* cli/cli-logging.c (handle_redirections): Make a cleanup.
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_close (int);
101
102 static void debug_to_attach (char *, int);
103
104 static void debug_to_detach (char *, int);
105
106 static void debug_to_resume (ptid_t, int, enum target_signal);
107
108 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
109
110 static void debug_to_fetch_registers (struct regcache *, int);
111
112 static void debug_to_store_registers (struct regcache *, int);
113
114 static void debug_to_prepare_to_store (struct regcache *);
115
116 static void debug_to_files_info (struct target_ops *);
117
118 static int debug_to_insert_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_breakpoint (struct bp_target_info *);
121
122 static int debug_to_can_use_hw_breakpoint (int, int, int);
123
124 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
125
126 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
129
130 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_stopped_by_watchpoint (void);
133
134 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
135
136 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
137 CORE_ADDR, CORE_ADDR, int);
138
139 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
140
141 static void debug_to_terminal_init (void);
142
143 static void debug_to_terminal_inferior (void);
144
145 static void debug_to_terminal_ours_for_output (void);
146
147 static void debug_to_terminal_save_ours (void);
148
149 static void debug_to_terminal_ours (void);
150
151 static void debug_to_terminal_info (char *, int);
152
153 static void debug_to_kill (void);
154
155 static void debug_to_load (char *, int);
156
157 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
158
159 static void debug_to_mourn_inferior (void);
160
161 static int debug_to_can_run (void);
162
163 static void debug_to_notice_signals (ptid_t);
164
165 static int debug_to_thread_alive (ptid_t);
166
167 static void debug_to_stop (ptid_t);
168
169 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
170 wierd and mysterious ways. Putting the variable here lets those
171 wierd and mysterious ways keep building while they are being
172 converted to the inferior inheritance structure. */
173 struct target_ops deprecated_child_ops;
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_index;
181 unsigned target_struct_allocsize;
182 #define DEFAULT_ALLOCSIZE 10
183
184 /* The initial current target, so that there is always a semi-valid
185 current target. */
186
187 static struct target_ops dummy_target;
188
189 /* Top of target stack. */
190
191 static struct target_ops *target_stack;
192
193 /* The target structure we are currently using to talk to a process
194 or file or whatever "inferior" we have. */
195
196 struct target_ops current_target;
197
198 /* Command list for target. */
199
200 static struct cmd_list_element *targetlist = NULL;
201
202 /* Nonzero if we should trust readonly sections from the
203 executable when reading memory. */
204
205 static int trust_readonly = 0;
206
207 /* Nonzero if we should show true memory content including
208 memory breakpoint inserted by gdb. */
209
210 static int show_memory_breakpoints = 0;
211
212 /* Non-zero if we want to see trace of target level stuff. */
213
214 static int targetdebug = 0;
215 static void
216 show_targetdebug (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
220 }
221
222 static void setup_target_debug (void);
223
224 DCACHE *target_dcache;
225
226 /* The user just typed 'target' without the name of a target. */
227
228 static void
229 target_command (char *arg, int from_tty)
230 {
231 fputs_filtered ("Argument required (target name). Try `help target'\n",
232 gdb_stdout);
233 }
234
235 /* Add a possible target architecture to the list. */
236
237 void
238 add_target (struct target_ops *t)
239 {
240 /* Provide default values for all "must have" methods. */
241 if (t->to_xfer_partial == NULL)
242 t->to_xfer_partial = default_xfer_partial;
243
244 if (!target_structs)
245 {
246 target_struct_allocsize = DEFAULT_ALLOCSIZE;
247 target_structs = (struct target_ops **) xmalloc
248 (target_struct_allocsize * sizeof (*target_structs));
249 }
250 if (target_struct_size >= target_struct_allocsize)
251 {
252 target_struct_allocsize *= 2;
253 target_structs = (struct target_ops **)
254 xrealloc ((char *) target_structs,
255 target_struct_allocsize * sizeof (*target_structs));
256 }
257 target_structs[target_struct_size++] = t;
258
259 if (targetlist == NULL)
260 add_prefix_cmd ("target", class_run, target_command, _("\
261 Connect to a target machine or process.\n\
262 The first argument is the type or protocol of the target machine.\n\
263 Remaining arguments are interpreted by the target protocol. For more\n\
264 information on the arguments for a particular protocol, type\n\
265 `help target ' followed by the protocol name."),
266 &targetlist, "target ", 0, &cmdlist);
267 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
268 }
269
270 /* Stub functions */
271
272 void
273 target_ignore (void)
274 {
275 }
276
277 void
278 target_load (char *arg, int from_tty)
279 {
280 dcache_invalidate (target_dcache);
281 (*current_target.to_load) (arg, from_tty);
282 }
283
284 static int
285 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
286 struct target_ops *t)
287 {
288 errno = EIO; /* Can't read/write this location */
289 return 0; /* No bytes handled */
290 }
291
292 static void
293 tcomplain (void)
294 {
295 error (_("You can't do that when your target is `%s'"),
296 current_target.to_shortname);
297 }
298
299 void
300 noprocess (void)
301 {
302 error (_("You can't do that without a process to debug."));
303 }
304
305 static int
306 nosymbol (char *name, CORE_ADDR *addrp)
307 {
308 return 1; /* Symbol does not exist in target env */
309 }
310
311 static void
312 nosupport_runtime (void)
313 {
314 if (ptid_equal (inferior_ptid, null_ptid))
315 noprocess ();
316 else
317 error (_("No run-time support for this"));
318 }
319
320
321 static void
322 default_terminal_info (char *args, int from_tty)
323 {
324 printf_unfiltered (_("No saved terminal information.\n"));
325 }
326
327 /* This is the default target_create_inferior and target_attach function.
328 If the current target is executing, it asks whether to kill it off.
329 If this function returns without calling error(), it has killed off
330 the target, and the operation should be attempted. */
331
332 static void
333 kill_or_be_killed (int from_tty)
334 {
335 if (target_has_execution)
336 {
337 printf_unfiltered (_("You are already running a program:\n"));
338 target_files_info ();
339 if (query ("Kill it? "))
340 {
341 target_kill ();
342 if (target_has_execution)
343 error (_("Killing the program did not help."));
344 return;
345 }
346 else
347 {
348 error (_("Program not killed."));
349 }
350 }
351 tcomplain ();
352 }
353
354 /* A default implementation for the to_get_ada_task_ptid target method.
355
356 This function builds the PTID by using both LWP and TID as part of
357 the PTID lwp and tid elements. The pid used is the pid of the
358 inferior_ptid. */
359
360 ptid_t
361 default_get_ada_task_ptid (long lwp, long tid)
362 {
363 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
364 }
365
366 /* Go through the target stack from top to bottom, copying over zero
367 entries in current_target, then filling in still empty entries. In
368 effect, we are doing class inheritance through the pushed target
369 vectors.
370
371 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
372 is currently implemented, is that it discards any knowledge of
373 which target an inherited method originally belonged to.
374 Consequently, new new target methods should instead explicitly and
375 locally search the target stack for the target that can handle the
376 request. */
377
378 static void
379 update_current_target (void)
380 {
381 struct target_ops *t;
382
383 /* First, reset current's contents. */
384 memset (&current_target, 0, sizeof (current_target));
385
386 #define INHERIT(FIELD, TARGET) \
387 if (!current_target.FIELD) \
388 current_target.FIELD = (TARGET)->FIELD
389
390 for (t = target_stack; t; t = t->beneath)
391 {
392 INHERIT (to_shortname, t);
393 INHERIT (to_longname, t);
394 INHERIT (to_doc, t);
395 /* Do not inherit to_open. */
396 /* Do not inherit to_close. */
397 INHERIT (to_attach, t);
398 INHERIT (to_post_attach, t);
399 INHERIT (to_attach_no_wait, t);
400 INHERIT (to_detach, t);
401 /* Do not inherit to_disconnect. */
402 INHERIT (to_resume, t);
403 INHERIT (to_wait, t);
404 INHERIT (to_fetch_registers, t);
405 INHERIT (to_store_registers, t);
406 INHERIT (to_prepare_to_store, t);
407 INHERIT (deprecated_xfer_memory, t);
408 INHERIT (to_files_info, t);
409 INHERIT (to_insert_breakpoint, t);
410 INHERIT (to_remove_breakpoint, t);
411 INHERIT (to_can_use_hw_breakpoint, t);
412 INHERIT (to_insert_hw_breakpoint, t);
413 INHERIT (to_remove_hw_breakpoint, t);
414 INHERIT (to_insert_watchpoint, t);
415 INHERIT (to_remove_watchpoint, t);
416 INHERIT (to_stopped_data_address, t);
417 INHERIT (to_have_steppable_watchpoint, t);
418 INHERIT (to_have_continuable_watchpoint, t);
419 INHERIT (to_stopped_by_watchpoint, t);
420 INHERIT (to_watchpoint_addr_within_range, t);
421 INHERIT (to_region_ok_for_hw_watchpoint, t);
422 INHERIT (to_terminal_init, t);
423 INHERIT (to_terminal_inferior, t);
424 INHERIT (to_terminal_ours_for_output, t);
425 INHERIT (to_terminal_ours, t);
426 INHERIT (to_terminal_save_ours, t);
427 INHERIT (to_terminal_info, t);
428 INHERIT (to_kill, t);
429 INHERIT (to_load, t);
430 INHERIT (to_lookup_symbol, t);
431 INHERIT (to_create_inferior, t);
432 INHERIT (to_post_startup_inferior, t);
433 INHERIT (to_acknowledge_created_inferior, t);
434 INHERIT (to_insert_fork_catchpoint, t);
435 INHERIT (to_remove_fork_catchpoint, t);
436 INHERIT (to_insert_vfork_catchpoint, t);
437 INHERIT (to_remove_vfork_catchpoint, t);
438 /* Do not inherit to_follow_fork. */
439 INHERIT (to_insert_exec_catchpoint, t);
440 INHERIT (to_remove_exec_catchpoint, t);
441 INHERIT (to_has_exited, t);
442 INHERIT (to_mourn_inferior, t);
443 INHERIT (to_can_run, t);
444 INHERIT (to_notice_signals, t);
445 INHERIT (to_thread_alive, t);
446 INHERIT (to_find_new_threads, t);
447 INHERIT (to_pid_to_str, t);
448 INHERIT (to_extra_thread_info, t);
449 INHERIT (to_stop, t);
450 /* Do not inherit to_xfer_partial. */
451 INHERIT (to_rcmd, t);
452 INHERIT (to_pid_to_exec_file, t);
453 INHERIT (to_log_command, t);
454 INHERIT (to_stratum, t);
455 INHERIT (to_has_all_memory, t);
456 INHERIT (to_has_memory, t);
457 INHERIT (to_has_stack, t);
458 INHERIT (to_has_registers, t);
459 INHERIT (to_has_execution, t);
460 INHERIT (to_has_thread_control, t);
461 INHERIT (to_sections, t);
462 INHERIT (to_sections_end, t);
463 INHERIT (to_can_async_p, t);
464 INHERIT (to_is_async_p, t);
465 INHERIT (to_async, t);
466 INHERIT (to_async_mask, t);
467 INHERIT (to_find_memory_regions, t);
468 INHERIT (to_make_corefile_notes, t);
469 INHERIT (to_get_thread_local_address, t);
470 INHERIT (to_can_execute_reverse, t);
471 /* Do not inherit to_read_description. */
472 INHERIT (to_get_ada_task_ptid, t);
473 /* Do not inherit to_search_memory. */
474 INHERIT (to_supports_multi_process, t);
475 INHERIT (to_magic, t);
476 /* Do not inherit to_memory_map. */
477 /* Do not inherit to_flash_erase. */
478 /* Do not inherit to_flash_done. */
479 }
480 #undef INHERIT
481
482 /* Clean up a target struct so it no longer has any zero pointers in
483 it. Some entries are defaulted to a method that print an error,
484 others are hard-wired to a standard recursive default. */
485
486 #define de_fault(field, value) \
487 if (!current_target.field) \
488 current_target.field = value
489
490 de_fault (to_open,
491 (void (*) (char *, int))
492 tcomplain);
493 de_fault (to_close,
494 (void (*) (int))
495 target_ignore);
496 de_fault (to_post_attach,
497 (void (*) (int))
498 target_ignore);
499 de_fault (to_detach,
500 (void (*) (char *, int))
501 target_ignore);
502 de_fault (to_resume,
503 (void (*) (ptid_t, int, enum target_signal))
504 noprocess);
505 de_fault (to_wait,
506 (ptid_t (*) (ptid_t, struct target_waitstatus *))
507 noprocess);
508 de_fault (to_fetch_registers,
509 (void (*) (struct regcache *, int))
510 target_ignore);
511 de_fault (to_store_registers,
512 (void (*) (struct regcache *, int))
513 noprocess);
514 de_fault (to_prepare_to_store,
515 (void (*) (struct regcache *))
516 noprocess);
517 de_fault (deprecated_xfer_memory,
518 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
519 nomemory);
520 de_fault (to_files_info,
521 (void (*) (struct target_ops *))
522 target_ignore);
523 de_fault (to_insert_breakpoint,
524 memory_insert_breakpoint);
525 de_fault (to_remove_breakpoint,
526 memory_remove_breakpoint);
527 de_fault (to_can_use_hw_breakpoint,
528 (int (*) (int, int, int))
529 return_zero);
530 de_fault (to_insert_hw_breakpoint,
531 (int (*) (struct bp_target_info *))
532 return_minus_one);
533 de_fault (to_remove_hw_breakpoint,
534 (int (*) (struct bp_target_info *))
535 return_minus_one);
536 de_fault (to_insert_watchpoint,
537 (int (*) (CORE_ADDR, int, int))
538 return_minus_one);
539 de_fault (to_remove_watchpoint,
540 (int (*) (CORE_ADDR, int, int))
541 return_minus_one);
542 de_fault (to_stopped_by_watchpoint,
543 (int (*) (void))
544 return_zero);
545 de_fault (to_stopped_data_address,
546 (int (*) (struct target_ops *, CORE_ADDR *))
547 return_zero);
548 de_fault (to_watchpoint_addr_within_range,
549 default_watchpoint_addr_within_range);
550 de_fault (to_region_ok_for_hw_watchpoint,
551 default_region_ok_for_hw_watchpoint);
552 de_fault (to_terminal_init,
553 (void (*) (void))
554 target_ignore);
555 de_fault (to_terminal_inferior,
556 (void (*) (void))
557 target_ignore);
558 de_fault (to_terminal_ours_for_output,
559 (void (*) (void))
560 target_ignore);
561 de_fault (to_terminal_ours,
562 (void (*) (void))
563 target_ignore);
564 de_fault (to_terminal_save_ours,
565 (void (*) (void))
566 target_ignore);
567 de_fault (to_terminal_info,
568 default_terminal_info);
569 de_fault (to_kill,
570 (void (*) (void))
571 noprocess);
572 de_fault (to_load,
573 (void (*) (char *, int))
574 tcomplain);
575 de_fault (to_lookup_symbol,
576 (int (*) (char *, CORE_ADDR *))
577 nosymbol);
578 de_fault (to_post_startup_inferior,
579 (void (*) (ptid_t))
580 target_ignore);
581 de_fault (to_acknowledge_created_inferior,
582 (void (*) (int))
583 target_ignore);
584 de_fault (to_insert_fork_catchpoint,
585 (void (*) (int))
586 tcomplain);
587 de_fault (to_remove_fork_catchpoint,
588 (int (*) (int))
589 tcomplain);
590 de_fault (to_insert_vfork_catchpoint,
591 (void (*) (int))
592 tcomplain);
593 de_fault (to_remove_vfork_catchpoint,
594 (int (*) (int))
595 tcomplain);
596 de_fault (to_insert_exec_catchpoint,
597 (void (*) (int))
598 tcomplain);
599 de_fault (to_remove_exec_catchpoint,
600 (int (*) (int))
601 tcomplain);
602 de_fault (to_has_exited,
603 (int (*) (int, int, int *))
604 return_zero);
605 de_fault (to_mourn_inferior,
606 (void (*) (void))
607 noprocess);
608 de_fault (to_can_run,
609 return_zero);
610 de_fault (to_notice_signals,
611 (void (*) (ptid_t))
612 target_ignore);
613 de_fault (to_thread_alive,
614 (int (*) (ptid_t))
615 return_zero);
616 de_fault (to_find_new_threads,
617 (void (*) (void))
618 target_ignore);
619 de_fault (to_extra_thread_info,
620 (char *(*) (struct thread_info *))
621 return_zero);
622 de_fault (to_stop,
623 (void (*) (ptid_t))
624 target_ignore);
625 current_target.to_xfer_partial = current_xfer_partial;
626 de_fault (to_rcmd,
627 (void (*) (char *, struct ui_file *))
628 tcomplain);
629 de_fault (to_pid_to_exec_file,
630 (char *(*) (int))
631 return_zero);
632 de_fault (to_async,
633 (void (*) (void (*) (enum inferior_event_type, void*), void*))
634 tcomplain);
635 de_fault (to_async_mask,
636 (int (*) (int))
637 return_one);
638 current_target.to_read_description = NULL;
639 de_fault (to_get_ada_task_ptid,
640 (ptid_t (*) (long, long))
641 default_get_ada_task_ptid);
642 de_fault (to_supports_multi_process,
643 (int (*) (void))
644 return_zero);
645 #undef de_fault
646
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
651
652 if (targetdebug)
653 setup_target_debug ();
654 }
655
656 /* Mark OPS as a running target. This reverses the effect
657 of target_mark_exited. */
658
659 void
660 target_mark_running (struct target_ops *ops)
661 {
662 struct target_ops *t;
663
664 for (t = target_stack; t != NULL; t = t->beneath)
665 if (t == ops)
666 break;
667 if (t == NULL)
668 internal_error (__FILE__, __LINE__,
669 "Attempted to mark unpushed target \"%s\" as running",
670 ops->to_shortname);
671
672 ops->to_has_execution = 1;
673 ops->to_has_all_memory = 1;
674 ops->to_has_memory = 1;
675 ops->to_has_stack = 1;
676 ops->to_has_registers = 1;
677
678 update_current_target ();
679 }
680
681 /* Mark OPS as a non-running target. This reverses the effect
682 of target_mark_running. */
683
684 void
685 target_mark_exited (struct target_ops *ops)
686 {
687 struct target_ops *t;
688
689 for (t = target_stack; t != NULL; t = t->beneath)
690 if (t == ops)
691 break;
692 if (t == NULL)
693 internal_error (__FILE__, __LINE__,
694 "Attempted to mark unpushed target \"%s\" as running",
695 ops->to_shortname);
696
697 ops->to_has_execution = 0;
698 ops->to_has_all_memory = 0;
699 ops->to_has_memory = 0;
700 ops->to_has_stack = 0;
701 ops->to_has_registers = 0;
702
703 update_current_target ();
704 }
705
706 /* Push a new target type into the stack of the existing target accessors,
707 possibly superseding some of the existing accessors.
708
709 Result is zero if the pushed target ended up on top of the stack,
710 nonzero if at least one target is on top of it.
711
712 Rather than allow an empty stack, we always have the dummy target at
713 the bottom stratum, so we can call the function vectors without
714 checking them. */
715
716 int
717 push_target (struct target_ops *t)
718 {
719 struct target_ops **cur;
720
721 /* Check magic number. If wrong, it probably means someone changed
722 the struct definition, but not all the places that initialize one. */
723 if (t->to_magic != OPS_MAGIC)
724 {
725 fprintf_unfiltered (gdb_stderr,
726 "Magic number of %s target struct wrong\n",
727 t->to_shortname);
728 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
729 }
730
731 /* Find the proper stratum to install this target in. */
732 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
733 {
734 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
735 break;
736 }
737
738 /* If there's already targets at this stratum, remove them. */
739 /* FIXME: cagney/2003-10-15: I think this should be popping all
740 targets to CUR, and not just those at this stratum level. */
741 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
742 {
743 /* There's already something at this stratum level. Close it,
744 and un-hook it from the stack. */
745 struct target_ops *tmp = (*cur);
746 (*cur) = (*cur)->beneath;
747 tmp->beneath = NULL;
748 target_close (tmp, 0);
749 }
750
751 /* We have removed all targets in our stratum, now add the new one. */
752 t->beneath = (*cur);
753 (*cur) = t;
754
755 update_current_target ();
756
757 /* Not on top? */
758 return (t != target_stack);
759 }
760
761 /* Remove a target_ops vector from the stack, wherever it may be.
762 Return how many times it was removed (0 or 1). */
763
764 int
765 unpush_target (struct target_ops *t)
766 {
767 struct target_ops **cur;
768 struct target_ops *tmp;
769
770 if (t->to_stratum == dummy_stratum)
771 internal_error (__FILE__, __LINE__,
772 "Attempt to unpush the dummy target");
773
774 /* Look for the specified target. Note that we assume that a target
775 can only occur once in the target stack. */
776
777 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
778 {
779 if ((*cur) == t)
780 break;
781 }
782
783 if ((*cur) == NULL)
784 return 0; /* Didn't find target_ops, quit now */
785
786 /* NOTE: cagney/2003-12-06: In '94 the close call was made
787 unconditional by moving it to before the above check that the
788 target was in the target stack (something about "Change the way
789 pushing and popping of targets work to support target overlays
790 and inheritance"). This doesn't make much sense - only open
791 targets should be closed. */
792 target_close (t, 0);
793
794 /* Unchain the target */
795 tmp = (*cur);
796 (*cur) = (*cur)->beneath;
797 tmp->beneath = NULL;
798
799 update_current_target ();
800
801 return 1;
802 }
803
804 void
805 pop_target (void)
806 {
807 target_close (target_stack, 0); /* Let it clean up */
808 if (unpush_target (target_stack) == 1)
809 return;
810
811 fprintf_unfiltered (gdb_stderr,
812 "pop_target couldn't find target %s\n",
813 current_target.to_shortname);
814 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
815 }
816
817 void
818 pop_all_targets_above (enum strata above_stratum, int quitting)
819 {
820 while ((int) (current_target.to_stratum) > (int) above_stratum)
821 {
822 target_close (target_stack, quitting);
823 if (!unpush_target (target_stack))
824 {
825 fprintf_unfiltered (gdb_stderr,
826 "pop_all_targets couldn't find target %s\n",
827 target_stack->to_shortname);
828 internal_error (__FILE__, __LINE__,
829 _("failed internal consistency check"));
830 break;
831 }
832 }
833 }
834
835 void
836 pop_all_targets (int quitting)
837 {
838 pop_all_targets_above (dummy_stratum, quitting);
839 }
840
841 /* Using the objfile specified in OBJFILE, find the address for the
842 current thread's thread-local storage with offset OFFSET. */
843 CORE_ADDR
844 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
845 {
846 volatile CORE_ADDR addr = 0;
847
848 if (target_get_thread_local_address_p ()
849 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
850 {
851 ptid_t ptid = inferior_ptid;
852 volatile struct gdb_exception ex;
853
854 TRY_CATCH (ex, RETURN_MASK_ALL)
855 {
856 CORE_ADDR lm_addr;
857
858 /* Fetch the load module address for this objfile. */
859 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
860 objfile);
861 /* If it's 0, throw the appropriate exception. */
862 if (lm_addr == 0)
863 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
864 _("TLS load module not found"));
865
866 addr = target_get_thread_local_address (ptid, lm_addr, offset);
867 }
868 /* If an error occurred, print TLS related messages here. Otherwise,
869 throw the error to some higher catcher. */
870 if (ex.reason < 0)
871 {
872 int objfile_is_library = (objfile->flags & OBJF_SHARED);
873
874 switch (ex.error)
875 {
876 case TLS_NO_LIBRARY_SUPPORT_ERROR:
877 error (_("Cannot find thread-local variables in this thread library."));
878 break;
879 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
880 if (objfile_is_library)
881 error (_("Cannot find shared library `%s' in dynamic"
882 " linker's load module list"), objfile->name);
883 else
884 error (_("Cannot find executable file `%s' in dynamic"
885 " linker's load module list"), objfile->name);
886 break;
887 case TLS_NOT_ALLOCATED_YET_ERROR:
888 if (objfile_is_library)
889 error (_("The inferior has not yet allocated storage for"
890 " thread-local variables in\n"
891 "the shared library `%s'\n"
892 "for %s"),
893 objfile->name, target_pid_to_str (ptid));
894 else
895 error (_("The inferior has not yet allocated storage for"
896 " thread-local variables in\n"
897 "the executable `%s'\n"
898 "for %s"),
899 objfile->name, target_pid_to_str (ptid));
900 break;
901 case TLS_GENERIC_ERROR:
902 if (objfile_is_library)
903 error (_("Cannot find thread-local storage for %s, "
904 "shared library %s:\n%s"),
905 target_pid_to_str (ptid),
906 objfile->name, ex.message);
907 else
908 error (_("Cannot find thread-local storage for %s, "
909 "executable file %s:\n%s"),
910 target_pid_to_str (ptid),
911 objfile->name, ex.message);
912 break;
913 default:
914 throw_exception (ex);
915 break;
916 }
917 }
918 }
919 /* It wouldn't be wrong here to try a gdbarch method, too; finding
920 TLS is an ABI-specific thing. But we don't do that yet. */
921 else
922 error (_("Cannot find thread-local variables on this target"));
923
924 return addr;
925 }
926
927 #undef MIN
928 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
929
930 /* target_read_string -- read a null terminated string, up to LEN bytes,
931 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
932 Set *STRING to a pointer to malloc'd memory containing the data; the caller
933 is responsible for freeing it. Return the number of bytes successfully
934 read. */
935
936 int
937 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
938 {
939 int tlen, origlen, offset, i;
940 gdb_byte buf[4];
941 int errcode = 0;
942 char *buffer;
943 int buffer_allocated;
944 char *bufptr;
945 unsigned int nbytes_read = 0;
946
947 gdb_assert (string);
948
949 /* Small for testing. */
950 buffer_allocated = 4;
951 buffer = xmalloc (buffer_allocated);
952 bufptr = buffer;
953
954 origlen = len;
955
956 while (len > 0)
957 {
958 tlen = MIN (len, 4 - (memaddr & 3));
959 offset = memaddr & 3;
960
961 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
962 if (errcode != 0)
963 {
964 /* The transfer request might have crossed the boundary to an
965 unallocated region of memory. Retry the transfer, requesting
966 a single byte. */
967 tlen = 1;
968 offset = 0;
969 errcode = target_read_memory (memaddr, buf, 1);
970 if (errcode != 0)
971 goto done;
972 }
973
974 if (bufptr - buffer + tlen > buffer_allocated)
975 {
976 unsigned int bytes;
977 bytes = bufptr - buffer;
978 buffer_allocated *= 2;
979 buffer = xrealloc (buffer, buffer_allocated);
980 bufptr = buffer + bytes;
981 }
982
983 for (i = 0; i < tlen; i++)
984 {
985 *bufptr++ = buf[i + offset];
986 if (buf[i + offset] == '\000')
987 {
988 nbytes_read += i + 1;
989 goto done;
990 }
991 }
992
993 memaddr += tlen;
994 len -= tlen;
995 nbytes_read += tlen;
996 }
997 done:
998 *string = buffer;
999 if (errnop != NULL)
1000 *errnop = errcode;
1001 return nbytes_read;
1002 }
1003
1004 /* Find a section containing ADDR. */
1005 struct section_table *
1006 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1007 {
1008 struct section_table *secp;
1009 for (secp = target->to_sections;
1010 secp < target->to_sections_end;
1011 secp++)
1012 {
1013 if (addr >= secp->addr && addr < secp->endaddr)
1014 return secp;
1015 }
1016 return NULL;
1017 }
1018
1019 /* Perform a partial memory transfer. The arguments and return
1020 value are just as for target_xfer_partial. */
1021
1022 static LONGEST
1023 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1024 ULONGEST memaddr, LONGEST len)
1025 {
1026 LONGEST res;
1027 int reg_len;
1028 struct mem_region *region;
1029
1030 /* Zero length requests are ok and require no work. */
1031 if (len == 0)
1032 return 0;
1033
1034 /* Try the executable file, if "trust-readonly-sections" is set. */
1035 if (readbuf != NULL && trust_readonly)
1036 {
1037 struct section_table *secp;
1038
1039 secp = target_section_by_addr (ops, memaddr);
1040 if (secp != NULL
1041 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1042 & SEC_READONLY))
1043 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1044 }
1045
1046 /* Likewise for accesses to unmapped overlay sections. */
1047 if (readbuf != NULL && overlay_debugging)
1048 {
1049 struct obj_section *section = find_pc_overlay (memaddr);
1050 if (pc_in_unmapped_range (memaddr, section))
1051 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1052 }
1053
1054 /* Try GDB's internal data cache. */
1055 region = lookup_mem_region (memaddr);
1056 /* region->hi == 0 means there's no upper bound. */
1057 if (memaddr + len < region->hi || region->hi == 0)
1058 reg_len = len;
1059 else
1060 reg_len = region->hi - memaddr;
1061
1062 switch (region->attrib.mode)
1063 {
1064 case MEM_RO:
1065 if (writebuf != NULL)
1066 return -1;
1067 break;
1068
1069 case MEM_WO:
1070 if (readbuf != NULL)
1071 return -1;
1072 break;
1073
1074 case MEM_FLASH:
1075 /* We only support writing to flash during "load" for now. */
1076 if (writebuf != NULL)
1077 error (_("Writing to flash memory forbidden in this context"));
1078 break;
1079
1080 case MEM_NONE:
1081 return -1;
1082 }
1083
1084 if (region->attrib.cache)
1085 {
1086 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1087 memory request will start back at current_target. */
1088 if (readbuf != NULL)
1089 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1090 reg_len, 0);
1091 else
1092 /* FIXME drow/2006-08-09: If we're going to preserve const
1093 correctness dcache_xfer_memory should take readbuf and
1094 writebuf. */
1095 res = dcache_xfer_memory (target_dcache, memaddr,
1096 (void *) writebuf,
1097 reg_len, 1);
1098 if (res <= 0)
1099 return -1;
1100 else
1101 {
1102 if (readbuf && !show_memory_breakpoints)
1103 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1104 return res;
1105 }
1106 }
1107
1108 /* If none of those methods found the memory we wanted, fall back
1109 to a target partial transfer. Normally a single call to
1110 to_xfer_partial is enough; if it doesn't recognize an object
1111 it will call the to_xfer_partial of the next target down.
1112 But for memory this won't do. Memory is the only target
1113 object which can be read from more than one valid target.
1114 A core file, for instance, could have some of memory but
1115 delegate other bits to the target below it. So, we must
1116 manually try all targets. */
1117
1118 do
1119 {
1120 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1121 readbuf, writebuf, memaddr, reg_len);
1122 if (res > 0)
1123 break;
1124
1125 /* We want to continue past core files to executables, but not
1126 past a running target's memory. */
1127 if (ops->to_has_all_memory)
1128 break;
1129
1130 ops = ops->beneath;
1131 }
1132 while (ops != NULL);
1133
1134 if (readbuf && !show_memory_breakpoints)
1135 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1136
1137 /* If we still haven't got anything, return the last error. We
1138 give up. */
1139 return res;
1140 }
1141
1142 static void
1143 restore_show_memory_breakpoints (void *arg)
1144 {
1145 show_memory_breakpoints = (uintptr_t) arg;
1146 }
1147
1148 struct cleanup *
1149 make_show_memory_breakpoints_cleanup (int show)
1150 {
1151 int current = show_memory_breakpoints;
1152 show_memory_breakpoints = show;
1153
1154 return make_cleanup (restore_show_memory_breakpoints,
1155 (void *) (uintptr_t) current);
1156 }
1157
1158 static LONGEST
1159 target_xfer_partial (struct target_ops *ops,
1160 enum target_object object, const char *annex,
1161 void *readbuf, const void *writebuf,
1162 ULONGEST offset, LONGEST len)
1163 {
1164 LONGEST retval;
1165
1166 gdb_assert (ops->to_xfer_partial != NULL);
1167
1168 /* If this is a memory transfer, let the memory-specific code
1169 have a look at it instead. Memory transfers are more
1170 complicated. */
1171 if (object == TARGET_OBJECT_MEMORY)
1172 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1173 else
1174 {
1175 enum target_object raw_object = object;
1176
1177 /* If this is a raw memory transfer, request the normal
1178 memory object from other layers. */
1179 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1180 raw_object = TARGET_OBJECT_MEMORY;
1181
1182 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1183 writebuf, offset, len);
1184 }
1185
1186 if (targetdebug)
1187 {
1188 const unsigned char *myaddr = NULL;
1189
1190 fprintf_unfiltered (gdb_stdlog,
1191 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, %s, %s) = %s",
1192 ops->to_shortname,
1193 (int) object,
1194 (annex ? annex : "(null)"),
1195 (long) readbuf, (long) writebuf,
1196 core_addr_to_string_nz (offset),
1197 plongest (len), plongest (retval));
1198
1199 if (readbuf)
1200 myaddr = readbuf;
1201 if (writebuf)
1202 myaddr = writebuf;
1203 if (retval > 0 && myaddr != NULL)
1204 {
1205 int i;
1206
1207 fputs_unfiltered (", bytes =", gdb_stdlog);
1208 for (i = 0; i < retval; i++)
1209 {
1210 if ((((long) &(myaddr[i])) & 0xf) == 0)
1211 {
1212 if (targetdebug < 2 && i > 0)
1213 {
1214 fprintf_unfiltered (gdb_stdlog, " ...");
1215 break;
1216 }
1217 fprintf_unfiltered (gdb_stdlog, "\n");
1218 }
1219
1220 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1221 }
1222 }
1223
1224 fputc_unfiltered ('\n', gdb_stdlog);
1225 }
1226 return retval;
1227 }
1228
1229 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1230 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1231 if any error occurs.
1232
1233 If an error occurs, no guarantee is made about the contents of the data at
1234 MYADDR. In particular, the caller should not depend upon partial reads
1235 filling the buffer with good data. There is no way for the caller to know
1236 how much good data might have been transfered anyway. Callers that can
1237 deal with partial reads should call target_read (which will retry until
1238 it makes no progress, and then return how much was transferred). */
1239
1240 int
1241 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1242 {
1243 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1244 myaddr, memaddr, len) == len)
1245 return 0;
1246 else
1247 return EIO;
1248 }
1249
1250 int
1251 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1252 {
1253 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1254 myaddr, memaddr, len) == len)
1255 return 0;
1256 else
1257 return EIO;
1258 }
1259
1260 /* Fetch the target's memory map. */
1261
1262 VEC(mem_region_s) *
1263 target_memory_map (void)
1264 {
1265 VEC(mem_region_s) *result;
1266 struct mem_region *last_one, *this_one;
1267 int ix;
1268 struct target_ops *t;
1269
1270 if (targetdebug)
1271 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1272
1273 for (t = current_target.beneath; t != NULL; t = t->beneath)
1274 if (t->to_memory_map != NULL)
1275 break;
1276
1277 if (t == NULL)
1278 return NULL;
1279
1280 result = t->to_memory_map (t);
1281 if (result == NULL)
1282 return NULL;
1283
1284 qsort (VEC_address (mem_region_s, result),
1285 VEC_length (mem_region_s, result),
1286 sizeof (struct mem_region), mem_region_cmp);
1287
1288 /* Check that regions do not overlap. Simultaneously assign
1289 a numbering for the "mem" commands to use to refer to
1290 each region. */
1291 last_one = NULL;
1292 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1293 {
1294 this_one->number = ix;
1295
1296 if (last_one && last_one->hi > this_one->lo)
1297 {
1298 warning (_("Overlapping regions in memory map: ignoring"));
1299 VEC_free (mem_region_s, result);
1300 return NULL;
1301 }
1302 last_one = this_one;
1303 }
1304
1305 return result;
1306 }
1307
1308 void
1309 target_flash_erase (ULONGEST address, LONGEST length)
1310 {
1311 struct target_ops *t;
1312
1313 for (t = current_target.beneath; t != NULL; t = t->beneath)
1314 if (t->to_flash_erase != NULL)
1315 {
1316 if (targetdebug)
1317 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1318 paddr (address), phex (length, 0));
1319 t->to_flash_erase (t, address, length);
1320 return;
1321 }
1322
1323 tcomplain ();
1324 }
1325
1326 void
1327 target_flash_done (void)
1328 {
1329 struct target_ops *t;
1330
1331 for (t = current_target.beneath; t != NULL; t = t->beneath)
1332 if (t->to_flash_done != NULL)
1333 {
1334 if (targetdebug)
1335 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1336 t->to_flash_done (t);
1337 return;
1338 }
1339
1340 tcomplain ();
1341 }
1342
1343 #ifndef target_stopped_data_address_p
1344 int
1345 target_stopped_data_address_p (struct target_ops *target)
1346 {
1347 if (target->to_stopped_data_address
1348 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1349 return 0;
1350 if (target->to_stopped_data_address == debug_to_stopped_data_address
1351 && (debug_target.to_stopped_data_address
1352 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1353 return 0;
1354 return 1;
1355 }
1356 #endif
1357
1358 static void
1359 show_trust_readonly (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361 {
1362 fprintf_filtered (file, _("\
1363 Mode for reading from readonly sections is %s.\n"),
1364 value);
1365 }
1366
1367 /* More generic transfers. */
1368
1369 static LONGEST
1370 default_xfer_partial (struct target_ops *ops, enum target_object object,
1371 const char *annex, gdb_byte *readbuf,
1372 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1373 {
1374 if (object == TARGET_OBJECT_MEMORY
1375 && ops->deprecated_xfer_memory != NULL)
1376 /* If available, fall back to the target's
1377 "deprecated_xfer_memory" method. */
1378 {
1379 int xfered = -1;
1380 errno = 0;
1381 if (writebuf != NULL)
1382 {
1383 void *buffer = xmalloc (len);
1384 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1385 memcpy (buffer, writebuf, len);
1386 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1387 1/*write*/, NULL, ops);
1388 do_cleanups (cleanup);
1389 }
1390 if (readbuf != NULL)
1391 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1392 0/*read*/, NULL, ops);
1393 if (xfered > 0)
1394 return xfered;
1395 else if (xfered == 0 && errno == 0)
1396 /* "deprecated_xfer_memory" uses 0, cross checked against
1397 ERRNO as one indication of an error. */
1398 return 0;
1399 else
1400 return -1;
1401 }
1402 else if (ops->beneath != NULL)
1403 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1404 readbuf, writebuf, offset, len);
1405 else
1406 return -1;
1407 }
1408
1409 /* The xfer_partial handler for the topmost target. Unlike the default,
1410 it does not need to handle memory specially; it just passes all
1411 requests down the stack. */
1412
1413 static LONGEST
1414 current_xfer_partial (struct target_ops *ops, enum target_object object,
1415 const char *annex, gdb_byte *readbuf,
1416 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1417 {
1418 if (ops->beneath != NULL)
1419 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1420 readbuf, writebuf, offset, len);
1421 else
1422 return -1;
1423 }
1424
1425 /* Target vector read/write partial wrapper functions.
1426
1427 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1428 (inbuf, outbuf)", instead of separate read/write methods, make life
1429 easier. */
1430
1431 static LONGEST
1432 target_read_partial (struct target_ops *ops,
1433 enum target_object object,
1434 const char *annex, gdb_byte *buf,
1435 ULONGEST offset, LONGEST len)
1436 {
1437 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1438 }
1439
1440 static LONGEST
1441 target_write_partial (struct target_ops *ops,
1442 enum target_object object,
1443 const char *annex, const gdb_byte *buf,
1444 ULONGEST offset, LONGEST len)
1445 {
1446 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1447 }
1448
1449 /* Wrappers to perform the full transfer. */
1450 LONGEST
1451 target_read (struct target_ops *ops,
1452 enum target_object object,
1453 const char *annex, gdb_byte *buf,
1454 ULONGEST offset, LONGEST len)
1455 {
1456 LONGEST xfered = 0;
1457 while (xfered < len)
1458 {
1459 LONGEST xfer = target_read_partial (ops, object, annex,
1460 (gdb_byte *) buf + xfered,
1461 offset + xfered, len - xfered);
1462 /* Call an observer, notifying them of the xfer progress? */
1463 if (xfer == 0)
1464 return xfered;
1465 if (xfer < 0)
1466 return -1;
1467 xfered += xfer;
1468 QUIT;
1469 }
1470 return len;
1471 }
1472
1473 LONGEST
1474 target_read_until_error (struct target_ops *ops,
1475 enum target_object object,
1476 const char *annex, gdb_byte *buf,
1477 ULONGEST offset, LONGEST len)
1478 {
1479 LONGEST xfered = 0;
1480 while (xfered < len)
1481 {
1482 LONGEST xfer = target_read_partial (ops, object, annex,
1483 (gdb_byte *) buf + xfered,
1484 offset + xfered, len - xfered);
1485 /* Call an observer, notifying them of the xfer progress? */
1486 if (xfer == 0)
1487 return xfered;
1488 if (xfer < 0)
1489 {
1490 /* We've got an error. Try to read in smaller blocks. */
1491 ULONGEST start = offset + xfered;
1492 ULONGEST remaining = len - xfered;
1493 ULONGEST half;
1494
1495 /* If an attempt was made to read a random memory address,
1496 it's likely that the very first byte is not accessible.
1497 Try reading the first byte, to avoid doing log N tries
1498 below. */
1499 xfer = target_read_partial (ops, object, annex,
1500 (gdb_byte *) buf + xfered, start, 1);
1501 if (xfer <= 0)
1502 return xfered;
1503 start += 1;
1504 remaining -= 1;
1505 half = remaining/2;
1506
1507 while (half > 0)
1508 {
1509 xfer = target_read_partial (ops, object, annex,
1510 (gdb_byte *) buf + xfered,
1511 start, half);
1512 if (xfer == 0)
1513 return xfered;
1514 if (xfer < 0)
1515 {
1516 remaining = half;
1517 }
1518 else
1519 {
1520 /* We have successfully read the first half. So, the
1521 error must be in the second half. Adjust start and
1522 remaining to point at the second half. */
1523 xfered += xfer;
1524 start += xfer;
1525 remaining -= xfer;
1526 }
1527 half = remaining/2;
1528 }
1529
1530 return xfered;
1531 }
1532 xfered += xfer;
1533 QUIT;
1534 }
1535 return len;
1536 }
1537
1538
1539 /* An alternative to target_write with progress callbacks. */
1540
1541 LONGEST
1542 target_write_with_progress (struct target_ops *ops,
1543 enum target_object object,
1544 const char *annex, const gdb_byte *buf,
1545 ULONGEST offset, LONGEST len,
1546 void (*progress) (ULONGEST, void *), void *baton)
1547 {
1548 LONGEST xfered = 0;
1549
1550 /* Give the progress callback a chance to set up. */
1551 if (progress)
1552 (*progress) (0, baton);
1553
1554 while (xfered < len)
1555 {
1556 LONGEST xfer = target_write_partial (ops, object, annex,
1557 (gdb_byte *) buf + xfered,
1558 offset + xfered, len - xfered);
1559
1560 if (xfer == 0)
1561 return xfered;
1562 if (xfer < 0)
1563 return -1;
1564
1565 if (progress)
1566 (*progress) (xfer, baton);
1567
1568 xfered += xfer;
1569 QUIT;
1570 }
1571 return len;
1572 }
1573
1574 LONGEST
1575 target_write (struct target_ops *ops,
1576 enum target_object object,
1577 const char *annex, const gdb_byte *buf,
1578 ULONGEST offset, LONGEST len)
1579 {
1580 return target_write_with_progress (ops, object, annex, buf, offset, len,
1581 NULL, NULL);
1582 }
1583
1584 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1585 the size of the transferred data. PADDING additional bytes are
1586 available in *BUF_P. This is a helper function for
1587 target_read_alloc; see the declaration of that function for more
1588 information. */
1589
1590 static LONGEST
1591 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1592 const char *annex, gdb_byte **buf_p, int padding)
1593 {
1594 size_t buf_alloc, buf_pos;
1595 gdb_byte *buf;
1596 LONGEST n;
1597
1598 /* This function does not have a length parameter; it reads the
1599 entire OBJECT). Also, it doesn't support objects fetched partly
1600 from one target and partly from another (in a different stratum,
1601 e.g. a core file and an executable). Both reasons make it
1602 unsuitable for reading memory. */
1603 gdb_assert (object != TARGET_OBJECT_MEMORY);
1604
1605 /* Start by reading up to 4K at a time. The target will throttle
1606 this number down if necessary. */
1607 buf_alloc = 4096;
1608 buf = xmalloc (buf_alloc);
1609 buf_pos = 0;
1610 while (1)
1611 {
1612 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1613 buf_pos, buf_alloc - buf_pos - padding);
1614 if (n < 0)
1615 {
1616 /* An error occurred. */
1617 xfree (buf);
1618 return -1;
1619 }
1620 else if (n == 0)
1621 {
1622 /* Read all there was. */
1623 if (buf_pos == 0)
1624 xfree (buf);
1625 else
1626 *buf_p = buf;
1627 return buf_pos;
1628 }
1629
1630 buf_pos += n;
1631
1632 /* If the buffer is filling up, expand it. */
1633 if (buf_alloc < buf_pos * 2)
1634 {
1635 buf_alloc *= 2;
1636 buf = xrealloc (buf, buf_alloc);
1637 }
1638
1639 QUIT;
1640 }
1641 }
1642
1643 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1644 the size of the transferred data. See the declaration in "target.h"
1645 function for more information about the return value. */
1646
1647 LONGEST
1648 target_read_alloc (struct target_ops *ops, enum target_object object,
1649 const char *annex, gdb_byte **buf_p)
1650 {
1651 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1652 }
1653
1654 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1655 returned as a string, allocated using xmalloc. If an error occurs
1656 or the transfer is unsupported, NULL is returned. Empty objects
1657 are returned as allocated but empty strings. A warning is issued
1658 if the result contains any embedded NUL bytes. */
1659
1660 char *
1661 target_read_stralloc (struct target_ops *ops, enum target_object object,
1662 const char *annex)
1663 {
1664 gdb_byte *buffer;
1665 LONGEST transferred;
1666
1667 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1668
1669 if (transferred < 0)
1670 return NULL;
1671
1672 if (transferred == 0)
1673 return xstrdup ("");
1674
1675 buffer[transferred] = 0;
1676 if (strlen (buffer) < transferred)
1677 warning (_("target object %d, annex %s, "
1678 "contained unexpected null characters"),
1679 (int) object, annex ? annex : "(none)");
1680
1681 return (char *) buffer;
1682 }
1683
1684 /* Memory transfer methods. */
1685
1686 void
1687 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1688 LONGEST len)
1689 {
1690 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1691 != len)
1692 memory_error (EIO, addr);
1693 }
1694
1695 ULONGEST
1696 get_target_memory_unsigned (struct target_ops *ops,
1697 CORE_ADDR addr, int len)
1698 {
1699 gdb_byte buf[sizeof (ULONGEST)];
1700
1701 gdb_assert (len <= sizeof (buf));
1702 get_target_memory (ops, addr, buf, len);
1703 return extract_unsigned_integer (buf, len);
1704 }
1705
1706 static void
1707 target_info (char *args, int from_tty)
1708 {
1709 struct target_ops *t;
1710 int has_all_mem = 0;
1711
1712 if (symfile_objfile != NULL)
1713 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1714
1715 for (t = target_stack; t != NULL; t = t->beneath)
1716 {
1717 if (!t->to_has_memory)
1718 continue;
1719
1720 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1721 continue;
1722 if (has_all_mem)
1723 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1724 printf_unfiltered ("%s:\n", t->to_longname);
1725 (t->to_files_info) (t);
1726 has_all_mem = t->to_has_all_memory;
1727 }
1728 }
1729
1730 /* This function is called before any new inferior is created, e.g.
1731 by running a program, attaching, or connecting to a target.
1732 It cleans up any state from previous invocations which might
1733 change between runs. This is a subset of what target_preopen
1734 resets (things which might change between targets). */
1735
1736 void
1737 target_pre_inferior (int from_tty)
1738 {
1739 /* Clear out solib state. Otherwise the solib state of the previous
1740 inferior might have survived and is entirely wrong for the new
1741 target. This has been observed on GNU/Linux using glibc 2.3. How
1742 to reproduce:
1743
1744 bash$ ./foo&
1745 [1] 4711
1746 bash$ ./foo&
1747 [1] 4712
1748 bash$ gdb ./foo
1749 [...]
1750 (gdb) attach 4711
1751 (gdb) detach
1752 (gdb) attach 4712
1753 Cannot access memory at address 0xdeadbeef
1754 */
1755 no_shared_libraries (NULL, from_tty);
1756
1757 invalidate_target_mem_regions ();
1758
1759 target_clear_description ();
1760 }
1761
1762 /* This is to be called by the open routine before it does
1763 anything. */
1764
1765 void
1766 target_preopen (int from_tty)
1767 {
1768 dont_repeat ();
1769
1770 if (target_has_execution)
1771 {
1772 if (!from_tty
1773 || query (_("A program is being debugged already. Kill it? ")))
1774 target_kill ();
1775 else
1776 error (_("Program not killed."));
1777 }
1778
1779 /* Calling target_kill may remove the target from the stack. But if
1780 it doesn't (which seems like a win for UDI), remove it now. */
1781 /* Leave the exec target, though. The user may be switching from a
1782 live process to a core of the same program. */
1783 pop_all_targets_above (file_stratum, 0);
1784
1785 target_pre_inferior (from_tty);
1786 }
1787
1788 /* Detach a target after doing deferred register stores. */
1789
1790 void
1791 target_detach (char *args, int from_tty)
1792 {
1793 /* If we're in breakpoints-always-inserted mode, have to
1794 remove them before detaching. */
1795 remove_breakpoints ();
1796
1797 (current_target.to_detach) (args, from_tty);
1798 }
1799
1800 void
1801 target_disconnect (char *args, int from_tty)
1802 {
1803 struct target_ops *t;
1804
1805 /* If we're in breakpoints-always-inserted mode, have to
1806 remove them before disconnecting. */
1807 remove_breakpoints ();
1808
1809 for (t = current_target.beneath; t != NULL; t = t->beneath)
1810 if (t->to_disconnect != NULL)
1811 {
1812 if (targetdebug)
1813 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1814 args, from_tty);
1815 t->to_disconnect (t, args, from_tty);
1816 return;
1817 }
1818
1819 tcomplain ();
1820 }
1821
1822 void
1823 target_resume (ptid_t ptid, int step, enum target_signal signal)
1824 {
1825 dcache_invalidate (target_dcache);
1826 (*current_target.to_resume) (ptid, step, signal);
1827 set_executing (ptid, 1);
1828 set_running (ptid, 1);
1829 }
1830 /* Look through the list of possible targets for a target that can
1831 follow forks. */
1832
1833 int
1834 target_follow_fork (int follow_child)
1835 {
1836 struct target_ops *t;
1837
1838 for (t = current_target.beneath; t != NULL; t = t->beneath)
1839 {
1840 if (t->to_follow_fork != NULL)
1841 {
1842 int retval = t->to_follow_fork (t, follow_child);
1843 if (targetdebug)
1844 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1845 follow_child, retval);
1846 return retval;
1847 }
1848 }
1849
1850 /* Some target returned a fork event, but did not know how to follow it. */
1851 internal_error (__FILE__, __LINE__,
1852 "could not find a target to follow fork");
1853 }
1854
1855 /* Look for a target which can describe architectural features, starting
1856 from TARGET. If we find one, return its description. */
1857
1858 const struct target_desc *
1859 target_read_description (struct target_ops *target)
1860 {
1861 struct target_ops *t;
1862
1863 for (t = target; t != NULL; t = t->beneath)
1864 if (t->to_read_description != NULL)
1865 {
1866 const struct target_desc *tdesc;
1867
1868 tdesc = t->to_read_description (t);
1869 if (tdesc)
1870 return tdesc;
1871 }
1872
1873 return NULL;
1874 }
1875
1876 /* The default implementation of to_search_memory.
1877 This implements a basic search of memory, reading target memory and
1878 performing the search here (as opposed to performing the search in on the
1879 target side with, for example, gdbserver). */
1880
1881 int
1882 simple_search_memory (struct target_ops *ops,
1883 CORE_ADDR start_addr, ULONGEST search_space_len,
1884 const gdb_byte *pattern, ULONGEST pattern_len,
1885 CORE_ADDR *found_addrp)
1886 {
1887 /* NOTE: also defined in find.c testcase. */
1888 #define SEARCH_CHUNK_SIZE 16000
1889 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1890 /* Buffer to hold memory contents for searching. */
1891 gdb_byte *search_buf;
1892 unsigned search_buf_size;
1893 struct cleanup *old_cleanups;
1894
1895 search_buf_size = chunk_size + pattern_len - 1;
1896
1897 /* No point in trying to allocate a buffer larger than the search space. */
1898 if (search_space_len < search_buf_size)
1899 search_buf_size = search_space_len;
1900
1901 search_buf = malloc (search_buf_size);
1902 if (search_buf == NULL)
1903 error (_("Unable to allocate memory to perform the search."));
1904 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1905
1906 /* Prime the search buffer. */
1907
1908 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1909 search_buf, start_addr, search_buf_size) != search_buf_size)
1910 {
1911 warning (_("Unable to access target memory at %s, halting search."),
1912 hex_string (start_addr));
1913 do_cleanups (old_cleanups);
1914 return -1;
1915 }
1916
1917 /* Perform the search.
1918
1919 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1920 When we've scanned N bytes we copy the trailing bytes to the start and
1921 read in another N bytes. */
1922
1923 while (search_space_len >= pattern_len)
1924 {
1925 gdb_byte *found_ptr;
1926 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1927
1928 found_ptr = memmem (search_buf, nr_search_bytes,
1929 pattern, pattern_len);
1930
1931 if (found_ptr != NULL)
1932 {
1933 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1934 *found_addrp = found_addr;
1935 do_cleanups (old_cleanups);
1936 return 1;
1937 }
1938
1939 /* Not found in this chunk, skip to next chunk. */
1940
1941 /* Don't let search_space_len wrap here, it's unsigned. */
1942 if (search_space_len >= chunk_size)
1943 search_space_len -= chunk_size;
1944 else
1945 search_space_len = 0;
1946
1947 if (search_space_len >= pattern_len)
1948 {
1949 unsigned keep_len = search_buf_size - chunk_size;
1950 CORE_ADDR read_addr = start_addr + keep_len;
1951 int nr_to_read;
1952
1953 /* Copy the trailing part of the previous iteration to the front
1954 of the buffer for the next iteration. */
1955 gdb_assert (keep_len == pattern_len - 1);
1956 memcpy (search_buf, search_buf + chunk_size, keep_len);
1957
1958 nr_to_read = min (search_space_len - keep_len, chunk_size);
1959
1960 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1961 search_buf + keep_len, read_addr,
1962 nr_to_read) != nr_to_read)
1963 {
1964 warning (_("Unable to access target memory at %s, halting search."),
1965 hex_string (read_addr));
1966 do_cleanups (old_cleanups);
1967 return -1;
1968 }
1969
1970 start_addr += chunk_size;
1971 }
1972 }
1973
1974 /* Not found. */
1975
1976 do_cleanups (old_cleanups);
1977 return 0;
1978 }
1979
1980 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1981 sequence of bytes in PATTERN with length PATTERN_LEN.
1982
1983 The result is 1 if found, 0 if not found, and -1 if there was an error
1984 requiring halting of the search (e.g. memory read error).
1985 If the pattern is found the address is recorded in FOUND_ADDRP. */
1986
1987 int
1988 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1989 const gdb_byte *pattern, ULONGEST pattern_len,
1990 CORE_ADDR *found_addrp)
1991 {
1992 struct target_ops *t;
1993 int found;
1994
1995 /* We don't use INHERIT to set current_target.to_search_memory,
1996 so we have to scan the target stack and handle targetdebug
1997 ourselves. */
1998
1999 if (targetdebug)
2000 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2001 hex_string (start_addr));
2002
2003 for (t = current_target.beneath; t != NULL; t = t->beneath)
2004 if (t->to_search_memory != NULL)
2005 break;
2006
2007 if (t != NULL)
2008 {
2009 found = t->to_search_memory (t, start_addr, search_space_len,
2010 pattern, pattern_len, found_addrp);
2011 }
2012 else
2013 {
2014 /* If a special version of to_search_memory isn't available, use the
2015 simple version. */
2016 found = simple_search_memory (&current_target,
2017 start_addr, search_space_len,
2018 pattern, pattern_len, found_addrp);
2019 }
2020
2021 if (targetdebug)
2022 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2023
2024 return found;
2025 }
2026
2027 /* Look through the currently pushed targets. If none of them will
2028 be able to restart the currently running process, issue an error
2029 message. */
2030
2031 void
2032 target_require_runnable (void)
2033 {
2034 struct target_ops *t;
2035
2036 for (t = target_stack; t != NULL; t = t->beneath)
2037 {
2038 /* If this target knows how to create a new program, then
2039 assume we will still be able to after killing the current
2040 one. Either killing and mourning will not pop T, or else
2041 find_default_run_target will find it again. */
2042 if (t->to_create_inferior != NULL)
2043 return;
2044
2045 /* Do not worry about thread_stratum targets that can not
2046 create inferiors. Assume they will be pushed again if
2047 necessary, and continue to the process_stratum. */
2048 if (t->to_stratum == thread_stratum)
2049 continue;
2050
2051 error (_("\
2052 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2053 t->to_shortname);
2054 }
2055
2056 /* This function is only called if the target is running. In that
2057 case there should have been a process_stratum target and it
2058 should either know how to create inferiors, or not... */
2059 internal_error (__FILE__, __LINE__, "No targets found");
2060 }
2061
2062 /* Look through the list of possible targets for a target that can
2063 execute a run or attach command without any other data. This is
2064 used to locate the default process stratum.
2065
2066 If DO_MESG is not NULL, the result is always valid (error() is
2067 called for errors); else, return NULL on error. */
2068
2069 static struct target_ops *
2070 find_default_run_target (char *do_mesg)
2071 {
2072 struct target_ops **t;
2073 struct target_ops *runable = NULL;
2074 int count;
2075
2076 count = 0;
2077
2078 for (t = target_structs; t < target_structs + target_struct_size;
2079 ++t)
2080 {
2081 if ((*t)->to_can_run && target_can_run (*t))
2082 {
2083 runable = *t;
2084 ++count;
2085 }
2086 }
2087
2088 if (count != 1)
2089 {
2090 if (do_mesg)
2091 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2092 else
2093 return NULL;
2094 }
2095
2096 return runable;
2097 }
2098
2099 void
2100 find_default_attach (char *args, int from_tty)
2101 {
2102 struct target_ops *t;
2103
2104 t = find_default_run_target ("attach");
2105 (t->to_attach) (args, from_tty);
2106 return;
2107 }
2108
2109 void
2110 find_default_create_inferior (char *exec_file, char *allargs, char **env,
2111 int from_tty)
2112 {
2113 struct target_ops *t;
2114
2115 t = find_default_run_target ("run");
2116 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2117 return;
2118 }
2119
2120 int
2121 find_default_can_async_p (void)
2122 {
2123 struct target_ops *t;
2124
2125 /* This may be called before the target is pushed on the stack;
2126 look for the default process stratum. If there's none, gdb isn't
2127 configured with a native debugger, and target remote isn't
2128 connected yet. */
2129 t = find_default_run_target (NULL);
2130 if (t && t->to_can_async_p)
2131 return (t->to_can_async_p) ();
2132 return 0;
2133 }
2134
2135 int
2136 find_default_is_async_p (void)
2137 {
2138 struct target_ops *t;
2139
2140 /* This may be called before the target is pushed on the stack;
2141 look for the default process stratum. If there's none, gdb isn't
2142 configured with a native debugger, and target remote isn't
2143 connected yet. */
2144 t = find_default_run_target (NULL);
2145 if (t && t->to_is_async_p)
2146 return (t->to_is_async_p) ();
2147 return 0;
2148 }
2149
2150 int
2151 find_default_supports_non_stop (void)
2152 {
2153 struct target_ops *t;
2154
2155 t = find_default_run_target (NULL);
2156 if (t && t->to_supports_non_stop)
2157 return (t->to_supports_non_stop) ();
2158 return 0;
2159 }
2160
2161 int
2162 target_supports_non_stop ()
2163 {
2164 struct target_ops *t;
2165 for (t = &current_target; t != NULL; t = t->beneath)
2166 if (t->to_supports_non_stop)
2167 return t->to_supports_non_stop ();
2168
2169 return 0;
2170 }
2171
2172
2173 static int
2174 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2175 {
2176 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2177 }
2178
2179 static int
2180 default_watchpoint_addr_within_range (struct target_ops *target,
2181 CORE_ADDR addr,
2182 CORE_ADDR start, int length)
2183 {
2184 return addr >= start && addr < start + length;
2185 }
2186
2187 static int
2188 return_zero (void)
2189 {
2190 return 0;
2191 }
2192
2193 static int
2194 return_one (void)
2195 {
2196 return 1;
2197 }
2198
2199 static int
2200 return_minus_one (void)
2201 {
2202 return -1;
2203 }
2204
2205 /*
2206 * Resize the to_sections pointer. Also make sure that anyone that
2207 * was holding on to an old value of it gets updated.
2208 * Returns the old size.
2209 */
2210
2211 int
2212 target_resize_to_sections (struct target_ops *target, int num_added)
2213 {
2214 struct target_ops **t;
2215 struct section_table *old_value;
2216 int old_count;
2217
2218 old_value = target->to_sections;
2219
2220 if (target->to_sections)
2221 {
2222 old_count = target->to_sections_end - target->to_sections;
2223 target->to_sections = (struct section_table *)
2224 xrealloc ((char *) target->to_sections,
2225 (sizeof (struct section_table)) * (num_added + old_count));
2226 }
2227 else
2228 {
2229 old_count = 0;
2230 target->to_sections = (struct section_table *)
2231 xmalloc ((sizeof (struct section_table)) * num_added);
2232 }
2233 target->to_sections_end = target->to_sections + (num_added + old_count);
2234
2235 /* Check to see if anyone else was pointing to this structure.
2236 If old_value was null, then no one was. */
2237
2238 if (old_value)
2239 {
2240 for (t = target_structs; t < target_structs + target_struct_size;
2241 ++t)
2242 {
2243 if ((*t)->to_sections == old_value)
2244 {
2245 (*t)->to_sections = target->to_sections;
2246 (*t)->to_sections_end = target->to_sections_end;
2247 }
2248 }
2249 /* There is a flattened view of the target stack in current_target,
2250 so its to_sections pointer might also need updating. */
2251 if (current_target.to_sections == old_value)
2252 {
2253 current_target.to_sections = target->to_sections;
2254 current_target.to_sections_end = target->to_sections_end;
2255 }
2256 }
2257
2258 return old_count;
2259
2260 }
2261
2262 /* Remove all target sections taken from ABFD.
2263
2264 Scan the current target stack for targets whose section tables
2265 refer to sections from BFD, and remove those sections. We use this
2266 when we notice that the inferior has unloaded a shared object, for
2267 example. */
2268 void
2269 remove_target_sections (bfd *abfd)
2270 {
2271 struct target_ops **t;
2272
2273 for (t = target_structs; t < target_structs + target_struct_size; t++)
2274 {
2275 struct section_table *src, *dest;
2276
2277 dest = (*t)->to_sections;
2278 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2279 if (src->bfd != abfd)
2280 {
2281 /* Keep this section. */
2282 if (dest < src) *dest = *src;
2283 dest++;
2284 }
2285
2286 /* If we've dropped any sections, resize the section table. */
2287 if (dest < src)
2288 target_resize_to_sections (*t, dest - src);
2289 }
2290 }
2291
2292
2293
2294
2295 /* Find a single runnable target in the stack and return it. If for
2296 some reason there is more than one, return NULL. */
2297
2298 struct target_ops *
2299 find_run_target (void)
2300 {
2301 struct target_ops **t;
2302 struct target_ops *runable = NULL;
2303 int count;
2304
2305 count = 0;
2306
2307 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2308 {
2309 if ((*t)->to_can_run && target_can_run (*t))
2310 {
2311 runable = *t;
2312 ++count;
2313 }
2314 }
2315
2316 return (count == 1 ? runable : NULL);
2317 }
2318
2319 /* Find a single core_stratum target in the list of targets and return it.
2320 If for some reason there is more than one, return NULL. */
2321
2322 struct target_ops *
2323 find_core_target (void)
2324 {
2325 struct target_ops **t;
2326 struct target_ops *runable = NULL;
2327 int count;
2328
2329 count = 0;
2330
2331 for (t = target_structs; t < target_structs + target_struct_size;
2332 ++t)
2333 {
2334 if ((*t)->to_stratum == core_stratum)
2335 {
2336 runable = *t;
2337 ++count;
2338 }
2339 }
2340
2341 return (count == 1 ? runable : NULL);
2342 }
2343
2344 /*
2345 * Find the next target down the stack from the specified target.
2346 */
2347
2348 struct target_ops *
2349 find_target_beneath (struct target_ops *t)
2350 {
2351 return t->beneath;
2352 }
2353
2354 \f
2355 /* The inferior process has died. Long live the inferior! */
2356
2357 void
2358 generic_mourn_inferior (void)
2359 {
2360 ptid_t ptid;
2361
2362 ptid = inferior_ptid;
2363 inferior_ptid = null_ptid;
2364
2365 if (!ptid_equal (ptid, null_ptid))
2366 {
2367 int pid = ptid_get_pid (ptid);
2368 delete_inferior (pid);
2369 }
2370
2371 breakpoint_init_inferior (inf_exited);
2372 registers_changed ();
2373
2374 reopen_exec_file ();
2375 reinit_frame_cache ();
2376
2377 if (deprecated_detach_hook)
2378 deprecated_detach_hook ();
2379 }
2380 \f
2381 /* Helper function for child_wait and the derivatives of child_wait.
2382 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2383 translation of that in OURSTATUS. */
2384 void
2385 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2386 {
2387 if (WIFEXITED (hoststatus))
2388 {
2389 ourstatus->kind = TARGET_WAITKIND_EXITED;
2390 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2391 }
2392 else if (!WIFSTOPPED (hoststatus))
2393 {
2394 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2395 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2396 }
2397 else
2398 {
2399 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2400 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2401 }
2402 }
2403 \f
2404 /* Returns zero to leave the inferior alone, one to interrupt it. */
2405 int (*target_activity_function) (void);
2406 int target_activity_fd;
2407 \f
2408 /* Convert a normal process ID to a string. Returns the string in a
2409 static buffer. */
2410
2411 char *
2412 normal_pid_to_str (ptid_t ptid)
2413 {
2414 static char buf[32];
2415
2416 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2417 return buf;
2418 }
2419
2420 /* Error-catcher for target_find_memory_regions */
2421 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2422 {
2423 error (_("No target."));
2424 return 0;
2425 }
2426
2427 /* Error-catcher for target_make_corefile_notes */
2428 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2429 {
2430 error (_("No target."));
2431 return NULL;
2432 }
2433
2434 /* Set up the handful of non-empty slots needed by the dummy target
2435 vector. */
2436
2437 static void
2438 init_dummy_target (void)
2439 {
2440 dummy_target.to_shortname = "None";
2441 dummy_target.to_longname = "None";
2442 dummy_target.to_doc = "";
2443 dummy_target.to_attach = find_default_attach;
2444 dummy_target.to_create_inferior = find_default_create_inferior;
2445 dummy_target.to_can_async_p = find_default_can_async_p;
2446 dummy_target.to_is_async_p = find_default_is_async_p;
2447 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2448 dummy_target.to_pid_to_str = normal_pid_to_str;
2449 dummy_target.to_stratum = dummy_stratum;
2450 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2451 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2452 dummy_target.to_xfer_partial = default_xfer_partial;
2453 dummy_target.to_magic = OPS_MAGIC;
2454 }
2455 \f
2456 static void
2457 debug_to_open (char *args, int from_tty)
2458 {
2459 debug_target.to_open (args, from_tty);
2460
2461 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2462 }
2463
2464 static void
2465 debug_to_close (int quitting)
2466 {
2467 target_close (&debug_target, quitting);
2468 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2469 }
2470
2471 void
2472 target_close (struct target_ops *targ, int quitting)
2473 {
2474 if (targ->to_xclose != NULL)
2475 targ->to_xclose (targ, quitting);
2476 else if (targ->to_close != NULL)
2477 targ->to_close (quitting);
2478 }
2479
2480 static void
2481 debug_to_attach (char *args, int from_tty)
2482 {
2483 debug_target.to_attach (args, from_tty);
2484
2485 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2486 }
2487
2488
2489 static void
2490 debug_to_post_attach (int pid)
2491 {
2492 debug_target.to_post_attach (pid);
2493
2494 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2495 }
2496
2497 static void
2498 debug_to_detach (char *args, int from_tty)
2499 {
2500 debug_target.to_detach (args, from_tty);
2501
2502 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2503 }
2504
2505 static void
2506 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2507 {
2508 debug_target.to_resume (ptid, step, siggnal);
2509
2510 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2511 step ? "step" : "continue",
2512 target_signal_to_name (siggnal));
2513 }
2514
2515 static ptid_t
2516 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2517 {
2518 ptid_t retval;
2519
2520 retval = debug_target.to_wait (ptid, status);
2521
2522 fprintf_unfiltered (gdb_stdlog,
2523 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2524 PIDGET (retval));
2525 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2526 switch (status->kind)
2527 {
2528 case TARGET_WAITKIND_EXITED:
2529 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2530 status->value.integer);
2531 break;
2532 case TARGET_WAITKIND_STOPPED:
2533 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2534 target_signal_to_name (status->value.sig));
2535 break;
2536 case TARGET_WAITKIND_SIGNALLED:
2537 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2538 target_signal_to_name (status->value.sig));
2539 break;
2540 case TARGET_WAITKIND_LOADED:
2541 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2542 break;
2543 case TARGET_WAITKIND_FORKED:
2544 fprintf_unfiltered (gdb_stdlog, "forked\n");
2545 break;
2546 case TARGET_WAITKIND_VFORKED:
2547 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2548 break;
2549 case TARGET_WAITKIND_EXECD:
2550 fprintf_unfiltered (gdb_stdlog, "execd\n");
2551 break;
2552 case TARGET_WAITKIND_SPURIOUS:
2553 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2554 break;
2555 default:
2556 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2557 break;
2558 }
2559
2560 return retval;
2561 }
2562
2563 static void
2564 debug_print_register (const char * func,
2565 struct regcache *regcache, int regno)
2566 {
2567 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2568 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2569 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2570 && gdbarch_register_name (gdbarch, regno) != NULL
2571 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2572 fprintf_unfiltered (gdb_stdlog, "(%s)",
2573 gdbarch_register_name (gdbarch, regno));
2574 else
2575 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2576 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2577 {
2578 int i, size = register_size (gdbarch, regno);
2579 unsigned char buf[MAX_REGISTER_SIZE];
2580 regcache_raw_collect (regcache, regno, buf);
2581 fprintf_unfiltered (gdb_stdlog, " = ");
2582 for (i = 0; i < size; i++)
2583 {
2584 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2585 }
2586 if (size <= sizeof (LONGEST))
2587 {
2588 ULONGEST val = extract_unsigned_integer (buf, size);
2589 fprintf_unfiltered (gdb_stdlog, " %s %s",
2590 core_addr_to_string_nz (val), plongest (val));
2591 }
2592 }
2593 fprintf_unfiltered (gdb_stdlog, "\n");
2594 }
2595
2596 static void
2597 debug_to_fetch_registers (struct regcache *regcache, int regno)
2598 {
2599 debug_target.to_fetch_registers (regcache, regno);
2600 debug_print_register ("target_fetch_registers", regcache, regno);
2601 }
2602
2603 static void
2604 debug_to_store_registers (struct regcache *regcache, int regno)
2605 {
2606 debug_target.to_store_registers (regcache, regno);
2607 debug_print_register ("target_store_registers", regcache, regno);
2608 fprintf_unfiltered (gdb_stdlog, "\n");
2609 }
2610
2611 static void
2612 debug_to_prepare_to_store (struct regcache *regcache)
2613 {
2614 debug_target.to_prepare_to_store (regcache);
2615
2616 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2617 }
2618
2619 static int
2620 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2621 int write, struct mem_attrib *attrib,
2622 struct target_ops *target)
2623 {
2624 int retval;
2625
2626 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2627 attrib, target);
2628
2629 fprintf_unfiltered (gdb_stdlog,
2630 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2631 (unsigned int) memaddr, /* possable truncate long long */
2632 len, write ? "write" : "read", retval);
2633
2634 if (retval > 0)
2635 {
2636 int i;
2637
2638 fputs_unfiltered (", bytes =", gdb_stdlog);
2639 for (i = 0; i < retval; i++)
2640 {
2641 if ((((long) &(myaddr[i])) & 0xf) == 0)
2642 {
2643 if (targetdebug < 2 && i > 0)
2644 {
2645 fprintf_unfiltered (gdb_stdlog, " ...");
2646 break;
2647 }
2648 fprintf_unfiltered (gdb_stdlog, "\n");
2649 }
2650
2651 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2652 }
2653 }
2654
2655 fputc_unfiltered ('\n', gdb_stdlog);
2656
2657 return retval;
2658 }
2659
2660 static void
2661 debug_to_files_info (struct target_ops *target)
2662 {
2663 debug_target.to_files_info (target);
2664
2665 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2666 }
2667
2668 static int
2669 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2670 {
2671 int retval;
2672
2673 retval = debug_target.to_insert_breakpoint (bp_tgt);
2674
2675 fprintf_unfiltered (gdb_stdlog,
2676 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2677 (unsigned long) bp_tgt->placed_address,
2678 (unsigned long) retval);
2679 return retval;
2680 }
2681
2682 static int
2683 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2684 {
2685 int retval;
2686
2687 retval = debug_target.to_remove_breakpoint (bp_tgt);
2688
2689 fprintf_unfiltered (gdb_stdlog,
2690 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2691 (unsigned long) bp_tgt->placed_address,
2692 (unsigned long) retval);
2693 return retval;
2694 }
2695
2696 static int
2697 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2698 {
2699 int retval;
2700
2701 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2702
2703 fprintf_unfiltered (gdb_stdlog,
2704 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2705 (unsigned long) type,
2706 (unsigned long) cnt,
2707 (unsigned long) from_tty,
2708 (unsigned long) retval);
2709 return retval;
2710 }
2711
2712 static int
2713 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2714 {
2715 CORE_ADDR retval;
2716
2717 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2718
2719 fprintf_unfiltered (gdb_stdlog,
2720 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2721 (unsigned long) addr,
2722 (unsigned long) len,
2723 (unsigned long) retval);
2724 return retval;
2725 }
2726
2727 static int
2728 debug_to_stopped_by_watchpoint (void)
2729 {
2730 int retval;
2731
2732 retval = debug_target.to_stopped_by_watchpoint ();
2733
2734 fprintf_unfiltered (gdb_stdlog,
2735 "STOPPED_BY_WATCHPOINT () = %ld\n",
2736 (unsigned long) retval);
2737 return retval;
2738 }
2739
2740 static int
2741 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2742 {
2743 int retval;
2744
2745 retval = debug_target.to_stopped_data_address (target, addr);
2746
2747 fprintf_unfiltered (gdb_stdlog,
2748 "target_stopped_data_address ([0x%lx]) = %ld\n",
2749 (unsigned long)*addr,
2750 (unsigned long)retval);
2751 return retval;
2752 }
2753
2754 static int
2755 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2756 CORE_ADDR addr,
2757 CORE_ADDR start, int length)
2758 {
2759 int retval;
2760
2761 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2762 start, length);
2763
2764 fprintf_filtered (gdb_stdlog,
2765 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2766 (unsigned long) addr, (unsigned long) start, length,
2767 retval);
2768 return retval;
2769 }
2770
2771 static int
2772 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2773 {
2774 int retval;
2775
2776 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2777
2778 fprintf_unfiltered (gdb_stdlog,
2779 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2780 (unsigned long) bp_tgt->placed_address,
2781 (unsigned long) retval);
2782 return retval;
2783 }
2784
2785 static int
2786 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2787 {
2788 int retval;
2789
2790 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2791
2792 fprintf_unfiltered (gdb_stdlog,
2793 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2794 (unsigned long) bp_tgt->placed_address,
2795 (unsigned long) retval);
2796 return retval;
2797 }
2798
2799 static int
2800 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2801 {
2802 int retval;
2803
2804 retval = debug_target.to_insert_watchpoint (addr, len, type);
2805
2806 fprintf_unfiltered (gdb_stdlog,
2807 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2808 (unsigned long) addr, len, type, (unsigned long) retval);
2809 return retval;
2810 }
2811
2812 static int
2813 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2814 {
2815 int retval;
2816
2817 retval = debug_target.to_remove_watchpoint (addr, len, type);
2818
2819 fprintf_unfiltered (gdb_stdlog,
2820 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2821 (unsigned long) addr, len, type, (unsigned long) retval);
2822 return retval;
2823 }
2824
2825 static void
2826 debug_to_terminal_init (void)
2827 {
2828 debug_target.to_terminal_init ();
2829
2830 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2831 }
2832
2833 static void
2834 debug_to_terminal_inferior (void)
2835 {
2836 debug_target.to_terminal_inferior ();
2837
2838 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2839 }
2840
2841 static void
2842 debug_to_terminal_ours_for_output (void)
2843 {
2844 debug_target.to_terminal_ours_for_output ();
2845
2846 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2847 }
2848
2849 static void
2850 debug_to_terminal_ours (void)
2851 {
2852 debug_target.to_terminal_ours ();
2853
2854 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2855 }
2856
2857 static void
2858 debug_to_terminal_save_ours (void)
2859 {
2860 debug_target.to_terminal_save_ours ();
2861
2862 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2863 }
2864
2865 static void
2866 debug_to_terminal_info (char *arg, int from_tty)
2867 {
2868 debug_target.to_terminal_info (arg, from_tty);
2869
2870 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2871 from_tty);
2872 }
2873
2874 static void
2875 debug_to_kill (void)
2876 {
2877 debug_target.to_kill ();
2878
2879 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2880 }
2881
2882 static void
2883 debug_to_load (char *args, int from_tty)
2884 {
2885 debug_target.to_load (args, from_tty);
2886
2887 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2888 }
2889
2890 static int
2891 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2892 {
2893 int retval;
2894
2895 retval = debug_target.to_lookup_symbol (name, addrp);
2896
2897 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2898
2899 return retval;
2900 }
2901
2902 static void
2903 debug_to_create_inferior (char *exec_file, char *args, char **env,
2904 int from_tty)
2905 {
2906 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2907
2908 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2909 exec_file, args, from_tty);
2910 }
2911
2912 static void
2913 debug_to_post_startup_inferior (ptid_t ptid)
2914 {
2915 debug_target.to_post_startup_inferior (ptid);
2916
2917 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2918 PIDGET (ptid));
2919 }
2920
2921 static void
2922 debug_to_acknowledge_created_inferior (int pid)
2923 {
2924 debug_target.to_acknowledge_created_inferior (pid);
2925
2926 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2927 pid);
2928 }
2929
2930 static void
2931 debug_to_insert_fork_catchpoint (int pid)
2932 {
2933 debug_target.to_insert_fork_catchpoint (pid);
2934
2935 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2936 pid);
2937 }
2938
2939 static int
2940 debug_to_remove_fork_catchpoint (int pid)
2941 {
2942 int retval;
2943
2944 retval = debug_target.to_remove_fork_catchpoint (pid);
2945
2946 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2947 pid, retval);
2948
2949 return retval;
2950 }
2951
2952 static void
2953 debug_to_insert_vfork_catchpoint (int pid)
2954 {
2955 debug_target.to_insert_vfork_catchpoint (pid);
2956
2957 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2958 pid);
2959 }
2960
2961 static int
2962 debug_to_remove_vfork_catchpoint (int pid)
2963 {
2964 int retval;
2965
2966 retval = debug_target.to_remove_vfork_catchpoint (pid);
2967
2968 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2969 pid, retval);
2970
2971 return retval;
2972 }
2973
2974 static void
2975 debug_to_insert_exec_catchpoint (int pid)
2976 {
2977 debug_target.to_insert_exec_catchpoint (pid);
2978
2979 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2980 pid);
2981 }
2982
2983 static int
2984 debug_to_remove_exec_catchpoint (int pid)
2985 {
2986 int retval;
2987
2988 retval = debug_target.to_remove_exec_catchpoint (pid);
2989
2990 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2991 pid, retval);
2992
2993 return retval;
2994 }
2995
2996 static int
2997 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2998 {
2999 int has_exited;
3000
3001 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3002
3003 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3004 pid, wait_status, *exit_status, has_exited);
3005
3006 return has_exited;
3007 }
3008
3009 static void
3010 debug_to_mourn_inferior (void)
3011 {
3012 debug_target.to_mourn_inferior ();
3013
3014 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
3015 }
3016
3017 static int
3018 debug_to_can_run (void)
3019 {
3020 int retval;
3021
3022 retval = debug_target.to_can_run ();
3023
3024 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3025
3026 return retval;
3027 }
3028
3029 static void
3030 debug_to_notice_signals (ptid_t ptid)
3031 {
3032 debug_target.to_notice_signals (ptid);
3033
3034 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3035 PIDGET (ptid));
3036 }
3037
3038 static int
3039 debug_to_thread_alive (ptid_t ptid)
3040 {
3041 int retval;
3042
3043 retval = debug_target.to_thread_alive (ptid);
3044
3045 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3046 PIDGET (ptid), retval);
3047
3048 return retval;
3049 }
3050
3051 static void
3052 debug_to_find_new_threads (void)
3053 {
3054 debug_target.to_find_new_threads ();
3055
3056 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3057 }
3058
3059 static void
3060 debug_to_stop (ptid_t ptid)
3061 {
3062 debug_target.to_stop (ptid);
3063
3064 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3065 target_pid_to_str (ptid));
3066 }
3067
3068 static void
3069 debug_to_rcmd (char *command,
3070 struct ui_file *outbuf)
3071 {
3072 debug_target.to_rcmd (command, outbuf);
3073 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3074 }
3075
3076 static char *
3077 debug_to_pid_to_exec_file (int pid)
3078 {
3079 char *exec_file;
3080
3081 exec_file = debug_target.to_pid_to_exec_file (pid);
3082
3083 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3084 pid, exec_file);
3085
3086 return exec_file;
3087 }
3088
3089 static void
3090 setup_target_debug (void)
3091 {
3092 memcpy (&debug_target, &current_target, sizeof debug_target);
3093
3094 current_target.to_open = debug_to_open;
3095 current_target.to_close = debug_to_close;
3096 current_target.to_attach = debug_to_attach;
3097 current_target.to_post_attach = debug_to_post_attach;
3098 current_target.to_detach = debug_to_detach;
3099 current_target.to_resume = debug_to_resume;
3100 current_target.to_wait = debug_to_wait;
3101 current_target.to_fetch_registers = debug_to_fetch_registers;
3102 current_target.to_store_registers = debug_to_store_registers;
3103 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3104 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3105 current_target.to_files_info = debug_to_files_info;
3106 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3107 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3108 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3109 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3110 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3111 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3112 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3113 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3114 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3115 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3116 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3117 current_target.to_terminal_init = debug_to_terminal_init;
3118 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3119 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3120 current_target.to_terminal_ours = debug_to_terminal_ours;
3121 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3122 current_target.to_terminal_info = debug_to_terminal_info;
3123 current_target.to_kill = debug_to_kill;
3124 current_target.to_load = debug_to_load;
3125 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3126 current_target.to_create_inferior = debug_to_create_inferior;
3127 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3128 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3129 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3130 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3131 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3132 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3133 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3134 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3135 current_target.to_has_exited = debug_to_has_exited;
3136 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3137 current_target.to_can_run = debug_to_can_run;
3138 current_target.to_notice_signals = debug_to_notice_signals;
3139 current_target.to_thread_alive = debug_to_thread_alive;
3140 current_target.to_find_new_threads = debug_to_find_new_threads;
3141 current_target.to_stop = debug_to_stop;
3142 current_target.to_rcmd = debug_to_rcmd;
3143 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3144 }
3145 \f
3146
3147 static char targ_desc[] =
3148 "Names of targets and files being debugged.\n\
3149 Shows the entire stack of targets currently in use (including the exec-file,\n\
3150 core-file, and process, if any), as well as the symbol file name.";
3151
3152 static void
3153 do_monitor_command (char *cmd,
3154 int from_tty)
3155 {
3156 if ((current_target.to_rcmd
3157 == (void (*) (char *, struct ui_file *)) tcomplain)
3158 || (current_target.to_rcmd == debug_to_rcmd
3159 && (debug_target.to_rcmd
3160 == (void (*) (char *, struct ui_file *)) tcomplain)))
3161 error (_("\"monitor\" command not supported by this target."));
3162 target_rcmd (cmd, gdb_stdtarg);
3163 }
3164
3165 /* Print the name of each layers of our target stack. */
3166
3167 static void
3168 maintenance_print_target_stack (char *cmd, int from_tty)
3169 {
3170 struct target_ops *t;
3171
3172 printf_filtered (_("The current target stack is:\n"));
3173
3174 for (t = target_stack; t != NULL; t = t->beneath)
3175 {
3176 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3177 }
3178 }
3179
3180 /* Controls if async mode is permitted. */
3181 int target_async_permitted = 0;
3182
3183 /* The set command writes to this variable. If the inferior is
3184 executing, linux_nat_async_permitted is *not* updated. */
3185 static int target_async_permitted_1 = 0;
3186
3187 static void
3188 set_maintenance_target_async_permitted (char *args, int from_tty,
3189 struct cmd_list_element *c)
3190 {
3191 if (target_has_execution)
3192 {
3193 target_async_permitted_1 = target_async_permitted;
3194 error (_("Cannot change this setting while the inferior is running."));
3195 }
3196
3197 target_async_permitted = target_async_permitted_1;
3198 }
3199
3200 static void
3201 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3202 struct cmd_list_element *c,
3203 const char *value)
3204 {
3205 fprintf_filtered (file, _("\
3206 Controlling the inferior in asynchronous mode is %s.\n"), value);
3207 }
3208
3209 void
3210 initialize_targets (void)
3211 {
3212 init_dummy_target ();
3213 push_target (&dummy_target);
3214
3215 add_info ("target", target_info, targ_desc);
3216 add_info ("files", target_info, targ_desc);
3217
3218 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3219 Set target debugging."), _("\
3220 Show target debugging."), _("\
3221 When non-zero, target debugging is enabled. Higher numbers are more\n\
3222 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3223 command."),
3224 NULL,
3225 show_targetdebug,
3226 &setdebuglist, &showdebuglist);
3227
3228 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3229 &trust_readonly, _("\
3230 Set mode for reading from readonly sections."), _("\
3231 Show mode for reading from readonly sections."), _("\
3232 When this mode is on, memory reads from readonly sections (such as .text)\n\
3233 will be read from the object file instead of from the target. This will\n\
3234 result in significant performance improvement for remote targets."),
3235 NULL,
3236 show_trust_readonly,
3237 &setlist, &showlist);
3238
3239 add_com ("monitor", class_obscure, do_monitor_command,
3240 _("Send a command to the remote monitor (remote targets only)."));
3241
3242 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3243 _("Print the name of each layer of the internal target stack."),
3244 &maintenanceprintlist);
3245
3246 add_setshow_boolean_cmd ("target-async", no_class,
3247 &target_async_permitted_1, _("\
3248 Set whether gdb controls the inferior in asynchronous mode."), _("\
3249 Show whether gdb controls the inferior in asynchronous mode."), _("\
3250 Tells gdb whether to control the inferior in asynchronous mode."),
3251 set_maintenance_target_async_permitted,
3252 show_maintenance_target_async_permitted,
3253 &setlist,
3254 &showlist);
3255
3256 target_dcache = dcache_init ();
3257 }