzero iff the size of the minimal symbol has been set.
738 Symbol size information can sometimes not be determined, because
739 the object file format may not carry that piece of information. */
740 unsigned int has_size : 1;
741
742 /* For data symbols only, if this is set, then the symbol might be
743 subject to copy relocation. In this case, a minimal symbol
744 matching the symbol's linkage name is first looked for in the
745 main objfile. If found, then that address is used; otherwise the
746 address in this symbol is used. */
747
748 unsigned maybe_copied : 1;
749
750 /* Non-zero if this symbol ever had its demangled name set (even if
751 it was set to NULL). */
752 unsigned int name_set : 1;
753
754 /* Minimal symbols with the same hash key are kept on a linked
755 list. This is the link. */
756
757 struct minimal_symbol *hash_next;
758
759 /* Minimal symbols are stored in two different hash tables. This is
760 the `next' pointer for the demangled hash table. */
761
762 struct minimal_symbol *demangled_hash_next;
763
764 /* True if this symbol is of some data type. */
765
766 bool data_p () const;
767
768 /* True if MSYMBOL is of some text type. */
769
770 bool text_p () const;
771 };
772
773 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
774 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
775 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
776 #define SET_MSYMBOL_SIZE(msymbol, sz) \
777 do \
778 { \
779 (msymbol)->size = sz; \
780 (msymbol)->has_size = 1; \
781 } while (0)
782 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
783
784 #include "minsyms.h"
785
786 \f
787
788 /* Represent one symbol name; a variable, constant, function or typedef. */
789
790 /* Different name domains for symbols. Looking up a symbol specifies a
791 domain and ignores symbol definitions in other name domains. */
792
793 typedef enum domain_enum_tag
794 {
795 /* UNDEF_DOMAIN is used when a domain has not been discovered or
796 none of the following apply. This usually indicates an error either
797 in the symbol information or in gdb's handling of symbols. */
798
799 UNDEF_DOMAIN,
800
801 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
802 function names, typedef names and enum type values. */
803
804 VAR_DOMAIN,
805
806 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
807 Thus, if `struct foo' is used in a C program, it produces a symbol named
808 `foo' in the STRUCT_DOMAIN. */
809
810 STRUCT_DOMAIN,
811
812 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
813
814 MODULE_DOMAIN,
815
816 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
817
818 LABEL_DOMAIN,
819
820 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
821 They also always use LOC_COMMON_BLOCK. */
822 COMMON_BLOCK_DOMAIN,
823
824 /* This must remain last. */
825 NR_DOMAINS
826 } domain_enum;
827
828 /* The number of bits in a symbol used to represent the domain. */
829
830 #define SYMBOL_DOMAIN_BITS 3
831 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
832
833 extern const char *domain_name (domain_enum);
834
835 /* Searching domains, used when searching for symbols. Element numbers are
836 hardcoded in GDB, check all enum uses before changing it. */
837
838 enum search_domain
839 {
840 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
841 TYPES_DOMAIN. */
842 VARIABLES_DOMAIN = 0,
843
844 /* All functions -- for some reason not methods, though. */
845 FUNCTIONS_DOMAIN = 1,
846
847 /* All defined types */
848 TYPES_DOMAIN = 2,
849
850 /* All modules. */
851 MODULES_DOMAIN = 3,
852
853 /* Any type. */
854 ALL_DOMAIN = 4
855 };
856
857 extern const char *search_domain_name (enum search_domain);
858
859 /* An address-class says where to find the value of a symbol. */
860
861 enum address_class
862 {
863 /* Not used; catches errors. */
864
865 LOC_UNDEF,
866
867 /* Value is constant int SYMBOL_VALUE, host byteorder. */
868
869 LOC_CONST,
870
871 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
872
873 LOC_STATIC,
874
875 /* Value is in register. SYMBOL_VALUE is the register number
876 in the original debug format. SYMBOL_REGISTER_OPS holds a
877 function that can be called to transform this into the
878 actual register number this represents in a specific target
879 architecture (gdbarch).
880
881 For some symbol formats (stabs, for some compilers at least),
882 the compiler generates two symbols, an argument and a register.
883 In some cases we combine them to a single LOC_REGISTER in symbol
884 reading, but currently not for all cases (e.g. it's passed on the
885 stack and then loaded into a register). */
886
887 LOC_REGISTER,
888
889 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
890
891 LOC_ARG,
892
893 /* Value address is at SYMBOL_VALUE offset in arglist. */
894
895 LOC_REF_ARG,
896
897 /* Value is in specified register. Just like LOC_REGISTER except the
898 register holds the address of the argument instead of the argument
899 itself. This is currently used for the passing of structs and unions
900 on sparc and hppa. It is also used for call by reference where the
901 address is in a register, at least by mipsread.c. */
902
903 LOC_REGPARM_ADDR,
904
905 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
906
907 LOC_LOCAL,
908
909 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
910 STRUCT_DOMAIN all have this class. */
911
912 LOC_TYPEDEF,
913
914 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
915
916 LOC_LABEL,
917
918 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
919 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
920 of the block. Function names have this class. */
921
922 LOC_BLOCK,
923
924 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
925 target byte order. */
926
927 LOC_CONST_BYTES,
928
929 /* Value is at fixed address, but the address of the variable has
930 to be determined from the minimal symbol table whenever the
931 variable is referenced.
932 This happens if debugging information for a global symbol is
933 emitted and the corresponding minimal symbol is defined
934 in another object file or runtime common storage.
935 The linker might even remove the minimal symbol if the global
936 symbol is never referenced, in which case the symbol remains
937 unresolved.
938
939 GDB would normally find the symbol in the minimal symbol table if it will
940 not find it in the full symbol table. But a reference to an external
941 symbol in a local block shadowing other definition requires full symbol
942 without possibly having its address available for LOC_STATIC. Testcase
943 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
944
945 This is also used for thread local storage (TLS) variables. In this case,
946 the address of the TLS variable must be determined when the variable is
947 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
948 of the TLS variable in the thread local storage of the shared
949 library/object. */
950
951 LOC_UNRESOLVED,
952
953 /* The variable does not actually exist in the program.
954 The value is ignored. */
955
956 LOC_OPTIMIZED_OUT,
957
958 /* The variable's address is computed by a set of location
959 functions (see "struct symbol_computed_ops" below). */
960 LOC_COMPUTED,
961
962 /* The variable uses general_symbol_info->value->common_block field.
963 It also always uses COMMON_BLOCK_DOMAIN. */
964 LOC_COMMON_BLOCK,
965
966 /* Not used, just notes the boundary of the enum. */
967 LOC_FINAL_VALUE
968 };
969
970 /* The number of bits needed for values in enum address_class, with some
971 padding for reasonable growth, and room for run-time registered address
972 classes. See symtab.c:MAX_SYMBOL_IMPLS.
973 This is a #define so that we can have a assertion elsewhere to
974 verify that we have reserved enough space for synthetic address
975 classes. */
976 #define SYMBOL_ACLASS_BITS 5
977 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
978
979 /* The methods needed to implement LOC_COMPUTED. These methods can
980 use the symbol's .aux_value for additional per-symbol information.
981
982 At present this is only used to implement location expressions. */
983
984 struct symbol_computed_ops
985 {
986
987 /* Return the value of the variable SYMBOL, relative to the stack
988 frame FRAME. If the variable has been optimized out, return
989 zero.
990
991 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
992 FRAME may be zero. */
993
994 struct value *(*read_variable) (struct symbol * symbol,
995 struct frame_info * frame);
996
997 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
998 entry. SYMBOL should be a function parameter, otherwise
999 NO_ENTRY_VALUE_ERROR will be thrown. */
1000 struct value *(*read_variable_at_entry) (struct symbol *symbol,
1001 struct frame_info *frame);
1002
1003 /* Find the "symbol_needs_kind" value for the given symbol. This
1004 value determines whether reading the symbol needs memory (e.g., a
1005 global variable), just registers (a thread-local), or a frame (a
1006 local variable). */
1007 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
1008
1009 /* Write to STREAM a natural-language description of the location of
1010 SYMBOL, in the context of ADDR. */
1011 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
1012 struct ui_file * stream);
1013
1014 /* Non-zero if this symbol's address computation is dependent on PC. */
1015 unsigned char location_has_loclist;
1016
1017 /* Tracepoint support. Append bytecodes to the tracepoint agent
1018 expression AX that push the address of the object SYMBOL. Set
1019 VALUE appropriately. Note --- for objects in registers, this
1020 needn't emit any code; as long as it sets VALUE properly, then
1021 the caller will generate the right code in the process of
1022 treating this as an lvalue or rvalue. */
1023
1024 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1025 struct axs_value *value);
1026
1027 /* Generate C code to compute the location of SYMBOL. The C code is
1028 emitted to STREAM. GDBARCH is the current architecture and PC is
1029 the PC at which SYMBOL's location should be evaluated.
1030 REGISTERS_USED is a vector indexed by register number; the
1031 generator function should set an element in this vector if the
1032 corresponding register is needed by the location computation.
1033 The generated C code must assign the location to a local
1034 variable; this variable's name is RESULT_NAME. */
1035
1036 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1037 struct gdbarch *gdbarch,
1038 std::vector<bool> &registers_used,
1039 CORE_ADDR pc, const char *result_name);
1040
1041 };
1042
1043 /* The methods needed to implement LOC_BLOCK for inferior functions.
1044 These methods can use the symbol's .aux_value for additional
1045 per-symbol information. */
1046
1047 struct symbol_block_ops
1048 {
1049 /* Fill in *START and *LENGTH with DWARF block data of function
1050 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1051 zero if such location is not valid for PC; *START is left
1052 uninitialized in such case. */
1053 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1054 const gdb_byte **start, size_t *length);
1055
1056 /* Return the frame base address. FRAME is the frame for which we want to
1057 compute the base address while FRAMEFUNC is the symbol for the
1058 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1059 information we need).
1060
1061 This method is designed to work with static links (nested functions
1062 handling). Static links are function properties whose evaluation returns
1063 the frame base address for the enclosing frame. However, there are
1064 multiple definitions for "frame base": the content of the frame base
1065 register, the CFA as defined by DWARF unwinding information, ...
1066
1067 So this specific method is supposed to compute the frame base address such
1068 as for nested functions, the static link computes the same address. For
1069 instance, considering DWARF debugging information, the static link is
1070 computed with DW_AT_static_link and this method must be used to compute
1071 the corresponding DW_AT_frame_base attribute. */
1072 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1073 struct frame_info *frame);
1074 };
1075
1076 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1077
1078 struct symbol_register_ops
1079 {
1080 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1081 };
1082
1083 /* Objects of this type are used to find the address class and the
1084 various computed ops vectors of a symbol. */
1085
1086 struct symbol_impl
1087 {
1088 enum address_class aclass;
1089
1090 /* Used with LOC_COMPUTED. */
1091 const struct symbol_computed_ops *ops_computed;
1092
1093 /* Used with LOC_BLOCK. */
1094 const struct symbol_block_ops *ops_block;
1095
1096 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1097 const struct symbol_register_ops *ops_register;
1098 };
1099
1100 /* struct symbol has some subclasses. This enum is used to
1101 differentiate between them. */
1102
1103 enum symbol_subclass_kind
1104 {
1105 /* Plain struct symbol. */
1106 SYMBOL_NONE,
1107
1108 /* struct template_symbol. */
1109 SYMBOL_TEMPLATE,
1110
1111 /* struct rust_vtable_symbol. */
1112 SYMBOL_RUST_VTABLE
1113 };
1114
1115 extern const struct symbol_impl *symbol_impls;
1116
1117 /* This structure is space critical. See space comments at the top. */
1118
1119 struct symbol : public general_symbol_info, public allocate_on_obstack
1120 {
1121 symbol ()
1122 /* Class-initialization of bitfields is only allowed in C++20. */
1123 : m_domain (UNDEF_DOMAIN),
1124 m_aclass_index (0),
1125 m_is_objfile_owned (1),
1126 m_is_argument (0),
1127 m_is_inlined (0),
1128 maybe_copied (0),
1129 subclass (SYMBOL_NONE),
1130 artificial (false)
1131 {
1132 /* We can't use an initializer list for members of a base class, and
1133 general_symbol_info needs to stay a POD type. */
1134 m_name = nullptr;
1135 m_value.ivalue = 0;
1136 language_specific.obstack = nullptr;
1137 m_language = language_unknown;
1138 ada_mangled = 0;
1139 m_section = -1;
1140 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1141 initialization of unions, so we initialize it manually here. */
1142 owner.symtab = nullptr;
1143 }
1144
1145 symbol (const symbol &) = default;
1146 symbol &operator= (const symbol &) = default;
1147
1148 unsigned int aclass_index () const
1149 {
1150 return m_aclass_index;
1151 }
1152
1153 void set_aclass_index (unsigned int aclass_index)
1154 {
1155 m_aclass_index = aclass_index;
1156 }
1157
1158 const symbol_impl &impl () const
1159 {
1160 return symbol_impls[this->aclass_index ()];
1161 }
1162
1163 address_class aclass () const
1164 {
1165 return this->impl ().aclass;
1166 }
1167
1168 domain_enum domain () const
1169 {
1170 return m_domain;
1171 }
1172
1173 void set_domain (domain_enum domain)
1174 {
1175 m_domain = domain;
1176 }
1177
1178 bool is_objfile_owned () const
1179 {
1180 return m_is_objfile_owned;
1181 }
1182
1183 void set_is_objfile_owned (bool is_objfile_owned)
1184 {
1185 m_is_objfile_owned = is_objfile_owned;
1186 }
1187
1188 bool is_argument () const
1189 {
1190 return m_is_argument;
1191 }
1192
1193 void set_is_argument (bool is_argument)
1194 {
1195 m_is_argument = is_argument;
1196 }
1197
1198 bool is_inlined () const
1199 {
1200 return m_is_inlined;
1201 }
1202
1203 void set_is_inlined (bool is_inlined)
1204 {
1205 m_is_inlined = is_inlined;
1206 }
1207
1208 bool is_cplus_template_function () const
1209 {
1210 return this->subclass == SYMBOL_TEMPLATE;
1211 }
1212
1213 struct type *type () const
1214 {
1215 return m_type;
1216 }
1217
1218 void set_type (struct type *type)
1219 {
1220 m_type = type;
1221 }
1222
1223 unsigned short line () const
1224 {
1225 return m_line;
1226 }
1227
1228 void set_line (unsigned short line)
1229 {
1230 m_line = line;
1231 }
1232
1233 LONGEST value_longest () const
1234 {
1235 return m_value.ivalue;
1236 }
1237
1238 void set_value_longest (LONGEST value)
1239 {
1240 m_value.ivalue = value;
1241 }
1242
1243 CORE_ADDR value_address () const
1244 {
1245 if (this->maybe_copied)
1246 return get_symbol_address (this);
1247 else
1248 return m_value.address;
1249 }
1250
1251 void set_value_address (CORE_ADDR address)
1252 {
1253 m_value.address = address;
1254 }
1255
1256 const gdb_byte *value_bytes () const
1257 {
1258 return m_value.bytes;
1259 }
1260
1261 void set_value_bytes (const gdb_byte *bytes)
1262 {
1263 m_value.bytes = bytes;
1264 }
1265
1266 const common_block *value_common_block () const
1267 {
1268 return m_value.common_block;
1269 }
1270
1271 void set_value_common_block (const common_block *common_block)
1272 {
1273 m_value.common_block = common_block;
1274 }
1275
1276 const block *value_block () const
1277 {
1278 return m_value.block;
1279 }
1280
1281 void set_value_block (const block *block)
1282 {
1283 m_value.block = block;
1284 }
1285
1286 symbol *value_chain () const
1287 {
1288 return m_value.chain;
1289 }
1290
1291 void set_value_chain (symbol *sym)
1292 {
1293 m_value.chain = sym;
1294 }
1295
1296 /* Data type of value */
1297
1298 struct type *m_type = nullptr;
1299
1300 /* The owner of this symbol.
1301 Which one to use is defined by symbol.is_objfile_owned. */
1302
1303 union
1304 {
1305 /* The symbol table containing this symbol. This is the file associated
1306 with LINE. It can be NULL during symbols read-in but it is never NULL
1307 during normal operation. */
1308 struct symtab *symtab;
1309
1310 /* For types defined by the architecture. */
1311 struct gdbarch *arch;
1312 } owner;
1313
1314 /* Domain code. */
1315
1316 ENUM_BITFIELD(domain_enum_tag) m_domain : SYMBOL_DOMAIN_BITS;
1317
1318 /* Address class. This holds an index into the 'symbol_impls'
1319 table. The actual enum address_class value is stored there,
1320 alongside any per-class ops vectors. */
1321
1322 unsigned int m_aclass_index : SYMBOL_ACLASS_BITS;
1323
1324 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1325 Otherwise symbol is arch-owned, use owner.arch. */
1326
1327 unsigned int m_is_objfile_owned : 1;
1328
1329 /* Whether this is an argument. */
1330
1331 unsigned m_is_argument : 1;
1332
1333 /* Whether this is an inlined function (class LOC_BLOCK only). */
1334 unsigned m_is_inlined : 1;
1335
1336 /* For LOC_STATIC only, if this is set, then the symbol might be
1337 subject to copy relocation. In this case, a minimal symbol
1338 matching the symbol's linkage name is first looked for in the
1339 main objfile. If found, then that address is used; otherwise the
1340 address in this symbol is used. */
1341
1342 unsigned maybe_copied : 1;
1343
1344 /* The concrete type of this symbol. */
1345
1346 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1347
1348 /* Whether this symbol is artificial. */
1349
1350 bool artificial : 1;
1351
1352 /* Line number of this symbol's definition, except for inlined
1353 functions. For an inlined function (class LOC_BLOCK and
1354 SYMBOL_INLINED set) this is the line number of the function's call
1355 site. Inlined function symbols are not definitions, and they are
1356 never found by symbol table lookup.
1357 If this symbol is arch-owned, LINE shall be zero.
1358
1359 FIXME: Should we really make the assumption that nobody will try
1360 to debug files longer than 64K lines? What about machine
1361 generated programs? */
1362
1363 unsigned short m_line = 0;
1364
1365 /* An arbitrary data pointer, allowing symbol readers to record
1366 additional information on a per-symbol basis. Note that this data
1367 must be allocated using the same obstack as the symbol itself. */
1368 /* So far it is only used by:
1369 LOC_COMPUTED: to find the location information
1370 LOC_BLOCK (DWARF2 function): information used internally by the
1371 DWARF 2 code --- specifically, the location expression for the frame
1372 base for this function. */
1373 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1374 to add a magic symbol to the block containing this information,
1375 or to have a generic debug info annotation slot for symbols. */
1376
1377 void *aux_value = nullptr;
1378
1379 struct symbol *hash_next = nullptr;
1380 };
1381
1382 /* Several lookup functions return both a symbol and the block in which the
1383 symbol is found. This structure is used in these cases. */
1384
1385 struct block_symbol
1386 {
1387 /* The symbol that was found, or NULL if no symbol was found. */
1388 struct symbol *symbol;
1389
1390 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1391 defined. */
1392 const struct block *block;
1393 };
1394
1395 /* Note: There is no accessor macro for symbol.owner because it is
1396 "private". */
1397
1398 #define SYMBOL_COMPUTED_OPS(symbol) ((symbol)->impl ().ops_computed)
1399 #define SYMBOL_BLOCK_OPS(symbol) ((symbol)->impl ().ops_block)
1400 #define SYMBOL_REGISTER_OPS(symbol) ((symbol)->impl ().ops_register)
1401 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1402
1403 extern int register_symbol_computed_impl (enum address_class,
1404 const struct symbol_computed_ops *);
1405
1406 extern int register_symbol_block_impl (enum address_class aclass,
1407 const struct symbol_block_ops *ops);
1408
1409 extern int register_symbol_register_impl (enum address_class,
1410 const struct symbol_register_ops *);
1411
1412 /* Return the OBJFILE of SYMBOL.
1413 It is an error to call this if symbol.is_objfile_owned is false, which
1414 only happens for architecture-provided types. */
1415
1416 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1417
1418 /* Return the ARCH of SYMBOL. */
1419
1420 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1421
1422 /* Return the SYMTAB of SYMBOL.
1423 It is an error to call this if symbol.is_objfile_owned is false, which
1424 only happens for architecture-provided types. */
1425
1426 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1427
1428 /* Set the symtab of SYMBOL to SYMTAB.
1429 It is an error to call this if symbol.is_objfile_owned is false, which
1430 only happens for architecture-provided types. */
1431
1432 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1433
1434 /* An instance of this type is used to represent a C++ template
1435 function. A symbol is really of this type iff
1436 symbol::is_cplus_template_function is true. */
1437
1438 struct template_symbol : public symbol
1439 {
1440 /* The number of template arguments. */
1441 int n_template_arguments = 0;
1442
1443 /* The template arguments. This is an array with
1444 N_TEMPLATE_ARGUMENTS elements. */
1445 struct symbol **template_arguments = nullptr;
1446 };
1447
1448 /* A symbol that represents a Rust virtual table object. */
1449
1450 struct rust_vtable_symbol : public symbol
1451 {
1452 /* The concrete type for which this vtable was created; that is, in
1453 "impl Trait for Type", this is "Type". */
1454 struct type *concrete_type = nullptr;
1455 };
1456
1457 \f
1458 /* Each item represents a line-->pc (or the reverse) mapping. This is
1459 somewhat more wasteful of space than one might wish, but since only
1460 the files which are actually debugged are read in to core, we don't
1461 waste much space. */
1462
1463 struct linetable_entry
1464 {
1465 /* The line number for this entry. */
1466 int line;
1467
1468 /* True if this PC is a good location to place a breakpoint for LINE. */
1469 unsigned is_stmt : 1;
1470
1471 /* True if this location is a good location to place a breakpoint after a
1472 function prologue. */
1473 bool prologue_end : 1;
1474
1475 /* The address for this entry. */
1476 CORE_ADDR pc;
1477 };
1478
1479 /* The order of entries in the linetable is significant. They should
1480 be sorted by increasing values of the pc field. If there is more than
1481 one entry for a given pc, then I'm not sure what should happen (and
1482 I not sure whether we currently handle it the best way).
1483
1484 Example: a C for statement generally looks like this
1485
1486 10 0x100 - for the init/test part of a for stmt.
1487 20 0x200
1488 30 0x300
1489 10 0x400 - for the increment part of a for stmt.
1490
1491 If an entry has a line number of zero, it marks the start of a PC
1492 range for which no line number information is available. It is
1493 acceptable, though wasteful of table space, for such a range to be
1494 zero length. */
1495
1496 struct linetable
1497 {
1498 int nitems;
1499
1500 /* Actually NITEMS elements. If you don't like this use of the
1501 `struct hack', you can shove it up your ANSI (seriously, if the
1502 committee tells us how to do it, we can probably go along). */
1503 struct linetable_entry item[1];
1504 };
1505
1506 /* How to relocate the symbols from each section in a symbol file.
1507 The ordering and meaning of the offsets is file-type-dependent;
1508 typically it is indexed by section numbers or symbol types or
1509 something like that. */
1510
1511 typedef std::vector<CORE_ADDR> section_offsets;
1512
1513 /* Each source file or header is represented by a struct symtab.
1514 The name "symtab" is historical, another name for it is "filetab".
1515 These objects are chained through the `next' field. */
1516
1517 struct symtab
1518 {
1519 struct compunit_symtab *compunit () const
1520 {
1521 return m_compunit;
1522 }
1523
1524 void set_compunit (struct compunit_symtab *compunit)
1525 {
1526 m_compunit = compunit;
1527 }
1528
1529 struct linetable *linetable () const
1530 {
1531 return m_linetable;
1532 }
1533
1534 void set_linetable (struct linetable *linetable)
1535 {
1536 m_linetable = linetable;
1537 }
1538
1539 enum language language () const
1540 {
1541 return m_language;
1542 }
1543
1544 void set_language (enum language language)
1545 {
1546 m_language = language;
1547 }
1548
1549 /* Unordered chain of all filetabs in the compunit, with the exception
1550 that the "main" source file is the first entry in the list. */
1551
1552 struct symtab *next;
1553
1554 /* Backlink to containing compunit symtab. */
1555
1556 struct compunit_symtab *m_compunit;
1557
1558 /* Table mapping core addresses to line numbers for this file.
1559 Can be NULL if none. Never shared between different symtabs. */
1560
1561 struct linetable *m_linetable;
1562
1563 /* Name of this source file. This pointer is never NULL. */
1564
1565 const char *filename;
1566
1567 /* Language of this source file. */
1568
1569 enum language m_language;
1570
1571 /* Full name of file as found by searching the source path.
1572 NULL if not yet known. */
1573
1574 char *fullname;
1575 };
1576
1577 /* A range adapter to allowing iterating over all the file tables in a list. */
1578
1579 using symtab_range = next_range<symtab>;
1580
1581 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1582 as the list of all source files (what gdb has historically associated with
1583 the term "symtab").
1584 Additional information is recorded here that is common to all symtabs in a
1585 compilation unit (DWARF or otherwise).
1586
1587 Example:
1588 For the case of a program built out of these files:
1589
1590 foo.c
1591 foo1.h
1592 foo2.h
1593 bar.c
1594 foo1.h
1595 bar.h
1596
1597 This is recorded as:
1598
1599 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1600 | |
1601 v v
1602 foo.c bar.c
1603 | |
1604 v v
1605 foo1.h foo1.h
1606 | |
1607 v v
1608 foo2.h bar.h
1609 | |
1610 v v
1611 NULL NULL
1612
1613 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1614 and the files foo.c, etc. are struct symtab objects. */
1615
1616 struct compunit_symtab
1617 {
1618 struct objfile *objfile () const
1619 {
1620 return m_objfile;
1621 }
1622
1623 void set_objfile (struct objfile *objfile)
1624 {
1625 m_objfile = objfile;
1626 }
1627
1628 symtab_range filetabs () const
1629 {
1630 return symtab_range (m_filetabs);
1631 }
1632
1633 void add_filetab (symtab *filetab)
1634 {
1635 if (m_filetabs == nullptr)
1636 {
1637 m_filetabs = filetab;
1638 m_last_filetab = filetab;
1639 }
1640 else
1641 {
1642 m_last_filetab->next = filetab;
1643 m_last_filetab = filetab;
1644 }
1645 }
1646
1647 const char *debugformat () const
1648 {
1649 return m_debugformat;
1650 }
1651
1652 void set_debugformat (const char *debugformat)
1653 {
1654 m_debugformat = debugformat;
1655 }
1656
1657 const char *producer () const
1658 {
1659 return m_producer;
1660 }
1661
1662 void set_producer (const char *producer)
1663 {
1664 m_producer = producer;
1665 }
1666
1667 const char *dirname () const
1668 {
1669 return m_dirname;
1670 }
1671
1672 void set_dirname (const char *dirname)
1673 {
1674 m_dirname = dirname;
1675 }
1676
1677 const struct blockvector *blockvector () const
1678 {
1679 return m_blockvector;
1680 }
1681
1682 void set_blockvector (const struct blockvector *blockvector)
1683 {
1684 m_blockvector = blockvector;
1685 }
1686
1687 int block_line_section () const
1688 {
1689 return m_block_line_section;
1690 }
1691
1692 void set_block_line_section (int block_line_section)
1693 {
1694 m_block_line_section = block_line_section;
1695 }
1696
1697 bool locations_valid () const
1698 {
1699 return m_locations_valid;
1700 }
1701
1702 void set_locations_valid (bool locations_valid)
1703 {
1704 m_locations_valid = locations_valid;
1705 }
1706
1707 bool epilogue_unwind_valid () const
1708 {
1709 return m_epilogue_unwind_valid;
1710 }
1711
1712 void set_epilogue_unwind_valid (bool epilogue_unwind_valid)
1713 {
1714 m_epilogue_unwind_valid = epilogue_unwind_valid;
1715 }
1716
1717 struct macro_table *macro_table () const
1718 {
1719 return m_macro_table;
1720 }
1721
1722 void set_macro_table (struct macro_table *macro_table)
1723 {
1724 m_macro_table = macro_table;
1725 }
1726
1727 /* Make PRIMARY_FILETAB the primary filetab of this compunit symtab.
1728
1729 PRIMARY_FILETAB must already be a filetab of this compunit symtab. */
1730
1731 void set_primary_filetab (symtab *primary_filetab);
1732
1733 /* Return the primary filetab of the compunit. */
1734 symtab *primary_filetab () const;
1735
1736 /* Set m_call_site_htab. */
1737 void set_call_site_htab (htab_t call_site_htab);
1738
1739 /* Find call_site info for PC. */
1740 call_site *find_call_site (CORE_ADDR pc) const;
1741
1742 /* Unordered chain of all compunit symtabs of this objfile. */
1743 struct compunit_symtab *next;
1744
1745 /* Object file from which this symtab information was read. */
1746 struct objfile *m_objfile;
1747
1748 /* Name of the symtab.
1749 This is *not* intended to be a usable filename, and is
1750 for debugging purposes only. */
1751 const char *name;
1752
1753 /* Unordered list of file symtabs, except that by convention the "main"
1754 source file (e.g., .c, .cc) is guaranteed to be first.
1755 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1756 or header (e.g., .h). */
1757 symtab *m_filetabs;
1758
1759 /* Last entry in FILETABS list.
1760 Subfiles are added to the end of the list so they accumulate in order,
1761 with the main source subfile living at the front.
1762 The main reason is so that the main source file symtab is at the head
1763 of the list, and the rest appear in order for debugging convenience. */
1764 symtab *m_last_filetab;
1765
1766 /* Non-NULL string that identifies the format of the debugging information,
1767 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1768 for automated testing of gdb but may also be information that is
1769 useful to the user. */
1770 const char *m_debugformat;
1771
1772 /* String of producer version information, or NULL if we don't know. */
1773 const char *m_producer;
1774
1775 /* Directory in which it was compiled, or NULL if we don't know. */
1776 const char *m_dirname;
1777
1778 /* List of all symbol scope blocks for this symtab. It is shared among
1779 all symtabs in a given compilation unit. */
1780 const struct blockvector *m_blockvector;
1781
1782 /* Section in objfile->section_offsets for the blockvector and
1783 the linetable. Probably always SECT_OFF_TEXT. */
1784 int m_block_line_section;
1785
1786 /* Symtab has been compiled with both optimizations and debug info so that
1787 GDB may stop skipping prologues as variables locations are valid already
1788 at function entry points. */
1789 unsigned int m_locations_valid : 1;
1790
1791 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1792 instruction). This is supported by GCC since 4.5.0. */
1793 unsigned int m_epilogue_unwind_valid : 1;
1794
1795 /* struct call_site entries for this compilation unit or NULL. */
1796 htab_t m_call_site_htab;
1797
1798 /* The macro table for this symtab. Like the blockvector, this
1799 is shared between different symtabs in a given compilation unit.
1800 It's debatable whether it *should* be shared among all the symtabs in
1801 the given compilation unit, but it currently is. */
1802 struct macro_table *m_macro_table;
1803
1804 /* If non-NULL, then this points to a NULL-terminated vector of
1805 included compunits. When searching the static or global
1806 block of this compunit, the corresponding block of all
1807 included compunits will also be searched. Note that this
1808 list must be flattened -- the symbol reader is responsible for
1809 ensuring that this vector contains the transitive closure of all
1810 included compunits. */
1811 struct compunit_symtab **includes;
1812
1813 /* If this is an included compunit, this points to one includer
1814 of the table. This user is considered the canonical compunit
1815 containing this one. An included compunit may itself be
1816 included by another. */
1817 struct compunit_symtab *user;
1818 };
1819
1820 using compunit_symtab_range = next_range<compunit_symtab>;
1821
1822 /* Return the language of CUST. */
1823
1824 extern enum language compunit_language (const struct compunit_symtab *cust);
1825
1826 /* Return true if this symtab is the "main" symtab of its compunit_symtab. */
1827
1828 static inline bool
1829 is_main_symtab_of_compunit_symtab (struct symtab *symtab)
1830 {
1831 return symtab == symtab->compunit ()->primary_filetab ();
1832 }
1833 \f
1834
1835 /* The virtual function table is now an array of structures which have the
1836 form { int16 offset, delta; void *pfn; }.
1837
1838 In normal virtual function tables, OFFSET is unused.
1839 DELTA is the amount which is added to the apparent object's base
1840 address in order to point to the actual object to which the
1841 virtual function should be applied.
1842 PFN is a pointer to the virtual function.
1843
1844 Note that this macro is g++ specific (FIXME). */
1845
1846 #define VTBL_FNADDR_OFFSET 2
1847
1848 /* External variables and functions for the objects described above. */
1849
1850 /* True if we are nested inside psymtab_to_symtab. */
1851
1852 extern int currently_reading_symtab;
1853
1854 /* symtab.c lookup functions */
1855
1856 extern const char multiple_symbols_ask[];
1857 extern const char multiple_symbols_all[];
1858 extern const char multiple_symbols_cancel[];
1859
1860 const char *multiple_symbols_select_mode (void);
1861
1862 bool symbol_matches_domain (enum language symbol_language,
1863 domain_enum symbol_domain,
1864 domain_enum domain);
1865
1866 /* lookup a symbol table by source file name. */
1867
1868 extern struct symtab *lookup_symtab (const char *);
1869
1870 /* An object of this type is passed as the 'is_a_field_of_this'
1871 argument to lookup_symbol and lookup_symbol_in_language. */
1872
1873 struct field_of_this_result
1874 {
1875 /* The type in which the field was found. If this is NULL then the
1876 symbol was not found in 'this'. If non-NULL, then one of the
1877 other fields will be non-NULL as well. */
1878
1879 struct type *type;
1880
1881 /* If the symbol was found as an ordinary field of 'this', then this
1882 is non-NULL and points to the particular field. */
1883
1884 struct field *field;
1885
1886 /* If the symbol was found as a function field of 'this', then this
1887 is non-NULL and points to the particular field. */
1888
1889 struct fn_fieldlist *fn_field;
1890 };
1891
1892 /* Find the definition for a specified symbol name NAME
1893 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1894 if non-NULL or from global/static blocks if BLOCK is NULL.
1895 Returns the struct symbol pointer, or NULL if no symbol is found.
1896 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1897 NAME is a field of the current implied argument `this'. If so fill in the
1898 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1899 The symbol's section is fixed up if necessary. */
1900
1901 extern struct block_symbol
1902 lookup_symbol_in_language (const char *,
1903 const struct block *,
1904 const domain_enum,
1905 enum language,
1906 struct field_of_this_result *);
1907
1908 /* Same as lookup_symbol_in_language, but using the current language. */
1909
1910 extern struct block_symbol lookup_symbol (const char *,
1911 const struct block *,
1912 const domain_enum,
1913 struct field_of_this_result *);
1914
1915 /* Find the definition for a specified symbol search name in domain
1916 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1917 global/static blocks if BLOCK is NULL. The passed-in search name
1918 should not come from the user; instead it should already be a
1919 search name as retrieved from a search_name () call. See definition of
1920 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1921 pointer, or NULL if no symbol is found. The symbol's section is
1922 fixed up if necessary. */
1923
1924 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1925 const struct block *block,
1926 domain_enum domain);
1927
1928 /* Some helper functions for languages that need to write their own
1929 lookup_symbol_nonlocal functions. */
1930
1931 /* Lookup a symbol in the static block associated to BLOCK, if there
1932 is one; do nothing if BLOCK is NULL or a global block.
1933 Upon success fixes up the symbol's section if necessary. */
1934
1935 extern struct block_symbol
1936 lookup_symbol_in_static_block (const char *name,
1937 const struct block *block,
1938 const domain_enum domain);
1939
1940 /* Search all static file-level symbols for NAME from DOMAIN.
1941 Upon success fixes up the symbol's section if necessary. */
1942
1943 extern struct block_symbol lookup_static_symbol (const char *name,
1944 const domain_enum domain);
1945
1946 /* Lookup a symbol in all files' global blocks.
1947
1948 If BLOCK is non-NULL then it is used for two things:
1949 1) If a target-specific lookup routine for libraries exists, then use the
1950 routine for the objfile of BLOCK, and
1951 2) The objfile of BLOCK is used to assist in determining the search order
1952 if the target requires it.
1953 See gdbarch_iterate_over_objfiles_in_search_order.
1954
1955 Upon success fixes up the symbol's section if necessary. */
1956
1957 extern struct block_symbol
1958 lookup_global_symbol (const char *name,
1959 const struct block *block,
1960 const domain_enum domain);
1961
1962 /* Lookup a symbol in block BLOCK.
1963 Upon success fixes up the symbol's section if necessary. */
1964
1965 extern struct symbol *
1966 lookup_symbol_in_block (const char *name,
1967 symbol_name_match_type match_type,
1968 const struct block *block,
1969 const domain_enum domain);
1970
1971 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1972 found, or NULL if not found. */
1973
1974 extern struct block_symbol
1975 lookup_language_this (const struct language_defn *lang,
1976 const struct block *block);
1977
1978 /* Lookup a [struct, union, enum] by name, within a specified block. */
1979
1980 extern struct type *lookup_struct (const char *, const struct block *);
1981
1982 extern struct type *lookup_union (const char *, const struct block *);
1983
1984 extern struct type *lookup_enum (const char *, const struct block *);
1985
1986 /* from blockframe.c: */
1987
1988 /* lookup the function symbol corresponding to the address. The
1989 return value will not be an inlined function; the containing
1990 function will be returned instead. */
1991
1992 extern struct symbol *find_pc_function (CORE_ADDR);
1993
1994 /* lookup the function corresponding to the address and section. The
1995 return value will not be an inlined function; the containing
1996 function will be returned instead. */
1997
1998 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1999
2000 /* lookup the function symbol corresponding to the address and
2001 section. The return value will be the closest enclosing function,
2002 which might be an inline function. */
2003
2004 extern struct symbol *find_pc_sect_containing_function
2005 (CORE_ADDR pc, struct obj_section *section);
2006
2007 /* Find the symbol at the given address. Returns NULL if no symbol
2008 found. Only exact matches for ADDRESS are considered. */
2009
2010 extern struct symbol *find_symbol_at_address (CORE_ADDR);
2011
2012 /* Finds the "function" (text symbol) that is smaller than PC but
2013 greatest of all of the potential text symbols in SECTION. Sets
2014 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
2015 If ENDADDR is non-null, then set *ENDADDR to be the end of the
2016 function (exclusive). If the optional parameter BLOCK is non-null,
2017 then set *BLOCK to the address of the block corresponding to the
2018 function symbol, if such a symbol could be found during the lookup;
2019 nullptr is used as a return value for *BLOCK if no block is found.
2020 This function either succeeds or fails (not halfway succeeds). If
2021 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
2022 information and returns true. If it fails, it sets *NAME, *ADDRESS
2023 and *ENDADDR to zero and returns false.
2024
2025 If the function in question occupies non-contiguous ranges,
2026 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
2027 to the start and end of the range in which PC is found. Thus
2028 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
2029 from other functions might be found).
2030
2031 This property allows find_pc_partial_function to be used (as it had
2032 been prior to the introduction of non-contiguous range support) by
2033 various tdep files for finding a start address and limit address
2034 for prologue analysis. This still isn't ideal, however, because we
2035 probably shouldn't be doing prologue analysis (in which
2036 instructions are scanned to determine frame size and stack layout)
2037 for any range that doesn't contain the entry pc. Moreover, a good
2038 argument can be made that prologue analysis ought to be performed
2039 starting from the entry pc even when PC is within some other range.
2040 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
2041 limits of the entry pc range, but that will cause the
2042 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
2043 callers of find_pc_partial_function expect this condition to hold.
2044
2045 Callers which require the start and/or end addresses for the range
2046 containing the entry pc should instead call
2047 find_function_entry_range_from_pc. */
2048
2049 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
2050 CORE_ADDR *address, CORE_ADDR *endaddr,
2051 const struct block **block = nullptr);
2052
2053 /* Like find_pc_partial_function, above, but returns the underlying
2054 general_symbol_info (rather than the name) as an out parameter. */
2055
2056 extern bool find_pc_partial_function_sym
2057 (CORE_ADDR pc, const general_symbol_info **sym,
2058 CORE_ADDR *address, CORE_ADDR *endaddr,
2059 const struct block **block = nullptr);
2060
2061 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
2062 set to start and end addresses of the range containing the entry pc.
2063
2064 Note that it is not necessarily the case that (for non-NULL ADDRESS
2065 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
2066 hold.
2067
2068 See comment for find_pc_partial_function, above, for further
2069 explanation. */
2070
2071 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
2072 const char **name,
2073 CORE_ADDR *address,
2074 CORE_ADDR *endaddr);
2075
2076 /* Return the type of a function with its first instruction exactly at
2077 the PC address. Return NULL otherwise. */
2078
2079 extern struct type *find_function_type (CORE_ADDR pc);
2080
2081 /* See if we can figure out the function's actual type from the type
2082 that the resolver returns. RESOLVER_FUNADDR is the address of the
2083 ifunc resolver. */
2084
2085 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
2086
2087 /* Find the GNU ifunc minimal symbol that matches SYM. */
2088 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
2089
2090 extern void clear_pc_function_cache (void);
2091
2092 /* Expand symtab containing PC, SECTION if not already expanded. */
2093
2094 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
2095
2096 /* lookup full symbol table by address. */
2097
2098 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
2099
2100 /* lookup full symbol table by address and section. */
2101
2102 extern struct compunit_symtab *
2103 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
2104
2105 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
2106
2107 extern void reread_symbols (int from_tty);
2108
2109 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
2110 The type returned must not be opaque -- i.e., must have at least one field
2111 defined. */
2112
2113 extern struct type *lookup_transparent_type (const char *);
2114
2115 extern struct type *basic_lookup_transparent_type (const char *);
2116
2117 /* Macro for name of symbol to indicate a file compiled with gcc. */
2118 #ifndef GCC_COMPILED_FLAG_SYMBOL
2119 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
2120 #endif
2121
2122 /* Macro for name of symbol to indicate a file compiled with gcc2. */
2123 #ifndef GCC2_COMPILED_FLAG_SYMBOL
2124 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
2125 #endif
2126
2127 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
2128
2129 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
2130 for ELF symbol files. */
2131
2132 struct gnu_ifunc_fns
2133 {
2134 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
2135 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
2136
2137 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
2138 bool (*gnu_ifunc_resolve_name) (const char *function_name,
2139 CORE_ADDR *function_address_p);
2140
2141 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
2142 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
2143
2144 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
2145 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
2146 };
2147
2148 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
2149 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
2150 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
2151 #define gnu_ifunc_resolver_return_stop \
2152 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
2153
2154 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
2155
2156 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
2157
2158 struct symtab_and_line
2159 {
2160 /* The program space of this sal. */
2161 struct program_space *pspace = NULL;
2162
2163 struct symtab *symtab = NULL;
2164 struct symbol *symbol = NULL;
2165 struct obj_section *section = NULL;
2166 struct minimal_symbol *msymbol = NULL;
2167 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
2168 0 is never a valid line number; it is used to indicate that line number
2169 information is not available. */
2170 int line = 0;
2171
2172 CORE_ADDR pc = 0;
2173 CORE_ADDR end = 0;
2174 bool explicit_pc = false;
2175 bool explicit_line = false;
2176
2177 /* If the line number information is valid, then this indicates if this
2178 line table entry had the is-stmt flag set or not. */
2179 bool is_stmt = false;
2180
2181 /* The probe associated with this symtab_and_line. */
2182 probe *prob = NULL;
2183 /* If PROBE is not NULL, then this is the objfile in which the probe
2184 originated. */
2185 struct objfile *objfile = NULL;
2186 };
2187
2188 \f
2189
2190 /* Given a pc value, return line number it is in. Second arg nonzero means
2191 if pc is on the boundary use the previous statement's line number. */
2192
2193 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
2194
2195 /* Same function, but specify a section as well as an address. */
2196
2197 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
2198 struct obj_section *, int);
2199
2200 /* Wrapper around find_pc_line to just return the symtab. */
2201
2202 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
2203
2204 /* Given a symtab and line number, return the pc there. */
2205
2206 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
2207
2208 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
2209 CORE_ADDR *);
2210
2211 extern void resolve_sal_pc (struct symtab_and_line *);
2212
2213 /* solib.c */
2214
2215 extern void clear_solib (void);
2216
2217 /* The reason we're calling into a completion match list collector
2218 function. */
2219 enum class complete_symbol_mode
2220 {
2221 /* Completing an expression. */
2222 EXPRESSION,
2223
2224 /* Completing a linespec. */
2225 LINESPEC,
2226 };
2227
2228 extern void default_collect_symbol_completion_matches_break_on
2229 (completion_tracker &tracker,
2230 complete_symbol_mode mode,
2231 symbol_name_match_type name_match_type,
2232 const char *text, const char *word, const char *break_on,
2233 enum type_code code);
2234 extern void collect_symbol_completion_matches
2235 (completion_tracker &tracker,
2236 complete_symbol_mode mode,
2237 symbol_name_match_type name_match_type,
2238 const char *, const char *);
2239 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
2240 const char *, const char *,
2241 enum type_code);
2242
2243 extern void collect_file_symbol_completion_matches
2244 (completion_tracker &tracker,
2245 complete_symbol_mode,
2246 symbol_name_match_type name_match_type,
2247 const char *, const char *, const char *);
2248
2249 extern completion_list
2250 make_source_files_completion_list (const char *, const char *);
2251
2252 /* Return whether SYM is a function/method, as opposed to a data symbol. */
2253
2254 extern bool symbol_is_function_or_method (symbol *sym);
2255
2256 /* Return whether MSYMBOL is a function/method, as opposed to a data
2257 symbol */
2258
2259 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
2260
2261 /* Return whether SYM should be skipped in completion mode MODE. In
2262 linespec mode, we're only interested in functions/methods. */
2263
2264 template<typename Symbol>
2265 static bool
2266 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
2267 {
2268 return (mode == complete_symbol_mode::LINESPEC
2269 && !symbol_is_function_or_method (sym));
2270 }
2271
2272 /* symtab.c */
2273
2274 bool matching_obj_sections (struct obj_section *, struct obj_section *);
2275
2276 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
2277
2278 /* Given a function symbol SYM, find the symtab and line for the start
2279 of the function. If FUNFIRSTLINE is true, we want the first line
2280 of real code inside the function. */
2281 extern symtab_and_line find_function_start_sal (symbol *sym, bool
2282 funfirstline);
2283
2284 /* Same, but start with a function address/section instead of a
2285 symbol. */
2286 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
2287 obj_section *section,
2288 bool funfirstline);
2289
2290 extern void skip_prologue_sal (struct symtab_and_line *);
2291
2292 /* symtab.c */
2293
2294 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2295 CORE_ADDR func_addr);
2296
2297 extern struct symbol *fixup_symbol_section (struct symbol *,
2298 struct objfile *);
2299
2300 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2301 the same address. Returns NULL if not found. This is necessary in
2302 case a function is an alias to some other function, because debug
2303 information is only emitted for the alias target function's
2304 definition, not for the alias. */
2305 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2306
2307 /* Symbol searching */
2308
2309 /* When using the symbol_searcher struct to search for symbols, a vector of
2310 the following structs is returned. */
2311 struct symbol_search
2312 {
2313 symbol_search (int block_, struct symbol *symbol_)
2314 : block (block_),
2315 symbol (symbol_)
2316 {
2317 msymbol.minsym = nullptr;
2318 msymbol.objfile = nullptr;
2319 }
2320
2321 symbol_search (int block_, struct minimal_symbol *minsym,
2322 struct objfile *objfile)
2323 : block (block_),
2324 symbol (nullptr)
2325 {
2326 msymbol.minsym = minsym;
2327 msymbol.objfile = objfile;
2328 }
2329
2330 bool operator< (const symbol_search &other) const
2331 {
2332 return compare_search_syms (*this, other) < 0;
2333 }
2334
2335 bool operator== (const symbol_search &other) const
2336 {
2337 return compare_search_syms (*this, other) == 0;
2338 }
2339
2340 /* The block in which the match was found. Could be, for example,
2341 STATIC_BLOCK or GLOBAL_BLOCK. */
2342 int block;
2343
2344 /* Information describing what was found.
2345
2346 If symbol is NOT NULL, then information was found for this match. */
2347 struct symbol *symbol;
2348
2349 /* If msymbol is non-null, then a match was made on something for
2350 which only minimal_symbols exist. */
2351 struct bound_minimal_symbol msymbol;
2352
2353 private:
2354
2355 static int compare_search_syms (const symbol_search &sym_a,
2356 const symbol_search &sym_b);
2357 };
2358
2359 /* In order to search for global symbols of a particular kind matching
2360 particular regular expressions, create an instance of this structure and
2361 call the SEARCH member function. */
2362 class global_symbol_searcher
2363 {
2364 public:
2365
2366 /* Constructor. */
2367 global_symbol_searcher (enum search_domain kind,
2368 const char *symbol_name_regexp)
2369 : m_kind (kind),
2370 m_symbol_name_regexp (symbol_name_regexp)
2371 {
2372 /* The symbol searching is designed to only find one kind of thing. */
2373 gdb_assert (m_kind != ALL_DOMAIN);
2374 }
2375
2376 /* Set the optional regexp that matches against the symbol type. */
2377 void set_symbol_type_regexp (const char *regexp)
2378 {
2379 m_symbol_type_regexp = regexp;
2380 }
2381
2382 /* Set the flag to exclude minsyms from the search results. */
2383 void set_exclude_minsyms (bool exclude_minsyms)
2384 {
2385 m_exclude_minsyms = exclude_minsyms;
2386 }
2387
2388 /* Set the maximum number of search results to be returned. */
2389 void set_max_search_results (size_t max_search_results)
2390 {
2391 m_max_search_results = max_search_results;
2392 }
2393
2394 /* Search the symbols from all objfiles in the current program space
2395 looking for matches as defined by the current state of this object.
2396
2397 Within each file the results are sorted locally; each symtab's global
2398 and static blocks are separately alphabetized. Duplicate entries are
2399 removed. */
2400 std::vector<symbol_search> search () const;
2401
2402 /* The set of source files to search in for matching symbols. This is
2403 currently public so that it can be populated after this object has
2404 been constructed. */
2405 std::vector<const char *> filenames;
2406
2407 private:
2408 /* The kind of symbols are we searching for.
2409 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2410 names, and constants (enums).
2411 FUNCTIONS_DOMAIN - Search all functions..
2412 TYPES_DOMAIN - Search all type names.
2413 MODULES_DOMAIN - Search all Fortran modules.
2414 ALL_DOMAIN - Not valid for this function. */
2415 enum search_domain m_kind;
2416
2417 /* Regular expression to match against the symbol name. */
2418 const char *m_symbol_name_regexp = nullptr;
2419
2420 /* Regular expression to match against the symbol type. */
2421 const char *m_symbol_type_regexp = nullptr;
2422
2423 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2424 be included in the results, otherwise they are excluded. */
2425 bool m_exclude_minsyms = false;
2426
2427 /* Maximum number of search results. We currently impose a hard limit
2428 of SIZE_MAX, there is no "unlimited". */
2429 size_t m_max_search_results = SIZE_MAX;
2430
2431 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2432 true if any msymbols were seen that we should later consider adding to
2433 the results list. */
2434 bool expand_symtabs (objfile *objfile,
2435 const gdb::optional<compiled_regex> &preg) const;
2436
2437 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2438 of type M_KIND, to the results set RESULTS_SET. Return false if we
2439 stop adding results early due to having already found too many results
2440 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2441 Returning true does not indicate that any results were added, just
2442 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2443 bool add_matching_symbols (objfile *objfile,
2444 const gdb::optional<compiled_regex> &preg,
2445 const gdb::optional<compiled_regex> &treg,
2446 std::set<symbol_search> *result_set) const;
2447
2448 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2449 vector RESULTS. Return false if we stop adding results early due to
2450 having already found too many results (based on max search results
2451 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2452 does not indicate that any results were added, just that we didn't
2453 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2454 bool add_matching_msymbols (objfile *objfile,
2455 const gdb::optional<compiled_regex> &preg,
2456 std::vector<symbol_search> *results) const;
2457
2458 /* Return true if MSYMBOL is of type KIND. */
2459 static bool is_suitable_msymbol (const enum search_domain kind,
2460 const minimal_symbol *msymbol);
2461 };
2462
2463 /* When searching for Fortran symbols within modules (functions/variables)
2464 we return a vector of this type. The first item in the pair is the
2465 module symbol, and the second item is the symbol for the function or
2466 variable we found. */
2467 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2468
2469 /* Searches the symbols to find function and variables symbols (depending
2470 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2471 name of the module, REGEXP matches against the name of the symbol within
2472 the module, and TYPE_REGEXP matches against the type of the symbol
2473 within the module. */
2474 extern std::vector<module_symbol_search> search_module_symbols
2475 (const char *module_regexp, const char *regexp,
2476 const char *type_regexp, search_domain kind);
2477
2478 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2479 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2480 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2481 the type of symbol that was searched for which gave us SYM. */
2482
2483 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2484 enum search_domain kind);
2485
2486 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2487 const struct symbol *sym);
2488
2489 /* The name of the ``main'' function. */
2490 extern const char *main_name ();
2491 extern enum language main_language (void);
2492
2493 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2494 as specified by BLOCK_INDEX.
2495 This searches MAIN_OBJFILE as well as any associated separate debug info
2496 objfiles of MAIN_OBJFILE.
2497 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2498 Upon success fixes up the symbol's section if necessary. */
2499
2500 extern struct block_symbol
2501 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2502 enum block_enum block_index,
2503 const char *name,
2504 const domain_enum domain);
2505
2506 /* Return 1 if the supplied producer string matches the ARM RealView
2507 compiler (armcc). */
2508 bool producer_is_realview (const char *producer);
2509
2510 void fixup_section (struct general_symbol_info *ginfo,
2511 CORE_ADDR addr, struct objfile *objfile);
2512
2513 extern unsigned int symtab_create_debug;
2514
2515 extern unsigned int symbol_lookup_debug;
2516
2517 extern bool basenames_may_differ;
2518
2519 bool compare_filenames_for_search (const char *filename,
2520 const char *search_name);
2521
2522 bool compare_glob_filenames_for_search (const char *filename,
2523 const char *search_name);
2524
2525 bool iterate_over_some_symtabs (const char *name,
2526 const char *real_path,
2527 struct compunit_symtab *first,
2528 struct compunit_symtab *after_last,
2529 gdb::function_view<bool (symtab *)> callback);
2530
2531 void iterate_over_symtabs (const char *name,
2532 gdb::function_view<bool (symtab *)> callback);
2533
2534
2535 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2536 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2537
2538 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2539 is called once per matching symbol SYM. The callback should return
2540 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2541 iterating, or false to indicate that the iteration should end. */
2542
2543 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2544
2545 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2546
2547 For each symbol that matches, CALLBACK is called. The symbol is
2548 passed to the callback.
2549
2550 If CALLBACK returns false, the iteration ends and this function
2551 returns false. Otherwise, the search continues, and the function
2552 eventually returns true. */
2553
2554 bool iterate_over_symbols (const struct block *block,
2555 const lookup_name_info &name,
2556 const domain_enum domain,
2557 gdb::function_view<symbol_found_callback_ftype> callback);
2558
2559 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2560 true, then calls CALLBACK one additional time with a block_symbol
2561 that has a valid block but a NULL symbol. */
2562
2563 bool iterate_over_symbols_terminated
2564 (const struct block *block,
2565 const lookup_name_info &name,
2566 const domain_enum domain,
2567 gdb::function_view<symbol_found_callback_ftype> callback);
2568
2569 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2570 either returns a const char * pointer that points to either of the
2571 fields of this type, or a pointer to the input NAME. This is done
2572 this way to avoid depending on the precise details of the storage
2573 for the string. */
2574 class demangle_result_storage
2575 {
2576 public:
2577
2578 /* Swap the malloc storage to STR, and return a pointer to the
2579 beginning of the new string. */
2580 const char *set_malloc_ptr (gdb::unique_xmalloc_ptr<char> &&str)
2581 {
2582 m_malloc = std::move (str);
2583 return m_malloc.get ();
2584 }
2585
2586 /* Set the malloc storage to now point at PTR. Any previous malloc
2587 storage is released. */
2588 const char *set_malloc_ptr (char *ptr)
2589 {
2590 m_malloc.reset (ptr);
2591 return ptr;
2592 }
2593
2594 private:
2595
2596 /* The storage. */
2597 gdb::unique_xmalloc_ptr<char> m_malloc;
2598 };
2599
2600 const char *
2601 demangle_for_lookup (const char *name, enum language lang,
2602 demangle_result_storage &storage);
2603
2604 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2605 SYMNAME (which is already demangled for C++ symbols) matches
2606 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2607 the current completion list and return true. Otherwise, return
2608 false. */
2609 bool completion_list_add_name (completion_tracker &tracker,
2610 language symbol_language,
2611 const char *symname,
2612 const lookup_name_info &lookup_name,
2613 const char *text, const char *word);
2614
2615 /* A simple symbol searching class. */
2616
2617 class symbol_searcher
2618 {
2619 public:
2620 /* Returns the symbols found for the search. */
2621 const std::vector<block_symbol> &
2622 matching_symbols () const
2623 {
2624 return m_symbols;
2625 }
2626
2627 /* Returns the minimal symbols found for the search. */
2628 const std::vector<bound_minimal_symbol> &
2629 matching_msymbols () const
2630 {
2631 return m_minimal_symbols;
2632 }
2633
2634 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2635 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2636 to search all symtabs and program spaces. */
2637 void find_all_symbols (const std::string &name,
2638 const struct language_defn *language,
2639 enum search_domain search_domain,
2640 std::vector<symtab *> *search_symtabs,
2641 struct program_space *search_pspace);
2642
2643 /* Reset this object to perform another search. */
2644 void reset ()
2645 {
2646 m_symbols.clear ();
2647 m_minimal_symbols.clear ();
2648 }
2649
2650 private:
2651 /* Matching debug symbols. */
2652 std::vector<block_symbol> m_symbols;
2653
2654 /* Matching non-debug symbols. */
2655 std::vector<bound_minimal_symbol> m_minimal_symbols;
2656 };
2657
2658 /* Class used to encapsulate the filename filtering for the "info sources"
2659 command. */
2660
2661 struct info_sources_filter
2662 {
2663 /* If filename filtering is being used (see M_C_REGEXP) then which part
2664 of the filename is being filtered against? */
2665 enum class match_on
2666 {
2667 /* Match against the full filename. */
2668 FULLNAME,
2669
2670 /* Match only against the directory part of the full filename. */
2671 DIRNAME,
2672
2673 /* Match only against the basename part of the full filename. */
2674 BASENAME
2675 };
2676
2677 /* Create a filter of MATCH_TYPE using regular expression REGEXP. If
2678 REGEXP is nullptr then all files will match the filter and MATCH_TYPE
2679 is ignored.
2680
2681 The string pointed too by REGEXP must remain live and unchanged for
2682 this lifetime of this object as the object only retains a copy of the
2683 pointer. */
2684 info_sources_filter (match_on match_type, const char *regexp);
2685
2686 DISABLE_COPY_AND_ASSIGN (info_sources_filter);
2687
2688 /* Does FULLNAME match the filter defined by this object, return true if
2689 it does, otherwise, return false. If there is no filtering defined
2690 then this function will always return true. */
2691 bool matches (const char *fullname) const;
2692
2693 private:
2694
2695 /* The type of filtering in place. */
2696 match_on m_match_type;
2697
2698 /* Points to the original regexp used to create this filter. */
2699 const char *m_regexp;
2700
2701 /* A compiled version of M_REGEXP. This object is only given a value if
2702 M_REGEXP is not nullptr and is not the empty string. */
2703 gdb::optional<compiled_regex> m_c_regexp;
2704 };
2705
2706 /* Perform the core of the 'info sources' command.
2707
2708 FILTER is used to perform regular expression based filtering on the
2709 source files that will be displayed.
2710
2711 Output is written to UIOUT in CLI or MI style as appropriate. */
2712
2713 extern void info_sources_worker (struct ui_out *uiout,
2714 bool group_by_objfile,
2715 const info_sources_filter &filter);
2716
2717 #endif /* !defined(SYMTAB_H) */