Remote non-stop mode support.
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_close (int);
101
102 static void debug_to_attach (char *, int);
103
104 static void debug_to_detach (char *, int);
105
106 static void debug_to_resume (ptid_t, int, enum target_signal);
107
108 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
109
110 static void debug_to_fetch_registers (struct regcache *, int);
111
112 static void debug_to_store_registers (struct regcache *, int);
113
114 static void debug_to_prepare_to_store (struct regcache *);
115
116 static void debug_to_files_info (struct target_ops *);
117
118 static int debug_to_insert_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_breakpoint (struct bp_target_info *);
121
122 static int debug_to_can_use_hw_breakpoint (int, int, int);
123
124 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
125
126 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
129
130 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_stopped_by_watchpoint (void);
133
134 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
135
136 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
137 CORE_ADDR, CORE_ADDR, int);
138
139 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
140
141 static void debug_to_terminal_init (void);
142
143 static void debug_to_terminal_inferior (void);
144
145 static void debug_to_terminal_ours_for_output (void);
146
147 static void debug_to_terminal_save_ours (void);
148
149 static void debug_to_terminal_ours (void);
150
151 static void debug_to_terminal_info (char *, int);
152
153 static void debug_to_kill (void);
154
155 static void debug_to_load (char *, int);
156
157 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
158
159 static void debug_to_mourn_inferior (void);
160
161 static int debug_to_can_run (void);
162
163 static void debug_to_notice_signals (ptid_t);
164
165 static int debug_to_thread_alive (ptid_t);
166
167 static void debug_to_stop (ptid_t);
168
169 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
170 wierd and mysterious ways. Putting the variable here lets those
171 wierd and mysterious ways keep building while they are being
172 converted to the inferior inheritance structure. */
173 struct target_ops deprecated_child_ops;
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_index;
181 unsigned target_struct_allocsize;
182 #define DEFAULT_ALLOCSIZE 10
183
184 /* The initial current target, so that there is always a semi-valid
185 current target. */
186
187 static struct target_ops dummy_target;
188
189 /* Top of target stack. */
190
191 static struct target_ops *target_stack;
192
193 /* The target structure we are currently using to talk to a process
194 or file or whatever "inferior" we have. */
195
196 struct target_ops current_target;
197
198 /* Command list for target. */
199
200 static struct cmd_list_element *targetlist = NULL;
201
202 /* Nonzero if we should trust readonly sections from the
203 executable when reading memory. */
204
205 static int trust_readonly = 0;
206
207 /* Nonzero if we should show true memory content including
208 memory breakpoint inserted by gdb. */
209
210 static int show_memory_breakpoints = 0;
211
212 /* Non-zero if we want to see trace of target level stuff. */
213
214 static int targetdebug = 0;
215 static void
216 show_targetdebug (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
220 }
221
222 static void setup_target_debug (void);
223
224 DCACHE *target_dcache;
225
226 /* The user just typed 'target' without the name of a target. */
227
228 static void
229 target_command (char *arg, int from_tty)
230 {
231 fputs_filtered ("Argument required (target name). Try `help target'\n",
232 gdb_stdout);
233 }
234
235 /* Add a possible target architecture to the list. */
236
237 void
238 add_target (struct target_ops *t)
239 {
240 /* Provide default values for all "must have" methods. */
241 if (t->to_xfer_partial == NULL)
242 t->to_xfer_partial = default_xfer_partial;
243
244 if (!target_structs)
245 {
246 target_struct_allocsize = DEFAULT_ALLOCSIZE;
247 target_structs = (struct target_ops **) xmalloc
248 (target_struct_allocsize * sizeof (*target_structs));
249 }
250 if (target_struct_size >= target_struct_allocsize)
251 {
252 target_struct_allocsize *= 2;
253 target_structs = (struct target_ops **)
254 xrealloc ((char *) target_structs,
255 target_struct_allocsize * sizeof (*target_structs));
256 }
257 target_structs[target_struct_size++] = t;
258
259 if (targetlist == NULL)
260 add_prefix_cmd ("target", class_run, target_command, _("\
261 Connect to a target machine or process.\n\
262 The first argument is the type or protocol of the target machine.\n\
263 Remaining arguments are interpreted by the target protocol. For more\n\
264 information on the arguments for a particular protocol, type\n\
265 `help target ' followed by the protocol name."),
266 &targetlist, "target ", 0, &cmdlist);
267 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
268 }
269
270 /* Stub functions */
271
272 void
273 target_ignore (void)
274 {
275 }
276
277 void
278 target_load (char *arg, int from_tty)
279 {
280 dcache_invalidate (target_dcache);
281 (*current_target.to_load) (arg, from_tty);
282 }
283
284 static int
285 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
286 struct target_ops *t)
287 {
288 errno = EIO; /* Can't read/write this location */
289 return 0; /* No bytes handled */
290 }
291
292 static void
293 tcomplain (void)
294 {
295 error (_("You can't do that when your target is `%s'"),
296 current_target.to_shortname);
297 }
298
299 void
300 noprocess (void)
301 {
302 error (_("You can't do that without a process to debug."));
303 }
304
305 static int
306 nosymbol (char *name, CORE_ADDR *addrp)
307 {
308 return 1; /* Symbol does not exist in target env */
309 }
310
311 static void
312 nosupport_runtime (void)
313 {
314 if (ptid_equal (inferior_ptid, null_ptid))
315 noprocess ();
316 else
317 error (_("No run-time support for this"));
318 }
319
320
321 static void
322 default_terminal_info (char *args, int from_tty)
323 {
324 printf_unfiltered (_("No saved terminal information.\n"));
325 }
326
327 /* This is the default target_create_inferior and target_attach function.
328 If the current target is executing, it asks whether to kill it off.
329 If this function returns without calling error(), it has killed off
330 the target, and the operation should be attempted. */
331
332 static void
333 kill_or_be_killed (int from_tty)
334 {
335 if (target_has_execution)
336 {
337 printf_unfiltered (_("You are already running a program:\n"));
338 target_files_info ();
339 if (query ("Kill it? "))
340 {
341 target_kill ();
342 if (target_has_execution)
343 error (_("Killing the program did not help."));
344 return;
345 }
346 else
347 {
348 error (_("Program not killed."));
349 }
350 }
351 tcomplain ();
352 }
353
354 /* A default implementation for the to_get_ada_task_ptid target method.
355
356 This function builds the PTID by using both LWP and TID as part of
357 the PTID lwp and tid elements. The pid used is the pid of the
358 inferior_ptid. */
359
360 ptid_t
361 default_get_ada_task_ptid (long lwp, long tid)
362 {
363 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
364 }
365
366 /* Go through the target stack from top to bottom, copying over zero
367 entries in current_target, then filling in still empty entries. In
368 effect, we are doing class inheritance through the pushed target
369 vectors.
370
371 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
372 is currently implemented, is that it discards any knowledge of
373 which target an inherited method originally belonged to.
374 Consequently, new new target methods should instead explicitly and
375 locally search the target stack for the target that can handle the
376 request. */
377
378 static void
379 update_current_target (void)
380 {
381 struct target_ops *t;
382
383 /* First, reset current's contents. */
384 memset (&current_target, 0, sizeof (current_target));
385
386 #define INHERIT(FIELD, TARGET) \
387 if (!current_target.FIELD) \
388 current_target.FIELD = (TARGET)->FIELD
389
390 for (t = target_stack; t; t = t->beneath)
391 {
392 INHERIT (to_shortname, t);
393 INHERIT (to_longname, t);
394 INHERIT (to_doc, t);
395 /* Do not inherit to_open. */
396 /* Do not inherit to_close. */
397 INHERIT (to_attach, t);
398 INHERIT (to_post_attach, t);
399 INHERIT (to_attach_no_wait, t);
400 INHERIT (to_detach, t);
401 /* Do not inherit to_disconnect. */
402 INHERIT (to_resume, t);
403 INHERIT (to_wait, t);
404 INHERIT (to_fetch_registers, t);
405 INHERIT (to_store_registers, t);
406 INHERIT (to_prepare_to_store, t);
407 INHERIT (deprecated_xfer_memory, t);
408 INHERIT (to_files_info, t);
409 INHERIT (to_insert_breakpoint, t);
410 INHERIT (to_remove_breakpoint, t);
411 INHERIT (to_can_use_hw_breakpoint, t);
412 INHERIT (to_insert_hw_breakpoint, t);
413 INHERIT (to_remove_hw_breakpoint, t);
414 INHERIT (to_insert_watchpoint, t);
415 INHERIT (to_remove_watchpoint, t);
416 INHERIT (to_stopped_data_address, t);
417 INHERIT (to_have_steppable_watchpoint, t);
418 INHERIT (to_have_continuable_watchpoint, t);
419 INHERIT (to_stopped_by_watchpoint, t);
420 INHERIT (to_watchpoint_addr_within_range, t);
421 INHERIT (to_region_ok_for_hw_watchpoint, t);
422 INHERIT (to_terminal_init, t);
423 INHERIT (to_terminal_inferior, t);
424 INHERIT (to_terminal_ours_for_output, t);
425 INHERIT (to_terminal_ours, t);
426 INHERIT (to_terminal_save_ours, t);
427 INHERIT (to_terminal_info, t);
428 INHERIT (to_kill, t);
429 INHERIT (to_load, t);
430 INHERIT (to_lookup_symbol, t);
431 INHERIT (to_create_inferior, t);
432 INHERIT (to_post_startup_inferior, t);
433 INHERIT (to_acknowledge_created_inferior, t);
434 INHERIT (to_insert_fork_catchpoint, t);
435 INHERIT (to_remove_fork_catchpoint, t);
436 INHERIT (to_insert_vfork_catchpoint, t);
437 INHERIT (to_remove_vfork_catchpoint, t);
438 /* Do not inherit to_follow_fork. */
439 INHERIT (to_insert_exec_catchpoint, t);
440 INHERIT (to_remove_exec_catchpoint, t);
441 INHERIT (to_has_exited, t);
442 INHERIT (to_mourn_inferior, t);
443 INHERIT (to_can_run, t);
444 INHERIT (to_notice_signals, t);
445 INHERIT (to_thread_alive, t);
446 INHERIT (to_find_new_threads, t);
447 INHERIT (to_pid_to_str, t);
448 INHERIT (to_extra_thread_info, t);
449 INHERIT (to_stop, t);
450 /* Do not inherit to_xfer_partial. */
451 INHERIT (to_rcmd, t);
452 INHERIT (to_pid_to_exec_file, t);
453 INHERIT (to_log_command, t);
454 INHERIT (to_stratum, t);
455 INHERIT (to_has_all_memory, t);
456 INHERIT (to_has_memory, t);
457 INHERIT (to_has_stack, t);
458 INHERIT (to_has_registers, t);
459 INHERIT (to_has_execution, t);
460 INHERIT (to_has_thread_control, t);
461 INHERIT (to_sections, t);
462 INHERIT (to_sections_end, t);
463 INHERIT (to_can_async_p, t);
464 INHERIT (to_is_async_p, t);
465 INHERIT (to_async, t);
466 INHERIT (to_async_mask, t);
467 INHERIT (to_find_memory_regions, t);
468 INHERIT (to_make_corefile_notes, t);
469 INHERIT (to_get_thread_local_address, t);
470 INHERIT (to_can_execute_reverse, t);
471 /* Do not inherit to_read_description. */
472 INHERIT (to_get_ada_task_ptid, t);
473 /* Do not inherit to_search_memory. */
474 INHERIT (to_magic, t);
475 /* Do not inherit to_memory_map. */
476 /* Do not inherit to_flash_erase. */
477 /* Do not inherit to_flash_done. */
478 }
479 #undef INHERIT
480
481 /* Clean up a target struct so it no longer has any zero pointers in
482 it. Some entries are defaulted to a method that print an error,
483 others are hard-wired to a standard recursive default. */
484
485 #define de_fault(field, value) \
486 if (!current_target.field) \
487 current_target.field = value
488
489 de_fault (to_open,
490 (void (*) (char *, int))
491 tcomplain);
492 de_fault (to_close,
493 (void (*) (int))
494 target_ignore);
495 de_fault (to_post_attach,
496 (void (*) (int))
497 target_ignore);
498 de_fault (to_detach,
499 (void (*) (char *, int))
500 target_ignore);
501 de_fault (to_resume,
502 (void (*) (ptid_t, int, enum target_signal))
503 noprocess);
504 de_fault (to_wait,
505 (ptid_t (*) (ptid_t, struct target_waitstatus *))
506 noprocess);
507 de_fault (to_fetch_registers,
508 (void (*) (struct regcache *, int))
509 target_ignore);
510 de_fault (to_store_registers,
511 (void (*) (struct regcache *, int))
512 noprocess);
513 de_fault (to_prepare_to_store,
514 (void (*) (struct regcache *))
515 noprocess);
516 de_fault (deprecated_xfer_memory,
517 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
518 nomemory);
519 de_fault (to_files_info,
520 (void (*) (struct target_ops *))
521 target_ignore);
522 de_fault (to_insert_breakpoint,
523 memory_insert_breakpoint);
524 de_fault (to_remove_breakpoint,
525 memory_remove_breakpoint);
526 de_fault (to_can_use_hw_breakpoint,
527 (int (*) (int, int, int))
528 return_zero);
529 de_fault (to_insert_hw_breakpoint,
530 (int (*) (struct bp_target_info *))
531 return_minus_one);
532 de_fault (to_remove_hw_breakpoint,
533 (int (*) (struct bp_target_info *))
534 return_minus_one);
535 de_fault (to_insert_watchpoint,
536 (int (*) (CORE_ADDR, int, int))
537 return_minus_one);
538 de_fault (to_remove_watchpoint,
539 (int (*) (CORE_ADDR, int, int))
540 return_minus_one);
541 de_fault (to_stopped_by_watchpoint,
542 (int (*) (void))
543 return_zero);
544 de_fault (to_stopped_data_address,
545 (int (*) (struct target_ops *, CORE_ADDR *))
546 return_zero);
547 de_fault (to_watchpoint_addr_within_range,
548 default_watchpoint_addr_within_range);
549 de_fault (to_region_ok_for_hw_watchpoint,
550 default_region_ok_for_hw_watchpoint);
551 de_fault (to_terminal_init,
552 (void (*) (void))
553 target_ignore);
554 de_fault (to_terminal_inferior,
555 (void (*) (void))
556 target_ignore);
557 de_fault (to_terminal_ours_for_output,
558 (void (*) (void))
559 target_ignore);
560 de_fault (to_terminal_ours,
561 (void (*) (void))
562 target_ignore);
563 de_fault (to_terminal_save_ours,
564 (void (*) (void))
565 target_ignore);
566 de_fault (to_terminal_info,
567 default_terminal_info);
568 de_fault (to_kill,
569 (void (*) (void))
570 noprocess);
571 de_fault (to_load,
572 (void (*) (char *, int))
573 tcomplain);
574 de_fault (to_lookup_symbol,
575 (int (*) (char *, CORE_ADDR *))
576 nosymbol);
577 de_fault (to_post_startup_inferior,
578 (void (*) (ptid_t))
579 target_ignore);
580 de_fault (to_acknowledge_created_inferior,
581 (void (*) (int))
582 target_ignore);
583 de_fault (to_insert_fork_catchpoint,
584 (void (*) (int))
585 tcomplain);
586 de_fault (to_remove_fork_catchpoint,
587 (int (*) (int))
588 tcomplain);
589 de_fault (to_insert_vfork_catchpoint,
590 (void (*) (int))
591 tcomplain);
592 de_fault (to_remove_vfork_catchpoint,
593 (int (*) (int))
594 tcomplain);
595 de_fault (to_insert_exec_catchpoint,
596 (void (*) (int))
597 tcomplain);
598 de_fault (to_remove_exec_catchpoint,
599 (int (*) (int))
600 tcomplain);
601 de_fault (to_has_exited,
602 (int (*) (int, int, int *))
603 return_zero);
604 de_fault (to_mourn_inferior,
605 (void (*) (void))
606 noprocess);
607 de_fault (to_can_run,
608 return_zero);
609 de_fault (to_notice_signals,
610 (void (*) (ptid_t))
611 target_ignore);
612 de_fault (to_thread_alive,
613 (int (*) (ptid_t))
614 return_zero);
615 de_fault (to_find_new_threads,
616 (void (*) (void))
617 target_ignore);
618 de_fault (to_extra_thread_info,
619 (char *(*) (struct thread_info *))
620 return_zero);
621 de_fault (to_stop,
622 (void (*) (ptid_t))
623 target_ignore);
624 current_target.to_xfer_partial = current_xfer_partial;
625 de_fault (to_rcmd,
626 (void (*) (char *, struct ui_file *))
627 tcomplain);
628 de_fault (to_pid_to_exec_file,
629 (char *(*) (int))
630 return_zero);
631 de_fault (to_async,
632 (void (*) (void (*) (enum inferior_event_type, void*), void*))
633 tcomplain);
634 de_fault (to_async_mask,
635 (int (*) (int))
636 return_one);
637 current_target.to_read_description = NULL;
638 de_fault (to_get_ada_task_ptid,
639 (ptid_t (*) (long, long))
640 default_get_ada_task_ptid);
641 #undef de_fault
642
643 /* Finally, position the target-stack beneath the squashed
644 "current_target". That way code looking for a non-inherited
645 target method can quickly and simply find it. */
646 current_target.beneath = target_stack;
647
648 if (targetdebug)
649 setup_target_debug ();
650 }
651
652 /* Mark OPS as a running target. This reverses the effect
653 of target_mark_exited. */
654
655 void
656 target_mark_running (struct target_ops *ops)
657 {
658 struct target_ops *t;
659
660 for (t = target_stack; t != NULL; t = t->beneath)
661 if (t == ops)
662 break;
663 if (t == NULL)
664 internal_error (__FILE__, __LINE__,
665 "Attempted to mark unpushed target \"%s\" as running",
666 ops->to_shortname);
667
668 ops->to_has_execution = 1;
669 ops->to_has_all_memory = 1;
670 ops->to_has_memory = 1;
671 ops->to_has_stack = 1;
672 ops->to_has_registers = 1;
673
674 update_current_target ();
675 }
676
677 /* Mark OPS as a non-running target. This reverses the effect
678 of target_mark_running. */
679
680 void
681 target_mark_exited (struct target_ops *ops)
682 {
683 struct target_ops *t;
684
685 for (t = target_stack; t != NULL; t = t->beneath)
686 if (t == ops)
687 break;
688 if (t == NULL)
689 internal_error (__FILE__, __LINE__,
690 "Attempted to mark unpushed target \"%s\" as running",
691 ops->to_shortname);
692
693 ops->to_has_execution = 0;
694 ops->to_has_all_memory = 0;
695 ops->to_has_memory = 0;
696 ops->to_has_stack = 0;
697 ops->to_has_registers = 0;
698
699 update_current_target ();
700 }
701
702 /* Push a new target type into the stack of the existing target accessors,
703 possibly superseding some of the existing accessors.
704
705 Result is zero if the pushed target ended up on top of the stack,
706 nonzero if at least one target is on top of it.
707
708 Rather than allow an empty stack, we always have the dummy target at
709 the bottom stratum, so we can call the function vectors without
710 checking them. */
711
712 int
713 push_target (struct target_ops *t)
714 {
715 struct target_ops **cur;
716
717 /* Check magic number. If wrong, it probably means someone changed
718 the struct definition, but not all the places that initialize one. */
719 if (t->to_magic != OPS_MAGIC)
720 {
721 fprintf_unfiltered (gdb_stderr,
722 "Magic number of %s target struct wrong\n",
723 t->to_shortname);
724 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
725 }
726
727 /* Find the proper stratum to install this target in. */
728 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
729 {
730 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
731 break;
732 }
733
734 /* If there's already targets at this stratum, remove them. */
735 /* FIXME: cagney/2003-10-15: I think this should be popping all
736 targets to CUR, and not just those at this stratum level. */
737 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
738 {
739 /* There's already something at this stratum level. Close it,
740 and un-hook it from the stack. */
741 struct target_ops *tmp = (*cur);
742 (*cur) = (*cur)->beneath;
743 tmp->beneath = NULL;
744 target_close (tmp, 0);
745 }
746
747 /* We have removed all targets in our stratum, now add the new one. */
748 t->beneath = (*cur);
749 (*cur) = t;
750
751 update_current_target ();
752
753 /* Not on top? */
754 return (t != target_stack);
755 }
756
757 /* Remove a target_ops vector from the stack, wherever it may be.
758 Return how many times it was removed (0 or 1). */
759
760 int
761 unpush_target (struct target_ops *t)
762 {
763 struct target_ops **cur;
764 struct target_ops *tmp;
765
766 if (t->to_stratum == dummy_stratum)
767 internal_error (__FILE__, __LINE__,
768 "Attempt to unpush the dummy target");
769
770 /* Look for the specified target. Note that we assume that a target
771 can only occur once in the target stack. */
772
773 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
774 {
775 if ((*cur) == t)
776 break;
777 }
778
779 if ((*cur) == NULL)
780 return 0; /* Didn't find target_ops, quit now */
781
782 /* NOTE: cagney/2003-12-06: In '94 the close call was made
783 unconditional by moving it to before the above check that the
784 target was in the target stack (something about "Change the way
785 pushing and popping of targets work to support target overlays
786 and inheritance"). This doesn't make much sense - only open
787 targets should be closed. */
788 target_close (t, 0);
789
790 /* Unchain the target */
791 tmp = (*cur);
792 (*cur) = (*cur)->beneath;
793 tmp->beneath = NULL;
794
795 update_current_target ();
796
797 return 1;
798 }
799
800 void
801 pop_target (void)
802 {
803 target_close (target_stack, 0); /* Let it clean up */
804 if (unpush_target (target_stack) == 1)
805 return;
806
807 fprintf_unfiltered (gdb_stderr,
808 "pop_target couldn't find target %s\n",
809 current_target.to_shortname);
810 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
811 }
812
813 void
814 pop_all_targets_above (enum strata above_stratum, int quitting)
815 {
816 while ((int) (current_target.to_stratum) > (int) above_stratum)
817 {
818 target_close (target_stack, quitting);
819 if (!unpush_target (target_stack))
820 {
821 fprintf_unfiltered (gdb_stderr,
822 "pop_all_targets couldn't find target %s\n",
823 target_stack->to_shortname);
824 internal_error (__FILE__, __LINE__,
825 _("failed internal consistency check"));
826 break;
827 }
828 }
829 }
830
831 void
832 pop_all_targets (int quitting)
833 {
834 pop_all_targets_above (dummy_stratum, quitting);
835 }
836
837 /* Using the objfile specified in OBJFILE, find the address for the
838 current thread's thread-local storage with offset OFFSET. */
839 CORE_ADDR
840 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
841 {
842 volatile CORE_ADDR addr = 0;
843
844 if (target_get_thread_local_address_p ()
845 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
846 {
847 ptid_t ptid = inferior_ptid;
848 volatile struct gdb_exception ex;
849
850 TRY_CATCH (ex, RETURN_MASK_ALL)
851 {
852 CORE_ADDR lm_addr;
853
854 /* Fetch the load module address for this objfile. */
855 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
856 objfile);
857 /* If it's 0, throw the appropriate exception. */
858 if (lm_addr == 0)
859 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
860 _("TLS load module not found"));
861
862 addr = target_get_thread_local_address (ptid, lm_addr, offset);
863 }
864 /* If an error occurred, print TLS related messages here. Otherwise,
865 throw the error to some higher catcher. */
866 if (ex.reason < 0)
867 {
868 int objfile_is_library = (objfile->flags & OBJF_SHARED);
869
870 switch (ex.error)
871 {
872 case TLS_NO_LIBRARY_SUPPORT_ERROR:
873 error (_("Cannot find thread-local variables in this thread library."));
874 break;
875 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
876 if (objfile_is_library)
877 error (_("Cannot find shared library `%s' in dynamic"
878 " linker's load module list"), objfile->name);
879 else
880 error (_("Cannot find executable file `%s' in dynamic"
881 " linker's load module list"), objfile->name);
882 break;
883 case TLS_NOT_ALLOCATED_YET_ERROR:
884 if (objfile_is_library)
885 error (_("The inferior has not yet allocated storage for"
886 " thread-local variables in\n"
887 "the shared library `%s'\n"
888 "for %s"),
889 objfile->name, target_pid_to_str (ptid));
890 else
891 error (_("The inferior has not yet allocated storage for"
892 " thread-local variables in\n"
893 "the executable `%s'\n"
894 "for %s"),
895 objfile->name, target_pid_to_str (ptid));
896 break;
897 case TLS_GENERIC_ERROR:
898 if (objfile_is_library)
899 error (_("Cannot find thread-local storage for %s, "
900 "shared library %s:\n%s"),
901 target_pid_to_str (ptid),
902 objfile->name, ex.message);
903 else
904 error (_("Cannot find thread-local storage for %s, "
905 "executable file %s:\n%s"),
906 target_pid_to_str (ptid),
907 objfile->name, ex.message);
908 break;
909 default:
910 throw_exception (ex);
911 break;
912 }
913 }
914 }
915 /* It wouldn't be wrong here to try a gdbarch method, too; finding
916 TLS is an ABI-specific thing. But we don't do that yet. */
917 else
918 error (_("Cannot find thread-local variables on this target"));
919
920 return addr;
921 }
922
923 #undef MIN
924 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
925
926 /* target_read_string -- read a null terminated string, up to LEN bytes,
927 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
928 Set *STRING to a pointer to malloc'd memory containing the data; the caller
929 is responsible for freeing it. Return the number of bytes successfully
930 read. */
931
932 int
933 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
934 {
935 int tlen, origlen, offset, i;
936 gdb_byte buf[4];
937 int errcode = 0;
938 char *buffer;
939 int buffer_allocated;
940 char *bufptr;
941 unsigned int nbytes_read = 0;
942
943 gdb_assert (string);
944
945 /* Small for testing. */
946 buffer_allocated = 4;
947 buffer = xmalloc (buffer_allocated);
948 bufptr = buffer;
949
950 origlen = len;
951
952 while (len > 0)
953 {
954 tlen = MIN (len, 4 - (memaddr & 3));
955 offset = memaddr & 3;
956
957 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
958 if (errcode != 0)
959 {
960 /* The transfer request might have crossed the boundary to an
961 unallocated region of memory. Retry the transfer, requesting
962 a single byte. */
963 tlen = 1;
964 offset = 0;
965 errcode = target_read_memory (memaddr, buf, 1);
966 if (errcode != 0)
967 goto done;
968 }
969
970 if (bufptr - buffer + tlen > buffer_allocated)
971 {
972 unsigned int bytes;
973 bytes = bufptr - buffer;
974 buffer_allocated *= 2;
975 buffer = xrealloc (buffer, buffer_allocated);
976 bufptr = buffer + bytes;
977 }
978
979 for (i = 0; i < tlen; i++)
980 {
981 *bufptr++ = buf[i + offset];
982 if (buf[i + offset] == '\000')
983 {
984 nbytes_read += i + 1;
985 goto done;
986 }
987 }
988
989 memaddr += tlen;
990 len -= tlen;
991 nbytes_read += tlen;
992 }
993 done:
994 *string = buffer;
995 if (errnop != NULL)
996 *errnop = errcode;
997 return nbytes_read;
998 }
999
1000 /* Find a section containing ADDR. */
1001 struct section_table *
1002 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1003 {
1004 struct section_table *secp;
1005 for (secp = target->to_sections;
1006 secp < target->to_sections_end;
1007 secp++)
1008 {
1009 if (addr >= secp->addr && addr < secp->endaddr)
1010 return secp;
1011 }
1012 return NULL;
1013 }
1014
1015 /* Perform a partial memory transfer. The arguments and return
1016 value are just as for target_xfer_partial. */
1017
1018 static LONGEST
1019 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1020 ULONGEST memaddr, LONGEST len)
1021 {
1022 LONGEST res;
1023 int reg_len;
1024 struct mem_region *region;
1025
1026 /* Zero length requests are ok and require no work. */
1027 if (len == 0)
1028 return 0;
1029
1030 /* Try the executable file, if "trust-readonly-sections" is set. */
1031 if (readbuf != NULL && trust_readonly)
1032 {
1033 struct section_table *secp;
1034
1035 secp = target_section_by_addr (ops, memaddr);
1036 if (secp != NULL
1037 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1038 & SEC_READONLY))
1039 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1040 }
1041
1042 /* Likewise for accesses to unmapped overlay sections. */
1043 if (readbuf != NULL && overlay_debugging)
1044 {
1045 struct obj_section *section = find_pc_overlay (memaddr);
1046 if (pc_in_unmapped_range (memaddr, section))
1047 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1048 }
1049
1050 /* Try GDB's internal data cache. */
1051 region = lookup_mem_region (memaddr);
1052 /* region->hi == 0 means there's no upper bound. */
1053 if (memaddr + len < region->hi || region->hi == 0)
1054 reg_len = len;
1055 else
1056 reg_len = region->hi - memaddr;
1057
1058 switch (region->attrib.mode)
1059 {
1060 case MEM_RO:
1061 if (writebuf != NULL)
1062 return -1;
1063 break;
1064
1065 case MEM_WO:
1066 if (readbuf != NULL)
1067 return -1;
1068 break;
1069
1070 case MEM_FLASH:
1071 /* We only support writing to flash during "load" for now. */
1072 if (writebuf != NULL)
1073 error (_("Writing to flash memory forbidden in this context"));
1074 break;
1075
1076 case MEM_NONE:
1077 return -1;
1078 }
1079
1080 if (region->attrib.cache)
1081 {
1082 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1083 memory request will start back at current_target. */
1084 if (readbuf != NULL)
1085 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1086 reg_len, 0);
1087 else
1088 /* FIXME drow/2006-08-09: If we're going to preserve const
1089 correctness dcache_xfer_memory should take readbuf and
1090 writebuf. */
1091 res = dcache_xfer_memory (target_dcache, memaddr,
1092 (void *) writebuf,
1093 reg_len, 1);
1094 if (res <= 0)
1095 return -1;
1096 else
1097 {
1098 if (readbuf && !show_memory_breakpoints)
1099 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1100 return res;
1101 }
1102 }
1103
1104 /* If none of those methods found the memory we wanted, fall back
1105 to a target partial transfer. Normally a single call to
1106 to_xfer_partial is enough; if it doesn't recognize an object
1107 it will call the to_xfer_partial of the next target down.
1108 But for memory this won't do. Memory is the only target
1109 object which can be read from more than one valid target.
1110 A core file, for instance, could have some of memory but
1111 delegate other bits to the target below it. So, we must
1112 manually try all targets. */
1113
1114 do
1115 {
1116 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1117 readbuf, writebuf, memaddr, reg_len);
1118 if (res > 0)
1119 break;
1120
1121 /* We want to continue past core files to executables, but not
1122 past a running target's memory. */
1123 if (ops->to_has_all_memory)
1124 break;
1125
1126 ops = ops->beneath;
1127 }
1128 while (ops != NULL);
1129
1130 if (readbuf && !show_memory_breakpoints)
1131 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1132
1133 /* If we still haven't got anything, return the last error. We
1134 give up. */
1135 return res;
1136 }
1137
1138 static void
1139 restore_show_memory_breakpoints (void *arg)
1140 {
1141 show_memory_breakpoints = (uintptr_t) arg;
1142 }
1143
1144 struct cleanup *
1145 make_show_memory_breakpoints_cleanup (int show)
1146 {
1147 int current = show_memory_breakpoints;
1148 show_memory_breakpoints = show;
1149
1150 return make_cleanup (restore_show_memory_breakpoints,
1151 (void *) (uintptr_t) current);
1152 }
1153
1154 static LONGEST
1155 target_xfer_partial (struct target_ops *ops,
1156 enum target_object object, const char *annex,
1157 void *readbuf, const void *writebuf,
1158 ULONGEST offset, LONGEST len)
1159 {
1160 LONGEST retval;
1161
1162 gdb_assert (ops->to_xfer_partial != NULL);
1163
1164 /* If this is a memory transfer, let the memory-specific code
1165 have a look at it instead. Memory transfers are more
1166 complicated. */
1167 if (object == TARGET_OBJECT_MEMORY)
1168 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1169 else
1170 {
1171 enum target_object raw_object = object;
1172
1173 /* If this is a raw memory transfer, request the normal
1174 memory object from other layers. */
1175 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1176 raw_object = TARGET_OBJECT_MEMORY;
1177
1178 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1179 writebuf, offset, len);
1180 }
1181
1182 if (targetdebug)
1183 {
1184 const unsigned char *myaddr = NULL;
1185
1186 fprintf_unfiltered (gdb_stdlog,
1187 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, %s, %s) = %s",
1188 ops->to_shortname,
1189 (int) object,
1190 (annex ? annex : "(null)"),
1191 (long) readbuf, (long) writebuf,
1192 core_addr_to_string_nz (offset),
1193 plongest (len), plongest (retval));
1194
1195 if (readbuf)
1196 myaddr = readbuf;
1197 if (writebuf)
1198 myaddr = writebuf;
1199 if (retval > 0 && myaddr != NULL)
1200 {
1201 int i;
1202
1203 fputs_unfiltered (", bytes =", gdb_stdlog);
1204 for (i = 0; i < retval; i++)
1205 {
1206 if ((((long) &(myaddr[i])) & 0xf) == 0)
1207 {
1208 if (targetdebug < 2 && i > 0)
1209 {
1210 fprintf_unfiltered (gdb_stdlog, " ...");
1211 break;
1212 }
1213 fprintf_unfiltered (gdb_stdlog, "\n");
1214 }
1215
1216 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1217 }
1218 }
1219
1220 fputc_unfiltered ('\n', gdb_stdlog);
1221 }
1222 return retval;
1223 }
1224
1225 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1226 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1227 if any error occurs.
1228
1229 If an error occurs, no guarantee is made about the contents of the data at
1230 MYADDR. In particular, the caller should not depend upon partial reads
1231 filling the buffer with good data. There is no way for the caller to know
1232 how much good data might have been transfered anyway. Callers that can
1233 deal with partial reads should call target_read (which will retry until
1234 it makes no progress, and then return how much was transferred). */
1235
1236 int
1237 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1238 {
1239 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1240 myaddr, memaddr, len) == len)
1241 return 0;
1242 else
1243 return EIO;
1244 }
1245
1246 int
1247 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1248 {
1249 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1250 myaddr, memaddr, len) == len)
1251 return 0;
1252 else
1253 return EIO;
1254 }
1255
1256 /* Fetch the target's memory map. */
1257
1258 VEC(mem_region_s) *
1259 target_memory_map (void)
1260 {
1261 VEC(mem_region_s) *result;
1262 struct mem_region *last_one, *this_one;
1263 int ix;
1264 struct target_ops *t;
1265
1266 if (targetdebug)
1267 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1268
1269 for (t = current_target.beneath; t != NULL; t = t->beneath)
1270 if (t->to_memory_map != NULL)
1271 break;
1272
1273 if (t == NULL)
1274 return NULL;
1275
1276 result = t->to_memory_map (t);
1277 if (result == NULL)
1278 return NULL;
1279
1280 qsort (VEC_address (mem_region_s, result),
1281 VEC_length (mem_region_s, result),
1282 sizeof (struct mem_region), mem_region_cmp);
1283
1284 /* Check that regions do not overlap. Simultaneously assign
1285 a numbering for the "mem" commands to use to refer to
1286 each region. */
1287 last_one = NULL;
1288 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1289 {
1290 this_one->number = ix;
1291
1292 if (last_one && last_one->hi > this_one->lo)
1293 {
1294 warning (_("Overlapping regions in memory map: ignoring"));
1295 VEC_free (mem_region_s, result);
1296 return NULL;
1297 }
1298 last_one = this_one;
1299 }
1300
1301 return result;
1302 }
1303
1304 void
1305 target_flash_erase (ULONGEST address, LONGEST length)
1306 {
1307 struct target_ops *t;
1308
1309 for (t = current_target.beneath; t != NULL; t = t->beneath)
1310 if (t->to_flash_erase != NULL)
1311 {
1312 if (targetdebug)
1313 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1314 paddr (address), phex (length, 0));
1315 t->to_flash_erase (t, address, length);
1316 return;
1317 }
1318
1319 tcomplain ();
1320 }
1321
1322 void
1323 target_flash_done (void)
1324 {
1325 struct target_ops *t;
1326
1327 for (t = current_target.beneath; t != NULL; t = t->beneath)
1328 if (t->to_flash_done != NULL)
1329 {
1330 if (targetdebug)
1331 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1332 t->to_flash_done (t);
1333 return;
1334 }
1335
1336 tcomplain ();
1337 }
1338
1339 #ifndef target_stopped_data_address_p
1340 int
1341 target_stopped_data_address_p (struct target_ops *target)
1342 {
1343 if (target->to_stopped_data_address
1344 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1345 return 0;
1346 if (target->to_stopped_data_address == debug_to_stopped_data_address
1347 && (debug_target.to_stopped_data_address
1348 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1349 return 0;
1350 return 1;
1351 }
1352 #endif
1353
1354 static void
1355 show_trust_readonly (struct ui_file *file, int from_tty,
1356 struct cmd_list_element *c, const char *value)
1357 {
1358 fprintf_filtered (file, _("\
1359 Mode for reading from readonly sections is %s.\n"),
1360 value);
1361 }
1362
1363 /* More generic transfers. */
1364
1365 static LONGEST
1366 default_xfer_partial (struct target_ops *ops, enum target_object object,
1367 const char *annex, gdb_byte *readbuf,
1368 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1369 {
1370 if (object == TARGET_OBJECT_MEMORY
1371 && ops->deprecated_xfer_memory != NULL)
1372 /* If available, fall back to the target's
1373 "deprecated_xfer_memory" method. */
1374 {
1375 int xfered = -1;
1376 errno = 0;
1377 if (writebuf != NULL)
1378 {
1379 void *buffer = xmalloc (len);
1380 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1381 memcpy (buffer, writebuf, len);
1382 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1383 1/*write*/, NULL, ops);
1384 do_cleanups (cleanup);
1385 }
1386 if (readbuf != NULL)
1387 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1388 0/*read*/, NULL, ops);
1389 if (xfered > 0)
1390 return xfered;
1391 else if (xfered == 0 && errno == 0)
1392 /* "deprecated_xfer_memory" uses 0, cross checked against
1393 ERRNO as one indication of an error. */
1394 return 0;
1395 else
1396 return -1;
1397 }
1398 else if (ops->beneath != NULL)
1399 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1400 readbuf, writebuf, offset, len);
1401 else
1402 return -1;
1403 }
1404
1405 /* The xfer_partial handler for the topmost target. Unlike the default,
1406 it does not need to handle memory specially; it just passes all
1407 requests down the stack. */
1408
1409 static LONGEST
1410 current_xfer_partial (struct target_ops *ops, enum target_object object,
1411 const char *annex, gdb_byte *readbuf,
1412 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1413 {
1414 if (ops->beneath != NULL)
1415 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1416 readbuf, writebuf, offset, len);
1417 else
1418 return -1;
1419 }
1420
1421 /* Target vector read/write partial wrapper functions.
1422
1423 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1424 (inbuf, outbuf)", instead of separate read/write methods, make life
1425 easier. */
1426
1427 static LONGEST
1428 target_read_partial (struct target_ops *ops,
1429 enum target_object object,
1430 const char *annex, gdb_byte *buf,
1431 ULONGEST offset, LONGEST len)
1432 {
1433 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1434 }
1435
1436 static LONGEST
1437 target_write_partial (struct target_ops *ops,
1438 enum target_object object,
1439 const char *annex, const gdb_byte *buf,
1440 ULONGEST offset, LONGEST len)
1441 {
1442 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1443 }
1444
1445 /* Wrappers to perform the full transfer. */
1446 LONGEST
1447 target_read (struct target_ops *ops,
1448 enum target_object object,
1449 const char *annex, gdb_byte *buf,
1450 ULONGEST offset, LONGEST len)
1451 {
1452 LONGEST xfered = 0;
1453 while (xfered < len)
1454 {
1455 LONGEST xfer = target_read_partial (ops, object, annex,
1456 (gdb_byte *) buf + xfered,
1457 offset + xfered, len - xfered);
1458 /* Call an observer, notifying them of the xfer progress? */
1459 if (xfer == 0)
1460 return xfered;
1461 if (xfer < 0)
1462 return -1;
1463 xfered += xfer;
1464 QUIT;
1465 }
1466 return len;
1467 }
1468
1469 LONGEST
1470 target_read_until_error (struct target_ops *ops,
1471 enum target_object object,
1472 const char *annex, gdb_byte *buf,
1473 ULONGEST offset, LONGEST len)
1474 {
1475 LONGEST xfered = 0;
1476 while (xfered < len)
1477 {
1478 LONGEST xfer = target_read_partial (ops, object, annex,
1479 (gdb_byte *) buf + xfered,
1480 offset + xfered, len - xfered);
1481 /* Call an observer, notifying them of the xfer progress? */
1482 if (xfer == 0)
1483 return xfered;
1484 if (xfer < 0)
1485 {
1486 /* We've got an error. Try to read in smaller blocks. */
1487 ULONGEST start = offset + xfered;
1488 ULONGEST remaining = len - xfered;
1489 ULONGEST half;
1490
1491 /* If an attempt was made to read a random memory address,
1492 it's likely that the very first byte is not accessible.
1493 Try reading the first byte, to avoid doing log N tries
1494 below. */
1495 xfer = target_read_partial (ops, object, annex,
1496 (gdb_byte *) buf + xfered, start, 1);
1497 if (xfer <= 0)
1498 return xfered;
1499 start += 1;
1500 remaining -= 1;
1501 half = remaining/2;
1502
1503 while (half > 0)
1504 {
1505 xfer = target_read_partial (ops, object, annex,
1506 (gdb_byte *) buf + xfered,
1507 start, half);
1508 if (xfer == 0)
1509 return xfered;
1510 if (xfer < 0)
1511 {
1512 remaining = half;
1513 }
1514 else
1515 {
1516 /* We have successfully read the first half. So, the
1517 error must be in the second half. Adjust start and
1518 remaining to point at the second half. */
1519 xfered += xfer;
1520 start += xfer;
1521 remaining -= xfer;
1522 }
1523 half = remaining/2;
1524 }
1525
1526 return xfered;
1527 }
1528 xfered += xfer;
1529 QUIT;
1530 }
1531 return len;
1532 }
1533
1534
1535 /* An alternative to target_write with progress callbacks. */
1536
1537 LONGEST
1538 target_write_with_progress (struct target_ops *ops,
1539 enum target_object object,
1540 const char *annex, const gdb_byte *buf,
1541 ULONGEST offset, LONGEST len,
1542 void (*progress) (ULONGEST, void *), void *baton)
1543 {
1544 LONGEST xfered = 0;
1545
1546 /* Give the progress callback a chance to set up. */
1547 if (progress)
1548 (*progress) (0, baton);
1549
1550 while (xfered < len)
1551 {
1552 LONGEST xfer = target_write_partial (ops, object, annex,
1553 (gdb_byte *) buf + xfered,
1554 offset + xfered, len - xfered);
1555
1556 if (xfer == 0)
1557 return xfered;
1558 if (xfer < 0)
1559 return -1;
1560
1561 if (progress)
1562 (*progress) (xfer, baton);
1563
1564 xfered += xfer;
1565 QUIT;
1566 }
1567 return len;
1568 }
1569
1570 LONGEST
1571 target_write (struct target_ops *ops,
1572 enum target_object object,
1573 const char *annex, const gdb_byte *buf,
1574 ULONGEST offset, LONGEST len)
1575 {
1576 return target_write_with_progress (ops, object, annex, buf, offset, len,
1577 NULL, NULL);
1578 }
1579
1580 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1581 the size of the transferred data. PADDING additional bytes are
1582 available in *BUF_P. This is a helper function for
1583 target_read_alloc; see the declaration of that function for more
1584 information. */
1585
1586 static LONGEST
1587 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1588 const char *annex, gdb_byte **buf_p, int padding)
1589 {
1590 size_t buf_alloc, buf_pos;
1591 gdb_byte *buf;
1592 LONGEST n;
1593
1594 /* This function does not have a length parameter; it reads the
1595 entire OBJECT). Also, it doesn't support objects fetched partly
1596 from one target and partly from another (in a different stratum,
1597 e.g. a core file and an executable). Both reasons make it
1598 unsuitable for reading memory. */
1599 gdb_assert (object != TARGET_OBJECT_MEMORY);
1600
1601 /* Start by reading up to 4K at a time. The target will throttle
1602 this number down if necessary. */
1603 buf_alloc = 4096;
1604 buf = xmalloc (buf_alloc);
1605 buf_pos = 0;
1606 while (1)
1607 {
1608 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1609 buf_pos, buf_alloc - buf_pos - padding);
1610 if (n < 0)
1611 {
1612 /* An error occurred. */
1613 xfree (buf);
1614 return -1;
1615 }
1616 else if (n == 0)
1617 {
1618 /* Read all there was. */
1619 if (buf_pos == 0)
1620 xfree (buf);
1621 else
1622 *buf_p = buf;
1623 return buf_pos;
1624 }
1625
1626 buf_pos += n;
1627
1628 /* If the buffer is filling up, expand it. */
1629 if (buf_alloc < buf_pos * 2)
1630 {
1631 buf_alloc *= 2;
1632 buf = xrealloc (buf, buf_alloc);
1633 }
1634
1635 QUIT;
1636 }
1637 }
1638
1639 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1640 the size of the transferred data. See the declaration in "target.h"
1641 function for more information about the return value. */
1642
1643 LONGEST
1644 target_read_alloc (struct target_ops *ops, enum target_object object,
1645 const char *annex, gdb_byte **buf_p)
1646 {
1647 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1648 }
1649
1650 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1651 returned as a string, allocated using xmalloc. If an error occurs
1652 or the transfer is unsupported, NULL is returned. Empty objects
1653 are returned as allocated but empty strings. A warning is issued
1654 if the result contains any embedded NUL bytes. */
1655
1656 char *
1657 target_read_stralloc (struct target_ops *ops, enum target_object object,
1658 const char *annex)
1659 {
1660 gdb_byte *buffer;
1661 LONGEST transferred;
1662
1663 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1664
1665 if (transferred < 0)
1666 return NULL;
1667
1668 if (transferred == 0)
1669 return xstrdup ("");
1670
1671 buffer[transferred] = 0;
1672 if (strlen (buffer) < transferred)
1673 warning (_("target object %d, annex %s, "
1674 "contained unexpected null characters"),
1675 (int) object, annex ? annex : "(none)");
1676
1677 return (char *) buffer;
1678 }
1679
1680 /* Memory transfer methods. */
1681
1682 void
1683 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1684 LONGEST len)
1685 {
1686 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1687 != len)
1688 memory_error (EIO, addr);
1689 }
1690
1691 ULONGEST
1692 get_target_memory_unsigned (struct target_ops *ops,
1693 CORE_ADDR addr, int len)
1694 {
1695 gdb_byte buf[sizeof (ULONGEST)];
1696
1697 gdb_assert (len <= sizeof (buf));
1698 get_target_memory (ops, addr, buf, len);
1699 return extract_unsigned_integer (buf, len);
1700 }
1701
1702 static void
1703 target_info (char *args, int from_tty)
1704 {
1705 struct target_ops *t;
1706 int has_all_mem = 0;
1707
1708 if (symfile_objfile != NULL)
1709 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1710
1711 for (t = target_stack; t != NULL; t = t->beneath)
1712 {
1713 if (!t->to_has_memory)
1714 continue;
1715
1716 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1717 continue;
1718 if (has_all_mem)
1719 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1720 printf_unfiltered ("%s:\n", t->to_longname);
1721 (t->to_files_info) (t);
1722 has_all_mem = t->to_has_all_memory;
1723 }
1724 }
1725
1726 /* This function is called before any new inferior is created, e.g.
1727 by running a program, attaching, or connecting to a target.
1728 It cleans up any state from previous invocations which might
1729 change between runs. This is a subset of what target_preopen
1730 resets (things which might change between targets). */
1731
1732 void
1733 target_pre_inferior (int from_tty)
1734 {
1735 /* Clear out solib state. Otherwise the solib state of the previous
1736 inferior might have survived and is entirely wrong for the new
1737 target. This has been observed on GNU/Linux using glibc 2.3. How
1738 to reproduce:
1739
1740 bash$ ./foo&
1741 [1] 4711
1742 bash$ ./foo&
1743 [1] 4712
1744 bash$ gdb ./foo
1745 [...]
1746 (gdb) attach 4711
1747 (gdb) detach
1748 (gdb) attach 4712
1749 Cannot access memory at address 0xdeadbeef
1750 */
1751 no_shared_libraries (NULL, from_tty);
1752
1753 invalidate_target_mem_regions ();
1754
1755 target_clear_description ();
1756 }
1757
1758 /* This is to be called by the open routine before it does
1759 anything. */
1760
1761 void
1762 target_preopen (int from_tty)
1763 {
1764 dont_repeat ();
1765
1766 if (target_has_execution)
1767 {
1768 if (!from_tty
1769 || query (_("A program is being debugged already. Kill it? ")))
1770 target_kill ();
1771 else
1772 error (_("Program not killed."));
1773 }
1774
1775 /* Calling target_kill may remove the target from the stack. But if
1776 it doesn't (which seems like a win for UDI), remove it now. */
1777 /* Leave the exec target, though. The user may be switching from a
1778 live process to a core of the same program. */
1779 pop_all_targets_above (file_stratum, 0);
1780
1781 target_pre_inferior (from_tty);
1782 }
1783
1784 /* Detach a target after doing deferred register stores. */
1785
1786 void
1787 target_detach (char *args, int from_tty)
1788 {
1789 /* If we're in breakpoints-always-inserted mode, have to
1790 remove them before detaching. */
1791 remove_breakpoints ();
1792
1793 (current_target.to_detach) (args, from_tty);
1794 }
1795
1796 void
1797 target_disconnect (char *args, int from_tty)
1798 {
1799 struct target_ops *t;
1800
1801 /* If we're in breakpoints-always-inserted mode, have to
1802 remove them before disconnecting. */
1803 remove_breakpoints ();
1804
1805 for (t = current_target.beneath; t != NULL; t = t->beneath)
1806 if (t->to_disconnect != NULL)
1807 {
1808 if (targetdebug)
1809 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1810 args, from_tty);
1811 t->to_disconnect (t, args, from_tty);
1812 return;
1813 }
1814
1815 tcomplain ();
1816 }
1817
1818 void
1819 target_resume (ptid_t ptid, int step, enum target_signal signal)
1820 {
1821 dcache_invalidate (target_dcache);
1822 (*current_target.to_resume) (ptid, step, signal);
1823 set_executing (ptid, 1);
1824 set_running (ptid, 1);
1825 }
1826 /* Look through the list of possible targets for a target that can
1827 follow forks. */
1828
1829 int
1830 target_follow_fork (int follow_child)
1831 {
1832 struct target_ops *t;
1833
1834 for (t = current_target.beneath; t != NULL; t = t->beneath)
1835 {
1836 if (t->to_follow_fork != NULL)
1837 {
1838 int retval = t->to_follow_fork (t, follow_child);
1839 if (targetdebug)
1840 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1841 follow_child, retval);
1842 return retval;
1843 }
1844 }
1845
1846 /* Some target returned a fork event, but did not know how to follow it. */
1847 internal_error (__FILE__, __LINE__,
1848 "could not find a target to follow fork");
1849 }
1850
1851 /* Look for a target which can describe architectural features, starting
1852 from TARGET. If we find one, return its description. */
1853
1854 const struct target_desc *
1855 target_read_description (struct target_ops *target)
1856 {
1857 struct target_ops *t;
1858
1859 for (t = target; t != NULL; t = t->beneath)
1860 if (t->to_read_description != NULL)
1861 {
1862 const struct target_desc *tdesc;
1863
1864 tdesc = t->to_read_description (t);
1865 if (tdesc)
1866 return tdesc;
1867 }
1868
1869 return NULL;
1870 }
1871
1872 /* The default implementation of to_search_memory.
1873 This implements a basic search of memory, reading target memory and
1874 performing the search here (as opposed to performing the search in on the
1875 target side with, for example, gdbserver). */
1876
1877 int
1878 simple_search_memory (struct target_ops *ops,
1879 CORE_ADDR start_addr, ULONGEST search_space_len,
1880 const gdb_byte *pattern, ULONGEST pattern_len,
1881 CORE_ADDR *found_addrp)
1882 {
1883 /* NOTE: also defined in find.c testcase. */
1884 #define SEARCH_CHUNK_SIZE 16000
1885 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1886 /* Buffer to hold memory contents for searching. */
1887 gdb_byte *search_buf;
1888 unsigned search_buf_size;
1889 struct cleanup *old_cleanups;
1890
1891 search_buf_size = chunk_size + pattern_len - 1;
1892
1893 /* No point in trying to allocate a buffer larger than the search space. */
1894 if (search_space_len < search_buf_size)
1895 search_buf_size = search_space_len;
1896
1897 search_buf = malloc (search_buf_size);
1898 if (search_buf == NULL)
1899 error (_("Unable to allocate memory to perform the search."));
1900 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1901
1902 /* Prime the search buffer. */
1903
1904 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1905 search_buf, start_addr, search_buf_size) != search_buf_size)
1906 {
1907 warning (_("Unable to access target memory at %s, halting search."),
1908 hex_string (start_addr));
1909 do_cleanups (old_cleanups);
1910 return -1;
1911 }
1912
1913 /* Perform the search.
1914
1915 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1916 When we've scanned N bytes we copy the trailing bytes to the start and
1917 read in another N bytes. */
1918
1919 while (search_space_len >= pattern_len)
1920 {
1921 gdb_byte *found_ptr;
1922 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1923
1924 found_ptr = memmem (search_buf, nr_search_bytes,
1925 pattern, pattern_len);
1926
1927 if (found_ptr != NULL)
1928 {
1929 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1930 *found_addrp = found_addr;
1931 do_cleanups (old_cleanups);
1932 return 1;
1933 }
1934
1935 /* Not found in this chunk, skip to next chunk. */
1936
1937 /* Don't let search_space_len wrap here, it's unsigned. */
1938 if (search_space_len >= chunk_size)
1939 search_space_len -= chunk_size;
1940 else
1941 search_space_len = 0;
1942
1943 if (search_space_len >= pattern_len)
1944 {
1945 unsigned keep_len = search_buf_size - chunk_size;
1946 CORE_ADDR read_addr = start_addr + keep_len;
1947 int nr_to_read;
1948
1949 /* Copy the trailing part of the previous iteration to the front
1950 of the buffer for the next iteration. */
1951 gdb_assert (keep_len == pattern_len - 1);
1952 memcpy (search_buf, search_buf + chunk_size, keep_len);
1953
1954 nr_to_read = min (search_space_len - keep_len, chunk_size);
1955
1956 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1957 search_buf + keep_len, read_addr,
1958 nr_to_read) != nr_to_read)
1959 {
1960 warning (_("Unable to access target memory at %s, halting search."),
1961 hex_string (read_addr));
1962 do_cleanups (old_cleanups);
1963 return -1;
1964 }
1965
1966 start_addr += chunk_size;
1967 }
1968 }
1969
1970 /* Not found. */
1971
1972 do_cleanups (old_cleanups);
1973 return 0;
1974 }
1975
1976 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1977 sequence of bytes in PATTERN with length PATTERN_LEN.
1978
1979 The result is 1 if found, 0 if not found, and -1 if there was an error
1980 requiring halting of the search (e.g. memory read error).
1981 If the pattern is found the address is recorded in FOUND_ADDRP. */
1982
1983 int
1984 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1985 const gdb_byte *pattern, ULONGEST pattern_len,
1986 CORE_ADDR *found_addrp)
1987 {
1988 struct target_ops *t;
1989 int found;
1990
1991 /* We don't use INHERIT to set current_target.to_search_memory,
1992 so we have to scan the target stack and handle targetdebug
1993 ourselves. */
1994
1995 if (targetdebug)
1996 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
1997 hex_string (start_addr));
1998
1999 for (t = current_target.beneath; t != NULL; t = t->beneath)
2000 if (t->to_search_memory != NULL)
2001 break;
2002
2003 if (t != NULL)
2004 {
2005 found = t->to_search_memory (t, start_addr, search_space_len,
2006 pattern, pattern_len, found_addrp);
2007 }
2008 else
2009 {
2010 /* If a special version of to_search_memory isn't available, use the
2011 simple version. */
2012 found = simple_search_memory (&current_target,
2013 start_addr, search_space_len,
2014 pattern, pattern_len, found_addrp);
2015 }
2016
2017 if (targetdebug)
2018 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2019
2020 return found;
2021 }
2022
2023 /* Look through the currently pushed targets. If none of them will
2024 be able to restart the currently running process, issue an error
2025 message. */
2026
2027 void
2028 target_require_runnable (void)
2029 {
2030 struct target_ops *t;
2031
2032 for (t = target_stack; t != NULL; t = t->beneath)
2033 {
2034 /* If this target knows how to create a new program, then
2035 assume we will still be able to after killing the current
2036 one. Either killing and mourning will not pop T, or else
2037 find_default_run_target will find it again. */
2038 if (t->to_create_inferior != NULL)
2039 return;
2040
2041 /* Do not worry about thread_stratum targets that can not
2042 create inferiors. Assume they will be pushed again if
2043 necessary, and continue to the process_stratum. */
2044 if (t->to_stratum == thread_stratum)
2045 continue;
2046
2047 error (_("\
2048 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2049 t->to_shortname);
2050 }
2051
2052 /* This function is only called if the target is running. In that
2053 case there should have been a process_stratum target and it
2054 should either know how to create inferiors, or not... */
2055 internal_error (__FILE__, __LINE__, "No targets found");
2056 }
2057
2058 /* Look through the list of possible targets for a target that can
2059 execute a run or attach command without any other data. This is
2060 used to locate the default process stratum.
2061
2062 If DO_MESG is not NULL, the result is always valid (error() is
2063 called for errors); else, return NULL on error. */
2064
2065 static struct target_ops *
2066 find_default_run_target (char *do_mesg)
2067 {
2068 struct target_ops **t;
2069 struct target_ops *runable = NULL;
2070 int count;
2071
2072 count = 0;
2073
2074 for (t = target_structs; t < target_structs + target_struct_size;
2075 ++t)
2076 {
2077 if ((*t)->to_can_run && target_can_run (*t))
2078 {
2079 runable = *t;
2080 ++count;
2081 }
2082 }
2083
2084 if (count != 1)
2085 {
2086 if (do_mesg)
2087 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2088 else
2089 return NULL;
2090 }
2091
2092 return runable;
2093 }
2094
2095 void
2096 find_default_attach (char *args, int from_tty)
2097 {
2098 struct target_ops *t;
2099
2100 t = find_default_run_target ("attach");
2101 (t->to_attach) (args, from_tty);
2102 return;
2103 }
2104
2105 void
2106 find_default_create_inferior (char *exec_file, char *allargs, char **env,
2107 int from_tty)
2108 {
2109 struct target_ops *t;
2110
2111 t = find_default_run_target ("run");
2112 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2113 return;
2114 }
2115
2116 int
2117 find_default_can_async_p (void)
2118 {
2119 struct target_ops *t;
2120
2121 /* This may be called before the target is pushed on the stack;
2122 look for the default process stratum. If there's none, gdb isn't
2123 configured with a native debugger, and target remote isn't
2124 connected yet. */
2125 t = find_default_run_target (NULL);
2126 if (t && t->to_can_async_p)
2127 return (t->to_can_async_p) ();
2128 return 0;
2129 }
2130
2131 int
2132 find_default_is_async_p (void)
2133 {
2134 struct target_ops *t;
2135
2136 /* This may be called before the target is pushed on the stack;
2137 look for the default process stratum. If there's none, gdb isn't
2138 configured with a native debugger, and target remote isn't
2139 connected yet. */
2140 t = find_default_run_target (NULL);
2141 if (t && t->to_is_async_p)
2142 return (t->to_is_async_p) ();
2143 return 0;
2144 }
2145
2146 int
2147 find_default_supports_non_stop (void)
2148 {
2149 struct target_ops *t;
2150
2151 t = find_default_run_target (NULL);
2152 if (t && t->to_supports_non_stop)
2153 return (t->to_supports_non_stop) ();
2154 return 0;
2155 }
2156
2157 int
2158 target_supports_non_stop ()
2159 {
2160 struct target_ops *t;
2161 for (t = &current_target; t != NULL; t = t->beneath)
2162 if (t->to_supports_non_stop)
2163 return t->to_supports_non_stop ();
2164
2165 return 0;
2166 }
2167
2168
2169 static int
2170 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2171 {
2172 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2173 }
2174
2175 static int
2176 default_watchpoint_addr_within_range (struct target_ops *target,
2177 CORE_ADDR addr,
2178 CORE_ADDR start, int length)
2179 {
2180 return addr >= start && addr < start + length;
2181 }
2182
2183 static int
2184 return_zero (void)
2185 {
2186 return 0;
2187 }
2188
2189 static int
2190 return_one (void)
2191 {
2192 return 1;
2193 }
2194
2195 static int
2196 return_minus_one (void)
2197 {
2198 return -1;
2199 }
2200
2201 /*
2202 * Resize the to_sections pointer. Also make sure that anyone that
2203 * was holding on to an old value of it gets updated.
2204 * Returns the old size.
2205 */
2206
2207 int
2208 target_resize_to_sections (struct target_ops *target, int num_added)
2209 {
2210 struct target_ops **t;
2211 struct section_table *old_value;
2212 int old_count;
2213
2214 old_value = target->to_sections;
2215
2216 if (target->to_sections)
2217 {
2218 old_count = target->to_sections_end - target->to_sections;
2219 target->to_sections = (struct section_table *)
2220 xrealloc ((char *) target->to_sections,
2221 (sizeof (struct section_table)) * (num_added + old_count));
2222 }
2223 else
2224 {
2225 old_count = 0;
2226 target->to_sections = (struct section_table *)
2227 xmalloc ((sizeof (struct section_table)) * num_added);
2228 }
2229 target->to_sections_end = target->to_sections + (num_added + old_count);
2230
2231 /* Check to see if anyone else was pointing to this structure.
2232 If old_value was null, then no one was. */
2233
2234 if (old_value)
2235 {
2236 for (t = target_structs; t < target_structs + target_struct_size;
2237 ++t)
2238 {
2239 if ((*t)->to_sections == old_value)
2240 {
2241 (*t)->to_sections = target->to_sections;
2242 (*t)->to_sections_end = target->to_sections_end;
2243 }
2244 }
2245 /* There is a flattened view of the target stack in current_target,
2246 so its to_sections pointer might also need updating. */
2247 if (current_target.to_sections == old_value)
2248 {
2249 current_target.to_sections = target->to_sections;
2250 current_target.to_sections_end = target->to_sections_end;
2251 }
2252 }
2253
2254 return old_count;
2255
2256 }
2257
2258 /* Remove all target sections taken from ABFD.
2259
2260 Scan the current target stack for targets whose section tables
2261 refer to sections from BFD, and remove those sections. We use this
2262 when we notice that the inferior has unloaded a shared object, for
2263 example. */
2264 void
2265 remove_target_sections (bfd *abfd)
2266 {
2267 struct target_ops **t;
2268
2269 for (t = target_structs; t < target_structs + target_struct_size; t++)
2270 {
2271 struct section_table *src, *dest;
2272
2273 dest = (*t)->to_sections;
2274 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2275 if (src->bfd != abfd)
2276 {
2277 /* Keep this section. */
2278 if (dest < src) *dest = *src;
2279 dest++;
2280 }
2281
2282 /* If we've dropped any sections, resize the section table. */
2283 if (dest < src)
2284 target_resize_to_sections (*t, dest - src);
2285 }
2286 }
2287
2288
2289
2290
2291 /* Find a single runnable target in the stack and return it. If for
2292 some reason there is more than one, return NULL. */
2293
2294 struct target_ops *
2295 find_run_target (void)
2296 {
2297 struct target_ops **t;
2298 struct target_ops *runable = NULL;
2299 int count;
2300
2301 count = 0;
2302
2303 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2304 {
2305 if ((*t)->to_can_run && target_can_run (*t))
2306 {
2307 runable = *t;
2308 ++count;
2309 }
2310 }
2311
2312 return (count == 1 ? runable : NULL);
2313 }
2314
2315 /* Find a single core_stratum target in the list of targets and return it.
2316 If for some reason there is more than one, return NULL. */
2317
2318 struct target_ops *
2319 find_core_target (void)
2320 {
2321 struct target_ops **t;
2322 struct target_ops *runable = NULL;
2323 int count;
2324
2325 count = 0;
2326
2327 for (t = target_structs; t < target_structs + target_struct_size;
2328 ++t)
2329 {
2330 if ((*t)->to_stratum == core_stratum)
2331 {
2332 runable = *t;
2333 ++count;
2334 }
2335 }
2336
2337 return (count == 1 ? runable : NULL);
2338 }
2339
2340 /*
2341 * Find the next target down the stack from the specified target.
2342 */
2343
2344 struct target_ops *
2345 find_target_beneath (struct target_ops *t)
2346 {
2347 return t->beneath;
2348 }
2349
2350 \f
2351 /* The inferior process has died. Long live the inferior! */
2352
2353 void
2354 generic_mourn_inferior (void)
2355 {
2356 ptid_t ptid;
2357
2358 ptid = inferior_ptid;
2359 inferior_ptid = null_ptid;
2360
2361 if (!ptid_equal (ptid, null_ptid))
2362 {
2363 int pid = ptid_get_pid (ptid);
2364 delete_inferior (pid);
2365 }
2366
2367 breakpoint_init_inferior (inf_exited);
2368 registers_changed ();
2369
2370 reopen_exec_file ();
2371 reinit_frame_cache ();
2372
2373 if (deprecated_detach_hook)
2374 deprecated_detach_hook ();
2375 }
2376 \f
2377 /* Helper function for child_wait and the derivatives of child_wait.
2378 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2379 translation of that in OURSTATUS. */
2380 void
2381 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2382 {
2383 if (WIFEXITED (hoststatus))
2384 {
2385 ourstatus->kind = TARGET_WAITKIND_EXITED;
2386 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2387 }
2388 else if (!WIFSTOPPED (hoststatus))
2389 {
2390 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2391 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2392 }
2393 else
2394 {
2395 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2396 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2397 }
2398 }
2399 \f
2400 /* Returns zero to leave the inferior alone, one to interrupt it. */
2401 int (*target_activity_function) (void);
2402 int target_activity_fd;
2403 \f
2404 /* Convert a normal process ID to a string. Returns the string in a
2405 static buffer. */
2406
2407 char *
2408 normal_pid_to_str (ptid_t ptid)
2409 {
2410 static char buf[32];
2411
2412 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2413 return buf;
2414 }
2415
2416 /* Error-catcher for target_find_memory_regions */
2417 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2418 {
2419 error (_("No target."));
2420 return 0;
2421 }
2422
2423 /* Error-catcher for target_make_corefile_notes */
2424 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2425 {
2426 error (_("No target."));
2427 return NULL;
2428 }
2429
2430 /* Set up the handful of non-empty slots needed by the dummy target
2431 vector. */
2432
2433 static void
2434 init_dummy_target (void)
2435 {
2436 dummy_target.to_shortname = "None";
2437 dummy_target.to_longname = "None";
2438 dummy_target.to_doc = "";
2439 dummy_target.to_attach = find_default_attach;
2440 dummy_target.to_create_inferior = find_default_create_inferior;
2441 dummy_target.to_can_async_p = find_default_can_async_p;
2442 dummy_target.to_is_async_p = find_default_is_async_p;
2443 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2444 dummy_target.to_pid_to_str = normal_pid_to_str;
2445 dummy_target.to_stratum = dummy_stratum;
2446 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2447 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2448 dummy_target.to_xfer_partial = default_xfer_partial;
2449 dummy_target.to_magic = OPS_MAGIC;
2450 }
2451 \f
2452 static void
2453 debug_to_open (char *args, int from_tty)
2454 {
2455 debug_target.to_open (args, from_tty);
2456
2457 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2458 }
2459
2460 static void
2461 debug_to_close (int quitting)
2462 {
2463 target_close (&debug_target, quitting);
2464 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2465 }
2466
2467 void
2468 target_close (struct target_ops *targ, int quitting)
2469 {
2470 if (targ->to_xclose != NULL)
2471 targ->to_xclose (targ, quitting);
2472 else if (targ->to_close != NULL)
2473 targ->to_close (quitting);
2474 }
2475
2476 static void
2477 debug_to_attach (char *args, int from_tty)
2478 {
2479 debug_target.to_attach (args, from_tty);
2480
2481 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2482 }
2483
2484
2485 static void
2486 debug_to_post_attach (int pid)
2487 {
2488 debug_target.to_post_attach (pid);
2489
2490 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2491 }
2492
2493 static void
2494 debug_to_detach (char *args, int from_tty)
2495 {
2496 debug_target.to_detach (args, from_tty);
2497
2498 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2499 }
2500
2501 static void
2502 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2503 {
2504 debug_target.to_resume (ptid, step, siggnal);
2505
2506 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2507 step ? "step" : "continue",
2508 target_signal_to_name (siggnal));
2509 }
2510
2511 static ptid_t
2512 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2513 {
2514 ptid_t retval;
2515
2516 retval = debug_target.to_wait (ptid, status);
2517
2518 fprintf_unfiltered (gdb_stdlog,
2519 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2520 PIDGET (retval));
2521 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2522 switch (status->kind)
2523 {
2524 case TARGET_WAITKIND_EXITED:
2525 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2526 status->value.integer);
2527 break;
2528 case TARGET_WAITKIND_STOPPED:
2529 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2530 target_signal_to_name (status->value.sig));
2531 break;
2532 case TARGET_WAITKIND_SIGNALLED:
2533 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2534 target_signal_to_name (status->value.sig));
2535 break;
2536 case TARGET_WAITKIND_LOADED:
2537 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2538 break;
2539 case TARGET_WAITKIND_FORKED:
2540 fprintf_unfiltered (gdb_stdlog, "forked\n");
2541 break;
2542 case TARGET_WAITKIND_VFORKED:
2543 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2544 break;
2545 case TARGET_WAITKIND_EXECD:
2546 fprintf_unfiltered (gdb_stdlog, "execd\n");
2547 break;
2548 case TARGET_WAITKIND_SPURIOUS:
2549 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2550 break;
2551 default:
2552 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2553 break;
2554 }
2555
2556 return retval;
2557 }
2558
2559 static void
2560 debug_print_register (const char * func,
2561 struct regcache *regcache, int regno)
2562 {
2563 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2564 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2565 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2566 && gdbarch_register_name (gdbarch, regno) != NULL
2567 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2568 fprintf_unfiltered (gdb_stdlog, "(%s)",
2569 gdbarch_register_name (gdbarch, regno));
2570 else
2571 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2572 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2573 {
2574 int i, size = register_size (gdbarch, regno);
2575 unsigned char buf[MAX_REGISTER_SIZE];
2576 regcache_raw_collect (regcache, regno, buf);
2577 fprintf_unfiltered (gdb_stdlog, " = ");
2578 for (i = 0; i < size; i++)
2579 {
2580 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2581 }
2582 if (size <= sizeof (LONGEST))
2583 {
2584 ULONGEST val = extract_unsigned_integer (buf, size);
2585 fprintf_unfiltered (gdb_stdlog, " %s %s",
2586 core_addr_to_string_nz (val), plongest (val));
2587 }
2588 }
2589 fprintf_unfiltered (gdb_stdlog, "\n");
2590 }
2591
2592 static void
2593 debug_to_fetch_registers (struct regcache *regcache, int regno)
2594 {
2595 debug_target.to_fetch_registers (regcache, regno);
2596 debug_print_register ("target_fetch_registers", regcache, regno);
2597 }
2598
2599 static void
2600 debug_to_store_registers (struct regcache *regcache, int regno)
2601 {
2602 debug_target.to_store_registers (regcache, regno);
2603 debug_print_register ("target_store_registers", regcache, regno);
2604 fprintf_unfiltered (gdb_stdlog, "\n");
2605 }
2606
2607 static void
2608 debug_to_prepare_to_store (struct regcache *regcache)
2609 {
2610 debug_target.to_prepare_to_store (regcache);
2611
2612 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2613 }
2614
2615 static int
2616 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2617 int write, struct mem_attrib *attrib,
2618 struct target_ops *target)
2619 {
2620 int retval;
2621
2622 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2623 attrib, target);
2624
2625 fprintf_unfiltered (gdb_stdlog,
2626 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2627 (unsigned int) memaddr, /* possable truncate long long */
2628 len, write ? "write" : "read", retval);
2629
2630 if (retval > 0)
2631 {
2632 int i;
2633
2634 fputs_unfiltered (", bytes =", gdb_stdlog);
2635 for (i = 0; i < retval; i++)
2636 {
2637 if ((((long) &(myaddr[i])) & 0xf) == 0)
2638 {
2639 if (targetdebug < 2 && i > 0)
2640 {
2641 fprintf_unfiltered (gdb_stdlog, " ...");
2642 break;
2643 }
2644 fprintf_unfiltered (gdb_stdlog, "\n");
2645 }
2646
2647 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2648 }
2649 }
2650
2651 fputc_unfiltered ('\n', gdb_stdlog);
2652
2653 return retval;
2654 }
2655
2656 static void
2657 debug_to_files_info (struct target_ops *target)
2658 {
2659 debug_target.to_files_info (target);
2660
2661 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2662 }
2663
2664 static int
2665 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2666 {
2667 int retval;
2668
2669 retval = debug_target.to_insert_breakpoint (bp_tgt);
2670
2671 fprintf_unfiltered (gdb_stdlog,
2672 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2673 (unsigned long) bp_tgt->placed_address,
2674 (unsigned long) retval);
2675 return retval;
2676 }
2677
2678 static int
2679 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2680 {
2681 int retval;
2682
2683 retval = debug_target.to_remove_breakpoint (bp_tgt);
2684
2685 fprintf_unfiltered (gdb_stdlog,
2686 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2687 (unsigned long) bp_tgt->placed_address,
2688 (unsigned long) retval);
2689 return retval;
2690 }
2691
2692 static int
2693 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2694 {
2695 int retval;
2696
2697 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2698
2699 fprintf_unfiltered (gdb_stdlog,
2700 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2701 (unsigned long) type,
2702 (unsigned long) cnt,
2703 (unsigned long) from_tty,
2704 (unsigned long) retval);
2705 return retval;
2706 }
2707
2708 static int
2709 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2710 {
2711 CORE_ADDR retval;
2712
2713 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2714
2715 fprintf_unfiltered (gdb_stdlog,
2716 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2717 (unsigned long) addr,
2718 (unsigned long) len,
2719 (unsigned long) retval);
2720 return retval;
2721 }
2722
2723 static int
2724 debug_to_stopped_by_watchpoint (void)
2725 {
2726 int retval;
2727
2728 retval = debug_target.to_stopped_by_watchpoint ();
2729
2730 fprintf_unfiltered (gdb_stdlog,
2731 "STOPPED_BY_WATCHPOINT () = %ld\n",
2732 (unsigned long) retval);
2733 return retval;
2734 }
2735
2736 static int
2737 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2738 {
2739 int retval;
2740
2741 retval = debug_target.to_stopped_data_address (target, addr);
2742
2743 fprintf_unfiltered (gdb_stdlog,
2744 "target_stopped_data_address ([0x%lx]) = %ld\n",
2745 (unsigned long)*addr,
2746 (unsigned long)retval);
2747 return retval;
2748 }
2749
2750 static int
2751 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2752 CORE_ADDR addr,
2753 CORE_ADDR start, int length)
2754 {
2755 int retval;
2756
2757 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2758 start, length);
2759
2760 fprintf_filtered (gdb_stdlog,
2761 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2762 (unsigned long) addr, (unsigned long) start, length,
2763 retval);
2764 return retval;
2765 }
2766
2767 static int
2768 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2769 {
2770 int retval;
2771
2772 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2773
2774 fprintf_unfiltered (gdb_stdlog,
2775 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2776 (unsigned long) bp_tgt->placed_address,
2777 (unsigned long) retval);
2778 return retval;
2779 }
2780
2781 static int
2782 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2783 {
2784 int retval;
2785
2786 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2787
2788 fprintf_unfiltered (gdb_stdlog,
2789 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2790 (unsigned long) bp_tgt->placed_address,
2791 (unsigned long) retval);
2792 return retval;
2793 }
2794
2795 static int
2796 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2797 {
2798 int retval;
2799
2800 retval = debug_target.to_insert_watchpoint (addr, len, type);
2801
2802 fprintf_unfiltered (gdb_stdlog,
2803 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2804 (unsigned long) addr, len, type, (unsigned long) retval);
2805 return retval;
2806 }
2807
2808 static int
2809 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2810 {
2811 int retval;
2812
2813 retval = debug_target.to_remove_watchpoint (addr, len, type);
2814
2815 fprintf_unfiltered (gdb_stdlog,
2816 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2817 (unsigned long) addr, len, type, (unsigned long) retval);
2818 return retval;
2819 }
2820
2821 static void
2822 debug_to_terminal_init (void)
2823 {
2824 debug_target.to_terminal_init ();
2825
2826 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2827 }
2828
2829 static void
2830 debug_to_terminal_inferior (void)
2831 {
2832 debug_target.to_terminal_inferior ();
2833
2834 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2835 }
2836
2837 static void
2838 debug_to_terminal_ours_for_output (void)
2839 {
2840 debug_target.to_terminal_ours_for_output ();
2841
2842 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2843 }
2844
2845 static void
2846 debug_to_terminal_ours (void)
2847 {
2848 debug_target.to_terminal_ours ();
2849
2850 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2851 }
2852
2853 static void
2854 debug_to_terminal_save_ours (void)
2855 {
2856 debug_target.to_terminal_save_ours ();
2857
2858 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2859 }
2860
2861 static void
2862 debug_to_terminal_info (char *arg, int from_tty)
2863 {
2864 debug_target.to_terminal_info (arg, from_tty);
2865
2866 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2867 from_tty);
2868 }
2869
2870 static void
2871 debug_to_kill (void)
2872 {
2873 debug_target.to_kill ();
2874
2875 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2876 }
2877
2878 static void
2879 debug_to_load (char *args, int from_tty)
2880 {
2881 debug_target.to_load (args, from_tty);
2882
2883 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2884 }
2885
2886 static int
2887 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2888 {
2889 int retval;
2890
2891 retval = debug_target.to_lookup_symbol (name, addrp);
2892
2893 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2894
2895 return retval;
2896 }
2897
2898 static void
2899 debug_to_create_inferior (char *exec_file, char *args, char **env,
2900 int from_tty)
2901 {
2902 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2903
2904 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2905 exec_file, args, from_tty);
2906 }
2907
2908 static void
2909 debug_to_post_startup_inferior (ptid_t ptid)
2910 {
2911 debug_target.to_post_startup_inferior (ptid);
2912
2913 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2914 PIDGET (ptid));
2915 }
2916
2917 static void
2918 debug_to_acknowledge_created_inferior (int pid)
2919 {
2920 debug_target.to_acknowledge_created_inferior (pid);
2921
2922 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2923 pid);
2924 }
2925
2926 static void
2927 debug_to_insert_fork_catchpoint (int pid)
2928 {
2929 debug_target.to_insert_fork_catchpoint (pid);
2930
2931 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2932 pid);
2933 }
2934
2935 static int
2936 debug_to_remove_fork_catchpoint (int pid)
2937 {
2938 int retval;
2939
2940 retval = debug_target.to_remove_fork_catchpoint (pid);
2941
2942 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2943 pid, retval);
2944
2945 return retval;
2946 }
2947
2948 static void
2949 debug_to_insert_vfork_catchpoint (int pid)
2950 {
2951 debug_target.to_insert_vfork_catchpoint (pid);
2952
2953 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2954 pid);
2955 }
2956
2957 static int
2958 debug_to_remove_vfork_catchpoint (int pid)
2959 {
2960 int retval;
2961
2962 retval = debug_target.to_remove_vfork_catchpoint (pid);
2963
2964 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2965 pid, retval);
2966
2967 return retval;
2968 }
2969
2970 static void
2971 debug_to_insert_exec_catchpoint (int pid)
2972 {
2973 debug_target.to_insert_exec_catchpoint (pid);
2974
2975 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2976 pid);
2977 }
2978
2979 static int
2980 debug_to_remove_exec_catchpoint (int pid)
2981 {
2982 int retval;
2983
2984 retval = debug_target.to_remove_exec_catchpoint (pid);
2985
2986 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2987 pid, retval);
2988
2989 return retval;
2990 }
2991
2992 static int
2993 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2994 {
2995 int has_exited;
2996
2997 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2998
2999 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3000 pid, wait_status, *exit_status, has_exited);
3001
3002 return has_exited;
3003 }
3004
3005 static void
3006 debug_to_mourn_inferior (void)
3007 {
3008 debug_target.to_mourn_inferior ();
3009
3010 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
3011 }
3012
3013 static int
3014 debug_to_can_run (void)
3015 {
3016 int retval;
3017
3018 retval = debug_target.to_can_run ();
3019
3020 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3021
3022 return retval;
3023 }
3024
3025 static void
3026 debug_to_notice_signals (ptid_t ptid)
3027 {
3028 debug_target.to_notice_signals (ptid);
3029
3030 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3031 PIDGET (ptid));
3032 }
3033
3034 static int
3035 debug_to_thread_alive (ptid_t ptid)
3036 {
3037 int retval;
3038
3039 retval = debug_target.to_thread_alive (ptid);
3040
3041 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3042 PIDGET (ptid), retval);
3043
3044 return retval;
3045 }
3046
3047 static void
3048 debug_to_find_new_threads (void)
3049 {
3050 debug_target.to_find_new_threads ();
3051
3052 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3053 }
3054
3055 static void
3056 debug_to_stop (ptid_t ptid)
3057 {
3058 debug_target.to_stop (ptid);
3059
3060 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3061 target_pid_to_str (ptid));
3062 }
3063
3064 static void
3065 debug_to_rcmd (char *command,
3066 struct ui_file *outbuf)
3067 {
3068 debug_target.to_rcmd (command, outbuf);
3069 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3070 }
3071
3072 static char *
3073 debug_to_pid_to_exec_file (int pid)
3074 {
3075 char *exec_file;
3076
3077 exec_file = debug_target.to_pid_to_exec_file (pid);
3078
3079 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3080 pid, exec_file);
3081
3082 return exec_file;
3083 }
3084
3085 static void
3086 setup_target_debug (void)
3087 {
3088 memcpy (&debug_target, &current_target, sizeof debug_target);
3089
3090 current_target.to_open = debug_to_open;
3091 current_target.to_close = debug_to_close;
3092 current_target.to_attach = debug_to_attach;
3093 current_target.to_post_attach = debug_to_post_attach;
3094 current_target.to_detach = debug_to_detach;
3095 current_target.to_resume = debug_to_resume;
3096 current_target.to_wait = debug_to_wait;
3097 current_target.to_fetch_registers = debug_to_fetch_registers;
3098 current_target.to_store_registers = debug_to_store_registers;
3099 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3100 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3101 current_target.to_files_info = debug_to_files_info;
3102 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3103 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3104 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3105 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3106 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3107 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3108 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3109 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3110 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3111 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3112 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3113 current_target.to_terminal_init = debug_to_terminal_init;
3114 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3115 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3116 current_target.to_terminal_ours = debug_to_terminal_ours;
3117 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3118 current_target.to_terminal_info = debug_to_terminal_info;
3119 current_target.to_kill = debug_to_kill;
3120 current_target.to_load = debug_to_load;
3121 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3122 current_target.to_create_inferior = debug_to_create_inferior;
3123 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3124 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3125 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3126 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3127 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3128 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3129 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3130 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3131 current_target.to_has_exited = debug_to_has_exited;
3132 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3133 current_target.to_can_run = debug_to_can_run;
3134 current_target.to_notice_signals = debug_to_notice_signals;
3135 current_target.to_thread_alive = debug_to_thread_alive;
3136 current_target.to_find_new_threads = debug_to_find_new_threads;
3137 current_target.to_stop = debug_to_stop;
3138 current_target.to_rcmd = debug_to_rcmd;
3139 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3140 }
3141 \f
3142
3143 static char targ_desc[] =
3144 "Names of targets and files being debugged.\n\
3145 Shows the entire stack of targets currently in use (including the exec-file,\n\
3146 core-file, and process, if any), as well as the symbol file name.";
3147
3148 static void
3149 do_monitor_command (char *cmd,
3150 int from_tty)
3151 {
3152 if ((current_target.to_rcmd
3153 == (void (*) (char *, struct ui_file *)) tcomplain)
3154 || (current_target.to_rcmd == debug_to_rcmd
3155 && (debug_target.to_rcmd
3156 == (void (*) (char *, struct ui_file *)) tcomplain)))
3157 error (_("\"monitor\" command not supported by this target."));
3158 target_rcmd (cmd, gdb_stdtarg);
3159 }
3160
3161 /* Print the name of each layers of our target stack. */
3162
3163 static void
3164 maintenance_print_target_stack (char *cmd, int from_tty)
3165 {
3166 struct target_ops *t;
3167
3168 printf_filtered (_("The current target stack is:\n"));
3169
3170 for (t = target_stack; t != NULL; t = t->beneath)
3171 {
3172 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3173 }
3174 }
3175
3176 /* Controls if async mode is permitted. */
3177 int target_async_permitted = 0;
3178
3179 /* The set command writes to this variable. If the inferior is
3180 executing, linux_nat_async_permitted is *not* updated. */
3181 static int target_async_permitted_1 = 0;
3182
3183 static void
3184 set_maintenance_target_async_permitted (char *args, int from_tty,
3185 struct cmd_list_element *c)
3186 {
3187 if (target_has_execution)
3188 {
3189 target_async_permitted_1 = target_async_permitted;
3190 error (_("Cannot change this setting while the inferior is running."));
3191 }
3192
3193 target_async_permitted = target_async_permitted_1;
3194 }
3195
3196 static void
3197 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3198 struct cmd_list_element *c,
3199 const char *value)
3200 {
3201 fprintf_filtered (file, _("\
3202 Controlling the inferior in asynchronous mode is %s.\n"), value);
3203 }
3204
3205 void
3206 initialize_targets (void)
3207 {
3208 init_dummy_target ();
3209 push_target (&dummy_target);
3210
3211 add_info ("target", target_info, targ_desc);
3212 add_info ("files", target_info, targ_desc);
3213
3214 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3215 Set target debugging."), _("\
3216 Show target debugging."), _("\
3217 When non-zero, target debugging is enabled. Higher numbers are more\n\
3218 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3219 command."),
3220 NULL,
3221 show_targetdebug,
3222 &setdebuglist, &showdebuglist);
3223
3224 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3225 &trust_readonly, _("\
3226 Set mode for reading from readonly sections."), _("\
3227 Show mode for reading from readonly sections."), _("\
3228 When this mode is on, memory reads from readonly sections (such as .text)\n\
3229 will be read from the object file instead of from the target. This will\n\
3230 result in significant performance improvement for remote targets."),
3231 NULL,
3232 show_trust_readonly,
3233 &setlist, &showlist);
3234
3235 add_com ("monitor", class_obscure, do_monitor_command,
3236 _("Send a command to the remote monitor (remote targets only)."));
3237
3238 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3239 _("Print the name of each layer of the internal target stack."),
3240 &maintenanceprintlist);
3241
3242 add_setshow_boolean_cmd ("target-async", no_class,
3243 &target_async_permitted_1, _("\
3244 Set whether gdb controls the inferior in asynchronous mode."), _("\
3245 Show whether gdb controls the inferior in asynchronous mode."), _("\
3246 Tells gdb whether to control the inferior in asynchronous mode."),
3247 set_maintenance_target_async_permitted,
3248 show_maintenance_target_async_permitted,
3249 &setlist,
3250 &showlist);
3251
3252 target_dcache = dcache_init ();
3253 }