gdb: remove SYMBOL_IS_ARGUMENT macro
[binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include <set>
27 #include "gdbsupport/gdb_vecs.h"
28 #include "gdbtypes.h"
29 #include "gdbsupport/gdb_obstack.h"
30 #include "gdbsupport/gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "gdbsupport/iterator-range.h"
37 #include "completer.h"
38 #include "gdb-demangle.h"
39
40 /* Opaque declarations. */
41 struct ui_file;
42 struct frame_info;
43 struct symbol;
44 struct obstack;
45 struct objfile;
46 struct block;
47 struct blockvector;
48 struct axs_value;
49 struct agent_expr;
50 struct program_space;
51 struct language_defn;
52 struct common_block;
53 struct obj_section;
54 struct cmd_list_element;
55 class probe;
56 struct lookup_name_info;
57
58 /* How to match a lookup name against a symbol search name. */
59 enum class symbol_name_match_type
60 {
61 /* Wild matching. Matches unqualified symbol names in all
62 namespace/module/packages, etc. */
63 WILD,
64
65 /* Full matching. The lookup name indicates a fully-qualified name,
66 and only matches symbol search names in the specified
67 namespace/module/package. */
68 FULL,
69
70 /* Search name matching. This is like FULL, but the search name did
71 not come from the user; instead it is already a search name
72 retrieved from a search_name () call.
73 For Ada, this avoids re-encoding an already-encoded search name
74 (which would potentially incorrectly lowercase letters in the
75 linkage/search name that should remain uppercase). For C++, it
76 avoids trying to demangle a name we already know is
77 demangled. */
78 SEARCH_NAME,
79
80 /* Expression matching. The same as FULL matching in most
81 languages. The same as WILD matching in Ada. */
82 EXPRESSION,
83 };
84
85 /* Hash the given symbol search name according to LANGUAGE's
86 rules. */
87 extern unsigned int search_name_hash (enum language language,
88 const char *search_name);
89
90 /* Ada-specific bits of a lookup_name_info object. This is lazily
91 constructed on demand. */
92
93 class ada_lookup_name_info final
94 {
95 public:
96 /* Construct. */
97 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
98
99 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
100 as name match type. Returns true if there's a match, false
101 otherwise. If non-NULL, store the matching results in MATCH. */
102 bool matches (const char *symbol_search_name,
103 symbol_name_match_type match_type,
104 completion_match_result *comp_match_res) const;
105
106 /* The Ada-encoded lookup name. */
107 const std::string &lookup_name () const
108 { return m_encoded_name; }
109
110 /* Return true if we're supposed to be doing a wild match look
111 up. */
112 bool wild_match_p () const
113 { return m_wild_match_p; }
114
115 /* Return true if we're looking up a name inside package
116 Standard. */
117 bool standard_p () const
118 { return m_standard_p; }
119
120 /* Return true if doing a verbatim match. */
121 bool verbatim_p () const
122 { return m_verbatim_p; }
123
124 private:
125 /* The Ada-encoded lookup name. */
126 std::string m_encoded_name;
127
128 /* Whether the user-provided lookup name was Ada encoded. If so,
129 then return encoded names in the 'matches' method's 'completion
130 match result' output. */
131 bool m_encoded_p : 1;
132
133 /* True if really doing wild matching. Even if the user requests
134 wild matching, some cases require full matching. */
135 bool m_wild_match_p : 1;
136
137 /* True if doing a verbatim match. This is true if the decoded
138 version of the symbol name is wrapped in '<'/'>'. This is an
139 escape hatch users can use to look up symbols the Ada encoding
140 does not understand. */
141 bool m_verbatim_p : 1;
142
143 /* True if the user specified a symbol name that is inside package
144 Standard. Symbol names inside package Standard are handled
145 specially. We always do a non-wild match of the symbol name
146 without the "standard__" prefix, and only search static and
147 global symbols. This was primarily introduced in order to allow
148 the user to specifically access the standard exceptions using,
149 for instance, Standard.Constraint_Error when Constraint_Error is
150 ambiguous (due to the user defining its own Constraint_Error
151 entity inside its program). */
152 bool m_standard_p : 1;
153 };
154
155 /* Language-specific bits of a lookup_name_info object, for languages
156 that do name searching using demangled names (C++/D/Go). This is
157 lazily constructed on demand. */
158
159 struct demangle_for_lookup_info final
160 {
161 public:
162 demangle_for_lookup_info (const lookup_name_info &lookup_name,
163 language lang);
164
165 /* The demangled lookup name. */
166 const std::string &lookup_name () const
167 { return m_demangled_name; }
168
169 private:
170 /* The demangled lookup name. */
171 std::string m_demangled_name;
172 };
173
174 /* Object that aggregates all information related to a symbol lookup
175 name. I.e., the name that is matched against the symbol's search
176 name. Caches per-language information so that it doesn't require
177 recomputing it for every symbol comparison, like for example the
178 Ada encoded name and the symbol's name hash for a given language.
179 The object is conceptually immutable once constructed, and thus has
180 no setters. This is to prevent some code path from tweaking some
181 property of the lookup name for some local reason and accidentally
182 altering the results of any continuing search(es).
183 lookup_name_info objects are generally passed around as a const
184 reference to reinforce that. (They're not passed around by value
185 because they're not small.) */
186 class lookup_name_info final
187 {
188 public:
189 /* We delete this overload so that the callers are required to
190 explicitly handle the lifetime of the name. */
191 lookup_name_info (std::string &&name,
192 symbol_name_match_type match_type,
193 bool completion_mode = false,
194 bool ignore_parameters = false) = delete;
195
196 /* This overload requires that NAME have a lifetime at least as long
197 as the lifetime of this object. */
198 lookup_name_info (const std::string &name,
199 symbol_name_match_type match_type,
200 bool completion_mode = false,
201 bool ignore_parameters = false)
202 : m_match_type (match_type),
203 m_completion_mode (completion_mode),
204 m_ignore_parameters (ignore_parameters),
205 m_name (name)
206 {}
207
208 /* This overload requires that NAME have a lifetime at least as long
209 as the lifetime of this object. */
210 lookup_name_info (const char *name,
211 symbol_name_match_type match_type,
212 bool completion_mode = false,
213 bool ignore_parameters = false)
214 : m_match_type (match_type),
215 m_completion_mode (completion_mode),
216 m_ignore_parameters (ignore_parameters),
217 m_name (name)
218 {}
219
220 /* Getters. See description of each corresponding field. */
221 symbol_name_match_type match_type () const { return m_match_type; }
222 bool completion_mode () const { return m_completion_mode; }
223 gdb::string_view name () const { return m_name; }
224 const bool ignore_parameters () const { return m_ignore_parameters; }
225
226 /* Like the "name" method but guarantees that the returned string is
227 \0-terminated. */
228 const char *c_str () const
229 {
230 /* Actually this is always guaranteed due to how the class is
231 constructed. */
232 return m_name.data ();
233 }
234
235 /* Return a version of this lookup name that is usable with
236 comparisons against symbols have no parameter info, such as
237 psymbols and GDB index symbols. */
238 lookup_name_info make_ignore_params () const
239 {
240 return lookup_name_info (c_str (), m_match_type, m_completion_mode,
241 true /* ignore params */);
242 }
243
244 /* Get the search name hash for searches in language LANG. */
245 unsigned int search_name_hash (language lang) const
246 {
247 /* Only compute each language's hash once. */
248 if (!m_demangled_hashes_p[lang])
249 {
250 m_demangled_hashes[lang]
251 = ::search_name_hash (lang, language_lookup_name (lang));
252 m_demangled_hashes_p[lang] = true;
253 }
254 return m_demangled_hashes[lang];
255 }
256
257 /* Get the search name for searches in language LANG. */
258 const char *language_lookup_name (language lang) const
259 {
260 switch (lang)
261 {
262 case language_ada:
263 return ada ().lookup_name ().c_str ();
264 case language_cplus:
265 return cplus ().lookup_name ().c_str ();
266 case language_d:
267 return d ().lookup_name ().c_str ();
268 case language_go:
269 return go ().lookup_name ().c_str ();
270 default:
271 return m_name.data ();
272 }
273 }
274
275 /* Get the Ada-specific lookup info. */
276 const ada_lookup_name_info &ada () const
277 {
278 maybe_init (m_ada);
279 return *m_ada;
280 }
281
282 /* Get the C++-specific lookup info. */
283 const demangle_for_lookup_info &cplus () const
284 {
285 maybe_init (m_cplus, language_cplus);
286 return *m_cplus;
287 }
288
289 /* Get the D-specific lookup info. */
290 const demangle_for_lookup_info &d () const
291 {
292 maybe_init (m_d, language_d);
293 return *m_d;
294 }
295
296 /* Get the Go-specific lookup info. */
297 const demangle_for_lookup_info &go () const
298 {
299 maybe_init (m_go, language_go);
300 return *m_go;
301 }
302
303 /* Get a reference to a lookup_name_info object that matches any
304 symbol name. */
305 static const lookup_name_info &match_any ();
306
307 private:
308 /* Initialize FIELD, if not initialized yet. */
309 template<typename Field, typename... Args>
310 void maybe_init (Field &field, Args&&... args) const
311 {
312 if (!field)
313 field.emplace (*this, std::forward<Args> (args)...);
314 }
315
316 /* The lookup info as passed to the ctor. */
317 symbol_name_match_type m_match_type;
318 bool m_completion_mode;
319 bool m_ignore_parameters;
320 gdb::string_view m_name;
321
322 /* Language-specific info. These fields are filled lazily the first
323 time a lookup is done in the corresponding language. They're
324 mutable because lookup_name_info objects are typically passed
325 around by const reference (see intro), and they're conceptually
326 "cache" that can always be reconstructed from the non-mutable
327 fields. */
328 mutable gdb::optional<ada_lookup_name_info> m_ada;
329 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
330 mutable gdb::optional<demangle_for_lookup_info> m_d;
331 mutable gdb::optional<demangle_for_lookup_info> m_go;
332
333 /* The demangled hashes. Stored in an array with one entry for each
334 possible language. The second array records whether we've
335 already computed the each language's hash. (These are separate
336 arrays instead of a single array of optional<unsigned> to avoid
337 alignment padding). */
338 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
339 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
340 };
341
342 /* Comparison function for completion symbol lookup.
343
344 Returns true if the symbol name matches against LOOKUP_NAME.
345
346 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
347
348 On success and if non-NULL, COMP_MATCH_RES->match is set to point
349 to the symbol name as should be presented to the user as a
350 completion match list element. In most languages, this is the same
351 as the symbol's search name, but in some, like Ada, the display
352 name is dynamically computed within the comparison routine.
353
354 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
355 points the part of SYMBOL_SEARCH_NAME that was considered to match
356 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
357 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
358 points to "function()" inside SYMBOL_SEARCH_NAME. */
359 typedef bool (symbol_name_matcher_ftype)
360 (const char *symbol_search_name,
361 const lookup_name_info &lookup_name,
362 completion_match_result *comp_match_res);
363
364 /* Some of the structures in this file are space critical.
365 The space-critical structures are:
366
367 struct general_symbol_info
368 struct symbol
369 struct partial_symbol
370
371 These structures are laid out to encourage good packing.
372 They use ENUM_BITFIELD and short int fields, and they order the
373 structure members so that fields less than a word are next
374 to each other so they can be packed together. */
375
376 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
377 all the space critical structures (plus struct minimal_symbol).
378 Memory usage dropped from 99360768 bytes to 90001408 bytes.
379 I measured this with before-and-after tests of
380 "HEAD-old-gdb -readnow HEAD-old-gdb" and
381 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
382 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
383 typing "maint space 1" at the first command prompt.
384
385 Here is another measurement (from andrew c):
386 # no /usr/lib/debug, just plain glibc, like a normal user
387 gdb HEAD-old-gdb
388 (gdb) break internal_error
389 (gdb) run
390 (gdb) maint internal-error
391 (gdb) backtrace
392 (gdb) maint space 1
393
394 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
395 gdb HEAD 2003-08-19 space used: 8904704
396 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
397 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
398
399 The third line shows the savings from the optimizations in symtab.h.
400 The fourth line shows the savings from the optimizations in
401 gdbtypes.h. Both optimizations are in gdb HEAD now.
402
403 --chastain 2003-08-21 */
404
405 /* Define a structure for the information that is common to all symbol types,
406 including minimal symbols, partial symbols, and full symbols. In a
407 multilanguage environment, some language specific information may need to
408 be recorded along with each symbol. */
409
410 /* This structure is space critical. See space comments at the top. */
411
412 struct general_symbol_info
413 {
414 /* Short version as to when to use which name accessor:
415 Use natural_name () to refer to the name of the symbol in the original
416 source code. Use linkage_name () if you want to know what the linker
417 thinks the symbol's name is. Use print_name () for output. Use
418 demangled_name () if you specifically need to know whether natural_name ()
419 and linkage_name () are different. */
420
421 const char *linkage_name () const
422 { return m_name; }
423
424 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
425 the original source code. In languages like C++ where symbols may
426 be mangled for ease of manipulation by the linker, this is the
427 demangled name. */
428 const char *natural_name () const;
429
430 /* Returns a version of the name of a symbol that is
431 suitable for output. In C++ this is the "demangled" form of the
432 name if demangle is on and the "mangled" form of the name if
433 demangle is off. In other languages this is just the symbol name.
434 The result should never be NULL. Don't use this for internal
435 purposes (e.g. storing in a hashtable): it's only suitable for output. */
436 const char *print_name () const
437 { return demangle ? natural_name () : linkage_name (); }
438
439 /* Return the demangled name for a symbol based on the language for
440 that symbol. If no demangled name exists, return NULL. */
441 const char *demangled_name () const;
442
443 /* Returns the name to be used when sorting and searching symbols.
444 In C++, we search for the demangled form of a name,
445 and so sort symbols accordingly. In Ada, however, we search by mangled
446 name. If there is no distinct demangled name, then this
447 returns the same value (same pointer) as linkage_name (). */
448 const char *search_name () const;
449
450 /* Set just the linkage name of a symbol; do not try to demangle
451 it. Used for constructs which do not have a mangled name,
452 e.g. struct tags. Unlike compute_and_set_names, linkage_name must
453 be terminated and either already on the objfile's obstack or
454 permanently allocated. */
455 void set_linkage_name (const char *linkage_name)
456 { m_name = linkage_name; }
457
458 /* Set the demangled name of this symbol to NAME. NAME must be
459 already correctly allocated. If the symbol's language is Ada,
460 then the name is ignored and the obstack is set. */
461 void set_demangled_name (const char *name, struct obstack *obstack);
462
463 enum language language () const
464 { return m_language; }
465
466 /* Initializes the language dependent portion of a symbol
467 depending upon the language for the symbol. */
468 void set_language (enum language language, struct obstack *obstack);
469
470 /* Set the linkage and natural names of a symbol, by demangling
471 the linkage name. If linkage_name may not be nullterminated,
472 copy_name must be set to true. */
473 void compute_and_set_names (gdb::string_view linkage_name, bool copy_name,
474 struct objfile_per_bfd_storage *per_bfd,
475 gdb::optional<hashval_t> hash
476 = gdb::optional<hashval_t> ());
477
478 /* Name of the symbol. This is a required field. Storage for the
479 name is allocated on the objfile_obstack for the associated
480 objfile. For languages like C++ that make a distinction between
481 the mangled name and demangled name, this is the mangled
482 name. */
483
484 const char *m_name;
485
486 /* Value of the symbol. Which member of this union to use, and what
487 it means, depends on what kind of symbol this is and its
488 SYMBOL_CLASS. See comments there for more details. All of these
489 are in host byte order (though what they point to might be in
490 target byte order, e.g. LOC_CONST_BYTES). */
491
492 union
493 {
494 LONGEST ivalue;
495
496 const struct block *block;
497
498 const gdb_byte *bytes;
499
500 CORE_ADDR address;
501
502 /* A common block. Used with LOC_COMMON_BLOCK. */
503
504 const struct common_block *common_block;
505
506 /* For opaque typedef struct chain. */
507
508 struct symbol *chain;
509 }
510 value;
511
512 /* Since one and only one language can apply, wrap the language specific
513 information inside a union. */
514
515 union
516 {
517 /* A pointer to an obstack that can be used for storage associated
518 with this symbol. This is only used by Ada, and only when the
519 'ada_mangled' field is zero. */
520 struct obstack *obstack;
521
522 /* This is used by languages which wish to store a demangled name.
523 currently used by Ada, C++, and Objective C. */
524 const char *demangled_name;
525 }
526 language_specific;
527
528 /* Record the source code language that applies to this symbol.
529 This is used to select one of the fields from the language specific
530 union above. */
531
532 ENUM_BITFIELD(language) m_language : LANGUAGE_BITS;
533
534 /* This is only used by Ada. If set, then the 'demangled_name' field
535 of language_specific is valid. Otherwise, the 'obstack' field is
536 valid. */
537 unsigned int ada_mangled : 1;
538
539 /* Which section is this symbol in? This is an index into
540 section_offsets for this objfile. Negative means that the symbol
541 does not get relocated relative to a section. */
542
543 short m_section;
544
545 /* Set the index into the obj_section list (within the containing
546 objfile) for the section that contains this symbol. See M_SECTION
547 for more details. */
548
549 void set_section_index (short idx)
550 { m_section = idx; }
551
552 /* Return the index into the obj_section list (within the containing
553 objfile) for the section that contains this symbol. See M_SECTION
554 for more details. */
555
556 short section_index () const
557 { return m_section; }
558
559 /* Return the obj_section from OBJFILE for this symbol. The symbol
560 returned is based on the SECTION member variable, and can be nullptr
561 if SECTION is negative. */
562
563 struct obj_section *obj_section (const struct objfile *objfile) const;
564 };
565
566 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
567
568 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
569 SYM. If SYM appears in the main program's minimal symbols, then
570 that minsym's address is returned; otherwise, SYM's address is
571 returned. This should generally only be used via the
572 SYMBOL_VALUE_ADDRESS macro. */
573
574 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
575
576 /* Note that these macros only work with symbol, not partial_symbol. */
577
578 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
579 #define SYMBOL_VALUE_ADDRESS(symbol) \
580 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
581 : ((symbol)->value.address))
582 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
583 ((symbol)->value.address = (new_value))
584 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
585 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
586 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
587 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
588
589 /* Try to determine the demangled name for a symbol, based on the
590 language of that symbol. If the language is set to language_auto,
591 it will attempt to find any demangling algorithm that works and
592 then set the language appropriately. The returned name is allocated
593 by the demangler and should be xfree'd. */
594
595 extern gdb::unique_xmalloc_ptr<char> symbol_find_demangled_name
596 (struct general_symbol_info *gsymbol, const char *mangled);
597
598 /* Return true if NAME matches the "search" name of GSYMBOL, according
599 to the symbol's language. */
600 extern bool symbol_matches_search_name
601 (const struct general_symbol_info *gsymbol,
602 const lookup_name_info &name);
603
604 /* Compute the hash of the given symbol search name of a symbol of
605 language LANGUAGE. */
606 extern unsigned int search_name_hash (enum language language,
607 const char *search_name);
608
609 /* Classification types for a minimal symbol. These should be taken as
610 "advisory only", since if gdb can't easily figure out a
611 classification it simply selects mst_unknown. It may also have to
612 guess when it can't figure out which is a better match between two
613 types (mst_data versus mst_bss) for example. Since the minimal
614 symbol info is sometimes derived from the BFD library's view of a
615 file, we need to live with what information bfd supplies. */
616
617 enum minimal_symbol_type
618 {
619 mst_unknown = 0, /* Unknown type, the default */
620 mst_text, /* Generally executable instructions */
621
622 /* A GNU ifunc symbol, in the .text section. GDB uses to know
623 whether the user is setting a breakpoint on a GNU ifunc function,
624 and thus GDB needs to actually set the breakpoint on the target
625 function. It is also used to know whether the program stepped
626 into an ifunc resolver -- the resolver may get a separate
627 symbol/alias under a different name, but it'll have the same
628 address as the ifunc symbol. */
629 mst_text_gnu_ifunc, /* Executable code returning address
630 of executable code */
631
632 /* A GNU ifunc function descriptor symbol, in a data section
633 (typically ".opd"). Seen on architectures that use function
634 descriptors, like PPC64/ELFv1. In this case, this symbol's value
635 is the address of the descriptor. There'll be a corresponding
636 mst_text_gnu_ifunc synthetic symbol for the text/entry
637 address. */
638 mst_data_gnu_ifunc, /* Executable code returning address
639 of executable code */
640
641 mst_slot_got_plt, /* GOT entries for .plt sections */
642 mst_data, /* Generally initialized data */
643 mst_bss, /* Generally uninitialized data */
644 mst_abs, /* Generally absolute (nonrelocatable) */
645 /* GDB uses mst_solib_trampoline for the start address of a shared
646 library trampoline entry. Breakpoints for shared library functions
647 are put there if the shared library is not yet loaded.
648 After the shared library is loaded, lookup_minimal_symbol will
649 prefer the minimal symbol from the shared library (usually
650 a mst_text symbol) over the mst_solib_trampoline symbol, and the
651 breakpoints will be moved to their true address in the shared
652 library via breakpoint_re_set. */
653 mst_solib_trampoline, /* Shared library trampoline code */
654 /* For the mst_file* types, the names are only guaranteed to be unique
655 within a given .o file. */
656 mst_file_text, /* Static version of mst_text */
657 mst_file_data, /* Static version of mst_data */
658 mst_file_bss, /* Static version of mst_bss */
659 nr_minsym_types
660 };
661
662 /* The number of enum minimal_symbol_type values, with some padding for
663 reasonable growth. */
664 #define MINSYM_TYPE_BITS 4
665 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
666
667 /* Define a simple structure used to hold some very basic information about
668 all defined global symbols (text, data, bss, abs, etc). The only required
669 information is the general_symbol_info.
670
671 In many cases, even if a file was compiled with no special options for
672 debugging at all, as long as was not stripped it will contain sufficient
673 information to build a useful minimal symbol table using this structure.
674 Even when a file contains enough debugging information to build a full
675 symbol table, these minimal symbols are still useful for quickly mapping
676 between names and addresses, and vice versa. They are also sometimes
677 used to figure out what full symbol table entries need to be read in. */
678
679 struct minimal_symbol : public general_symbol_info
680 {
681 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
682 information to calculate the end of the partial symtab based on the
683 address of the last symbol plus the size of the last symbol. */
684
685 unsigned long size;
686
687 /* Which source file is this symbol in? Only relevant for mst_file_*. */
688 const char *filename;
689
690 /* Classification type for this minimal symbol. */
691
692 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
693
694 /* Non-zero if this symbol was created by gdb.
695 Such symbols do not appear in the output of "info var|fun". */
696 unsigned int created_by_gdb : 1;
697
698 /* Two flag bits provided for the use of the target. */
699 unsigned int target_flag_1 : 1;
700 unsigned int target_flag_2 : 1;
701
702 /* Nonzero iff the size of the minimal symbol has been set.
703 Symbol size information can sometimes not be determined, because
704 the object file format may not carry that piece of information. */
705 unsigned int has_size : 1;
706
707 /* For data symbols only, if this is set, then the symbol might be
708 subject to copy relocation. In this case, a minimal symbol
709 matching the symbol's linkage name is first looked for in the
710 main objfile. If found, then that address is used; otherwise the
711 address in this symbol is used. */
712
713 unsigned maybe_copied : 1;
714
715 /* Non-zero if this symbol ever had its demangled name set (even if
716 it was set to NULL). */
717 unsigned int name_set : 1;
718
719 /* Minimal symbols with the same hash key are kept on a linked
720 list. This is the link. */
721
722 struct minimal_symbol *hash_next;
723
724 /* Minimal symbols are stored in two different hash tables. This is
725 the `next' pointer for the demangled hash table. */
726
727 struct minimal_symbol *demangled_hash_next;
728
729 /* True if this symbol is of some data type. */
730
731 bool data_p () const;
732
733 /* True if MSYMBOL is of some text type. */
734
735 bool text_p () const;
736 };
737
738 /* Return the address of MINSYM, which comes from OBJF. The
739 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
740 main program's minimal symbols, then that minsym's address is
741 returned; otherwise, MINSYM's address is returned. This should
742 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
743
744 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
745 const struct minimal_symbol *minsym);
746
747 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
748 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
749 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
750 #define SET_MSYMBOL_SIZE(msymbol, sz) \
751 do \
752 { \
753 (msymbol)->size = sz; \
754 (msymbol)->has_size = 1; \
755 } while (0)
756 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
757 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
758
759 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
760 /* The unrelocated address of the minimal symbol. */
761 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
762 /* The relocated address of the minimal symbol, using the section
763 offsets from OBJFILE. */
764 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
765 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
766 : ((symbol)->value.address \
767 + (objfile)->section_offsets[(symbol)->section_index ()]))
768 /* For a bound minsym, we can easily compute the address directly. */
769 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
770 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
771 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
772 ((symbol)->value.address = (new_value))
773 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
774 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
775 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
776
777 #include "minsyms.h"
778
779 \f
780
781 /* Represent one symbol name; a variable, constant, function or typedef. */
782
783 /* Different name domains for symbols. Looking up a symbol specifies a
784 domain and ignores symbol definitions in other name domains. */
785
786 typedef enum domain_enum_tag
787 {
788 /* UNDEF_DOMAIN is used when a domain has not been discovered or
789 none of the following apply. This usually indicates an error either
790 in the symbol information or in gdb's handling of symbols. */
791
792 UNDEF_DOMAIN,
793
794 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
795 function names, typedef names and enum type values. */
796
797 VAR_DOMAIN,
798
799 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
800 Thus, if `struct foo' is used in a C program, it produces a symbol named
801 `foo' in the STRUCT_DOMAIN. */
802
803 STRUCT_DOMAIN,
804
805 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
806
807 MODULE_DOMAIN,
808
809 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
810
811 LABEL_DOMAIN,
812
813 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
814 They also always use LOC_COMMON_BLOCK. */
815 COMMON_BLOCK_DOMAIN,
816
817 /* This must remain last. */
818 NR_DOMAINS
819 } domain_enum;
820
821 /* The number of bits in a symbol used to represent the domain. */
822
823 #define SYMBOL_DOMAIN_BITS 3
824 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
825
826 extern const char *domain_name (domain_enum);
827
828 /* Searching domains, used when searching for symbols. Element numbers are
829 hardcoded in GDB, check all enum uses before changing it. */
830
831 enum search_domain
832 {
833 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
834 TYPES_DOMAIN. */
835 VARIABLES_DOMAIN = 0,
836
837 /* All functions -- for some reason not methods, though. */
838 FUNCTIONS_DOMAIN = 1,
839
840 /* All defined types */
841 TYPES_DOMAIN = 2,
842
843 /* All modules. */
844 MODULES_DOMAIN = 3,
845
846 /* Any type. */
847 ALL_DOMAIN = 4
848 };
849
850 extern const char *search_domain_name (enum search_domain);
851
852 /* An address-class says where to find the value of a symbol. */
853
854 enum address_class
855 {
856 /* Not used; catches errors. */
857
858 LOC_UNDEF,
859
860 /* Value is constant int SYMBOL_VALUE, host byteorder. */
861
862 LOC_CONST,
863
864 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
865
866 LOC_STATIC,
867
868 /* Value is in register. SYMBOL_VALUE is the register number
869 in the original debug format. SYMBOL_REGISTER_OPS holds a
870 function that can be called to transform this into the
871 actual register number this represents in a specific target
872 architecture (gdbarch).
873
874 For some symbol formats (stabs, for some compilers at least),
875 the compiler generates two symbols, an argument and a register.
876 In some cases we combine them to a single LOC_REGISTER in symbol
877 reading, but currently not for all cases (e.g. it's passed on the
878 stack and then loaded into a register). */
879
880 LOC_REGISTER,
881
882 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
883
884 LOC_ARG,
885
886 /* Value address is at SYMBOL_VALUE offset in arglist. */
887
888 LOC_REF_ARG,
889
890 /* Value is in specified register. Just like LOC_REGISTER except the
891 register holds the address of the argument instead of the argument
892 itself. This is currently used for the passing of structs and unions
893 on sparc and hppa. It is also used for call by reference where the
894 address is in a register, at least by mipsread.c. */
895
896 LOC_REGPARM_ADDR,
897
898 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
899
900 LOC_LOCAL,
901
902 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
903 STRUCT_DOMAIN all have this class. */
904
905 LOC_TYPEDEF,
906
907 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
908
909 LOC_LABEL,
910
911 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
912 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
913 of the block. Function names have this class. */
914
915 LOC_BLOCK,
916
917 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
918 target byte order. */
919
920 LOC_CONST_BYTES,
921
922 /* Value is at fixed address, but the address of the variable has
923 to be determined from the minimal symbol table whenever the
924 variable is referenced.
925 This happens if debugging information for a global symbol is
926 emitted and the corresponding minimal symbol is defined
927 in another object file or runtime common storage.
928 The linker might even remove the minimal symbol if the global
929 symbol is never referenced, in which case the symbol remains
930 unresolved.
931
932 GDB would normally find the symbol in the minimal symbol table if it will
933 not find it in the full symbol table. But a reference to an external
934 symbol in a local block shadowing other definition requires full symbol
935 without possibly having its address available for LOC_STATIC. Testcase
936 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
937
938 This is also used for thread local storage (TLS) variables. In this case,
939 the address of the TLS variable must be determined when the variable is
940 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
941 of the TLS variable in the thread local storage of the shared
942 library/object. */
943
944 LOC_UNRESOLVED,
945
946 /* The variable does not actually exist in the program.
947 The value is ignored. */
948
949 LOC_OPTIMIZED_OUT,
950
951 /* The variable's address is computed by a set of location
952 functions (see "struct symbol_computed_ops" below). */
953 LOC_COMPUTED,
954
955 /* The variable uses general_symbol_info->value->common_block field.
956 It also always uses COMMON_BLOCK_DOMAIN. */
957 LOC_COMMON_BLOCK,
958
959 /* Not used, just notes the boundary of the enum. */
960 LOC_FINAL_VALUE
961 };
962
963 /* The number of bits needed for values in enum address_class, with some
964 padding for reasonable growth, and room for run-time registered address
965 classes. See symtab.c:MAX_SYMBOL_IMPLS.
966 This is a #define so that we can have a assertion elsewhere to
967 verify that we have reserved enough space for synthetic address
968 classes. */
969 #define SYMBOL_ACLASS_BITS 5
970 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
971
972 /* The methods needed to implement LOC_COMPUTED. These methods can
973 use the symbol's .aux_value for additional per-symbol information.
974
975 At present this is only used to implement location expressions. */
976
977 struct symbol_computed_ops
978 {
979
980 /* Return the value of the variable SYMBOL, relative to the stack
981 frame FRAME. If the variable has been optimized out, return
982 zero.
983
984 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
985 FRAME may be zero. */
986
987 struct value *(*read_variable) (struct symbol * symbol,
988 struct frame_info * frame);
989
990 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
991 entry. SYMBOL should be a function parameter, otherwise
992 NO_ENTRY_VALUE_ERROR will be thrown. */
993 struct value *(*read_variable_at_entry) (struct symbol *symbol,
994 struct frame_info *frame);
995
996 /* Find the "symbol_needs_kind" value for the given symbol. This
997 value determines whether reading the symbol needs memory (e.g., a
998 global variable), just registers (a thread-local), or a frame (a
999 local variable). */
1000 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
1001
1002 /* Write to STREAM a natural-language description of the location of
1003 SYMBOL, in the context of ADDR. */
1004 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
1005 struct ui_file * stream);
1006
1007 /* Non-zero if this symbol's address computation is dependent on PC. */
1008 unsigned char location_has_loclist;
1009
1010 /* Tracepoint support. Append bytecodes to the tracepoint agent
1011 expression AX that push the address of the object SYMBOL. Set
1012 VALUE appropriately. Note --- for objects in registers, this
1013 needn't emit any code; as long as it sets VALUE properly, then
1014 the caller will generate the right code in the process of
1015 treating this as an lvalue or rvalue. */
1016
1017 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1018 struct axs_value *value);
1019
1020 /* Generate C code to compute the location of SYMBOL. The C code is
1021 emitted to STREAM. GDBARCH is the current architecture and PC is
1022 the PC at which SYMBOL's location should be evaluated.
1023 REGISTERS_USED is a vector indexed by register number; the
1024 generator function should set an element in this vector if the
1025 corresponding register is needed by the location computation.
1026 The generated C code must assign the location to a local
1027 variable; this variable's name is RESULT_NAME. */
1028
1029 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1030 struct gdbarch *gdbarch,
1031 std::vector<bool> &registers_used,
1032 CORE_ADDR pc, const char *result_name);
1033
1034 };
1035
1036 /* The methods needed to implement LOC_BLOCK for inferior functions.
1037 These methods can use the symbol's .aux_value for additional
1038 per-symbol information. */
1039
1040 struct symbol_block_ops
1041 {
1042 /* Fill in *START and *LENGTH with DWARF block data of function
1043 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1044 zero if such location is not valid for PC; *START is left
1045 uninitialized in such case. */
1046 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1047 const gdb_byte **start, size_t *length);
1048
1049 /* Return the frame base address. FRAME is the frame for which we want to
1050 compute the base address while FRAMEFUNC is the symbol for the
1051 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1052 information we need).
1053
1054 This method is designed to work with static links (nested functions
1055 handling). Static links are function properties whose evaluation returns
1056 the frame base address for the enclosing frame. However, there are
1057 multiple definitions for "frame base": the content of the frame base
1058 register, the CFA as defined by DWARF unwinding information, ...
1059
1060 So this specific method is supposed to compute the frame base address such
1061 as for nested functions, the static link computes the same address. For
1062 instance, considering DWARF debugging information, the static link is
1063 computed with DW_AT_static_link and this method must be used to compute
1064 the corresponding DW_AT_frame_base attribute. */
1065 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1066 struct frame_info *frame);
1067 };
1068
1069 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1070
1071 struct symbol_register_ops
1072 {
1073 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1074 };
1075
1076 /* Objects of this type are used to find the address class and the
1077 various computed ops vectors of a symbol. */
1078
1079 struct symbol_impl
1080 {
1081 enum address_class aclass;
1082
1083 /* Used with LOC_COMPUTED. */
1084 const struct symbol_computed_ops *ops_computed;
1085
1086 /* Used with LOC_BLOCK. */
1087 const struct symbol_block_ops *ops_block;
1088
1089 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1090 const struct symbol_register_ops *ops_register;
1091 };
1092
1093 /* struct symbol has some subclasses. This enum is used to
1094 differentiate between them. */
1095
1096 enum symbol_subclass_kind
1097 {
1098 /* Plain struct symbol. */
1099 SYMBOL_NONE,
1100
1101 /* struct template_symbol. */
1102 SYMBOL_TEMPLATE,
1103
1104 /* struct rust_vtable_symbol. */
1105 SYMBOL_RUST_VTABLE
1106 };
1107
1108 extern const struct symbol_impl *symbol_impls;
1109
1110 /* This structure is space critical. See space comments at the top. */
1111
1112 struct symbol : public general_symbol_info, public allocate_on_obstack
1113 {
1114 symbol ()
1115 /* Class-initialization of bitfields is only allowed in C++20. */
1116 : m_domain (UNDEF_DOMAIN),
1117 m_aclass_index (0),
1118 m_is_objfile_owned (1),
1119 m_is_argument (0),
1120 is_inlined (0),
1121 maybe_copied (0),
1122 subclass (SYMBOL_NONE),
1123 artificial (false)
1124 {
1125 /* We can't use an initializer list for members of a base class, and
1126 general_symbol_info needs to stay a POD type. */
1127 m_name = nullptr;
1128 value.ivalue = 0;
1129 language_specific.obstack = nullptr;
1130 m_language = language_unknown;
1131 ada_mangled = 0;
1132 m_section = -1;
1133 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1134 initialization of unions, so we initialize it manually here. */
1135 owner.symtab = nullptr;
1136 }
1137
1138 symbol (const symbol &) = default;
1139 symbol &operator= (const symbol &) = default;
1140
1141 unsigned int aclass_index () const
1142 {
1143 return m_aclass_index;
1144 }
1145
1146 void set_aclass_index (unsigned int aclass_index)
1147 {
1148 m_aclass_index = aclass_index;
1149 }
1150
1151 const symbol_impl &impl () const
1152 {
1153 return symbol_impls[this->aclass_index ()];
1154 }
1155
1156 address_class aclass () const
1157 {
1158 return this->impl ().aclass;
1159 }
1160
1161 domain_enum domain () const
1162 {
1163 return m_domain;
1164 }
1165
1166 void set_domain (domain_enum domain)
1167 {
1168 m_domain = domain;
1169 }
1170
1171 bool is_objfile_owned () const
1172 {
1173 return m_is_objfile_owned;
1174 }
1175
1176 void set_is_objfile_owned (bool is_objfile_owned)
1177 {
1178 m_is_objfile_owned = is_objfile_owned;
1179 }
1180
1181 bool is_argument () const
1182 {
1183 return m_is_argument;
1184 }
1185
1186 void set_is_argument (bool is_argument)
1187 {
1188 m_is_argument = is_argument;
1189 }
1190
1191 /* Data type of value */
1192
1193 struct type *type = nullptr;
1194
1195 /* The owner of this symbol.
1196 Which one to use is defined by symbol.is_objfile_owned. */
1197
1198 union
1199 {
1200 /* The symbol table containing this symbol. This is the file associated
1201 with LINE. It can be NULL during symbols read-in but it is never NULL
1202 during normal operation. */
1203 struct symtab *symtab;
1204
1205 /* For types defined by the architecture. */
1206 struct gdbarch *arch;
1207 } owner;
1208
1209 /* Domain code. */
1210
1211 ENUM_BITFIELD(domain_enum_tag) m_domain : SYMBOL_DOMAIN_BITS;
1212
1213 /* Address class. This holds an index into the 'symbol_impls'
1214 table. The actual enum address_class value is stored there,
1215 alongside any per-class ops vectors. */
1216
1217 unsigned int m_aclass_index : SYMBOL_ACLASS_BITS;
1218
1219 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1220 Otherwise symbol is arch-owned, use owner.arch. */
1221
1222 unsigned int m_is_objfile_owned : 1;
1223
1224 /* Whether this is an argument. */
1225
1226 unsigned m_is_argument : 1;
1227
1228 /* Whether this is an inlined function (class LOC_BLOCK only). */
1229 unsigned is_inlined : 1;
1230
1231 /* For LOC_STATIC only, if this is set, then the symbol might be
1232 subject to copy relocation. In this case, a minimal symbol
1233 matching the symbol's linkage name is first looked for in the
1234 main objfile. If found, then that address is used; otherwise the
1235 address in this symbol is used. */
1236
1237 unsigned maybe_copied : 1;
1238
1239 /* The concrete type of this symbol. */
1240
1241 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1242
1243 /* Whether this symbol is artificial. */
1244
1245 bool artificial : 1;
1246
1247 /* Line number of this symbol's definition, except for inlined
1248 functions. For an inlined function (class LOC_BLOCK and
1249 SYMBOL_INLINED set) this is the line number of the function's call
1250 site. Inlined function symbols are not definitions, and they are
1251 never found by symbol table lookup.
1252 If this symbol is arch-owned, LINE shall be zero.
1253
1254 FIXME: Should we really make the assumption that nobody will try
1255 to debug files longer than 64K lines? What about machine
1256 generated programs? */
1257
1258 unsigned short line = 0;
1259
1260 /* An arbitrary data pointer, allowing symbol readers to record
1261 additional information on a per-symbol basis. Note that this data
1262 must be allocated using the same obstack as the symbol itself. */
1263 /* So far it is only used by:
1264 LOC_COMPUTED: to find the location information
1265 LOC_BLOCK (DWARF2 function): information used internally by the
1266 DWARF 2 code --- specifically, the location expression for the frame
1267 base for this function. */
1268 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1269 to add a magic symbol to the block containing this information,
1270 or to have a generic debug info annotation slot for symbols. */
1271
1272 void *aux_value = nullptr;
1273
1274 struct symbol *hash_next = nullptr;
1275 };
1276
1277 /* Several lookup functions return both a symbol and the block in which the
1278 symbol is found. This structure is used in these cases. */
1279
1280 struct block_symbol
1281 {
1282 /* The symbol that was found, or NULL if no symbol was found. */
1283 struct symbol *symbol;
1284
1285 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1286 defined. */
1287 const struct block *block;
1288 };
1289
1290 /* Note: There is no accessor macro for symbol.owner because it is
1291 "private". */
1292
1293 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1294 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1295 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1296 #define SYMBOL_TYPE(symbol) (symbol)->type
1297 #define SYMBOL_LINE(symbol) (symbol)->line
1298 #define SYMBOL_COMPUTED_OPS(symbol) ((symbol)->impl ().ops_computed)
1299 #define SYMBOL_BLOCK_OPS(symbol) ((symbol)->impl ().ops_block)
1300 #define SYMBOL_REGISTER_OPS(symbol) ((symbol)->impl ().ops_register)
1301 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1302
1303 extern int register_symbol_computed_impl (enum address_class,
1304 const struct symbol_computed_ops *);
1305
1306 extern int register_symbol_block_impl (enum address_class aclass,
1307 const struct symbol_block_ops *ops);
1308
1309 extern int register_symbol_register_impl (enum address_class,
1310 const struct symbol_register_ops *);
1311
1312 /* Return the OBJFILE of SYMBOL.
1313 It is an error to call this if symbol.is_objfile_owned is false, which
1314 only happens for architecture-provided types. */
1315
1316 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1317
1318 /* Return the ARCH of SYMBOL. */
1319
1320 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1321
1322 /* Return the SYMTAB of SYMBOL.
1323 It is an error to call this if symbol.is_objfile_owned is false, which
1324 only happens for architecture-provided types. */
1325
1326 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1327
1328 /* Set the symtab of SYMBOL to SYMTAB.
1329 It is an error to call this if symbol.is_objfile_owned is false, which
1330 only happens for architecture-provided types. */
1331
1332 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1333
1334 /* An instance of this type is used to represent a C++ template
1335 function. A symbol is really of this type iff
1336 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1337
1338 struct template_symbol : public symbol
1339 {
1340 /* The number of template arguments. */
1341 int n_template_arguments = 0;
1342
1343 /* The template arguments. This is an array with
1344 N_TEMPLATE_ARGUMENTS elements. */
1345 struct symbol **template_arguments = nullptr;
1346 };
1347
1348 /* A symbol that represents a Rust virtual table object. */
1349
1350 struct rust_vtable_symbol : public symbol
1351 {
1352 /* The concrete type for which this vtable was created; that is, in
1353 "impl Trait for Type", this is "Type". */
1354 struct type *concrete_type = nullptr;
1355 };
1356
1357 \f
1358 /* Each item represents a line-->pc (or the reverse) mapping. This is
1359 somewhat more wasteful of space than one might wish, but since only
1360 the files which are actually debugged are read in to core, we don't
1361 waste much space. */
1362
1363 struct linetable_entry
1364 {
1365 /* The line number for this entry. */
1366 int line;
1367
1368 /* True if this PC is a good location to place a breakpoint for LINE. */
1369 unsigned is_stmt : 1;
1370
1371 /* The address for this entry. */
1372 CORE_ADDR pc;
1373 };
1374
1375 /* The order of entries in the linetable is significant. They should
1376 be sorted by increasing values of the pc field. If there is more than
1377 one entry for a given pc, then I'm not sure what should happen (and
1378 I not sure whether we currently handle it the best way).
1379
1380 Example: a C for statement generally looks like this
1381
1382 10 0x100 - for the init/test part of a for stmt.
1383 20 0x200
1384 30 0x300
1385 10 0x400 - for the increment part of a for stmt.
1386
1387 If an entry has a line number of zero, it marks the start of a PC
1388 range for which no line number information is available. It is
1389 acceptable, though wasteful of table space, for such a range to be
1390 zero length. */
1391
1392 struct linetable
1393 {
1394 int nitems;
1395
1396 /* Actually NITEMS elements. If you don't like this use of the
1397 `struct hack', you can shove it up your ANSI (seriously, if the
1398 committee tells us how to do it, we can probably go along). */
1399 struct linetable_entry item[1];
1400 };
1401
1402 /* How to relocate the symbols from each section in a symbol file.
1403 The ordering and meaning of the offsets is file-type-dependent;
1404 typically it is indexed by section numbers or symbol types or
1405 something like that. */
1406
1407 typedef std::vector<CORE_ADDR> section_offsets;
1408
1409 /* Each source file or header is represented by a struct symtab.
1410 The name "symtab" is historical, another name for it is "filetab".
1411 These objects are chained through the `next' field. */
1412
1413 struct symtab
1414 {
1415 struct compunit_symtab *compunit () const
1416 {
1417 return m_compunit;
1418 }
1419
1420 void set_compunit (struct compunit_symtab *compunit)
1421 {
1422 m_compunit = compunit;
1423 }
1424
1425 struct linetable *linetable () const
1426 {
1427 return m_linetable;
1428 }
1429
1430 void set_linetable (struct linetable *linetable)
1431 {
1432 m_linetable = linetable;
1433 }
1434
1435 enum language language () const
1436 {
1437 return m_language;
1438 }
1439
1440 void set_language (enum language language)
1441 {
1442 m_language = language;
1443 }
1444
1445 const struct blockvector *blockvector () const;
1446
1447 struct objfile *objfile () const;
1448
1449 program_space *pspace () const;
1450
1451 const char *dirname () const;
1452
1453 /* Unordered chain of all filetabs in the compunit, with the exception
1454 that the "main" source file is the first entry in the list. */
1455
1456 struct symtab *next;
1457
1458 /* Backlink to containing compunit symtab. */
1459
1460 struct compunit_symtab *m_compunit;
1461
1462 /* Table mapping core addresses to line numbers for this file.
1463 Can be NULL if none. Never shared between different symtabs. */
1464
1465 struct linetable *m_linetable;
1466
1467 /* Name of this source file. This pointer is never NULL. */
1468
1469 const char *filename;
1470
1471 /* Language of this source file. */
1472
1473 enum language m_language;
1474
1475 /* Full name of file as found by searching the source path.
1476 NULL if not yet known. */
1477
1478 char *fullname;
1479 };
1480
1481 /* A range adapter to allowing iterating over all the file tables in a list. */
1482
1483 using symtab_range = next_range<symtab>;
1484
1485 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1486 as the list of all source files (what gdb has historically associated with
1487 the term "symtab").
1488 Additional information is recorded here that is common to all symtabs in a
1489 compilation unit (DWARF or otherwise).
1490
1491 Example:
1492 For the case of a program built out of these files:
1493
1494 foo.c
1495 foo1.h
1496 foo2.h
1497 bar.c
1498 foo1.h
1499 bar.h
1500
1501 This is recorded as:
1502
1503 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1504 | |
1505 v v
1506 foo.c bar.c
1507 | |
1508 v v
1509 foo1.h foo1.h
1510 | |
1511 v v
1512 foo2.h bar.h
1513 | |
1514 v v
1515 NULL NULL
1516
1517 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1518 and the files foo.c, etc. are struct symtab objects. */
1519
1520 struct compunit_symtab
1521 {
1522 struct objfile *objfile () const
1523 {
1524 return m_objfile;
1525 }
1526
1527 void set_objfile (struct objfile *objfile)
1528 {
1529 m_objfile = objfile;
1530 }
1531
1532 symtab_range filetabs () const
1533 {
1534 return symtab_range (m_filetabs);
1535 }
1536
1537 void add_filetab (symtab *filetab)
1538 {
1539 if (m_filetabs == nullptr)
1540 {
1541 m_filetabs = filetab;
1542 m_last_filetab = filetab;
1543 }
1544 else
1545 {
1546 m_last_filetab->next = filetab;
1547 m_last_filetab = filetab;
1548 }
1549 }
1550
1551 const char *debugformat () const
1552 {
1553 return m_debugformat;
1554 }
1555
1556 void set_debugformat (const char *debugformat)
1557 {
1558 m_debugformat = debugformat;
1559 }
1560
1561 const char *producer () const
1562 {
1563 return m_producer;
1564 }
1565
1566 void set_producer (const char *producer)
1567 {
1568 m_producer = producer;
1569 }
1570
1571 const char *dirname () const
1572 {
1573 return m_dirname;
1574 }
1575
1576 void set_dirname (const char *dirname)
1577 {
1578 m_dirname = dirname;
1579 }
1580
1581 const struct blockvector *blockvector () const
1582 {
1583 return m_blockvector;
1584 }
1585
1586 void set_blockvector (const struct blockvector *blockvector)
1587 {
1588 m_blockvector = blockvector;
1589 }
1590
1591 int block_line_section () const
1592 {
1593 return m_block_line_section;
1594 }
1595
1596 void set_block_line_section (int block_line_section)
1597 {
1598 m_block_line_section = block_line_section;
1599 }
1600
1601 bool locations_valid () const
1602 {
1603 return m_locations_valid;
1604 }
1605
1606 void set_locations_valid (bool locations_valid)
1607 {
1608 m_locations_valid = locations_valid;
1609 }
1610
1611 bool epilogue_unwind_valid () const
1612 {
1613 return m_epilogue_unwind_valid;
1614 }
1615
1616 void set_epilogue_unwind_valid (bool epilogue_unwind_valid)
1617 {
1618 m_epilogue_unwind_valid = epilogue_unwind_valid;
1619 }
1620
1621 struct macro_table *macro_table () const
1622 {
1623 return m_macro_table;
1624 }
1625
1626 void set_macro_table (struct macro_table *macro_table)
1627 {
1628 m_macro_table = macro_table;
1629 }
1630
1631 /* Make PRIMARY_FILETAB the primary filetab of this compunit symtab.
1632
1633 PRIMARY_FILETAB must already be a filetab of this compunit symtab. */
1634
1635 void set_primary_filetab (symtab *primary_filetab);
1636
1637 /* Return the primary filetab of the compunit. */
1638 symtab *primary_filetab () const;
1639
1640 /* Set m_call_site_htab. */
1641 void set_call_site_htab (htab_t call_site_htab);
1642
1643 /* Find call_site info for PC. */
1644 call_site *find_call_site (CORE_ADDR pc) const;
1645
1646 /* Unordered chain of all compunit symtabs of this objfile. */
1647 struct compunit_symtab *next;
1648
1649 /* Object file from which this symtab information was read. */
1650 struct objfile *m_objfile;
1651
1652 /* Name of the symtab.
1653 This is *not* intended to be a usable filename, and is
1654 for debugging purposes only. */
1655 const char *name;
1656
1657 /* Unordered list of file symtabs, except that by convention the "main"
1658 source file (e.g., .c, .cc) is guaranteed to be first.
1659 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1660 or header (e.g., .h). */
1661 symtab *m_filetabs;
1662
1663 /* Last entry in FILETABS list.
1664 Subfiles are added to the end of the list so they accumulate in order,
1665 with the main source subfile living at the front.
1666 The main reason is so that the main source file symtab is at the head
1667 of the list, and the rest appear in order for debugging convenience. */
1668 symtab *m_last_filetab;
1669
1670 /* Non-NULL string that identifies the format of the debugging information,
1671 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1672 for automated testing of gdb but may also be information that is
1673 useful to the user. */
1674 const char *m_debugformat;
1675
1676 /* String of producer version information, or NULL if we don't know. */
1677 const char *m_producer;
1678
1679 /* Directory in which it was compiled, or NULL if we don't know. */
1680 const char *m_dirname;
1681
1682 /* List of all symbol scope blocks for this symtab. It is shared among
1683 all symtabs in a given compilation unit. */
1684 const struct blockvector *m_blockvector;
1685
1686 /* Section in objfile->section_offsets for the blockvector and
1687 the linetable. Probably always SECT_OFF_TEXT. */
1688 int m_block_line_section;
1689
1690 /* Symtab has been compiled with both optimizations and debug info so that
1691 GDB may stop skipping prologues as variables locations are valid already
1692 at function entry points. */
1693 unsigned int m_locations_valid : 1;
1694
1695 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1696 instruction). This is supported by GCC since 4.5.0. */
1697 unsigned int m_epilogue_unwind_valid : 1;
1698
1699 /* struct call_site entries for this compilation unit or NULL. */
1700 htab_t m_call_site_htab;
1701
1702 /* The macro table for this symtab. Like the blockvector, this
1703 is shared between different symtabs in a given compilation unit.
1704 It's debatable whether it *should* be shared among all the symtabs in
1705 the given compilation unit, but it currently is. */
1706 struct macro_table *m_macro_table;
1707
1708 /* If non-NULL, then this points to a NULL-terminated vector of
1709 included compunits. When searching the static or global
1710 block of this compunit, the corresponding block of all
1711 included compunits will also be searched. Note that this
1712 list must be flattened -- the symbol reader is responsible for
1713 ensuring that this vector contains the transitive closure of all
1714 included compunits. */
1715 struct compunit_symtab **includes;
1716
1717 /* If this is an included compunit, this points to one includer
1718 of the table. This user is considered the canonical compunit
1719 containing this one. An included compunit may itself be
1720 included by another. */
1721 struct compunit_symtab *user;
1722 };
1723
1724 using compunit_symtab_range = next_range<compunit_symtab>;
1725
1726 inline const struct blockvector *
1727 symtab::blockvector () const
1728 {
1729 return this->compunit ()->blockvector ();
1730 }
1731
1732 inline struct objfile *
1733 symtab::objfile () const
1734 {
1735 return this->compunit ()->objfile ();
1736 }
1737
1738 inline const char *
1739 symtab::dirname () const
1740 {
1741 return this->compunit ()->dirname ();
1742 }
1743
1744 /* Return the language of CUST. */
1745
1746 extern enum language compunit_language (const struct compunit_symtab *cust);
1747
1748 /* Return true if this symtab is the "main" symtab of its compunit_symtab. */
1749
1750 static inline bool
1751 is_main_symtab_of_compunit_symtab (struct symtab *symtab)
1752 {
1753 return symtab == symtab->compunit ()->primary_filetab ();
1754 }
1755 \f
1756
1757 /* The virtual function table is now an array of structures which have the
1758 form { int16 offset, delta; void *pfn; }.
1759
1760 In normal virtual function tables, OFFSET is unused.
1761 DELTA is the amount which is added to the apparent object's base
1762 address in order to point to the actual object to which the
1763 virtual function should be applied.
1764 PFN is a pointer to the virtual function.
1765
1766 Note that this macro is g++ specific (FIXME). */
1767
1768 #define VTBL_FNADDR_OFFSET 2
1769
1770 /* External variables and functions for the objects described above. */
1771
1772 /* True if we are nested inside psymtab_to_symtab. */
1773
1774 extern int currently_reading_symtab;
1775
1776 /* symtab.c lookup functions */
1777
1778 extern const char multiple_symbols_ask[];
1779 extern const char multiple_symbols_all[];
1780 extern const char multiple_symbols_cancel[];
1781
1782 const char *multiple_symbols_select_mode (void);
1783
1784 bool symbol_matches_domain (enum language symbol_language,
1785 domain_enum symbol_domain,
1786 domain_enum domain);
1787
1788 /* lookup a symbol table by source file name. */
1789
1790 extern struct symtab *lookup_symtab (const char *);
1791
1792 /* An object of this type is passed as the 'is_a_field_of_this'
1793 argument to lookup_symbol and lookup_symbol_in_language. */
1794
1795 struct field_of_this_result
1796 {
1797 /* The type in which the field was found. If this is NULL then the
1798 symbol was not found in 'this'. If non-NULL, then one of the
1799 other fields will be non-NULL as well. */
1800
1801 struct type *type;
1802
1803 /* If the symbol was found as an ordinary field of 'this', then this
1804 is non-NULL and points to the particular field. */
1805
1806 struct field *field;
1807
1808 /* If the symbol was found as a function field of 'this', then this
1809 is non-NULL and points to the particular field. */
1810
1811 struct fn_fieldlist *fn_field;
1812 };
1813
1814 /* Find the definition for a specified symbol name NAME
1815 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1816 if non-NULL or from global/static blocks if BLOCK is NULL.
1817 Returns the struct symbol pointer, or NULL if no symbol is found.
1818 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1819 NAME is a field of the current implied argument `this'. If so fill in the
1820 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1821 The symbol's section is fixed up if necessary. */
1822
1823 extern struct block_symbol
1824 lookup_symbol_in_language (const char *,
1825 const struct block *,
1826 const domain_enum,
1827 enum language,
1828 struct field_of_this_result *);
1829
1830 /* Same as lookup_symbol_in_language, but using the current language. */
1831
1832 extern struct block_symbol lookup_symbol (const char *,
1833 const struct block *,
1834 const domain_enum,
1835 struct field_of_this_result *);
1836
1837 /* Find the definition for a specified symbol search name in domain
1838 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1839 global/static blocks if BLOCK is NULL. The passed-in search name
1840 should not come from the user; instead it should already be a
1841 search name as retrieved from a search_name () call. See definition of
1842 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1843 pointer, or NULL if no symbol is found. The symbol's section is
1844 fixed up if necessary. */
1845
1846 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1847 const struct block *block,
1848 domain_enum domain);
1849
1850 /* Some helper functions for languages that need to write their own
1851 lookup_symbol_nonlocal functions. */
1852
1853 /* Lookup a symbol in the static block associated to BLOCK, if there
1854 is one; do nothing if BLOCK is NULL or a global block.
1855 Upon success fixes up the symbol's section if necessary. */
1856
1857 extern struct block_symbol
1858 lookup_symbol_in_static_block (const char *name,
1859 const struct block *block,
1860 const domain_enum domain);
1861
1862 /* Search all static file-level symbols for NAME from DOMAIN.
1863 Upon success fixes up the symbol's section if necessary. */
1864
1865 extern struct block_symbol lookup_static_symbol (const char *name,
1866 const domain_enum domain);
1867
1868 /* Lookup a symbol in all files' global blocks.
1869
1870 If BLOCK is non-NULL then it is used for two things:
1871 1) If a target-specific lookup routine for libraries exists, then use the
1872 routine for the objfile of BLOCK, and
1873 2) The objfile of BLOCK is used to assist in determining the search order
1874 if the target requires it.
1875 See gdbarch_iterate_over_objfiles_in_search_order.
1876
1877 Upon success fixes up the symbol's section if necessary. */
1878
1879 extern struct block_symbol
1880 lookup_global_symbol (const char *name,
1881 const struct block *block,
1882 const domain_enum domain);
1883
1884 /* Lookup a symbol in block BLOCK.
1885 Upon success fixes up the symbol's section if necessary. */
1886
1887 extern struct symbol *
1888 lookup_symbol_in_block (const char *name,
1889 symbol_name_match_type match_type,
1890 const struct block *block,
1891 const domain_enum domain);
1892
1893 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1894 found, or NULL if not found. */
1895
1896 extern struct block_symbol
1897 lookup_language_this (const struct language_defn *lang,
1898 const struct block *block);
1899
1900 /* Lookup a [struct, union, enum] by name, within a specified block. */
1901
1902 extern struct type *lookup_struct (const char *, const struct block *);
1903
1904 extern struct type *lookup_union (const char *, const struct block *);
1905
1906 extern struct type *lookup_enum (const char *, const struct block *);
1907
1908 /* from blockframe.c: */
1909
1910 /* lookup the function symbol corresponding to the address. The
1911 return value will not be an inlined function; the containing
1912 function will be returned instead. */
1913
1914 extern struct symbol *find_pc_function (CORE_ADDR);
1915
1916 /* lookup the function corresponding to the address and section. The
1917 return value will not be an inlined function; the containing
1918 function will be returned instead. */
1919
1920 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1921
1922 /* lookup the function symbol corresponding to the address and
1923 section. The return value will be the closest enclosing function,
1924 which might be an inline function. */
1925
1926 extern struct symbol *find_pc_sect_containing_function
1927 (CORE_ADDR pc, struct obj_section *section);
1928
1929 /* Find the symbol at the given address. Returns NULL if no symbol
1930 found. Only exact matches for ADDRESS are considered. */
1931
1932 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1933
1934 /* Finds the "function" (text symbol) that is smaller than PC but
1935 greatest of all of the potential text symbols in SECTION. Sets
1936 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1937 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1938 function (exclusive). If the optional parameter BLOCK is non-null,
1939 then set *BLOCK to the address of the block corresponding to the
1940 function symbol, if such a symbol could be found during the lookup;
1941 nullptr is used as a return value for *BLOCK if no block is found.
1942 This function either succeeds or fails (not halfway succeeds). If
1943 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1944 information and returns true. If it fails, it sets *NAME, *ADDRESS
1945 and *ENDADDR to zero and returns false.
1946
1947 If the function in question occupies non-contiguous ranges,
1948 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1949 to the start and end of the range in which PC is found. Thus
1950 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1951 from other functions might be found).
1952
1953 This property allows find_pc_partial_function to be used (as it had
1954 been prior to the introduction of non-contiguous range support) by
1955 various tdep files for finding a start address and limit address
1956 for prologue analysis. This still isn't ideal, however, because we
1957 probably shouldn't be doing prologue analysis (in which
1958 instructions are scanned to determine frame size and stack layout)
1959 for any range that doesn't contain the entry pc. Moreover, a good
1960 argument can be made that prologue analysis ought to be performed
1961 starting from the entry pc even when PC is within some other range.
1962 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1963 limits of the entry pc range, but that will cause the
1964 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1965 callers of find_pc_partial_function expect this condition to hold.
1966
1967 Callers which require the start and/or end addresses for the range
1968 containing the entry pc should instead call
1969 find_function_entry_range_from_pc. */
1970
1971 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1972 CORE_ADDR *address, CORE_ADDR *endaddr,
1973 const struct block **block = nullptr);
1974
1975 /* Like find_pc_partial_function, above, but returns the underlying
1976 general_symbol_info (rather than the name) as an out parameter. */
1977
1978 extern bool find_pc_partial_function_sym
1979 (CORE_ADDR pc, const general_symbol_info **sym,
1980 CORE_ADDR *address, CORE_ADDR *endaddr,
1981 const struct block **block = nullptr);
1982
1983 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1984 set to start and end addresses of the range containing the entry pc.
1985
1986 Note that it is not necessarily the case that (for non-NULL ADDRESS
1987 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1988 hold.
1989
1990 See comment for find_pc_partial_function, above, for further
1991 explanation. */
1992
1993 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1994 const char **name,
1995 CORE_ADDR *address,
1996 CORE_ADDR *endaddr);
1997
1998 /* Return the type of a function with its first instruction exactly at
1999 the PC address. Return NULL otherwise. */
2000
2001 extern struct type *find_function_type (CORE_ADDR pc);
2002
2003 /* See if we can figure out the function's actual type from the type
2004 that the resolver returns. RESOLVER_FUNADDR is the address of the
2005 ifunc resolver. */
2006
2007 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
2008
2009 /* Find the GNU ifunc minimal symbol that matches SYM. */
2010 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
2011
2012 extern void clear_pc_function_cache (void);
2013
2014 /* Expand symtab containing PC, SECTION if not already expanded. */
2015
2016 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
2017
2018 /* lookup full symbol table by address. */
2019
2020 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
2021
2022 /* lookup full symbol table by address and section. */
2023
2024 extern struct compunit_symtab *
2025 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
2026
2027 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
2028
2029 extern void reread_symbols (int from_tty);
2030
2031 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
2032 The type returned must not be opaque -- i.e., must have at least one field
2033 defined. */
2034
2035 extern struct type *lookup_transparent_type (const char *);
2036
2037 extern struct type *basic_lookup_transparent_type (const char *);
2038
2039 /* Macro for name of symbol to indicate a file compiled with gcc. */
2040 #ifndef GCC_COMPILED_FLAG_SYMBOL
2041 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
2042 #endif
2043
2044 /* Macro for name of symbol to indicate a file compiled with gcc2. */
2045 #ifndef GCC2_COMPILED_FLAG_SYMBOL
2046 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
2047 #endif
2048
2049 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
2050
2051 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
2052 for ELF symbol files. */
2053
2054 struct gnu_ifunc_fns
2055 {
2056 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
2057 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
2058
2059 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
2060 bool (*gnu_ifunc_resolve_name) (const char *function_name,
2061 CORE_ADDR *function_address_p);
2062
2063 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
2064 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
2065
2066 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
2067 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
2068 };
2069
2070 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
2071 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
2072 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
2073 #define gnu_ifunc_resolver_return_stop \
2074 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
2075
2076 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
2077
2078 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
2079
2080 struct symtab_and_line
2081 {
2082 /* The program space of this sal. */
2083 struct program_space *pspace = NULL;
2084
2085 struct symtab *symtab = NULL;
2086 struct symbol *symbol = NULL;
2087 struct obj_section *section = NULL;
2088 struct minimal_symbol *msymbol = NULL;
2089 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
2090 0 is never a valid line number; it is used to indicate that line number
2091 information is not available. */
2092 int line = 0;
2093
2094 CORE_ADDR pc = 0;
2095 CORE_ADDR end = 0;
2096 bool explicit_pc = false;
2097 bool explicit_line = false;
2098
2099 /* If the line number information is valid, then this indicates if this
2100 line table entry had the is-stmt flag set or not. */
2101 bool is_stmt = false;
2102
2103 /* The probe associated with this symtab_and_line. */
2104 probe *prob = NULL;
2105 /* If PROBE is not NULL, then this is the objfile in which the probe
2106 originated. */
2107 struct objfile *objfile = NULL;
2108 };
2109
2110 \f
2111
2112 /* Given a pc value, return line number it is in. Second arg nonzero means
2113 if pc is on the boundary use the previous statement's line number. */
2114
2115 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
2116
2117 /* Same function, but specify a section as well as an address. */
2118
2119 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
2120 struct obj_section *, int);
2121
2122 /* Wrapper around find_pc_line to just return the symtab. */
2123
2124 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
2125
2126 /* Given a symtab and line number, return the pc there. */
2127
2128 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
2129
2130 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
2131 CORE_ADDR *);
2132
2133 extern void resolve_sal_pc (struct symtab_and_line *);
2134
2135 /* solib.c */
2136
2137 extern void clear_solib (void);
2138
2139 /* The reason we're calling into a completion match list collector
2140 function. */
2141 enum class complete_symbol_mode
2142 {
2143 /* Completing an expression. */
2144 EXPRESSION,
2145
2146 /* Completing a linespec. */
2147 LINESPEC,
2148 };
2149
2150 extern void default_collect_symbol_completion_matches_break_on
2151 (completion_tracker &tracker,
2152 complete_symbol_mode mode,
2153 symbol_name_match_type name_match_type,
2154 const char *text, const char *word, const char *break_on,
2155 enum type_code code);
2156 extern void collect_symbol_completion_matches
2157 (completion_tracker &tracker,
2158 complete_symbol_mode mode,
2159 symbol_name_match_type name_match_type,
2160 const char *, const char *);
2161 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
2162 const char *, const char *,
2163 enum type_code);
2164
2165 extern void collect_file_symbol_completion_matches
2166 (completion_tracker &tracker,
2167 complete_symbol_mode,
2168 symbol_name_match_type name_match_type,
2169 const char *, const char *, const char *);
2170
2171 extern completion_list
2172 make_source_files_completion_list (const char *, const char *);
2173
2174 /* Return whether SYM is a function/method, as opposed to a data symbol. */
2175
2176 extern bool symbol_is_function_or_method (symbol *sym);
2177
2178 /* Return whether MSYMBOL is a function/method, as opposed to a data
2179 symbol */
2180
2181 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
2182
2183 /* Return whether SYM should be skipped in completion mode MODE. In
2184 linespec mode, we're only interested in functions/methods. */
2185
2186 template<typename Symbol>
2187 static bool
2188 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
2189 {
2190 return (mode == complete_symbol_mode::LINESPEC
2191 && !symbol_is_function_or_method (sym));
2192 }
2193
2194 /* symtab.c */
2195
2196 bool matching_obj_sections (struct obj_section *, struct obj_section *);
2197
2198 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
2199
2200 /* Given a function symbol SYM, find the symtab and line for the start
2201 of the function. If FUNFIRSTLINE is true, we want the first line
2202 of real code inside the function. */
2203 extern symtab_and_line find_function_start_sal (symbol *sym, bool
2204 funfirstline);
2205
2206 /* Same, but start with a function address/section instead of a
2207 symbol. */
2208 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
2209 obj_section *section,
2210 bool funfirstline);
2211
2212 extern void skip_prologue_sal (struct symtab_and_line *);
2213
2214 /* symtab.c */
2215
2216 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2217 CORE_ADDR func_addr);
2218
2219 extern struct symbol *fixup_symbol_section (struct symbol *,
2220 struct objfile *);
2221
2222 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2223 the same address. Returns NULL if not found. This is necessary in
2224 case a function is an alias to some other function, because debug
2225 information is only emitted for the alias target function's
2226 definition, not for the alias. */
2227 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2228
2229 /* Symbol searching */
2230
2231 /* When using the symbol_searcher struct to search for symbols, a vector of
2232 the following structs is returned. */
2233 struct symbol_search
2234 {
2235 symbol_search (int block_, struct symbol *symbol_)
2236 : block (block_),
2237 symbol (symbol_)
2238 {
2239 msymbol.minsym = nullptr;
2240 msymbol.objfile = nullptr;
2241 }
2242
2243 symbol_search (int block_, struct minimal_symbol *minsym,
2244 struct objfile *objfile)
2245 : block (block_),
2246 symbol (nullptr)
2247 {
2248 msymbol.minsym = minsym;
2249 msymbol.objfile = objfile;
2250 }
2251
2252 bool operator< (const symbol_search &other) const
2253 {
2254 return compare_search_syms (*this, other) < 0;
2255 }
2256
2257 bool operator== (const symbol_search &other) const
2258 {
2259 return compare_search_syms (*this, other) == 0;
2260 }
2261
2262 /* The block in which the match was found. Could be, for example,
2263 STATIC_BLOCK or GLOBAL_BLOCK. */
2264 int block;
2265
2266 /* Information describing what was found.
2267
2268 If symbol is NOT NULL, then information was found for this match. */
2269 struct symbol *symbol;
2270
2271 /* If msymbol is non-null, then a match was made on something for
2272 which only minimal_symbols exist. */
2273 struct bound_minimal_symbol msymbol;
2274
2275 private:
2276
2277 static int compare_search_syms (const symbol_search &sym_a,
2278 const symbol_search &sym_b);
2279 };
2280
2281 /* In order to search for global symbols of a particular kind matching
2282 particular regular expressions, create an instance of this structure and
2283 call the SEARCH member function. */
2284 class global_symbol_searcher
2285 {
2286 public:
2287
2288 /* Constructor. */
2289 global_symbol_searcher (enum search_domain kind,
2290 const char *symbol_name_regexp)
2291 : m_kind (kind),
2292 m_symbol_name_regexp (symbol_name_regexp)
2293 {
2294 /* The symbol searching is designed to only find one kind of thing. */
2295 gdb_assert (m_kind != ALL_DOMAIN);
2296 }
2297
2298 /* Set the optional regexp that matches against the symbol type. */
2299 void set_symbol_type_regexp (const char *regexp)
2300 {
2301 m_symbol_type_regexp = regexp;
2302 }
2303
2304 /* Set the flag to exclude minsyms from the search results. */
2305 void set_exclude_minsyms (bool exclude_minsyms)
2306 {
2307 m_exclude_minsyms = exclude_minsyms;
2308 }
2309
2310 /* Set the maximum number of search results to be returned. */
2311 void set_max_search_results (size_t max_search_results)
2312 {
2313 m_max_search_results = max_search_results;
2314 }
2315
2316 /* Search the symbols from all objfiles in the current program space
2317 looking for matches as defined by the current state of this object.
2318
2319 Within each file the results are sorted locally; each symtab's global
2320 and static blocks are separately alphabetized. Duplicate entries are
2321 removed. */
2322 std::vector<symbol_search> search () const;
2323
2324 /* The set of source files to search in for matching symbols. This is
2325 currently public so that it can be populated after this object has
2326 been constructed. */
2327 std::vector<const char *> filenames;
2328
2329 private:
2330 /* The kind of symbols are we searching for.
2331 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2332 names, and constants (enums).
2333 FUNCTIONS_DOMAIN - Search all functions..
2334 TYPES_DOMAIN - Search all type names.
2335 MODULES_DOMAIN - Search all Fortran modules.
2336 ALL_DOMAIN - Not valid for this function. */
2337 enum search_domain m_kind;
2338
2339 /* Regular expression to match against the symbol name. */
2340 const char *m_symbol_name_regexp = nullptr;
2341
2342 /* Regular expression to match against the symbol type. */
2343 const char *m_symbol_type_regexp = nullptr;
2344
2345 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2346 be included in the results, otherwise they are excluded. */
2347 bool m_exclude_minsyms = false;
2348
2349 /* Maximum number of search results. We currently impose a hard limit
2350 of SIZE_MAX, there is no "unlimited". */
2351 size_t m_max_search_results = SIZE_MAX;
2352
2353 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2354 true if any msymbols were seen that we should later consider adding to
2355 the results list. */
2356 bool expand_symtabs (objfile *objfile,
2357 const gdb::optional<compiled_regex> &preg) const;
2358
2359 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2360 of type M_KIND, to the results set RESULTS_SET. Return false if we
2361 stop adding results early due to having already found too many results
2362 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2363 Returning true does not indicate that any results were added, just
2364 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2365 bool add_matching_symbols (objfile *objfile,
2366 const gdb::optional<compiled_regex> &preg,
2367 const gdb::optional<compiled_regex> &treg,
2368 std::set<symbol_search> *result_set) const;
2369
2370 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2371 vector RESULTS. Return false if we stop adding results early due to
2372 having already found too many results (based on max search results
2373 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2374 does not indicate that any results were added, just that we didn't
2375 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2376 bool add_matching_msymbols (objfile *objfile,
2377 const gdb::optional<compiled_regex> &preg,
2378 std::vector<symbol_search> *results) const;
2379
2380 /* Return true if MSYMBOL is of type KIND. */
2381 static bool is_suitable_msymbol (const enum search_domain kind,
2382 const minimal_symbol *msymbol);
2383 };
2384
2385 /* When searching for Fortran symbols within modules (functions/variables)
2386 we return a vector of this type. The first item in the pair is the
2387 module symbol, and the second item is the symbol for the function or
2388 variable we found. */
2389 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2390
2391 /* Searches the symbols to find function and variables symbols (depending
2392 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2393 name of the module, REGEXP matches against the name of the symbol within
2394 the module, and TYPE_REGEXP matches against the type of the symbol
2395 within the module. */
2396 extern std::vector<module_symbol_search> search_module_symbols
2397 (const char *module_regexp, const char *regexp,
2398 const char *type_regexp, search_domain kind);
2399
2400 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2401 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2402 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2403 the type of symbol that was searched for which gave us SYM. */
2404
2405 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2406 enum search_domain kind);
2407
2408 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2409 const struct symbol *sym);
2410
2411 /* The name of the ``main'' function. */
2412 extern const char *main_name ();
2413 extern enum language main_language (void);
2414
2415 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2416 as specified by BLOCK_INDEX.
2417 This searches MAIN_OBJFILE as well as any associated separate debug info
2418 objfiles of MAIN_OBJFILE.
2419 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2420 Upon success fixes up the symbol's section if necessary. */
2421
2422 extern struct block_symbol
2423 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2424 enum block_enum block_index,
2425 const char *name,
2426 const domain_enum domain);
2427
2428 /* Return 1 if the supplied producer string matches the ARM RealView
2429 compiler (armcc). */
2430 bool producer_is_realview (const char *producer);
2431
2432 void fixup_section (struct general_symbol_info *ginfo,
2433 CORE_ADDR addr, struct objfile *objfile);
2434
2435 extern unsigned int symtab_create_debug;
2436
2437 extern unsigned int symbol_lookup_debug;
2438
2439 extern bool basenames_may_differ;
2440
2441 bool compare_filenames_for_search (const char *filename,
2442 const char *search_name);
2443
2444 bool compare_glob_filenames_for_search (const char *filename,
2445 const char *search_name);
2446
2447 bool iterate_over_some_symtabs (const char *name,
2448 const char *real_path,
2449 struct compunit_symtab *first,
2450 struct compunit_symtab *after_last,
2451 gdb::function_view<bool (symtab *)> callback);
2452
2453 void iterate_over_symtabs (const char *name,
2454 gdb::function_view<bool (symtab *)> callback);
2455
2456
2457 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2458 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2459
2460 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2461 is called once per matching symbol SYM. The callback should return
2462 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2463 iterating, or false to indicate that the iteration should end. */
2464
2465 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2466
2467 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2468
2469 For each symbol that matches, CALLBACK is called. The symbol is
2470 passed to the callback.
2471
2472 If CALLBACK returns false, the iteration ends and this function
2473 returns false. Otherwise, the search continues, and the function
2474 eventually returns true. */
2475
2476 bool iterate_over_symbols (const struct block *block,
2477 const lookup_name_info &name,
2478 const domain_enum domain,
2479 gdb::function_view<symbol_found_callback_ftype> callback);
2480
2481 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2482 true, then calls CALLBACK one additional time with a block_symbol
2483 that has a valid block but a NULL symbol. */
2484
2485 bool iterate_over_symbols_terminated
2486 (const struct block *block,
2487 const lookup_name_info &name,
2488 const domain_enum domain,
2489 gdb::function_view<symbol_found_callback_ftype> callback);
2490
2491 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2492 either returns a const char * pointer that points to either of the
2493 fields of this type, or a pointer to the input NAME. This is done
2494 this way to avoid depending on the precise details of the storage
2495 for the string. */
2496 class demangle_result_storage
2497 {
2498 public:
2499
2500 /* Swap the malloc storage to STR, and return a pointer to the
2501 beginning of the new string. */
2502 const char *set_malloc_ptr (gdb::unique_xmalloc_ptr<char> &&str)
2503 {
2504 m_malloc = std::move (str);
2505 return m_malloc.get ();
2506 }
2507
2508 /* Set the malloc storage to now point at PTR. Any previous malloc
2509 storage is released. */
2510 const char *set_malloc_ptr (char *ptr)
2511 {
2512 m_malloc.reset (ptr);
2513 return ptr;
2514 }
2515
2516 private:
2517
2518 /* The storage. */
2519 gdb::unique_xmalloc_ptr<char> m_malloc;
2520 };
2521
2522 const char *
2523 demangle_for_lookup (const char *name, enum language lang,
2524 demangle_result_storage &storage);
2525
2526 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2527 SYMNAME (which is already demangled for C++ symbols) matches
2528 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2529 the current completion list and return true. Otherwise, return
2530 false. */
2531 bool completion_list_add_name (completion_tracker &tracker,
2532 language symbol_language,
2533 const char *symname,
2534 const lookup_name_info &lookup_name,
2535 const char *text, const char *word);
2536
2537 /* A simple symbol searching class. */
2538
2539 class symbol_searcher
2540 {
2541 public:
2542 /* Returns the symbols found for the search. */
2543 const std::vector<block_symbol> &
2544 matching_symbols () const
2545 {
2546 return m_symbols;
2547 }
2548
2549 /* Returns the minimal symbols found for the search. */
2550 const std::vector<bound_minimal_symbol> &
2551 matching_msymbols () const
2552 {
2553 return m_minimal_symbols;
2554 }
2555
2556 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2557 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2558 to search all symtabs and program spaces. */
2559 void find_all_symbols (const std::string &name,
2560 const struct language_defn *language,
2561 enum search_domain search_domain,
2562 std::vector<symtab *> *search_symtabs,
2563 struct program_space *search_pspace);
2564
2565 /* Reset this object to perform another search. */
2566 void reset ()
2567 {
2568 m_symbols.clear ();
2569 m_minimal_symbols.clear ();
2570 }
2571
2572 private:
2573 /* Matching debug symbols. */
2574 std::vector<block_symbol> m_symbols;
2575
2576 /* Matching non-debug symbols. */
2577 std::vector<bound_minimal_symbol> m_minimal_symbols;
2578 };
2579
2580 /* Class used to encapsulate the filename filtering for the "info sources"
2581 command. */
2582
2583 struct info_sources_filter
2584 {
2585 /* If filename filtering is being used (see M_C_REGEXP) then which part
2586 of the filename is being filtered against? */
2587 enum class match_on
2588 {
2589 /* Match against the full filename. */
2590 FULLNAME,
2591
2592 /* Match only against the directory part of the full filename. */
2593 DIRNAME,
2594
2595 /* Match only against the basename part of the full filename. */
2596 BASENAME
2597 };
2598
2599 /* Create a filter of MATCH_TYPE using regular expression REGEXP. If
2600 REGEXP is nullptr then all files will match the filter and MATCH_TYPE
2601 is ignored.
2602
2603 The string pointed too by REGEXP must remain live and unchanged for
2604 this lifetime of this object as the object only retains a copy of the
2605 pointer. */
2606 info_sources_filter (match_on match_type, const char *regexp);
2607
2608 DISABLE_COPY_AND_ASSIGN (info_sources_filter);
2609
2610 /* Does FULLNAME match the filter defined by this object, return true if
2611 it does, otherwise, return false. If there is no filtering defined
2612 then this function will always return true. */
2613 bool matches (const char *fullname) const;
2614
2615 private:
2616
2617 /* The type of filtering in place. */
2618 match_on m_match_type;
2619
2620 /* Points to the original regexp used to create this filter. */
2621 const char *m_regexp;
2622
2623 /* A compiled version of M_REGEXP. This object is only given a value if
2624 M_REGEXP is not nullptr and is not the empty string. */
2625 gdb::optional<compiled_regex> m_c_regexp;
2626 };
2627
2628 /* Perform the core of the 'info sources' command.
2629
2630 FILTER is used to perform regular expression based filtering on the
2631 source files that will be displayed.
2632
2633 Output is written to UIOUT in CLI or MI style as appropriate. */
2634
2635 extern void info_sources_worker (struct ui_out *uiout,
2636 bool group_by_objfile,
2637 const info_sources_filter &filter);
2638
2639 #endif /* !defined(SYMTAB_H) */