Fix m32r-elf sim, default hardware to off.
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "exceptions.h"
37 #include "target-descriptions.h"
38 #include "gdbthread.h"
39 #include "solib.h"
40 #include "exec.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "gdb/fileio.h"
44 #include "agent.h"
45 #include "auxv.h"
46 #include "target-debug.h"
47
48 static void target_info (char *, int);
49
50 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
51
52 static void default_terminal_info (struct target_ops *, const char *, int);
53
54 static int default_watchpoint_addr_within_range (struct target_ops *,
55 CORE_ADDR, CORE_ADDR, int);
56
57 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
58 CORE_ADDR, int);
59
60 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
61
62 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
63 long lwp, long tid);
64
65 static int default_follow_fork (struct target_ops *self, int follow_child,
66 int detach_fork);
67
68 static void default_mourn_inferior (struct target_ops *self);
69
70 static int default_search_memory (struct target_ops *ops,
71 CORE_ADDR start_addr,
72 ULONGEST search_space_len,
73 const gdb_byte *pattern,
74 ULONGEST pattern_len,
75 CORE_ADDR *found_addrp);
76
77 static int default_verify_memory (struct target_ops *self,
78 const gdb_byte *data,
79 CORE_ADDR memaddr, ULONGEST size);
80
81 static struct address_space *default_thread_address_space
82 (struct target_ops *self, ptid_t ptid);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static int return_zero (struct target_ops *);
87
88 static int return_zero_has_execution (struct target_ops *, ptid_t);
89
90 static void target_command (char *, int);
91
92 static struct target_ops *find_default_run_target (char *);
93
94 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 ptid_t ptid);
96
97 static int dummy_find_memory_regions (struct target_ops *self,
98 find_memory_region_ftype ignore1,
99 void *ignore2);
100
101 static char *dummy_make_corefile_notes (struct target_ops *self,
102 bfd *ignore1, int *ignore2);
103
104 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105
106 static enum exec_direction_kind default_execution_direction
107 (struct target_ops *self);
108
109 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
110 struct gdbarch *gdbarch);
111
112 static struct target_ops debug_target;
113
114 #include "target-delegates.c"
115
116 static void init_dummy_target (void);
117
118 static void update_current_target (void);
119
120 /* Vector of existing target structures. */
121 typedef struct target_ops *target_ops_p;
122 DEF_VEC_P (target_ops_p);
123 static VEC (target_ops_p) *target_structs;
124
125 /* The initial current target, so that there is always a semi-valid
126 current target. */
127
128 static struct target_ops dummy_target;
129
130 /* Top of target stack. */
131
132 static struct target_ops *target_stack;
133
134 /* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137 struct target_ops current_target;
138
139 /* Command list for target. */
140
141 static struct cmd_list_element *targetlist = NULL;
142
143 /* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146 static int trust_readonly = 0;
147
148 /* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151 static int show_memory_breakpoints = 0;
152
153 /* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157 int may_write_registers = 1;
158
159 int may_write_memory = 1;
160
161 int may_insert_breakpoints = 1;
162
163 int may_insert_tracepoints = 1;
164
165 int may_insert_fast_tracepoints = 1;
166
167 int may_stop = 1;
168
169 /* Non-zero if we want to see trace of target level stuff. */
170
171 static unsigned int targetdebug = 0;
172
173 static void
174 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175 {
176 update_current_target ();
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 static void setup_target_debug (void);
187
188 /* The user just typed 'target' without the name of a target. */
189
190 static void
191 target_command (char *arg, int from_tty)
192 {
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195 }
196
197 /* Default target_has_* methods for process_stratum targets. */
198
199 int
200 default_child_has_all_memory (struct target_ops *ops)
201 {
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207 }
208
209 int
210 default_child_has_memory (struct target_ops *ops)
211 {
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217 }
218
219 int
220 default_child_has_stack (struct target_ops *ops)
221 {
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227 }
228
229 int
230 default_child_has_registers (struct target_ops *ops)
231 {
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237 }
238
239 int
240 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
241 {
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
244 if (ptid_equal (the_ptid, null_ptid))
245 return 0;
246
247 return 1;
248 }
249
250
251 int
252 target_has_all_memory_1 (void)
253 {
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261 }
262
263 int
264 target_has_memory_1 (void)
265 {
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273 }
274
275 int
276 target_has_stack_1 (void)
277 {
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285 }
286
287 int
288 target_has_registers_1 (void)
289 {
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_execution_1 (ptid_t the_ptid)
301 {
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_execution (t, the_ptid))
306 return 1;
307
308 return 0;
309 }
310
311 int
312 target_has_execution_current (void)
313 {
314 return target_has_execution_1 (inferior_ptid);
315 }
316
317 /* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
319
320 void
321 complete_target_initialization (struct target_ops *t)
322 {
323 /* Provide default values for all "must have" methods. */
324
325 if (t->to_has_all_memory == NULL)
326 t->to_has_all_memory = return_zero;
327
328 if (t->to_has_memory == NULL)
329 t->to_has_memory = return_zero;
330
331 if (t->to_has_stack == NULL)
332 t->to_has_stack = return_zero;
333
334 if (t->to_has_registers == NULL)
335 t->to_has_registers = return_zero;
336
337 if (t->to_has_execution == NULL)
338 t->to_has_execution = return_zero_has_execution;
339
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
346 install_delegators (t);
347 }
348
349 /* This is used to implement the various target commands. */
350
351 static void
352 open_target (char *args, int from_tty, struct cmd_list_element *command)
353 {
354 struct target_ops *ops = get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365 }
366
367 /* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371 void
372 add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374 {
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
378
379 VEC_safe_push (target_ops_p, target_structs, t);
380
381 if (targetlist == NULL)
382 add_prefix_cmd ("target", class_run, target_command, _("\
383 Connect to a target machine or process.\n\
384 The first argument is the type or protocol of the target machine.\n\
385 Remaining arguments are interpreted by the target protocol. For more\n\
386 information on the arguments for a particular protocol, type\n\
387 `help target ' followed by the protocol name."),
388 &targetlist, "target ", 0, &cmdlist);
389 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394 }
395
396 /* Add a possible target architecture to the list. */
397
398 void
399 add_target (struct target_ops *t)
400 {
401 add_target_with_completer (t, NULL);
402 }
403
404 /* See target.h. */
405
406 void
407 add_deprecated_target_alias (struct target_ops *t, char *alias)
408 {
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
414 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419 }
420
421 /* Stub functions */
422
423 void
424 target_kill (void)
425 {
426 current_target.to_kill (&current_target);
427 }
428
429 void
430 target_load (const char *arg, int from_tty)
431 {
432 target_dcache_invalidate ();
433 (*current_target.to_load) (&current_target, arg, from_tty);
434 }
435
436 void
437 target_terminal_inferior (void)
438 {
439 /* A background resume (``run&'') should leave GDB in control of the
440 terminal. Use target_can_async_p, not target_is_async_p, since at
441 this point the target is not async yet. However, if sync_execution
442 is not set, we know it will become async prior to resume. */
443 if (target_can_async_p () && !sync_execution)
444 return;
445
446 /* If GDB is resuming the inferior in the foreground, install
447 inferior's terminal modes. */
448 (*current_target.to_terminal_inferior) (&current_target);
449 }
450
451 /* See target.h. */
452
453 int
454 target_supports_terminal_ours (void)
455 {
456 struct target_ops *t;
457
458 for (t = current_target.beneath; t != NULL; t = t->beneath)
459 {
460 if (t->to_terminal_ours != delegate_terminal_ours
461 && t->to_terminal_ours != tdefault_terminal_ours)
462 return 1;
463 }
464
465 return 0;
466 }
467
468 static void
469 tcomplain (void)
470 {
471 error (_("You can't do that when your target is `%s'"),
472 current_target.to_shortname);
473 }
474
475 void
476 noprocess (void)
477 {
478 error (_("You can't do that without a process to debug."));
479 }
480
481 static void
482 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
483 {
484 printf_unfiltered (_("No saved terminal information.\n"));
485 }
486
487 /* A default implementation for the to_get_ada_task_ptid target method.
488
489 This function builds the PTID by using both LWP and TID as part of
490 the PTID lwp and tid elements. The pid used is the pid of the
491 inferior_ptid. */
492
493 static ptid_t
494 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
495 {
496 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
497 }
498
499 static enum exec_direction_kind
500 default_execution_direction (struct target_ops *self)
501 {
502 if (!target_can_execute_reverse)
503 return EXEC_FORWARD;
504 else if (!target_can_async_p ())
505 return EXEC_FORWARD;
506 else
507 gdb_assert_not_reached ("\
508 to_execution_direction must be implemented for reverse async");
509 }
510
511 /* Go through the target stack from top to bottom, copying over zero
512 entries in current_target, then filling in still empty entries. In
513 effect, we are doing class inheritance through the pushed target
514 vectors.
515
516 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
517 is currently implemented, is that it discards any knowledge of
518 which target an inherited method originally belonged to.
519 Consequently, new new target methods should instead explicitly and
520 locally search the target stack for the target that can handle the
521 request. */
522
523 static void
524 update_current_target (void)
525 {
526 struct target_ops *t;
527
528 /* First, reset current's contents. */
529 memset (&current_target, 0, sizeof (current_target));
530
531 /* Install the delegators. */
532 install_delegators (&current_target);
533
534 current_target.to_stratum = target_stack->to_stratum;
535
536 #define INHERIT(FIELD, TARGET) \
537 if (!current_target.FIELD) \
538 current_target.FIELD = (TARGET)->FIELD
539
540 /* Do not add any new INHERITs here. Instead, use the delegation
541 mechanism provided by make-target-delegates. */
542 for (t = target_stack; t; t = t->beneath)
543 {
544 INHERIT (to_shortname, t);
545 INHERIT (to_longname, t);
546 INHERIT (to_attach_no_wait, t);
547 INHERIT (to_have_steppable_watchpoint, t);
548 INHERIT (to_have_continuable_watchpoint, t);
549 INHERIT (to_has_thread_control, t);
550 }
551 #undef INHERIT
552
553 /* Finally, position the target-stack beneath the squashed
554 "current_target". That way code looking for a non-inherited
555 target method can quickly and simply find it. */
556 current_target.beneath = target_stack;
557
558 if (targetdebug)
559 setup_target_debug ();
560 }
561
562 /* Push a new target type into the stack of the existing target accessors,
563 possibly superseding some of the existing accessors.
564
565 Rather than allow an empty stack, we always have the dummy target at
566 the bottom stratum, so we can call the function vectors without
567 checking them. */
568
569 void
570 push_target (struct target_ops *t)
571 {
572 struct target_ops **cur;
573
574 /* Check magic number. If wrong, it probably means someone changed
575 the struct definition, but not all the places that initialize one. */
576 if (t->to_magic != OPS_MAGIC)
577 {
578 fprintf_unfiltered (gdb_stderr,
579 "Magic number of %s target struct wrong\n",
580 t->to_shortname);
581 internal_error (__FILE__, __LINE__,
582 _("failed internal consistency check"));
583 }
584
585 /* Find the proper stratum to install this target in. */
586 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
587 {
588 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
589 break;
590 }
591
592 /* If there's already targets at this stratum, remove them. */
593 /* FIXME: cagney/2003-10-15: I think this should be popping all
594 targets to CUR, and not just those at this stratum level. */
595 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
596 {
597 /* There's already something at this stratum level. Close it,
598 and un-hook it from the stack. */
599 struct target_ops *tmp = (*cur);
600
601 (*cur) = (*cur)->beneath;
602 tmp->beneath = NULL;
603 target_close (tmp);
604 }
605
606 /* We have removed all targets in our stratum, now add the new one. */
607 t->beneath = (*cur);
608 (*cur) = t;
609
610 update_current_target ();
611 }
612
613 /* Remove a target_ops vector from the stack, wherever it may be.
614 Return how many times it was removed (0 or 1). */
615
616 int
617 unpush_target (struct target_ops *t)
618 {
619 struct target_ops **cur;
620 struct target_ops *tmp;
621
622 if (t->to_stratum == dummy_stratum)
623 internal_error (__FILE__, __LINE__,
624 _("Attempt to unpush the dummy target"));
625
626 /* Look for the specified target. Note that we assume that a target
627 can only occur once in the target stack. */
628
629 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
630 {
631 if ((*cur) == t)
632 break;
633 }
634
635 /* If we don't find target_ops, quit. Only open targets should be
636 closed. */
637 if ((*cur) == NULL)
638 return 0;
639
640 /* Unchain the target. */
641 tmp = (*cur);
642 (*cur) = (*cur)->beneath;
643 tmp->beneath = NULL;
644
645 update_current_target ();
646
647 /* Finally close the target. Note we do this after unchaining, so
648 any target method calls from within the target_close
649 implementation don't end up in T anymore. */
650 target_close (t);
651
652 return 1;
653 }
654
655 void
656 pop_all_targets_above (enum strata above_stratum)
657 {
658 while ((int) (current_target.to_stratum) > (int) above_stratum)
659 {
660 if (!unpush_target (target_stack))
661 {
662 fprintf_unfiltered (gdb_stderr,
663 "pop_all_targets couldn't find target %s\n",
664 target_stack->to_shortname);
665 internal_error (__FILE__, __LINE__,
666 _("failed internal consistency check"));
667 break;
668 }
669 }
670 }
671
672 void
673 pop_all_targets (void)
674 {
675 pop_all_targets_above (dummy_stratum);
676 }
677
678 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
679
680 int
681 target_is_pushed (struct target_ops *t)
682 {
683 struct target_ops *cur;
684
685 /* Check magic number. If wrong, it probably means someone changed
686 the struct definition, but not all the places that initialize one. */
687 if (t->to_magic != OPS_MAGIC)
688 {
689 fprintf_unfiltered (gdb_stderr,
690 "Magic number of %s target struct wrong\n",
691 t->to_shortname);
692 internal_error (__FILE__, __LINE__,
693 _("failed internal consistency check"));
694 }
695
696 for (cur = target_stack; cur != NULL; cur = cur->beneath)
697 if (cur == t)
698 return 1;
699
700 return 0;
701 }
702
703 /* Default implementation of to_get_thread_local_address. */
704
705 static void
706 generic_tls_error (void)
707 {
708 throw_error (TLS_GENERIC_ERROR,
709 _("Cannot find thread-local variables on this target"));
710 }
711
712 /* Using the objfile specified in OBJFILE, find the address for the
713 current thread's thread-local storage with offset OFFSET. */
714 CORE_ADDR
715 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
716 {
717 volatile CORE_ADDR addr = 0;
718 struct target_ops *target = &current_target;
719
720 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
721 {
722 ptid_t ptid = inferior_ptid;
723 volatile struct gdb_exception ex;
724
725 TRY_CATCH (ex, RETURN_MASK_ALL)
726 {
727 CORE_ADDR lm_addr;
728
729 /* Fetch the load module address for this objfile. */
730 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
731 objfile);
732
733 addr = target->to_get_thread_local_address (target, ptid,
734 lm_addr, offset);
735 }
736 /* If an error occurred, print TLS related messages here. Otherwise,
737 throw the error to some higher catcher. */
738 if (ex.reason < 0)
739 {
740 int objfile_is_library = (objfile->flags & OBJF_SHARED);
741
742 switch (ex.error)
743 {
744 case TLS_NO_LIBRARY_SUPPORT_ERROR:
745 error (_("Cannot find thread-local variables "
746 "in this thread library."));
747 break;
748 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
749 if (objfile_is_library)
750 error (_("Cannot find shared library `%s' in dynamic"
751 " linker's load module list"), objfile_name (objfile));
752 else
753 error (_("Cannot find executable file `%s' in dynamic"
754 " linker's load module list"), objfile_name (objfile));
755 break;
756 case TLS_NOT_ALLOCATED_YET_ERROR:
757 if (objfile_is_library)
758 error (_("The inferior has not yet allocated storage for"
759 " thread-local variables in\n"
760 "the shared library `%s'\n"
761 "for %s"),
762 objfile_name (objfile), target_pid_to_str (ptid));
763 else
764 error (_("The inferior has not yet allocated storage for"
765 " thread-local variables in\n"
766 "the executable `%s'\n"
767 "for %s"),
768 objfile_name (objfile), target_pid_to_str (ptid));
769 break;
770 case TLS_GENERIC_ERROR:
771 if (objfile_is_library)
772 error (_("Cannot find thread-local storage for %s, "
773 "shared library %s:\n%s"),
774 target_pid_to_str (ptid),
775 objfile_name (objfile), ex.message);
776 else
777 error (_("Cannot find thread-local storage for %s, "
778 "executable file %s:\n%s"),
779 target_pid_to_str (ptid),
780 objfile_name (objfile), ex.message);
781 break;
782 default:
783 throw_exception (ex);
784 break;
785 }
786 }
787 }
788 /* It wouldn't be wrong here to try a gdbarch method, too; finding
789 TLS is an ABI-specific thing. But we don't do that yet. */
790 else
791 error (_("Cannot find thread-local variables on this target"));
792
793 return addr;
794 }
795
796 const char *
797 target_xfer_status_to_string (enum target_xfer_status status)
798 {
799 #define CASE(X) case X: return #X
800 switch (status)
801 {
802 CASE(TARGET_XFER_E_IO);
803 CASE(TARGET_XFER_UNAVAILABLE);
804 default:
805 return "<unknown>";
806 }
807 #undef CASE
808 };
809
810
811 #undef MIN
812 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
813
814 /* target_read_string -- read a null terminated string, up to LEN bytes,
815 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
816 Set *STRING to a pointer to malloc'd memory containing the data; the caller
817 is responsible for freeing it. Return the number of bytes successfully
818 read. */
819
820 int
821 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
822 {
823 int tlen, offset, i;
824 gdb_byte buf[4];
825 int errcode = 0;
826 char *buffer;
827 int buffer_allocated;
828 char *bufptr;
829 unsigned int nbytes_read = 0;
830
831 gdb_assert (string);
832
833 /* Small for testing. */
834 buffer_allocated = 4;
835 buffer = xmalloc (buffer_allocated);
836 bufptr = buffer;
837
838 while (len > 0)
839 {
840 tlen = MIN (len, 4 - (memaddr & 3));
841 offset = memaddr & 3;
842
843 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
844 if (errcode != 0)
845 {
846 /* The transfer request might have crossed the boundary to an
847 unallocated region of memory. Retry the transfer, requesting
848 a single byte. */
849 tlen = 1;
850 offset = 0;
851 errcode = target_read_memory (memaddr, buf, 1);
852 if (errcode != 0)
853 goto done;
854 }
855
856 if (bufptr - buffer + tlen > buffer_allocated)
857 {
858 unsigned int bytes;
859
860 bytes = bufptr - buffer;
861 buffer_allocated *= 2;
862 buffer = xrealloc (buffer, buffer_allocated);
863 bufptr = buffer + bytes;
864 }
865
866 for (i = 0; i < tlen; i++)
867 {
868 *bufptr++ = buf[i + offset];
869 if (buf[i + offset] == '\000')
870 {
871 nbytes_read += i + 1;
872 goto done;
873 }
874 }
875
876 memaddr += tlen;
877 len -= tlen;
878 nbytes_read += tlen;
879 }
880 done:
881 *string = buffer;
882 if (errnop != NULL)
883 *errnop = errcode;
884 return nbytes_read;
885 }
886
887 struct target_section_table *
888 target_get_section_table (struct target_ops *target)
889 {
890 return (*target->to_get_section_table) (target);
891 }
892
893 /* Find a section containing ADDR. */
894
895 struct target_section *
896 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
897 {
898 struct target_section_table *table = target_get_section_table (target);
899 struct target_section *secp;
900
901 if (table == NULL)
902 return NULL;
903
904 for (secp = table->sections; secp < table->sections_end; secp++)
905 {
906 if (addr >= secp->addr && addr < secp->endaddr)
907 return secp;
908 }
909 return NULL;
910 }
911
912 /* Read memory from more than one valid target. A core file, for
913 instance, could have some of memory but delegate other bits to
914 the target below it. So, we must manually try all targets. */
915
916 static enum target_xfer_status
917 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
918 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
919 ULONGEST *xfered_len)
920 {
921 enum target_xfer_status res;
922
923 do
924 {
925 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
926 readbuf, writebuf, memaddr, len,
927 xfered_len);
928 if (res == TARGET_XFER_OK)
929 break;
930
931 /* Stop if the target reports that the memory is not available. */
932 if (res == TARGET_XFER_UNAVAILABLE)
933 break;
934
935 /* We want to continue past core files to executables, but not
936 past a running target's memory. */
937 if (ops->to_has_all_memory (ops))
938 break;
939
940 ops = ops->beneath;
941 }
942 while (ops != NULL);
943
944 /* The cache works at the raw memory level. Make sure the cache
945 gets updated with raw contents no matter what kind of memory
946 object was originally being written. Note we do write-through
947 first, so that if it fails, we don't write to the cache contents
948 that never made it to the target. */
949 if (writebuf != NULL
950 && !ptid_equal (inferior_ptid, null_ptid)
951 && target_dcache_init_p ()
952 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
953 {
954 DCACHE *dcache = target_dcache_get ();
955
956 /* Note that writing to an area of memory which wasn't present
957 in the cache doesn't cause it to be loaded in. */
958 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
959 }
960
961 return res;
962 }
963
964 /* Perform a partial memory transfer.
965 For docs see target.h, to_xfer_partial. */
966
967 static enum target_xfer_status
968 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
969 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
970 ULONGEST len, ULONGEST *xfered_len)
971 {
972 enum target_xfer_status res;
973 int reg_len;
974 struct mem_region *region;
975 struct inferior *inf;
976
977 /* For accesses to unmapped overlay sections, read directly from
978 files. Must do this first, as MEMADDR may need adjustment. */
979 if (readbuf != NULL && overlay_debugging)
980 {
981 struct obj_section *section = find_pc_overlay (memaddr);
982
983 if (pc_in_unmapped_range (memaddr, section))
984 {
985 struct target_section_table *table
986 = target_get_section_table (ops);
987 const char *section_name = section->the_bfd_section->name;
988
989 memaddr = overlay_mapped_address (memaddr, section);
990 return section_table_xfer_memory_partial (readbuf, writebuf,
991 memaddr, len, xfered_len,
992 table->sections,
993 table->sections_end,
994 section_name);
995 }
996 }
997
998 /* Try the executable files, if "trust-readonly-sections" is set. */
999 if (readbuf != NULL && trust_readonly)
1000 {
1001 struct target_section *secp;
1002 struct target_section_table *table;
1003
1004 secp = target_section_by_addr (ops, memaddr);
1005 if (secp != NULL
1006 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1007 secp->the_bfd_section)
1008 & SEC_READONLY))
1009 {
1010 table = target_get_section_table (ops);
1011 return section_table_xfer_memory_partial (readbuf, writebuf,
1012 memaddr, len, xfered_len,
1013 table->sections,
1014 table->sections_end,
1015 NULL);
1016 }
1017 }
1018
1019 /* Try GDB's internal data cache. */
1020 region = lookup_mem_region (memaddr);
1021 /* region->hi == 0 means there's no upper bound. */
1022 if (memaddr + len < region->hi || region->hi == 0)
1023 reg_len = len;
1024 else
1025 reg_len = region->hi - memaddr;
1026
1027 switch (region->attrib.mode)
1028 {
1029 case MEM_RO:
1030 if (writebuf != NULL)
1031 return TARGET_XFER_E_IO;
1032 break;
1033
1034 case MEM_WO:
1035 if (readbuf != NULL)
1036 return TARGET_XFER_E_IO;
1037 break;
1038
1039 case MEM_FLASH:
1040 /* We only support writing to flash during "load" for now. */
1041 if (writebuf != NULL)
1042 error (_("Writing to flash memory forbidden in this context"));
1043 break;
1044
1045 case MEM_NONE:
1046 return TARGET_XFER_E_IO;
1047 }
1048
1049 if (!ptid_equal (inferior_ptid, null_ptid))
1050 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1051 else
1052 inf = NULL;
1053
1054 if (inf != NULL
1055 && readbuf != NULL
1056 /* The dcache reads whole cache lines; that doesn't play well
1057 with reading from a trace buffer, because reading outside of
1058 the collected memory range fails. */
1059 && get_traceframe_number () == -1
1060 && (region->attrib.cache
1061 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1062 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1063 {
1064 DCACHE *dcache = target_dcache_get_or_init ();
1065
1066 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1067 reg_len, xfered_len);
1068 }
1069
1070 /* If none of those methods found the memory we wanted, fall back
1071 to a target partial transfer. Normally a single call to
1072 to_xfer_partial is enough; if it doesn't recognize an object
1073 it will call the to_xfer_partial of the next target down.
1074 But for memory this won't do. Memory is the only target
1075 object which can be read from more than one valid target.
1076 A core file, for instance, could have some of memory but
1077 delegate other bits to the target below it. So, we must
1078 manually try all targets. */
1079
1080 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1081 xfered_len);
1082
1083 /* If we still haven't got anything, return the last error. We
1084 give up. */
1085 return res;
1086 }
1087
1088 /* Perform a partial memory transfer. For docs see target.h,
1089 to_xfer_partial. */
1090
1091 static enum target_xfer_status
1092 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1093 gdb_byte *readbuf, const gdb_byte *writebuf,
1094 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1095 {
1096 enum target_xfer_status res;
1097
1098 /* Zero length requests are ok and require no work. */
1099 if (len == 0)
1100 return TARGET_XFER_EOF;
1101
1102 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1103 breakpoint insns, thus hiding out from higher layers whether
1104 there are software breakpoints inserted in the code stream. */
1105 if (readbuf != NULL)
1106 {
1107 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1108 xfered_len);
1109
1110 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1111 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1112 }
1113 else
1114 {
1115 void *buf;
1116 struct cleanup *old_chain;
1117
1118 /* A large write request is likely to be partially satisfied
1119 by memory_xfer_partial_1. We will continually malloc
1120 and free a copy of the entire write request for breakpoint
1121 shadow handling even though we only end up writing a small
1122 subset of it. Cap writes to 4KB to mitigate this. */
1123 len = min (4096, len);
1124
1125 buf = xmalloc (len);
1126 old_chain = make_cleanup (xfree, buf);
1127 memcpy (buf, writebuf, len);
1128
1129 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1130 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1131 xfered_len);
1132
1133 do_cleanups (old_chain);
1134 }
1135
1136 return res;
1137 }
1138
1139 static void
1140 restore_show_memory_breakpoints (void *arg)
1141 {
1142 show_memory_breakpoints = (uintptr_t) arg;
1143 }
1144
1145 struct cleanup *
1146 make_show_memory_breakpoints_cleanup (int show)
1147 {
1148 int current = show_memory_breakpoints;
1149
1150 show_memory_breakpoints = show;
1151 return make_cleanup (restore_show_memory_breakpoints,
1152 (void *) (uintptr_t) current);
1153 }
1154
1155 /* For docs see target.h, to_xfer_partial. */
1156
1157 enum target_xfer_status
1158 target_xfer_partial (struct target_ops *ops,
1159 enum target_object object, const char *annex,
1160 gdb_byte *readbuf, const gdb_byte *writebuf,
1161 ULONGEST offset, ULONGEST len,
1162 ULONGEST *xfered_len)
1163 {
1164 enum target_xfer_status retval;
1165
1166 gdb_assert (ops->to_xfer_partial != NULL);
1167
1168 /* Transfer is done when LEN is zero. */
1169 if (len == 0)
1170 return TARGET_XFER_EOF;
1171
1172 if (writebuf && !may_write_memory)
1173 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1174 core_addr_to_string_nz (offset), plongest (len));
1175
1176 *xfered_len = 0;
1177
1178 /* If this is a memory transfer, let the memory-specific code
1179 have a look at it instead. Memory transfers are more
1180 complicated. */
1181 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1182 || object == TARGET_OBJECT_CODE_MEMORY)
1183 retval = memory_xfer_partial (ops, object, readbuf,
1184 writebuf, offset, len, xfered_len);
1185 else if (object == TARGET_OBJECT_RAW_MEMORY)
1186 {
1187 /* Request the normal memory object from other layers. */
1188 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1189 xfered_len);
1190 }
1191 else
1192 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1193 writebuf, offset, len, xfered_len);
1194
1195 if (targetdebug)
1196 {
1197 const unsigned char *myaddr = NULL;
1198
1199 fprintf_unfiltered (gdb_stdlog,
1200 "%s:target_xfer_partial "
1201 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1202 ops->to_shortname,
1203 (int) object,
1204 (annex ? annex : "(null)"),
1205 host_address_to_string (readbuf),
1206 host_address_to_string (writebuf),
1207 core_addr_to_string_nz (offset),
1208 pulongest (len), retval,
1209 pulongest (*xfered_len));
1210
1211 if (readbuf)
1212 myaddr = readbuf;
1213 if (writebuf)
1214 myaddr = writebuf;
1215 if (retval == TARGET_XFER_OK && myaddr != NULL)
1216 {
1217 int i;
1218
1219 fputs_unfiltered (", bytes =", gdb_stdlog);
1220 for (i = 0; i < *xfered_len; i++)
1221 {
1222 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1223 {
1224 if (targetdebug < 2 && i > 0)
1225 {
1226 fprintf_unfiltered (gdb_stdlog, " ...");
1227 break;
1228 }
1229 fprintf_unfiltered (gdb_stdlog, "\n");
1230 }
1231
1232 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1233 }
1234 }
1235
1236 fputc_unfiltered ('\n', gdb_stdlog);
1237 }
1238
1239 /* Check implementations of to_xfer_partial update *XFERED_LEN
1240 properly. Do assertion after printing debug messages, so that we
1241 can find more clues on assertion failure from debugging messages. */
1242 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1243 gdb_assert (*xfered_len > 0);
1244
1245 return retval;
1246 }
1247
1248 /* Read LEN bytes of target memory at address MEMADDR, placing the
1249 results in GDB's memory at MYADDR. Returns either 0 for success or
1250 TARGET_XFER_E_IO if any error occurs.
1251
1252 If an error occurs, no guarantee is made about the contents of the data at
1253 MYADDR. In particular, the caller should not depend upon partial reads
1254 filling the buffer with good data. There is no way for the caller to know
1255 how much good data might have been transfered anyway. Callers that can
1256 deal with partial reads should call target_read (which will retry until
1257 it makes no progress, and then return how much was transferred). */
1258
1259 int
1260 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1261 {
1262 /* Dispatch to the topmost target, not the flattened current_target.
1263 Memory accesses check target->to_has_(all_)memory, and the
1264 flattened target doesn't inherit those. */
1265 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1266 myaddr, memaddr, len) == len)
1267 return 0;
1268 else
1269 return TARGET_XFER_E_IO;
1270 }
1271
1272 /* Like target_read_memory, but specify explicitly that this is a read
1273 from the target's raw memory. That is, this read bypasses the
1274 dcache, breakpoint shadowing, etc. */
1275
1276 int
1277 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1278 {
1279 /* See comment in target_read_memory about why the request starts at
1280 current_target.beneath. */
1281 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1282 myaddr, memaddr, len) == len)
1283 return 0;
1284 else
1285 return TARGET_XFER_E_IO;
1286 }
1287
1288 /* Like target_read_memory, but specify explicitly that this is a read from
1289 the target's stack. This may trigger different cache behavior. */
1290
1291 int
1292 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1293 {
1294 /* See comment in target_read_memory about why the request starts at
1295 current_target.beneath. */
1296 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1297 myaddr, memaddr, len) == len)
1298 return 0;
1299 else
1300 return TARGET_XFER_E_IO;
1301 }
1302
1303 /* Like target_read_memory, but specify explicitly that this is a read from
1304 the target's code. This may trigger different cache behavior. */
1305
1306 int
1307 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1308 {
1309 /* See comment in target_read_memory about why the request starts at
1310 current_target.beneath. */
1311 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1312 myaddr, memaddr, len) == len)
1313 return 0;
1314 else
1315 return TARGET_XFER_E_IO;
1316 }
1317
1318 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1319 Returns either 0 for success or TARGET_XFER_E_IO if any
1320 error occurs. If an error occurs, no guarantee is made about how
1321 much data got written. Callers that can deal with partial writes
1322 should call target_write. */
1323
1324 int
1325 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1326 {
1327 /* See comment in target_read_memory about why the request starts at
1328 current_target.beneath. */
1329 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1330 myaddr, memaddr, len) == len)
1331 return 0;
1332 else
1333 return TARGET_XFER_E_IO;
1334 }
1335
1336 /* Write LEN bytes from MYADDR to target raw memory at address
1337 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1338 if any error occurs. If an error occurs, no guarantee is made
1339 about how much data got written. Callers that can deal with
1340 partial writes should call target_write. */
1341
1342 int
1343 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1344 {
1345 /* See comment in target_read_memory about why the request starts at
1346 current_target.beneath. */
1347 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1348 myaddr, memaddr, len) == len)
1349 return 0;
1350 else
1351 return TARGET_XFER_E_IO;
1352 }
1353
1354 /* Fetch the target's memory map. */
1355
1356 VEC(mem_region_s) *
1357 target_memory_map (void)
1358 {
1359 VEC(mem_region_s) *result;
1360 struct mem_region *last_one, *this_one;
1361 int ix;
1362 struct target_ops *t;
1363
1364 result = current_target.to_memory_map (&current_target);
1365 if (result == NULL)
1366 return NULL;
1367
1368 qsort (VEC_address (mem_region_s, result),
1369 VEC_length (mem_region_s, result),
1370 sizeof (struct mem_region), mem_region_cmp);
1371
1372 /* Check that regions do not overlap. Simultaneously assign
1373 a numbering for the "mem" commands to use to refer to
1374 each region. */
1375 last_one = NULL;
1376 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1377 {
1378 this_one->number = ix;
1379
1380 if (last_one && last_one->hi > this_one->lo)
1381 {
1382 warning (_("Overlapping regions in memory map: ignoring"));
1383 VEC_free (mem_region_s, result);
1384 return NULL;
1385 }
1386 last_one = this_one;
1387 }
1388
1389 return result;
1390 }
1391
1392 void
1393 target_flash_erase (ULONGEST address, LONGEST length)
1394 {
1395 current_target.to_flash_erase (&current_target, address, length);
1396 }
1397
1398 void
1399 target_flash_done (void)
1400 {
1401 current_target.to_flash_done (&current_target);
1402 }
1403
1404 static void
1405 show_trust_readonly (struct ui_file *file, int from_tty,
1406 struct cmd_list_element *c, const char *value)
1407 {
1408 fprintf_filtered (file,
1409 _("Mode for reading from readonly sections is %s.\n"),
1410 value);
1411 }
1412
1413 /* Target vector read/write partial wrapper functions. */
1414
1415 static enum target_xfer_status
1416 target_read_partial (struct target_ops *ops,
1417 enum target_object object,
1418 const char *annex, gdb_byte *buf,
1419 ULONGEST offset, ULONGEST len,
1420 ULONGEST *xfered_len)
1421 {
1422 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1423 xfered_len);
1424 }
1425
1426 static enum target_xfer_status
1427 target_write_partial (struct target_ops *ops,
1428 enum target_object object,
1429 const char *annex, const gdb_byte *buf,
1430 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1431 {
1432 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1433 xfered_len);
1434 }
1435
1436 /* Wrappers to perform the full transfer. */
1437
1438 /* For docs on target_read see target.h. */
1439
1440 LONGEST
1441 target_read (struct target_ops *ops,
1442 enum target_object object,
1443 const char *annex, gdb_byte *buf,
1444 ULONGEST offset, LONGEST len)
1445 {
1446 LONGEST xfered = 0;
1447
1448 while (xfered < len)
1449 {
1450 ULONGEST xfered_len;
1451 enum target_xfer_status status;
1452
1453 status = target_read_partial (ops, object, annex,
1454 (gdb_byte *) buf + xfered,
1455 offset + xfered, len - xfered,
1456 &xfered_len);
1457
1458 /* Call an observer, notifying them of the xfer progress? */
1459 if (status == TARGET_XFER_EOF)
1460 return xfered;
1461 else if (status == TARGET_XFER_OK)
1462 {
1463 xfered += xfered_len;
1464 QUIT;
1465 }
1466 else
1467 return -1;
1468
1469 }
1470 return len;
1471 }
1472
1473 /* Assuming that the entire [begin, end) range of memory cannot be
1474 read, try to read whatever subrange is possible to read.
1475
1476 The function returns, in RESULT, either zero or one memory block.
1477 If there's a readable subrange at the beginning, it is completely
1478 read and returned. Any further readable subrange will not be read.
1479 Otherwise, if there's a readable subrange at the end, it will be
1480 completely read and returned. Any readable subranges before it
1481 (obviously, not starting at the beginning), will be ignored. In
1482 other cases -- either no readable subrange, or readable subrange(s)
1483 that is neither at the beginning, or end, nothing is returned.
1484
1485 The purpose of this function is to handle a read across a boundary
1486 of accessible memory in a case when memory map is not available.
1487 The above restrictions are fine for this case, but will give
1488 incorrect results if the memory is 'patchy'. However, supporting
1489 'patchy' memory would require trying to read every single byte,
1490 and it seems unacceptable solution. Explicit memory map is
1491 recommended for this case -- and target_read_memory_robust will
1492 take care of reading multiple ranges then. */
1493
1494 static void
1495 read_whatever_is_readable (struct target_ops *ops,
1496 ULONGEST begin, ULONGEST end,
1497 VEC(memory_read_result_s) **result)
1498 {
1499 gdb_byte *buf = xmalloc (end - begin);
1500 ULONGEST current_begin = begin;
1501 ULONGEST current_end = end;
1502 int forward;
1503 memory_read_result_s r;
1504 ULONGEST xfered_len;
1505
1506 /* If we previously failed to read 1 byte, nothing can be done here. */
1507 if (end - begin <= 1)
1508 {
1509 xfree (buf);
1510 return;
1511 }
1512
1513 /* Check that either first or the last byte is readable, and give up
1514 if not. This heuristic is meant to permit reading accessible memory
1515 at the boundary of accessible region. */
1516 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1517 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1518 {
1519 forward = 1;
1520 ++current_begin;
1521 }
1522 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1523 buf + (end-begin) - 1, end - 1, 1,
1524 &xfered_len) == TARGET_XFER_OK)
1525 {
1526 forward = 0;
1527 --current_end;
1528 }
1529 else
1530 {
1531 xfree (buf);
1532 return;
1533 }
1534
1535 /* Loop invariant is that the [current_begin, current_end) was previously
1536 found to be not readable as a whole.
1537
1538 Note loop condition -- if the range has 1 byte, we can't divide the range
1539 so there's no point trying further. */
1540 while (current_end - current_begin > 1)
1541 {
1542 ULONGEST first_half_begin, first_half_end;
1543 ULONGEST second_half_begin, second_half_end;
1544 LONGEST xfer;
1545 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1546
1547 if (forward)
1548 {
1549 first_half_begin = current_begin;
1550 first_half_end = middle;
1551 second_half_begin = middle;
1552 second_half_end = current_end;
1553 }
1554 else
1555 {
1556 first_half_begin = middle;
1557 first_half_end = current_end;
1558 second_half_begin = current_begin;
1559 second_half_end = middle;
1560 }
1561
1562 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1563 buf + (first_half_begin - begin),
1564 first_half_begin,
1565 first_half_end - first_half_begin);
1566
1567 if (xfer == first_half_end - first_half_begin)
1568 {
1569 /* This half reads up fine. So, the error must be in the
1570 other half. */
1571 current_begin = second_half_begin;
1572 current_end = second_half_end;
1573 }
1574 else
1575 {
1576 /* This half is not readable. Because we've tried one byte, we
1577 know some part of this half if actually redable. Go to the next
1578 iteration to divide again and try to read.
1579
1580 We don't handle the other half, because this function only tries
1581 to read a single readable subrange. */
1582 current_begin = first_half_begin;
1583 current_end = first_half_end;
1584 }
1585 }
1586
1587 if (forward)
1588 {
1589 /* The [begin, current_begin) range has been read. */
1590 r.begin = begin;
1591 r.end = current_begin;
1592 r.data = buf;
1593 }
1594 else
1595 {
1596 /* The [current_end, end) range has been read. */
1597 LONGEST rlen = end - current_end;
1598
1599 r.data = xmalloc (rlen);
1600 memcpy (r.data, buf + current_end - begin, rlen);
1601 r.begin = current_end;
1602 r.end = end;
1603 xfree (buf);
1604 }
1605 VEC_safe_push(memory_read_result_s, (*result), &r);
1606 }
1607
1608 void
1609 free_memory_read_result_vector (void *x)
1610 {
1611 VEC(memory_read_result_s) *v = x;
1612 memory_read_result_s *current;
1613 int ix;
1614
1615 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1616 {
1617 xfree (current->data);
1618 }
1619 VEC_free (memory_read_result_s, v);
1620 }
1621
1622 VEC(memory_read_result_s) *
1623 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1624 {
1625 VEC(memory_read_result_s) *result = 0;
1626
1627 LONGEST xfered = 0;
1628 while (xfered < len)
1629 {
1630 struct mem_region *region = lookup_mem_region (offset + xfered);
1631 LONGEST rlen;
1632
1633 /* If there is no explicit region, a fake one should be created. */
1634 gdb_assert (region);
1635
1636 if (region->hi == 0)
1637 rlen = len - xfered;
1638 else
1639 rlen = region->hi - offset;
1640
1641 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1642 {
1643 /* Cannot read this region. Note that we can end up here only
1644 if the region is explicitly marked inaccessible, or
1645 'inaccessible-by-default' is in effect. */
1646 xfered += rlen;
1647 }
1648 else
1649 {
1650 LONGEST to_read = min (len - xfered, rlen);
1651 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1652
1653 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1654 (gdb_byte *) buffer,
1655 offset + xfered, to_read);
1656 /* Call an observer, notifying them of the xfer progress? */
1657 if (xfer <= 0)
1658 {
1659 /* Got an error reading full chunk. See if maybe we can read
1660 some subrange. */
1661 xfree (buffer);
1662 read_whatever_is_readable (ops, offset + xfered,
1663 offset + xfered + to_read, &result);
1664 xfered += to_read;
1665 }
1666 else
1667 {
1668 struct memory_read_result r;
1669 r.data = buffer;
1670 r.begin = offset + xfered;
1671 r.end = r.begin + xfer;
1672 VEC_safe_push (memory_read_result_s, result, &r);
1673 xfered += xfer;
1674 }
1675 QUIT;
1676 }
1677 }
1678 return result;
1679 }
1680
1681
1682 /* An alternative to target_write with progress callbacks. */
1683
1684 LONGEST
1685 target_write_with_progress (struct target_ops *ops,
1686 enum target_object object,
1687 const char *annex, const gdb_byte *buf,
1688 ULONGEST offset, LONGEST len,
1689 void (*progress) (ULONGEST, void *), void *baton)
1690 {
1691 LONGEST xfered = 0;
1692
1693 /* Give the progress callback a chance to set up. */
1694 if (progress)
1695 (*progress) (0, baton);
1696
1697 while (xfered < len)
1698 {
1699 ULONGEST xfered_len;
1700 enum target_xfer_status status;
1701
1702 status = target_write_partial (ops, object, annex,
1703 (gdb_byte *) buf + xfered,
1704 offset + xfered, len - xfered,
1705 &xfered_len);
1706
1707 if (status != TARGET_XFER_OK)
1708 return status == TARGET_XFER_EOF ? xfered : -1;
1709
1710 if (progress)
1711 (*progress) (xfered_len, baton);
1712
1713 xfered += xfered_len;
1714 QUIT;
1715 }
1716 return len;
1717 }
1718
1719 /* For docs on target_write see target.h. */
1720
1721 LONGEST
1722 target_write (struct target_ops *ops,
1723 enum target_object object,
1724 const char *annex, const gdb_byte *buf,
1725 ULONGEST offset, LONGEST len)
1726 {
1727 return target_write_with_progress (ops, object, annex, buf, offset, len,
1728 NULL, NULL);
1729 }
1730
1731 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1732 the size of the transferred data. PADDING additional bytes are
1733 available in *BUF_P. This is a helper function for
1734 target_read_alloc; see the declaration of that function for more
1735 information. */
1736
1737 static LONGEST
1738 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1739 const char *annex, gdb_byte **buf_p, int padding)
1740 {
1741 size_t buf_alloc, buf_pos;
1742 gdb_byte *buf;
1743
1744 /* This function does not have a length parameter; it reads the
1745 entire OBJECT). Also, it doesn't support objects fetched partly
1746 from one target and partly from another (in a different stratum,
1747 e.g. a core file and an executable). Both reasons make it
1748 unsuitable for reading memory. */
1749 gdb_assert (object != TARGET_OBJECT_MEMORY);
1750
1751 /* Start by reading up to 4K at a time. The target will throttle
1752 this number down if necessary. */
1753 buf_alloc = 4096;
1754 buf = xmalloc (buf_alloc);
1755 buf_pos = 0;
1756 while (1)
1757 {
1758 ULONGEST xfered_len;
1759 enum target_xfer_status status;
1760
1761 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1762 buf_pos, buf_alloc - buf_pos - padding,
1763 &xfered_len);
1764
1765 if (status == TARGET_XFER_EOF)
1766 {
1767 /* Read all there was. */
1768 if (buf_pos == 0)
1769 xfree (buf);
1770 else
1771 *buf_p = buf;
1772 return buf_pos;
1773 }
1774 else if (status != TARGET_XFER_OK)
1775 {
1776 /* An error occurred. */
1777 xfree (buf);
1778 return TARGET_XFER_E_IO;
1779 }
1780
1781 buf_pos += xfered_len;
1782
1783 /* If the buffer is filling up, expand it. */
1784 if (buf_alloc < buf_pos * 2)
1785 {
1786 buf_alloc *= 2;
1787 buf = xrealloc (buf, buf_alloc);
1788 }
1789
1790 QUIT;
1791 }
1792 }
1793
1794 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1795 the size of the transferred data. See the declaration in "target.h"
1796 function for more information about the return value. */
1797
1798 LONGEST
1799 target_read_alloc (struct target_ops *ops, enum target_object object,
1800 const char *annex, gdb_byte **buf_p)
1801 {
1802 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1803 }
1804
1805 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1806 returned as a string, allocated using xmalloc. If an error occurs
1807 or the transfer is unsupported, NULL is returned. Empty objects
1808 are returned as allocated but empty strings. A warning is issued
1809 if the result contains any embedded NUL bytes. */
1810
1811 char *
1812 target_read_stralloc (struct target_ops *ops, enum target_object object,
1813 const char *annex)
1814 {
1815 gdb_byte *buffer;
1816 char *bufstr;
1817 LONGEST i, transferred;
1818
1819 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1820 bufstr = (char *) buffer;
1821
1822 if (transferred < 0)
1823 return NULL;
1824
1825 if (transferred == 0)
1826 return xstrdup ("");
1827
1828 bufstr[transferred] = 0;
1829
1830 /* Check for embedded NUL bytes; but allow trailing NULs. */
1831 for (i = strlen (bufstr); i < transferred; i++)
1832 if (bufstr[i] != 0)
1833 {
1834 warning (_("target object %d, annex %s, "
1835 "contained unexpected null characters"),
1836 (int) object, annex ? annex : "(none)");
1837 break;
1838 }
1839
1840 return bufstr;
1841 }
1842
1843 /* Memory transfer methods. */
1844
1845 void
1846 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1847 LONGEST len)
1848 {
1849 /* This method is used to read from an alternate, non-current
1850 target. This read must bypass the overlay support (as symbols
1851 don't match this target), and GDB's internal cache (wrong cache
1852 for this target). */
1853 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1854 != len)
1855 memory_error (TARGET_XFER_E_IO, addr);
1856 }
1857
1858 ULONGEST
1859 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1860 int len, enum bfd_endian byte_order)
1861 {
1862 gdb_byte buf[sizeof (ULONGEST)];
1863
1864 gdb_assert (len <= sizeof (buf));
1865 get_target_memory (ops, addr, buf, len);
1866 return extract_unsigned_integer (buf, len, byte_order);
1867 }
1868
1869 /* See target.h. */
1870
1871 int
1872 target_insert_breakpoint (struct gdbarch *gdbarch,
1873 struct bp_target_info *bp_tgt)
1874 {
1875 if (!may_insert_breakpoints)
1876 {
1877 warning (_("May not insert breakpoints"));
1878 return 1;
1879 }
1880
1881 return current_target.to_insert_breakpoint (&current_target,
1882 gdbarch, bp_tgt);
1883 }
1884
1885 /* See target.h. */
1886
1887 int
1888 target_remove_breakpoint (struct gdbarch *gdbarch,
1889 struct bp_target_info *bp_tgt)
1890 {
1891 /* This is kind of a weird case to handle, but the permission might
1892 have been changed after breakpoints were inserted - in which case
1893 we should just take the user literally and assume that any
1894 breakpoints should be left in place. */
1895 if (!may_insert_breakpoints)
1896 {
1897 warning (_("May not remove breakpoints"));
1898 return 1;
1899 }
1900
1901 return current_target.to_remove_breakpoint (&current_target,
1902 gdbarch, bp_tgt);
1903 }
1904
1905 static void
1906 target_info (char *args, int from_tty)
1907 {
1908 struct target_ops *t;
1909 int has_all_mem = 0;
1910
1911 if (symfile_objfile != NULL)
1912 printf_unfiltered (_("Symbols from \"%s\".\n"),
1913 objfile_name (symfile_objfile));
1914
1915 for (t = target_stack; t != NULL; t = t->beneath)
1916 {
1917 if (!(*t->to_has_memory) (t))
1918 continue;
1919
1920 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1921 continue;
1922 if (has_all_mem)
1923 printf_unfiltered (_("\tWhile running this, "
1924 "GDB does not access memory from...\n"));
1925 printf_unfiltered ("%s:\n", t->to_longname);
1926 (t->to_files_info) (t);
1927 has_all_mem = (*t->to_has_all_memory) (t);
1928 }
1929 }
1930
1931 /* This function is called before any new inferior is created, e.g.
1932 by running a program, attaching, or connecting to a target.
1933 It cleans up any state from previous invocations which might
1934 change between runs. This is a subset of what target_preopen
1935 resets (things which might change between targets). */
1936
1937 void
1938 target_pre_inferior (int from_tty)
1939 {
1940 /* Clear out solib state. Otherwise the solib state of the previous
1941 inferior might have survived and is entirely wrong for the new
1942 target. This has been observed on GNU/Linux using glibc 2.3. How
1943 to reproduce:
1944
1945 bash$ ./foo&
1946 [1] 4711
1947 bash$ ./foo&
1948 [1] 4712
1949 bash$ gdb ./foo
1950 [...]
1951 (gdb) attach 4711
1952 (gdb) detach
1953 (gdb) attach 4712
1954 Cannot access memory at address 0xdeadbeef
1955 */
1956
1957 /* In some OSs, the shared library list is the same/global/shared
1958 across inferiors. If code is shared between processes, so are
1959 memory regions and features. */
1960 if (!gdbarch_has_global_solist (target_gdbarch ()))
1961 {
1962 no_shared_libraries (NULL, from_tty);
1963
1964 invalidate_target_mem_regions ();
1965
1966 target_clear_description ();
1967 }
1968
1969 agent_capability_invalidate ();
1970 }
1971
1972 /* Callback for iterate_over_inferiors. Gets rid of the given
1973 inferior. */
1974
1975 static int
1976 dispose_inferior (struct inferior *inf, void *args)
1977 {
1978 struct thread_info *thread;
1979
1980 thread = any_thread_of_process (inf->pid);
1981 if (thread)
1982 {
1983 switch_to_thread (thread->ptid);
1984
1985 /* Core inferiors actually should be detached, not killed. */
1986 if (target_has_execution)
1987 target_kill ();
1988 else
1989 target_detach (NULL, 0);
1990 }
1991
1992 return 0;
1993 }
1994
1995 /* This is to be called by the open routine before it does
1996 anything. */
1997
1998 void
1999 target_preopen (int from_tty)
2000 {
2001 dont_repeat ();
2002
2003 if (have_inferiors ())
2004 {
2005 if (!from_tty
2006 || !have_live_inferiors ()
2007 || query (_("A program is being debugged already. Kill it? ")))
2008 iterate_over_inferiors (dispose_inferior, NULL);
2009 else
2010 error (_("Program not killed."));
2011 }
2012
2013 /* Calling target_kill may remove the target from the stack. But if
2014 it doesn't (which seems like a win for UDI), remove it now. */
2015 /* Leave the exec target, though. The user may be switching from a
2016 live process to a core of the same program. */
2017 pop_all_targets_above (file_stratum);
2018
2019 target_pre_inferior (from_tty);
2020 }
2021
2022 /* Detach a target after doing deferred register stores. */
2023
2024 void
2025 target_detach (const char *args, int from_tty)
2026 {
2027 struct target_ops* t;
2028
2029 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2030 /* Don't remove global breakpoints here. They're removed on
2031 disconnection from the target. */
2032 ;
2033 else
2034 /* If we're in breakpoints-always-inserted mode, have to remove
2035 them before detaching. */
2036 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2037
2038 prepare_for_detach ();
2039
2040 current_target.to_detach (&current_target, args, from_tty);
2041 }
2042
2043 void
2044 target_disconnect (const char *args, int from_tty)
2045 {
2046 /* If we're in breakpoints-always-inserted mode or if breakpoints
2047 are global across processes, we have to remove them before
2048 disconnecting. */
2049 remove_breakpoints ();
2050
2051 current_target.to_disconnect (&current_target, args, from_tty);
2052 }
2053
2054 ptid_t
2055 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2056 {
2057 return (current_target.to_wait) (&current_target, ptid, status, options);
2058 }
2059
2060 char *
2061 target_pid_to_str (ptid_t ptid)
2062 {
2063 return (*current_target.to_pid_to_str) (&current_target, ptid);
2064 }
2065
2066 char *
2067 target_thread_name (struct thread_info *info)
2068 {
2069 return current_target.to_thread_name (&current_target, info);
2070 }
2071
2072 void
2073 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2074 {
2075 struct target_ops *t;
2076
2077 target_dcache_invalidate ();
2078
2079 current_target.to_resume (&current_target, ptid, step, signal);
2080
2081 registers_changed_ptid (ptid);
2082 /* We only set the internal executing state here. The user/frontend
2083 running state is set at a higher level. */
2084 set_executing (ptid, 1);
2085 clear_inline_frame_state (ptid);
2086 }
2087
2088 void
2089 target_pass_signals (int numsigs, unsigned char *pass_signals)
2090 {
2091 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2092 }
2093
2094 void
2095 target_program_signals (int numsigs, unsigned char *program_signals)
2096 {
2097 (*current_target.to_program_signals) (&current_target,
2098 numsigs, program_signals);
2099 }
2100
2101 static int
2102 default_follow_fork (struct target_ops *self, int follow_child,
2103 int detach_fork)
2104 {
2105 /* Some target returned a fork event, but did not know how to follow it. */
2106 internal_error (__FILE__, __LINE__,
2107 _("could not find a target to follow fork"));
2108 }
2109
2110 /* Look through the list of possible targets for a target that can
2111 follow forks. */
2112
2113 int
2114 target_follow_fork (int follow_child, int detach_fork)
2115 {
2116 return current_target.to_follow_fork (&current_target,
2117 follow_child, detach_fork);
2118 }
2119
2120 static void
2121 default_mourn_inferior (struct target_ops *self)
2122 {
2123 internal_error (__FILE__, __LINE__,
2124 _("could not find a target to follow mourn inferior"));
2125 }
2126
2127 void
2128 target_mourn_inferior (void)
2129 {
2130 current_target.to_mourn_inferior (&current_target);
2131
2132 /* We no longer need to keep handles on any of the object files.
2133 Make sure to release them to avoid unnecessarily locking any
2134 of them while we're not actually debugging. */
2135 bfd_cache_close_all ();
2136 }
2137
2138 /* Look for a target which can describe architectural features, starting
2139 from TARGET. If we find one, return its description. */
2140
2141 const struct target_desc *
2142 target_read_description (struct target_ops *target)
2143 {
2144 return target->to_read_description (target);
2145 }
2146
2147 /* This implements a basic search of memory, reading target memory and
2148 performing the search here (as opposed to performing the search in on the
2149 target side with, for example, gdbserver). */
2150
2151 int
2152 simple_search_memory (struct target_ops *ops,
2153 CORE_ADDR start_addr, ULONGEST search_space_len,
2154 const gdb_byte *pattern, ULONGEST pattern_len,
2155 CORE_ADDR *found_addrp)
2156 {
2157 /* NOTE: also defined in find.c testcase. */
2158 #define SEARCH_CHUNK_SIZE 16000
2159 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2160 /* Buffer to hold memory contents for searching. */
2161 gdb_byte *search_buf;
2162 unsigned search_buf_size;
2163 struct cleanup *old_cleanups;
2164
2165 search_buf_size = chunk_size + pattern_len - 1;
2166
2167 /* No point in trying to allocate a buffer larger than the search space. */
2168 if (search_space_len < search_buf_size)
2169 search_buf_size = search_space_len;
2170
2171 search_buf = malloc (search_buf_size);
2172 if (search_buf == NULL)
2173 error (_("Unable to allocate memory to perform the search."));
2174 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2175
2176 /* Prime the search buffer. */
2177
2178 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2179 search_buf, start_addr, search_buf_size) != search_buf_size)
2180 {
2181 warning (_("Unable to access %s bytes of target "
2182 "memory at %s, halting search."),
2183 pulongest (search_buf_size), hex_string (start_addr));
2184 do_cleanups (old_cleanups);
2185 return -1;
2186 }
2187
2188 /* Perform the search.
2189
2190 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2191 When we've scanned N bytes we copy the trailing bytes to the start and
2192 read in another N bytes. */
2193
2194 while (search_space_len >= pattern_len)
2195 {
2196 gdb_byte *found_ptr;
2197 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2198
2199 found_ptr = memmem (search_buf, nr_search_bytes,
2200 pattern, pattern_len);
2201
2202 if (found_ptr != NULL)
2203 {
2204 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2205
2206 *found_addrp = found_addr;
2207 do_cleanups (old_cleanups);
2208 return 1;
2209 }
2210
2211 /* Not found in this chunk, skip to next chunk. */
2212
2213 /* Don't let search_space_len wrap here, it's unsigned. */
2214 if (search_space_len >= chunk_size)
2215 search_space_len -= chunk_size;
2216 else
2217 search_space_len = 0;
2218
2219 if (search_space_len >= pattern_len)
2220 {
2221 unsigned keep_len = search_buf_size - chunk_size;
2222 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2223 int nr_to_read;
2224
2225 /* Copy the trailing part of the previous iteration to the front
2226 of the buffer for the next iteration. */
2227 gdb_assert (keep_len == pattern_len - 1);
2228 memcpy (search_buf, search_buf + chunk_size, keep_len);
2229
2230 nr_to_read = min (search_space_len - keep_len, chunk_size);
2231
2232 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2233 search_buf + keep_len, read_addr,
2234 nr_to_read) != nr_to_read)
2235 {
2236 warning (_("Unable to access %s bytes of target "
2237 "memory at %s, halting search."),
2238 plongest (nr_to_read),
2239 hex_string (read_addr));
2240 do_cleanups (old_cleanups);
2241 return -1;
2242 }
2243
2244 start_addr += chunk_size;
2245 }
2246 }
2247
2248 /* Not found. */
2249
2250 do_cleanups (old_cleanups);
2251 return 0;
2252 }
2253
2254 /* Default implementation of memory-searching. */
2255
2256 static int
2257 default_search_memory (struct target_ops *self,
2258 CORE_ADDR start_addr, ULONGEST search_space_len,
2259 const gdb_byte *pattern, ULONGEST pattern_len,
2260 CORE_ADDR *found_addrp)
2261 {
2262 /* Start over from the top of the target stack. */
2263 return simple_search_memory (current_target.beneath,
2264 start_addr, search_space_len,
2265 pattern, pattern_len, found_addrp);
2266 }
2267
2268 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2269 sequence of bytes in PATTERN with length PATTERN_LEN.
2270
2271 The result is 1 if found, 0 if not found, and -1 if there was an error
2272 requiring halting of the search (e.g. memory read error).
2273 If the pattern is found the address is recorded in FOUND_ADDRP. */
2274
2275 int
2276 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2277 const gdb_byte *pattern, ULONGEST pattern_len,
2278 CORE_ADDR *found_addrp)
2279 {
2280 return current_target.to_search_memory (&current_target, start_addr,
2281 search_space_len,
2282 pattern, pattern_len, found_addrp);
2283 }
2284
2285 /* Look through the currently pushed targets. If none of them will
2286 be able to restart the currently running process, issue an error
2287 message. */
2288
2289 void
2290 target_require_runnable (void)
2291 {
2292 struct target_ops *t;
2293
2294 for (t = target_stack; t != NULL; t = t->beneath)
2295 {
2296 /* If this target knows how to create a new program, then
2297 assume we will still be able to after killing the current
2298 one. Either killing and mourning will not pop T, or else
2299 find_default_run_target will find it again. */
2300 if (t->to_create_inferior != NULL)
2301 return;
2302
2303 /* Do not worry about targets at certain strata that can not
2304 create inferiors. Assume they will be pushed again if
2305 necessary, and continue to the process_stratum. */
2306 if (t->to_stratum == thread_stratum
2307 || t->to_stratum == record_stratum
2308 || t->to_stratum == arch_stratum)
2309 continue;
2310
2311 error (_("The \"%s\" target does not support \"run\". "
2312 "Try \"help target\" or \"continue\"."),
2313 t->to_shortname);
2314 }
2315
2316 /* This function is only called if the target is running. In that
2317 case there should have been a process_stratum target and it
2318 should either know how to create inferiors, or not... */
2319 internal_error (__FILE__, __LINE__, _("No targets found"));
2320 }
2321
2322 /* Whether GDB is allowed to fall back to the default run target for
2323 "run", "attach", etc. when no target is connected yet. */
2324 static int auto_connect_native_target = 1;
2325
2326 static void
2327 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2328 struct cmd_list_element *c, const char *value)
2329 {
2330 fprintf_filtered (file,
2331 _("Whether GDB may automatically connect to the "
2332 "native target is %s.\n"),
2333 value);
2334 }
2335
2336 /* Look through the list of possible targets for a target that can
2337 execute a run or attach command without any other data. This is
2338 used to locate the default process stratum.
2339
2340 If DO_MESG is not NULL, the result is always valid (error() is
2341 called for errors); else, return NULL on error. */
2342
2343 static struct target_ops *
2344 find_default_run_target (char *do_mesg)
2345 {
2346 struct target_ops *runable = NULL;
2347
2348 if (auto_connect_native_target)
2349 {
2350 struct target_ops *t;
2351 int count = 0;
2352 int i;
2353
2354 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2355 {
2356 if (t->to_can_run != delegate_can_run && target_can_run (t))
2357 {
2358 runable = t;
2359 ++count;
2360 }
2361 }
2362
2363 if (count != 1)
2364 runable = NULL;
2365 }
2366
2367 if (runable == NULL)
2368 {
2369 if (do_mesg)
2370 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2371 else
2372 return NULL;
2373 }
2374
2375 return runable;
2376 }
2377
2378 /* See target.h. */
2379
2380 struct target_ops *
2381 find_attach_target (void)
2382 {
2383 struct target_ops *t;
2384
2385 /* If a target on the current stack can attach, use it. */
2386 for (t = current_target.beneath; t != NULL; t = t->beneath)
2387 {
2388 if (t->to_attach != NULL)
2389 break;
2390 }
2391
2392 /* Otherwise, use the default run target for attaching. */
2393 if (t == NULL)
2394 t = find_default_run_target ("attach");
2395
2396 return t;
2397 }
2398
2399 /* See target.h. */
2400
2401 struct target_ops *
2402 find_run_target (void)
2403 {
2404 struct target_ops *t;
2405
2406 /* If a target on the current stack can attach, use it. */
2407 for (t = current_target.beneath; t != NULL; t = t->beneath)
2408 {
2409 if (t->to_create_inferior != NULL)
2410 break;
2411 }
2412
2413 /* Otherwise, use the default run target. */
2414 if (t == NULL)
2415 t = find_default_run_target ("run");
2416
2417 return t;
2418 }
2419
2420 /* Implement the "info proc" command. */
2421
2422 int
2423 target_info_proc (const char *args, enum info_proc_what what)
2424 {
2425 struct target_ops *t;
2426
2427 /* If we're already connected to something that can get us OS
2428 related data, use it. Otherwise, try using the native
2429 target. */
2430 if (current_target.to_stratum >= process_stratum)
2431 t = current_target.beneath;
2432 else
2433 t = find_default_run_target (NULL);
2434
2435 for (; t != NULL; t = t->beneath)
2436 {
2437 if (t->to_info_proc != NULL)
2438 {
2439 t->to_info_proc (t, args, what);
2440
2441 if (targetdebug)
2442 fprintf_unfiltered (gdb_stdlog,
2443 "target_info_proc (\"%s\", %d)\n", args, what);
2444
2445 return 1;
2446 }
2447 }
2448
2449 return 0;
2450 }
2451
2452 static int
2453 find_default_supports_disable_randomization (struct target_ops *self)
2454 {
2455 struct target_ops *t;
2456
2457 t = find_default_run_target (NULL);
2458 if (t && t->to_supports_disable_randomization)
2459 return (t->to_supports_disable_randomization) (t);
2460 return 0;
2461 }
2462
2463 int
2464 target_supports_disable_randomization (void)
2465 {
2466 struct target_ops *t;
2467
2468 for (t = &current_target; t != NULL; t = t->beneath)
2469 if (t->to_supports_disable_randomization)
2470 return t->to_supports_disable_randomization (t);
2471
2472 return 0;
2473 }
2474
2475 char *
2476 target_get_osdata (const char *type)
2477 {
2478 struct target_ops *t;
2479
2480 /* If we're already connected to something that can get us OS
2481 related data, use it. Otherwise, try using the native
2482 target. */
2483 if (current_target.to_stratum >= process_stratum)
2484 t = current_target.beneath;
2485 else
2486 t = find_default_run_target ("get OS data");
2487
2488 if (!t)
2489 return NULL;
2490
2491 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2492 }
2493
2494 static struct address_space *
2495 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2496 {
2497 struct inferior *inf;
2498
2499 /* Fall-back to the "main" address space of the inferior. */
2500 inf = find_inferior_pid (ptid_get_pid (ptid));
2501
2502 if (inf == NULL || inf->aspace == NULL)
2503 internal_error (__FILE__, __LINE__,
2504 _("Can't determine the current "
2505 "address space of thread %s\n"),
2506 target_pid_to_str (ptid));
2507
2508 return inf->aspace;
2509 }
2510
2511 /* Determine the current address space of thread PTID. */
2512
2513 struct address_space *
2514 target_thread_address_space (ptid_t ptid)
2515 {
2516 struct address_space *aspace;
2517
2518 aspace = current_target.to_thread_address_space (&current_target, ptid);
2519 gdb_assert (aspace != NULL);
2520
2521 return aspace;
2522 }
2523
2524
2525 /* Target file operations. */
2526
2527 static struct target_ops *
2528 default_fileio_target (void)
2529 {
2530 /* If we're already connected to something that can perform
2531 file I/O, use it. Otherwise, try using the native target. */
2532 if (current_target.to_stratum >= process_stratum)
2533 return current_target.beneath;
2534 else
2535 return find_default_run_target ("file I/O");
2536 }
2537
2538 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2539 target file descriptor, or -1 if an error occurs (and set
2540 *TARGET_ERRNO). */
2541 int
2542 target_fileio_open (const char *filename, int flags, int mode,
2543 int *target_errno)
2544 {
2545 struct target_ops *t;
2546
2547 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2548 {
2549 if (t->to_fileio_open != NULL)
2550 {
2551 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2552
2553 if (targetdebug)
2554 fprintf_unfiltered (gdb_stdlog,
2555 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2556 filename, flags, mode,
2557 fd, fd != -1 ? 0 : *target_errno);
2558 return fd;
2559 }
2560 }
2561
2562 *target_errno = FILEIO_ENOSYS;
2563 return -1;
2564 }
2565
2566 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2567 Return the number of bytes written, or -1 if an error occurs
2568 (and set *TARGET_ERRNO). */
2569 int
2570 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2571 ULONGEST offset, int *target_errno)
2572 {
2573 struct target_ops *t;
2574
2575 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2576 {
2577 if (t->to_fileio_pwrite != NULL)
2578 {
2579 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2580 target_errno);
2581
2582 if (targetdebug)
2583 fprintf_unfiltered (gdb_stdlog,
2584 "target_fileio_pwrite (%d,...,%d,%s) "
2585 "= %d (%d)\n",
2586 fd, len, pulongest (offset),
2587 ret, ret != -1 ? 0 : *target_errno);
2588 return ret;
2589 }
2590 }
2591
2592 *target_errno = FILEIO_ENOSYS;
2593 return -1;
2594 }
2595
2596 /* Read up to LEN bytes FD on the target into READ_BUF.
2597 Return the number of bytes read, or -1 if an error occurs
2598 (and set *TARGET_ERRNO). */
2599 int
2600 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2601 ULONGEST offset, int *target_errno)
2602 {
2603 struct target_ops *t;
2604
2605 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2606 {
2607 if (t->to_fileio_pread != NULL)
2608 {
2609 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2610 target_errno);
2611
2612 if (targetdebug)
2613 fprintf_unfiltered (gdb_stdlog,
2614 "target_fileio_pread (%d,...,%d,%s) "
2615 "= %d (%d)\n",
2616 fd, len, pulongest (offset),
2617 ret, ret != -1 ? 0 : *target_errno);
2618 return ret;
2619 }
2620 }
2621
2622 *target_errno = FILEIO_ENOSYS;
2623 return -1;
2624 }
2625
2626 /* Close FD on the target. Return 0, or -1 if an error occurs
2627 (and set *TARGET_ERRNO). */
2628 int
2629 target_fileio_close (int fd, int *target_errno)
2630 {
2631 struct target_ops *t;
2632
2633 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2634 {
2635 if (t->to_fileio_close != NULL)
2636 {
2637 int ret = t->to_fileio_close (t, fd, target_errno);
2638
2639 if (targetdebug)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "target_fileio_close (%d) = %d (%d)\n",
2642 fd, ret, ret != -1 ? 0 : *target_errno);
2643 return ret;
2644 }
2645 }
2646
2647 *target_errno = FILEIO_ENOSYS;
2648 return -1;
2649 }
2650
2651 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2652 occurs (and set *TARGET_ERRNO). */
2653 int
2654 target_fileio_unlink (const char *filename, int *target_errno)
2655 {
2656 struct target_ops *t;
2657
2658 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2659 {
2660 if (t->to_fileio_unlink != NULL)
2661 {
2662 int ret = t->to_fileio_unlink (t, filename, target_errno);
2663
2664 if (targetdebug)
2665 fprintf_unfiltered (gdb_stdlog,
2666 "target_fileio_unlink (%s) = %d (%d)\n",
2667 filename, ret, ret != -1 ? 0 : *target_errno);
2668 return ret;
2669 }
2670 }
2671
2672 *target_errno = FILEIO_ENOSYS;
2673 return -1;
2674 }
2675
2676 /* Read value of symbolic link FILENAME on the target. Return a
2677 null-terminated string allocated via xmalloc, or NULL if an error
2678 occurs (and set *TARGET_ERRNO). */
2679 char *
2680 target_fileio_readlink (const char *filename, int *target_errno)
2681 {
2682 struct target_ops *t;
2683
2684 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2685 {
2686 if (t->to_fileio_readlink != NULL)
2687 {
2688 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2689
2690 if (targetdebug)
2691 fprintf_unfiltered (gdb_stdlog,
2692 "target_fileio_readlink (%s) = %s (%d)\n",
2693 filename, ret? ret : "(nil)",
2694 ret? 0 : *target_errno);
2695 return ret;
2696 }
2697 }
2698
2699 *target_errno = FILEIO_ENOSYS;
2700 return NULL;
2701 }
2702
2703 static void
2704 target_fileio_close_cleanup (void *opaque)
2705 {
2706 int fd = *(int *) opaque;
2707 int target_errno;
2708
2709 target_fileio_close (fd, &target_errno);
2710 }
2711
2712 /* Read target file FILENAME. Store the result in *BUF_P and
2713 return the size of the transferred data. PADDING additional bytes are
2714 available in *BUF_P. This is a helper function for
2715 target_fileio_read_alloc; see the declaration of that function for more
2716 information. */
2717
2718 static LONGEST
2719 target_fileio_read_alloc_1 (const char *filename,
2720 gdb_byte **buf_p, int padding)
2721 {
2722 struct cleanup *close_cleanup;
2723 size_t buf_alloc, buf_pos;
2724 gdb_byte *buf;
2725 LONGEST n;
2726 int fd;
2727 int target_errno;
2728
2729 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2730 if (fd == -1)
2731 return -1;
2732
2733 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2734
2735 /* Start by reading up to 4K at a time. The target will throttle
2736 this number down if necessary. */
2737 buf_alloc = 4096;
2738 buf = xmalloc (buf_alloc);
2739 buf_pos = 0;
2740 while (1)
2741 {
2742 n = target_fileio_pread (fd, &buf[buf_pos],
2743 buf_alloc - buf_pos - padding, buf_pos,
2744 &target_errno);
2745 if (n < 0)
2746 {
2747 /* An error occurred. */
2748 do_cleanups (close_cleanup);
2749 xfree (buf);
2750 return -1;
2751 }
2752 else if (n == 0)
2753 {
2754 /* Read all there was. */
2755 do_cleanups (close_cleanup);
2756 if (buf_pos == 0)
2757 xfree (buf);
2758 else
2759 *buf_p = buf;
2760 return buf_pos;
2761 }
2762
2763 buf_pos += n;
2764
2765 /* If the buffer is filling up, expand it. */
2766 if (buf_alloc < buf_pos * 2)
2767 {
2768 buf_alloc *= 2;
2769 buf = xrealloc (buf, buf_alloc);
2770 }
2771
2772 QUIT;
2773 }
2774 }
2775
2776 /* Read target file FILENAME. Store the result in *BUF_P and return
2777 the size of the transferred data. See the declaration in "target.h"
2778 function for more information about the return value. */
2779
2780 LONGEST
2781 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2782 {
2783 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2784 }
2785
2786 /* Read target file FILENAME. The result is NUL-terminated and
2787 returned as a string, allocated using xmalloc. If an error occurs
2788 or the transfer is unsupported, NULL is returned. Empty objects
2789 are returned as allocated but empty strings. A warning is issued
2790 if the result contains any embedded NUL bytes. */
2791
2792 char *
2793 target_fileio_read_stralloc (const char *filename)
2794 {
2795 gdb_byte *buffer;
2796 char *bufstr;
2797 LONGEST i, transferred;
2798
2799 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2800 bufstr = (char *) buffer;
2801
2802 if (transferred < 0)
2803 return NULL;
2804
2805 if (transferred == 0)
2806 return xstrdup ("");
2807
2808 bufstr[transferred] = 0;
2809
2810 /* Check for embedded NUL bytes; but allow trailing NULs. */
2811 for (i = strlen (bufstr); i < transferred; i++)
2812 if (bufstr[i] != 0)
2813 {
2814 warning (_("target file %s "
2815 "contained unexpected null characters"),
2816 filename);
2817 break;
2818 }
2819
2820 return bufstr;
2821 }
2822
2823
2824 static int
2825 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2826 CORE_ADDR addr, int len)
2827 {
2828 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2829 }
2830
2831 static int
2832 default_watchpoint_addr_within_range (struct target_ops *target,
2833 CORE_ADDR addr,
2834 CORE_ADDR start, int length)
2835 {
2836 return addr >= start && addr < start + length;
2837 }
2838
2839 static struct gdbarch *
2840 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2841 {
2842 return target_gdbarch ();
2843 }
2844
2845 static int
2846 return_zero (struct target_ops *ignore)
2847 {
2848 return 0;
2849 }
2850
2851 static int
2852 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2853 {
2854 return 0;
2855 }
2856
2857 /*
2858 * Find the next target down the stack from the specified target.
2859 */
2860
2861 struct target_ops *
2862 find_target_beneath (struct target_ops *t)
2863 {
2864 return t->beneath;
2865 }
2866
2867 /* See target.h. */
2868
2869 struct target_ops *
2870 find_target_at (enum strata stratum)
2871 {
2872 struct target_ops *t;
2873
2874 for (t = current_target.beneath; t != NULL; t = t->beneath)
2875 if (t->to_stratum == stratum)
2876 return t;
2877
2878 return NULL;
2879 }
2880
2881 \f
2882 /* The inferior process has died. Long live the inferior! */
2883
2884 void
2885 generic_mourn_inferior (void)
2886 {
2887 ptid_t ptid;
2888
2889 ptid = inferior_ptid;
2890 inferior_ptid = null_ptid;
2891
2892 /* Mark breakpoints uninserted in case something tries to delete a
2893 breakpoint while we delete the inferior's threads (which would
2894 fail, since the inferior is long gone). */
2895 mark_breakpoints_out ();
2896
2897 if (!ptid_equal (ptid, null_ptid))
2898 {
2899 int pid = ptid_get_pid (ptid);
2900 exit_inferior (pid);
2901 }
2902
2903 /* Note this wipes step-resume breakpoints, so needs to be done
2904 after exit_inferior, which ends up referencing the step-resume
2905 breakpoints through clear_thread_inferior_resources. */
2906 breakpoint_init_inferior (inf_exited);
2907
2908 registers_changed ();
2909
2910 reopen_exec_file ();
2911 reinit_frame_cache ();
2912
2913 if (deprecated_detach_hook)
2914 deprecated_detach_hook ();
2915 }
2916 \f
2917 /* Convert a normal process ID to a string. Returns the string in a
2918 static buffer. */
2919
2920 char *
2921 normal_pid_to_str (ptid_t ptid)
2922 {
2923 static char buf[32];
2924
2925 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2926 return buf;
2927 }
2928
2929 static char *
2930 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
2931 {
2932 return normal_pid_to_str (ptid);
2933 }
2934
2935 /* Error-catcher for target_find_memory_regions. */
2936 static int
2937 dummy_find_memory_regions (struct target_ops *self,
2938 find_memory_region_ftype ignore1, void *ignore2)
2939 {
2940 error (_("Command not implemented for this target."));
2941 return 0;
2942 }
2943
2944 /* Error-catcher for target_make_corefile_notes. */
2945 static char *
2946 dummy_make_corefile_notes (struct target_ops *self,
2947 bfd *ignore1, int *ignore2)
2948 {
2949 error (_("Command not implemented for this target."));
2950 return NULL;
2951 }
2952
2953 /* Set up the handful of non-empty slots needed by the dummy target
2954 vector. */
2955
2956 static void
2957 init_dummy_target (void)
2958 {
2959 dummy_target.to_shortname = "None";
2960 dummy_target.to_longname = "None";
2961 dummy_target.to_doc = "";
2962 dummy_target.to_supports_disable_randomization
2963 = find_default_supports_disable_randomization;
2964 dummy_target.to_stratum = dummy_stratum;
2965 dummy_target.to_has_all_memory = return_zero;
2966 dummy_target.to_has_memory = return_zero;
2967 dummy_target.to_has_stack = return_zero;
2968 dummy_target.to_has_registers = return_zero;
2969 dummy_target.to_has_execution = return_zero_has_execution;
2970 dummy_target.to_magic = OPS_MAGIC;
2971
2972 install_dummy_methods (&dummy_target);
2973 }
2974 \f
2975
2976 void
2977 target_close (struct target_ops *targ)
2978 {
2979 gdb_assert (!target_is_pushed (targ));
2980
2981 if (targ->to_xclose != NULL)
2982 targ->to_xclose (targ);
2983 else if (targ->to_close != NULL)
2984 targ->to_close (targ);
2985
2986 if (targetdebug)
2987 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
2988 }
2989
2990 int
2991 target_thread_alive (ptid_t ptid)
2992 {
2993 return current_target.to_thread_alive (&current_target, ptid);
2994 }
2995
2996 void
2997 target_find_new_threads (void)
2998 {
2999 current_target.to_find_new_threads (&current_target);
3000 }
3001
3002 void
3003 target_stop (ptid_t ptid)
3004 {
3005 if (!may_stop)
3006 {
3007 warning (_("May not interrupt or stop the target, ignoring attempt"));
3008 return;
3009 }
3010
3011 (*current_target.to_stop) (&current_target, ptid);
3012 }
3013
3014 /* Concatenate ELEM to LIST, a comma separate list, and return the
3015 result. The LIST incoming argument is released. */
3016
3017 static char *
3018 str_comma_list_concat_elem (char *list, const char *elem)
3019 {
3020 if (list == NULL)
3021 return xstrdup (elem);
3022 else
3023 return reconcat (list, list, ", ", elem, (char *) NULL);
3024 }
3025
3026 /* Helper for target_options_to_string. If OPT is present in
3027 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3028 Returns the new resulting string. OPT is removed from
3029 TARGET_OPTIONS. */
3030
3031 static char *
3032 do_option (int *target_options, char *ret,
3033 int opt, char *opt_str)
3034 {
3035 if ((*target_options & opt) != 0)
3036 {
3037 ret = str_comma_list_concat_elem (ret, opt_str);
3038 *target_options &= ~opt;
3039 }
3040
3041 return ret;
3042 }
3043
3044 char *
3045 target_options_to_string (int target_options)
3046 {
3047 char *ret = NULL;
3048
3049 #define DO_TARG_OPTION(OPT) \
3050 ret = do_option (&target_options, ret, OPT, #OPT)
3051
3052 DO_TARG_OPTION (TARGET_WNOHANG);
3053
3054 if (target_options != 0)
3055 ret = str_comma_list_concat_elem (ret, "unknown???");
3056
3057 if (ret == NULL)
3058 ret = xstrdup ("");
3059 return ret;
3060 }
3061
3062 static void
3063 debug_print_register (const char * func,
3064 struct regcache *regcache, int regno)
3065 {
3066 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3067
3068 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3069 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3070 && gdbarch_register_name (gdbarch, regno) != NULL
3071 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3072 fprintf_unfiltered (gdb_stdlog, "(%s)",
3073 gdbarch_register_name (gdbarch, regno));
3074 else
3075 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3076 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3077 {
3078 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3079 int i, size = register_size (gdbarch, regno);
3080 gdb_byte buf[MAX_REGISTER_SIZE];
3081
3082 regcache_raw_collect (regcache, regno, buf);
3083 fprintf_unfiltered (gdb_stdlog, " = ");
3084 for (i = 0; i < size; i++)
3085 {
3086 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3087 }
3088 if (size <= sizeof (LONGEST))
3089 {
3090 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3091
3092 fprintf_unfiltered (gdb_stdlog, " %s %s",
3093 core_addr_to_string_nz (val), plongest (val));
3094 }
3095 }
3096 fprintf_unfiltered (gdb_stdlog, "\n");
3097 }
3098
3099 void
3100 target_fetch_registers (struct regcache *regcache, int regno)
3101 {
3102 current_target.to_fetch_registers (&current_target, regcache, regno);
3103 if (targetdebug)
3104 debug_print_register ("target_fetch_registers", regcache, regno);
3105 }
3106
3107 void
3108 target_store_registers (struct regcache *regcache, int regno)
3109 {
3110 struct target_ops *t;
3111
3112 if (!may_write_registers)
3113 error (_("Writing to registers is not allowed (regno %d)"), regno);
3114
3115 current_target.to_store_registers (&current_target, regcache, regno);
3116 if (targetdebug)
3117 {
3118 debug_print_register ("target_store_registers", regcache, regno);
3119 }
3120 }
3121
3122 int
3123 target_core_of_thread (ptid_t ptid)
3124 {
3125 return current_target.to_core_of_thread (&current_target, ptid);
3126 }
3127
3128 int
3129 simple_verify_memory (struct target_ops *ops,
3130 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3131 {
3132 LONGEST total_xfered = 0;
3133
3134 while (total_xfered < size)
3135 {
3136 ULONGEST xfered_len;
3137 enum target_xfer_status status;
3138 gdb_byte buf[1024];
3139 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3140
3141 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3142 buf, NULL, lma + total_xfered, howmuch,
3143 &xfered_len);
3144 if (status == TARGET_XFER_OK
3145 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3146 {
3147 total_xfered += xfered_len;
3148 QUIT;
3149 }
3150 else
3151 return 0;
3152 }
3153 return 1;
3154 }
3155
3156 /* Default implementation of memory verification. */
3157
3158 static int
3159 default_verify_memory (struct target_ops *self,
3160 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3161 {
3162 /* Start over from the top of the target stack. */
3163 return simple_verify_memory (current_target.beneath,
3164 data, memaddr, size);
3165 }
3166
3167 int
3168 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3169 {
3170 return current_target.to_verify_memory (&current_target,
3171 data, memaddr, size);
3172 }
3173
3174 /* The documentation for this function is in its prototype declaration in
3175 target.h. */
3176
3177 int
3178 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3179 {
3180 return current_target.to_insert_mask_watchpoint (&current_target,
3181 addr, mask, rw);
3182 }
3183
3184 /* The documentation for this function is in its prototype declaration in
3185 target.h. */
3186
3187 int
3188 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3189 {
3190 return current_target.to_remove_mask_watchpoint (&current_target,
3191 addr, mask, rw);
3192 }
3193
3194 /* The documentation for this function is in its prototype declaration
3195 in target.h. */
3196
3197 int
3198 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3199 {
3200 return current_target.to_masked_watch_num_registers (&current_target,
3201 addr, mask);
3202 }
3203
3204 /* The documentation for this function is in its prototype declaration
3205 in target.h. */
3206
3207 int
3208 target_ranged_break_num_registers (void)
3209 {
3210 return current_target.to_ranged_break_num_registers (&current_target);
3211 }
3212
3213 /* See target.h. */
3214
3215 struct btrace_target_info *
3216 target_enable_btrace (ptid_t ptid)
3217 {
3218 return current_target.to_enable_btrace (&current_target, ptid);
3219 }
3220
3221 /* See target.h. */
3222
3223 void
3224 target_disable_btrace (struct btrace_target_info *btinfo)
3225 {
3226 current_target.to_disable_btrace (&current_target, btinfo);
3227 }
3228
3229 /* See target.h. */
3230
3231 void
3232 target_teardown_btrace (struct btrace_target_info *btinfo)
3233 {
3234 current_target.to_teardown_btrace (&current_target, btinfo);
3235 }
3236
3237 /* See target.h. */
3238
3239 enum btrace_error
3240 target_read_btrace (VEC (btrace_block_s) **btrace,
3241 struct btrace_target_info *btinfo,
3242 enum btrace_read_type type)
3243 {
3244 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3245 }
3246
3247 /* See target.h. */
3248
3249 void
3250 target_stop_recording (void)
3251 {
3252 current_target.to_stop_recording (&current_target);
3253 }
3254
3255 /* See target.h. */
3256
3257 void
3258 target_save_record (const char *filename)
3259 {
3260 current_target.to_save_record (&current_target, filename);
3261 }
3262
3263 /* See target.h. */
3264
3265 int
3266 target_supports_delete_record (void)
3267 {
3268 struct target_ops *t;
3269
3270 for (t = current_target.beneath; t != NULL; t = t->beneath)
3271 if (t->to_delete_record != delegate_delete_record
3272 && t->to_delete_record != tdefault_delete_record)
3273 return 1;
3274
3275 return 0;
3276 }
3277
3278 /* See target.h. */
3279
3280 void
3281 target_delete_record (void)
3282 {
3283 current_target.to_delete_record (&current_target);
3284 }
3285
3286 /* See target.h. */
3287
3288 int
3289 target_record_is_replaying (void)
3290 {
3291 return current_target.to_record_is_replaying (&current_target);
3292 }
3293
3294 /* See target.h. */
3295
3296 void
3297 target_goto_record_begin (void)
3298 {
3299 current_target.to_goto_record_begin (&current_target);
3300 }
3301
3302 /* See target.h. */
3303
3304 void
3305 target_goto_record_end (void)
3306 {
3307 current_target.to_goto_record_end (&current_target);
3308 }
3309
3310 /* See target.h. */
3311
3312 void
3313 target_goto_record (ULONGEST insn)
3314 {
3315 current_target.to_goto_record (&current_target, insn);
3316 }
3317
3318 /* See target.h. */
3319
3320 void
3321 target_insn_history (int size, int flags)
3322 {
3323 current_target.to_insn_history (&current_target, size, flags);
3324 }
3325
3326 /* See target.h. */
3327
3328 void
3329 target_insn_history_from (ULONGEST from, int size, int flags)
3330 {
3331 current_target.to_insn_history_from (&current_target, from, size, flags);
3332 }
3333
3334 /* See target.h. */
3335
3336 void
3337 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3338 {
3339 current_target.to_insn_history_range (&current_target, begin, end, flags);
3340 }
3341
3342 /* See target.h. */
3343
3344 void
3345 target_call_history (int size, int flags)
3346 {
3347 current_target.to_call_history (&current_target, size, flags);
3348 }
3349
3350 /* See target.h. */
3351
3352 void
3353 target_call_history_from (ULONGEST begin, int size, int flags)
3354 {
3355 current_target.to_call_history_from (&current_target, begin, size, flags);
3356 }
3357
3358 /* See target.h. */
3359
3360 void
3361 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3362 {
3363 current_target.to_call_history_range (&current_target, begin, end, flags);
3364 }
3365
3366 /* See target.h. */
3367
3368 const struct frame_unwind *
3369 target_get_unwinder (void)
3370 {
3371 return current_target.to_get_unwinder (&current_target);
3372 }
3373
3374 /* See target.h. */
3375
3376 const struct frame_unwind *
3377 target_get_tailcall_unwinder (void)
3378 {
3379 return current_target.to_get_tailcall_unwinder (&current_target);
3380 }
3381
3382 /* Default implementation of to_decr_pc_after_break. */
3383
3384 static CORE_ADDR
3385 default_target_decr_pc_after_break (struct target_ops *ops,
3386 struct gdbarch *gdbarch)
3387 {
3388 return gdbarch_decr_pc_after_break (gdbarch);
3389 }
3390
3391 /* See target.h. */
3392
3393 CORE_ADDR
3394 target_decr_pc_after_break (struct gdbarch *gdbarch)
3395 {
3396 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3397 }
3398
3399 /* See target.h. */
3400
3401 void
3402 target_prepare_to_generate_core (void)
3403 {
3404 current_target.to_prepare_to_generate_core (&current_target);
3405 }
3406
3407 /* See target.h. */
3408
3409 void
3410 target_done_generating_core (void)
3411 {
3412 current_target.to_done_generating_core (&current_target);
3413 }
3414
3415 static void
3416 setup_target_debug (void)
3417 {
3418 memcpy (&debug_target, &current_target, sizeof debug_target);
3419
3420 init_debug_target (&current_target);
3421 }
3422 \f
3423
3424 static char targ_desc[] =
3425 "Names of targets and files being debugged.\nShows the entire \
3426 stack of targets currently in use (including the exec-file,\n\
3427 core-file, and process, if any), as well as the symbol file name.";
3428
3429 static void
3430 default_rcmd (struct target_ops *self, const char *command,
3431 struct ui_file *output)
3432 {
3433 error (_("\"monitor\" command not supported by this target."));
3434 }
3435
3436 static void
3437 do_monitor_command (char *cmd,
3438 int from_tty)
3439 {
3440 target_rcmd (cmd, gdb_stdtarg);
3441 }
3442
3443 /* Print the name of each layers of our target stack. */
3444
3445 static void
3446 maintenance_print_target_stack (char *cmd, int from_tty)
3447 {
3448 struct target_ops *t;
3449
3450 printf_filtered (_("The current target stack is:\n"));
3451
3452 for (t = target_stack; t != NULL; t = t->beneath)
3453 {
3454 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3455 }
3456 }
3457
3458 /* Controls if targets can report that they can/are async. This is
3459 just for maintainers to use when debugging gdb. */
3460 int target_async_permitted = 1;
3461
3462 /* The set command writes to this variable. If the inferior is
3463 executing, target_async_permitted is *not* updated. */
3464 static int target_async_permitted_1 = 1;
3465
3466 static void
3467 maint_set_target_async_command (char *args, int from_tty,
3468 struct cmd_list_element *c)
3469 {
3470 if (have_live_inferiors ())
3471 {
3472 target_async_permitted_1 = target_async_permitted;
3473 error (_("Cannot change this setting while the inferior is running."));
3474 }
3475
3476 target_async_permitted = target_async_permitted_1;
3477 }
3478
3479 static void
3480 maint_show_target_async_command (struct ui_file *file, int from_tty,
3481 struct cmd_list_element *c,
3482 const char *value)
3483 {
3484 fprintf_filtered (file,
3485 _("Controlling the inferior in "
3486 "asynchronous mode is %s.\n"), value);
3487 }
3488
3489 /* Temporary copies of permission settings. */
3490
3491 static int may_write_registers_1 = 1;
3492 static int may_write_memory_1 = 1;
3493 static int may_insert_breakpoints_1 = 1;
3494 static int may_insert_tracepoints_1 = 1;
3495 static int may_insert_fast_tracepoints_1 = 1;
3496 static int may_stop_1 = 1;
3497
3498 /* Make the user-set values match the real values again. */
3499
3500 void
3501 update_target_permissions (void)
3502 {
3503 may_write_registers_1 = may_write_registers;
3504 may_write_memory_1 = may_write_memory;
3505 may_insert_breakpoints_1 = may_insert_breakpoints;
3506 may_insert_tracepoints_1 = may_insert_tracepoints;
3507 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3508 may_stop_1 = may_stop;
3509 }
3510
3511 /* The one function handles (most of) the permission flags in the same
3512 way. */
3513
3514 static void
3515 set_target_permissions (char *args, int from_tty,
3516 struct cmd_list_element *c)
3517 {
3518 if (target_has_execution)
3519 {
3520 update_target_permissions ();
3521 error (_("Cannot change this setting while the inferior is running."));
3522 }
3523
3524 /* Make the real values match the user-changed values. */
3525 may_write_registers = may_write_registers_1;
3526 may_insert_breakpoints = may_insert_breakpoints_1;
3527 may_insert_tracepoints = may_insert_tracepoints_1;
3528 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3529 may_stop = may_stop_1;
3530 update_observer_mode ();
3531 }
3532
3533 /* Set memory write permission independently of observer mode. */
3534
3535 static void
3536 set_write_memory_permission (char *args, int from_tty,
3537 struct cmd_list_element *c)
3538 {
3539 /* Make the real values match the user-changed values. */
3540 may_write_memory = may_write_memory_1;
3541 update_observer_mode ();
3542 }
3543
3544
3545 void
3546 initialize_targets (void)
3547 {
3548 init_dummy_target ();
3549 push_target (&dummy_target);
3550
3551 add_info ("target", target_info, targ_desc);
3552 add_info ("files", target_info, targ_desc);
3553
3554 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3555 Set target debugging."), _("\
3556 Show target debugging."), _("\
3557 When non-zero, target debugging is enabled. Higher numbers are more\n\
3558 verbose."),
3559 set_targetdebug,
3560 show_targetdebug,
3561 &setdebuglist, &showdebuglist);
3562
3563 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3564 &trust_readonly, _("\
3565 Set mode for reading from readonly sections."), _("\
3566 Show mode for reading from readonly sections."), _("\
3567 When this mode is on, memory reads from readonly sections (such as .text)\n\
3568 will be read from the object file instead of from the target. This will\n\
3569 result in significant performance improvement for remote targets."),
3570 NULL,
3571 show_trust_readonly,
3572 &setlist, &showlist);
3573
3574 add_com ("monitor", class_obscure, do_monitor_command,
3575 _("Send a command to the remote monitor (remote targets only)."));
3576
3577 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3578 _("Print the name of each layer of the internal target stack."),
3579 &maintenanceprintlist);
3580
3581 add_setshow_boolean_cmd ("target-async", no_class,
3582 &target_async_permitted_1, _("\
3583 Set whether gdb controls the inferior in asynchronous mode."), _("\
3584 Show whether gdb controls the inferior in asynchronous mode."), _("\
3585 Tells gdb whether to control the inferior in asynchronous mode."),
3586 maint_set_target_async_command,
3587 maint_show_target_async_command,
3588 &maintenance_set_cmdlist,
3589 &maintenance_show_cmdlist);
3590
3591 add_setshow_boolean_cmd ("may-write-registers", class_support,
3592 &may_write_registers_1, _("\
3593 Set permission to write into registers."), _("\
3594 Show permission to write into registers."), _("\
3595 When this permission is on, GDB may write into the target's registers.\n\
3596 Otherwise, any sort of write attempt will result in an error."),
3597 set_target_permissions, NULL,
3598 &setlist, &showlist);
3599
3600 add_setshow_boolean_cmd ("may-write-memory", class_support,
3601 &may_write_memory_1, _("\
3602 Set permission to write into target memory."), _("\
3603 Show permission to write into target memory."), _("\
3604 When this permission is on, GDB may write into the target's memory.\n\
3605 Otherwise, any sort of write attempt will result in an error."),
3606 set_write_memory_permission, NULL,
3607 &setlist, &showlist);
3608
3609 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3610 &may_insert_breakpoints_1, _("\
3611 Set permission to insert breakpoints in the target."), _("\
3612 Show permission to insert breakpoints in the target."), _("\
3613 When this permission is on, GDB may insert breakpoints in the program.\n\
3614 Otherwise, any sort of insertion attempt will result in an error."),
3615 set_target_permissions, NULL,
3616 &setlist, &showlist);
3617
3618 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3619 &may_insert_tracepoints_1, _("\
3620 Set permission to insert tracepoints in the target."), _("\
3621 Show permission to insert tracepoints in the target."), _("\
3622 When this permission is on, GDB may insert tracepoints in the program.\n\
3623 Otherwise, any sort of insertion attempt will result in an error."),
3624 set_target_permissions, NULL,
3625 &setlist, &showlist);
3626
3627 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3628 &may_insert_fast_tracepoints_1, _("\
3629 Set permission to insert fast tracepoints in the target."), _("\
3630 Show permission to insert fast tracepoints in the target."), _("\
3631 When this permission is on, GDB may insert fast tracepoints.\n\
3632 Otherwise, any sort of insertion attempt will result in an error."),
3633 set_target_permissions, NULL,
3634 &setlist, &showlist);
3635
3636 add_setshow_boolean_cmd ("may-interrupt", class_support,
3637 &may_stop_1, _("\
3638 Set permission to interrupt or signal the target."), _("\
3639 Show permission to interrupt or signal the target."), _("\
3640 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3641 Otherwise, any attempt to interrupt or stop will be ignored."),
3642 set_target_permissions, NULL,
3643 &setlist, &showlist);
3644
3645 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3646 &auto_connect_native_target, _("\
3647 Set whether GDB may automatically connect to the native target."), _("\
3648 Show whether GDB may automatically connect to the native target."), _("\
3649 When on, and GDB is not connected to a target yet, GDB\n\
3650 attempts \"run\" and other commands with the native target."),
3651 NULL, show_auto_connect_native_target,
3652 &setlist, &showlist);
3653 }