* mips-tdep.c (mips_gdbarch_init): Use Tag_GNU_MIPS_ABI_FP to
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include <errno.h>
28 #include "gdb_string.h"
29 #include "target.h"
30 #include "gdbcmd.h"
31 #include "symtab.h"
32 #include "inferior.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_wait.h"
37 #include "dcache.h"
38 #include <signal.h>
39 #include "regcache.h"
40 #include "gdb_assert.h"
41 #include "gdbcore.h"
42 #include "exceptions.h"
43 #include "target-descriptions.h"
44
45 static void target_info (char *, int);
46
47 static void maybe_kill_then_attach (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
54
55 static int nosymbol (char *, CORE_ADDR *);
56
57 static void tcomplain (void) ATTR_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static void nosupport_runtime (void);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_close (int);
100
101 static void debug_to_attach (char *, int);
102
103 static void debug_to_detach (char *, int);
104
105 static void debug_to_resume (ptid_t, int, enum target_signal);
106
107 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
108
109 static void debug_to_fetch_registers (struct regcache *, int);
110
111 static void debug_to_store_registers (struct regcache *, int);
112
113 static void debug_to_prepare_to_store (struct regcache *);
114
115 static void debug_to_files_info (struct target_ops *);
116
117 static int debug_to_insert_breakpoint (struct bp_target_info *);
118
119 static int debug_to_remove_breakpoint (struct bp_target_info *);
120
121 static int debug_to_can_use_hw_breakpoint (int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
124
125 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
126
127 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_stopped_by_watchpoint (void);
132
133 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
134
135 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
136
137 static void debug_to_terminal_init (void);
138
139 static void debug_to_terminal_inferior (void);
140
141 static void debug_to_terminal_ours_for_output (void);
142
143 static void debug_to_terminal_save_ours (void);
144
145 static void debug_to_terminal_ours (void);
146
147 static void debug_to_terminal_info (char *, int);
148
149 static void debug_to_kill (void);
150
151 static void debug_to_load (char *, int);
152
153 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
154
155 static void debug_to_mourn_inferior (void);
156
157 static int debug_to_can_run (void);
158
159 static void debug_to_notice_signals (ptid_t);
160
161 static int debug_to_thread_alive (ptid_t);
162
163 static void debug_to_stop (void);
164
165 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
166 wierd and mysterious ways. Putting the variable here lets those
167 wierd and mysterious ways keep building while they are being
168 converted to the inferior inheritance structure. */
169 struct target_ops deprecated_child_ops;
170
171 /* Pointer to array of target architecture structures; the size of the
172 array; the current index into the array; the allocated size of the
173 array. */
174 struct target_ops **target_structs;
175 unsigned target_struct_size;
176 unsigned target_struct_index;
177 unsigned target_struct_allocsize;
178 #define DEFAULT_ALLOCSIZE 10
179
180 /* The initial current target, so that there is always a semi-valid
181 current target. */
182
183 static struct target_ops dummy_target;
184
185 /* Top of target stack. */
186
187 static struct target_ops *target_stack;
188
189 /* The target structure we are currently using to talk to a process
190 or file or whatever "inferior" we have. */
191
192 struct target_ops current_target;
193
194 /* Command list for target. */
195
196 static struct cmd_list_element *targetlist = NULL;
197
198 /* Nonzero if we are debugging an attached outside process
199 rather than an inferior. */
200
201 int attach_flag;
202
203 /* Nonzero if we should trust readonly sections from the
204 executable when reading memory. */
205
206 static int trust_readonly = 0;
207
208 /* Non-zero if we want to see trace of target level stuff. */
209
210 static int targetdebug = 0;
211 static void
212 show_targetdebug (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
216 }
217
218 static void setup_target_debug (void);
219
220 DCACHE *target_dcache;
221
222 /* The user just typed 'target' without the name of a target. */
223
224 static void
225 target_command (char *arg, int from_tty)
226 {
227 fputs_filtered ("Argument required (target name). Try `help target'\n",
228 gdb_stdout);
229 }
230
231 /* Add a possible target architecture to the list. */
232
233 void
234 add_target (struct target_ops *t)
235 {
236 /* Provide default values for all "must have" methods. */
237 if (t->to_xfer_partial == NULL)
238 t->to_xfer_partial = default_xfer_partial;
239
240 if (!target_structs)
241 {
242 target_struct_allocsize = DEFAULT_ALLOCSIZE;
243 target_structs = (struct target_ops **) xmalloc
244 (target_struct_allocsize * sizeof (*target_structs));
245 }
246 if (target_struct_size >= target_struct_allocsize)
247 {
248 target_struct_allocsize *= 2;
249 target_structs = (struct target_ops **)
250 xrealloc ((char *) target_structs,
251 target_struct_allocsize * sizeof (*target_structs));
252 }
253 target_structs[target_struct_size++] = t;
254
255 if (targetlist == NULL)
256 add_prefix_cmd ("target", class_run, target_command, _("\
257 Connect to a target machine or process.\n\
258 The first argument is the type or protocol of the target machine.\n\
259 Remaining arguments are interpreted by the target protocol. For more\n\
260 information on the arguments for a particular protocol, type\n\
261 `help target ' followed by the protocol name."),
262 &targetlist, "target ", 0, &cmdlist);
263 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
264 }
265
266 /* Stub functions */
267
268 void
269 target_ignore (void)
270 {
271 }
272
273 void
274 target_load (char *arg, int from_tty)
275 {
276 dcache_invalidate (target_dcache);
277 (*current_target.to_load) (arg, from_tty);
278 }
279
280 static int
281 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
282 struct target_ops *t)
283 {
284 errno = EIO; /* Can't read/write this location */
285 return 0; /* No bytes handled */
286 }
287
288 static void
289 tcomplain (void)
290 {
291 error (_("You can't do that when your target is `%s'"),
292 current_target.to_shortname);
293 }
294
295 void
296 noprocess (void)
297 {
298 error (_("You can't do that without a process to debug."));
299 }
300
301 static int
302 nosymbol (char *name, CORE_ADDR *addrp)
303 {
304 return 1; /* Symbol does not exist in target env */
305 }
306
307 static void
308 nosupport_runtime (void)
309 {
310 if (ptid_equal (inferior_ptid, null_ptid))
311 noprocess ();
312 else
313 error (_("No run-time support for this"));
314 }
315
316
317 static void
318 default_terminal_info (char *args, int from_tty)
319 {
320 printf_unfiltered (_("No saved terminal information.\n"));
321 }
322
323 /* This is the default target_create_inferior and target_attach function.
324 If the current target is executing, it asks whether to kill it off.
325 If this function returns without calling error(), it has killed off
326 the target, and the operation should be attempted. */
327
328 static void
329 kill_or_be_killed (int from_tty)
330 {
331 if (target_has_execution)
332 {
333 printf_unfiltered (_("You are already running a program:\n"));
334 target_files_info ();
335 if (query ("Kill it? "))
336 {
337 target_kill ();
338 if (target_has_execution)
339 error (_("Killing the program did not help."));
340 return;
341 }
342 else
343 {
344 error (_("Program not killed."));
345 }
346 }
347 tcomplain ();
348 }
349
350 static void
351 maybe_kill_then_attach (char *args, int from_tty)
352 {
353 kill_or_be_killed (from_tty);
354 target_attach (args, from_tty);
355 }
356
357 static void
358 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
359 int from_tty)
360 {
361 kill_or_be_killed (0);
362 target_create_inferior (exec, args, env, from_tty);
363 }
364
365 /* Go through the target stack from top to bottom, copying over zero
366 entries in current_target, then filling in still empty entries. In
367 effect, we are doing class inheritance through the pushed target
368 vectors.
369
370 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
371 is currently implemented, is that it discards any knowledge of
372 which target an inherited method originally belonged to.
373 Consequently, new new target methods should instead explicitly and
374 locally search the target stack for the target that can handle the
375 request. */
376
377 static void
378 update_current_target (void)
379 {
380 struct target_ops *t;
381
382 /* First, reset current's contents. */
383 memset (&current_target, 0, sizeof (current_target));
384
385 #define INHERIT(FIELD, TARGET) \
386 if (!current_target.FIELD) \
387 current_target.FIELD = (TARGET)->FIELD
388
389 for (t = target_stack; t; t = t->beneath)
390 {
391 INHERIT (to_shortname, t);
392 INHERIT (to_longname, t);
393 INHERIT (to_doc, t);
394 INHERIT (to_open, t);
395 INHERIT (to_close, t);
396 INHERIT (to_attach, t);
397 INHERIT (to_post_attach, t);
398 INHERIT (to_detach, t);
399 /* Do not inherit to_disconnect. */
400 INHERIT (to_resume, t);
401 INHERIT (to_wait, t);
402 INHERIT (to_fetch_registers, t);
403 INHERIT (to_store_registers, t);
404 INHERIT (to_prepare_to_store, t);
405 INHERIT (deprecated_xfer_memory, t);
406 INHERIT (to_files_info, t);
407 INHERIT (to_insert_breakpoint, t);
408 INHERIT (to_remove_breakpoint, t);
409 INHERIT (to_can_use_hw_breakpoint, t);
410 INHERIT (to_insert_hw_breakpoint, t);
411 INHERIT (to_remove_hw_breakpoint, t);
412 INHERIT (to_insert_watchpoint, t);
413 INHERIT (to_remove_watchpoint, t);
414 INHERIT (to_stopped_data_address, t);
415 INHERIT (to_stopped_by_watchpoint, t);
416 INHERIT (to_have_steppable_watchpoint, t);
417 INHERIT (to_have_continuable_watchpoint, t);
418 INHERIT (to_region_ok_for_hw_watchpoint, t);
419 INHERIT (to_terminal_init, t);
420 INHERIT (to_terminal_inferior, t);
421 INHERIT (to_terminal_ours_for_output, t);
422 INHERIT (to_terminal_ours, t);
423 INHERIT (to_terminal_save_ours, t);
424 INHERIT (to_terminal_info, t);
425 INHERIT (to_kill, t);
426 INHERIT (to_load, t);
427 INHERIT (to_lookup_symbol, t);
428 INHERIT (to_create_inferior, t);
429 INHERIT (to_post_startup_inferior, t);
430 INHERIT (to_acknowledge_created_inferior, t);
431 INHERIT (to_insert_fork_catchpoint, t);
432 INHERIT (to_remove_fork_catchpoint, t);
433 INHERIT (to_insert_vfork_catchpoint, t);
434 INHERIT (to_remove_vfork_catchpoint, t);
435 /* Do not inherit to_follow_fork. */
436 INHERIT (to_insert_exec_catchpoint, t);
437 INHERIT (to_remove_exec_catchpoint, t);
438 INHERIT (to_reported_exec_events_per_exec_call, t);
439 INHERIT (to_has_exited, t);
440 INHERIT (to_mourn_inferior, t);
441 INHERIT (to_can_run, t);
442 INHERIT (to_notice_signals, t);
443 INHERIT (to_thread_alive, t);
444 INHERIT (to_find_new_threads, t);
445 INHERIT (to_pid_to_str, t);
446 INHERIT (to_extra_thread_info, t);
447 INHERIT (to_stop, t);
448 /* Do not inherit to_xfer_partial. */
449 INHERIT (to_rcmd, t);
450 INHERIT (to_enable_exception_callback, t);
451 INHERIT (to_get_current_exception_event, t);
452 INHERIT (to_pid_to_exec_file, t);
453 INHERIT (to_stratum, t);
454 INHERIT (to_has_all_memory, t);
455 INHERIT (to_has_memory, t);
456 INHERIT (to_has_stack, t);
457 INHERIT (to_has_registers, t);
458 INHERIT (to_has_execution, t);
459 INHERIT (to_has_thread_control, t);
460 INHERIT (to_sections, t);
461 INHERIT (to_sections_end, t);
462 INHERIT (to_can_async_p, t);
463 INHERIT (to_is_async_p, t);
464 INHERIT (to_async, t);
465 INHERIT (to_async_mask_value, t);
466 INHERIT (to_find_memory_regions, t);
467 INHERIT (to_make_corefile_notes, t);
468 INHERIT (to_get_thread_local_address, t);
469 /* Do not inherit to_read_description. */
470 INHERIT (to_magic, t);
471 /* Do not inherit to_memory_map. */
472 /* Do not inherit to_flash_erase. */
473 /* Do not inherit to_flash_done. */
474 }
475 #undef INHERIT
476
477 /* Clean up a target struct so it no longer has any zero pointers in
478 it. Some entries are defaulted to a method that print an error,
479 others are hard-wired to a standard recursive default. */
480
481 #define de_fault(field, value) \
482 if (!current_target.field) \
483 current_target.field = value
484
485 de_fault (to_open,
486 (void (*) (char *, int))
487 tcomplain);
488 de_fault (to_close,
489 (void (*) (int))
490 target_ignore);
491 de_fault (to_attach,
492 maybe_kill_then_attach);
493 de_fault (to_post_attach,
494 (void (*) (int))
495 target_ignore);
496 de_fault (to_detach,
497 (void (*) (char *, int))
498 target_ignore);
499 de_fault (to_resume,
500 (void (*) (ptid_t, int, enum target_signal))
501 noprocess);
502 de_fault (to_wait,
503 (ptid_t (*) (ptid_t, struct target_waitstatus *))
504 noprocess);
505 de_fault (to_fetch_registers,
506 (void (*) (struct regcache *, int))
507 target_ignore);
508 de_fault (to_store_registers,
509 (void (*) (struct regcache *, int))
510 noprocess);
511 de_fault (to_prepare_to_store,
512 (void (*) (struct regcache *))
513 noprocess);
514 de_fault (deprecated_xfer_memory,
515 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
516 nomemory);
517 de_fault (to_files_info,
518 (void (*) (struct target_ops *))
519 target_ignore);
520 de_fault (to_insert_breakpoint,
521 memory_insert_breakpoint);
522 de_fault (to_remove_breakpoint,
523 memory_remove_breakpoint);
524 de_fault (to_can_use_hw_breakpoint,
525 (int (*) (int, int, int))
526 return_zero);
527 de_fault (to_insert_hw_breakpoint,
528 (int (*) (struct bp_target_info *))
529 return_minus_one);
530 de_fault (to_remove_hw_breakpoint,
531 (int (*) (struct bp_target_info *))
532 return_minus_one);
533 de_fault (to_insert_watchpoint,
534 (int (*) (CORE_ADDR, int, int))
535 return_minus_one);
536 de_fault (to_remove_watchpoint,
537 (int (*) (CORE_ADDR, int, int))
538 return_minus_one);
539 de_fault (to_stopped_by_watchpoint,
540 (int (*) (void))
541 return_zero);
542 de_fault (to_stopped_data_address,
543 (int (*) (struct target_ops *, CORE_ADDR *))
544 return_zero);
545 de_fault (to_region_ok_for_hw_watchpoint,
546 default_region_ok_for_hw_watchpoint);
547 de_fault (to_terminal_init,
548 (void (*) (void))
549 target_ignore);
550 de_fault (to_terminal_inferior,
551 (void (*) (void))
552 target_ignore);
553 de_fault (to_terminal_ours_for_output,
554 (void (*) (void))
555 target_ignore);
556 de_fault (to_terminal_ours,
557 (void (*) (void))
558 target_ignore);
559 de_fault (to_terminal_save_ours,
560 (void (*) (void))
561 target_ignore);
562 de_fault (to_terminal_info,
563 default_terminal_info);
564 de_fault (to_kill,
565 (void (*) (void))
566 noprocess);
567 de_fault (to_load,
568 (void (*) (char *, int))
569 tcomplain);
570 de_fault (to_lookup_symbol,
571 (int (*) (char *, CORE_ADDR *))
572 nosymbol);
573 de_fault (to_create_inferior,
574 maybe_kill_then_create_inferior);
575 de_fault (to_post_startup_inferior,
576 (void (*) (ptid_t))
577 target_ignore);
578 de_fault (to_acknowledge_created_inferior,
579 (void (*) (int))
580 target_ignore);
581 de_fault (to_insert_fork_catchpoint,
582 (void (*) (int))
583 tcomplain);
584 de_fault (to_remove_fork_catchpoint,
585 (int (*) (int))
586 tcomplain);
587 de_fault (to_insert_vfork_catchpoint,
588 (void (*) (int))
589 tcomplain);
590 de_fault (to_remove_vfork_catchpoint,
591 (int (*) (int))
592 tcomplain);
593 de_fault (to_insert_exec_catchpoint,
594 (void (*) (int))
595 tcomplain);
596 de_fault (to_remove_exec_catchpoint,
597 (int (*) (int))
598 tcomplain);
599 de_fault (to_reported_exec_events_per_exec_call,
600 (int (*) (void))
601 return_one);
602 de_fault (to_has_exited,
603 (int (*) (int, int, int *))
604 return_zero);
605 de_fault (to_mourn_inferior,
606 (void (*) (void))
607 noprocess);
608 de_fault (to_can_run,
609 return_zero);
610 de_fault (to_notice_signals,
611 (void (*) (ptid_t))
612 target_ignore);
613 de_fault (to_thread_alive,
614 (int (*) (ptid_t))
615 return_zero);
616 de_fault (to_find_new_threads,
617 (void (*) (void))
618 target_ignore);
619 de_fault (to_extra_thread_info,
620 (char *(*) (struct thread_info *))
621 return_zero);
622 de_fault (to_stop,
623 (void (*) (void))
624 target_ignore);
625 current_target.to_xfer_partial = current_xfer_partial;
626 de_fault (to_rcmd,
627 (void (*) (char *, struct ui_file *))
628 tcomplain);
629 de_fault (to_enable_exception_callback,
630 (struct symtab_and_line * (*) (enum exception_event_kind, int))
631 nosupport_runtime);
632 de_fault (to_get_current_exception_event,
633 (struct exception_event_record * (*) (void))
634 nosupport_runtime);
635 de_fault (to_pid_to_exec_file,
636 (char *(*) (int))
637 return_zero);
638 de_fault (to_can_async_p,
639 (int (*) (void))
640 return_zero);
641 de_fault (to_is_async_p,
642 (int (*) (void))
643 return_zero);
644 de_fault (to_async,
645 (void (*) (void (*) (enum inferior_event_type, void*), void*))
646 tcomplain);
647 current_target.to_read_description = NULL;
648 #undef de_fault
649
650 /* Finally, position the target-stack beneath the squashed
651 "current_target". That way code looking for a non-inherited
652 target method can quickly and simply find it. */
653 current_target.beneath = target_stack;
654 }
655
656 /* Mark OPS as a running target. This reverses the effect
657 of target_mark_exited. */
658
659 void
660 target_mark_running (struct target_ops *ops)
661 {
662 struct target_ops *t;
663
664 for (t = target_stack; t != NULL; t = t->beneath)
665 if (t == ops)
666 break;
667 if (t == NULL)
668 internal_error (__FILE__, __LINE__,
669 "Attempted to mark unpushed target \"%s\" as running",
670 ops->to_shortname);
671
672 ops->to_has_execution = 1;
673 ops->to_has_all_memory = 1;
674 ops->to_has_memory = 1;
675 ops->to_has_stack = 1;
676 ops->to_has_registers = 1;
677
678 update_current_target ();
679 }
680
681 /* Mark OPS as a non-running target. This reverses the effect
682 of target_mark_running. */
683
684 void
685 target_mark_exited (struct target_ops *ops)
686 {
687 struct target_ops *t;
688
689 for (t = target_stack; t != NULL; t = t->beneath)
690 if (t == ops)
691 break;
692 if (t == NULL)
693 internal_error (__FILE__, __LINE__,
694 "Attempted to mark unpushed target \"%s\" as running",
695 ops->to_shortname);
696
697 ops->to_has_execution = 0;
698 ops->to_has_all_memory = 0;
699 ops->to_has_memory = 0;
700 ops->to_has_stack = 0;
701 ops->to_has_registers = 0;
702
703 update_current_target ();
704 }
705
706 /* Push a new target type into the stack of the existing target accessors,
707 possibly superseding some of the existing accessors.
708
709 Result is zero if the pushed target ended up on top of the stack,
710 nonzero if at least one target is on top of it.
711
712 Rather than allow an empty stack, we always have the dummy target at
713 the bottom stratum, so we can call the function vectors without
714 checking them. */
715
716 int
717 push_target (struct target_ops *t)
718 {
719 struct target_ops **cur;
720
721 /* Check magic number. If wrong, it probably means someone changed
722 the struct definition, but not all the places that initialize one. */
723 if (t->to_magic != OPS_MAGIC)
724 {
725 fprintf_unfiltered (gdb_stderr,
726 "Magic number of %s target struct wrong\n",
727 t->to_shortname);
728 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
729 }
730
731 /* Find the proper stratum to install this target in. */
732 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
733 {
734 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
735 break;
736 }
737
738 /* If there's already targets at this stratum, remove them. */
739 /* FIXME: cagney/2003-10-15: I think this should be popping all
740 targets to CUR, and not just those at this stratum level. */
741 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
742 {
743 /* There's already something at this stratum level. Close it,
744 and un-hook it from the stack. */
745 struct target_ops *tmp = (*cur);
746 (*cur) = (*cur)->beneath;
747 tmp->beneath = NULL;
748 target_close (tmp, 0);
749 }
750
751 /* We have removed all targets in our stratum, now add the new one. */
752 t->beneath = (*cur);
753 (*cur) = t;
754
755 update_current_target ();
756
757 if (targetdebug)
758 setup_target_debug ();
759
760 /* Not on top? */
761 return (t != target_stack);
762 }
763
764 /* Remove a target_ops vector from the stack, wherever it may be.
765 Return how many times it was removed (0 or 1). */
766
767 int
768 unpush_target (struct target_ops *t)
769 {
770 struct target_ops **cur;
771 struct target_ops *tmp;
772
773 /* Look for the specified target. Note that we assume that a target
774 can only occur once in the target stack. */
775
776 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
777 {
778 if ((*cur) == t)
779 break;
780 }
781
782 if ((*cur) == NULL)
783 return 0; /* Didn't find target_ops, quit now */
784
785 /* NOTE: cagney/2003-12-06: In '94 the close call was made
786 unconditional by moving it to before the above check that the
787 target was in the target stack (something about "Change the way
788 pushing and popping of targets work to support target overlays
789 and inheritance"). This doesn't make much sense - only open
790 targets should be closed. */
791 target_close (t, 0);
792
793 /* Unchain the target */
794 tmp = (*cur);
795 (*cur) = (*cur)->beneath;
796 tmp->beneath = NULL;
797
798 update_current_target ();
799
800 return 1;
801 }
802
803 void
804 pop_target (void)
805 {
806 target_close (&current_target, 0); /* Let it clean up */
807 if (unpush_target (target_stack) == 1)
808 return;
809
810 fprintf_unfiltered (gdb_stderr,
811 "pop_target couldn't find target %s\n",
812 current_target.to_shortname);
813 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
814 }
815
816 /* Using the objfile specified in BATON, find the address for the
817 current thread's thread-local storage with offset OFFSET. */
818 CORE_ADDR
819 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
820 {
821 volatile CORE_ADDR addr = 0;
822
823 if (target_get_thread_local_address_p ()
824 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
825 {
826 ptid_t ptid = inferior_ptid;
827 volatile struct gdb_exception ex;
828
829 TRY_CATCH (ex, RETURN_MASK_ALL)
830 {
831 CORE_ADDR lm_addr;
832
833 /* Fetch the load module address for this objfile. */
834 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
835 objfile);
836 /* If it's 0, throw the appropriate exception. */
837 if (lm_addr == 0)
838 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
839 _("TLS load module not found"));
840
841 addr = target_get_thread_local_address (ptid, lm_addr, offset);
842 }
843 /* If an error occurred, print TLS related messages here. Otherwise,
844 throw the error to some higher catcher. */
845 if (ex.reason < 0)
846 {
847 int objfile_is_library = (objfile->flags & OBJF_SHARED);
848
849 switch (ex.error)
850 {
851 case TLS_NO_LIBRARY_SUPPORT_ERROR:
852 error (_("Cannot find thread-local variables in this thread library."));
853 break;
854 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
855 if (objfile_is_library)
856 error (_("Cannot find shared library `%s' in dynamic"
857 " linker's load module list"), objfile->name);
858 else
859 error (_("Cannot find executable file `%s' in dynamic"
860 " linker's load module list"), objfile->name);
861 break;
862 case TLS_NOT_ALLOCATED_YET_ERROR:
863 if (objfile_is_library)
864 error (_("The inferior has not yet allocated storage for"
865 " thread-local variables in\n"
866 "the shared library `%s'\n"
867 "for %s"),
868 objfile->name, target_pid_to_str (ptid));
869 else
870 error (_("The inferior has not yet allocated storage for"
871 " thread-local variables in\n"
872 "the executable `%s'\n"
873 "for %s"),
874 objfile->name, target_pid_to_str (ptid));
875 break;
876 case TLS_GENERIC_ERROR:
877 if (objfile_is_library)
878 error (_("Cannot find thread-local storage for %s, "
879 "shared library %s:\n%s"),
880 target_pid_to_str (ptid),
881 objfile->name, ex.message);
882 else
883 error (_("Cannot find thread-local storage for %s, "
884 "executable file %s:\n%s"),
885 target_pid_to_str (ptid),
886 objfile->name, ex.message);
887 break;
888 default:
889 throw_exception (ex);
890 break;
891 }
892 }
893 }
894 /* It wouldn't be wrong here to try a gdbarch method, too; finding
895 TLS is an ABI-specific thing. But we don't do that yet. */
896 else
897 error (_("Cannot find thread-local variables on this target"));
898
899 return addr;
900 }
901
902 #undef MIN
903 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
904
905 /* target_read_string -- read a null terminated string, up to LEN bytes,
906 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
907 Set *STRING to a pointer to malloc'd memory containing the data; the caller
908 is responsible for freeing it. Return the number of bytes successfully
909 read. */
910
911 int
912 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
913 {
914 int tlen, origlen, offset, i;
915 gdb_byte buf[4];
916 int errcode = 0;
917 char *buffer;
918 int buffer_allocated;
919 char *bufptr;
920 unsigned int nbytes_read = 0;
921
922 gdb_assert (string);
923
924 /* Small for testing. */
925 buffer_allocated = 4;
926 buffer = xmalloc (buffer_allocated);
927 bufptr = buffer;
928
929 origlen = len;
930
931 while (len > 0)
932 {
933 tlen = MIN (len, 4 - (memaddr & 3));
934 offset = memaddr & 3;
935
936 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
937 if (errcode != 0)
938 {
939 /* The transfer request might have crossed the boundary to an
940 unallocated region of memory. Retry the transfer, requesting
941 a single byte. */
942 tlen = 1;
943 offset = 0;
944 errcode = target_read_memory (memaddr, buf, 1);
945 if (errcode != 0)
946 goto done;
947 }
948
949 if (bufptr - buffer + tlen > buffer_allocated)
950 {
951 unsigned int bytes;
952 bytes = bufptr - buffer;
953 buffer_allocated *= 2;
954 buffer = xrealloc (buffer, buffer_allocated);
955 bufptr = buffer + bytes;
956 }
957
958 for (i = 0; i < tlen; i++)
959 {
960 *bufptr++ = buf[i + offset];
961 if (buf[i + offset] == '\000')
962 {
963 nbytes_read += i + 1;
964 goto done;
965 }
966 }
967
968 memaddr += tlen;
969 len -= tlen;
970 nbytes_read += tlen;
971 }
972 done:
973 *string = buffer;
974 if (errnop != NULL)
975 *errnop = errcode;
976 return nbytes_read;
977 }
978
979 /* Find a section containing ADDR. */
980 struct section_table *
981 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
982 {
983 struct section_table *secp;
984 for (secp = target->to_sections;
985 secp < target->to_sections_end;
986 secp++)
987 {
988 if (addr >= secp->addr && addr < secp->endaddr)
989 return secp;
990 }
991 return NULL;
992 }
993
994 /* Perform a partial memory transfer. The arguments and return
995 value are just as for target_xfer_partial. */
996
997 static LONGEST
998 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
999 ULONGEST memaddr, LONGEST len)
1000 {
1001 LONGEST res;
1002 int reg_len;
1003 struct mem_region *region;
1004
1005 /* Zero length requests are ok and require no work. */
1006 if (len == 0)
1007 return 0;
1008
1009 /* Try the executable file, if "trust-readonly-sections" is set. */
1010 if (readbuf != NULL && trust_readonly)
1011 {
1012 struct section_table *secp;
1013
1014 secp = target_section_by_addr (ops, memaddr);
1015 if (secp != NULL
1016 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1017 & SEC_READONLY))
1018 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1019 }
1020
1021 /* Likewise for accesses to unmapped overlay sections. */
1022 if (readbuf != NULL && overlay_debugging)
1023 {
1024 asection *section = find_pc_overlay (memaddr);
1025 if (pc_in_unmapped_range (memaddr, section))
1026 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1027 }
1028
1029 /* Try GDB's internal data cache. */
1030 region = lookup_mem_region (memaddr);
1031 /* region->hi == 0 means there's no upper bound. */
1032 if (memaddr + len < region->hi || region->hi == 0)
1033 reg_len = len;
1034 else
1035 reg_len = region->hi - memaddr;
1036
1037 switch (region->attrib.mode)
1038 {
1039 case MEM_RO:
1040 if (writebuf != NULL)
1041 return -1;
1042 break;
1043
1044 case MEM_WO:
1045 if (readbuf != NULL)
1046 return -1;
1047 break;
1048
1049 case MEM_FLASH:
1050 /* We only support writing to flash during "load" for now. */
1051 if (writebuf != NULL)
1052 error (_("Writing to flash memory forbidden in this context"));
1053 break;
1054
1055 case MEM_NONE:
1056 return -1;
1057 }
1058
1059 if (region->attrib.cache)
1060 {
1061 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1062 memory request will start back at current_target. */
1063 if (readbuf != NULL)
1064 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1065 reg_len, 0);
1066 else
1067 /* FIXME drow/2006-08-09: If we're going to preserve const
1068 correctness dcache_xfer_memory should take readbuf and
1069 writebuf. */
1070 res = dcache_xfer_memory (target_dcache, memaddr,
1071 (void *) writebuf,
1072 reg_len, 1);
1073 if (res <= 0)
1074 return -1;
1075 else
1076 return res;
1077 }
1078
1079 /* If none of those methods found the memory we wanted, fall back
1080 to a target partial transfer. Normally a single call to
1081 to_xfer_partial is enough; if it doesn't recognize an object
1082 it will call the to_xfer_partial of the next target down.
1083 But for memory this won't do. Memory is the only target
1084 object which can be read from more than one valid target.
1085 A core file, for instance, could have some of memory but
1086 delegate other bits to the target below it. So, we must
1087 manually try all targets. */
1088
1089 do
1090 {
1091 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1092 readbuf, writebuf, memaddr, reg_len);
1093 if (res > 0)
1094 return res;
1095
1096 /* We want to continue past core files to executables, but not
1097 past a running target's memory. */
1098 if (ops->to_has_all_memory)
1099 return res;
1100
1101 ops = ops->beneath;
1102 }
1103 while (ops != NULL);
1104
1105 /* If we still haven't got anything, return the last error. We
1106 give up. */
1107 return res;
1108 }
1109
1110 static LONGEST
1111 target_xfer_partial (struct target_ops *ops,
1112 enum target_object object, const char *annex,
1113 void *readbuf, const void *writebuf,
1114 ULONGEST offset, LONGEST len)
1115 {
1116 LONGEST retval;
1117
1118 gdb_assert (ops->to_xfer_partial != NULL);
1119
1120 /* If this is a memory transfer, let the memory-specific code
1121 have a look at it instead. Memory transfers are more
1122 complicated. */
1123 if (object == TARGET_OBJECT_MEMORY)
1124 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1125 else
1126 {
1127 enum target_object raw_object = object;
1128
1129 /* If this is a raw memory transfer, request the normal
1130 memory object from other layers. */
1131 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1132 raw_object = TARGET_OBJECT_MEMORY;
1133
1134 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1135 writebuf, offset, len);
1136 }
1137
1138 if (targetdebug)
1139 {
1140 const unsigned char *myaddr = NULL;
1141
1142 fprintf_unfiltered (gdb_stdlog,
1143 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1144 ops->to_shortname,
1145 (int) object,
1146 (annex ? annex : "(null)"),
1147 (long) readbuf, (long) writebuf,
1148 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1149
1150 if (readbuf)
1151 myaddr = readbuf;
1152 if (writebuf)
1153 myaddr = writebuf;
1154 if (retval > 0 && myaddr != NULL)
1155 {
1156 int i;
1157
1158 fputs_unfiltered (", bytes =", gdb_stdlog);
1159 for (i = 0; i < retval; i++)
1160 {
1161 if ((((long) &(myaddr[i])) & 0xf) == 0)
1162 {
1163 if (targetdebug < 2 && i > 0)
1164 {
1165 fprintf_unfiltered (gdb_stdlog, " ...");
1166 break;
1167 }
1168 fprintf_unfiltered (gdb_stdlog, "\n");
1169 }
1170
1171 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1172 }
1173 }
1174
1175 fputc_unfiltered ('\n', gdb_stdlog);
1176 }
1177 return retval;
1178 }
1179
1180 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1181 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1182 if any error occurs.
1183
1184 If an error occurs, no guarantee is made about the contents of the data at
1185 MYADDR. In particular, the caller should not depend upon partial reads
1186 filling the buffer with good data. There is no way for the caller to know
1187 how much good data might have been transfered anyway. Callers that can
1188 deal with partial reads should call target_read (which will retry until
1189 it makes no progress, and then return how much was transferred). */
1190
1191 int
1192 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1193 {
1194 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1195 myaddr, memaddr, len) == len)
1196 return 0;
1197 else
1198 return EIO;
1199 }
1200
1201 int
1202 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1203 {
1204 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1205 myaddr, memaddr, len) == len)
1206 return 0;
1207 else
1208 return EIO;
1209 }
1210
1211 /* Fetch the target's memory map. */
1212
1213 VEC(mem_region_s) *
1214 target_memory_map (void)
1215 {
1216 VEC(mem_region_s) *result;
1217 struct mem_region *last_one, *this_one;
1218 int ix;
1219 struct target_ops *t;
1220
1221 if (targetdebug)
1222 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1223
1224 for (t = current_target.beneath; t != NULL; t = t->beneath)
1225 if (t->to_memory_map != NULL)
1226 break;
1227
1228 if (t == NULL)
1229 return NULL;
1230
1231 result = t->to_memory_map (t);
1232 if (result == NULL)
1233 return NULL;
1234
1235 qsort (VEC_address (mem_region_s, result),
1236 VEC_length (mem_region_s, result),
1237 sizeof (struct mem_region), mem_region_cmp);
1238
1239 /* Check that regions do not overlap. Simultaneously assign
1240 a numbering for the "mem" commands to use to refer to
1241 each region. */
1242 last_one = NULL;
1243 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1244 {
1245 this_one->number = ix;
1246
1247 if (last_one && last_one->hi > this_one->lo)
1248 {
1249 warning (_("Overlapping regions in memory map: ignoring"));
1250 VEC_free (mem_region_s, result);
1251 return NULL;
1252 }
1253 last_one = this_one;
1254 }
1255
1256 return result;
1257 }
1258
1259 void
1260 target_flash_erase (ULONGEST address, LONGEST length)
1261 {
1262 struct target_ops *t;
1263
1264 for (t = current_target.beneath; t != NULL; t = t->beneath)
1265 if (t->to_flash_erase != NULL)
1266 {
1267 if (targetdebug)
1268 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1269 paddr (address), phex (length, 0));
1270 t->to_flash_erase (t, address, length);
1271 return;
1272 }
1273
1274 tcomplain ();
1275 }
1276
1277 void
1278 target_flash_done (void)
1279 {
1280 struct target_ops *t;
1281
1282 for (t = current_target.beneath; t != NULL; t = t->beneath)
1283 if (t->to_flash_done != NULL)
1284 {
1285 if (targetdebug)
1286 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1287 t->to_flash_done (t);
1288 return;
1289 }
1290
1291 tcomplain ();
1292 }
1293
1294 #ifndef target_stopped_data_address_p
1295 int
1296 target_stopped_data_address_p (struct target_ops *target)
1297 {
1298 if (target->to_stopped_data_address
1299 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1300 return 0;
1301 if (target->to_stopped_data_address == debug_to_stopped_data_address
1302 && (debug_target.to_stopped_data_address
1303 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1304 return 0;
1305 return 1;
1306 }
1307 #endif
1308
1309 static void
1310 show_trust_readonly (struct ui_file *file, int from_tty,
1311 struct cmd_list_element *c, const char *value)
1312 {
1313 fprintf_filtered (file, _("\
1314 Mode for reading from readonly sections is %s.\n"),
1315 value);
1316 }
1317
1318 /* More generic transfers. */
1319
1320 static LONGEST
1321 default_xfer_partial (struct target_ops *ops, enum target_object object,
1322 const char *annex, gdb_byte *readbuf,
1323 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1324 {
1325 if (object == TARGET_OBJECT_MEMORY
1326 && ops->deprecated_xfer_memory != NULL)
1327 /* If available, fall back to the target's
1328 "deprecated_xfer_memory" method. */
1329 {
1330 int xfered = -1;
1331 errno = 0;
1332 if (writebuf != NULL)
1333 {
1334 void *buffer = xmalloc (len);
1335 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1336 memcpy (buffer, writebuf, len);
1337 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1338 1/*write*/, NULL, ops);
1339 do_cleanups (cleanup);
1340 }
1341 if (readbuf != NULL)
1342 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1343 NULL, ops);
1344 if (xfered > 0)
1345 return xfered;
1346 else if (xfered == 0 && errno == 0)
1347 /* "deprecated_xfer_memory" uses 0, cross checked against
1348 ERRNO as one indication of an error. */
1349 return 0;
1350 else
1351 return -1;
1352 }
1353 else if (ops->beneath != NULL)
1354 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1355 readbuf, writebuf, offset, len);
1356 else
1357 return -1;
1358 }
1359
1360 /* The xfer_partial handler for the topmost target. Unlike the default,
1361 it does not need to handle memory specially; it just passes all
1362 requests down the stack. */
1363
1364 static LONGEST
1365 current_xfer_partial (struct target_ops *ops, enum target_object object,
1366 const char *annex, gdb_byte *readbuf,
1367 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1368 {
1369 if (ops->beneath != NULL)
1370 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1371 readbuf, writebuf, offset, len);
1372 else
1373 return -1;
1374 }
1375
1376 /* Target vector read/write partial wrapper functions.
1377
1378 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1379 (inbuf, outbuf)", instead of separate read/write methods, make life
1380 easier. */
1381
1382 static LONGEST
1383 target_read_partial (struct target_ops *ops,
1384 enum target_object object,
1385 const char *annex, gdb_byte *buf,
1386 ULONGEST offset, LONGEST len)
1387 {
1388 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1389 }
1390
1391 static LONGEST
1392 target_write_partial (struct target_ops *ops,
1393 enum target_object object,
1394 const char *annex, const gdb_byte *buf,
1395 ULONGEST offset, LONGEST len)
1396 {
1397 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1398 }
1399
1400 /* Wrappers to perform the full transfer. */
1401 LONGEST
1402 target_read (struct target_ops *ops,
1403 enum target_object object,
1404 const char *annex, gdb_byte *buf,
1405 ULONGEST offset, LONGEST len)
1406 {
1407 LONGEST xfered = 0;
1408 while (xfered < len)
1409 {
1410 LONGEST xfer = target_read_partial (ops, object, annex,
1411 (gdb_byte *) buf + xfered,
1412 offset + xfered, len - xfered);
1413 /* Call an observer, notifying them of the xfer progress? */
1414 if (xfer == 0)
1415 return xfered;
1416 if (xfer < 0)
1417 return -1;
1418 xfered += xfer;
1419 QUIT;
1420 }
1421 return len;
1422 }
1423
1424 /* An alternative to target_write with progress callbacks. */
1425
1426 LONGEST
1427 target_write_with_progress (struct target_ops *ops,
1428 enum target_object object,
1429 const char *annex, const gdb_byte *buf,
1430 ULONGEST offset, LONGEST len,
1431 void (*progress) (ULONGEST, void *), void *baton)
1432 {
1433 LONGEST xfered = 0;
1434
1435 /* Give the progress callback a chance to set up. */
1436 if (progress)
1437 (*progress) (0, baton);
1438
1439 while (xfered < len)
1440 {
1441 LONGEST xfer = target_write_partial (ops, object, annex,
1442 (gdb_byte *) buf + xfered,
1443 offset + xfered, len - xfered);
1444
1445 if (xfer == 0)
1446 return xfered;
1447 if (xfer < 0)
1448 return -1;
1449
1450 if (progress)
1451 (*progress) (xfer, baton);
1452
1453 xfered += xfer;
1454 QUIT;
1455 }
1456 return len;
1457 }
1458
1459 LONGEST
1460 target_write (struct target_ops *ops,
1461 enum target_object object,
1462 const char *annex, const gdb_byte *buf,
1463 ULONGEST offset, LONGEST len)
1464 {
1465 return target_write_with_progress (ops, object, annex, buf, offset, len,
1466 NULL, NULL);
1467 }
1468
1469 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1470 the size of the transferred data. PADDING additional bytes are
1471 available in *BUF_P. This is a helper function for
1472 target_read_alloc; see the declaration of that function for more
1473 information. */
1474
1475 static LONGEST
1476 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1477 const char *annex, gdb_byte **buf_p, int padding)
1478 {
1479 size_t buf_alloc, buf_pos;
1480 gdb_byte *buf;
1481 LONGEST n;
1482
1483 /* This function does not have a length parameter; it reads the
1484 entire OBJECT). Also, it doesn't support objects fetched partly
1485 from one target and partly from another (in a different stratum,
1486 e.g. a core file and an executable). Both reasons make it
1487 unsuitable for reading memory. */
1488 gdb_assert (object != TARGET_OBJECT_MEMORY);
1489
1490 /* Start by reading up to 4K at a time. The target will throttle
1491 this number down if necessary. */
1492 buf_alloc = 4096;
1493 buf = xmalloc (buf_alloc);
1494 buf_pos = 0;
1495 while (1)
1496 {
1497 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1498 buf_pos, buf_alloc - buf_pos - padding);
1499 if (n < 0)
1500 {
1501 /* An error occurred. */
1502 xfree (buf);
1503 return -1;
1504 }
1505 else if (n == 0)
1506 {
1507 /* Read all there was. */
1508 if (buf_pos == 0)
1509 xfree (buf);
1510 else
1511 *buf_p = buf;
1512 return buf_pos;
1513 }
1514
1515 buf_pos += n;
1516
1517 /* If the buffer is filling up, expand it. */
1518 if (buf_alloc < buf_pos * 2)
1519 {
1520 buf_alloc *= 2;
1521 buf = xrealloc (buf, buf_alloc);
1522 }
1523
1524 QUIT;
1525 }
1526 }
1527
1528 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1529 the size of the transferred data. See the declaration in "target.h"
1530 function for more information about the return value. */
1531
1532 LONGEST
1533 target_read_alloc (struct target_ops *ops, enum target_object object,
1534 const char *annex, gdb_byte **buf_p)
1535 {
1536 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1537 }
1538
1539 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1540 returned as a string, allocated using xmalloc. If an error occurs
1541 or the transfer is unsupported, NULL is returned. Empty objects
1542 are returned as allocated but empty strings. A warning is issued
1543 if the result contains any embedded NUL bytes. */
1544
1545 char *
1546 target_read_stralloc (struct target_ops *ops, enum target_object object,
1547 const char *annex)
1548 {
1549 gdb_byte *buffer;
1550 LONGEST transferred;
1551
1552 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1553
1554 if (transferred < 0)
1555 return NULL;
1556
1557 if (transferred == 0)
1558 return xstrdup ("");
1559
1560 buffer[transferred] = 0;
1561 if (strlen (buffer) < transferred)
1562 warning (_("target object %d, annex %s, "
1563 "contained unexpected null characters"),
1564 (int) object, annex ? annex : "(none)");
1565
1566 return (char *) buffer;
1567 }
1568
1569 /* Memory transfer methods. */
1570
1571 void
1572 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1573 LONGEST len)
1574 {
1575 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1576 != len)
1577 memory_error (EIO, addr);
1578 }
1579
1580 ULONGEST
1581 get_target_memory_unsigned (struct target_ops *ops,
1582 CORE_ADDR addr, int len)
1583 {
1584 gdb_byte buf[sizeof (ULONGEST)];
1585
1586 gdb_assert (len <= sizeof (buf));
1587 get_target_memory (ops, addr, buf, len);
1588 return extract_unsigned_integer (buf, len);
1589 }
1590
1591 static void
1592 target_info (char *args, int from_tty)
1593 {
1594 struct target_ops *t;
1595 int has_all_mem = 0;
1596
1597 if (symfile_objfile != NULL)
1598 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1599
1600 for (t = target_stack; t != NULL; t = t->beneath)
1601 {
1602 if (!t->to_has_memory)
1603 continue;
1604
1605 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1606 continue;
1607 if (has_all_mem)
1608 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1609 printf_unfiltered ("%s:\n", t->to_longname);
1610 (t->to_files_info) (t);
1611 has_all_mem = t->to_has_all_memory;
1612 }
1613 }
1614
1615 /* This function is called before any new inferior is created, e.g.
1616 by running a program, attaching, or connecting to a target.
1617 It cleans up any state from previous invocations which might
1618 change between runs. This is a subset of what target_preopen
1619 resets (things which might change between targets). */
1620
1621 void
1622 target_pre_inferior (int from_tty)
1623 {
1624 invalidate_target_mem_regions ();
1625
1626 target_clear_description ();
1627 }
1628
1629 /* This is to be called by the open routine before it does
1630 anything. */
1631
1632 void
1633 target_preopen (int from_tty)
1634 {
1635 dont_repeat ();
1636
1637 if (target_has_execution)
1638 {
1639 if (!from_tty
1640 || query (_("A program is being debugged already. Kill it? ")))
1641 target_kill ();
1642 else
1643 error (_("Program not killed."));
1644 }
1645
1646 /* Calling target_kill may remove the target from the stack. But if
1647 it doesn't (which seems like a win for UDI), remove it now. */
1648
1649 if (target_has_execution)
1650 pop_target ();
1651
1652 target_pre_inferior (from_tty);
1653 }
1654
1655 /* Detach a target after doing deferred register stores. */
1656
1657 void
1658 target_detach (char *args, int from_tty)
1659 {
1660 (current_target.to_detach) (args, from_tty);
1661 }
1662
1663 void
1664 target_disconnect (char *args, int from_tty)
1665 {
1666 struct target_ops *t;
1667
1668 for (t = current_target.beneath; t != NULL; t = t->beneath)
1669 if (t->to_disconnect != NULL)
1670 {
1671 if (targetdebug)
1672 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1673 args, from_tty);
1674 t->to_disconnect (t, args, from_tty);
1675 return;
1676 }
1677
1678 tcomplain ();
1679 }
1680
1681 int
1682 target_async_mask (int mask)
1683 {
1684 int saved_async_masked_status = target_async_mask_value;
1685 target_async_mask_value = mask;
1686 return saved_async_masked_status;
1687 }
1688
1689 /* Look through the list of possible targets for a target that can
1690 follow forks. */
1691
1692 int
1693 target_follow_fork (int follow_child)
1694 {
1695 struct target_ops *t;
1696
1697 for (t = current_target.beneath; t != NULL; t = t->beneath)
1698 {
1699 if (t->to_follow_fork != NULL)
1700 {
1701 int retval = t->to_follow_fork (t, follow_child);
1702 if (targetdebug)
1703 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1704 follow_child, retval);
1705 return retval;
1706 }
1707 }
1708
1709 /* Some target returned a fork event, but did not know how to follow it. */
1710 internal_error (__FILE__, __LINE__,
1711 "could not find a target to follow fork");
1712 }
1713
1714 /* Look for a target which can describe architectural features, starting
1715 from TARGET. If we find one, return its description. */
1716
1717 const struct target_desc *
1718 target_read_description (struct target_ops *target)
1719 {
1720 struct target_ops *t;
1721
1722 for (t = target; t != NULL; t = t->beneath)
1723 if (t->to_read_description != NULL)
1724 {
1725 const struct target_desc *tdesc;
1726
1727 tdesc = t->to_read_description (t);
1728 if (tdesc)
1729 return tdesc;
1730 }
1731
1732 return NULL;
1733 }
1734
1735 /* Look through the list of possible targets for a target that can
1736 execute a run or attach command without any other data. This is
1737 used to locate the default process stratum.
1738
1739 Result is always valid (error() is called for errors). */
1740
1741 static struct target_ops *
1742 find_default_run_target (char *do_mesg)
1743 {
1744 struct target_ops **t;
1745 struct target_ops *runable = NULL;
1746 int count;
1747
1748 count = 0;
1749
1750 for (t = target_structs; t < target_structs + target_struct_size;
1751 ++t)
1752 {
1753 if ((*t)->to_can_run && target_can_run (*t))
1754 {
1755 runable = *t;
1756 ++count;
1757 }
1758 }
1759
1760 if (count != 1)
1761 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1762
1763 return runable;
1764 }
1765
1766 void
1767 find_default_attach (char *args, int from_tty)
1768 {
1769 struct target_ops *t;
1770
1771 t = find_default_run_target ("attach");
1772 (t->to_attach) (args, from_tty);
1773 return;
1774 }
1775
1776 void
1777 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1778 int from_tty)
1779 {
1780 struct target_ops *t;
1781
1782 t = find_default_run_target ("run");
1783 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1784 return;
1785 }
1786
1787 static int
1788 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1789 {
1790 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1791 }
1792
1793 static int
1794 return_zero (void)
1795 {
1796 return 0;
1797 }
1798
1799 static int
1800 return_one (void)
1801 {
1802 return 1;
1803 }
1804
1805 static int
1806 return_minus_one (void)
1807 {
1808 return -1;
1809 }
1810
1811 /*
1812 * Resize the to_sections pointer. Also make sure that anyone that
1813 * was holding on to an old value of it gets updated.
1814 * Returns the old size.
1815 */
1816
1817 int
1818 target_resize_to_sections (struct target_ops *target, int num_added)
1819 {
1820 struct target_ops **t;
1821 struct section_table *old_value;
1822 int old_count;
1823
1824 old_value = target->to_sections;
1825
1826 if (target->to_sections)
1827 {
1828 old_count = target->to_sections_end - target->to_sections;
1829 target->to_sections = (struct section_table *)
1830 xrealloc ((char *) target->to_sections,
1831 (sizeof (struct section_table)) * (num_added + old_count));
1832 }
1833 else
1834 {
1835 old_count = 0;
1836 target->to_sections = (struct section_table *)
1837 xmalloc ((sizeof (struct section_table)) * num_added);
1838 }
1839 target->to_sections_end = target->to_sections + (num_added + old_count);
1840
1841 /* Check to see if anyone else was pointing to this structure.
1842 If old_value was null, then no one was. */
1843
1844 if (old_value)
1845 {
1846 for (t = target_structs; t < target_structs + target_struct_size;
1847 ++t)
1848 {
1849 if ((*t)->to_sections == old_value)
1850 {
1851 (*t)->to_sections = target->to_sections;
1852 (*t)->to_sections_end = target->to_sections_end;
1853 }
1854 }
1855 /* There is a flattened view of the target stack in current_target,
1856 so its to_sections pointer might also need updating. */
1857 if (current_target.to_sections == old_value)
1858 {
1859 current_target.to_sections = target->to_sections;
1860 current_target.to_sections_end = target->to_sections_end;
1861 }
1862 }
1863
1864 return old_count;
1865
1866 }
1867
1868 /* Remove all target sections taken from ABFD.
1869
1870 Scan the current target stack for targets whose section tables
1871 refer to sections from BFD, and remove those sections. We use this
1872 when we notice that the inferior has unloaded a shared object, for
1873 example. */
1874 void
1875 remove_target_sections (bfd *abfd)
1876 {
1877 struct target_ops **t;
1878
1879 for (t = target_structs; t < target_structs + target_struct_size; t++)
1880 {
1881 struct section_table *src, *dest;
1882
1883 dest = (*t)->to_sections;
1884 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1885 if (src->bfd != abfd)
1886 {
1887 /* Keep this section. */
1888 if (dest < src) *dest = *src;
1889 dest++;
1890 }
1891
1892 /* If we've dropped any sections, resize the section table. */
1893 if (dest < src)
1894 target_resize_to_sections (*t, dest - src);
1895 }
1896 }
1897
1898
1899
1900
1901 /* Find a single runnable target in the stack and return it. If for
1902 some reason there is more than one, return NULL. */
1903
1904 struct target_ops *
1905 find_run_target (void)
1906 {
1907 struct target_ops **t;
1908 struct target_ops *runable = NULL;
1909 int count;
1910
1911 count = 0;
1912
1913 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1914 {
1915 if ((*t)->to_can_run && target_can_run (*t))
1916 {
1917 runable = *t;
1918 ++count;
1919 }
1920 }
1921
1922 return (count == 1 ? runable : NULL);
1923 }
1924
1925 /* Find a single core_stratum target in the list of targets and return it.
1926 If for some reason there is more than one, return NULL. */
1927
1928 struct target_ops *
1929 find_core_target (void)
1930 {
1931 struct target_ops **t;
1932 struct target_ops *runable = NULL;
1933 int count;
1934
1935 count = 0;
1936
1937 for (t = target_structs; t < target_structs + target_struct_size;
1938 ++t)
1939 {
1940 if ((*t)->to_stratum == core_stratum)
1941 {
1942 runable = *t;
1943 ++count;
1944 }
1945 }
1946
1947 return (count == 1 ? runable : NULL);
1948 }
1949
1950 /*
1951 * Find the next target down the stack from the specified target.
1952 */
1953
1954 struct target_ops *
1955 find_target_beneath (struct target_ops *t)
1956 {
1957 return t->beneath;
1958 }
1959
1960 \f
1961 /* The inferior process has died. Long live the inferior! */
1962
1963 void
1964 generic_mourn_inferior (void)
1965 {
1966 extern int show_breakpoint_hit_counts;
1967
1968 inferior_ptid = null_ptid;
1969 attach_flag = 0;
1970 breakpoint_init_inferior (inf_exited);
1971 registers_changed ();
1972
1973 reopen_exec_file ();
1974 reinit_frame_cache ();
1975
1976 /* It is confusing to the user for ignore counts to stick around
1977 from previous runs of the inferior. So clear them. */
1978 /* However, it is more confusing for the ignore counts to disappear when
1979 using hit counts. So don't clear them if we're counting hits. */
1980 if (!show_breakpoint_hit_counts)
1981 breakpoint_clear_ignore_counts ();
1982
1983 if (deprecated_detach_hook)
1984 deprecated_detach_hook ();
1985 }
1986 \f
1987 /* Helper function for child_wait and the derivatives of child_wait.
1988 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1989 translation of that in OURSTATUS. */
1990 void
1991 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1992 {
1993 if (WIFEXITED (hoststatus))
1994 {
1995 ourstatus->kind = TARGET_WAITKIND_EXITED;
1996 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1997 }
1998 else if (!WIFSTOPPED (hoststatus))
1999 {
2000 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2001 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2002 }
2003 else
2004 {
2005 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2006 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2007 }
2008 }
2009 \f
2010 /* Returns zero to leave the inferior alone, one to interrupt it. */
2011 int (*target_activity_function) (void);
2012 int target_activity_fd;
2013 \f
2014 /* Convert a normal process ID to a string. Returns the string in a
2015 static buffer. */
2016
2017 char *
2018 normal_pid_to_str (ptid_t ptid)
2019 {
2020 static char buf[32];
2021
2022 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2023 return buf;
2024 }
2025
2026 /* Error-catcher for target_find_memory_regions */
2027 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2028 {
2029 error (_("No target."));
2030 return 0;
2031 }
2032
2033 /* Error-catcher for target_make_corefile_notes */
2034 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2035 {
2036 error (_("No target."));
2037 return NULL;
2038 }
2039
2040 /* Set up the handful of non-empty slots needed by the dummy target
2041 vector. */
2042
2043 static void
2044 init_dummy_target (void)
2045 {
2046 dummy_target.to_shortname = "None";
2047 dummy_target.to_longname = "None";
2048 dummy_target.to_doc = "";
2049 dummy_target.to_attach = find_default_attach;
2050 dummy_target.to_create_inferior = find_default_create_inferior;
2051 dummy_target.to_pid_to_str = normal_pid_to_str;
2052 dummy_target.to_stratum = dummy_stratum;
2053 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2054 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2055 dummy_target.to_xfer_partial = default_xfer_partial;
2056 dummy_target.to_magic = OPS_MAGIC;
2057 }
2058 \f
2059 static void
2060 debug_to_open (char *args, int from_tty)
2061 {
2062 debug_target.to_open (args, from_tty);
2063
2064 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2065 }
2066
2067 static void
2068 debug_to_close (int quitting)
2069 {
2070 target_close (&debug_target, quitting);
2071 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2072 }
2073
2074 void
2075 target_close (struct target_ops *targ, int quitting)
2076 {
2077 if (targ->to_xclose != NULL)
2078 targ->to_xclose (targ, quitting);
2079 else if (targ->to_close != NULL)
2080 targ->to_close (quitting);
2081 }
2082
2083 static void
2084 debug_to_attach (char *args, int from_tty)
2085 {
2086 debug_target.to_attach (args, from_tty);
2087
2088 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2089 }
2090
2091
2092 static void
2093 debug_to_post_attach (int pid)
2094 {
2095 debug_target.to_post_attach (pid);
2096
2097 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2098 }
2099
2100 static void
2101 debug_to_detach (char *args, int from_tty)
2102 {
2103 debug_target.to_detach (args, from_tty);
2104
2105 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2106 }
2107
2108 static void
2109 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2110 {
2111 debug_target.to_resume (ptid, step, siggnal);
2112
2113 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2114 step ? "step" : "continue",
2115 target_signal_to_name (siggnal));
2116 }
2117
2118 static ptid_t
2119 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2120 {
2121 ptid_t retval;
2122
2123 retval = debug_target.to_wait (ptid, status);
2124
2125 fprintf_unfiltered (gdb_stdlog,
2126 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2127 PIDGET (retval));
2128 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2129 switch (status->kind)
2130 {
2131 case TARGET_WAITKIND_EXITED:
2132 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2133 status->value.integer);
2134 break;
2135 case TARGET_WAITKIND_STOPPED:
2136 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2137 target_signal_to_name (status->value.sig));
2138 break;
2139 case TARGET_WAITKIND_SIGNALLED:
2140 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2141 target_signal_to_name (status->value.sig));
2142 break;
2143 case TARGET_WAITKIND_LOADED:
2144 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2145 break;
2146 case TARGET_WAITKIND_FORKED:
2147 fprintf_unfiltered (gdb_stdlog, "forked\n");
2148 break;
2149 case TARGET_WAITKIND_VFORKED:
2150 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2151 break;
2152 case TARGET_WAITKIND_EXECD:
2153 fprintf_unfiltered (gdb_stdlog, "execd\n");
2154 break;
2155 case TARGET_WAITKIND_SPURIOUS:
2156 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2157 break;
2158 default:
2159 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2160 break;
2161 }
2162
2163 return retval;
2164 }
2165
2166 static void
2167 debug_print_register (const char * func,
2168 struct regcache *regcache, int regno)
2169 {
2170 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2171 if (regno >= 0 && regno < gdbarch_num_regs (current_gdbarch)
2172 + gdbarch_num_pseudo_regs (current_gdbarch)
2173 && gdbarch_register_name (current_gdbarch, regno) != NULL
2174 && gdbarch_register_name (current_gdbarch, regno)[0] != '\0')
2175 fprintf_unfiltered (gdb_stdlog, "(%s)", gdbarch_register_name
2176 (current_gdbarch, regno));
2177 else
2178 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2179 if (regno >= 0)
2180 {
2181 int i, size = register_size (current_gdbarch, regno);
2182 unsigned char buf[MAX_REGISTER_SIZE];
2183 regcache_cooked_read (regcache, regno, buf);
2184 fprintf_unfiltered (gdb_stdlog, " = ");
2185 for (i = 0; i < size; i++)
2186 {
2187 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2188 }
2189 if (size <= sizeof (LONGEST))
2190 {
2191 ULONGEST val = extract_unsigned_integer (buf, size);
2192 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2193 paddr_nz (val), paddr_d (val));
2194 }
2195 }
2196 fprintf_unfiltered (gdb_stdlog, "\n");
2197 }
2198
2199 static void
2200 debug_to_fetch_registers (struct regcache *regcache, int regno)
2201 {
2202 debug_target.to_fetch_registers (regcache, regno);
2203 debug_print_register ("target_fetch_registers", regcache, regno);
2204 }
2205
2206 static void
2207 debug_to_store_registers (struct regcache *regcache, int regno)
2208 {
2209 debug_target.to_store_registers (regcache, regno);
2210 debug_print_register ("target_store_registers", regcache, regno);
2211 fprintf_unfiltered (gdb_stdlog, "\n");
2212 }
2213
2214 static void
2215 debug_to_prepare_to_store (struct regcache *regcache)
2216 {
2217 debug_target.to_prepare_to_store (regcache);
2218
2219 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2220 }
2221
2222 static int
2223 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2224 int write, struct mem_attrib *attrib,
2225 struct target_ops *target)
2226 {
2227 int retval;
2228
2229 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2230 attrib, target);
2231
2232 fprintf_unfiltered (gdb_stdlog,
2233 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2234 (unsigned int) memaddr, /* possable truncate long long */
2235 len, write ? "write" : "read", retval);
2236
2237 if (retval > 0)
2238 {
2239 int i;
2240
2241 fputs_unfiltered (", bytes =", gdb_stdlog);
2242 for (i = 0; i < retval; i++)
2243 {
2244 if ((((long) &(myaddr[i])) & 0xf) == 0)
2245 {
2246 if (targetdebug < 2 && i > 0)
2247 {
2248 fprintf_unfiltered (gdb_stdlog, " ...");
2249 break;
2250 }
2251 fprintf_unfiltered (gdb_stdlog, "\n");
2252 }
2253
2254 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2255 }
2256 }
2257
2258 fputc_unfiltered ('\n', gdb_stdlog);
2259
2260 return retval;
2261 }
2262
2263 static void
2264 debug_to_files_info (struct target_ops *target)
2265 {
2266 debug_target.to_files_info (target);
2267
2268 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2269 }
2270
2271 static int
2272 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2273 {
2274 int retval;
2275
2276 retval = debug_target.to_insert_breakpoint (bp_tgt);
2277
2278 fprintf_unfiltered (gdb_stdlog,
2279 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2280 (unsigned long) bp_tgt->placed_address,
2281 (unsigned long) retval);
2282 return retval;
2283 }
2284
2285 static int
2286 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2287 {
2288 int retval;
2289
2290 retval = debug_target.to_remove_breakpoint (bp_tgt);
2291
2292 fprintf_unfiltered (gdb_stdlog,
2293 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2294 (unsigned long) bp_tgt->placed_address,
2295 (unsigned long) retval);
2296 return retval;
2297 }
2298
2299 static int
2300 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2301 {
2302 int retval;
2303
2304 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2305
2306 fprintf_unfiltered (gdb_stdlog,
2307 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2308 (unsigned long) type,
2309 (unsigned long) cnt,
2310 (unsigned long) from_tty,
2311 (unsigned long) retval);
2312 return retval;
2313 }
2314
2315 static int
2316 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2317 {
2318 CORE_ADDR retval;
2319
2320 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2321
2322 fprintf_unfiltered (gdb_stdlog,
2323 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2324 (unsigned long) addr,
2325 (unsigned long) len,
2326 (unsigned long) retval);
2327 return retval;
2328 }
2329
2330 static int
2331 debug_to_stopped_by_watchpoint (void)
2332 {
2333 int retval;
2334
2335 retval = debug_target.to_stopped_by_watchpoint ();
2336
2337 fprintf_unfiltered (gdb_stdlog,
2338 "STOPPED_BY_WATCHPOINT () = %ld\n",
2339 (unsigned long) retval);
2340 return retval;
2341 }
2342
2343 static int
2344 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2345 {
2346 int retval;
2347
2348 retval = debug_target.to_stopped_data_address (target, addr);
2349
2350 fprintf_unfiltered (gdb_stdlog,
2351 "target_stopped_data_address ([0x%lx]) = %ld\n",
2352 (unsigned long)*addr,
2353 (unsigned long)retval);
2354 return retval;
2355 }
2356
2357 static int
2358 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2359 {
2360 int retval;
2361
2362 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2363
2364 fprintf_unfiltered (gdb_stdlog,
2365 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2366 (unsigned long) bp_tgt->placed_address,
2367 (unsigned long) retval);
2368 return retval;
2369 }
2370
2371 static int
2372 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2373 {
2374 int retval;
2375
2376 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2377
2378 fprintf_unfiltered (gdb_stdlog,
2379 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2380 (unsigned long) bp_tgt->placed_address,
2381 (unsigned long) retval);
2382 return retval;
2383 }
2384
2385 static int
2386 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2387 {
2388 int retval;
2389
2390 retval = debug_target.to_insert_watchpoint (addr, len, type);
2391
2392 fprintf_unfiltered (gdb_stdlog,
2393 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2394 (unsigned long) addr, len, type, (unsigned long) retval);
2395 return retval;
2396 }
2397
2398 static int
2399 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2400 {
2401 int retval;
2402
2403 retval = debug_target.to_remove_watchpoint (addr, len, type);
2404
2405 fprintf_unfiltered (gdb_stdlog,
2406 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2407 (unsigned long) addr, len, type, (unsigned long) retval);
2408 return retval;
2409 }
2410
2411 static void
2412 debug_to_terminal_init (void)
2413 {
2414 debug_target.to_terminal_init ();
2415
2416 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2417 }
2418
2419 static void
2420 debug_to_terminal_inferior (void)
2421 {
2422 debug_target.to_terminal_inferior ();
2423
2424 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2425 }
2426
2427 static void
2428 debug_to_terminal_ours_for_output (void)
2429 {
2430 debug_target.to_terminal_ours_for_output ();
2431
2432 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2433 }
2434
2435 static void
2436 debug_to_terminal_ours (void)
2437 {
2438 debug_target.to_terminal_ours ();
2439
2440 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2441 }
2442
2443 static void
2444 debug_to_terminal_save_ours (void)
2445 {
2446 debug_target.to_terminal_save_ours ();
2447
2448 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2449 }
2450
2451 static void
2452 debug_to_terminal_info (char *arg, int from_tty)
2453 {
2454 debug_target.to_terminal_info (arg, from_tty);
2455
2456 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2457 from_tty);
2458 }
2459
2460 static void
2461 debug_to_kill (void)
2462 {
2463 debug_target.to_kill ();
2464
2465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2466 }
2467
2468 static void
2469 debug_to_load (char *args, int from_tty)
2470 {
2471 debug_target.to_load (args, from_tty);
2472
2473 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2474 }
2475
2476 static int
2477 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2478 {
2479 int retval;
2480
2481 retval = debug_target.to_lookup_symbol (name, addrp);
2482
2483 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2484
2485 return retval;
2486 }
2487
2488 static void
2489 debug_to_create_inferior (char *exec_file, char *args, char **env,
2490 int from_tty)
2491 {
2492 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2493
2494 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2495 exec_file, args, from_tty);
2496 }
2497
2498 static void
2499 debug_to_post_startup_inferior (ptid_t ptid)
2500 {
2501 debug_target.to_post_startup_inferior (ptid);
2502
2503 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2504 PIDGET (ptid));
2505 }
2506
2507 static void
2508 debug_to_acknowledge_created_inferior (int pid)
2509 {
2510 debug_target.to_acknowledge_created_inferior (pid);
2511
2512 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2513 pid);
2514 }
2515
2516 static void
2517 debug_to_insert_fork_catchpoint (int pid)
2518 {
2519 debug_target.to_insert_fork_catchpoint (pid);
2520
2521 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2522 pid);
2523 }
2524
2525 static int
2526 debug_to_remove_fork_catchpoint (int pid)
2527 {
2528 int retval;
2529
2530 retval = debug_target.to_remove_fork_catchpoint (pid);
2531
2532 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2533 pid, retval);
2534
2535 return retval;
2536 }
2537
2538 static void
2539 debug_to_insert_vfork_catchpoint (int pid)
2540 {
2541 debug_target.to_insert_vfork_catchpoint (pid);
2542
2543 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2544 pid);
2545 }
2546
2547 static int
2548 debug_to_remove_vfork_catchpoint (int pid)
2549 {
2550 int retval;
2551
2552 retval = debug_target.to_remove_vfork_catchpoint (pid);
2553
2554 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2555 pid, retval);
2556
2557 return retval;
2558 }
2559
2560 static void
2561 debug_to_insert_exec_catchpoint (int pid)
2562 {
2563 debug_target.to_insert_exec_catchpoint (pid);
2564
2565 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2566 pid);
2567 }
2568
2569 static int
2570 debug_to_remove_exec_catchpoint (int pid)
2571 {
2572 int retval;
2573
2574 retval = debug_target.to_remove_exec_catchpoint (pid);
2575
2576 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2577 pid, retval);
2578
2579 return retval;
2580 }
2581
2582 static int
2583 debug_to_reported_exec_events_per_exec_call (void)
2584 {
2585 int reported_exec_events;
2586
2587 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2588
2589 fprintf_unfiltered (gdb_stdlog,
2590 "target_reported_exec_events_per_exec_call () = %d\n",
2591 reported_exec_events);
2592
2593 return reported_exec_events;
2594 }
2595
2596 static int
2597 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2598 {
2599 int has_exited;
2600
2601 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2602
2603 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2604 pid, wait_status, *exit_status, has_exited);
2605
2606 return has_exited;
2607 }
2608
2609 static void
2610 debug_to_mourn_inferior (void)
2611 {
2612 debug_target.to_mourn_inferior ();
2613
2614 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2615 }
2616
2617 static int
2618 debug_to_can_run (void)
2619 {
2620 int retval;
2621
2622 retval = debug_target.to_can_run ();
2623
2624 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2625
2626 return retval;
2627 }
2628
2629 static void
2630 debug_to_notice_signals (ptid_t ptid)
2631 {
2632 debug_target.to_notice_signals (ptid);
2633
2634 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2635 PIDGET (ptid));
2636 }
2637
2638 static int
2639 debug_to_thread_alive (ptid_t ptid)
2640 {
2641 int retval;
2642
2643 retval = debug_target.to_thread_alive (ptid);
2644
2645 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2646 PIDGET (ptid), retval);
2647
2648 return retval;
2649 }
2650
2651 static void
2652 debug_to_find_new_threads (void)
2653 {
2654 debug_target.to_find_new_threads ();
2655
2656 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2657 }
2658
2659 static void
2660 debug_to_stop (void)
2661 {
2662 debug_target.to_stop ();
2663
2664 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2665 }
2666
2667 static void
2668 debug_to_rcmd (char *command,
2669 struct ui_file *outbuf)
2670 {
2671 debug_target.to_rcmd (command, outbuf);
2672 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2673 }
2674
2675 static struct symtab_and_line *
2676 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2677 {
2678 struct symtab_and_line *result;
2679 result = debug_target.to_enable_exception_callback (kind, enable);
2680 fprintf_unfiltered (gdb_stdlog,
2681 "target get_exception_callback_sal (%d, %d)\n",
2682 kind, enable);
2683 return result;
2684 }
2685
2686 static struct exception_event_record *
2687 debug_to_get_current_exception_event (void)
2688 {
2689 struct exception_event_record *result;
2690 result = debug_target.to_get_current_exception_event ();
2691 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2692 return result;
2693 }
2694
2695 static char *
2696 debug_to_pid_to_exec_file (int pid)
2697 {
2698 char *exec_file;
2699
2700 exec_file = debug_target.to_pid_to_exec_file (pid);
2701
2702 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2703 pid, exec_file);
2704
2705 return exec_file;
2706 }
2707
2708 static void
2709 setup_target_debug (void)
2710 {
2711 memcpy (&debug_target, &current_target, sizeof debug_target);
2712
2713 current_target.to_open = debug_to_open;
2714 current_target.to_close = debug_to_close;
2715 current_target.to_attach = debug_to_attach;
2716 current_target.to_post_attach = debug_to_post_attach;
2717 current_target.to_detach = debug_to_detach;
2718 current_target.to_resume = debug_to_resume;
2719 current_target.to_wait = debug_to_wait;
2720 current_target.to_fetch_registers = debug_to_fetch_registers;
2721 current_target.to_store_registers = debug_to_store_registers;
2722 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2723 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2724 current_target.to_files_info = debug_to_files_info;
2725 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2726 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2727 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2728 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2729 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2730 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2731 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2732 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2733 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2734 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2735 current_target.to_terminal_init = debug_to_terminal_init;
2736 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2737 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2738 current_target.to_terminal_ours = debug_to_terminal_ours;
2739 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2740 current_target.to_terminal_info = debug_to_terminal_info;
2741 current_target.to_kill = debug_to_kill;
2742 current_target.to_load = debug_to_load;
2743 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2744 current_target.to_create_inferior = debug_to_create_inferior;
2745 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2746 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2747 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2748 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2749 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2750 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2751 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2752 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2753 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2754 current_target.to_has_exited = debug_to_has_exited;
2755 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2756 current_target.to_can_run = debug_to_can_run;
2757 current_target.to_notice_signals = debug_to_notice_signals;
2758 current_target.to_thread_alive = debug_to_thread_alive;
2759 current_target.to_find_new_threads = debug_to_find_new_threads;
2760 current_target.to_stop = debug_to_stop;
2761 current_target.to_rcmd = debug_to_rcmd;
2762 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2763 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2764 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2765 }
2766 \f
2767
2768 static char targ_desc[] =
2769 "Names of targets and files being debugged.\n\
2770 Shows the entire stack of targets currently in use (including the exec-file,\n\
2771 core-file, and process, if any), as well as the symbol file name.";
2772
2773 static void
2774 do_monitor_command (char *cmd,
2775 int from_tty)
2776 {
2777 if ((current_target.to_rcmd
2778 == (void (*) (char *, struct ui_file *)) tcomplain)
2779 || (current_target.to_rcmd == debug_to_rcmd
2780 && (debug_target.to_rcmd
2781 == (void (*) (char *, struct ui_file *)) tcomplain)))
2782 error (_("\"monitor\" command not supported by this target."));
2783 target_rcmd (cmd, gdb_stdtarg);
2784 }
2785
2786 /* Print the name of each layers of our target stack. */
2787
2788 static void
2789 maintenance_print_target_stack (char *cmd, int from_tty)
2790 {
2791 struct target_ops *t;
2792
2793 printf_filtered (_("The current target stack is:\n"));
2794
2795 for (t = target_stack; t != NULL; t = t->beneath)
2796 {
2797 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
2798 }
2799 }
2800
2801 void
2802 initialize_targets (void)
2803 {
2804 init_dummy_target ();
2805 push_target (&dummy_target);
2806
2807 add_info ("target", target_info, targ_desc);
2808 add_info ("files", target_info, targ_desc);
2809
2810 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2811 Set target debugging."), _("\
2812 Show target debugging."), _("\
2813 When non-zero, target debugging is enabled. Higher numbers are more\n\
2814 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2815 command."),
2816 NULL,
2817 show_targetdebug,
2818 &setdebuglist, &showdebuglist);
2819
2820 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2821 &trust_readonly, _("\
2822 Set mode for reading from readonly sections."), _("\
2823 Show mode for reading from readonly sections."), _("\
2824 When this mode is on, memory reads from readonly sections (such as .text)\n\
2825 will be read from the object file instead of from the target. This will\n\
2826 result in significant performance improvement for remote targets."),
2827 NULL,
2828 show_trust_readonly,
2829 &setlist, &showlist);
2830
2831 add_com ("monitor", class_obscure, do_monitor_command,
2832 _("Send a command to the remote monitor (remote targets only)."));
2833
2834 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
2835 _("Print the name of each layer of the internal target stack."),
2836 &maintenanceprintlist);
2837
2838 target_dcache = dcache_init ();
2839 }