gdb/testsuite/
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
121
122 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static void debug_to_terminal_init (void);
134
135 static void debug_to_terminal_inferior (void);
136
137 static void debug_to_terminal_ours_for_output (void);
138
139 static void debug_to_terminal_save_ours (void);
140
141 static void debug_to_terminal_ours (void);
142
143 static void debug_to_terminal_info (char *, int);
144
145 static void debug_to_load (char *, int);
146
147 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_notice_signals (ptid_t);
152
153 static void debug_to_stop (ptid_t);
154
155 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
156 wierd and mysterious ways. Putting the variable here lets those
157 wierd and mysterious ways keep building while they are being
158 converted to the inferior inheritance structure. */
159 struct target_ops deprecated_child_ops;
160
161 /* Pointer to array of target architecture structures; the size of the
162 array; the current index into the array; the allocated size of the
163 array. */
164 struct target_ops **target_structs;
165 unsigned target_struct_size;
166 unsigned target_struct_index;
167 unsigned target_struct_allocsize;
168 #define DEFAULT_ALLOCSIZE 10
169
170 /* The initial current target, so that there is always a semi-valid
171 current target. */
172
173 static struct target_ops dummy_target;
174
175 /* Top of target stack. */
176
177 static struct target_ops *target_stack;
178
179 /* The target structure we are currently using to talk to a process
180 or file or whatever "inferior" we have. */
181
182 struct target_ops current_target;
183
184 /* Command list for target. */
185
186 static struct cmd_list_element *targetlist = NULL;
187
188 /* Nonzero if we should trust readonly sections from the
189 executable when reading memory. */
190
191 static int trust_readonly = 0;
192
193 /* Nonzero if we should show true memory content including
194 memory breakpoint inserted by gdb. */
195
196 static int show_memory_breakpoints = 0;
197
198 /* Non-zero if we want to see trace of target level stuff. */
199
200 static int targetdebug = 0;
201 static void
202 show_targetdebug (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
206 }
207
208 static void setup_target_debug (void);
209
210 /* The option sets this. */
211 static int stack_cache_enabled_p_1 = 1;
212 /* And set_stack_cache_enabled_p updates this.
213 The reason for the separation is so that we don't flush the cache for
214 on->on transitions. */
215 static int stack_cache_enabled_p = 1;
216
217 /* This is called *after* the stack-cache has been set.
218 Flush the cache for off->on and on->off transitions.
219 There's no real need to flush the cache for on->off transitions,
220 except cleanliness. */
221
222 static void
223 set_stack_cache_enabled_p (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
227 target_dcache_invalidate ();
228
229 stack_cache_enabled_p = stack_cache_enabled_p_1;
230 }
231
232 static void
233 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
237 }
238
239 /* Cache of memory operations, to speed up remote access. */
240 static DCACHE *target_dcache;
241
242 /* Invalidate the target dcache. */
243
244 void
245 target_dcache_invalidate (void)
246 {
247 dcache_invalidate (target_dcache);
248 }
249
250 /* The user just typed 'target' without the name of a target. */
251
252 static void
253 target_command (char *arg, int from_tty)
254 {
255 fputs_filtered ("Argument required (target name). Try `help target'\n",
256 gdb_stdout);
257 }
258
259 /* Default target_has_* methods for process_stratum targets. */
260
261 int
262 default_child_has_all_memory (struct target_ops *ops)
263 {
264 /* If no inferior selected, then we can't read memory here. */
265 if (ptid_equal (inferior_ptid, null_ptid))
266 return 0;
267
268 return 1;
269 }
270
271 int
272 default_child_has_memory (struct target_ops *ops)
273 {
274 /* If no inferior selected, then we can't read memory here. */
275 if (ptid_equal (inferior_ptid, null_ptid))
276 return 0;
277
278 return 1;
279 }
280
281 int
282 default_child_has_stack (struct target_ops *ops)
283 {
284 /* If no inferior selected, there's no stack. */
285 if (ptid_equal (inferior_ptid, null_ptid))
286 return 0;
287
288 return 1;
289 }
290
291 int
292 default_child_has_registers (struct target_ops *ops)
293 {
294 /* Can't read registers from no inferior. */
295 if (ptid_equal (inferior_ptid, null_ptid))
296 return 0;
297
298 return 1;
299 }
300
301 int
302 default_child_has_execution (struct target_ops *ops)
303 {
304 /* If there's no thread selected, then we can't make it run through
305 hoops. */
306 if (ptid_equal (inferior_ptid, null_ptid))
307 return 0;
308
309 return 1;
310 }
311
312
313 int
314 target_has_all_memory_1 (void)
315 {
316 struct target_ops *t;
317
318 for (t = current_target.beneath; t != NULL; t = t->beneath)
319 if (t->to_has_all_memory (t))
320 return 1;
321
322 return 0;
323 }
324
325 int
326 target_has_memory_1 (void)
327 {
328 struct target_ops *t;
329
330 for (t = current_target.beneath; t != NULL; t = t->beneath)
331 if (t->to_has_memory (t))
332 return 1;
333
334 return 0;
335 }
336
337 int
338 target_has_stack_1 (void)
339 {
340 struct target_ops *t;
341
342 for (t = current_target.beneath; t != NULL; t = t->beneath)
343 if (t->to_has_stack (t))
344 return 1;
345
346 return 0;
347 }
348
349 int
350 target_has_registers_1 (void)
351 {
352 struct target_ops *t;
353
354 for (t = current_target.beneath; t != NULL; t = t->beneath)
355 if (t->to_has_registers (t))
356 return 1;
357
358 return 0;
359 }
360
361 int
362 target_has_execution_1 (void)
363 {
364 struct target_ops *t;
365
366 for (t = current_target.beneath; t != NULL; t = t->beneath)
367 if (t->to_has_execution (t))
368 return 1;
369
370 return 0;
371 }
372
373 /* Add a possible target architecture to the list. */
374
375 void
376 add_target (struct target_ops *t)
377 {
378 /* Provide default values for all "must have" methods. */
379 if (t->to_xfer_partial == NULL)
380 t->to_xfer_partial = default_xfer_partial;
381
382 if (t->to_has_all_memory == NULL)
383 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
384
385 if (t->to_has_memory == NULL)
386 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
387
388 if (t->to_has_stack == NULL)
389 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
390
391 if (t->to_has_registers == NULL)
392 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
393
394 if (t->to_has_execution == NULL)
395 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
421 }
422
423 /* Stub functions */
424
425 void
426 target_ignore (void)
427 {
428 }
429
430 void
431 target_kill (void)
432 {
433 struct target_ops *t;
434
435 for (t = current_target.beneath; t != NULL; t = t->beneath)
436 if (t->to_kill != NULL)
437 {
438 if (targetdebug)
439 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
440
441 t->to_kill (t);
442 return;
443 }
444
445 noprocess ();
446 }
447
448 void
449 target_load (char *arg, int from_tty)
450 {
451 target_dcache_invalidate ();
452 (*current_target.to_load) (arg, from_tty);
453 }
454
455 void
456 target_create_inferior (char *exec_file, char *args,
457 char **env, int from_tty)
458 {
459 struct target_ops *t;
460
461 for (t = current_target.beneath; t != NULL; t = t->beneath)
462 {
463 if (t->to_create_inferior != NULL)
464 {
465 t->to_create_inferior (t, exec_file, args, env, from_tty);
466 if (targetdebug)
467 fprintf_unfiltered (gdb_stdlog,
468 "target_create_inferior (%s, %s, xxx, %d)\n",
469 exec_file, args, from_tty);
470 return;
471 }
472 }
473
474 internal_error (__FILE__, __LINE__,
475 "could not find a target to create inferior");
476 }
477
478 void
479 target_terminal_inferior (void)
480 {
481 /* A background resume (``run&'') should leave GDB in control of the
482 terminal. Use target_can_async_p, not target_is_async_p, since at
483 this point the target is not async yet. However, if sync_execution
484 is not set, we know it will become async prior to resume. */
485 if (target_can_async_p () && !sync_execution)
486 return;
487
488 /* If GDB is resuming the inferior in the foreground, install
489 inferior's terminal modes. */
490 (*current_target.to_terminal_inferior) ();
491 }
492
493 static int
494 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
495 struct target_ops *t)
496 {
497 errno = EIO; /* Can't read/write this location */
498 return 0; /* No bytes handled */
499 }
500
501 static void
502 tcomplain (void)
503 {
504 error (_("You can't do that when your target is `%s'"),
505 current_target.to_shortname);
506 }
507
508 void
509 noprocess (void)
510 {
511 error (_("You can't do that without a process to debug."));
512 }
513
514 static int
515 nosymbol (char *name, CORE_ADDR *addrp)
516 {
517 return 1; /* Symbol does not exist in target env */
518 }
519
520 static void
521 default_terminal_info (char *args, int from_tty)
522 {
523 printf_unfiltered (_("No saved terminal information.\n"));
524 }
525
526 /* A default implementation for the to_get_ada_task_ptid target method.
527
528 This function builds the PTID by using both LWP and TID as part of
529 the PTID lwp and tid elements. The pid used is the pid of the
530 inferior_ptid. */
531
532 static ptid_t
533 default_get_ada_task_ptid (long lwp, long tid)
534 {
535 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
536 }
537
538 /* Go through the target stack from top to bottom, copying over zero
539 entries in current_target, then filling in still empty entries. In
540 effect, we are doing class inheritance through the pushed target
541 vectors.
542
543 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
544 is currently implemented, is that it discards any knowledge of
545 which target an inherited method originally belonged to.
546 Consequently, new new target methods should instead explicitly and
547 locally search the target stack for the target that can handle the
548 request. */
549
550 static void
551 update_current_target (void)
552 {
553 struct target_ops *t;
554
555 /* First, reset current's contents. */
556 memset (&current_target, 0, sizeof (current_target));
557
558 #define INHERIT(FIELD, TARGET) \
559 if (!current_target.FIELD) \
560 current_target.FIELD = (TARGET)->FIELD
561
562 for (t = target_stack; t; t = t->beneath)
563 {
564 INHERIT (to_shortname, t);
565 INHERIT (to_longname, t);
566 INHERIT (to_doc, t);
567 /* Do not inherit to_open. */
568 /* Do not inherit to_close. */
569 /* Do not inherit to_attach. */
570 INHERIT (to_post_attach, t);
571 INHERIT (to_attach_no_wait, t);
572 /* Do not inherit to_detach. */
573 /* Do not inherit to_disconnect. */
574 /* Do not inherit to_resume. */
575 /* Do not inherit to_wait. */
576 /* Do not inherit to_fetch_registers. */
577 /* Do not inherit to_store_registers. */
578 INHERIT (to_prepare_to_store, t);
579 INHERIT (deprecated_xfer_memory, t);
580 INHERIT (to_files_info, t);
581 INHERIT (to_insert_breakpoint, t);
582 INHERIT (to_remove_breakpoint, t);
583 INHERIT (to_can_use_hw_breakpoint, t);
584 INHERIT (to_insert_hw_breakpoint, t);
585 INHERIT (to_remove_hw_breakpoint, t);
586 INHERIT (to_insert_watchpoint, t);
587 INHERIT (to_remove_watchpoint, t);
588 INHERIT (to_stopped_data_address, t);
589 INHERIT (to_have_steppable_watchpoint, t);
590 INHERIT (to_have_continuable_watchpoint, t);
591 INHERIT (to_stopped_by_watchpoint, t);
592 INHERIT (to_watchpoint_addr_within_range, t);
593 INHERIT (to_region_ok_for_hw_watchpoint, t);
594 INHERIT (to_terminal_init, t);
595 INHERIT (to_terminal_inferior, t);
596 INHERIT (to_terminal_ours_for_output, t);
597 INHERIT (to_terminal_ours, t);
598 INHERIT (to_terminal_save_ours, t);
599 INHERIT (to_terminal_info, t);
600 /* Do not inherit to_kill. */
601 INHERIT (to_load, t);
602 INHERIT (to_lookup_symbol, t);
603 /* Do no inherit to_create_inferior. */
604 INHERIT (to_post_startup_inferior, t);
605 INHERIT (to_acknowledge_created_inferior, t);
606 INHERIT (to_insert_fork_catchpoint, t);
607 INHERIT (to_remove_fork_catchpoint, t);
608 INHERIT (to_insert_vfork_catchpoint, t);
609 INHERIT (to_remove_vfork_catchpoint, t);
610 /* Do not inherit to_follow_fork. */
611 INHERIT (to_insert_exec_catchpoint, t);
612 INHERIT (to_remove_exec_catchpoint, t);
613 INHERIT (to_set_syscall_catchpoint, t);
614 INHERIT (to_has_exited, t);
615 /* Do not inherit to_mourn_inferiour. */
616 INHERIT (to_can_run, t);
617 INHERIT (to_notice_signals, t);
618 /* Do not inherit to_thread_alive. */
619 /* Do not inherit to_find_new_threads. */
620 /* Do not inherit to_pid_to_str. */
621 INHERIT (to_extra_thread_info, t);
622 INHERIT (to_stop, t);
623 /* Do not inherit to_xfer_partial. */
624 INHERIT (to_rcmd, t);
625 INHERIT (to_pid_to_exec_file, t);
626 INHERIT (to_log_command, t);
627 INHERIT (to_stratum, t);
628 /* Do not inherit to_has_all_memory */
629 /* Do not inherit to_has_memory */
630 /* Do not inherit to_has_stack */
631 /* Do not inherit to_has_registers */
632 /* Do not inherit to_has_execution */
633 INHERIT (to_has_thread_control, t);
634 INHERIT (to_can_async_p, t);
635 INHERIT (to_is_async_p, t);
636 INHERIT (to_async, t);
637 INHERIT (to_async_mask, t);
638 INHERIT (to_find_memory_regions, t);
639 INHERIT (to_make_corefile_notes, t);
640 INHERIT (to_get_bookmark, t);
641 INHERIT (to_goto_bookmark, t);
642 /* Do not inherit to_get_thread_local_address. */
643 INHERIT (to_can_execute_reverse, t);
644 INHERIT (to_thread_architecture, t);
645 /* Do not inherit to_read_description. */
646 INHERIT (to_get_ada_task_ptid, t);
647 /* Do not inherit to_search_memory. */
648 INHERIT (to_supports_multi_process, t);
649 INHERIT (to_trace_init, t);
650 INHERIT (to_download_tracepoint, t);
651 INHERIT (to_download_trace_state_variable, t);
652 INHERIT (to_trace_set_readonly_regions, t);
653 INHERIT (to_trace_start, t);
654 INHERIT (to_get_trace_status, t);
655 INHERIT (to_trace_stop, t);
656 INHERIT (to_trace_find, t);
657 INHERIT (to_get_trace_state_variable_value, t);
658 INHERIT (to_save_trace_data, t);
659 INHERIT (to_upload_tracepoints, t);
660 INHERIT (to_upload_trace_state_variables, t);
661 INHERIT (to_get_raw_trace_data, t);
662 INHERIT (to_set_disconnected_tracing, t);
663 INHERIT (to_set_circular_trace_buffer, t);
664 INHERIT (to_get_tib_address, t);
665 INHERIT (to_magic, t);
666 /* Do not inherit to_memory_map. */
667 /* Do not inherit to_flash_erase. */
668 /* Do not inherit to_flash_done. */
669 }
670 #undef INHERIT
671
672 /* Clean up a target struct so it no longer has any zero pointers in
673 it. Some entries are defaulted to a method that print an error,
674 others are hard-wired to a standard recursive default. */
675
676 #define de_fault(field, value) \
677 if (!current_target.field) \
678 current_target.field = value
679
680 de_fault (to_open,
681 (void (*) (char *, int))
682 tcomplain);
683 de_fault (to_close,
684 (void (*) (int))
685 target_ignore);
686 de_fault (to_post_attach,
687 (void (*) (int))
688 target_ignore);
689 de_fault (to_prepare_to_store,
690 (void (*) (struct regcache *))
691 noprocess);
692 de_fault (deprecated_xfer_memory,
693 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
694 nomemory);
695 de_fault (to_files_info,
696 (void (*) (struct target_ops *))
697 target_ignore);
698 de_fault (to_insert_breakpoint,
699 memory_insert_breakpoint);
700 de_fault (to_remove_breakpoint,
701 memory_remove_breakpoint);
702 de_fault (to_can_use_hw_breakpoint,
703 (int (*) (int, int, int))
704 return_zero);
705 de_fault (to_insert_hw_breakpoint,
706 (int (*) (struct gdbarch *, struct bp_target_info *))
707 return_minus_one);
708 de_fault (to_remove_hw_breakpoint,
709 (int (*) (struct gdbarch *, struct bp_target_info *))
710 return_minus_one);
711 de_fault (to_insert_watchpoint,
712 (int (*) (CORE_ADDR, int, int))
713 return_minus_one);
714 de_fault (to_remove_watchpoint,
715 (int (*) (CORE_ADDR, int, int))
716 return_minus_one);
717 de_fault (to_stopped_by_watchpoint,
718 (int (*) (void))
719 return_zero);
720 de_fault (to_stopped_data_address,
721 (int (*) (struct target_ops *, CORE_ADDR *))
722 return_zero);
723 de_fault (to_watchpoint_addr_within_range,
724 default_watchpoint_addr_within_range);
725 de_fault (to_region_ok_for_hw_watchpoint,
726 default_region_ok_for_hw_watchpoint);
727 de_fault (to_terminal_init,
728 (void (*) (void))
729 target_ignore);
730 de_fault (to_terminal_inferior,
731 (void (*) (void))
732 target_ignore);
733 de_fault (to_terminal_ours_for_output,
734 (void (*) (void))
735 target_ignore);
736 de_fault (to_terminal_ours,
737 (void (*) (void))
738 target_ignore);
739 de_fault (to_terminal_save_ours,
740 (void (*) (void))
741 target_ignore);
742 de_fault (to_terminal_info,
743 default_terminal_info);
744 de_fault (to_load,
745 (void (*) (char *, int))
746 tcomplain);
747 de_fault (to_lookup_symbol,
748 (int (*) (char *, CORE_ADDR *))
749 nosymbol);
750 de_fault (to_post_startup_inferior,
751 (void (*) (ptid_t))
752 target_ignore);
753 de_fault (to_acknowledge_created_inferior,
754 (void (*) (int))
755 target_ignore);
756 de_fault (to_insert_fork_catchpoint,
757 (void (*) (int))
758 tcomplain);
759 de_fault (to_remove_fork_catchpoint,
760 (int (*) (int))
761 tcomplain);
762 de_fault (to_insert_vfork_catchpoint,
763 (void (*) (int))
764 tcomplain);
765 de_fault (to_remove_vfork_catchpoint,
766 (int (*) (int))
767 tcomplain);
768 de_fault (to_insert_exec_catchpoint,
769 (void (*) (int))
770 tcomplain);
771 de_fault (to_remove_exec_catchpoint,
772 (int (*) (int))
773 tcomplain);
774 de_fault (to_set_syscall_catchpoint,
775 (int (*) (int, int, int, int, int *))
776 tcomplain);
777 de_fault (to_has_exited,
778 (int (*) (int, int, int *))
779 return_zero);
780 de_fault (to_can_run,
781 return_zero);
782 de_fault (to_notice_signals,
783 (void (*) (ptid_t))
784 target_ignore);
785 de_fault (to_extra_thread_info,
786 (char *(*) (struct thread_info *))
787 return_zero);
788 de_fault (to_stop,
789 (void (*) (ptid_t))
790 target_ignore);
791 current_target.to_xfer_partial = current_xfer_partial;
792 de_fault (to_rcmd,
793 (void (*) (char *, struct ui_file *))
794 tcomplain);
795 de_fault (to_pid_to_exec_file,
796 (char *(*) (int))
797 return_zero);
798 de_fault (to_async,
799 (void (*) (void (*) (enum inferior_event_type, void*), void*))
800 tcomplain);
801 de_fault (to_async_mask,
802 (int (*) (int))
803 return_one);
804 de_fault (to_thread_architecture,
805 default_thread_architecture);
806 current_target.to_read_description = NULL;
807 de_fault (to_get_ada_task_ptid,
808 (ptid_t (*) (long, long))
809 default_get_ada_task_ptid);
810 de_fault (to_supports_multi_process,
811 (int (*) (void))
812 return_zero);
813 de_fault (to_trace_init,
814 (void (*) (void))
815 tcomplain);
816 de_fault (to_download_tracepoint,
817 (void (*) (struct breakpoint *))
818 tcomplain);
819 de_fault (to_download_trace_state_variable,
820 (void (*) (struct trace_state_variable *))
821 tcomplain);
822 de_fault (to_trace_set_readonly_regions,
823 (void (*) (void))
824 tcomplain);
825 de_fault (to_trace_start,
826 (void (*) (void))
827 tcomplain);
828 de_fault (to_get_trace_status,
829 (int (*) (struct trace_status *))
830 return_minus_one);
831 de_fault (to_trace_stop,
832 (void (*) (void))
833 tcomplain);
834 de_fault (to_trace_find,
835 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
836 return_minus_one);
837 de_fault (to_get_trace_state_variable_value,
838 (int (*) (int, LONGEST *))
839 return_zero);
840 de_fault (to_save_trace_data,
841 (int (*) (const char *))
842 tcomplain);
843 de_fault (to_upload_tracepoints,
844 (int (*) (struct uploaded_tp **))
845 return_zero);
846 de_fault (to_upload_trace_state_variables,
847 (int (*) (struct uploaded_tsv **))
848 return_zero);
849 de_fault (to_get_raw_trace_data,
850 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
851 tcomplain);
852 de_fault (to_set_disconnected_tracing,
853 (void (*) (int))
854 target_ignore);
855 de_fault (to_set_circular_trace_buffer,
856 (void (*) (int))
857 target_ignore);
858 de_fault (to_get_tib_address,
859 (int (*) (ptid_t, CORE_ADDR *))
860 tcomplain);
861 #undef de_fault
862
863 /* Finally, position the target-stack beneath the squashed
864 "current_target". That way code looking for a non-inherited
865 target method can quickly and simply find it. */
866 current_target.beneath = target_stack;
867
868 if (targetdebug)
869 setup_target_debug ();
870 }
871
872 /* Push a new target type into the stack of the existing target accessors,
873 possibly superseding some of the existing accessors.
874
875 Rather than allow an empty stack, we always have the dummy target at
876 the bottom stratum, so we can call the function vectors without
877 checking them. */
878
879 void
880 push_target (struct target_ops *t)
881 {
882 struct target_ops **cur;
883
884 /* Check magic number. If wrong, it probably means someone changed
885 the struct definition, but not all the places that initialize one. */
886 if (t->to_magic != OPS_MAGIC)
887 {
888 fprintf_unfiltered (gdb_stderr,
889 "Magic number of %s target struct wrong\n",
890 t->to_shortname);
891 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
892 }
893
894 /* Find the proper stratum to install this target in. */
895 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
896 {
897 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
898 break;
899 }
900
901 /* If there's already targets at this stratum, remove them. */
902 /* FIXME: cagney/2003-10-15: I think this should be popping all
903 targets to CUR, and not just those at this stratum level. */
904 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
905 {
906 /* There's already something at this stratum level. Close it,
907 and un-hook it from the stack. */
908 struct target_ops *tmp = (*cur);
909
910 (*cur) = (*cur)->beneath;
911 tmp->beneath = NULL;
912 target_close (tmp, 0);
913 }
914
915 /* We have removed all targets in our stratum, now add the new one. */
916 t->beneath = (*cur);
917 (*cur) = t;
918
919 update_current_target ();
920 }
921
922 /* Remove a target_ops vector from the stack, wherever it may be.
923 Return how many times it was removed (0 or 1). */
924
925 int
926 unpush_target (struct target_ops *t)
927 {
928 struct target_ops **cur;
929 struct target_ops *tmp;
930
931 if (t->to_stratum == dummy_stratum)
932 internal_error (__FILE__, __LINE__,
933 "Attempt to unpush the dummy target");
934
935 /* Look for the specified target. Note that we assume that a target
936 can only occur once in the target stack. */
937
938 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
939 {
940 if ((*cur) == t)
941 break;
942 }
943
944 if ((*cur) == NULL)
945 return 0; /* Didn't find target_ops, quit now */
946
947 /* NOTE: cagney/2003-12-06: In '94 the close call was made
948 unconditional by moving it to before the above check that the
949 target was in the target stack (something about "Change the way
950 pushing and popping of targets work to support target overlays
951 and inheritance"). This doesn't make much sense - only open
952 targets should be closed. */
953 target_close (t, 0);
954
955 /* Unchain the target */
956 tmp = (*cur);
957 (*cur) = (*cur)->beneath;
958 tmp->beneath = NULL;
959
960 update_current_target ();
961
962 return 1;
963 }
964
965 void
966 pop_target (void)
967 {
968 target_close (target_stack, 0); /* Let it clean up */
969 if (unpush_target (target_stack) == 1)
970 return;
971
972 fprintf_unfiltered (gdb_stderr,
973 "pop_target couldn't find target %s\n",
974 current_target.to_shortname);
975 internal_error (__FILE__, __LINE__,
976 _("failed internal consistency check"));
977 }
978
979 void
980 pop_all_targets_above (enum strata above_stratum, int quitting)
981 {
982 while ((int) (current_target.to_stratum) > (int) above_stratum)
983 {
984 target_close (target_stack, quitting);
985 if (!unpush_target (target_stack))
986 {
987 fprintf_unfiltered (gdb_stderr,
988 "pop_all_targets couldn't find target %s\n",
989 target_stack->to_shortname);
990 internal_error (__FILE__, __LINE__,
991 _("failed internal consistency check"));
992 break;
993 }
994 }
995 }
996
997 void
998 pop_all_targets (int quitting)
999 {
1000 pop_all_targets_above (dummy_stratum, quitting);
1001 }
1002
1003 /* Using the objfile specified in OBJFILE, find the address for the
1004 current thread's thread-local storage with offset OFFSET. */
1005 CORE_ADDR
1006 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1007 {
1008 volatile CORE_ADDR addr = 0;
1009 struct target_ops *target;
1010
1011 for (target = current_target.beneath;
1012 target != NULL;
1013 target = target->beneath)
1014 {
1015 if (target->to_get_thread_local_address != NULL)
1016 break;
1017 }
1018
1019 if (target != NULL
1020 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1021 {
1022 ptid_t ptid = inferior_ptid;
1023 volatile struct gdb_exception ex;
1024
1025 TRY_CATCH (ex, RETURN_MASK_ALL)
1026 {
1027 CORE_ADDR lm_addr;
1028
1029 /* Fetch the load module address for this objfile. */
1030 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1031 objfile);
1032 /* If it's 0, throw the appropriate exception. */
1033 if (lm_addr == 0)
1034 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1035 _("TLS load module not found"));
1036
1037 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1038 }
1039 /* If an error occurred, print TLS related messages here. Otherwise,
1040 throw the error to some higher catcher. */
1041 if (ex.reason < 0)
1042 {
1043 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1044
1045 switch (ex.error)
1046 {
1047 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1048 error (_("Cannot find thread-local variables in this thread library."));
1049 break;
1050 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1051 if (objfile_is_library)
1052 error (_("Cannot find shared library `%s' in dynamic"
1053 " linker's load module list"), objfile->name);
1054 else
1055 error (_("Cannot find executable file `%s' in dynamic"
1056 " linker's load module list"), objfile->name);
1057 break;
1058 case TLS_NOT_ALLOCATED_YET_ERROR:
1059 if (objfile_is_library)
1060 error (_("The inferior has not yet allocated storage for"
1061 " thread-local variables in\n"
1062 "the shared library `%s'\n"
1063 "for %s"),
1064 objfile->name, target_pid_to_str (ptid));
1065 else
1066 error (_("The inferior has not yet allocated storage for"
1067 " thread-local variables in\n"
1068 "the executable `%s'\n"
1069 "for %s"),
1070 objfile->name, target_pid_to_str (ptid));
1071 break;
1072 case TLS_GENERIC_ERROR:
1073 if (objfile_is_library)
1074 error (_("Cannot find thread-local storage for %s, "
1075 "shared library %s:\n%s"),
1076 target_pid_to_str (ptid),
1077 objfile->name, ex.message);
1078 else
1079 error (_("Cannot find thread-local storage for %s, "
1080 "executable file %s:\n%s"),
1081 target_pid_to_str (ptid),
1082 objfile->name, ex.message);
1083 break;
1084 default:
1085 throw_exception (ex);
1086 break;
1087 }
1088 }
1089 }
1090 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1091 TLS is an ABI-specific thing. But we don't do that yet. */
1092 else
1093 error (_("Cannot find thread-local variables on this target"));
1094
1095 return addr;
1096 }
1097
1098 #undef MIN
1099 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1100
1101 /* target_read_string -- read a null terminated string, up to LEN bytes,
1102 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1103 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1104 is responsible for freeing it. Return the number of bytes successfully
1105 read. */
1106
1107 int
1108 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1109 {
1110 int tlen, origlen, offset, i;
1111 gdb_byte buf[4];
1112 int errcode = 0;
1113 char *buffer;
1114 int buffer_allocated;
1115 char *bufptr;
1116 unsigned int nbytes_read = 0;
1117
1118 gdb_assert (string);
1119
1120 /* Small for testing. */
1121 buffer_allocated = 4;
1122 buffer = xmalloc (buffer_allocated);
1123 bufptr = buffer;
1124
1125 origlen = len;
1126
1127 while (len > 0)
1128 {
1129 tlen = MIN (len, 4 - (memaddr & 3));
1130 offset = memaddr & 3;
1131
1132 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1133 if (errcode != 0)
1134 {
1135 /* The transfer request might have crossed the boundary to an
1136 unallocated region of memory. Retry the transfer, requesting
1137 a single byte. */
1138 tlen = 1;
1139 offset = 0;
1140 errcode = target_read_memory (memaddr, buf, 1);
1141 if (errcode != 0)
1142 goto done;
1143 }
1144
1145 if (bufptr - buffer + tlen > buffer_allocated)
1146 {
1147 unsigned int bytes;
1148
1149 bytes = bufptr - buffer;
1150 buffer_allocated *= 2;
1151 buffer = xrealloc (buffer, buffer_allocated);
1152 bufptr = buffer + bytes;
1153 }
1154
1155 for (i = 0; i < tlen; i++)
1156 {
1157 *bufptr++ = buf[i + offset];
1158 if (buf[i + offset] == '\000')
1159 {
1160 nbytes_read += i + 1;
1161 goto done;
1162 }
1163 }
1164
1165 memaddr += tlen;
1166 len -= tlen;
1167 nbytes_read += tlen;
1168 }
1169 done:
1170 *string = buffer;
1171 if (errnop != NULL)
1172 *errnop = errcode;
1173 return nbytes_read;
1174 }
1175
1176 struct target_section_table *
1177 target_get_section_table (struct target_ops *target)
1178 {
1179 struct target_ops *t;
1180
1181 if (targetdebug)
1182 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1183
1184 for (t = target; t != NULL; t = t->beneath)
1185 if (t->to_get_section_table != NULL)
1186 return (*t->to_get_section_table) (t);
1187
1188 return NULL;
1189 }
1190
1191 /* Find a section containing ADDR. */
1192
1193 struct target_section *
1194 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1195 {
1196 struct target_section_table *table = target_get_section_table (target);
1197 struct target_section *secp;
1198
1199 if (table == NULL)
1200 return NULL;
1201
1202 for (secp = table->sections; secp < table->sections_end; secp++)
1203 {
1204 if (addr >= secp->addr && addr < secp->endaddr)
1205 return secp;
1206 }
1207 return NULL;
1208 }
1209
1210 /* Perform a partial memory transfer.
1211 For docs see target.h, to_xfer_partial. */
1212
1213 static LONGEST
1214 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1215 void *readbuf, const void *writebuf, ULONGEST memaddr,
1216 LONGEST len)
1217 {
1218 LONGEST res;
1219 int reg_len;
1220 struct mem_region *region;
1221 struct inferior *inf;
1222
1223 /* Zero length requests are ok and require no work. */
1224 if (len == 0)
1225 return 0;
1226
1227 /* For accesses to unmapped overlay sections, read directly from
1228 files. Must do this first, as MEMADDR may need adjustment. */
1229 if (readbuf != NULL && overlay_debugging)
1230 {
1231 struct obj_section *section = find_pc_overlay (memaddr);
1232
1233 if (pc_in_unmapped_range (memaddr, section))
1234 {
1235 struct target_section_table *table
1236 = target_get_section_table (ops);
1237 const char *section_name = section->the_bfd_section->name;
1238
1239 memaddr = overlay_mapped_address (memaddr, section);
1240 return section_table_xfer_memory_partial (readbuf, writebuf,
1241 memaddr, len,
1242 table->sections,
1243 table->sections_end,
1244 section_name);
1245 }
1246 }
1247
1248 /* Try the executable files, if "trust-readonly-sections" is set. */
1249 if (readbuf != NULL && trust_readonly)
1250 {
1251 struct target_section *secp;
1252 struct target_section_table *table;
1253
1254 secp = target_section_by_addr (ops, memaddr);
1255 if (secp != NULL
1256 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1257 & SEC_READONLY))
1258 {
1259 table = target_get_section_table (ops);
1260 return section_table_xfer_memory_partial (readbuf, writebuf,
1261 memaddr, len,
1262 table->sections,
1263 table->sections_end,
1264 NULL);
1265 }
1266 }
1267
1268 /* Try GDB's internal data cache. */
1269 region = lookup_mem_region (memaddr);
1270 /* region->hi == 0 means there's no upper bound. */
1271 if (memaddr + len < region->hi || region->hi == 0)
1272 reg_len = len;
1273 else
1274 reg_len = region->hi - memaddr;
1275
1276 switch (region->attrib.mode)
1277 {
1278 case MEM_RO:
1279 if (writebuf != NULL)
1280 return -1;
1281 break;
1282
1283 case MEM_WO:
1284 if (readbuf != NULL)
1285 return -1;
1286 break;
1287
1288 case MEM_FLASH:
1289 /* We only support writing to flash during "load" for now. */
1290 if (writebuf != NULL)
1291 error (_("Writing to flash memory forbidden in this context"));
1292 break;
1293
1294 case MEM_NONE:
1295 return -1;
1296 }
1297
1298 if (!ptid_equal (inferior_ptid, null_ptid))
1299 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1300 else
1301 inf = NULL;
1302
1303 if (inf != NULL
1304 /* The dcache reads whole cache lines; that doesn't play well
1305 with reading from a trace buffer, because reading outside of
1306 the collected memory range fails. */
1307 && get_traceframe_number () == -1
1308 && (region->attrib.cache
1309 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1310 {
1311 if (readbuf != NULL)
1312 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1313 reg_len, 0);
1314 else
1315 /* FIXME drow/2006-08-09: If we're going to preserve const
1316 correctness dcache_xfer_memory should take readbuf and
1317 writebuf. */
1318 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1319 (void *) writebuf,
1320 reg_len, 1);
1321 if (res <= 0)
1322 return -1;
1323 else
1324 {
1325 if (readbuf && !show_memory_breakpoints)
1326 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1327 return res;
1328 }
1329 }
1330
1331 /* If none of those methods found the memory we wanted, fall back
1332 to a target partial transfer. Normally a single call to
1333 to_xfer_partial is enough; if it doesn't recognize an object
1334 it will call the to_xfer_partial of the next target down.
1335 But for memory this won't do. Memory is the only target
1336 object which can be read from more than one valid target.
1337 A core file, for instance, could have some of memory but
1338 delegate other bits to the target below it. So, we must
1339 manually try all targets. */
1340
1341 do
1342 {
1343 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1344 readbuf, writebuf, memaddr, reg_len);
1345 if (res > 0)
1346 break;
1347
1348 /* We want to continue past core files to executables, but not
1349 past a running target's memory. */
1350 if (ops->to_has_all_memory (ops))
1351 break;
1352
1353 ops = ops->beneath;
1354 }
1355 while (ops != NULL);
1356
1357 if (readbuf && !show_memory_breakpoints)
1358 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1359
1360 /* Make sure the cache gets updated no matter what - if we are writing
1361 to the stack. Even if this write is not tagged as such, we still need
1362 to update the cache. */
1363
1364 if (res > 0
1365 && inf != NULL
1366 && writebuf != NULL
1367 && !region->attrib.cache
1368 && stack_cache_enabled_p
1369 && object != TARGET_OBJECT_STACK_MEMORY)
1370 {
1371 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1372 }
1373
1374 /* If we still haven't got anything, return the last error. We
1375 give up. */
1376 return res;
1377 }
1378
1379 static void
1380 restore_show_memory_breakpoints (void *arg)
1381 {
1382 show_memory_breakpoints = (uintptr_t) arg;
1383 }
1384
1385 struct cleanup *
1386 make_show_memory_breakpoints_cleanup (int show)
1387 {
1388 int current = show_memory_breakpoints;
1389
1390 show_memory_breakpoints = show;
1391 return make_cleanup (restore_show_memory_breakpoints,
1392 (void *) (uintptr_t) current);
1393 }
1394
1395 /* For docs see target.h, to_xfer_partial. */
1396
1397 static LONGEST
1398 target_xfer_partial (struct target_ops *ops,
1399 enum target_object object, const char *annex,
1400 void *readbuf, const void *writebuf,
1401 ULONGEST offset, LONGEST len)
1402 {
1403 LONGEST retval;
1404
1405 gdb_assert (ops->to_xfer_partial != NULL);
1406
1407 /* If this is a memory transfer, let the memory-specific code
1408 have a look at it instead. Memory transfers are more
1409 complicated. */
1410 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1411 retval = memory_xfer_partial (ops, object, readbuf,
1412 writebuf, offset, len);
1413 else
1414 {
1415 enum target_object raw_object = object;
1416
1417 /* If this is a raw memory transfer, request the normal
1418 memory object from other layers. */
1419 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1420 raw_object = TARGET_OBJECT_MEMORY;
1421
1422 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1423 writebuf, offset, len);
1424 }
1425
1426 if (targetdebug)
1427 {
1428 const unsigned char *myaddr = NULL;
1429
1430 fprintf_unfiltered (gdb_stdlog,
1431 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1432 ops->to_shortname,
1433 (int) object,
1434 (annex ? annex : "(null)"),
1435 host_address_to_string (readbuf),
1436 host_address_to_string (writebuf),
1437 core_addr_to_string_nz (offset),
1438 plongest (len), plongest (retval));
1439
1440 if (readbuf)
1441 myaddr = readbuf;
1442 if (writebuf)
1443 myaddr = writebuf;
1444 if (retval > 0 && myaddr != NULL)
1445 {
1446 int i;
1447
1448 fputs_unfiltered (", bytes =", gdb_stdlog);
1449 for (i = 0; i < retval; i++)
1450 {
1451 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1452 {
1453 if (targetdebug < 2 && i > 0)
1454 {
1455 fprintf_unfiltered (gdb_stdlog, " ...");
1456 break;
1457 }
1458 fprintf_unfiltered (gdb_stdlog, "\n");
1459 }
1460
1461 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1462 }
1463 }
1464
1465 fputc_unfiltered ('\n', gdb_stdlog);
1466 }
1467 return retval;
1468 }
1469
1470 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1471 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1472 if any error occurs.
1473
1474 If an error occurs, no guarantee is made about the contents of the data at
1475 MYADDR. In particular, the caller should not depend upon partial reads
1476 filling the buffer with good data. There is no way for the caller to know
1477 how much good data might have been transfered anyway. Callers that can
1478 deal with partial reads should call target_read (which will retry until
1479 it makes no progress, and then return how much was transferred). */
1480
1481 int
1482 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1483 {
1484 /* Dispatch to the topmost target, not the flattened current_target.
1485 Memory accesses check target->to_has_(all_)memory, and the
1486 flattened target doesn't inherit those. */
1487 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1488 myaddr, memaddr, len) == len)
1489 return 0;
1490 else
1491 return EIO;
1492 }
1493
1494 /* Like target_read_memory, but specify explicitly that this is a read from
1495 the target's stack. This may trigger different cache behavior. */
1496
1497 int
1498 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1499 {
1500 /* Dispatch to the topmost target, not the flattened current_target.
1501 Memory accesses check target->to_has_(all_)memory, and the
1502 flattened target doesn't inherit those. */
1503
1504 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1505 myaddr, memaddr, len) == len)
1506 return 0;
1507 else
1508 return EIO;
1509 }
1510
1511 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1512 Returns either 0 for success or an errno value if any error occurs.
1513 If an error occurs, no guarantee is made about how much data got written.
1514 Callers that can deal with partial writes should call target_write. */
1515
1516 int
1517 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1518 {
1519 /* Dispatch to the topmost target, not the flattened current_target.
1520 Memory accesses check target->to_has_(all_)memory, and the
1521 flattened target doesn't inherit those. */
1522 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1523 myaddr, memaddr, len) == len)
1524 return 0;
1525 else
1526 return EIO;
1527 }
1528
1529 /* Fetch the target's memory map. */
1530
1531 VEC(mem_region_s) *
1532 target_memory_map (void)
1533 {
1534 VEC(mem_region_s) *result;
1535 struct mem_region *last_one, *this_one;
1536 int ix;
1537 struct target_ops *t;
1538
1539 if (targetdebug)
1540 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1541
1542 for (t = current_target.beneath; t != NULL; t = t->beneath)
1543 if (t->to_memory_map != NULL)
1544 break;
1545
1546 if (t == NULL)
1547 return NULL;
1548
1549 result = t->to_memory_map (t);
1550 if (result == NULL)
1551 return NULL;
1552
1553 qsort (VEC_address (mem_region_s, result),
1554 VEC_length (mem_region_s, result),
1555 sizeof (struct mem_region), mem_region_cmp);
1556
1557 /* Check that regions do not overlap. Simultaneously assign
1558 a numbering for the "mem" commands to use to refer to
1559 each region. */
1560 last_one = NULL;
1561 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1562 {
1563 this_one->number = ix;
1564
1565 if (last_one && last_one->hi > this_one->lo)
1566 {
1567 warning (_("Overlapping regions in memory map: ignoring"));
1568 VEC_free (mem_region_s, result);
1569 return NULL;
1570 }
1571 last_one = this_one;
1572 }
1573
1574 return result;
1575 }
1576
1577 void
1578 target_flash_erase (ULONGEST address, LONGEST length)
1579 {
1580 struct target_ops *t;
1581
1582 for (t = current_target.beneath; t != NULL; t = t->beneath)
1583 if (t->to_flash_erase != NULL)
1584 {
1585 if (targetdebug)
1586 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1587 hex_string (address), phex (length, 0));
1588 t->to_flash_erase (t, address, length);
1589 return;
1590 }
1591
1592 tcomplain ();
1593 }
1594
1595 void
1596 target_flash_done (void)
1597 {
1598 struct target_ops *t;
1599
1600 for (t = current_target.beneath; t != NULL; t = t->beneath)
1601 if (t->to_flash_done != NULL)
1602 {
1603 if (targetdebug)
1604 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1605 t->to_flash_done (t);
1606 return;
1607 }
1608
1609 tcomplain ();
1610 }
1611
1612 static void
1613 show_trust_readonly (struct ui_file *file, int from_tty,
1614 struct cmd_list_element *c, const char *value)
1615 {
1616 fprintf_filtered (file, _("\
1617 Mode for reading from readonly sections is %s.\n"),
1618 value);
1619 }
1620
1621 /* More generic transfers. */
1622
1623 static LONGEST
1624 default_xfer_partial (struct target_ops *ops, enum target_object object,
1625 const char *annex, gdb_byte *readbuf,
1626 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1627 {
1628 if (object == TARGET_OBJECT_MEMORY
1629 && ops->deprecated_xfer_memory != NULL)
1630 /* If available, fall back to the target's
1631 "deprecated_xfer_memory" method. */
1632 {
1633 int xfered = -1;
1634
1635 errno = 0;
1636 if (writebuf != NULL)
1637 {
1638 void *buffer = xmalloc (len);
1639 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1640
1641 memcpy (buffer, writebuf, len);
1642 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1643 1/*write*/, NULL, ops);
1644 do_cleanups (cleanup);
1645 }
1646 if (readbuf != NULL)
1647 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1648 0/*read*/, NULL, ops);
1649 if (xfered > 0)
1650 return xfered;
1651 else if (xfered == 0 && errno == 0)
1652 /* "deprecated_xfer_memory" uses 0, cross checked against
1653 ERRNO as one indication of an error. */
1654 return 0;
1655 else
1656 return -1;
1657 }
1658 else if (ops->beneath != NULL)
1659 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1660 readbuf, writebuf, offset, len);
1661 else
1662 return -1;
1663 }
1664
1665 /* The xfer_partial handler for the topmost target. Unlike the default,
1666 it does not need to handle memory specially; it just passes all
1667 requests down the stack. */
1668
1669 static LONGEST
1670 current_xfer_partial (struct target_ops *ops, enum target_object object,
1671 const char *annex, gdb_byte *readbuf,
1672 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1673 {
1674 if (ops->beneath != NULL)
1675 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1676 readbuf, writebuf, offset, len);
1677 else
1678 return -1;
1679 }
1680
1681 /* Target vector read/write partial wrapper functions. */
1682
1683 static LONGEST
1684 target_read_partial (struct target_ops *ops,
1685 enum target_object object,
1686 const char *annex, gdb_byte *buf,
1687 ULONGEST offset, LONGEST len)
1688 {
1689 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1690 }
1691
1692 static LONGEST
1693 target_write_partial (struct target_ops *ops,
1694 enum target_object object,
1695 const char *annex, const gdb_byte *buf,
1696 ULONGEST offset, LONGEST len)
1697 {
1698 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1699 }
1700
1701 /* Wrappers to perform the full transfer. */
1702
1703 /* For docs on target_read see target.h. */
1704
1705 LONGEST
1706 target_read (struct target_ops *ops,
1707 enum target_object object,
1708 const char *annex, gdb_byte *buf,
1709 ULONGEST offset, LONGEST len)
1710 {
1711 LONGEST xfered = 0;
1712
1713 while (xfered < len)
1714 {
1715 LONGEST xfer = target_read_partial (ops, object, annex,
1716 (gdb_byte *) buf + xfered,
1717 offset + xfered, len - xfered);
1718
1719 /* Call an observer, notifying them of the xfer progress? */
1720 if (xfer == 0)
1721 return xfered;
1722 if (xfer < 0)
1723 return -1;
1724 xfered += xfer;
1725 QUIT;
1726 }
1727 return len;
1728 }
1729
1730 LONGEST
1731 target_read_until_error (struct target_ops *ops,
1732 enum target_object object,
1733 const char *annex, gdb_byte *buf,
1734 ULONGEST offset, LONGEST len)
1735 {
1736 LONGEST xfered = 0;
1737
1738 while (xfered < len)
1739 {
1740 LONGEST xfer = target_read_partial (ops, object, annex,
1741 (gdb_byte *) buf + xfered,
1742 offset + xfered, len - xfered);
1743
1744 /* Call an observer, notifying them of the xfer progress? */
1745 if (xfer == 0)
1746 return xfered;
1747 if (xfer < 0)
1748 {
1749 /* We've got an error. Try to read in smaller blocks. */
1750 ULONGEST start = offset + xfered;
1751 ULONGEST remaining = len - xfered;
1752 ULONGEST half;
1753
1754 /* If an attempt was made to read a random memory address,
1755 it's likely that the very first byte is not accessible.
1756 Try reading the first byte, to avoid doing log N tries
1757 below. */
1758 xfer = target_read_partial (ops, object, annex,
1759 (gdb_byte *) buf + xfered, start, 1);
1760 if (xfer <= 0)
1761 return xfered;
1762 start += 1;
1763 remaining -= 1;
1764 half = remaining/2;
1765
1766 while (half > 0)
1767 {
1768 xfer = target_read_partial (ops, object, annex,
1769 (gdb_byte *) buf + xfered,
1770 start, half);
1771 if (xfer == 0)
1772 return xfered;
1773 if (xfer < 0)
1774 {
1775 remaining = half;
1776 }
1777 else
1778 {
1779 /* We have successfully read the first half. So, the
1780 error must be in the second half. Adjust start and
1781 remaining to point at the second half. */
1782 xfered += xfer;
1783 start += xfer;
1784 remaining -= xfer;
1785 }
1786 half = remaining/2;
1787 }
1788
1789 return xfered;
1790 }
1791 xfered += xfer;
1792 QUIT;
1793 }
1794 return len;
1795 }
1796
1797 /* An alternative to target_write with progress callbacks. */
1798
1799 LONGEST
1800 target_write_with_progress (struct target_ops *ops,
1801 enum target_object object,
1802 const char *annex, const gdb_byte *buf,
1803 ULONGEST offset, LONGEST len,
1804 void (*progress) (ULONGEST, void *), void *baton)
1805 {
1806 LONGEST xfered = 0;
1807
1808 /* Give the progress callback a chance to set up. */
1809 if (progress)
1810 (*progress) (0, baton);
1811
1812 while (xfered < len)
1813 {
1814 LONGEST xfer = target_write_partial (ops, object, annex,
1815 (gdb_byte *) buf + xfered,
1816 offset + xfered, len - xfered);
1817
1818 if (xfer == 0)
1819 return xfered;
1820 if (xfer < 0)
1821 return -1;
1822
1823 if (progress)
1824 (*progress) (xfer, baton);
1825
1826 xfered += xfer;
1827 QUIT;
1828 }
1829 return len;
1830 }
1831
1832 /* For docs on target_write see target.h. */
1833
1834 LONGEST
1835 target_write (struct target_ops *ops,
1836 enum target_object object,
1837 const char *annex, const gdb_byte *buf,
1838 ULONGEST offset, LONGEST len)
1839 {
1840 return target_write_with_progress (ops, object, annex, buf, offset, len,
1841 NULL, NULL);
1842 }
1843
1844 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1845 the size of the transferred data. PADDING additional bytes are
1846 available in *BUF_P. This is a helper function for
1847 target_read_alloc; see the declaration of that function for more
1848 information. */
1849
1850 static LONGEST
1851 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1852 const char *annex, gdb_byte **buf_p, int padding)
1853 {
1854 size_t buf_alloc, buf_pos;
1855 gdb_byte *buf;
1856 LONGEST n;
1857
1858 /* This function does not have a length parameter; it reads the
1859 entire OBJECT). Also, it doesn't support objects fetched partly
1860 from one target and partly from another (in a different stratum,
1861 e.g. a core file and an executable). Both reasons make it
1862 unsuitable for reading memory. */
1863 gdb_assert (object != TARGET_OBJECT_MEMORY);
1864
1865 /* Start by reading up to 4K at a time. The target will throttle
1866 this number down if necessary. */
1867 buf_alloc = 4096;
1868 buf = xmalloc (buf_alloc);
1869 buf_pos = 0;
1870 while (1)
1871 {
1872 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1873 buf_pos, buf_alloc - buf_pos - padding);
1874 if (n < 0)
1875 {
1876 /* An error occurred. */
1877 xfree (buf);
1878 return -1;
1879 }
1880 else if (n == 0)
1881 {
1882 /* Read all there was. */
1883 if (buf_pos == 0)
1884 xfree (buf);
1885 else
1886 *buf_p = buf;
1887 return buf_pos;
1888 }
1889
1890 buf_pos += n;
1891
1892 /* If the buffer is filling up, expand it. */
1893 if (buf_alloc < buf_pos * 2)
1894 {
1895 buf_alloc *= 2;
1896 buf = xrealloc (buf, buf_alloc);
1897 }
1898
1899 QUIT;
1900 }
1901 }
1902
1903 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1904 the size of the transferred data. See the declaration in "target.h"
1905 function for more information about the return value. */
1906
1907 LONGEST
1908 target_read_alloc (struct target_ops *ops, enum target_object object,
1909 const char *annex, gdb_byte **buf_p)
1910 {
1911 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1912 }
1913
1914 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1915 returned as a string, allocated using xmalloc. If an error occurs
1916 or the transfer is unsupported, NULL is returned. Empty objects
1917 are returned as allocated but empty strings. A warning is issued
1918 if the result contains any embedded NUL bytes. */
1919
1920 char *
1921 target_read_stralloc (struct target_ops *ops, enum target_object object,
1922 const char *annex)
1923 {
1924 gdb_byte *buffer;
1925 LONGEST transferred;
1926
1927 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1928
1929 if (transferred < 0)
1930 return NULL;
1931
1932 if (transferred == 0)
1933 return xstrdup ("");
1934
1935 buffer[transferred] = 0;
1936 if (strlen (buffer) < transferred)
1937 warning (_("target object %d, annex %s, "
1938 "contained unexpected null characters"),
1939 (int) object, annex ? annex : "(none)");
1940
1941 return (char *) buffer;
1942 }
1943
1944 /* Memory transfer methods. */
1945
1946 void
1947 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1948 LONGEST len)
1949 {
1950 /* This method is used to read from an alternate, non-current
1951 target. This read must bypass the overlay support (as symbols
1952 don't match this target), and GDB's internal cache (wrong cache
1953 for this target). */
1954 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1955 != len)
1956 memory_error (EIO, addr);
1957 }
1958
1959 ULONGEST
1960 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1961 int len, enum bfd_endian byte_order)
1962 {
1963 gdb_byte buf[sizeof (ULONGEST)];
1964
1965 gdb_assert (len <= sizeof (buf));
1966 get_target_memory (ops, addr, buf, len);
1967 return extract_unsigned_integer (buf, len, byte_order);
1968 }
1969
1970 static void
1971 target_info (char *args, int from_tty)
1972 {
1973 struct target_ops *t;
1974 int has_all_mem = 0;
1975
1976 if (symfile_objfile != NULL)
1977 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1978
1979 for (t = target_stack; t != NULL; t = t->beneath)
1980 {
1981 if (!(*t->to_has_memory) (t))
1982 continue;
1983
1984 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1985 continue;
1986 if (has_all_mem)
1987 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1988 printf_unfiltered ("%s:\n", t->to_longname);
1989 (t->to_files_info) (t);
1990 has_all_mem = (*t->to_has_all_memory) (t);
1991 }
1992 }
1993
1994 /* This function is called before any new inferior is created, e.g.
1995 by running a program, attaching, or connecting to a target.
1996 It cleans up any state from previous invocations which might
1997 change between runs. This is a subset of what target_preopen
1998 resets (things which might change between targets). */
1999
2000 void
2001 target_pre_inferior (int from_tty)
2002 {
2003 /* Clear out solib state. Otherwise the solib state of the previous
2004 inferior might have survived and is entirely wrong for the new
2005 target. This has been observed on GNU/Linux using glibc 2.3. How
2006 to reproduce:
2007
2008 bash$ ./foo&
2009 [1] 4711
2010 bash$ ./foo&
2011 [1] 4712
2012 bash$ gdb ./foo
2013 [...]
2014 (gdb) attach 4711
2015 (gdb) detach
2016 (gdb) attach 4712
2017 Cannot access memory at address 0xdeadbeef
2018 */
2019
2020 /* In some OSs, the shared library list is the same/global/shared
2021 across inferiors. If code is shared between processes, so are
2022 memory regions and features. */
2023 if (!gdbarch_has_global_solist (target_gdbarch))
2024 {
2025 no_shared_libraries (NULL, from_tty);
2026
2027 invalidate_target_mem_regions ();
2028
2029 target_clear_description ();
2030 }
2031 }
2032
2033 /* Callback for iterate_over_inferiors. Gets rid of the given
2034 inferior. */
2035
2036 static int
2037 dispose_inferior (struct inferior *inf, void *args)
2038 {
2039 struct thread_info *thread;
2040
2041 thread = any_thread_of_process (inf->pid);
2042 if (thread)
2043 {
2044 switch_to_thread (thread->ptid);
2045
2046 /* Core inferiors actually should be detached, not killed. */
2047 if (target_has_execution)
2048 target_kill ();
2049 else
2050 target_detach (NULL, 0);
2051 }
2052
2053 return 0;
2054 }
2055
2056 /* This is to be called by the open routine before it does
2057 anything. */
2058
2059 void
2060 target_preopen (int from_tty)
2061 {
2062 dont_repeat ();
2063
2064 if (have_inferiors ())
2065 {
2066 if (!from_tty
2067 || !have_live_inferiors ()
2068 || query (_("A program is being debugged already. Kill it? ")))
2069 iterate_over_inferiors (dispose_inferior, NULL);
2070 else
2071 error (_("Program not killed."));
2072 }
2073
2074 /* Calling target_kill may remove the target from the stack. But if
2075 it doesn't (which seems like a win for UDI), remove it now. */
2076 /* Leave the exec target, though. The user may be switching from a
2077 live process to a core of the same program. */
2078 pop_all_targets_above (file_stratum, 0);
2079
2080 target_pre_inferior (from_tty);
2081 }
2082
2083 /* Detach a target after doing deferred register stores. */
2084
2085 void
2086 target_detach (char *args, int from_tty)
2087 {
2088 struct target_ops* t;
2089
2090 if (gdbarch_has_global_breakpoints (target_gdbarch))
2091 /* Don't remove global breakpoints here. They're removed on
2092 disconnection from the target. */
2093 ;
2094 else
2095 /* If we're in breakpoints-always-inserted mode, have to remove
2096 them before detaching. */
2097 remove_breakpoints_pid (PIDGET (inferior_ptid));
2098
2099 prepare_for_detach ();
2100
2101 for (t = current_target.beneath; t != NULL; t = t->beneath)
2102 {
2103 if (t->to_detach != NULL)
2104 {
2105 t->to_detach (t, args, from_tty);
2106 if (targetdebug)
2107 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2108 args, from_tty);
2109 return;
2110 }
2111 }
2112
2113 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2114 }
2115
2116 void
2117 target_disconnect (char *args, int from_tty)
2118 {
2119 struct target_ops *t;
2120
2121 /* If we're in breakpoints-always-inserted mode or if breakpoints
2122 are global across processes, we have to remove them before
2123 disconnecting. */
2124 remove_breakpoints ();
2125
2126 for (t = current_target.beneath; t != NULL; t = t->beneath)
2127 if (t->to_disconnect != NULL)
2128 {
2129 if (targetdebug)
2130 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2131 args, from_tty);
2132 t->to_disconnect (t, args, from_tty);
2133 return;
2134 }
2135
2136 tcomplain ();
2137 }
2138
2139 ptid_t
2140 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2141 {
2142 struct target_ops *t;
2143
2144 for (t = current_target.beneath; t != NULL; t = t->beneath)
2145 {
2146 if (t->to_wait != NULL)
2147 {
2148 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2149
2150 if (targetdebug)
2151 {
2152 char *status_string;
2153
2154 status_string = target_waitstatus_to_string (status);
2155 fprintf_unfiltered (gdb_stdlog,
2156 "target_wait (%d, status) = %d, %s\n",
2157 PIDGET (ptid), PIDGET (retval),
2158 status_string);
2159 xfree (status_string);
2160 }
2161
2162 return retval;
2163 }
2164 }
2165
2166 noprocess ();
2167 }
2168
2169 char *
2170 target_pid_to_str (ptid_t ptid)
2171 {
2172 struct target_ops *t;
2173
2174 for (t = current_target.beneath; t != NULL; t = t->beneath)
2175 {
2176 if (t->to_pid_to_str != NULL)
2177 return (*t->to_pid_to_str) (t, ptid);
2178 }
2179
2180 return normal_pid_to_str (ptid);
2181 }
2182
2183 void
2184 target_resume (ptid_t ptid, int step, enum target_signal signal)
2185 {
2186 struct target_ops *t;
2187
2188 target_dcache_invalidate ();
2189
2190 for (t = current_target.beneath; t != NULL; t = t->beneath)
2191 {
2192 if (t->to_resume != NULL)
2193 {
2194 t->to_resume (t, ptid, step, signal);
2195 if (targetdebug)
2196 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2197 PIDGET (ptid),
2198 step ? "step" : "continue",
2199 target_signal_to_name (signal));
2200
2201 registers_changed_ptid (ptid);
2202 set_executing (ptid, 1);
2203 set_running (ptid, 1);
2204 clear_inline_frame_state (ptid);
2205 return;
2206 }
2207 }
2208
2209 noprocess ();
2210 }
2211 /* Look through the list of possible targets for a target that can
2212 follow forks. */
2213
2214 int
2215 target_follow_fork (int follow_child)
2216 {
2217 struct target_ops *t;
2218
2219 for (t = current_target.beneath; t != NULL; t = t->beneath)
2220 {
2221 if (t->to_follow_fork != NULL)
2222 {
2223 int retval = t->to_follow_fork (t, follow_child);
2224
2225 if (targetdebug)
2226 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2227 follow_child, retval);
2228 return retval;
2229 }
2230 }
2231
2232 /* Some target returned a fork event, but did not know how to follow it. */
2233 internal_error (__FILE__, __LINE__,
2234 "could not find a target to follow fork");
2235 }
2236
2237 void
2238 target_mourn_inferior (void)
2239 {
2240 struct target_ops *t;
2241
2242 for (t = current_target.beneath; t != NULL; t = t->beneath)
2243 {
2244 if (t->to_mourn_inferior != NULL)
2245 {
2246 t->to_mourn_inferior (t);
2247 if (targetdebug)
2248 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2249
2250 /* We no longer need to keep handles on any of the object files.
2251 Make sure to release them to avoid unnecessarily locking any
2252 of them while we're not actually debugging. */
2253 bfd_cache_close_all ();
2254
2255 return;
2256 }
2257 }
2258
2259 internal_error (__FILE__, __LINE__,
2260 "could not find a target to follow mourn inferiour");
2261 }
2262
2263 /* Look for a target which can describe architectural features, starting
2264 from TARGET. If we find one, return its description. */
2265
2266 const struct target_desc *
2267 target_read_description (struct target_ops *target)
2268 {
2269 struct target_ops *t;
2270
2271 for (t = target; t != NULL; t = t->beneath)
2272 if (t->to_read_description != NULL)
2273 {
2274 const struct target_desc *tdesc;
2275
2276 tdesc = t->to_read_description (t);
2277 if (tdesc)
2278 return tdesc;
2279 }
2280
2281 return NULL;
2282 }
2283
2284 /* The default implementation of to_search_memory.
2285 This implements a basic search of memory, reading target memory and
2286 performing the search here (as opposed to performing the search in on the
2287 target side with, for example, gdbserver). */
2288
2289 int
2290 simple_search_memory (struct target_ops *ops,
2291 CORE_ADDR start_addr, ULONGEST search_space_len,
2292 const gdb_byte *pattern, ULONGEST pattern_len,
2293 CORE_ADDR *found_addrp)
2294 {
2295 /* NOTE: also defined in find.c testcase. */
2296 #define SEARCH_CHUNK_SIZE 16000
2297 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2298 /* Buffer to hold memory contents for searching. */
2299 gdb_byte *search_buf;
2300 unsigned search_buf_size;
2301 struct cleanup *old_cleanups;
2302
2303 search_buf_size = chunk_size + pattern_len - 1;
2304
2305 /* No point in trying to allocate a buffer larger than the search space. */
2306 if (search_space_len < search_buf_size)
2307 search_buf_size = search_space_len;
2308
2309 search_buf = malloc (search_buf_size);
2310 if (search_buf == NULL)
2311 error (_("Unable to allocate memory to perform the search."));
2312 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2313
2314 /* Prime the search buffer. */
2315
2316 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2317 search_buf, start_addr, search_buf_size) != search_buf_size)
2318 {
2319 warning (_("Unable to access target memory at %s, halting search."),
2320 hex_string (start_addr));
2321 do_cleanups (old_cleanups);
2322 return -1;
2323 }
2324
2325 /* Perform the search.
2326
2327 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2328 When we've scanned N bytes we copy the trailing bytes to the start and
2329 read in another N bytes. */
2330
2331 while (search_space_len >= pattern_len)
2332 {
2333 gdb_byte *found_ptr;
2334 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2335
2336 found_ptr = memmem (search_buf, nr_search_bytes,
2337 pattern, pattern_len);
2338
2339 if (found_ptr != NULL)
2340 {
2341 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2342
2343 *found_addrp = found_addr;
2344 do_cleanups (old_cleanups);
2345 return 1;
2346 }
2347
2348 /* Not found in this chunk, skip to next chunk. */
2349
2350 /* Don't let search_space_len wrap here, it's unsigned. */
2351 if (search_space_len >= chunk_size)
2352 search_space_len -= chunk_size;
2353 else
2354 search_space_len = 0;
2355
2356 if (search_space_len >= pattern_len)
2357 {
2358 unsigned keep_len = search_buf_size - chunk_size;
2359 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2360 int nr_to_read;
2361
2362 /* Copy the trailing part of the previous iteration to the front
2363 of the buffer for the next iteration. */
2364 gdb_assert (keep_len == pattern_len - 1);
2365 memcpy (search_buf, search_buf + chunk_size, keep_len);
2366
2367 nr_to_read = min (search_space_len - keep_len, chunk_size);
2368
2369 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2370 search_buf + keep_len, read_addr,
2371 nr_to_read) != nr_to_read)
2372 {
2373 warning (_("Unable to access target memory at %s, halting search."),
2374 hex_string (read_addr));
2375 do_cleanups (old_cleanups);
2376 return -1;
2377 }
2378
2379 start_addr += chunk_size;
2380 }
2381 }
2382
2383 /* Not found. */
2384
2385 do_cleanups (old_cleanups);
2386 return 0;
2387 }
2388
2389 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2390 sequence of bytes in PATTERN with length PATTERN_LEN.
2391
2392 The result is 1 if found, 0 if not found, and -1 if there was an error
2393 requiring halting of the search (e.g. memory read error).
2394 If the pattern is found the address is recorded in FOUND_ADDRP. */
2395
2396 int
2397 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2398 const gdb_byte *pattern, ULONGEST pattern_len,
2399 CORE_ADDR *found_addrp)
2400 {
2401 struct target_ops *t;
2402 int found;
2403
2404 /* We don't use INHERIT to set current_target.to_search_memory,
2405 so we have to scan the target stack and handle targetdebug
2406 ourselves. */
2407
2408 if (targetdebug)
2409 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2410 hex_string (start_addr));
2411
2412 for (t = current_target.beneath; t != NULL; t = t->beneath)
2413 if (t->to_search_memory != NULL)
2414 break;
2415
2416 if (t != NULL)
2417 {
2418 found = t->to_search_memory (t, start_addr, search_space_len,
2419 pattern, pattern_len, found_addrp);
2420 }
2421 else
2422 {
2423 /* If a special version of to_search_memory isn't available, use the
2424 simple version. */
2425 found = simple_search_memory (current_target.beneath,
2426 start_addr, search_space_len,
2427 pattern, pattern_len, found_addrp);
2428 }
2429
2430 if (targetdebug)
2431 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2432
2433 return found;
2434 }
2435
2436 /* Look through the currently pushed targets. If none of them will
2437 be able to restart the currently running process, issue an error
2438 message. */
2439
2440 void
2441 target_require_runnable (void)
2442 {
2443 struct target_ops *t;
2444
2445 for (t = target_stack; t != NULL; t = t->beneath)
2446 {
2447 /* If this target knows how to create a new program, then
2448 assume we will still be able to after killing the current
2449 one. Either killing and mourning will not pop T, or else
2450 find_default_run_target will find it again. */
2451 if (t->to_create_inferior != NULL)
2452 return;
2453
2454 /* Do not worry about thread_stratum targets that can not
2455 create inferiors. Assume they will be pushed again if
2456 necessary, and continue to the process_stratum. */
2457 if (t->to_stratum == thread_stratum
2458 || t->to_stratum == arch_stratum)
2459 continue;
2460
2461 error (_("\
2462 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2463 t->to_shortname);
2464 }
2465
2466 /* This function is only called if the target is running. In that
2467 case there should have been a process_stratum target and it
2468 should either know how to create inferiors, or not... */
2469 internal_error (__FILE__, __LINE__, "No targets found");
2470 }
2471
2472 /* Look through the list of possible targets for a target that can
2473 execute a run or attach command without any other data. This is
2474 used to locate the default process stratum.
2475
2476 If DO_MESG is not NULL, the result is always valid (error() is
2477 called for errors); else, return NULL on error. */
2478
2479 static struct target_ops *
2480 find_default_run_target (char *do_mesg)
2481 {
2482 struct target_ops **t;
2483 struct target_ops *runable = NULL;
2484 int count;
2485
2486 count = 0;
2487
2488 for (t = target_structs; t < target_structs + target_struct_size;
2489 ++t)
2490 {
2491 if ((*t)->to_can_run && target_can_run (*t))
2492 {
2493 runable = *t;
2494 ++count;
2495 }
2496 }
2497
2498 if (count != 1)
2499 {
2500 if (do_mesg)
2501 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2502 else
2503 return NULL;
2504 }
2505
2506 return runable;
2507 }
2508
2509 void
2510 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2511 {
2512 struct target_ops *t;
2513
2514 t = find_default_run_target ("attach");
2515 (t->to_attach) (t, args, from_tty);
2516 return;
2517 }
2518
2519 void
2520 find_default_create_inferior (struct target_ops *ops,
2521 char *exec_file, char *allargs, char **env,
2522 int from_tty)
2523 {
2524 struct target_ops *t;
2525
2526 t = find_default_run_target ("run");
2527 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2528 return;
2529 }
2530
2531 static int
2532 find_default_can_async_p (void)
2533 {
2534 struct target_ops *t;
2535
2536 /* This may be called before the target is pushed on the stack;
2537 look for the default process stratum. If there's none, gdb isn't
2538 configured with a native debugger, and target remote isn't
2539 connected yet. */
2540 t = find_default_run_target (NULL);
2541 if (t && t->to_can_async_p)
2542 return (t->to_can_async_p) ();
2543 return 0;
2544 }
2545
2546 static int
2547 find_default_is_async_p (void)
2548 {
2549 struct target_ops *t;
2550
2551 /* This may be called before the target is pushed on the stack;
2552 look for the default process stratum. If there's none, gdb isn't
2553 configured with a native debugger, and target remote isn't
2554 connected yet. */
2555 t = find_default_run_target (NULL);
2556 if (t && t->to_is_async_p)
2557 return (t->to_is_async_p) ();
2558 return 0;
2559 }
2560
2561 static int
2562 find_default_supports_non_stop (void)
2563 {
2564 struct target_ops *t;
2565
2566 t = find_default_run_target (NULL);
2567 if (t && t->to_supports_non_stop)
2568 return (t->to_supports_non_stop) ();
2569 return 0;
2570 }
2571
2572 int
2573 target_supports_non_stop (void)
2574 {
2575 struct target_ops *t;
2576
2577 for (t = &current_target; t != NULL; t = t->beneath)
2578 if (t->to_supports_non_stop)
2579 return t->to_supports_non_stop ();
2580
2581 return 0;
2582 }
2583
2584
2585 char *
2586 target_get_osdata (const char *type)
2587 {
2588 struct target_ops *t;
2589
2590 /* If we're already connected to something that can get us OS
2591 related data, use it. Otherwise, try using the native
2592 target. */
2593 if (current_target.to_stratum >= process_stratum)
2594 t = current_target.beneath;
2595 else
2596 t = find_default_run_target ("get OS data");
2597
2598 if (!t)
2599 return NULL;
2600
2601 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2602 }
2603
2604 /* Determine the current address space of thread PTID. */
2605
2606 struct address_space *
2607 target_thread_address_space (ptid_t ptid)
2608 {
2609 struct address_space *aspace;
2610 struct inferior *inf;
2611 struct target_ops *t;
2612
2613 for (t = current_target.beneath; t != NULL; t = t->beneath)
2614 {
2615 if (t->to_thread_address_space != NULL)
2616 {
2617 aspace = t->to_thread_address_space (t, ptid);
2618 gdb_assert (aspace);
2619
2620 if (targetdebug)
2621 fprintf_unfiltered (gdb_stdlog,
2622 "target_thread_address_space (%s) = %d\n",
2623 target_pid_to_str (ptid),
2624 address_space_num (aspace));
2625 return aspace;
2626 }
2627 }
2628
2629 /* Fall-back to the "main" address space of the inferior. */
2630 inf = find_inferior_pid (ptid_get_pid (ptid));
2631
2632 if (inf == NULL || inf->aspace == NULL)
2633 internal_error (__FILE__, __LINE__, "\
2634 Can't determine the current address space of thread %s\n",
2635 target_pid_to_str (ptid));
2636
2637 return inf->aspace;
2638 }
2639
2640 static int
2641 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2642 {
2643 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2644 }
2645
2646 static int
2647 default_watchpoint_addr_within_range (struct target_ops *target,
2648 CORE_ADDR addr,
2649 CORE_ADDR start, int length)
2650 {
2651 return addr >= start && addr < start + length;
2652 }
2653
2654 static struct gdbarch *
2655 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2656 {
2657 return target_gdbarch;
2658 }
2659
2660 static int
2661 return_zero (void)
2662 {
2663 return 0;
2664 }
2665
2666 static int
2667 return_one (void)
2668 {
2669 return 1;
2670 }
2671
2672 static int
2673 return_minus_one (void)
2674 {
2675 return -1;
2676 }
2677
2678 /* Find a single runnable target in the stack and return it. If for
2679 some reason there is more than one, return NULL. */
2680
2681 struct target_ops *
2682 find_run_target (void)
2683 {
2684 struct target_ops **t;
2685 struct target_ops *runable = NULL;
2686 int count;
2687
2688 count = 0;
2689
2690 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2691 {
2692 if ((*t)->to_can_run && target_can_run (*t))
2693 {
2694 runable = *t;
2695 ++count;
2696 }
2697 }
2698
2699 return (count == 1 ? runable : NULL);
2700 }
2701
2702 /* Find a single core_stratum target in the list of targets and return it.
2703 If for some reason there is more than one, return NULL. */
2704
2705 struct target_ops *
2706 find_core_target (void)
2707 {
2708 struct target_ops **t;
2709 struct target_ops *runable = NULL;
2710 int count;
2711
2712 count = 0;
2713
2714 for (t = target_structs; t < target_structs + target_struct_size;
2715 ++t)
2716 {
2717 if ((*t)->to_stratum == core_stratum)
2718 {
2719 runable = *t;
2720 ++count;
2721 }
2722 }
2723
2724 return (count == 1 ? runable : NULL);
2725 }
2726
2727 /*
2728 * Find the next target down the stack from the specified target.
2729 */
2730
2731 struct target_ops *
2732 find_target_beneath (struct target_ops *t)
2733 {
2734 return t->beneath;
2735 }
2736
2737 \f
2738 /* The inferior process has died. Long live the inferior! */
2739
2740 void
2741 generic_mourn_inferior (void)
2742 {
2743 ptid_t ptid;
2744
2745 ptid = inferior_ptid;
2746 inferior_ptid = null_ptid;
2747
2748 if (!ptid_equal (ptid, null_ptid))
2749 {
2750 int pid = ptid_get_pid (ptid);
2751 exit_inferior (pid);
2752 }
2753
2754 breakpoint_init_inferior (inf_exited);
2755 registers_changed ();
2756
2757 reopen_exec_file ();
2758 reinit_frame_cache ();
2759
2760 if (deprecated_detach_hook)
2761 deprecated_detach_hook ();
2762 }
2763 \f
2764 /* Helper function for child_wait and the derivatives of child_wait.
2765 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2766 translation of that in OURSTATUS. */
2767 void
2768 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2769 {
2770 if (WIFEXITED (hoststatus))
2771 {
2772 ourstatus->kind = TARGET_WAITKIND_EXITED;
2773 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2774 }
2775 else if (!WIFSTOPPED (hoststatus))
2776 {
2777 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2778 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2779 }
2780 else
2781 {
2782 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2783 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2784 }
2785 }
2786 \f
2787 /* Convert a normal process ID to a string. Returns the string in a
2788 static buffer. */
2789
2790 char *
2791 normal_pid_to_str (ptid_t ptid)
2792 {
2793 static char buf[32];
2794
2795 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2796 return buf;
2797 }
2798
2799 static char *
2800 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2801 {
2802 return normal_pid_to_str (ptid);
2803 }
2804
2805 /* Error-catcher for target_find_memory_regions. */
2806 static int
2807 dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2808 {
2809 error (_("Command not implemented for this target."));
2810 return 0;
2811 }
2812
2813 /* Error-catcher for target_make_corefile_notes. */
2814 static char *
2815 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2816 {
2817 error (_("Command not implemented for this target."));
2818 return NULL;
2819 }
2820
2821 /* Error-catcher for target_get_bookmark. */
2822 static gdb_byte *
2823 dummy_get_bookmark (char *ignore1, int ignore2)
2824 {
2825 tcomplain ();
2826 return NULL;
2827 }
2828
2829 /* Error-catcher for target_goto_bookmark. */
2830 static void
2831 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
2832 {
2833 tcomplain ();
2834 }
2835
2836 /* Set up the handful of non-empty slots needed by the dummy target
2837 vector. */
2838
2839 static void
2840 init_dummy_target (void)
2841 {
2842 dummy_target.to_shortname = "None";
2843 dummy_target.to_longname = "None";
2844 dummy_target.to_doc = "";
2845 dummy_target.to_attach = find_default_attach;
2846 dummy_target.to_detach =
2847 (void (*)(struct target_ops *, char *, int))target_ignore;
2848 dummy_target.to_create_inferior = find_default_create_inferior;
2849 dummy_target.to_can_async_p = find_default_can_async_p;
2850 dummy_target.to_is_async_p = find_default_is_async_p;
2851 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2852 dummy_target.to_pid_to_str = dummy_pid_to_str;
2853 dummy_target.to_stratum = dummy_stratum;
2854 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2855 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2856 dummy_target.to_get_bookmark = dummy_get_bookmark;
2857 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
2858 dummy_target.to_xfer_partial = default_xfer_partial;
2859 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2860 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2861 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2862 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2863 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2864 dummy_target.to_stopped_by_watchpoint = return_zero;
2865 dummy_target.to_stopped_data_address =
2866 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
2867 dummy_target.to_magic = OPS_MAGIC;
2868 }
2869 \f
2870 static void
2871 debug_to_open (char *args, int from_tty)
2872 {
2873 debug_target.to_open (args, from_tty);
2874
2875 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2876 }
2877
2878 void
2879 target_close (struct target_ops *targ, int quitting)
2880 {
2881 if (targ->to_xclose != NULL)
2882 targ->to_xclose (targ, quitting);
2883 else if (targ->to_close != NULL)
2884 targ->to_close (quitting);
2885
2886 if (targetdebug)
2887 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2888 }
2889
2890 void
2891 target_attach (char *args, int from_tty)
2892 {
2893 struct target_ops *t;
2894
2895 for (t = current_target.beneath; t != NULL; t = t->beneath)
2896 {
2897 if (t->to_attach != NULL)
2898 {
2899 t->to_attach (t, args, from_tty);
2900 if (targetdebug)
2901 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2902 args, from_tty);
2903 return;
2904 }
2905 }
2906
2907 internal_error (__FILE__, __LINE__,
2908 "could not find a target to attach");
2909 }
2910
2911 int
2912 target_thread_alive (ptid_t ptid)
2913 {
2914 struct target_ops *t;
2915
2916 for (t = current_target.beneath; t != NULL; t = t->beneath)
2917 {
2918 if (t->to_thread_alive != NULL)
2919 {
2920 int retval;
2921
2922 retval = t->to_thread_alive (t, ptid);
2923 if (targetdebug)
2924 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2925 PIDGET (ptid), retval);
2926
2927 return retval;
2928 }
2929 }
2930
2931 return 0;
2932 }
2933
2934 void
2935 target_find_new_threads (void)
2936 {
2937 struct target_ops *t;
2938
2939 for (t = current_target.beneath; t != NULL; t = t->beneath)
2940 {
2941 if (t->to_find_new_threads != NULL)
2942 {
2943 t->to_find_new_threads (t);
2944 if (targetdebug)
2945 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2946
2947 return;
2948 }
2949 }
2950 }
2951
2952 static void
2953 debug_to_post_attach (int pid)
2954 {
2955 debug_target.to_post_attach (pid);
2956
2957 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2958 }
2959
2960 /* Return a pretty printed form of target_waitstatus.
2961 Space for the result is malloc'd, caller must free. */
2962
2963 char *
2964 target_waitstatus_to_string (const struct target_waitstatus *ws)
2965 {
2966 const char *kind_str = "status->kind = ";
2967
2968 switch (ws->kind)
2969 {
2970 case TARGET_WAITKIND_EXITED:
2971 return xstrprintf ("%sexited, status = %d",
2972 kind_str, ws->value.integer);
2973 case TARGET_WAITKIND_STOPPED:
2974 return xstrprintf ("%sstopped, signal = %s",
2975 kind_str, target_signal_to_name (ws->value.sig));
2976 case TARGET_WAITKIND_SIGNALLED:
2977 return xstrprintf ("%ssignalled, signal = %s",
2978 kind_str, target_signal_to_name (ws->value.sig));
2979 case TARGET_WAITKIND_LOADED:
2980 return xstrprintf ("%sloaded", kind_str);
2981 case TARGET_WAITKIND_FORKED:
2982 return xstrprintf ("%sforked", kind_str);
2983 case TARGET_WAITKIND_VFORKED:
2984 return xstrprintf ("%svforked", kind_str);
2985 case TARGET_WAITKIND_EXECD:
2986 return xstrprintf ("%sexecd", kind_str);
2987 case TARGET_WAITKIND_SYSCALL_ENTRY:
2988 return xstrprintf ("%sentered syscall", kind_str);
2989 case TARGET_WAITKIND_SYSCALL_RETURN:
2990 return xstrprintf ("%sexited syscall", kind_str);
2991 case TARGET_WAITKIND_SPURIOUS:
2992 return xstrprintf ("%sspurious", kind_str);
2993 case TARGET_WAITKIND_IGNORE:
2994 return xstrprintf ("%signore", kind_str);
2995 case TARGET_WAITKIND_NO_HISTORY:
2996 return xstrprintf ("%sno-history", kind_str);
2997 default:
2998 return xstrprintf ("%sunknown???", kind_str);
2999 }
3000 }
3001
3002 static void
3003 debug_print_register (const char * func,
3004 struct regcache *regcache, int regno)
3005 {
3006 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3007
3008 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3009 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3010 && gdbarch_register_name (gdbarch, regno) != NULL
3011 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3012 fprintf_unfiltered (gdb_stdlog, "(%s)",
3013 gdbarch_register_name (gdbarch, regno));
3014 else
3015 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3016 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3017 {
3018 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3019 int i, size = register_size (gdbarch, regno);
3020 unsigned char buf[MAX_REGISTER_SIZE];
3021
3022 regcache_raw_collect (regcache, regno, buf);
3023 fprintf_unfiltered (gdb_stdlog, " = ");
3024 for (i = 0; i < size; i++)
3025 {
3026 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3027 }
3028 if (size <= sizeof (LONGEST))
3029 {
3030 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3031
3032 fprintf_unfiltered (gdb_stdlog, " %s %s",
3033 core_addr_to_string_nz (val), plongest (val));
3034 }
3035 }
3036 fprintf_unfiltered (gdb_stdlog, "\n");
3037 }
3038
3039 void
3040 target_fetch_registers (struct regcache *regcache, int regno)
3041 {
3042 struct target_ops *t;
3043
3044 for (t = current_target.beneath; t != NULL; t = t->beneath)
3045 {
3046 if (t->to_fetch_registers != NULL)
3047 {
3048 t->to_fetch_registers (t, regcache, regno);
3049 if (targetdebug)
3050 debug_print_register ("target_fetch_registers", regcache, regno);
3051 return;
3052 }
3053 }
3054 }
3055
3056 void
3057 target_store_registers (struct regcache *regcache, int regno)
3058 {
3059 struct target_ops *t;
3060
3061 for (t = current_target.beneath; t != NULL; t = t->beneath)
3062 {
3063 if (t->to_store_registers != NULL)
3064 {
3065 t->to_store_registers (t, regcache, regno);
3066 if (targetdebug)
3067 {
3068 debug_print_register ("target_store_registers", regcache, regno);
3069 }
3070 return;
3071 }
3072 }
3073
3074 noprocess ();
3075 }
3076
3077 int
3078 target_core_of_thread (ptid_t ptid)
3079 {
3080 struct target_ops *t;
3081
3082 for (t = current_target.beneath; t != NULL; t = t->beneath)
3083 {
3084 if (t->to_core_of_thread != NULL)
3085 {
3086 int retval = t->to_core_of_thread (t, ptid);
3087
3088 if (targetdebug)
3089 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3090 PIDGET (ptid), retval);
3091 return retval;
3092 }
3093 }
3094
3095 return -1;
3096 }
3097
3098 int
3099 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3100 {
3101 struct target_ops *t;
3102
3103 for (t = current_target.beneath; t != NULL; t = t->beneath)
3104 {
3105 if (t->to_verify_memory != NULL)
3106 {
3107 int retval = t->to_verify_memory (t, data, memaddr, size);
3108
3109 if (targetdebug)
3110 fprintf_unfiltered (gdb_stdlog, "target_verify_memory (%s, %s) = %d\n",
3111 paddress (target_gdbarch, memaddr),
3112 pulongest (size),
3113 retval);
3114 return retval;
3115 }
3116 }
3117
3118 tcomplain ();
3119 }
3120
3121 static void
3122 debug_to_prepare_to_store (struct regcache *regcache)
3123 {
3124 debug_target.to_prepare_to_store (regcache);
3125
3126 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3127 }
3128
3129 static int
3130 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3131 int write, struct mem_attrib *attrib,
3132 struct target_ops *target)
3133 {
3134 int retval;
3135
3136 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3137 attrib, target);
3138
3139 fprintf_unfiltered (gdb_stdlog,
3140 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3141 paddress (target_gdbarch, memaddr), len,
3142 write ? "write" : "read", retval);
3143
3144 if (retval > 0)
3145 {
3146 int i;
3147
3148 fputs_unfiltered (", bytes =", gdb_stdlog);
3149 for (i = 0; i < retval; i++)
3150 {
3151 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3152 {
3153 if (targetdebug < 2 && i > 0)
3154 {
3155 fprintf_unfiltered (gdb_stdlog, " ...");
3156 break;
3157 }
3158 fprintf_unfiltered (gdb_stdlog, "\n");
3159 }
3160
3161 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3162 }
3163 }
3164
3165 fputc_unfiltered ('\n', gdb_stdlog);
3166
3167 return retval;
3168 }
3169
3170 static void
3171 debug_to_files_info (struct target_ops *target)
3172 {
3173 debug_target.to_files_info (target);
3174
3175 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3176 }
3177
3178 static int
3179 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3180 struct bp_target_info *bp_tgt)
3181 {
3182 int retval;
3183
3184 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3185
3186 fprintf_unfiltered (gdb_stdlog,
3187 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
3188 (unsigned long) bp_tgt->placed_address,
3189 (unsigned long) retval);
3190 return retval;
3191 }
3192
3193 static int
3194 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3195 struct bp_target_info *bp_tgt)
3196 {
3197 int retval;
3198
3199 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3200
3201 fprintf_unfiltered (gdb_stdlog,
3202 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
3203 (unsigned long) bp_tgt->placed_address,
3204 (unsigned long) retval);
3205 return retval;
3206 }
3207
3208 static int
3209 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3210 {
3211 int retval;
3212
3213 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3214
3215 fprintf_unfiltered (gdb_stdlog,
3216 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3217 (unsigned long) type,
3218 (unsigned long) cnt,
3219 (unsigned long) from_tty,
3220 (unsigned long) retval);
3221 return retval;
3222 }
3223
3224 static int
3225 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3226 {
3227 CORE_ADDR retval;
3228
3229 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3230
3231 fprintf_unfiltered (gdb_stdlog,
3232 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
3233 (unsigned long) addr,
3234 (unsigned long) len,
3235 (unsigned long) retval);
3236 return retval;
3237 }
3238
3239 static int
3240 debug_to_stopped_by_watchpoint (void)
3241 {
3242 int retval;
3243
3244 retval = debug_target.to_stopped_by_watchpoint ();
3245
3246 fprintf_unfiltered (gdb_stdlog,
3247 "target_stopped_by_watchpoint () = %ld\n",
3248 (unsigned long) retval);
3249 return retval;
3250 }
3251
3252 static int
3253 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3254 {
3255 int retval;
3256
3257 retval = debug_target.to_stopped_data_address (target, addr);
3258
3259 fprintf_unfiltered (gdb_stdlog,
3260 "target_stopped_data_address ([0x%lx]) = %ld\n",
3261 (unsigned long)*addr,
3262 (unsigned long)retval);
3263 return retval;
3264 }
3265
3266 static int
3267 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3268 CORE_ADDR addr,
3269 CORE_ADDR start, int length)
3270 {
3271 int retval;
3272
3273 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3274 start, length);
3275
3276 fprintf_filtered (gdb_stdlog,
3277 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
3278 (unsigned long) addr, (unsigned long) start, length,
3279 retval);
3280 return retval;
3281 }
3282
3283 static int
3284 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3285 struct bp_target_info *bp_tgt)
3286 {
3287 int retval;
3288
3289 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3290
3291 fprintf_unfiltered (gdb_stdlog,
3292 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
3293 (unsigned long) bp_tgt->placed_address,
3294 (unsigned long) retval);
3295 return retval;
3296 }
3297
3298 static int
3299 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3300 struct bp_target_info *bp_tgt)
3301 {
3302 int retval;
3303
3304 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3305
3306 fprintf_unfiltered (gdb_stdlog,
3307 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
3308 (unsigned long) bp_tgt->placed_address,
3309 (unsigned long) retval);
3310 return retval;
3311 }
3312
3313 static int
3314 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
3315 {
3316 int retval;
3317
3318 retval = debug_target.to_insert_watchpoint (addr, len, type);
3319
3320 fprintf_unfiltered (gdb_stdlog,
3321 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
3322 (unsigned long) addr, len, type, (unsigned long) retval);
3323 return retval;
3324 }
3325
3326 static int
3327 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
3328 {
3329 int retval;
3330
3331 retval = debug_target.to_remove_watchpoint (addr, len, type);
3332
3333 fprintf_unfiltered (gdb_stdlog,
3334 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
3335 (unsigned long) addr, len, type, (unsigned long) retval);
3336 return retval;
3337 }
3338
3339 static void
3340 debug_to_terminal_init (void)
3341 {
3342 debug_target.to_terminal_init ();
3343
3344 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3345 }
3346
3347 static void
3348 debug_to_terminal_inferior (void)
3349 {
3350 debug_target.to_terminal_inferior ();
3351
3352 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3353 }
3354
3355 static void
3356 debug_to_terminal_ours_for_output (void)
3357 {
3358 debug_target.to_terminal_ours_for_output ();
3359
3360 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3361 }
3362
3363 static void
3364 debug_to_terminal_ours (void)
3365 {
3366 debug_target.to_terminal_ours ();
3367
3368 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3369 }
3370
3371 static void
3372 debug_to_terminal_save_ours (void)
3373 {
3374 debug_target.to_terminal_save_ours ();
3375
3376 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3377 }
3378
3379 static void
3380 debug_to_terminal_info (char *arg, int from_tty)
3381 {
3382 debug_target.to_terminal_info (arg, from_tty);
3383
3384 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3385 from_tty);
3386 }
3387
3388 static void
3389 debug_to_load (char *args, int from_tty)
3390 {
3391 debug_target.to_load (args, from_tty);
3392
3393 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3394 }
3395
3396 static int
3397 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3398 {
3399 int retval;
3400
3401 retval = debug_target.to_lookup_symbol (name, addrp);
3402
3403 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3404
3405 return retval;
3406 }
3407
3408 static void
3409 debug_to_post_startup_inferior (ptid_t ptid)
3410 {
3411 debug_target.to_post_startup_inferior (ptid);
3412
3413 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3414 PIDGET (ptid));
3415 }
3416
3417 static void
3418 debug_to_acknowledge_created_inferior (int pid)
3419 {
3420 debug_target.to_acknowledge_created_inferior (pid);
3421
3422 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3423 pid);
3424 }
3425
3426 static void
3427 debug_to_insert_fork_catchpoint (int pid)
3428 {
3429 debug_target.to_insert_fork_catchpoint (pid);
3430
3431 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3432 pid);
3433 }
3434
3435 static int
3436 debug_to_remove_fork_catchpoint (int pid)
3437 {
3438 int retval;
3439
3440 retval = debug_target.to_remove_fork_catchpoint (pid);
3441
3442 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3443 pid, retval);
3444
3445 return retval;
3446 }
3447
3448 static void
3449 debug_to_insert_vfork_catchpoint (int pid)
3450 {
3451 debug_target.to_insert_vfork_catchpoint (pid);
3452
3453 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3454 pid);
3455 }
3456
3457 static int
3458 debug_to_remove_vfork_catchpoint (int pid)
3459 {
3460 int retval;
3461
3462 retval = debug_target.to_remove_vfork_catchpoint (pid);
3463
3464 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3465 pid, retval);
3466
3467 return retval;
3468 }
3469
3470 static void
3471 debug_to_insert_exec_catchpoint (int pid)
3472 {
3473 debug_target.to_insert_exec_catchpoint (pid);
3474
3475 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3476 pid);
3477 }
3478
3479 static int
3480 debug_to_remove_exec_catchpoint (int pid)
3481 {
3482 int retval;
3483
3484 retval = debug_target.to_remove_exec_catchpoint (pid);
3485
3486 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3487 pid, retval);
3488
3489 return retval;
3490 }
3491
3492 static int
3493 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3494 {
3495 int has_exited;
3496
3497 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3498
3499 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3500 pid, wait_status, *exit_status, has_exited);
3501
3502 return has_exited;
3503 }
3504
3505 static int
3506 debug_to_can_run (void)
3507 {
3508 int retval;
3509
3510 retval = debug_target.to_can_run ();
3511
3512 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3513
3514 return retval;
3515 }
3516
3517 static void
3518 debug_to_notice_signals (ptid_t ptid)
3519 {
3520 debug_target.to_notice_signals (ptid);
3521
3522 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3523 PIDGET (ptid));
3524 }
3525
3526 static struct gdbarch *
3527 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3528 {
3529 struct gdbarch *retval;
3530
3531 retval = debug_target.to_thread_architecture (ops, ptid);
3532
3533 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3534 target_pid_to_str (ptid), host_address_to_string (retval),
3535 gdbarch_bfd_arch_info (retval)->printable_name);
3536 return retval;
3537 }
3538
3539 static void
3540 debug_to_stop (ptid_t ptid)
3541 {
3542 debug_target.to_stop (ptid);
3543
3544 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3545 target_pid_to_str (ptid));
3546 }
3547
3548 static void
3549 debug_to_rcmd (char *command,
3550 struct ui_file *outbuf)
3551 {
3552 debug_target.to_rcmd (command, outbuf);
3553 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3554 }
3555
3556 static char *
3557 debug_to_pid_to_exec_file (int pid)
3558 {
3559 char *exec_file;
3560
3561 exec_file = debug_target.to_pid_to_exec_file (pid);
3562
3563 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3564 pid, exec_file);
3565
3566 return exec_file;
3567 }
3568
3569 static void
3570 setup_target_debug (void)
3571 {
3572 memcpy (&debug_target, &current_target, sizeof debug_target);
3573
3574 current_target.to_open = debug_to_open;
3575 current_target.to_post_attach = debug_to_post_attach;
3576 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3577 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3578 current_target.to_files_info = debug_to_files_info;
3579 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3580 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3581 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3582 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3583 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3584 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3585 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3586 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3587 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3588 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3589 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3590 current_target.to_terminal_init = debug_to_terminal_init;
3591 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3592 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3593 current_target.to_terminal_ours = debug_to_terminal_ours;
3594 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3595 current_target.to_terminal_info = debug_to_terminal_info;
3596 current_target.to_load = debug_to_load;
3597 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3598 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3599 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3600 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3601 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3602 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3603 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3604 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3605 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3606 current_target.to_has_exited = debug_to_has_exited;
3607 current_target.to_can_run = debug_to_can_run;
3608 current_target.to_notice_signals = debug_to_notice_signals;
3609 current_target.to_stop = debug_to_stop;
3610 current_target.to_rcmd = debug_to_rcmd;
3611 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3612 current_target.to_thread_architecture = debug_to_thread_architecture;
3613 }
3614 \f
3615
3616 static char targ_desc[] =
3617 "Names of targets and files being debugged.\n\
3618 Shows the entire stack of targets currently in use (including the exec-file,\n\
3619 core-file, and process, if any), as well as the symbol file name.";
3620
3621 static void
3622 do_monitor_command (char *cmd,
3623 int from_tty)
3624 {
3625 if ((current_target.to_rcmd
3626 == (void (*) (char *, struct ui_file *)) tcomplain)
3627 || (current_target.to_rcmd == debug_to_rcmd
3628 && (debug_target.to_rcmd
3629 == (void (*) (char *, struct ui_file *)) tcomplain)))
3630 error (_("\"monitor\" command not supported by this target."));
3631 target_rcmd (cmd, gdb_stdtarg);
3632 }
3633
3634 /* Print the name of each layers of our target stack. */
3635
3636 static void
3637 maintenance_print_target_stack (char *cmd, int from_tty)
3638 {
3639 struct target_ops *t;
3640
3641 printf_filtered (_("The current target stack is:\n"));
3642
3643 for (t = target_stack; t != NULL; t = t->beneath)
3644 {
3645 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3646 }
3647 }
3648
3649 /* Controls if async mode is permitted. */
3650 int target_async_permitted = 0;
3651
3652 /* The set command writes to this variable. If the inferior is
3653 executing, linux_nat_async_permitted is *not* updated. */
3654 static int target_async_permitted_1 = 0;
3655
3656 static void
3657 set_maintenance_target_async_permitted (char *args, int from_tty,
3658 struct cmd_list_element *c)
3659 {
3660 if (have_live_inferiors ())
3661 {
3662 target_async_permitted_1 = target_async_permitted;
3663 error (_("Cannot change this setting while the inferior is running."));
3664 }
3665
3666 target_async_permitted = target_async_permitted_1;
3667 }
3668
3669 static void
3670 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3671 struct cmd_list_element *c,
3672 const char *value)
3673 {
3674 fprintf_filtered (file, _("\
3675 Controlling the inferior in asynchronous mode is %s.\n"), value);
3676 }
3677
3678 void
3679 initialize_targets (void)
3680 {
3681 init_dummy_target ();
3682 push_target (&dummy_target);
3683
3684 add_info ("target", target_info, targ_desc);
3685 add_info ("files", target_info, targ_desc);
3686
3687 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3688 Set target debugging."), _("\
3689 Show target debugging."), _("\
3690 When non-zero, target debugging is enabled. Higher numbers are more\n\
3691 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3692 command."),
3693 NULL,
3694 show_targetdebug,
3695 &setdebuglist, &showdebuglist);
3696
3697 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3698 &trust_readonly, _("\
3699 Set mode for reading from readonly sections."), _("\
3700 Show mode for reading from readonly sections."), _("\
3701 When this mode is on, memory reads from readonly sections (such as .text)\n\
3702 will be read from the object file instead of from the target. This will\n\
3703 result in significant performance improvement for remote targets."),
3704 NULL,
3705 show_trust_readonly,
3706 &setlist, &showlist);
3707
3708 add_com ("monitor", class_obscure, do_monitor_command,
3709 _("Send a command to the remote monitor (remote targets only)."));
3710
3711 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3712 _("Print the name of each layer of the internal target stack."),
3713 &maintenanceprintlist);
3714
3715 add_setshow_boolean_cmd ("target-async", no_class,
3716 &target_async_permitted_1, _("\
3717 Set whether gdb controls the inferior in asynchronous mode."), _("\
3718 Show whether gdb controls the inferior in asynchronous mode."), _("\
3719 Tells gdb whether to control the inferior in asynchronous mode."),
3720 set_maintenance_target_async_permitted,
3721 show_maintenance_target_async_permitted,
3722 &setlist,
3723 &showlist);
3724
3725 add_setshow_boolean_cmd ("stack-cache", class_support,
3726 &stack_cache_enabled_p_1, _("\
3727 Set cache use for stack access."), _("\
3728 Show cache use for stack access."), _("\
3729 When on, use the data cache for all stack access, regardless of any\n\
3730 configured memory regions. This improves remote performance significantly.\n\
3731 By default, caching for stack access is on."),
3732 set_stack_cache_enabled_p,
3733 show_stack_cache_enabled_p,
3734 &setlist, &showlist);
3735
3736 target_dcache = dcache_init ();
3737 }