* lib/ada.exp (standard_ada_testfile): New proc.
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_prepare_to_store (struct regcache *);
100
101 static void debug_to_files_info (struct target_ops *);
102
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
110
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
119
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_load (char *, int);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_stop (ptid_t);
152
153 /* Pointer to array of target architecture structures; the size of the
154 array; the current index into the array; the allocated size of the
155 array. */
156 struct target_ops **target_structs;
157 unsigned target_struct_size;
158 unsigned target_struct_index;
159 unsigned target_struct_allocsize;
160 #define DEFAULT_ALLOCSIZE 10
161
162 /* The initial current target, so that there is always a semi-valid
163 current target. */
164
165 static struct target_ops dummy_target;
166
167 /* Top of target stack. */
168
169 static struct target_ops *target_stack;
170
171 /* The target structure we are currently using to talk to a process
172 or file or whatever "inferior" we have. */
173
174 struct target_ops current_target;
175
176 /* Command list for target. */
177
178 static struct cmd_list_element *targetlist = NULL;
179
180 /* Nonzero if we should trust readonly sections from the
181 executable when reading memory. */
182
183 static int trust_readonly = 0;
184
185 /* Nonzero if we should show true memory content including
186 memory breakpoint inserted by gdb. */
187
188 static int show_memory_breakpoints = 0;
189
190 /* These globals control whether GDB attempts to perform these
191 operations; they are useful for targets that need to prevent
192 inadvertant disruption, such as in non-stop mode. */
193
194 int may_write_registers = 1;
195
196 int may_write_memory = 1;
197
198 int may_insert_breakpoints = 1;
199
200 int may_insert_tracepoints = 1;
201
202 int may_insert_fast_tracepoints = 1;
203
204 int may_stop = 1;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static int targetdebug = 0;
209 static void
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 /* The option sets this. */
219 static int stack_cache_enabled_p_1 = 1;
220 /* And set_stack_cache_enabled_p updates this.
221 The reason for the separation is so that we don't flush the cache for
222 on->on transitions. */
223 static int stack_cache_enabled_p = 1;
224
225 /* This is called *after* the stack-cache has been set.
226 Flush the cache for off->on and on->off transitions.
227 There's no real need to flush the cache for on->off transitions,
228 except cleanliness. */
229
230 static void
231 set_stack_cache_enabled_p (char *args, int from_tty,
232 struct cmd_list_element *c)
233 {
234 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
235 target_dcache_invalidate ();
236
237 stack_cache_enabled_p = stack_cache_enabled_p_1;
238 }
239
240 static void
241 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
245 }
246
247 /* Cache of memory operations, to speed up remote access. */
248 static DCACHE *target_dcache;
249
250 /* Invalidate the target dcache. */
251
252 void
253 target_dcache_invalidate (void)
254 {
255 dcache_invalidate (target_dcache);
256 }
257
258 /* The user just typed 'target' without the name of a target. */
259
260 static void
261 target_command (char *arg, int from_tty)
262 {
263 fputs_filtered ("Argument required (target name). Try `help target'\n",
264 gdb_stdout);
265 }
266
267 /* Default target_has_* methods for process_stratum targets. */
268
269 int
270 default_child_has_all_memory (struct target_ops *ops)
271 {
272 /* If no inferior selected, then we can't read memory here. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_memory (struct target_ops *ops)
281 {
282 /* If no inferior selected, then we can't read memory here. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287 }
288
289 int
290 default_child_has_stack (struct target_ops *ops)
291 {
292 /* If no inferior selected, there's no stack. */
293 if (ptid_equal (inferior_ptid, null_ptid))
294 return 0;
295
296 return 1;
297 }
298
299 int
300 default_child_has_registers (struct target_ops *ops)
301 {
302 /* Can't read registers from no inferior. */
303 if (ptid_equal (inferior_ptid, null_ptid))
304 return 0;
305
306 return 1;
307 }
308
309 int
310 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
311 {
312 /* If there's no thread selected, then we can't make it run through
313 hoops. */
314 if (ptid_equal (the_ptid, null_ptid))
315 return 0;
316
317 return 1;
318 }
319
320
321 int
322 target_has_all_memory_1 (void)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_all_memory (t))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_memory_1 (void)
335 {
336 struct target_ops *t;
337
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_memory (t))
340 return 1;
341
342 return 0;
343 }
344
345 int
346 target_has_stack_1 (void)
347 {
348 struct target_ops *t;
349
350 for (t = current_target.beneath; t != NULL; t = t->beneath)
351 if (t->to_has_stack (t))
352 return 1;
353
354 return 0;
355 }
356
357 int
358 target_has_registers_1 (void)
359 {
360 struct target_ops *t;
361
362 for (t = current_target.beneath; t != NULL; t = t->beneath)
363 if (t->to_has_registers (t))
364 return 1;
365
366 return 0;
367 }
368
369 int
370 target_has_execution_1 (ptid_t the_ptid)
371 {
372 struct target_ops *t;
373
374 for (t = current_target.beneath; t != NULL; t = t->beneath)
375 if (t->to_has_execution (t, the_ptid))
376 return 1;
377
378 return 0;
379 }
380
381 int
382 target_has_execution_current (void)
383 {
384 return target_has_execution_1 (inferior_ptid);
385 }
386
387 /* Add a possible target architecture to the list. */
388
389 void
390 add_target (struct target_ops *t)
391 {
392 /* Provide default values for all "must have" methods. */
393 if (t->to_xfer_partial == NULL)
394 t->to_xfer_partial = default_xfer_partial;
395
396 if (t->to_has_all_memory == NULL)
397 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
398
399 if (t->to_has_memory == NULL)
400 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
401
402 if (t->to_has_stack == NULL)
403 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
404
405 if (t->to_has_registers == NULL)
406 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
407
408 if (t->to_has_execution == NULL)
409 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
410
411 if (!target_structs)
412 {
413 target_struct_allocsize = DEFAULT_ALLOCSIZE;
414 target_structs = (struct target_ops **) xmalloc
415 (target_struct_allocsize * sizeof (*target_structs));
416 }
417 if (target_struct_size >= target_struct_allocsize)
418 {
419 target_struct_allocsize *= 2;
420 target_structs = (struct target_ops **)
421 xrealloc ((char *) target_structs,
422 target_struct_allocsize * sizeof (*target_structs));
423 }
424 target_structs[target_struct_size++] = t;
425
426 if (targetlist == NULL)
427 add_prefix_cmd ("target", class_run, target_command, _("\
428 Connect to a target machine or process.\n\
429 The first argument is the type or protocol of the target machine.\n\
430 Remaining arguments are interpreted by the target protocol. For more\n\
431 information on the arguments for a particular protocol, type\n\
432 `help target ' followed by the protocol name."),
433 &targetlist, "target ", 0, &cmdlist);
434 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
435 }
436
437 /* Stub functions */
438
439 void
440 target_ignore (void)
441 {
442 }
443
444 void
445 target_kill (void)
446 {
447 struct target_ops *t;
448
449 for (t = current_target.beneath; t != NULL; t = t->beneath)
450 if (t->to_kill != NULL)
451 {
452 if (targetdebug)
453 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
454
455 t->to_kill (t);
456 return;
457 }
458
459 noprocess ();
460 }
461
462 void
463 target_load (char *arg, int from_tty)
464 {
465 target_dcache_invalidate ();
466 (*current_target.to_load) (arg, from_tty);
467 }
468
469 void
470 target_create_inferior (char *exec_file, char *args,
471 char **env, int from_tty)
472 {
473 struct target_ops *t;
474
475 for (t = current_target.beneath; t != NULL; t = t->beneath)
476 {
477 if (t->to_create_inferior != NULL)
478 {
479 t->to_create_inferior (t, exec_file, args, env, from_tty);
480 if (targetdebug)
481 fprintf_unfiltered (gdb_stdlog,
482 "target_create_inferior (%s, %s, xxx, %d)\n",
483 exec_file, args, from_tty);
484 return;
485 }
486 }
487
488 internal_error (__FILE__, __LINE__,
489 _("could not find a target to create inferior"));
490 }
491
492 void
493 target_terminal_inferior (void)
494 {
495 /* A background resume (``run&'') should leave GDB in control of the
496 terminal. Use target_can_async_p, not target_is_async_p, since at
497 this point the target is not async yet. However, if sync_execution
498 is not set, we know it will become async prior to resume. */
499 if (target_can_async_p () && !sync_execution)
500 return;
501
502 /* If GDB is resuming the inferior in the foreground, install
503 inferior's terminal modes. */
504 (*current_target.to_terminal_inferior) ();
505 }
506
507 static int
508 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
509 struct target_ops *t)
510 {
511 errno = EIO; /* Can't read/write this location. */
512 return 0; /* No bytes handled. */
513 }
514
515 static void
516 tcomplain (void)
517 {
518 error (_("You can't do that when your target is `%s'"),
519 current_target.to_shortname);
520 }
521
522 void
523 noprocess (void)
524 {
525 error (_("You can't do that without a process to debug."));
526 }
527
528 static void
529 default_terminal_info (char *args, int from_tty)
530 {
531 printf_unfiltered (_("No saved terminal information.\n"));
532 }
533
534 /* A default implementation for the to_get_ada_task_ptid target method.
535
536 This function builds the PTID by using both LWP and TID as part of
537 the PTID lwp and tid elements. The pid used is the pid of the
538 inferior_ptid. */
539
540 static ptid_t
541 default_get_ada_task_ptid (long lwp, long tid)
542 {
543 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
544 }
545
546 static enum exec_direction_kind
547 default_execution_direction (void)
548 {
549 if (!target_can_execute_reverse)
550 return EXEC_FORWARD;
551 else if (!target_can_async_p ())
552 return EXEC_FORWARD;
553 else
554 gdb_assert_not_reached ("\
555 to_execution_direction must be implemented for reverse async");
556 }
557
558 /* Go through the target stack from top to bottom, copying over zero
559 entries in current_target, then filling in still empty entries. In
560 effect, we are doing class inheritance through the pushed target
561 vectors.
562
563 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
564 is currently implemented, is that it discards any knowledge of
565 which target an inherited method originally belonged to.
566 Consequently, new new target methods should instead explicitly and
567 locally search the target stack for the target that can handle the
568 request. */
569
570 static void
571 update_current_target (void)
572 {
573 struct target_ops *t;
574
575 /* First, reset current's contents. */
576 memset (&current_target, 0, sizeof (current_target));
577
578 #define INHERIT(FIELD, TARGET) \
579 if (!current_target.FIELD) \
580 current_target.FIELD = (TARGET)->FIELD
581
582 for (t = target_stack; t; t = t->beneath)
583 {
584 INHERIT (to_shortname, t);
585 INHERIT (to_longname, t);
586 INHERIT (to_doc, t);
587 /* Do not inherit to_open. */
588 /* Do not inherit to_close. */
589 /* Do not inherit to_attach. */
590 INHERIT (to_post_attach, t);
591 INHERIT (to_attach_no_wait, t);
592 /* Do not inherit to_detach. */
593 /* Do not inherit to_disconnect. */
594 /* Do not inherit to_resume. */
595 /* Do not inherit to_wait. */
596 /* Do not inherit to_fetch_registers. */
597 /* Do not inherit to_store_registers. */
598 INHERIT (to_prepare_to_store, t);
599 INHERIT (deprecated_xfer_memory, t);
600 INHERIT (to_files_info, t);
601 INHERIT (to_insert_breakpoint, t);
602 INHERIT (to_remove_breakpoint, t);
603 INHERIT (to_can_use_hw_breakpoint, t);
604 INHERIT (to_insert_hw_breakpoint, t);
605 INHERIT (to_remove_hw_breakpoint, t);
606 /* Do not inherit to_ranged_break_num_registers. */
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 /* Do not inherit to_insert_mask_watchpoint. */
610 /* Do not inherit to_remove_mask_watchpoint. */
611 INHERIT (to_stopped_data_address, t);
612 INHERIT (to_have_steppable_watchpoint, t);
613 INHERIT (to_have_continuable_watchpoint, t);
614 INHERIT (to_stopped_by_watchpoint, t);
615 INHERIT (to_watchpoint_addr_within_range, t);
616 INHERIT (to_region_ok_for_hw_watchpoint, t);
617 INHERIT (to_can_accel_watchpoint_condition, t);
618 /* Do not inherit to_masked_watch_num_registers. */
619 INHERIT (to_terminal_init, t);
620 INHERIT (to_terminal_inferior, t);
621 INHERIT (to_terminal_ours_for_output, t);
622 INHERIT (to_terminal_ours, t);
623 INHERIT (to_terminal_save_ours, t);
624 INHERIT (to_terminal_info, t);
625 /* Do not inherit to_kill. */
626 INHERIT (to_load, t);
627 /* Do no inherit to_create_inferior. */
628 INHERIT (to_post_startup_inferior, t);
629 INHERIT (to_insert_fork_catchpoint, t);
630 INHERIT (to_remove_fork_catchpoint, t);
631 INHERIT (to_insert_vfork_catchpoint, t);
632 INHERIT (to_remove_vfork_catchpoint, t);
633 /* Do not inherit to_follow_fork. */
634 INHERIT (to_insert_exec_catchpoint, t);
635 INHERIT (to_remove_exec_catchpoint, t);
636 INHERIT (to_set_syscall_catchpoint, t);
637 INHERIT (to_has_exited, t);
638 /* Do not inherit to_mourn_inferior. */
639 INHERIT (to_can_run, t);
640 /* Do not inherit to_pass_signals. */
641 /* Do not inherit to_program_signals. */
642 /* Do not inherit to_thread_alive. */
643 /* Do not inherit to_find_new_threads. */
644 /* Do not inherit to_pid_to_str. */
645 INHERIT (to_extra_thread_info, t);
646 INHERIT (to_thread_name, t);
647 INHERIT (to_stop, t);
648 /* Do not inherit to_xfer_partial. */
649 INHERIT (to_rcmd, t);
650 INHERIT (to_pid_to_exec_file, t);
651 INHERIT (to_log_command, t);
652 INHERIT (to_stratum, t);
653 /* Do not inherit to_has_all_memory. */
654 /* Do not inherit to_has_memory. */
655 /* Do not inherit to_has_stack. */
656 /* Do not inherit to_has_registers. */
657 /* Do not inherit to_has_execution. */
658 INHERIT (to_has_thread_control, t);
659 INHERIT (to_can_async_p, t);
660 INHERIT (to_is_async_p, t);
661 INHERIT (to_async, t);
662 INHERIT (to_find_memory_regions, t);
663 INHERIT (to_make_corefile_notes, t);
664 INHERIT (to_get_bookmark, t);
665 INHERIT (to_goto_bookmark, t);
666 /* Do not inherit to_get_thread_local_address. */
667 INHERIT (to_can_execute_reverse, t);
668 INHERIT (to_execution_direction, t);
669 INHERIT (to_thread_architecture, t);
670 /* Do not inherit to_read_description. */
671 INHERIT (to_get_ada_task_ptid, t);
672 /* Do not inherit to_search_memory. */
673 INHERIT (to_supports_multi_process, t);
674 INHERIT (to_supports_enable_disable_tracepoint, t);
675 INHERIT (to_supports_string_tracing, t);
676 INHERIT (to_trace_init, t);
677 INHERIT (to_download_tracepoint, t);
678 INHERIT (to_can_download_tracepoint, t);
679 INHERIT (to_download_trace_state_variable, t);
680 INHERIT (to_enable_tracepoint, t);
681 INHERIT (to_disable_tracepoint, t);
682 INHERIT (to_trace_set_readonly_regions, t);
683 INHERIT (to_trace_start, t);
684 INHERIT (to_get_trace_status, t);
685 INHERIT (to_get_tracepoint_status, t);
686 INHERIT (to_trace_stop, t);
687 INHERIT (to_trace_find, t);
688 INHERIT (to_get_trace_state_variable_value, t);
689 INHERIT (to_save_trace_data, t);
690 INHERIT (to_upload_tracepoints, t);
691 INHERIT (to_upload_trace_state_variables, t);
692 INHERIT (to_get_raw_trace_data, t);
693 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
694 INHERIT (to_set_disconnected_tracing, t);
695 INHERIT (to_set_circular_trace_buffer, t);
696 INHERIT (to_set_trace_notes, t);
697 INHERIT (to_get_tib_address, t);
698 INHERIT (to_set_permissions, t);
699 INHERIT (to_static_tracepoint_marker_at, t);
700 INHERIT (to_static_tracepoint_markers_by_strid, t);
701 INHERIT (to_traceframe_info, t);
702 INHERIT (to_use_agent, t);
703 INHERIT (to_can_use_agent, t);
704 INHERIT (to_magic, t);
705 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
706 INHERIT (to_can_run_breakpoint_commands, t);
707 /* Do not inherit to_memory_map. */
708 /* Do not inherit to_flash_erase. */
709 /* Do not inherit to_flash_done. */
710 }
711 #undef INHERIT
712
713 /* Clean up a target struct so it no longer has any zero pointers in
714 it. Some entries are defaulted to a method that print an error,
715 others are hard-wired to a standard recursive default. */
716
717 #define de_fault(field, value) \
718 if (!current_target.field) \
719 current_target.field = value
720
721 de_fault (to_open,
722 (void (*) (char *, int))
723 tcomplain);
724 de_fault (to_close,
725 (void (*) (int))
726 target_ignore);
727 de_fault (to_post_attach,
728 (void (*) (int))
729 target_ignore);
730 de_fault (to_prepare_to_store,
731 (void (*) (struct regcache *))
732 noprocess);
733 de_fault (deprecated_xfer_memory,
734 (int (*) (CORE_ADDR, gdb_byte *, int, int,
735 struct mem_attrib *, struct target_ops *))
736 nomemory);
737 de_fault (to_files_info,
738 (void (*) (struct target_ops *))
739 target_ignore);
740 de_fault (to_insert_breakpoint,
741 memory_insert_breakpoint);
742 de_fault (to_remove_breakpoint,
743 memory_remove_breakpoint);
744 de_fault (to_can_use_hw_breakpoint,
745 (int (*) (int, int, int))
746 return_zero);
747 de_fault (to_insert_hw_breakpoint,
748 (int (*) (struct gdbarch *, struct bp_target_info *))
749 return_minus_one);
750 de_fault (to_remove_hw_breakpoint,
751 (int (*) (struct gdbarch *, struct bp_target_info *))
752 return_minus_one);
753 de_fault (to_insert_watchpoint,
754 (int (*) (CORE_ADDR, int, int, struct expression *))
755 return_minus_one);
756 de_fault (to_remove_watchpoint,
757 (int (*) (CORE_ADDR, int, int, struct expression *))
758 return_minus_one);
759 de_fault (to_stopped_by_watchpoint,
760 (int (*) (void))
761 return_zero);
762 de_fault (to_stopped_data_address,
763 (int (*) (struct target_ops *, CORE_ADDR *))
764 return_zero);
765 de_fault (to_watchpoint_addr_within_range,
766 default_watchpoint_addr_within_range);
767 de_fault (to_region_ok_for_hw_watchpoint,
768 default_region_ok_for_hw_watchpoint);
769 de_fault (to_can_accel_watchpoint_condition,
770 (int (*) (CORE_ADDR, int, int, struct expression *))
771 return_zero);
772 de_fault (to_terminal_init,
773 (void (*) (void))
774 target_ignore);
775 de_fault (to_terminal_inferior,
776 (void (*) (void))
777 target_ignore);
778 de_fault (to_terminal_ours_for_output,
779 (void (*) (void))
780 target_ignore);
781 de_fault (to_terminal_ours,
782 (void (*) (void))
783 target_ignore);
784 de_fault (to_terminal_save_ours,
785 (void (*) (void))
786 target_ignore);
787 de_fault (to_terminal_info,
788 default_terminal_info);
789 de_fault (to_load,
790 (void (*) (char *, int))
791 tcomplain);
792 de_fault (to_post_startup_inferior,
793 (void (*) (ptid_t))
794 target_ignore);
795 de_fault (to_insert_fork_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_remove_fork_catchpoint,
799 (int (*) (int))
800 return_one);
801 de_fault (to_insert_vfork_catchpoint,
802 (int (*) (int))
803 return_one);
804 de_fault (to_remove_vfork_catchpoint,
805 (int (*) (int))
806 return_one);
807 de_fault (to_insert_exec_catchpoint,
808 (int (*) (int))
809 return_one);
810 de_fault (to_remove_exec_catchpoint,
811 (int (*) (int))
812 return_one);
813 de_fault (to_set_syscall_catchpoint,
814 (int (*) (int, int, int, int, int *))
815 return_one);
816 de_fault (to_has_exited,
817 (int (*) (int, int, int *))
818 return_zero);
819 de_fault (to_can_run,
820 return_zero);
821 de_fault (to_extra_thread_info,
822 (char *(*) (struct thread_info *))
823 return_zero);
824 de_fault (to_thread_name,
825 (char *(*) (struct thread_info *))
826 return_zero);
827 de_fault (to_stop,
828 (void (*) (ptid_t))
829 target_ignore);
830 current_target.to_xfer_partial = current_xfer_partial;
831 de_fault (to_rcmd,
832 (void (*) (char *, struct ui_file *))
833 tcomplain);
834 de_fault (to_pid_to_exec_file,
835 (char *(*) (int))
836 return_zero);
837 de_fault (to_async,
838 (void (*) (void (*) (enum inferior_event_type, void*), void*))
839 tcomplain);
840 de_fault (to_thread_architecture,
841 default_thread_architecture);
842 current_target.to_read_description = NULL;
843 de_fault (to_get_ada_task_ptid,
844 (ptid_t (*) (long, long))
845 default_get_ada_task_ptid);
846 de_fault (to_supports_multi_process,
847 (int (*) (void))
848 return_zero);
849 de_fault (to_supports_enable_disable_tracepoint,
850 (int (*) (void))
851 return_zero);
852 de_fault (to_supports_string_tracing,
853 (int (*) (void))
854 return_zero);
855 de_fault (to_trace_init,
856 (void (*) (void))
857 tcomplain);
858 de_fault (to_download_tracepoint,
859 (void (*) (struct bp_location *))
860 tcomplain);
861 de_fault (to_can_download_tracepoint,
862 (int (*) (void))
863 return_zero);
864 de_fault (to_download_trace_state_variable,
865 (void (*) (struct trace_state_variable *))
866 tcomplain);
867 de_fault (to_enable_tracepoint,
868 (void (*) (struct bp_location *))
869 tcomplain);
870 de_fault (to_disable_tracepoint,
871 (void (*) (struct bp_location *))
872 tcomplain);
873 de_fault (to_trace_set_readonly_regions,
874 (void (*) (void))
875 tcomplain);
876 de_fault (to_trace_start,
877 (void (*) (void))
878 tcomplain);
879 de_fault (to_get_trace_status,
880 (int (*) (struct trace_status *))
881 return_minus_one);
882 de_fault (to_get_tracepoint_status,
883 (void (*) (struct breakpoint *, struct uploaded_tp *))
884 tcomplain);
885 de_fault (to_trace_stop,
886 (void (*) (void))
887 tcomplain);
888 de_fault (to_trace_find,
889 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
890 return_minus_one);
891 de_fault (to_get_trace_state_variable_value,
892 (int (*) (int, LONGEST *))
893 return_zero);
894 de_fault (to_save_trace_data,
895 (int (*) (const char *))
896 tcomplain);
897 de_fault (to_upload_tracepoints,
898 (int (*) (struct uploaded_tp **))
899 return_zero);
900 de_fault (to_upload_trace_state_variables,
901 (int (*) (struct uploaded_tsv **))
902 return_zero);
903 de_fault (to_get_raw_trace_data,
904 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
905 tcomplain);
906 de_fault (to_get_min_fast_tracepoint_insn_len,
907 (int (*) (void))
908 return_minus_one);
909 de_fault (to_set_disconnected_tracing,
910 (void (*) (int))
911 target_ignore);
912 de_fault (to_set_circular_trace_buffer,
913 (void (*) (int))
914 target_ignore);
915 de_fault (to_set_trace_notes,
916 (int (*) (char *, char *, char *))
917 return_zero);
918 de_fault (to_get_tib_address,
919 (int (*) (ptid_t, CORE_ADDR *))
920 tcomplain);
921 de_fault (to_set_permissions,
922 (void (*) (void))
923 target_ignore);
924 de_fault (to_static_tracepoint_marker_at,
925 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
926 return_zero);
927 de_fault (to_static_tracepoint_markers_by_strid,
928 (VEC(static_tracepoint_marker_p) * (*) (const char *))
929 tcomplain);
930 de_fault (to_traceframe_info,
931 (struct traceframe_info * (*) (void))
932 tcomplain);
933 de_fault (to_supports_evaluation_of_breakpoint_conditions,
934 (int (*) (void))
935 return_zero);
936 de_fault (to_can_run_breakpoint_commands,
937 (int (*) (void))
938 return_zero);
939 de_fault (to_use_agent,
940 (int (*) (int))
941 tcomplain);
942 de_fault (to_can_use_agent,
943 (int (*) (void))
944 return_zero);
945 de_fault (to_execution_direction, default_execution_direction);
946
947 #undef de_fault
948
949 /* Finally, position the target-stack beneath the squashed
950 "current_target". That way code looking for a non-inherited
951 target method can quickly and simply find it. */
952 current_target.beneath = target_stack;
953
954 if (targetdebug)
955 setup_target_debug ();
956 }
957
958 /* Push a new target type into the stack of the existing target accessors,
959 possibly superseding some of the existing accessors.
960
961 Rather than allow an empty stack, we always have the dummy target at
962 the bottom stratum, so we can call the function vectors without
963 checking them. */
964
965 void
966 push_target (struct target_ops *t)
967 {
968 struct target_ops **cur;
969
970 /* Check magic number. If wrong, it probably means someone changed
971 the struct definition, but not all the places that initialize one. */
972 if (t->to_magic != OPS_MAGIC)
973 {
974 fprintf_unfiltered (gdb_stderr,
975 "Magic number of %s target struct wrong\n",
976 t->to_shortname);
977 internal_error (__FILE__, __LINE__,
978 _("failed internal consistency check"));
979 }
980
981 /* Find the proper stratum to install this target in. */
982 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
983 {
984 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
985 break;
986 }
987
988 /* If there's already targets at this stratum, remove them. */
989 /* FIXME: cagney/2003-10-15: I think this should be popping all
990 targets to CUR, and not just those at this stratum level. */
991 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
992 {
993 /* There's already something at this stratum level. Close it,
994 and un-hook it from the stack. */
995 struct target_ops *tmp = (*cur);
996
997 (*cur) = (*cur)->beneath;
998 tmp->beneath = NULL;
999 target_close (tmp, 0);
1000 }
1001
1002 /* We have removed all targets in our stratum, now add the new one. */
1003 t->beneath = (*cur);
1004 (*cur) = t;
1005
1006 update_current_target ();
1007 }
1008
1009 /* Remove a target_ops vector from the stack, wherever it may be.
1010 Return how many times it was removed (0 or 1). */
1011
1012 int
1013 unpush_target (struct target_ops *t)
1014 {
1015 struct target_ops **cur;
1016 struct target_ops *tmp;
1017
1018 if (t->to_stratum == dummy_stratum)
1019 internal_error (__FILE__, __LINE__,
1020 _("Attempt to unpush the dummy target"));
1021
1022 /* Look for the specified target. Note that we assume that a target
1023 can only occur once in the target stack. */
1024
1025 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1026 {
1027 if ((*cur) == t)
1028 break;
1029 }
1030
1031 /* If we don't find target_ops, quit. Only open targets should be
1032 closed. */
1033 if ((*cur) == NULL)
1034 return 0;
1035
1036 /* Unchain the target. */
1037 tmp = (*cur);
1038 (*cur) = (*cur)->beneath;
1039 tmp->beneath = NULL;
1040
1041 update_current_target ();
1042
1043 /* Finally close the target. Note we do this after unchaining, so
1044 any target method calls from within the target_close
1045 implementation don't end up in T anymore. */
1046 target_close (t, 0);
1047
1048 return 1;
1049 }
1050
1051 void
1052 pop_target (void)
1053 {
1054 target_close (target_stack, 0); /* Let it clean up. */
1055 if (unpush_target (target_stack) == 1)
1056 return;
1057
1058 fprintf_unfiltered (gdb_stderr,
1059 "pop_target couldn't find target %s\n",
1060 current_target.to_shortname);
1061 internal_error (__FILE__, __LINE__,
1062 _("failed internal consistency check"));
1063 }
1064
1065 void
1066 pop_all_targets_above (enum strata above_stratum, int quitting)
1067 {
1068 while ((int) (current_target.to_stratum) > (int) above_stratum)
1069 {
1070 target_close (target_stack, quitting);
1071 if (!unpush_target (target_stack))
1072 {
1073 fprintf_unfiltered (gdb_stderr,
1074 "pop_all_targets couldn't find target %s\n",
1075 target_stack->to_shortname);
1076 internal_error (__FILE__, __LINE__,
1077 _("failed internal consistency check"));
1078 break;
1079 }
1080 }
1081 }
1082
1083 void
1084 pop_all_targets (int quitting)
1085 {
1086 pop_all_targets_above (dummy_stratum, quitting);
1087 }
1088
1089 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1090
1091 int
1092 target_is_pushed (struct target_ops *t)
1093 {
1094 struct target_ops **cur;
1095
1096 /* Check magic number. If wrong, it probably means someone changed
1097 the struct definition, but not all the places that initialize one. */
1098 if (t->to_magic != OPS_MAGIC)
1099 {
1100 fprintf_unfiltered (gdb_stderr,
1101 "Magic number of %s target struct wrong\n",
1102 t->to_shortname);
1103 internal_error (__FILE__, __LINE__,
1104 _("failed internal consistency check"));
1105 }
1106
1107 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1108 if (*cur == t)
1109 return 1;
1110
1111 return 0;
1112 }
1113
1114 /* Using the objfile specified in OBJFILE, find the address for the
1115 current thread's thread-local storage with offset OFFSET. */
1116 CORE_ADDR
1117 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1118 {
1119 volatile CORE_ADDR addr = 0;
1120 struct target_ops *target;
1121
1122 for (target = current_target.beneath;
1123 target != NULL;
1124 target = target->beneath)
1125 {
1126 if (target->to_get_thread_local_address != NULL)
1127 break;
1128 }
1129
1130 if (target != NULL
1131 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1132 {
1133 ptid_t ptid = inferior_ptid;
1134 volatile struct gdb_exception ex;
1135
1136 TRY_CATCH (ex, RETURN_MASK_ALL)
1137 {
1138 CORE_ADDR lm_addr;
1139
1140 /* Fetch the load module address for this objfile. */
1141 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1142 objfile);
1143 /* If it's 0, throw the appropriate exception. */
1144 if (lm_addr == 0)
1145 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1146 _("TLS load module not found"));
1147
1148 addr = target->to_get_thread_local_address (target, ptid,
1149 lm_addr, offset);
1150 }
1151 /* If an error occurred, print TLS related messages here. Otherwise,
1152 throw the error to some higher catcher. */
1153 if (ex.reason < 0)
1154 {
1155 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1156
1157 switch (ex.error)
1158 {
1159 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1160 error (_("Cannot find thread-local variables "
1161 "in this thread library."));
1162 break;
1163 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1164 if (objfile_is_library)
1165 error (_("Cannot find shared library `%s' in dynamic"
1166 " linker's load module list"), objfile->name);
1167 else
1168 error (_("Cannot find executable file `%s' in dynamic"
1169 " linker's load module list"), objfile->name);
1170 break;
1171 case TLS_NOT_ALLOCATED_YET_ERROR:
1172 if (objfile_is_library)
1173 error (_("The inferior has not yet allocated storage for"
1174 " thread-local variables in\n"
1175 "the shared library `%s'\n"
1176 "for %s"),
1177 objfile->name, target_pid_to_str (ptid));
1178 else
1179 error (_("The inferior has not yet allocated storage for"
1180 " thread-local variables in\n"
1181 "the executable `%s'\n"
1182 "for %s"),
1183 objfile->name, target_pid_to_str (ptid));
1184 break;
1185 case TLS_GENERIC_ERROR:
1186 if (objfile_is_library)
1187 error (_("Cannot find thread-local storage for %s, "
1188 "shared library %s:\n%s"),
1189 target_pid_to_str (ptid),
1190 objfile->name, ex.message);
1191 else
1192 error (_("Cannot find thread-local storage for %s, "
1193 "executable file %s:\n%s"),
1194 target_pid_to_str (ptid),
1195 objfile->name, ex.message);
1196 break;
1197 default:
1198 throw_exception (ex);
1199 break;
1200 }
1201 }
1202 }
1203 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1204 TLS is an ABI-specific thing. But we don't do that yet. */
1205 else
1206 error (_("Cannot find thread-local variables on this target"));
1207
1208 return addr;
1209 }
1210
1211 #undef MIN
1212 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1213
1214 /* target_read_string -- read a null terminated string, up to LEN bytes,
1215 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1216 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1217 is responsible for freeing it. Return the number of bytes successfully
1218 read. */
1219
1220 int
1221 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1222 {
1223 int tlen, origlen, offset, i;
1224 gdb_byte buf[4];
1225 int errcode = 0;
1226 char *buffer;
1227 int buffer_allocated;
1228 char *bufptr;
1229 unsigned int nbytes_read = 0;
1230
1231 gdb_assert (string);
1232
1233 /* Small for testing. */
1234 buffer_allocated = 4;
1235 buffer = xmalloc (buffer_allocated);
1236 bufptr = buffer;
1237
1238 origlen = len;
1239
1240 while (len > 0)
1241 {
1242 tlen = MIN (len, 4 - (memaddr & 3));
1243 offset = memaddr & 3;
1244
1245 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1246 if (errcode != 0)
1247 {
1248 /* The transfer request might have crossed the boundary to an
1249 unallocated region of memory. Retry the transfer, requesting
1250 a single byte. */
1251 tlen = 1;
1252 offset = 0;
1253 errcode = target_read_memory (memaddr, buf, 1);
1254 if (errcode != 0)
1255 goto done;
1256 }
1257
1258 if (bufptr - buffer + tlen > buffer_allocated)
1259 {
1260 unsigned int bytes;
1261
1262 bytes = bufptr - buffer;
1263 buffer_allocated *= 2;
1264 buffer = xrealloc (buffer, buffer_allocated);
1265 bufptr = buffer + bytes;
1266 }
1267
1268 for (i = 0; i < tlen; i++)
1269 {
1270 *bufptr++ = buf[i + offset];
1271 if (buf[i + offset] == '\000')
1272 {
1273 nbytes_read += i + 1;
1274 goto done;
1275 }
1276 }
1277
1278 memaddr += tlen;
1279 len -= tlen;
1280 nbytes_read += tlen;
1281 }
1282 done:
1283 *string = buffer;
1284 if (errnop != NULL)
1285 *errnop = errcode;
1286 return nbytes_read;
1287 }
1288
1289 struct target_section_table *
1290 target_get_section_table (struct target_ops *target)
1291 {
1292 struct target_ops *t;
1293
1294 if (targetdebug)
1295 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1296
1297 for (t = target; t != NULL; t = t->beneath)
1298 if (t->to_get_section_table != NULL)
1299 return (*t->to_get_section_table) (t);
1300
1301 return NULL;
1302 }
1303
1304 /* Find a section containing ADDR. */
1305
1306 struct target_section *
1307 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1308 {
1309 struct target_section_table *table = target_get_section_table (target);
1310 struct target_section *secp;
1311
1312 if (table == NULL)
1313 return NULL;
1314
1315 for (secp = table->sections; secp < table->sections_end; secp++)
1316 {
1317 if (addr >= secp->addr && addr < secp->endaddr)
1318 return secp;
1319 }
1320 return NULL;
1321 }
1322
1323 /* Read memory from the live target, even if currently inspecting a
1324 traceframe. The return is the same as that of target_read. */
1325
1326 static LONGEST
1327 target_read_live_memory (enum target_object object,
1328 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1329 {
1330 int ret;
1331 struct cleanup *cleanup;
1332
1333 /* Switch momentarily out of tfind mode so to access live memory.
1334 Note that this must not clear global state, such as the frame
1335 cache, which must still remain valid for the previous traceframe.
1336 We may be _building_ the frame cache at this point. */
1337 cleanup = make_cleanup_restore_traceframe_number ();
1338 set_traceframe_number (-1);
1339
1340 ret = target_read (current_target.beneath, object, NULL,
1341 myaddr, memaddr, len);
1342
1343 do_cleanups (cleanup);
1344 return ret;
1345 }
1346
1347 /* Using the set of read-only target sections of OPS, read live
1348 read-only memory. Note that the actual reads start from the
1349 top-most target again.
1350
1351 For interface/parameters/return description see target.h,
1352 to_xfer_partial. */
1353
1354 static LONGEST
1355 memory_xfer_live_readonly_partial (struct target_ops *ops,
1356 enum target_object object,
1357 gdb_byte *readbuf, ULONGEST memaddr,
1358 LONGEST len)
1359 {
1360 struct target_section *secp;
1361 struct target_section_table *table;
1362
1363 secp = target_section_by_addr (ops, memaddr);
1364 if (secp != NULL
1365 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1366 & SEC_READONLY))
1367 {
1368 struct target_section *p;
1369 ULONGEST memend = memaddr + len;
1370
1371 table = target_get_section_table (ops);
1372
1373 for (p = table->sections; p < table->sections_end; p++)
1374 {
1375 if (memaddr >= p->addr)
1376 {
1377 if (memend <= p->endaddr)
1378 {
1379 /* Entire transfer is within this section. */
1380 return target_read_live_memory (object, memaddr,
1381 readbuf, len);
1382 }
1383 else if (memaddr >= p->endaddr)
1384 {
1385 /* This section ends before the transfer starts. */
1386 continue;
1387 }
1388 else
1389 {
1390 /* This section overlaps the transfer. Just do half. */
1391 len = p->endaddr - memaddr;
1392 return target_read_live_memory (object, memaddr,
1393 readbuf, len);
1394 }
1395 }
1396 }
1397 }
1398
1399 return 0;
1400 }
1401
1402 /* Perform a partial memory transfer.
1403 For docs see target.h, to_xfer_partial. */
1404
1405 static LONGEST
1406 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1407 void *readbuf, const void *writebuf, ULONGEST memaddr,
1408 LONGEST len)
1409 {
1410 LONGEST res;
1411 int reg_len;
1412 struct mem_region *region;
1413 struct inferior *inf;
1414
1415 /* For accesses to unmapped overlay sections, read directly from
1416 files. Must do this first, as MEMADDR may need adjustment. */
1417 if (readbuf != NULL && overlay_debugging)
1418 {
1419 struct obj_section *section = find_pc_overlay (memaddr);
1420
1421 if (pc_in_unmapped_range (memaddr, section))
1422 {
1423 struct target_section_table *table
1424 = target_get_section_table (ops);
1425 const char *section_name = section->the_bfd_section->name;
1426
1427 memaddr = overlay_mapped_address (memaddr, section);
1428 return section_table_xfer_memory_partial (readbuf, writebuf,
1429 memaddr, len,
1430 table->sections,
1431 table->sections_end,
1432 section_name);
1433 }
1434 }
1435
1436 /* Try the executable files, if "trust-readonly-sections" is set. */
1437 if (readbuf != NULL && trust_readonly)
1438 {
1439 struct target_section *secp;
1440 struct target_section_table *table;
1441
1442 secp = target_section_by_addr (ops, memaddr);
1443 if (secp != NULL
1444 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1445 & SEC_READONLY))
1446 {
1447 table = target_get_section_table (ops);
1448 return section_table_xfer_memory_partial (readbuf, writebuf,
1449 memaddr, len,
1450 table->sections,
1451 table->sections_end,
1452 NULL);
1453 }
1454 }
1455
1456 /* If reading unavailable memory in the context of traceframes, and
1457 this address falls within a read-only section, fallback to
1458 reading from live memory. */
1459 if (readbuf != NULL && get_traceframe_number () != -1)
1460 {
1461 VEC(mem_range_s) *available;
1462
1463 /* If we fail to get the set of available memory, then the
1464 target does not support querying traceframe info, and so we
1465 attempt reading from the traceframe anyway (assuming the
1466 target implements the old QTro packet then). */
1467 if (traceframe_available_memory (&available, memaddr, len))
1468 {
1469 struct cleanup *old_chain;
1470
1471 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1472
1473 if (VEC_empty (mem_range_s, available)
1474 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1475 {
1476 /* Don't read into the traceframe's available
1477 memory. */
1478 if (!VEC_empty (mem_range_s, available))
1479 {
1480 LONGEST oldlen = len;
1481
1482 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1483 gdb_assert (len <= oldlen);
1484 }
1485
1486 do_cleanups (old_chain);
1487
1488 /* This goes through the topmost target again. */
1489 res = memory_xfer_live_readonly_partial (ops, object,
1490 readbuf, memaddr, len);
1491 if (res > 0)
1492 return res;
1493
1494 /* No use trying further, we know some memory starting
1495 at MEMADDR isn't available. */
1496 return -1;
1497 }
1498
1499 /* Don't try to read more than how much is available, in
1500 case the target implements the deprecated QTro packet to
1501 cater for older GDBs (the target's knowledge of read-only
1502 sections may be outdated by now). */
1503 len = VEC_index (mem_range_s, available, 0)->length;
1504
1505 do_cleanups (old_chain);
1506 }
1507 }
1508
1509 /* Try GDB's internal data cache. */
1510 region = lookup_mem_region (memaddr);
1511 /* region->hi == 0 means there's no upper bound. */
1512 if (memaddr + len < region->hi || region->hi == 0)
1513 reg_len = len;
1514 else
1515 reg_len = region->hi - memaddr;
1516
1517 switch (region->attrib.mode)
1518 {
1519 case MEM_RO:
1520 if (writebuf != NULL)
1521 return -1;
1522 break;
1523
1524 case MEM_WO:
1525 if (readbuf != NULL)
1526 return -1;
1527 break;
1528
1529 case MEM_FLASH:
1530 /* We only support writing to flash during "load" for now. */
1531 if (writebuf != NULL)
1532 error (_("Writing to flash memory forbidden in this context"));
1533 break;
1534
1535 case MEM_NONE:
1536 return -1;
1537 }
1538
1539 if (!ptid_equal (inferior_ptid, null_ptid))
1540 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1541 else
1542 inf = NULL;
1543
1544 if (inf != NULL
1545 /* The dcache reads whole cache lines; that doesn't play well
1546 with reading from a trace buffer, because reading outside of
1547 the collected memory range fails. */
1548 && get_traceframe_number () == -1
1549 && (region->attrib.cache
1550 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1551 {
1552 if (readbuf != NULL)
1553 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1554 reg_len, 0);
1555 else
1556 /* FIXME drow/2006-08-09: If we're going to preserve const
1557 correctness dcache_xfer_memory should take readbuf and
1558 writebuf. */
1559 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1560 (void *) writebuf,
1561 reg_len, 1);
1562 if (res <= 0)
1563 return -1;
1564 else
1565 return res;
1566 }
1567
1568 /* If none of those methods found the memory we wanted, fall back
1569 to a target partial transfer. Normally a single call to
1570 to_xfer_partial is enough; if it doesn't recognize an object
1571 it will call the to_xfer_partial of the next target down.
1572 But for memory this won't do. Memory is the only target
1573 object which can be read from more than one valid target.
1574 A core file, for instance, could have some of memory but
1575 delegate other bits to the target below it. So, we must
1576 manually try all targets. */
1577
1578 do
1579 {
1580 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1581 readbuf, writebuf, memaddr, reg_len);
1582 if (res > 0)
1583 break;
1584
1585 /* We want to continue past core files to executables, but not
1586 past a running target's memory. */
1587 if (ops->to_has_all_memory (ops))
1588 break;
1589
1590 ops = ops->beneath;
1591 }
1592 while (ops != NULL);
1593
1594 /* Make sure the cache gets updated no matter what - if we are writing
1595 to the stack. Even if this write is not tagged as such, we still need
1596 to update the cache. */
1597
1598 if (res > 0
1599 && inf != NULL
1600 && writebuf != NULL
1601 && !region->attrib.cache
1602 && stack_cache_enabled_p
1603 && object != TARGET_OBJECT_STACK_MEMORY)
1604 {
1605 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1606 }
1607
1608 /* If we still haven't got anything, return the last error. We
1609 give up. */
1610 return res;
1611 }
1612
1613 /* Perform a partial memory transfer. For docs see target.h,
1614 to_xfer_partial. */
1615
1616 static LONGEST
1617 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1618 void *readbuf, const void *writebuf, ULONGEST memaddr,
1619 LONGEST len)
1620 {
1621 int res;
1622
1623 /* Zero length requests are ok and require no work. */
1624 if (len == 0)
1625 return 0;
1626
1627 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1628 breakpoint insns, thus hiding out from higher layers whether
1629 there are software breakpoints inserted in the code stream. */
1630 if (readbuf != NULL)
1631 {
1632 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1633
1634 if (res > 0 && !show_memory_breakpoints)
1635 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1636 }
1637 else
1638 {
1639 void *buf;
1640 struct cleanup *old_chain;
1641
1642 buf = xmalloc (len);
1643 old_chain = make_cleanup (xfree, buf);
1644 memcpy (buf, writebuf, len);
1645
1646 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1647 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1648
1649 do_cleanups (old_chain);
1650 }
1651
1652 return res;
1653 }
1654
1655 static void
1656 restore_show_memory_breakpoints (void *arg)
1657 {
1658 show_memory_breakpoints = (uintptr_t) arg;
1659 }
1660
1661 struct cleanup *
1662 make_show_memory_breakpoints_cleanup (int show)
1663 {
1664 int current = show_memory_breakpoints;
1665
1666 show_memory_breakpoints = show;
1667 return make_cleanup (restore_show_memory_breakpoints,
1668 (void *) (uintptr_t) current);
1669 }
1670
1671 /* For docs see target.h, to_xfer_partial. */
1672
1673 static LONGEST
1674 target_xfer_partial (struct target_ops *ops,
1675 enum target_object object, const char *annex,
1676 void *readbuf, const void *writebuf,
1677 ULONGEST offset, LONGEST len)
1678 {
1679 LONGEST retval;
1680
1681 gdb_assert (ops->to_xfer_partial != NULL);
1682
1683 if (writebuf && !may_write_memory)
1684 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1685 core_addr_to_string_nz (offset), plongest (len));
1686
1687 /* If this is a memory transfer, let the memory-specific code
1688 have a look at it instead. Memory transfers are more
1689 complicated. */
1690 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1691 retval = memory_xfer_partial (ops, object, readbuf,
1692 writebuf, offset, len);
1693 else
1694 {
1695 enum target_object raw_object = object;
1696
1697 /* If this is a raw memory transfer, request the normal
1698 memory object from other layers. */
1699 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1700 raw_object = TARGET_OBJECT_MEMORY;
1701
1702 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1703 writebuf, offset, len);
1704 }
1705
1706 if (targetdebug)
1707 {
1708 const unsigned char *myaddr = NULL;
1709
1710 fprintf_unfiltered (gdb_stdlog,
1711 "%s:target_xfer_partial "
1712 "(%d, %s, %s, %s, %s, %s) = %s",
1713 ops->to_shortname,
1714 (int) object,
1715 (annex ? annex : "(null)"),
1716 host_address_to_string (readbuf),
1717 host_address_to_string (writebuf),
1718 core_addr_to_string_nz (offset),
1719 plongest (len), plongest (retval));
1720
1721 if (readbuf)
1722 myaddr = readbuf;
1723 if (writebuf)
1724 myaddr = writebuf;
1725 if (retval > 0 && myaddr != NULL)
1726 {
1727 int i;
1728
1729 fputs_unfiltered (", bytes =", gdb_stdlog);
1730 for (i = 0; i < retval; i++)
1731 {
1732 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1733 {
1734 if (targetdebug < 2 && i > 0)
1735 {
1736 fprintf_unfiltered (gdb_stdlog, " ...");
1737 break;
1738 }
1739 fprintf_unfiltered (gdb_stdlog, "\n");
1740 }
1741
1742 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1743 }
1744 }
1745
1746 fputc_unfiltered ('\n', gdb_stdlog);
1747 }
1748 return retval;
1749 }
1750
1751 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1752 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1753 if any error occurs.
1754
1755 If an error occurs, no guarantee is made about the contents of the data at
1756 MYADDR. In particular, the caller should not depend upon partial reads
1757 filling the buffer with good data. There is no way for the caller to know
1758 how much good data might have been transfered anyway. Callers that can
1759 deal with partial reads should call target_read (which will retry until
1760 it makes no progress, and then return how much was transferred). */
1761
1762 int
1763 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1764 {
1765 /* Dispatch to the topmost target, not the flattened current_target.
1766 Memory accesses check target->to_has_(all_)memory, and the
1767 flattened target doesn't inherit those. */
1768 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1769 myaddr, memaddr, len) == len)
1770 return 0;
1771 else
1772 return EIO;
1773 }
1774
1775 /* Like target_read_memory, but specify explicitly that this is a read from
1776 the target's stack. This may trigger different cache behavior. */
1777
1778 int
1779 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1780 {
1781 /* Dispatch to the topmost target, not the flattened current_target.
1782 Memory accesses check target->to_has_(all_)memory, and the
1783 flattened target doesn't inherit those. */
1784
1785 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1786 myaddr, memaddr, len) == len)
1787 return 0;
1788 else
1789 return EIO;
1790 }
1791
1792 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1793 Returns either 0 for success or an errno value if any error occurs.
1794 If an error occurs, no guarantee is made about how much data got written.
1795 Callers that can deal with partial writes should call target_write. */
1796
1797 int
1798 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1799 {
1800 /* Dispatch to the topmost target, not the flattened current_target.
1801 Memory accesses check target->to_has_(all_)memory, and the
1802 flattened target doesn't inherit those. */
1803 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1804 myaddr, memaddr, len) == len)
1805 return 0;
1806 else
1807 return EIO;
1808 }
1809
1810 /* Write LEN bytes from MYADDR to target raw memory at address
1811 MEMADDR. Returns either 0 for success or an errno value if any
1812 error occurs. If an error occurs, no guarantee is made about how
1813 much data got written. Callers that can deal with partial writes
1814 should call target_write. */
1815
1816 int
1817 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1818 {
1819 /* Dispatch to the topmost target, not the flattened current_target.
1820 Memory accesses check target->to_has_(all_)memory, and the
1821 flattened target doesn't inherit those. */
1822 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1823 myaddr, memaddr, len) == len)
1824 return 0;
1825 else
1826 return EIO;
1827 }
1828
1829 /* Fetch the target's memory map. */
1830
1831 VEC(mem_region_s) *
1832 target_memory_map (void)
1833 {
1834 VEC(mem_region_s) *result;
1835 struct mem_region *last_one, *this_one;
1836 int ix;
1837 struct target_ops *t;
1838
1839 if (targetdebug)
1840 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1841
1842 for (t = current_target.beneath; t != NULL; t = t->beneath)
1843 if (t->to_memory_map != NULL)
1844 break;
1845
1846 if (t == NULL)
1847 return NULL;
1848
1849 result = t->to_memory_map (t);
1850 if (result == NULL)
1851 return NULL;
1852
1853 qsort (VEC_address (mem_region_s, result),
1854 VEC_length (mem_region_s, result),
1855 sizeof (struct mem_region), mem_region_cmp);
1856
1857 /* Check that regions do not overlap. Simultaneously assign
1858 a numbering for the "mem" commands to use to refer to
1859 each region. */
1860 last_one = NULL;
1861 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1862 {
1863 this_one->number = ix;
1864
1865 if (last_one && last_one->hi > this_one->lo)
1866 {
1867 warning (_("Overlapping regions in memory map: ignoring"));
1868 VEC_free (mem_region_s, result);
1869 return NULL;
1870 }
1871 last_one = this_one;
1872 }
1873
1874 return result;
1875 }
1876
1877 void
1878 target_flash_erase (ULONGEST address, LONGEST length)
1879 {
1880 struct target_ops *t;
1881
1882 for (t = current_target.beneath; t != NULL; t = t->beneath)
1883 if (t->to_flash_erase != NULL)
1884 {
1885 if (targetdebug)
1886 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1887 hex_string (address), phex (length, 0));
1888 t->to_flash_erase (t, address, length);
1889 return;
1890 }
1891
1892 tcomplain ();
1893 }
1894
1895 void
1896 target_flash_done (void)
1897 {
1898 struct target_ops *t;
1899
1900 for (t = current_target.beneath; t != NULL; t = t->beneath)
1901 if (t->to_flash_done != NULL)
1902 {
1903 if (targetdebug)
1904 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1905 t->to_flash_done (t);
1906 return;
1907 }
1908
1909 tcomplain ();
1910 }
1911
1912 static void
1913 show_trust_readonly (struct ui_file *file, int from_tty,
1914 struct cmd_list_element *c, const char *value)
1915 {
1916 fprintf_filtered (file,
1917 _("Mode for reading from readonly sections is %s.\n"),
1918 value);
1919 }
1920
1921 /* More generic transfers. */
1922
1923 static LONGEST
1924 default_xfer_partial (struct target_ops *ops, enum target_object object,
1925 const char *annex, gdb_byte *readbuf,
1926 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1927 {
1928 if (object == TARGET_OBJECT_MEMORY
1929 && ops->deprecated_xfer_memory != NULL)
1930 /* If available, fall back to the target's
1931 "deprecated_xfer_memory" method. */
1932 {
1933 int xfered = -1;
1934
1935 errno = 0;
1936 if (writebuf != NULL)
1937 {
1938 void *buffer = xmalloc (len);
1939 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1940
1941 memcpy (buffer, writebuf, len);
1942 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1943 1/*write*/, NULL, ops);
1944 do_cleanups (cleanup);
1945 }
1946 if (readbuf != NULL)
1947 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1948 0/*read*/, NULL, ops);
1949 if (xfered > 0)
1950 return xfered;
1951 else if (xfered == 0 && errno == 0)
1952 /* "deprecated_xfer_memory" uses 0, cross checked against
1953 ERRNO as one indication of an error. */
1954 return 0;
1955 else
1956 return -1;
1957 }
1958 else if (ops->beneath != NULL)
1959 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1960 readbuf, writebuf, offset, len);
1961 else
1962 return -1;
1963 }
1964
1965 /* The xfer_partial handler for the topmost target. Unlike the default,
1966 it does not need to handle memory specially; it just passes all
1967 requests down the stack. */
1968
1969 static LONGEST
1970 current_xfer_partial (struct target_ops *ops, enum target_object object,
1971 const char *annex, gdb_byte *readbuf,
1972 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1973 {
1974 if (ops->beneath != NULL)
1975 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1976 readbuf, writebuf, offset, len);
1977 else
1978 return -1;
1979 }
1980
1981 /* Target vector read/write partial wrapper functions. */
1982
1983 static LONGEST
1984 target_read_partial (struct target_ops *ops,
1985 enum target_object object,
1986 const char *annex, gdb_byte *buf,
1987 ULONGEST offset, LONGEST len)
1988 {
1989 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1990 }
1991
1992 static LONGEST
1993 target_write_partial (struct target_ops *ops,
1994 enum target_object object,
1995 const char *annex, const gdb_byte *buf,
1996 ULONGEST offset, LONGEST len)
1997 {
1998 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1999 }
2000
2001 /* Wrappers to perform the full transfer. */
2002
2003 /* For docs on target_read see target.h. */
2004
2005 LONGEST
2006 target_read (struct target_ops *ops,
2007 enum target_object object,
2008 const char *annex, gdb_byte *buf,
2009 ULONGEST offset, LONGEST len)
2010 {
2011 LONGEST xfered = 0;
2012
2013 while (xfered < len)
2014 {
2015 LONGEST xfer = target_read_partial (ops, object, annex,
2016 (gdb_byte *) buf + xfered,
2017 offset + xfered, len - xfered);
2018
2019 /* Call an observer, notifying them of the xfer progress? */
2020 if (xfer == 0)
2021 return xfered;
2022 if (xfer < 0)
2023 return -1;
2024 xfered += xfer;
2025 QUIT;
2026 }
2027 return len;
2028 }
2029
2030 /* Assuming that the entire [begin, end) range of memory cannot be
2031 read, try to read whatever subrange is possible to read.
2032
2033 The function returns, in RESULT, either zero or one memory block.
2034 If there's a readable subrange at the beginning, it is completely
2035 read and returned. Any further readable subrange will not be read.
2036 Otherwise, if there's a readable subrange at the end, it will be
2037 completely read and returned. Any readable subranges before it
2038 (obviously, not starting at the beginning), will be ignored. In
2039 other cases -- either no readable subrange, or readable subrange(s)
2040 that is neither at the beginning, or end, nothing is returned.
2041
2042 The purpose of this function is to handle a read across a boundary
2043 of accessible memory in a case when memory map is not available.
2044 The above restrictions are fine for this case, but will give
2045 incorrect results if the memory is 'patchy'. However, supporting
2046 'patchy' memory would require trying to read every single byte,
2047 and it seems unacceptable solution. Explicit memory map is
2048 recommended for this case -- and target_read_memory_robust will
2049 take care of reading multiple ranges then. */
2050
2051 static void
2052 read_whatever_is_readable (struct target_ops *ops,
2053 ULONGEST begin, ULONGEST end,
2054 VEC(memory_read_result_s) **result)
2055 {
2056 gdb_byte *buf = xmalloc (end - begin);
2057 ULONGEST current_begin = begin;
2058 ULONGEST current_end = end;
2059 int forward;
2060 memory_read_result_s r;
2061
2062 /* If we previously failed to read 1 byte, nothing can be done here. */
2063 if (end - begin <= 1)
2064 {
2065 xfree (buf);
2066 return;
2067 }
2068
2069 /* Check that either first or the last byte is readable, and give up
2070 if not. This heuristic is meant to permit reading accessible memory
2071 at the boundary of accessible region. */
2072 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2073 buf, begin, 1) == 1)
2074 {
2075 forward = 1;
2076 ++current_begin;
2077 }
2078 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2079 buf + (end-begin) - 1, end - 1, 1) == 1)
2080 {
2081 forward = 0;
2082 --current_end;
2083 }
2084 else
2085 {
2086 xfree (buf);
2087 return;
2088 }
2089
2090 /* Loop invariant is that the [current_begin, current_end) was previously
2091 found to be not readable as a whole.
2092
2093 Note loop condition -- if the range has 1 byte, we can't divide the range
2094 so there's no point trying further. */
2095 while (current_end - current_begin > 1)
2096 {
2097 ULONGEST first_half_begin, first_half_end;
2098 ULONGEST second_half_begin, second_half_end;
2099 LONGEST xfer;
2100 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2101
2102 if (forward)
2103 {
2104 first_half_begin = current_begin;
2105 first_half_end = middle;
2106 second_half_begin = middle;
2107 second_half_end = current_end;
2108 }
2109 else
2110 {
2111 first_half_begin = middle;
2112 first_half_end = current_end;
2113 second_half_begin = current_begin;
2114 second_half_end = middle;
2115 }
2116
2117 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2118 buf + (first_half_begin - begin),
2119 first_half_begin,
2120 first_half_end - first_half_begin);
2121
2122 if (xfer == first_half_end - first_half_begin)
2123 {
2124 /* This half reads up fine. So, the error must be in the
2125 other half. */
2126 current_begin = second_half_begin;
2127 current_end = second_half_end;
2128 }
2129 else
2130 {
2131 /* This half is not readable. Because we've tried one byte, we
2132 know some part of this half if actually redable. Go to the next
2133 iteration to divide again and try to read.
2134
2135 We don't handle the other half, because this function only tries
2136 to read a single readable subrange. */
2137 current_begin = first_half_begin;
2138 current_end = first_half_end;
2139 }
2140 }
2141
2142 if (forward)
2143 {
2144 /* The [begin, current_begin) range has been read. */
2145 r.begin = begin;
2146 r.end = current_begin;
2147 r.data = buf;
2148 }
2149 else
2150 {
2151 /* The [current_end, end) range has been read. */
2152 LONGEST rlen = end - current_end;
2153
2154 r.data = xmalloc (rlen);
2155 memcpy (r.data, buf + current_end - begin, rlen);
2156 r.begin = current_end;
2157 r.end = end;
2158 xfree (buf);
2159 }
2160 VEC_safe_push(memory_read_result_s, (*result), &r);
2161 }
2162
2163 void
2164 free_memory_read_result_vector (void *x)
2165 {
2166 VEC(memory_read_result_s) *v = x;
2167 memory_read_result_s *current;
2168 int ix;
2169
2170 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2171 {
2172 xfree (current->data);
2173 }
2174 VEC_free (memory_read_result_s, v);
2175 }
2176
2177 VEC(memory_read_result_s) *
2178 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2179 {
2180 VEC(memory_read_result_s) *result = 0;
2181
2182 LONGEST xfered = 0;
2183 while (xfered < len)
2184 {
2185 struct mem_region *region = lookup_mem_region (offset + xfered);
2186 LONGEST rlen;
2187
2188 /* If there is no explicit region, a fake one should be created. */
2189 gdb_assert (region);
2190
2191 if (region->hi == 0)
2192 rlen = len - xfered;
2193 else
2194 rlen = region->hi - offset;
2195
2196 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2197 {
2198 /* Cannot read this region. Note that we can end up here only
2199 if the region is explicitly marked inaccessible, or
2200 'inaccessible-by-default' is in effect. */
2201 xfered += rlen;
2202 }
2203 else
2204 {
2205 LONGEST to_read = min (len - xfered, rlen);
2206 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2207
2208 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2209 (gdb_byte *) buffer,
2210 offset + xfered, to_read);
2211 /* Call an observer, notifying them of the xfer progress? */
2212 if (xfer <= 0)
2213 {
2214 /* Got an error reading full chunk. See if maybe we can read
2215 some subrange. */
2216 xfree (buffer);
2217 read_whatever_is_readable (ops, offset + xfered,
2218 offset + xfered + to_read, &result);
2219 xfered += to_read;
2220 }
2221 else
2222 {
2223 struct memory_read_result r;
2224 r.data = buffer;
2225 r.begin = offset + xfered;
2226 r.end = r.begin + xfer;
2227 VEC_safe_push (memory_read_result_s, result, &r);
2228 xfered += xfer;
2229 }
2230 QUIT;
2231 }
2232 }
2233 return result;
2234 }
2235
2236
2237 /* An alternative to target_write with progress callbacks. */
2238
2239 LONGEST
2240 target_write_with_progress (struct target_ops *ops,
2241 enum target_object object,
2242 const char *annex, const gdb_byte *buf,
2243 ULONGEST offset, LONGEST len,
2244 void (*progress) (ULONGEST, void *), void *baton)
2245 {
2246 LONGEST xfered = 0;
2247
2248 /* Give the progress callback a chance to set up. */
2249 if (progress)
2250 (*progress) (0, baton);
2251
2252 while (xfered < len)
2253 {
2254 LONGEST xfer = target_write_partial (ops, object, annex,
2255 (gdb_byte *) buf + xfered,
2256 offset + xfered, len - xfered);
2257
2258 if (xfer == 0)
2259 return xfered;
2260 if (xfer < 0)
2261 return -1;
2262
2263 if (progress)
2264 (*progress) (xfer, baton);
2265
2266 xfered += xfer;
2267 QUIT;
2268 }
2269 return len;
2270 }
2271
2272 /* For docs on target_write see target.h. */
2273
2274 LONGEST
2275 target_write (struct target_ops *ops,
2276 enum target_object object,
2277 const char *annex, const gdb_byte *buf,
2278 ULONGEST offset, LONGEST len)
2279 {
2280 return target_write_with_progress (ops, object, annex, buf, offset, len,
2281 NULL, NULL);
2282 }
2283
2284 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2285 the size of the transferred data. PADDING additional bytes are
2286 available in *BUF_P. This is a helper function for
2287 target_read_alloc; see the declaration of that function for more
2288 information. */
2289
2290 static LONGEST
2291 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2292 const char *annex, gdb_byte **buf_p, int padding)
2293 {
2294 size_t buf_alloc, buf_pos;
2295 gdb_byte *buf;
2296 LONGEST n;
2297
2298 /* This function does not have a length parameter; it reads the
2299 entire OBJECT). Also, it doesn't support objects fetched partly
2300 from one target and partly from another (in a different stratum,
2301 e.g. a core file and an executable). Both reasons make it
2302 unsuitable for reading memory. */
2303 gdb_assert (object != TARGET_OBJECT_MEMORY);
2304
2305 /* Start by reading up to 4K at a time. The target will throttle
2306 this number down if necessary. */
2307 buf_alloc = 4096;
2308 buf = xmalloc (buf_alloc);
2309 buf_pos = 0;
2310 while (1)
2311 {
2312 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2313 buf_pos, buf_alloc - buf_pos - padding);
2314 if (n < 0)
2315 {
2316 /* An error occurred. */
2317 xfree (buf);
2318 return -1;
2319 }
2320 else if (n == 0)
2321 {
2322 /* Read all there was. */
2323 if (buf_pos == 0)
2324 xfree (buf);
2325 else
2326 *buf_p = buf;
2327 return buf_pos;
2328 }
2329
2330 buf_pos += n;
2331
2332 /* If the buffer is filling up, expand it. */
2333 if (buf_alloc < buf_pos * 2)
2334 {
2335 buf_alloc *= 2;
2336 buf = xrealloc (buf, buf_alloc);
2337 }
2338
2339 QUIT;
2340 }
2341 }
2342
2343 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2344 the size of the transferred data. See the declaration in "target.h"
2345 function for more information about the return value. */
2346
2347 LONGEST
2348 target_read_alloc (struct target_ops *ops, enum target_object object,
2349 const char *annex, gdb_byte **buf_p)
2350 {
2351 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2352 }
2353
2354 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2355 returned as a string, allocated using xmalloc. If an error occurs
2356 or the transfer is unsupported, NULL is returned. Empty objects
2357 are returned as allocated but empty strings. A warning is issued
2358 if the result contains any embedded NUL bytes. */
2359
2360 char *
2361 target_read_stralloc (struct target_ops *ops, enum target_object object,
2362 const char *annex)
2363 {
2364 gdb_byte *buffer;
2365 LONGEST i, transferred;
2366
2367 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2368
2369 if (transferred < 0)
2370 return NULL;
2371
2372 if (transferred == 0)
2373 return xstrdup ("");
2374
2375 buffer[transferred] = 0;
2376
2377 /* Check for embedded NUL bytes; but allow trailing NULs. */
2378 for (i = strlen (buffer); i < transferred; i++)
2379 if (buffer[i] != 0)
2380 {
2381 warning (_("target object %d, annex %s, "
2382 "contained unexpected null characters"),
2383 (int) object, annex ? annex : "(none)");
2384 break;
2385 }
2386
2387 return (char *) buffer;
2388 }
2389
2390 /* Memory transfer methods. */
2391
2392 void
2393 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2394 LONGEST len)
2395 {
2396 /* This method is used to read from an alternate, non-current
2397 target. This read must bypass the overlay support (as symbols
2398 don't match this target), and GDB's internal cache (wrong cache
2399 for this target). */
2400 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2401 != len)
2402 memory_error (EIO, addr);
2403 }
2404
2405 ULONGEST
2406 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2407 int len, enum bfd_endian byte_order)
2408 {
2409 gdb_byte buf[sizeof (ULONGEST)];
2410
2411 gdb_assert (len <= sizeof (buf));
2412 get_target_memory (ops, addr, buf, len);
2413 return extract_unsigned_integer (buf, len, byte_order);
2414 }
2415
2416 int
2417 target_insert_breakpoint (struct gdbarch *gdbarch,
2418 struct bp_target_info *bp_tgt)
2419 {
2420 if (!may_insert_breakpoints)
2421 {
2422 warning (_("May not insert breakpoints"));
2423 return 1;
2424 }
2425
2426 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2427 }
2428
2429 int
2430 target_remove_breakpoint (struct gdbarch *gdbarch,
2431 struct bp_target_info *bp_tgt)
2432 {
2433 /* This is kind of a weird case to handle, but the permission might
2434 have been changed after breakpoints were inserted - in which case
2435 we should just take the user literally and assume that any
2436 breakpoints should be left in place. */
2437 if (!may_insert_breakpoints)
2438 {
2439 warning (_("May not remove breakpoints"));
2440 return 1;
2441 }
2442
2443 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2444 }
2445
2446 static void
2447 target_info (char *args, int from_tty)
2448 {
2449 struct target_ops *t;
2450 int has_all_mem = 0;
2451
2452 if (symfile_objfile != NULL)
2453 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2454
2455 for (t = target_stack; t != NULL; t = t->beneath)
2456 {
2457 if (!(*t->to_has_memory) (t))
2458 continue;
2459
2460 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2461 continue;
2462 if (has_all_mem)
2463 printf_unfiltered (_("\tWhile running this, "
2464 "GDB does not access memory from...\n"));
2465 printf_unfiltered ("%s:\n", t->to_longname);
2466 (t->to_files_info) (t);
2467 has_all_mem = (*t->to_has_all_memory) (t);
2468 }
2469 }
2470
2471 /* This function is called before any new inferior is created, e.g.
2472 by running a program, attaching, or connecting to a target.
2473 It cleans up any state from previous invocations which might
2474 change between runs. This is a subset of what target_preopen
2475 resets (things which might change between targets). */
2476
2477 void
2478 target_pre_inferior (int from_tty)
2479 {
2480 /* Clear out solib state. Otherwise the solib state of the previous
2481 inferior might have survived and is entirely wrong for the new
2482 target. This has been observed on GNU/Linux using glibc 2.3. How
2483 to reproduce:
2484
2485 bash$ ./foo&
2486 [1] 4711
2487 bash$ ./foo&
2488 [1] 4712
2489 bash$ gdb ./foo
2490 [...]
2491 (gdb) attach 4711
2492 (gdb) detach
2493 (gdb) attach 4712
2494 Cannot access memory at address 0xdeadbeef
2495 */
2496
2497 /* In some OSs, the shared library list is the same/global/shared
2498 across inferiors. If code is shared between processes, so are
2499 memory regions and features. */
2500 if (!gdbarch_has_global_solist (target_gdbarch))
2501 {
2502 no_shared_libraries (NULL, from_tty);
2503
2504 invalidate_target_mem_regions ();
2505
2506 target_clear_description ();
2507 }
2508
2509 agent_capability_invalidate ();
2510 }
2511
2512 /* Callback for iterate_over_inferiors. Gets rid of the given
2513 inferior. */
2514
2515 static int
2516 dispose_inferior (struct inferior *inf, void *args)
2517 {
2518 struct thread_info *thread;
2519
2520 thread = any_thread_of_process (inf->pid);
2521 if (thread)
2522 {
2523 switch_to_thread (thread->ptid);
2524
2525 /* Core inferiors actually should be detached, not killed. */
2526 if (target_has_execution)
2527 target_kill ();
2528 else
2529 target_detach (NULL, 0);
2530 }
2531
2532 return 0;
2533 }
2534
2535 /* This is to be called by the open routine before it does
2536 anything. */
2537
2538 void
2539 target_preopen (int from_tty)
2540 {
2541 dont_repeat ();
2542
2543 if (have_inferiors ())
2544 {
2545 if (!from_tty
2546 || !have_live_inferiors ()
2547 || query (_("A program is being debugged already. Kill it? ")))
2548 iterate_over_inferiors (dispose_inferior, NULL);
2549 else
2550 error (_("Program not killed."));
2551 }
2552
2553 /* Calling target_kill may remove the target from the stack. But if
2554 it doesn't (which seems like a win for UDI), remove it now. */
2555 /* Leave the exec target, though. The user may be switching from a
2556 live process to a core of the same program. */
2557 pop_all_targets_above (file_stratum, 0);
2558
2559 target_pre_inferior (from_tty);
2560 }
2561
2562 /* Detach a target after doing deferred register stores. */
2563
2564 void
2565 target_detach (char *args, int from_tty)
2566 {
2567 struct target_ops* t;
2568
2569 if (gdbarch_has_global_breakpoints (target_gdbarch))
2570 /* Don't remove global breakpoints here. They're removed on
2571 disconnection from the target. */
2572 ;
2573 else
2574 /* If we're in breakpoints-always-inserted mode, have to remove
2575 them before detaching. */
2576 remove_breakpoints_pid (PIDGET (inferior_ptid));
2577
2578 prepare_for_detach ();
2579
2580 for (t = current_target.beneath; t != NULL; t = t->beneath)
2581 {
2582 if (t->to_detach != NULL)
2583 {
2584 t->to_detach (t, args, from_tty);
2585 if (targetdebug)
2586 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2587 args, from_tty);
2588 return;
2589 }
2590 }
2591
2592 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2593 }
2594
2595 void
2596 target_disconnect (char *args, int from_tty)
2597 {
2598 struct target_ops *t;
2599
2600 /* If we're in breakpoints-always-inserted mode or if breakpoints
2601 are global across processes, we have to remove them before
2602 disconnecting. */
2603 remove_breakpoints ();
2604
2605 for (t = current_target.beneath; t != NULL; t = t->beneath)
2606 if (t->to_disconnect != NULL)
2607 {
2608 if (targetdebug)
2609 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2610 args, from_tty);
2611 t->to_disconnect (t, args, from_tty);
2612 return;
2613 }
2614
2615 tcomplain ();
2616 }
2617
2618 ptid_t
2619 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2620 {
2621 struct target_ops *t;
2622
2623 for (t = current_target.beneath; t != NULL; t = t->beneath)
2624 {
2625 if (t->to_wait != NULL)
2626 {
2627 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2628
2629 if (targetdebug)
2630 {
2631 char *status_string;
2632 char *options_string;
2633
2634 status_string = target_waitstatus_to_string (status);
2635 options_string = target_options_to_string (options);
2636 fprintf_unfiltered (gdb_stdlog,
2637 "target_wait (%d, status, options={%s})"
2638 " = %d, %s\n",
2639 PIDGET (ptid), options_string,
2640 PIDGET (retval), status_string);
2641 xfree (status_string);
2642 xfree (options_string);
2643 }
2644
2645 return retval;
2646 }
2647 }
2648
2649 noprocess ();
2650 }
2651
2652 char *
2653 target_pid_to_str (ptid_t ptid)
2654 {
2655 struct target_ops *t;
2656
2657 for (t = current_target.beneath; t != NULL; t = t->beneath)
2658 {
2659 if (t->to_pid_to_str != NULL)
2660 return (*t->to_pid_to_str) (t, ptid);
2661 }
2662
2663 return normal_pid_to_str (ptid);
2664 }
2665
2666 char *
2667 target_thread_name (struct thread_info *info)
2668 {
2669 struct target_ops *t;
2670
2671 for (t = current_target.beneath; t != NULL; t = t->beneath)
2672 {
2673 if (t->to_thread_name != NULL)
2674 return (*t->to_thread_name) (info);
2675 }
2676
2677 return NULL;
2678 }
2679
2680 void
2681 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2682 {
2683 struct target_ops *t;
2684
2685 target_dcache_invalidate ();
2686
2687 for (t = current_target.beneath; t != NULL; t = t->beneath)
2688 {
2689 if (t->to_resume != NULL)
2690 {
2691 t->to_resume (t, ptid, step, signal);
2692 if (targetdebug)
2693 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2694 PIDGET (ptid),
2695 step ? "step" : "continue",
2696 gdb_signal_to_name (signal));
2697
2698 registers_changed_ptid (ptid);
2699 set_executing (ptid, 1);
2700 set_running (ptid, 1);
2701 clear_inline_frame_state (ptid);
2702 return;
2703 }
2704 }
2705
2706 noprocess ();
2707 }
2708
2709 void
2710 target_pass_signals (int numsigs, unsigned char *pass_signals)
2711 {
2712 struct target_ops *t;
2713
2714 for (t = current_target.beneath; t != NULL; t = t->beneath)
2715 {
2716 if (t->to_pass_signals != NULL)
2717 {
2718 if (targetdebug)
2719 {
2720 int i;
2721
2722 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2723 numsigs);
2724
2725 for (i = 0; i < numsigs; i++)
2726 if (pass_signals[i])
2727 fprintf_unfiltered (gdb_stdlog, " %s",
2728 gdb_signal_to_name (i));
2729
2730 fprintf_unfiltered (gdb_stdlog, " })\n");
2731 }
2732
2733 (*t->to_pass_signals) (numsigs, pass_signals);
2734 return;
2735 }
2736 }
2737 }
2738
2739 void
2740 target_program_signals (int numsigs, unsigned char *program_signals)
2741 {
2742 struct target_ops *t;
2743
2744 for (t = current_target.beneath; t != NULL; t = t->beneath)
2745 {
2746 if (t->to_program_signals != NULL)
2747 {
2748 if (targetdebug)
2749 {
2750 int i;
2751
2752 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2753 numsigs);
2754
2755 for (i = 0; i < numsigs; i++)
2756 if (program_signals[i])
2757 fprintf_unfiltered (gdb_stdlog, " %s",
2758 gdb_signal_to_name (i));
2759
2760 fprintf_unfiltered (gdb_stdlog, " })\n");
2761 }
2762
2763 (*t->to_program_signals) (numsigs, program_signals);
2764 return;
2765 }
2766 }
2767 }
2768
2769 /* Look through the list of possible targets for a target that can
2770 follow forks. */
2771
2772 int
2773 target_follow_fork (int follow_child)
2774 {
2775 struct target_ops *t;
2776
2777 for (t = current_target.beneath; t != NULL; t = t->beneath)
2778 {
2779 if (t->to_follow_fork != NULL)
2780 {
2781 int retval = t->to_follow_fork (t, follow_child);
2782
2783 if (targetdebug)
2784 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2785 follow_child, retval);
2786 return retval;
2787 }
2788 }
2789
2790 /* Some target returned a fork event, but did not know how to follow it. */
2791 internal_error (__FILE__, __LINE__,
2792 _("could not find a target to follow fork"));
2793 }
2794
2795 void
2796 target_mourn_inferior (void)
2797 {
2798 struct target_ops *t;
2799
2800 for (t = current_target.beneath; t != NULL; t = t->beneath)
2801 {
2802 if (t->to_mourn_inferior != NULL)
2803 {
2804 t->to_mourn_inferior (t);
2805 if (targetdebug)
2806 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2807
2808 /* We no longer need to keep handles on any of the object files.
2809 Make sure to release them to avoid unnecessarily locking any
2810 of them while we're not actually debugging. */
2811 bfd_cache_close_all ();
2812
2813 return;
2814 }
2815 }
2816
2817 internal_error (__FILE__, __LINE__,
2818 _("could not find a target to follow mourn inferior"));
2819 }
2820
2821 /* Look for a target which can describe architectural features, starting
2822 from TARGET. If we find one, return its description. */
2823
2824 const struct target_desc *
2825 target_read_description (struct target_ops *target)
2826 {
2827 struct target_ops *t;
2828
2829 for (t = target; t != NULL; t = t->beneath)
2830 if (t->to_read_description != NULL)
2831 {
2832 const struct target_desc *tdesc;
2833
2834 tdesc = t->to_read_description (t);
2835 if (tdesc)
2836 return tdesc;
2837 }
2838
2839 return NULL;
2840 }
2841
2842 /* The default implementation of to_search_memory.
2843 This implements a basic search of memory, reading target memory and
2844 performing the search here (as opposed to performing the search in on the
2845 target side with, for example, gdbserver). */
2846
2847 int
2848 simple_search_memory (struct target_ops *ops,
2849 CORE_ADDR start_addr, ULONGEST search_space_len,
2850 const gdb_byte *pattern, ULONGEST pattern_len,
2851 CORE_ADDR *found_addrp)
2852 {
2853 /* NOTE: also defined in find.c testcase. */
2854 #define SEARCH_CHUNK_SIZE 16000
2855 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2856 /* Buffer to hold memory contents for searching. */
2857 gdb_byte *search_buf;
2858 unsigned search_buf_size;
2859 struct cleanup *old_cleanups;
2860
2861 search_buf_size = chunk_size + pattern_len - 1;
2862
2863 /* No point in trying to allocate a buffer larger than the search space. */
2864 if (search_space_len < search_buf_size)
2865 search_buf_size = search_space_len;
2866
2867 search_buf = malloc (search_buf_size);
2868 if (search_buf == NULL)
2869 error (_("Unable to allocate memory to perform the search."));
2870 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2871
2872 /* Prime the search buffer. */
2873
2874 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2875 search_buf, start_addr, search_buf_size) != search_buf_size)
2876 {
2877 warning (_("Unable to access target memory at %s, halting search."),
2878 hex_string (start_addr));
2879 do_cleanups (old_cleanups);
2880 return -1;
2881 }
2882
2883 /* Perform the search.
2884
2885 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2886 When we've scanned N bytes we copy the trailing bytes to the start and
2887 read in another N bytes. */
2888
2889 while (search_space_len >= pattern_len)
2890 {
2891 gdb_byte *found_ptr;
2892 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2893
2894 found_ptr = memmem (search_buf, nr_search_bytes,
2895 pattern, pattern_len);
2896
2897 if (found_ptr != NULL)
2898 {
2899 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2900
2901 *found_addrp = found_addr;
2902 do_cleanups (old_cleanups);
2903 return 1;
2904 }
2905
2906 /* Not found in this chunk, skip to next chunk. */
2907
2908 /* Don't let search_space_len wrap here, it's unsigned. */
2909 if (search_space_len >= chunk_size)
2910 search_space_len -= chunk_size;
2911 else
2912 search_space_len = 0;
2913
2914 if (search_space_len >= pattern_len)
2915 {
2916 unsigned keep_len = search_buf_size - chunk_size;
2917 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2918 int nr_to_read;
2919
2920 /* Copy the trailing part of the previous iteration to the front
2921 of the buffer for the next iteration. */
2922 gdb_assert (keep_len == pattern_len - 1);
2923 memcpy (search_buf, search_buf + chunk_size, keep_len);
2924
2925 nr_to_read = min (search_space_len - keep_len, chunk_size);
2926
2927 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2928 search_buf + keep_len, read_addr,
2929 nr_to_read) != nr_to_read)
2930 {
2931 warning (_("Unable to access target "
2932 "memory at %s, halting search."),
2933 hex_string (read_addr));
2934 do_cleanups (old_cleanups);
2935 return -1;
2936 }
2937
2938 start_addr += chunk_size;
2939 }
2940 }
2941
2942 /* Not found. */
2943
2944 do_cleanups (old_cleanups);
2945 return 0;
2946 }
2947
2948 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2949 sequence of bytes in PATTERN with length PATTERN_LEN.
2950
2951 The result is 1 if found, 0 if not found, and -1 if there was an error
2952 requiring halting of the search (e.g. memory read error).
2953 If the pattern is found the address is recorded in FOUND_ADDRP. */
2954
2955 int
2956 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2957 const gdb_byte *pattern, ULONGEST pattern_len,
2958 CORE_ADDR *found_addrp)
2959 {
2960 struct target_ops *t;
2961 int found;
2962
2963 /* We don't use INHERIT to set current_target.to_search_memory,
2964 so we have to scan the target stack and handle targetdebug
2965 ourselves. */
2966
2967 if (targetdebug)
2968 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2969 hex_string (start_addr));
2970
2971 for (t = current_target.beneath; t != NULL; t = t->beneath)
2972 if (t->to_search_memory != NULL)
2973 break;
2974
2975 if (t != NULL)
2976 {
2977 found = t->to_search_memory (t, start_addr, search_space_len,
2978 pattern, pattern_len, found_addrp);
2979 }
2980 else
2981 {
2982 /* If a special version of to_search_memory isn't available, use the
2983 simple version. */
2984 found = simple_search_memory (current_target.beneath,
2985 start_addr, search_space_len,
2986 pattern, pattern_len, found_addrp);
2987 }
2988
2989 if (targetdebug)
2990 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2991
2992 return found;
2993 }
2994
2995 /* Look through the currently pushed targets. If none of them will
2996 be able to restart the currently running process, issue an error
2997 message. */
2998
2999 void
3000 target_require_runnable (void)
3001 {
3002 struct target_ops *t;
3003
3004 for (t = target_stack; t != NULL; t = t->beneath)
3005 {
3006 /* If this target knows how to create a new program, then
3007 assume we will still be able to after killing the current
3008 one. Either killing and mourning will not pop T, or else
3009 find_default_run_target will find it again. */
3010 if (t->to_create_inferior != NULL)
3011 return;
3012
3013 /* Do not worry about thread_stratum targets that can not
3014 create inferiors. Assume they will be pushed again if
3015 necessary, and continue to the process_stratum. */
3016 if (t->to_stratum == thread_stratum
3017 || t->to_stratum == arch_stratum)
3018 continue;
3019
3020 error (_("The \"%s\" target does not support \"run\". "
3021 "Try \"help target\" or \"continue\"."),
3022 t->to_shortname);
3023 }
3024
3025 /* This function is only called if the target is running. In that
3026 case there should have been a process_stratum target and it
3027 should either know how to create inferiors, or not... */
3028 internal_error (__FILE__, __LINE__, _("No targets found"));
3029 }
3030
3031 /* Look through the list of possible targets for a target that can
3032 execute a run or attach command without any other data. This is
3033 used to locate the default process stratum.
3034
3035 If DO_MESG is not NULL, the result is always valid (error() is
3036 called for errors); else, return NULL on error. */
3037
3038 static struct target_ops *
3039 find_default_run_target (char *do_mesg)
3040 {
3041 struct target_ops **t;
3042 struct target_ops *runable = NULL;
3043 int count;
3044
3045 count = 0;
3046
3047 for (t = target_structs; t < target_structs + target_struct_size;
3048 ++t)
3049 {
3050 if ((*t)->to_can_run && target_can_run (*t))
3051 {
3052 runable = *t;
3053 ++count;
3054 }
3055 }
3056
3057 if (count != 1)
3058 {
3059 if (do_mesg)
3060 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3061 else
3062 return NULL;
3063 }
3064
3065 return runable;
3066 }
3067
3068 void
3069 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3070 {
3071 struct target_ops *t;
3072
3073 t = find_default_run_target ("attach");
3074 (t->to_attach) (t, args, from_tty);
3075 return;
3076 }
3077
3078 void
3079 find_default_create_inferior (struct target_ops *ops,
3080 char *exec_file, char *allargs, char **env,
3081 int from_tty)
3082 {
3083 struct target_ops *t;
3084
3085 t = find_default_run_target ("run");
3086 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3087 return;
3088 }
3089
3090 static int
3091 find_default_can_async_p (void)
3092 {
3093 struct target_ops *t;
3094
3095 /* This may be called before the target is pushed on the stack;
3096 look for the default process stratum. If there's none, gdb isn't
3097 configured with a native debugger, and target remote isn't
3098 connected yet. */
3099 t = find_default_run_target (NULL);
3100 if (t && t->to_can_async_p)
3101 return (t->to_can_async_p) ();
3102 return 0;
3103 }
3104
3105 static int
3106 find_default_is_async_p (void)
3107 {
3108 struct target_ops *t;
3109
3110 /* This may be called before the target is pushed on the stack;
3111 look for the default process stratum. If there's none, gdb isn't
3112 configured with a native debugger, and target remote isn't
3113 connected yet. */
3114 t = find_default_run_target (NULL);
3115 if (t && t->to_is_async_p)
3116 return (t->to_is_async_p) ();
3117 return 0;
3118 }
3119
3120 static int
3121 find_default_supports_non_stop (void)
3122 {
3123 struct target_ops *t;
3124
3125 t = find_default_run_target (NULL);
3126 if (t && t->to_supports_non_stop)
3127 return (t->to_supports_non_stop) ();
3128 return 0;
3129 }
3130
3131 int
3132 target_supports_non_stop (void)
3133 {
3134 struct target_ops *t;
3135
3136 for (t = &current_target; t != NULL; t = t->beneath)
3137 if (t->to_supports_non_stop)
3138 return t->to_supports_non_stop ();
3139
3140 return 0;
3141 }
3142
3143 /* Implement the "info proc" command. */
3144
3145 void
3146 target_info_proc (char *args, enum info_proc_what what)
3147 {
3148 struct target_ops *t;
3149
3150 /* If we're already connected to something that can get us OS
3151 related data, use it. Otherwise, try using the native
3152 target. */
3153 if (current_target.to_stratum >= process_stratum)
3154 t = current_target.beneath;
3155 else
3156 t = find_default_run_target (NULL);
3157
3158 for (; t != NULL; t = t->beneath)
3159 {
3160 if (t->to_info_proc != NULL)
3161 {
3162 t->to_info_proc (t, args, what);
3163
3164 if (targetdebug)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "target_info_proc (\"%s\", %d)\n", args, what);
3167
3168 return;
3169 }
3170 }
3171
3172 error (_("Not supported on this target."));
3173 }
3174
3175 static int
3176 find_default_supports_disable_randomization (void)
3177 {
3178 struct target_ops *t;
3179
3180 t = find_default_run_target (NULL);
3181 if (t && t->to_supports_disable_randomization)
3182 return (t->to_supports_disable_randomization) ();
3183 return 0;
3184 }
3185
3186 int
3187 target_supports_disable_randomization (void)
3188 {
3189 struct target_ops *t;
3190
3191 for (t = &current_target; t != NULL; t = t->beneath)
3192 if (t->to_supports_disable_randomization)
3193 return t->to_supports_disable_randomization ();
3194
3195 return 0;
3196 }
3197
3198 char *
3199 target_get_osdata (const char *type)
3200 {
3201 struct target_ops *t;
3202
3203 /* If we're already connected to something that can get us OS
3204 related data, use it. Otherwise, try using the native
3205 target. */
3206 if (current_target.to_stratum >= process_stratum)
3207 t = current_target.beneath;
3208 else
3209 t = find_default_run_target ("get OS data");
3210
3211 if (!t)
3212 return NULL;
3213
3214 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3215 }
3216
3217 /* Determine the current address space of thread PTID. */
3218
3219 struct address_space *
3220 target_thread_address_space (ptid_t ptid)
3221 {
3222 struct address_space *aspace;
3223 struct inferior *inf;
3224 struct target_ops *t;
3225
3226 for (t = current_target.beneath; t != NULL; t = t->beneath)
3227 {
3228 if (t->to_thread_address_space != NULL)
3229 {
3230 aspace = t->to_thread_address_space (t, ptid);
3231 gdb_assert (aspace);
3232
3233 if (targetdebug)
3234 fprintf_unfiltered (gdb_stdlog,
3235 "target_thread_address_space (%s) = %d\n",
3236 target_pid_to_str (ptid),
3237 address_space_num (aspace));
3238 return aspace;
3239 }
3240 }
3241
3242 /* Fall-back to the "main" address space of the inferior. */
3243 inf = find_inferior_pid (ptid_get_pid (ptid));
3244
3245 if (inf == NULL || inf->aspace == NULL)
3246 internal_error (__FILE__, __LINE__,
3247 _("Can't determine the current "
3248 "address space of thread %s\n"),
3249 target_pid_to_str (ptid));
3250
3251 return inf->aspace;
3252 }
3253
3254
3255 /* Target file operations. */
3256
3257 static struct target_ops *
3258 default_fileio_target (void)
3259 {
3260 /* If we're already connected to something that can perform
3261 file I/O, use it. Otherwise, try using the native target. */
3262 if (current_target.to_stratum >= process_stratum)
3263 return current_target.beneath;
3264 else
3265 return find_default_run_target ("file I/O");
3266 }
3267
3268 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3269 target file descriptor, or -1 if an error occurs (and set
3270 *TARGET_ERRNO). */
3271 int
3272 target_fileio_open (const char *filename, int flags, int mode,
3273 int *target_errno)
3274 {
3275 struct target_ops *t;
3276
3277 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3278 {
3279 if (t->to_fileio_open != NULL)
3280 {
3281 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3282
3283 if (targetdebug)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3286 filename, flags, mode,
3287 fd, fd != -1 ? 0 : *target_errno);
3288 return fd;
3289 }
3290 }
3291
3292 *target_errno = FILEIO_ENOSYS;
3293 return -1;
3294 }
3295
3296 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3297 Return the number of bytes written, or -1 if an error occurs
3298 (and set *TARGET_ERRNO). */
3299 int
3300 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3301 ULONGEST offset, int *target_errno)
3302 {
3303 struct target_ops *t;
3304
3305 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3306 {
3307 if (t->to_fileio_pwrite != NULL)
3308 {
3309 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3310 target_errno);
3311
3312 if (targetdebug)
3313 fprintf_unfiltered (gdb_stdlog,
3314 "target_fileio_pwrite (%d,...,%d,%s) "
3315 "= %d (%d)\n",
3316 fd, len, pulongest (offset),
3317 ret, ret != -1 ? 0 : *target_errno);
3318 return ret;
3319 }
3320 }
3321
3322 *target_errno = FILEIO_ENOSYS;
3323 return -1;
3324 }
3325
3326 /* Read up to LEN bytes FD on the target into READ_BUF.
3327 Return the number of bytes read, or -1 if an error occurs
3328 (and set *TARGET_ERRNO). */
3329 int
3330 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3331 ULONGEST offset, int *target_errno)
3332 {
3333 struct target_ops *t;
3334
3335 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3336 {
3337 if (t->to_fileio_pread != NULL)
3338 {
3339 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3340 target_errno);
3341
3342 if (targetdebug)
3343 fprintf_unfiltered (gdb_stdlog,
3344 "target_fileio_pread (%d,...,%d,%s) "
3345 "= %d (%d)\n",
3346 fd, len, pulongest (offset),
3347 ret, ret != -1 ? 0 : *target_errno);
3348 return ret;
3349 }
3350 }
3351
3352 *target_errno = FILEIO_ENOSYS;
3353 return -1;
3354 }
3355
3356 /* Close FD on the target. Return 0, or -1 if an error occurs
3357 (and set *TARGET_ERRNO). */
3358 int
3359 target_fileio_close (int fd, int *target_errno)
3360 {
3361 struct target_ops *t;
3362
3363 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3364 {
3365 if (t->to_fileio_close != NULL)
3366 {
3367 int ret = t->to_fileio_close (fd, target_errno);
3368
3369 if (targetdebug)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "target_fileio_close (%d) = %d (%d)\n",
3372 fd, ret, ret != -1 ? 0 : *target_errno);
3373 return ret;
3374 }
3375 }
3376
3377 *target_errno = FILEIO_ENOSYS;
3378 return -1;
3379 }
3380
3381 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3382 occurs (and set *TARGET_ERRNO). */
3383 int
3384 target_fileio_unlink (const char *filename, int *target_errno)
3385 {
3386 struct target_ops *t;
3387
3388 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3389 {
3390 if (t->to_fileio_unlink != NULL)
3391 {
3392 int ret = t->to_fileio_unlink (filename, target_errno);
3393
3394 if (targetdebug)
3395 fprintf_unfiltered (gdb_stdlog,
3396 "target_fileio_unlink (%s) = %d (%d)\n",
3397 filename, ret, ret != -1 ? 0 : *target_errno);
3398 return ret;
3399 }
3400 }
3401
3402 *target_errno = FILEIO_ENOSYS;
3403 return -1;
3404 }
3405
3406 /* Read value of symbolic link FILENAME on the target. Return a
3407 null-terminated string allocated via xmalloc, or NULL if an error
3408 occurs (and set *TARGET_ERRNO). */
3409 char *
3410 target_fileio_readlink (const char *filename, int *target_errno)
3411 {
3412 struct target_ops *t;
3413
3414 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3415 {
3416 if (t->to_fileio_readlink != NULL)
3417 {
3418 char *ret = t->to_fileio_readlink (filename, target_errno);
3419
3420 if (targetdebug)
3421 fprintf_unfiltered (gdb_stdlog,
3422 "target_fileio_readlink (%s) = %s (%d)\n",
3423 filename, ret? ret : "(nil)",
3424 ret? 0 : *target_errno);
3425 return ret;
3426 }
3427 }
3428
3429 *target_errno = FILEIO_ENOSYS;
3430 return NULL;
3431 }
3432
3433 static void
3434 target_fileio_close_cleanup (void *opaque)
3435 {
3436 int fd = *(int *) opaque;
3437 int target_errno;
3438
3439 target_fileio_close (fd, &target_errno);
3440 }
3441
3442 /* Read target file FILENAME. Store the result in *BUF_P and
3443 return the size of the transferred data. PADDING additional bytes are
3444 available in *BUF_P. This is a helper function for
3445 target_fileio_read_alloc; see the declaration of that function for more
3446 information. */
3447
3448 static LONGEST
3449 target_fileio_read_alloc_1 (const char *filename,
3450 gdb_byte **buf_p, int padding)
3451 {
3452 struct cleanup *close_cleanup;
3453 size_t buf_alloc, buf_pos;
3454 gdb_byte *buf;
3455 LONGEST n;
3456 int fd;
3457 int target_errno;
3458
3459 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3460 if (fd == -1)
3461 return -1;
3462
3463 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3464
3465 /* Start by reading up to 4K at a time. The target will throttle
3466 this number down if necessary. */
3467 buf_alloc = 4096;
3468 buf = xmalloc (buf_alloc);
3469 buf_pos = 0;
3470 while (1)
3471 {
3472 n = target_fileio_pread (fd, &buf[buf_pos],
3473 buf_alloc - buf_pos - padding, buf_pos,
3474 &target_errno);
3475 if (n < 0)
3476 {
3477 /* An error occurred. */
3478 do_cleanups (close_cleanup);
3479 xfree (buf);
3480 return -1;
3481 }
3482 else if (n == 0)
3483 {
3484 /* Read all there was. */
3485 do_cleanups (close_cleanup);
3486 if (buf_pos == 0)
3487 xfree (buf);
3488 else
3489 *buf_p = buf;
3490 return buf_pos;
3491 }
3492
3493 buf_pos += n;
3494
3495 /* If the buffer is filling up, expand it. */
3496 if (buf_alloc < buf_pos * 2)
3497 {
3498 buf_alloc *= 2;
3499 buf = xrealloc (buf, buf_alloc);
3500 }
3501
3502 QUIT;
3503 }
3504 }
3505
3506 /* Read target file FILENAME. Store the result in *BUF_P and return
3507 the size of the transferred data. See the declaration in "target.h"
3508 function for more information about the return value. */
3509
3510 LONGEST
3511 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3512 {
3513 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3514 }
3515
3516 /* Read target file FILENAME. The result is NUL-terminated and
3517 returned as a string, allocated using xmalloc. If an error occurs
3518 or the transfer is unsupported, NULL is returned. Empty objects
3519 are returned as allocated but empty strings. A warning is issued
3520 if the result contains any embedded NUL bytes. */
3521
3522 char *
3523 target_fileio_read_stralloc (const char *filename)
3524 {
3525 gdb_byte *buffer;
3526 LONGEST i, transferred;
3527
3528 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3529
3530 if (transferred < 0)
3531 return NULL;
3532
3533 if (transferred == 0)
3534 return xstrdup ("");
3535
3536 buffer[transferred] = 0;
3537
3538 /* Check for embedded NUL bytes; but allow trailing NULs. */
3539 for (i = strlen (buffer); i < transferred; i++)
3540 if (buffer[i] != 0)
3541 {
3542 warning (_("target file %s "
3543 "contained unexpected null characters"),
3544 filename);
3545 break;
3546 }
3547
3548 return (char *) buffer;
3549 }
3550
3551
3552 static int
3553 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3554 {
3555 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3556 }
3557
3558 static int
3559 default_watchpoint_addr_within_range (struct target_ops *target,
3560 CORE_ADDR addr,
3561 CORE_ADDR start, int length)
3562 {
3563 return addr >= start && addr < start + length;
3564 }
3565
3566 static struct gdbarch *
3567 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3568 {
3569 return target_gdbarch;
3570 }
3571
3572 static int
3573 return_zero (void)
3574 {
3575 return 0;
3576 }
3577
3578 static int
3579 return_one (void)
3580 {
3581 return 1;
3582 }
3583
3584 static int
3585 return_minus_one (void)
3586 {
3587 return -1;
3588 }
3589
3590 /* Find a single runnable target in the stack and return it. If for
3591 some reason there is more than one, return NULL. */
3592
3593 struct target_ops *
3594 find_run_target (void)
3595 {
3596 struct target_ops **t;
3597 struct target_ops *runable = NULL;
3598 int count;
3599
3600 count = 0;
3601
3602 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3603 {
3604 if ((*t)->to_can_run && target_can_run (*t))
3605 {
3606 runable = *t;
3607 ++count;
3608 }
3609 }
3610
3611 return (count == 1 ? runable : NULL);
3612 }
3613
3614 /*
3615 * Find the next target down the stack from the specified target.
3616 */
3617
3618 struct target_ops *
3619 find_target_beneath (struct target_ops *t)
3620 {
3621 return t->beneath;
3622 }
3623
3624 \f
3625 /* The inferior process has died. Long live the inferior! */
3626
3627 void
3628 generic_mourn_inferior (void)
3629 {
3630 ptid_t ptid;
3631
3632 ptid = inferior_ptid;
3633 inferior_ptid = null_ptid;
3634
3635 /* Mark breakpoints uninserted in case something tries to delete a
3636 breakpoint while we delete the inferior's threads (which would
3637 fail, since the inferior is long gone). */
3638 mark_breakpoints_out ();
3639
3640 if (!ptid_equal (ptid, null_ptid))
3641 {
3642 int pid = ptid_get_pid (ptid);
3643 exit_inferior (pid);
3644 }
3645
3646 /* Note this wipes step-resume breakpoints, so needs to be done
3647 after exit_inferior, which ends up referencing the step-resume
3648 breakpoints through clear_thread_inferior_resources. */
3649 breakpoint_init_inferior (inf_exited);
3650
3651 registers_changed ();
3652
3653 reopen_exec_file ();
3654 reinit_frame_cache ();
3655
3656 if (deprecated_detach_hook)
3657 deprecated_detach_hook ();
3658 }
3659 \f
3660 /* Convert a normal process ID to a string. Returns the string in a
3661 static buffer. */
3662
3663 char *
3664 normal_pid_to_str (ptid_t ptid)
3665 {
3666 static char buf[32];
3667
3668 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3669 return buf;
3670 }
3671
3672 static char *
3673 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3674 {
3675 return normal_pid_to_str (ptid);
3676 }
3677
3678 /* Error-catcher for target_find_memory_regions. */
3679 static int
3680 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3681 {
3682 error (_("Command not implemented for this target."));
3683 return 0;
3684 }
3685
3686 /* Error-catcher for target_make_corefile_notes. */
3687 static char *
3688 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3689 {
3690 error (_("Command not implemented for this target."));
3691 return NULL;
3692 }
3693
3694 /* Error-catcher for target_get_bookmark. */
3695 static gdb_byte *
3696 dummy_get_bookmark (char *ignore1, int ignore2)
3697 {
3698 tcomplain ();
3699 return NULL;
3700 }
3701
3702 /* Error-catcher for target_goto_bookmark. */
3703 static void
3704 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3705 {
3706 tcomplain ();
3707 }
3708
3709 /* Set up the handful of non-empty slots needed by the dummy target
3710 vector. */
3711
3712 static void
3713 init_dummy_target (void)
3714 {
3715 dummy_target.to_shortname = "None";
3716 dummy_target.to_longname = "None";
3717 dummy_target.to_doc = "";
3718 dummy_target.to_attach = find_default_attach;
3719 dummy_target.to_detach =
3720 (void (*)(struct target_ops *, char *, int))target_ignore;
3721 dummy_target.to_create_inferior = find_default_create_inferior;
3722 dummy_target.to_can_async_p = find_default_can_async_p;
3723 dummy_target.to_is_async_p = find_default_is_async_p;
3724 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3725 dummy_target.to_supports_disable_randomization
3726 = find_default_supports_disable_randomization;
3727 dummy_target.to_pid_to_str = dummy_pid_to_str;
3728 dummy_target.to_stratum = dummy_stratum;
3729 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3730 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3731 dummy_target.to_get_bookmark = dummy_get_bookmark;
3732 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3733 dummy_target.to_xfer_partial = default_xfer_partial;
3734 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3735 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3736 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3737 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3738 dummy_target.to_has_execution
3739 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3740 dummy_target.to_stopped_by_watchpoint = return_zero;
3741 dummy_target.to_stopped_data_address =
3742 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3743 dummy_target.to_magic = OPS_MAGIC;
3744 }
3745 \f
3746 static void
3747 debug_to_open (char *args, int from_tty)
3748 {
3749 debug_target.to_open (args, from_tty);
3750
3751 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3752 }
3753
3754 void
3755 target_close (struct target_ops *targ, int quitting)
3756 {
3757 if (targ->to_xclose != NULL)
3758 targ->to_xclose (targ, quitting);
3759 else if (targ->to_close != NULL)
3760 targ->to_close (quitting);
3761
3762 if (targetdebug)
3763 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3764 }
3765
3766 void
3767 target_attach (char *args, int from_tty)
3768 {
3769 struct target_ops *t;
3770
3771 for (t = current_target.beneath; t != NULL; t = t->beneath)
3772 {
3773 if (t->to_attach != NULL)
3774 {
3775 t->to_attach (t, args, from_tty);
3776 if (targetdebug)
3777 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3778 args, from_tty);
3779 return;
3780 }
3781 }
3782
3783 internal_error (__FILE__, __LINE__,
3784 _("could not find a target to attach"));
3785 }
3786
3787 int
3788 target_thread_alive (ptid_t ptid)
3789 {
3790 struct target_ops *t;
3791
3792 for (t = current_target.beneath; t != NULL; t = t->beneath)
3793 {
3794 if (t->to_thread_alive != NULL)
3795 {
3796 int retval;
3797
3798 retval = t->to_thread_alive (t, ptid);
3799 if (targetdebug)
3800 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3801 PIDGET (ptid), retval);
3802
3803 return retval;
3804 }
3805 }
3806
3807 return 0;
3808 }
3809
3810 void
3811 target_find_new_threads (void)
3812 {
3813 struct target_ops *t;
3814
3815 for (t = current_target.beneath; t != NULL; t = t->beneath)
3816 {
3817 if (t->to_find_new_threads != NULL)
3818 {
3819 t->to_find_new_threads (t);
3820 if (targetdebug)
3821 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3822
3823 return;
3824 }
3825 }
3826 }
3827
3828 void
3829 target_stop (ptid_t ptid)
3830 {
3831 if (!may_stop)
3832 {
3833 warning (_("May not interrupt or stop the target, ignoring attempt"));
3834 return;
3835 }
3836
3837 (*current_target.to_stop) (ptid);
3838 }
3839
3840 static void
3841 debug_to_post_attach (int pid)
3842 {
3843 debug_target.to_post_attach (pid);
3844
3845 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3846 }
3847
3848 /* Return a pretty printed form of target_waitstatus.
3849 Space for the result is malloc'd, caller must free. */
3850
3851 char *
3852 target_waitstatus_to_string (const struct target_waitstatus *ws)
3853 {
3854 const char *kind_str = "status->kind = ";
3855
3856 switch (ws->kind)
3857 {
3858 case TARGET_WAITKIND_EXITED:
3859 return xstrprintf ("%sexited, status = %d",
3860 kind_str, ws->value.integer);
3861 case TARGET_WAITKIND_STOPPED:
3862 return xstrprintf ("%sstopped, signal = %s",
3863 kind_str, gdb_signal_to_name (ws->value.sig));
3864 case TARGET_WAITKIND_SIGNALLED:
3865 return xstrprintf ("%ssignalled, signal = %s",
3866 kind_str, gdb_signal_to_name (ws->value.sig));
3867 case TARGET_WAITKIND_LOADED:
3868 return xstrprintf ("%sloaded", kind_str);
3869 case TARGET_WAITKIND_FORKED:
3870 return xstrprintf ("%sforked", kind_str);
3871 case TARGET_WAITKIND_VFORKED:
3872 return xstrprintf ("%svforked", kind_str);
3873 case TARGET_WAITKIND_EXECD:
3874 return xstrprintf ("%sexecd", kind_str);
3875 case TARGET_WAITKIND_SYSCALL_ENTRY:
3876 return xstrprintf ("%sentered syscall", kind_str);
3877 case TARGET_WAITKIND_SYSCALL_RETURN:
3878 return xstrprintf ("%sexited syscall", kind_str);
3879 case TARGET_WAITKIND_SPURIOUS:
3880 return xstrprintf ("%sspurious", kind_str);
3881 case TARGET_WAITKIND_IGNORE:
3882 return xstrprintf ("%signore", kind_str);
3883 case TARGET_WAITKIND_NO_HISTORY:
3884 return xstrprintf ("%sno-history", kind_str);
3885 case TARGET_WAITKIND_NO_RESUMED:
3886 return xstrprintf ("%sno-resumed", kind_str);
3887 default:
3888 return xstrprintf ("%sunknown???", kind_str);
3889 }
3890 }
3891
3892 /* Concatenate ELEM to LIST, a comma separate list, and return the
3893 result. The LIST incoming argument is released. */
3894
3895 static char *
3896 str_comma_list_concat_elem (char *list, const char *elem)
3897 {
3898 if (list == NULL)
3899 return xstrdup (elem);
3900 else
3901 return reconcat (list, list, ", ", elem, (char *) NULL);
3902 }
3903
3904 /* Helper for target_options_to_string. If OPT is present in
3905 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3906 Returns the new resulting string. OPT is removed from
3907 TARGET_OPTIONS. */
3908
3909 static char *
3910 do_option (int *target_options, char *ret,
3911 int opt, char *opt_str)
3912 {
3913 if ((*target_options & opt) != 0)
3914 {
3915 ret = str_comma_list_concat_elem (ret, opt_str);
3916 *target_options &= ~opt;
3917 }
3918
3919 return ret;
3920 }
3921
3922 char *
3923 target_options_to_string (int target_options)
3924 {
3925 char *ret = NULL;
3926
3927 #define DO_TARG_OPTION(OPT) \
3928 ret = do_option (&target_options, ret, OPT, #OPT)
3929
3930 DO_TARG_OPTION (TARGET_WNOHANG);
3931
3932 if (target_options != 0)
3933 ret = str_comma_list_concat_elem (ret, "unknown???");
3934
3935 if (ret == NULL)
3936 ret = xstrdup ("");
3937 return ret;
3938 }
3939
3940 static void
3941 debug_print_register (const char * func,
3942 struct regcache *regcache, int regno)
3943 {
3944 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3945
3946 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3947 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3948 && gdbarch_register_name (gdbarch, regno) != NULL
3949 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3950 fprintf_unfiltered (gdb_stdlog, "(%s)",
3951 gdbarch_register_name (gdbarch, regno));
3952 else
3953 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3954 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3955 {
3956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3957 int i, size = register_size (gdbarch, regno);
3958 unsigned char buf[MAX_REGISTER_SIZE];
3959
3960 regcache_raw_collect (regcache, regno, buf);
3961 fprintf_unfiltered (gdb_stdlog, " = ");
3962 for (i = 0; i < size; i++)
3963 {
3964 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3965 }
3966 if (size <= sizeof (LONGEST))
3967 {
3968 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3969
3970 fprintf_unfiltered (gdb_stdlog, " %s %s",
3971 core_addr_to_string_nz (val), plongest (val));
3972 }
3973 }
3974 fprintf_unfiltered (gdb_stdlog, "\n");
3975 }
3976
3977 void
3978 target_fetch_registers (struct regcache *regcache, int regno)
3979 {
3980 struct target_ops *t;
3981
3982 for (t = current_target.beneath; t != NULL; t = t->beneath)
3983 {
3984 if (t->to_fetch_registers != NULL)
3985 {
3986 t->to_fetch_registers (t, regcache, regno);
3987 if (targetdebug)
3988 debug_print_register ("target_fetch_registers", regcache, regno);
3989 return;
3990 }
3991 }
3992 }
3993
3994 void
3995 target_store_registers (struct regcache *regcache, int regno)
3996 {
3997 struct target_ops *t;
3998
3999 if (!may_write_registers)
4000 error (_("Writing to registers is not allowed (regno %d)"), regno);
4001
4002 for (t = current_target.beneath; t != NULL; t = t->beneath)
4003 {
4004 if (t->to_store_registers != NULL)
4005 {
4006 t->to_store_registers (t, regcache, regno);
4007 if (targetdebug)
4008 {
4009 debug_print_register ("target_store_registers", regcache, regno);
4010 }
4011 return;
4012 }
4013 }
4014
4015 noprocess ();
4016 }
4017
4018 int
4019 target_core_of_thread (ptid_t ptid)
4020 {
4021 struct target_ops *t;
4022
4023 for (t = current_target.beneath; t != NULL; t = t->beneath)
4024 {
4025 if (t->to_core_of_thread != NULL)
4026 {
4027 int retval = t->to_core_of_thread (t, ptid);
4028
4029 if (targetdebug)
4030 fprintf_unfiltered (gdb_stdlog,
4031 "target_core_of_thread (%d) = %d\n",
4032 PIDGET (ptid), retval);
4033 return retval;
4034 }
4035 }
4036
4037 return -1;
4038 }
4039
4040 int
4041 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4042 {
4043 struct target_ops *t;
4044
4045 for (t = current_target.beneath; t != NULL; t = t->beneath)
4046 {
4047 if (t->to_verify_memory != NULL)
4048 {
4049 int retval = t->to_verify_memory (t, data, memaddr, size);
4050
4051 if (targetdebug)
4052 fprintf_unfiltered (gdb_stdlog,
4053 "target_verify_memory (%s, %s) = %d\n",
4054 paddress (target_gdbarch, memaddr),
4055 pulongest (size),
4056 retval);
4057 return retval;
4058 }
4059 }
4060
4061 tcomplain ();
4062 }
4063
4064 /* The documentation for this function is in its prototype declaration in
4065 target.h. */
4066
4067 int
4068 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4069 {
4070 struct target_ops *t;
4071
4072 for (t = current_target.beneath; t != NULL; t = t->beneath)
4073 if (t->to_insert_mask_watchpoint != NULL)
4074 {
4075 int ret;
4076
4077 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4078
4079 if (targetdebug)
4080 fprintf_unfiltered (gdb_stdlog, "\
4081 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4082 core_addr_to_string (addr),
4083 core_addr_to_string (mask), rw, ret);
4084
4085 return ret;
4086 }
4087
4088 return 1;
4089 }
4090
4091 /* The documentation for this function is in its prototype declaration in
4092 target.h. */
4093
4094 int
4095 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4096 {
4097 struct target_ops *t;
4098
4099 for (t = current_target.beneath; t != NULL; t = t->beneath)
4100 if (t->to_remove_mask_watchpoint != NULL)
4101 {
4102 int ret;
4103
4104 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4105
4106 if (targetdebug)
4107 fprintf_unfiltered (gdb_stdlog, "\
4108 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4109 core_addr_to_string (addr),
4110 core_addr_to_string (mask), rw, ret);
4111
4112 return ret;
4113 }
4114
4115 return 1;
4116 }
4117
4118 /* The documentation for this function is in its prototype declaration
4119 in target.h. */
4120
4121 int
4122 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4123 {
4124 struct target_ops *t;
4125
4126 for (t = current_target.beneath; t != NULL; t = t->beneath)
4127 if (t->to_masked_watch_num_registers != NULL)
4128 return t->to_masked_watch_num_registers (t, addr, mask);
4129
4130 return -1;
4131 }
4132
4133 /* The documentation for this function is in its prototype declaration
4134 in target.h. */
4135
4136 int
4137 target_ranged_break_num_registers (void)
4138 {
4139 struct target_ops *t;
4140
4141 for (t = current_target.beneath; t != NULL; t = t->beneath)
4142 if (t->to_ranged_break_num_registers != NULL)
4143 return t->to_ranged_break_num_registers (t);
4144
4145 return -1;
4146 }
4147
4148 static void
4149 debug_to_prepare_to_store (struct regcache *regcache)
4150 {
4151 debug_target.to_prepare_to_store (regcache);
4152
4153 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4154 }
4155
4156 static int
4157 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4158 int write, struct mem_attrib *attrib,
4159 struct target_ops *target)
4160 {
4161 int retval;
4162
4163 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4164 attrib, target);
4165
4166 fprintf_unfiltered (gdb_stdlog,
4167 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4168 paddress (target_gdbarch, memaddr), len,
4169 write ? "write" : "read", retval);
4170
4171 if (retval > 0)
4172 {
4173 int i;
4174
4175 fputs_unfiltered (", bytes =", gdb_stdlog);
4176 for (i = 0; i < retval; i++)
4177 {
4178 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4179 {
4180 if (targetdebug < 2 && i > 0)
4181 {
4182 fprintf_unfiltered (gdb_stdlog, " ...");
4183 break;
4184 }
4185 fprintf_unfiltered (gdb_stdlog, "\n");
4186 }
4187
4188 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4189 }
4190 }
4191
4192 fputc_unfiltered ('\n', gdb_stdlog);
4193
4194 return retval;
4195 }
4196
4197 static void
4198 debug_to_files_info (struct target_ops *target)
4199 {
4200 debug_target.to_files_info (target);
4201
4202 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4203 }
4204
4205 static int
4206 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4207 struct bp_target_info *bp_tgt)
4208 {
4209 int retval;
4210
4211 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4212
4213 fprintf_unfiltered (gdb_stdlog,
4214 "target_insert_breakpoint (%s, xxx) = %ld\n",
4215 core_addr_to_string (bp_tgt->placed_address),
4216 (unsigned long) retval);
4217 return retval;
4218 }
4219
4220 static int
4221 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4222 struct bp_target_info *bp_tgt)
4223 {
4224 int retval;
4225
4226 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4227
4228 fprintf_unfiltered (gdb_stdlog,
4229 "target_remove_breakpoint (%s, xxx) = %ld\n",
4230 core_addr_to_string (bp_tgt->placed_address),
4231 (unsigned long) retval);
4232 return retval;
4233 }
4234
4235 static int
4236 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4237 {
4238 int retval;
4239
4240 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4241
4242 fprintf_unfiltered (gdb_stdlog,
4243 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4244 (unsigned long) type,
4245 (unsigned long) cnt,
4246 (unsigned long) from_tty,
4247 (unsigned long) retval);
4248 return retval;
4249 }
4250
4251 static int
4252 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4253 {
4254 CORE_ADDR retval;
4255
4256 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4257
4258 fprintf_unfiltered (gdb_stdlog,
4259 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4260 core_addr_to_string (addr), (unsigned long) len,
4261 core_addr_to_string (retval));
4262 return retval;
4263 }
4264
4265 static int
4266 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4267 struct expression *cond)
4268 {
4269 int retval;
4270
4271 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4272 rw, cond);
4273
4274 fprintf_unfiltered (gdb_stdlog,
4275 "target_can_accel_watchpoint_condition "
4276 "(%s, %d, %d, %s) = %ld\n",
4277 core_addr_to_string (addr), len, rw,
4278 host_address_to_string (cond), (unsigned long) retval);
4279 return retval;
4280 }
4281
4282 static int
4283 debug_to_stopped_by_watchpoint (void)
4284 {
4285 int retval;
4286
4287 retval = debug_target.to_stopped_by_watchpoint ();
4288
4289 fprintf_unfiltered (gdb_stdlog,
4290 "target_stopped_by_watchpoint () = %ld\n",
4291 (unsigned long) retval);
4292 return retval;
4293 }
4294
4295 static int
4296 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4297 {
4298 int retval;
4299
4300 retval = debug_target.to_stopped_data_address (target, addr);
4301
4302 fprintf_unfiltered (gdb_stdlog,
4303 "target_stopped_data_address ([%s]) = %ld\n",
4304 core_addr_to_string (*addr),
4305 (unsigned long)retval);
4306 return retval;
4307 }
4308
4309 static int
4310 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4311 CORE_ADDR addr,
4312 CORE_ADDR start, int length)
4313 {
4314 int retval;
4315
4316 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4317 start, length);
4318
4319 fprintf_filtered (gdb_stdlog,
4320 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4321 core_addr_to_string (addr), core_addr_to_string (start),
4322 length, retval);
4323 return retval;
4324 }
4325
4326 static int
4327 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4328 struct bp_target_info *bp_tgt)
4329 {
4330 int retval;
4331
4332 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4333
4334 fprintf_unfiltered (gdb_stdlog,
4335 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4336 core_addr_to_string (bp_tgt->placed_address),
4337 (unsigned long) retval);
4338 return retval;
4339 }
4340
4341 static int
4342 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4343 struct bp_target_info *bp_tgt)
4344 {
4345 int retval;
4346
4347 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4348
4349 fprintf_unfiltered (gdb_stdlog,
4350 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4351 core_addr_to_string (bp_tgt->placed_address),
4352 (unsigned long) retval);
4353 return retval;
4354 }
4355
4356 static int
4357 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4358 struct expression *cond)
4359 {
4360 int retval;
4361
4362 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4363
4364 fprintf_unfiltered (gdb_stdlog,
4365 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4366 core_addr_to_string (addr), len, type,
4367 host_address_to_string (cond), (unsigned long) retval);
4368 return retval;
4369 }
4370
4371 static int
4372 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4373 struct expression *cond)
4374 {
4375 int retval;
4376
4377 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4378
4379 fprintf_unfiltered (gdb_stdlog,
4380 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4381 core_addr_to_string (addr), len, type,
4382 host_address_to_string (cond), (unsigned long) retval);
4383 return retval;
4384 }
4385
4386 static void
4387 debug_to_terminal_init (void)
4388 {
4389 debug_target.to_terminal_init ();
4390
4391 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4392 }
4393
4394 static void
4395 debug_to_terminal_inferior (void)
4396 {
4397 debug_target.to_terminal_inferior ();
4398
4399 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4400 }
4401
4402 static void
4403 debug_to_terminal_ours_for_output (void)
4404 {
4405 debug_target.to_terminal_ours_for_output ();
4406
4407 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4408 }
4409
4410 static void
4411 debug_to_terminal_ours (void)
4412 {
4413 debug_target.to_terminal_ours ();
4414
4415 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4416 }
4417
4418 static void
4419 debug_to_terminal_save_ours (void)
4420 {
4421 debug_target.to_terminal_save_ours ();
4422
4423 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4424 }
4425
4426 static void
4427 debug_to_terminal_info (char *arg, int from_tty)
4428 {
4429 debug_target.to_terminal_info (arg, from_tty);
4430
4431 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4432 from_tty);
4433 }
4434
4435 static void
4436 debug_to_load (char *args, int from_tty)
4437 {
4438 debug_target.to_load (args, from_tty);
4439
4440 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4441 }
4442
4443 static void
4444 debug_to_post_startup_inferior (ptid_t ptid)
4445 {
4446 debug_target.to_post_startup_inferior (ptid);
4447
4448 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4449 PIDGET (ptid));
4450 }
4451
4452 static int
4453 debug_to_insert_fork_catchpoint (int pid)
4454 {
4455 int retval;
4456
4457 retval = debug_target.to_insert_fork_catchpoint (pid);
4458
4459 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4460 pid, retval);
4461
4462 return retval;
4463 }
4464
4465 static int
4466 debug_to_remove_fork_catchpoint (int pid)
4467 {
4468 int retval;
4469
4470 retval = debug_target.to_remove_fork_catchpoint (pid);
4471
4472 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4473 pid, retval);
4474
4475 return retval;
4476 }
4477
4478 static int
4479 debug_to_insert_vfork_catchpoint (int pid)
4480 {
4481 int retval;
4482
4483 retval = debug_target.to_insert_vfork_catchpoint (pid);
4484
4485 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4486 pid, retval);
4487
4488 return retval;
4489 }
4490
4491 static int
4492 debug_to_remove_vfork_catchpoint (int pid)
4493 {
4494 int retval;
4495
4496 retval = debug_target.to_remove_vfork_catchpoint (pid);
4497
4498 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4499 pid, retval);
4500
4501 return retval;
4502 }
4503
4504 static int
4505 debug_to_insert_exec_catchpoint (int pid)
4506 {
4507 int retval;
4508
4509 retval = debug_target.to_insert_exec_catchpoint (pid);
4510
4511 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4512 pid, retval);
4513
4514 return retval;
4515 }
4516
4517 static int
4518 debug_to_remove_exec_catchpoint (int pid)
4519 {
4520 int retval;
4521
4522 retval = debug_target.to_remove_exec_catchpoint (pid);
4523
4524 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4525 pid, retval);
4526
4527 return retval;
4528 }
4529
4530 static int
4531 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4532 {
4533 int has_exited;
4534
4535 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4536
4537 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4538 pid, wait_status, *exit_status, has_exited);
4539
4540 return has_exited;
4541 }
4542
4543 static int
4544 debug_to_can_run (void)
4545 {
4546 int retval;
4547
4548 retval = debug_target.to_can_run ();
4549
4550 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4551
4552 return retval;
4553 }
4554
4555 static struct gdbarch *
4556 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4557 {
4558 struct gdbarch *retval;
4559
4560 retval = debug_target.to_thread_architecture (ops, ptid);
4561
4562 fprintf_unfiltered (gdb_stdlog,
4563 "target_thread_architecture (%s) = %s [%s]\n",
4564 target_pid_to_str (ptid),
4565 host_address_to_string (retval),
4566 gdbarch_bfd_arch_info (retval)->printable_name);
4567 return retval;
4568 }
4569
4570 static void
4571 debug_to_stop (ptid_t ptid)
4572 {
4573 debug_target.to_stop (ptid);
4574
4575 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4576 target_pid_to_str (ptid));
4577 }
4578
4579 static void
4580 debug_to_rcmd (char *command,
4581 struct ui_file *outbuf)
4582 {
4583 debug_target.to_rcmd (command, outbuf);
4584 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4585 }
4586
4587 static char *
4588 debug_to_pid_to_exec_file (int pid)
4589 {
4590 char *exec_file;
4591
4592 exec_file = debug_target.to_pid_to_exec_file (pid);
4593
4594 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4595 pid, exec_file);
4596
4597 return exec_file;
4598 }
4599
4600 static void
4601 setup_target_debug (void)
4602 {
4603 memcpy (&debug_target, &current_target, sizeof debug_target);
4604
4605 current_target.to_open = debug_to_open;
4606 current_target.to_post_attach = debug_to_post_attach;
4607 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4608 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4609 current_target.to_files_info = debug_to_files_info;
4610 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4611 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4612 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4613 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4614 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4615 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4616 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4617 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4618 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4619 current_target.to_watchpoint_addr_within_range
4620 = debug_to_watchpoint_addr_within_range;
4621 current_target.to_region_ok_for_hw_watchpoint
4622 = debug_to_region_ok_for_hw_watchpoint;
4623 current_target.to_can_accel_watchpoint_condition
4624 = debug_to_can_accel_watchpoint_condition;
4625 current_target.to_terminal_init = debug_to_terminal_init;
4626 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4627 current_target.to_terminal_ours_for_output
4628 = debug_to_terminal_ours_for_output;
4629 current_target.to_terminal_ours = debug_to_terminal_ours;
4630 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4631 current_target.to_terminal_info = debug_to_terminal_info;
4632 current_target.to_load = debug_to_load;
4633 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4634 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4635 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4636 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4637 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4638 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4639 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4640 current_target.to_has_exited = debug_to_has_exited;
4641 current_target.to_can_run = debug_to_can_run;
4642 current_target.to_stop = debug_to_stop;
4643 current_target.to_rcmd = debug_to_rcmd;
4644 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4645 current_target.to_thread_architecture = debug_to_thread_architecture;
4646 }
4647 \f
4648
4649 static char targ_desc[] =
4650 "Names of targets and files being debugged.\nShows the entire \
4651 stack of targets currently in use (including the exec-file,\n\
4652 core-file, and process, if any), as well as the symbol file name.";
4653
4654 static void
4655 do_monitor_command (char *cmd,
4656 int from_tty)
4657 {
4658 if ((current_target.to_rcmd
4659 == (void (*) (char *, struct ui_file *)) tcomplain)
4660 || (current_target.to_rcmd == debug_to_rcmd
4661 && (debug_target.to_rcmd
4662 == (void (*) (char *, struct ui_file *)) tcomplain)))
4663 error (_("\"monitor\" command not supported by this target."));
4664 target_rcmd (cmd, gdb_stdtarg);
4665 }
4666
4667 /* Print the name of each layers of our target stack. */
4668
4669 static void
4670 maintenance_print_target_stack (char *cmd, int from_tty)
4671 {
4672 struct target_ops *t;
4673
4674 printf_filtered (_("The current target stack is:\n"));
4675
4676 for (t = target_stack; t != NULL; t = t->beneath)
4677 {
4678 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4679 }
4680 }
4681
4682 /* Controls if async mode is permitted. */
4683 int target_async_permitted = 0;
4684
4685 /* The set command writes to this variable. If the inferior is
4686 executing, linux_nat_async_permitted is *not* updated. */
4687 static int target_async_permitted_1 = 0;
4688
4689 static void
4690 set_target_async_command (char *args, int from_tty,
4691 struct cmd_list_element *c)
4692 {
4693 if (have_live_inferiors ())
4694 {
4695 target_async_permitted_1 = target_async_permitted;
4696 error (_("Cannot change this setting while the inferior is running."));
4697 }
4698
4699 target_async_permitted = target_async_permitted_1;
4700 }
4701
4702 static void
4703 show_target_async_command (struct ui_file *file, int from_tty,
4704 struct cmd_list_element *c,
4705 const char *value)
4706 {
4707 fprintf_filtered (file,
4708 _("Controlling the inferior in "
4709 "asynchronous mode is %s.\n"), value);
4710 }
4711
4712 /* Temporary copies of permission settings. */
4713
4714 static int may_write_registers_1 = 1;
4715 static int may_write_memory_1 = 1;
4716 static int may_insert_breakpoints_1 = 1;
4717 static int may_insert_tracepoints_1 = 1;
4718 static int may_insert_fast_tracepoints_1 = 1;
4719 static int may_stop_1 = 1;
4720
4721 /* Make the user-set values match the real values again. */
4722
4723 void
4724 update_target_permissions (void)
4725 {
4726 may_write_registers_1 = may_write_registers;
4727 may_write_memory_1 = may_write_memory;
4728 may_insert_breakpoints_1 = may_insert_breakpoints;
4729 may_insert_tracepoints_1 = may_insert_tracepoints;
4730 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4731 may_stop_1 = may_stop;
4732 }
4733
4734 /* The one function handles (most of) the permission flags in the same
4735 way. */
4736
4737 static void
4738 set_target_permissions (char *args, int from_tty,
4739 struct cmd_list_element *c)
4740 {
4741 if (target_has_execution)
4742 {
4743 update_target_permissions ();
4744 error (_("Cannot change this setting while the inferior is running."));
4745 }
4746
4747 /* Make the real values match the user-changed values. */
4748 may_write_registers = may_write_registers_1;
4749 may_insert_breakpoints = may_insert_breakpoints_1;
4750 may_insert_tracepoints = may_insert_tracepoints_1;
4751 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4752 may_stop = may_stop_1;
4753 update_observer_mode ();
4754 }
4755
4756 /* Set memory write permission independently of observer mode. */
4757
4758 static void
4759 set_write_memory_permission (char *args, int from_tty,
4760 struct cmd_list_element *c)
4761 {
4762 /* Make the real values match the user-changed values. */
4763 may_write_memory = may_write_memory_1;
4764 update_observer_mode ();
4765 }
4766
4767
4768 void
4769 initialize_targets (void)
4770 {
4771 init_dummy_target ();
4772 push_target (&dummy_target);
4773
4774 add_info ("target", target_info, targ_desc);
4775 add_info ("files", target_info, targ_desc);
4776
4777 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4778 Set target debugging."), _("\
4779 Show target debugging."), _("\
4780 When non-zero, target debugging is enabled. Higher numbers are more\n\
4781 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4782 command."),
4783 NULL,
4784 show_targetdebug,
4785 &setdebuglist, &showdebuglist);
4786
4787 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4788 &trust_readonly, _("\
4789 Set mode for reading from readonly sections."), _("\
4790 Show mode for reading from readonly sections."), _("\
4791 When this mode is on, memory reads from readonly sections (such as .text)\n\
4792 will be read from the object file instead of from the target. This will\n\
4793 result in significant performance improvement for remote targets."),
4794 NULL,
4795 show_trust_readonly,
4796 &setlist, &showlist);
4797
4798 add_com ("monitor", class_obscure, do_monitor_command,
4799 _("Send a command to the remote monitor (remote targets only)."));
4800
4801 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4802 _("Print the name of each layer of the internal target stack."),
4803 &maintenanceprintlist);
4804
4805 add_setshow_boolean_cmd ("target-async", no_class,
4806 &target_async_permitted_1, _("\
4807 Set whether gdb controls the inferior in asynchronous mode."), _("\
4808 Show whether gdb controls the inferior in asynchronous mode."), _("\
4809 Tells gdb whether to control the inferior in asynchronous mode."),
4810 set_target_async_command,
4811 show_target_async_command,
4812 &setlist,
4813 &showlist);
4814
4815 add_setshow_boolean_cmd ("stack-cache", class_support,
4816 &stack_cache_enabled_p_1, _("\
4817 Set cache use for stack access."), _("\
4818 Show cache use for stack access."), _("\
4819 When on, use the data cache for all stack access, regardless of any\n\
4820 configured memory regions. This improves remote performance significantly.\n\
4821 By default, caching for stack access is on."),
4822 set_stack_cache_enabled_p,
4823 show_stack_cache_enabled_p,
4824 &setlist, &showlist);
4825
4826 add_setshow_boolean_cmd ("may-write-registers", class_support,
4827 &may_write_registers_1, _("\
4828 Set permission to write into registers."), _("\
4829 Show permission to write into registers."), _("\
4830 When this permission is on, GDB may write into the target's registers.\n\
4831 Otherwise, any sort of write attempt will result in an error."),
4832 set_target_permissions, NULL,
4833 &setlist, &showlist);
4834
4835 add_setshow_boolean_cmd ("may-write-memory", class_support,
4836 &may_write_memory_1, _("\
4837 Set permission to write into target memory."), _("\
4838 Show permission to write into target memory."), _("\
4839 When this permission is on, GDB may write into the target's memory.\n\
4840 Otherwise, any sort of write attempt will result in an error."),
4841 set_write_memory_permission, NULL,
4842 &setlist, &showlist);
4843
4844 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4845 &may_insert_breakpoints_1, _("\
4846 Set permission to insert breakpoints in the target."), _("\
4847 Show permission to insert breakpoints in the target."), _("\
4848 When this permission is on, GDB may insert breakpoints in the program.\n\
4849 Otherwise, any sort of insertion attempt will result in an error."),
4850 set_target_permissions, NULL,
4851 &setlist, &showlist);
4852
4853 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4854 &may_insert_tracepoints_1, _("\
4855 Set permission to insert tracepoints in the target."), _("\
4856 Show permission to insert tracepoints in the target."), _("\
4857 When this permission is on, GDB may insert tracepoints in the program.\n\
4858 Otherwise, any sort of insertion attempt will result in an error."),
4859 set_target_permissions, NULL,
4860 &setlist, &showlist);
4861
4862 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4863 &may_insert_fast_tracepoints_1, _("\
4864 Set permission to insert fast tracepoints in the target."), _("\
4865 Show permission to insert fast tracepoints in the target."), _("\
4866 When this permission is on, GDB may insert fast tracepoints.\n\
4867 Otherwise, any sort of insertion attempt will result in an error."),
4868 set_target_permissions, NULL,
4869 &setlist, &showlist);
4870
4871 add_setshow_boolean_cmd ("may-interrupt", class_support,
4872 &may_stop_1, _("\
4873 Set permission to interrupt or signal the target."), _("\
4874 Show permission to interrupt or signal the target."), _("\
4875 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4876 Otherwise, any attempt to interrupt or stop will be ignored."),
4877 set_target_permissions, NULL,
4878 &setlist, &showlist);
4879
4880
4881 target_dcache = dcache_init ();
4882 }