* target.c (memory_xfer_partial): Don't use the stack cache if
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTR_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
121
122 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static void debug_to_terminal_init (void);
134
135 static void debug_to_terminal_inferior (void);
136
137 static void debug_to_terminal_ours_for_output (void);
138
139 static void debug_to_terminal_save_ours (void);
140
141 static void debug_to_terminal_ours (void);
142
143 static void debug_to_terminal_info (char *, int);
144
145 static void debug_to_load (char *, int);
146
147 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_notice_signals (ptid_t);
152
153 static void debug_to_stop (ptid_t);
154
155 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
156 wierd and mysterious ways. Putting the variable here lets those
157 wierd and mysterious ways keep building while they are being
158 converted to the inferior inheritance structure. */
159 struct target_ops deprecated_child_ops;
160
161 /* Pointer to array of target architecture structures; the size of the
162 array; the current index into the array; the allocated size of the
163 array. */
164 struct target_ops **target_structs;
165 unsigned target_struct_size;
166 unsigned target_struct_index;
167 unsigned target_struct_allocsize;
168 #define DEFAULT_ALLOCSIZE 10
169
170 /* The initial current target, so that there is always a semi-valid
171 current target. */
172
173 static struct target_ops dummy_target;
174
175 /* Top of target stack. */
176
177 static struct target_ops *target_stack;
178
179 /* The target structure we are currently using to talk to a process
180 or file or whatever "inferior" we have. */
181
182 struct target_ops current_target;
183
184 /* Command list for target. */
185
186 static struct cmd_list_element *targetlist = NULL;
187
188 /* Nonzero if we should trust readonly sections from the
189 executable when reading memory. */
190
191 static int trust_readonly = 0;
192
193 /* Nonzero if we should show true memory content including
194 memory breakpoint inserted by gdb. */
195
196 static int show_memory_breakpoints = 0;
197
198 /* Non-zero if we want to see trace of target level stuff. */
199
200 static int targetdebug = 0;
201 static void
202 show_targetdebug (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
206 }
207
208 static void setup_target_debug (void);
209
210 /* The option sets this. */
211 static int stack_cache_enabled_p_1 = 1;
212 /* And set_stack_cache_enabled_p updates this.
213 The reason for the separation is so that we don't flush the cache for
214 on->on transitions. */
215 static int stack_cache_enabled_p = 1;
216
217 /* This is called *after* the stack-cache has been set.
218 Flush the cache for off->on and on->off transitions.
219 There's no real need to flush the cache for on->off transitions,
220 except cleanliness. */
221
222 static void
223 set_stack_cache_enabled_p (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
227 target_dcache_invalidate ();
228
229 stack_cache_enabled_p = stack_cache_enabled_p_1;
230 }
231
232 static void
233 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
237 }
238
239 /* Cache of memory operations, to speed up remote access. */
240 static DCACHE *target_dcache;
241
242 /* Invalidate the target dcache. */
243
244 void
245 target_dcache_invalidate (void)
246 {
247 dcache_invalidate (target_dcache);
248 }
249
250 /* The user just typed 'target' without the name of a target. */
251
252 static void
253 target_command (char *arg, int from_tty)
254 {
255 fputs_filtered ("Argument required (target name). Try `help target'\n",
256 gdb_stdout);
257 }
258
259 /* Default target_has_* methods for process_stratum targets. */
260
261 int
262 default_child_has_all_memory (struct target_ops *ops)
263 {
264 /* If no inferior selected, then we can't read memory here. */
265 if (ptid_equal (inferior_ptid, null_ptid))
266 return 0;
267
268 return 1;
269 }
270
271 int
272 default_child_has_memory (struct target_ops *ops)
273 {
274 /* If no inferior selected, then we can't read memory here. */
275 if (ptid_equal (inferior_ptid, null_ptid))
276 return 0;
277
278 return 1;
279 }
280
281 int
282 default_child_has_stack (struct target_ops *ops)
283 {
284 /* If no inferior selected, there's no stack. */
285 if (ptid_equal (inferior_ptid, null_ptid))
286 return 0;
287
288 return 1;
289 }
290
291 int
292 default_child_has_registers (struct target_ops *ops)
293 {
294 /* Can't read registers from no inferior. */
295 if (ptid_equal (inferior_ptid, null_ptid))
296 return 0;
297
298 return 1;
299 }
300
301 int
302 default_child_has_execution (struct target_ops *ops)
303 {
304 /* If there's no thread selected, then we can't make it run through
305 hoops. */
306 if (ptid_equal (inferior_ptid, null_ptid))
307 return 0;
308
309 return 1;
310 }
311
312
313 int
314 target_has_all_memory_1 (void)
315 {
316 struct target_ops *t;
317
318 for (t = current_target.beneath; t != NULL; t = t->beneath)
319 if (t->to_has_all_memory (t))
320 return 1;
321
322 return 0;
323 }
324
325 int
326 target_has_memory_1 (void)
327 {
328 struct target_ops *t;
329
330 for (t = current_target.beneath; t != NULL; t = t->beneath)
331 if (t->to_has_memory (t))
332 return 1;
333
334 return 0;
335 }
336
337 int
338 target_has_stack_1 (void)
339 {
340 struct target_ops *t;
341
342 for (t = current_target.beneath; t != NULL; t = t->beneath)
343 if (t->to_has_stack (t))
344 return 1;
345
346 return 0;
347 }
348
349 int
350 target_has_registers_1 (void)
351 {
352 struct target_ops *t;
353
354 for (t = current_target.beneath; t != NULL; t = t->beneath)
355 if (t->to_has_registers (t))
356 return 1;
357
358 return 0;
359 }
360
361 int
362 target_has_execution_1 (void)
363 {
364 struct target_ops *t;
365
366 for (t = current_target.beneath; t != NULL; t = t->beneath)
367 if (t->to_has_execution (t))
368 return 1;
369
370 return 0;
371 }
372
373 /* Add a possible target architecture to the list. */
374
375 void
376 add_target (struct target_ops *t)
377 {
378 /* Provide default values for all "must have" methods. */
379 if (t->to_xfer_partial == NULL)
380 t->to_xfer_partial = default_xfer_partial;
381
382 if (t->to_has_all_memory == NULL)
383 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
384
385 if (t->to_has_memory == NULL)
386 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
387
388 if (t->to_has_stack == NULL)
389 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
390
391 if (t->to_has_registers == NULL)
392 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
393
394 if (t->to_has_execution == NULL)
395 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
421 }
422
423 /* Stub functions */
424
425 void
426 target_ignore (void)
427 {
428 }
429
430 void
431 target_kill (void)
432 {
433 struct target_ops *t;
434
435 for (t = current_target.beneath; t != NULL; t = t->beneath)
436 if (t->to_kill != NULL)
437 {
438 if (targetdebug)
439 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
440
441 t->to_kill (t);
442 return;
443 }
444
445 noprocess ();
446 }
447
448 void
449 target_load (char *arg, int from_tty)
450 {
451 target_dcache_invalidate ();
452 (*current_target.to_load) (arg, from_tty);
453 }
454
455 void
456 target_create_inferior (char *exec_file, char *args,
457 char **env, int from_tty)
458 {
459 struct target_ops *t;
460 for (t = current_target.beneath; t != NULL; t = t->beneath)
461 {
462 if (t->to_create_inferior != NULL)
463 {
464 t->to_create_inferior (t, exec_file, args, env, from_tty);
465 if (targetdebug)
466 fprintf_unfiltered (gdb_stdlog,
467 "target_create_inferior (%s, %s, xxx, %d)\n",
468 exec_file, args, from_tty);
469 return;
470 }
471 }
472
473 internal_error (__FILE__, __LINE__,
474 "could not find a target to create inferior");
475 }
476
477 void
478 target_terminal_inferior (void)
479 {
480 /* A background resume (``run&'') should leave GDB in control of the
481 terminal. Use target_can_async_p, not target_is_async_p, since at
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
485 return;
486
487 /* If GDB is resuming the inferior in the foreground, install
488 inferior's terminal modes. */
489 (*current_target.to_terminal_inferior) ();
490 }
491
492 static int
493 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
494 struct target_ops *t)
495 {
496 errno = EIO; /* Can't read/write this location */
497 return 0; /* No bytes handled */
498 }
499
500 static void
501 tcomplain (void)
502 {
503 error (_("You can't do that when your target is `%s'"),
504 current_target.to_shortname);
505 }
506
507 void
508 noprocess (void)
509 {
510 error (_("You can't do that without a process to debug."));
511 }
512
513 static int
514 nosymbol (char *name, CORE_ADDR *addrp)
515 {
516 return 1; /* Symbol does not exist in target env */
517 }
518
519 static void
520 default_terminal_info (char *args, int from_tty)
521 {
522 printf_unfiltered (_("No saved terminal information.\n"));
523 }
524
525 /* A default implementation for the to_get_ada_task_ptid target method.
526
527 This function builds the PTID by using both LWP and TID as part of
528 the PTID lwp and tid elements. The pid used is the pid of the
529 inferior_ptid. */
530
531 static ptid_t
532 default_get_ada_task_ptid (long lwp, long tid)
533 {
534 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
535 }
536
537 /* Go through the target stack from top to bottom, copying over zero
538 entries in current_target, then filling in still empty entries. In
539 effect, we are doing class inheritance through the pushed target
540 vectors.
541
542 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
543 is currently implemented, is that it discards any knowledge of
544 which target an inherited method originally belonged to.
545 Consequently, new new target methods should instead explicitly and
546 locally search the target stack for the target that can handle the
547 request. */
548
549 static void
550 update_current_target (void)
551 {
552 struct target_ops *t;
553
554 /* First, reset current's contents. */
555 memset (&current_target, 0, sizeof (current_target));
556
557 #define INHERIT(FIELD, TARGET) \
558 if (!current_target.FIELD) \
559 current_target.FIELD = (TARGET)->FIELD
560
561 for (t = target_stack; t; t = t->beneath)
562 {
563 INHERIT (to_shortname, t);
564 INHERIT (to_longname, t);
565 INHERIT (to_doc, t);
566 /* Do not inherit to_open. */
567 /* Do not inherit to_close. */
568 /* Do not inherit to_attach. */
569 INHERIT (to_post_attach, t);
570 INHERIT (to_attach_no_wait, t);
571 /* Do not inherit to_detach. */
572 /* Do not inherit to_disconnect. */
573 /* Do not inherit to_resume. */
574 /* Do not inherit to_wait. */
575 /* Do not inherit to_fetch_registers. */
576 /* Do not inherit to_store_registers. */
577 INHERIT (to_prepare_to_store, t);
578 INHERIT (deprecated_xfer_memory, t);
579 INHERIT (to_files_info, t);
580 INHERIT (to_insert_breakpoint, t);
581 INHERIT (to_remove_breakpoint, t);
582 INHERIT (to_can_use_hw_breakpoint, t);
583 INHERIT (to_insert_hw_breakpoint, t);
584 INHERIT (to_remove_hw_breakpoint, t);
585 INHERIT (to_insert_watchpoint, t);
586 INHERIT (to_remove_watchpoint, t);
587 INHERIT (to_stopped_data_address, t);
588 INHERIT (to_have_steppable_watchpoint, t);
589 INHERIT (to_have_continuable_watchpoint, t);
590 INHERIT (to_stopped_by_watchpoint, t);
591 INHERIT (to_watchpoint_addr_within_range, t);
592 INHERIT (to_region_ok_for_hw_watchpoint, t);
593 INHERIT (to_terminal_init, t);
594 INHERIT (to_terminal_inferior, t);
595 INHERIT (to_terminal_ours_for_output, t);
596 INHERIT (to_terminal_ours, t);
597 INHERIT (to_terminal_save_ours, t);
598 INHERIT (to_terminal_info, t);
599 /* Do not inherit to_kill. */
600 INHERIT (to_load, t);
601 INHERIT (to_lookup_symbol, t);
602 /* Do no inherit to_create_inferior. */
603 INHERIT (to_post_startup_inferior, t);
604 INHERIT (to_acknowledge_created_inferior, t);
605 INHERIT (to_insert_fork_catchpoint, t);
606 INHERIT (to_remove_fork_catchpoint, t);
607 INHERIT (to_insert_vfork_catchpoint, t);
608 INHERIT (to_remove_vfork_catchpoint, t);
609 /* Do not inherit to_follow_fork. */
610 INHERIT (to_insert_exec_catchpoint, t);
611 INHERIT (to_remove_exec_catchpoint, t);
612 INHERIT (to_set_syscall_catchpoint, t);
613 INHERIT (to_has_exited, t);
614 /* Do not inherit to_mourn_inferiour. */
615 INHERIT (to_can_run, t);
616 INHERIT (to_notice_signals, t);
617 /* Do not inherit to_thread_alive. */
618 /* Do not inherit to_find_new_threads. */
619 /* Do not inherit to_pid_to_str. */
620 INHERIT (to_extra_thread_info, t);
621 INHERIT (to_stop, t);
622 /* Do not inherit to_xfer_partial. */
623 INHERIT (to_rcmd, t);
624 INHERIT (to_pid_to_exec_file, t);
625 INHERIT (to_log_command, t);
626 INHERIT (to_stratum, t);
627 /* Do not inherit to_has_all_memory */
628 /* Do not inherit to_has_memory */
629 /* Do not inherit to_has_stack */
630 /* Do not inherit to_has_registers */
631 /* Do not inherit to_has_execution */
632 INHERIT (to_has_thread_control, t);
633 INHERIT (to_can_async_p, t);
634 INHERIT (to_is_async_p, t);
635 INHERIT (to_async, t);
636 INHERIT (to_async_mask, t);
637 INHERIT (to_find_memory_regions, t);
638 INHERIT (to_make_corefile_notes, t);
639 INHERIT (to_get_bookmark, t);
640 INHERIT (to_goto_bookmark, t);
641 /* Do not inherit to_get_thread_local_address. */
642 INHERIT (to_can_execute_reverse, t);
643 INHERIT (to_thread_architecture, t);
644 /* Do not inherit to_read_description. */
645 INHERIT (to_get_ada_task_ptid, t);
646 /* Do not inherit to_search_memory. */
647 INHERIT (to_supports_multi_process, t);
648 INHERIT (to_trace_init, t);
649 INHERIT (to_download_tracepoint, t);
650 INHERIT (to_download_trace_state_variable, t);
651 INHERIT (to_trace_set_readonly_regions, t);
652 INHERIT (to_trace_start, t);
653 INHERIT (to_get_trace_status, t);
654 INHERIT (to_trace_stop, t);
655 INHERIT (to_trace_find, t);
656 INHERIT (to_get_trace_state_variable_value, t);
657 INHERIT (to_save_trace_data, t);
658 INHERIT (to_upload_tracepoints, t);
659 INHERIT (to_upload_trace_state_variables, t);
660 INHERIT (to_get_raw_trace_data, t);
661 INHERIT (to_set_disconnected_tracing, t);
662 INHERIT (to_magic, t);
663 /* Do not inherit to_memory_map. */
664 /* Do not inherit to_flash_erase. */
665 /* Do not inherit to_flash_done. */
666 }
667 #undef INHERIT
668
669 /* Clean up a target struct so it no longer has any zero pointers in
670 it. Some entries are defaulted to a method that print an error,
671 others are hard-wired to a standard recursive default. */
672
673 #define de_fault(field, value) \
674 if (!current_target.field) \
675 current_target.field = value
676
677 de_fault (to_open,
678 (void (*) (char *, int))
679 tcomplain);
680 de_fault (to_close,
681 (void (*) (int))
682 target_ignore);
683 de_fault (to_post_attach,
684 (void (*) (int))
685 target_ignore);
686 de_fault (to_prepare_to_store,
687 (void (*) (struct regcache *))
688 noprocess);
689 de_fault (deprecated_xfer_memory,
690 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
691 nomemory);
692 de_fault (to_files_info,
693 (void (*) (struct target_ops *))
694 target_ignore);
695 de_fault (to_insert_breakpoint,
696 memory_insert_breakpoint);
697 de_fault (to_remove_breakpoint,
698 memory_remove_breakpoint);
699 de_fault (to_can_use_hw_breakpoint,
700 (int (*) (int, int, int))
701 return_zero);
702 de_fault (to_insert_hw_breakpoint,
703 (int (*) (struct gdbarch *, struct bp_target_info *))
704 return_minus_one);
705 de_fault (to_remove_hw_breakpoint,
706 (int (*) (struct gdbarch *, struct bp_target_info *))
707 return_minus_one);
708 de_fault (to_insert_watchpoint,
709 (int (*) (CORE_ADDR, int, int))
710 return_minus_one);
711 de_fault (to_remove_watchpoint,
712 (int (*) (CORE_ADDR, int, int))
713 return_minus_one);
714 de_fault (to_stopped_by_watchpoint,
715 (int (*) (void))
716 return_zero);
717 de_fault (to_stopped_data_address,
718 (int (*) (struct target_ops *, CORE_ADDR *))
719 return_zero);
720 de_fault (to_watchpoint_addr_within_range,
721 default_watchpoint_addr_within_range);
722 de_fault (to_region_ok_for_hw_watchpoint,
723 default_region_ok_for_hw_watchpoint);
724 de_fault (to_terminal_init,
725 (void (*) (void))
726 target_ignore);
727 de_fault (to_terminal_inferior,
728 (void (*) (void))
729 target_ignore);
730 de_fault (to_terminal_ours_for_output,
731 (void (*) (void))
732 target_ignore);
733 de_fault (to_terminal_ours,
734 (void (*) (void))
735 target_ignore);
736 de_fault (to_terminal_save_ours,
737 (void (*) (void))
738 target_ignore);
739 de_fault (to_terminal_info,
740 default_terminal_info);
741 de_fault (to_load,
742 (void (*) (char *, int))
743 tcomplain);
744 de_fault (to_lookup_symbol,
745 (int (*) (char *, CORE_ADDR *))
746 nosymbol);
747 de_fault (to_post_startup_inferior,
748 (void (*) (ptid_t))
749 target_ignore);
750 de_fault (to_acknowledge_created_inferior,
751 (void (*) (int))
752 target_ignore);
753 de_fault (to_insert_fork_catchpoint,
754 (void (*) (int))
755 tcomplain);
756 de_fault (to_remove_fork_catchpoint,
757 (int (*) (int))
758 tcomplain);
759 de_fault (to_insert_vfork_catchpoint,
760 (void (*) (int))
761 tcomplain);
762 de_fault (to_remove_vfork_catchpoint,
763 (int (*) (int))
764 tcomplain);
765 de_fault (to_insert_exec_catchpoint,
766 (void (*) (int))
767 tcomplain);
768 de_fault (to_remove_exec_catchpoint,
769 (int (*) (int))
770 tcomplain);
771 de_fault (to_set_syscall_catchpoint,
772 (int (*) (int, int, int, int, int *))
773 tcomplain);
774 de_fault (to_has_exited,
775 (int (*) (int, int, int *))
776 return_zero);
777 de_fault (to_can_run,
778 return_zero);
779 de_fault (to_notice_signals,
780 (void (*) (ptid_t))
781 target_ignore);
782 de_fault (to_extra_thread_info,
783 (char *(*) (struct thread_info *))
784 return_zero);
785 de_fault (to_stop,
786 (void (*) (ptid_t))
787 target_ignore);
788 current_target.to_xfer_partial = current_xfer_partial;
789 de_fault (to_rcmd,
790 (void (*) (char *, struct ui_file *))
791 tcomplain);
792 de_fault (to_pid_to_exec_file,
793 (char *(*) (int))
794 return_zero);
795 de_fault (to_async,
796 (void (*) (void (*) (enum inferior_event_type, void*), void*))
797 tcomplain);
798 de_fault (to_async_mask,
799 (int (*) (int))
800 return_one);
801 de_fault (to_thread_architecture,
802 default_thread_architecture);
803 current_target.to_read_description = NULL;
804 de_fault (to_get_ada_task_ptid,
805 (ptid_t (*) (long, long))
806 default_get_ada_task_ptid);
807 de_fault (to_supports_multi_process,
808 (int (*) (void))
809 return_zero);
810 de_fault (to_trace_init,
811 (void (*) (void))
812 tcomplain);
813 de_fault (to_download_tracepoint,
814 (void (*) (struct breakpoint *))
815 tcomplain);
816 de_fault (to_download_trace_state_variable,
817 (void (*) (struct trace_state_variable *))
818 tcomplain);
819 de_fault (to_trace_set_readonly_regions,
820 (void (*) (void))
821 tcomplain);
822 de_fault (to_trace_start,
823 (void (*) (void))
824 tcomplain);
825 de_fault (to_get_trace_status,
826 (int (*) (struct trace_status *))
827 return_minus_one);
828 de_fault (to_trace_stop,
829 (void (*) (void))
830 tcomplain);
831 de_fault (to_trace_find,
832 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
833 return_zero);
834 de_fault (to_get_trace_state_variable_value,
835 (int (*) (int, LONGEST *))
836 return_zero);
837 de_fault (to_save_trace_data,
838 (int (*) (char *))
839 tcomplain);
840 de_fault (to_upload_tracepoints,
841 (int (*) (struct uploaded_tp **))
842 return_zero);
843 de_fault (to_upload_trace_state_variables,
844 (int (*) (struct uploaded_tsv **))
845 return_zero);
846 de_fault (to_get_raw_trace_data,
847 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
848 tcomplain);
849 de_fault (to_set_disconnected_tracing,
850 (void (*) (int))
851 tcomplain);
852 #undef de_fault
853
854 /* Finally, position the target-stack beneath the squashed
855 "current_target". That way code looking for a non-inherited
856 target method can quickly and simply find it. */
857 current_target.beneath = target_stack;
858
859 if (targetdebug)
860 setup_target_debug ();
861 }
862
863 /* Push a new target type into the stack of the existing target accessors,
864 possibly superseding some of the existing accessors.
865
866 Result is zero if the pushed target ended up on top of the stack,
867 nonzero if at least one target is on top of it.
868
869 Rather than allow an empty stack, we always have the dummy target at
870 the bottom stratum, so we can call the function vectors without
871 checking them. */
872
873 int
874 push_target (struct target_ops *t)
875 {
876 struct target_ops **cur;
877
878 /* Check magic number. If wrong, it probably means someone changed
879 the struct definition, but not all the places that initialize one. */
880 if (t->to_magic != OPS_MAGIC)
881 {
882 fprintf_unfiltered (gdb_stderr,
883 "Magic number of %s target struct wrong\n",
884 t->to_shortname);
885 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
886 }
887
888 /* Find the proper stratum to install this target in. */
889 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
890 {
891 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
892 break;
893 }
894
895 /* If there's already targets at this stratum, remove them. */
896 /* FIXME: cagney/2003-10-15: I think this should be popping all
897 targets to CUR, and not just those at this stratum level. */
898 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
899 {
900 /* There's already something at this stratum level. Close it,
901 and un-hook it from the stack. */
902 struct target_ops *tmp = (*cur);
903 (*cur) = (*cur)->beneath;
904 tmp->beneath = NULL;
905 target_close (tmp, 0);
906 }
907
908 /* We have removed all targets in our stratum, now add the new one. */
909 t->beneath = (*cur);
910 (*cur) = t;
911
912 update_current_target ();
913
914 /* Not on top? */
915 return (t != target_stack);
916 }
917
918 /* Remove a target_ops vector from the stack, wherever it may be.
919 Return how many times it was removed (0 or 1). */
920
921 int
922 unpush_target (struct target_ops *t)
923 {
924 struct target_ops **cur;
925 struct target_ops *tmp;
926
927 if (t->to_stratum == dummy_stratum)
928 internal_error (__FILE__, __LINE__,
929 "Attempt to unpush the dummy target");
930
931 /* Look for the specified target. Note that we assume that a target
932 can only occur once in the target stack. */
933
934 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
935 {
936 if ((*cur) == t)
937 break;
938 }
939
940 if ((*cur) == NULL)
941 return 0; /* Didn't find target_ops, quit now */
942
943 /* NOTE: cagney/2003-12-06: In '94 the close call was made
944 unconditional by moving it to before the above check that the
945 target was in the target stack (something about "Change the way
946 pushing and popping of targets work to support target overlays
947 and inheritance"). This doesn't make much sense - only open
948 targets should be closed. */
949 target_close (t, 0);
950
951 /* Unchain the target */
952 tmp = (*cur);
953 (*cur) = (*cur)->beneath;
954 tmp->beneath = NULL;
955
956 update_current_target ();
957
958 return 1;
959 }
960
961 void
962 pop_target (void)
963 {
964 target_close (target_stack, 0); /* Let it clean up */
965 if (unpush_target (target_stack) == 1)
966 return;
967
968 fprintf_unfiltered (gdb_stderr,
969 "pop_target couldn't find target %s\n",
970 current_target.to_shortname);
971 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
972 }
973
974 void
975 pop_all_targets_above (enum strata above_stratum, int quitting)
976 {
977 while ((int) (current_target.to_stratum) > (int) above_stratum)
978 {
979 target_close (target_stack, quitting);
980 if (!unpush_target (target_stack))
981 {
982 fprintf_unfiltered (gdb_stderr,
983 "pop_all_targets couldn't find target %s\n",
984 target_stack->to_shortname);
985 internal_error (__FILE__, __LINE__,
986 _("failed internal consistency check"));
987 break;
988 }
989 }
990 }
991
992 void
993 pop_all_targets (int quitting)
994 {
995 pop_all_targets_above (dummy_stratum, quitting);
996 }
997
998 /* Using the objfile specified in OBJFILE, find the address for the
999 current thread's thread-local storage with offset OFFSET. */
1000 CORE_ADDR
1001 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1002 {
1003 volatile CORE_ADDR addr = 0;
1004 struct target_ops *target;
1005
1006 for (target = current_target.beneath;
1007 target != NULL;
1008 target = target->beneath)
1009 {
1010 if (target->to_get_thread_local_address != NULL)
1011 break;
1012 }
1013
1014 if (target != NULL
1015 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1016 {
1017 ptid_t ptid = inferior_ptid;
1018 volatile struct gdb_exception ex;
1019
1020 TRY_CATCH (ex, RETURN_MASK_ALL)
1021 {
1022 CORE_ADDR lm_addr;
1023
1024 /* Fetch the load module address for this objfile. */
1025 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1026 objfile);
1027 /* If it's 0, throw the appropriate exception. */
1028 if (lm_addr == 0)
1029 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1030 _("TLS load module not found"));
1031
1032 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1033 }
1034 /* If an error occurred, print TLS related messages here. Otherwise,
1035 throw the error to some higher catcher. */
1036 if (ex.reason < 0)
1037 {
1038 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1039
1040 switch (ex.error)
1041 {
1042 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1043 error (_("Cannot find thread-local variables in this thread library."));
1044 break;
1045 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1046 if (objfile_is_library)
1047 error (_("Cannot find shared library `%s' in dynamic"
1048 " linker's load module list"), objfile->name);
1049 else
1050 error (_("Cannot find executable file `%s' in dynamic"
1051 " linker's load module list"), objfile->name);
1052 break;
1053 case TLS_NOT_ALLOCATED_YET_ERROR:
1054 if (objfile_is_library)
1055 error (_("The inferior has not yet allocated storage for"
1056 " thread-local variables in\n"
1057 "the shared library `%s'\n"
1058 "for %s"),
1059 objfile->name, target_pid_to_str (ptid));
1060 else
1061 error (_("The inferior has not yet allocated storage for"
1062 " thread-local variables in\n"
1063 "the executable `%s'\n"
1064 "for %s"),
1065 objfile->name, target_pid_to_str (ptid));
1066 break;
1067 case TLS_GENERIC_ERROR:
1068 if (objfile_is_library)
1069 error (_("Cannot find thread-local storage for %s, "
1070 "shared library %s:\n%s"),
1071 target_pid_to_str (ptid),
1072 objfile->name, ex.message);
1073 else
1074 error (_("Cannot find thread-local storage for %s, "
1075 "executable file %s:\n%s"),
1076 target_pid_to_str (ptid),
1077 objfile->name, ex.message);
1078 break;
1079 default:
1080 throw_exception (ex);
1081 break;
1082 }
1083 }
1084 }
1085 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1086 TLS is an ABI-specific thing. But we don't do that yet. */
1087 else
1088 error (_("Cannot find thread-local variables on this target"));
1089
1090 return addr;
1091 }
1092
1093 #undef MIN
1094 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1095
1096 /* target_read_string -- read a null terminated string, up to LEN bytes,
1097 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1098 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1099 is responsible for freeing it. Return the number of bytes successfully
1100 read. */
1101
1102 int
1103 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1104 {
1105 int tlen, origlen, offset, i;
1106 gdb_byte buf[4];
1107 int errcode = 0;
1108 char *buffer;
1109 int buffer_allocated;
1110 char *bufptr;
1111 unsigned int nbytes_read = 0;
1112
1113 gdb_assert (string);
1114
1115 /* Small for testing. */
1116 buffer_allocated = 4;
1117 buffer = xmalloc (buffer_allocated);
1118 bufptr = buffer;
1119
1120 origlen = len;
1121
1122 while (len > 0)
1123 {
1124 tlen = MIN (len, 4 - (memaddr & 3));
1125 offset = memaddr & 3;
1126
1127 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1128 if (errcode != 0)
1129 {
1130 /* The transfer request might have crossed the boundary to an
1131 unallocated region of memory. Retry the transfer, requesting
1132 a single byte. */
1133 tlen = 1;
1134 offset = 0;
1135 errcode = target_read_memory (memaddr, buf, 1);
1136 if (errcode != 0)
1137 goto done;
1138 }
1139
1140 if (bufptr - buffer + tlen > buffer_allocated)
1141 {
1142 unsigned int bytes;
1143 bytes = bufptr - buffer;
1144 buffer_allocated *= 2;
1145 buffer = xrealloc (buffer, buffer_allocated);
1146 bufptr = buffer + bytes;
1147 }
1148
1149 for (i = 0; i < tlen; i++)
1150 {
1151 *bufptr++ = buf[i + offset];
1152 if (buf[i + offset] == '\000')
1153 {
1154 nbytes_read += i + 1;
1155 goto done;
1156 }
1157 }
1158
1159 memaddr += tlen;
1160 len -= tlen;
1161 nbytes_read += tlen;
1162 }
1163 done:
1164 *string = buffer;
1165 if (errnop != NULL)
1166 *errnop = errcode;
1167 return nbytes_read;
1168 }
1169
1170 struct target_section_table *
1171 target_get_section_table (struct target_ops *target)
1172 {
1173 struct target_ops *t;
1174
1175 if (targetdebug)
1176 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1177
1178 for (t = target; t != NULL; t = t->beneath)
1179 if (t->to_get_section_table != NULL)
1180 return (*t->to_get_section_table) (t);
1181
1182 return NULL;
1183 }
1184
1185 /* Find a section containing ADDR. */
1186
1187 struct target_section *
1188 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1189 {
1190 struct target_section_table *table = target_get_section_table (target);
1191 struct target_section *secp;
1192
1193 if (table == NULL)
1194 return NULL;
1195
1196 for (secp = table->sections; secp < table->sections_end; secp++)
1197 {
1198 if (addr >= secp->addr && addr < secp->endaddr)
1199 return secp;
1200 }
1201 return NULL;
1202 }
1203
1204 /* Perform a partial memory transfer.
1205 For docs see target.h, to_xfer_partial. */
1206
1207 static LONGEST
1208 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1209 void *readbuf, const void *writebuf, ULONGEST memaddr,
1210 LONGEST len)
1211 {
1212 LONGEST res;
1213 int reg_len;
1214 struct mem_region *region;
1215 struct inferior *inf;
1216
1217 /* Zero length requests are ok and require no work. */
1218 if (len == 0)
1219 return 0;
1220
1221 /* For accesses to unmapped overlay sections, read directly from
1222 files. Must do this first, as MEMADDR may need adjustment. */
1223 if (readbuf != NULL && overlay_debugging)
1224 {
1225 struct obj_section *section = find_pc_overlay (memaddr);
1226 if (pc_in_unmapped_range (memaddr, section))
1227 {
1228 struct target_section_table *table
1229 = target_get_section_table (ops);
1230 const char *section_name = section->the_bfd_section->name;
1231 memaddr = overlay_mapped_address (memaddr, section);
1232 return section_table_xfer_memory_partial (readbuf, writebuf,
1233 memaddr, len,
1234 table->sections,
1235 table->sections_end,
1236 section_name);
1237 }
1238 }
1239
1240 /* Try the executable files, if "trust-readonly-sections" is set. */
1241 if (readbuf != NULL && trust_readonly)
1242 {
1243 struct target_section *secp;
1244 struct target_section_table *table;
1245
1246 secp = target_section_by_addr (ops, memaddr);
1247 if (secp != NULL
1248 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1249 & SEC_READONLY))
1250 {
1251 table = target_get_section_table (ops);
1252 return section_table_xfer_memory_partial (readbuf, writebuf,
1253 memaddr, len,
1254 table->sections,
1255 table->sections_end,
1256 NULL);
1257 }
1258 }
1259
1260 /* Try GDB's internal data cache. */
1261 region = lookup_mem_region (memaddr);
1262 /* region->hi == 0 means there's no upper bound. */
1263 if (memaddr + len < region->hi || region->hi == 0)
1264 reg_len = len;
1265 else
1266 reg_len = region->hi - memaddr;
1267
1268 switch (region->attrib.mode)
1269 {
1270 case MEM_RO:
1271 if (writebuf != NULL)
1272 return -1;
1273 break;
1274
1275 case MEM_WO:
1276 if (readbuf != NULL)
1277 return -1;
1278 break;
1279
1280 case MEM_FLASH:
1281 /* We only support writing to flash during "load" for now. */
1282 if (writebuf != NULL)
1283 error (_("Writing to flash memory forbidden in this context"));
1284 break;
1285
1286 case MEM_NONE:
1287 return -1;
1288 }
1289
1290 if (!ptid_equal (inferior_ptid, null_ptid))
1291 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1292 else
1293 inf = NULL;
1294
1295 if (inf != NULL
1296 /* The dcache reads whole cache lines; that doesn't play well
1297 with reading from a trace buffer, because reading outside of
1298 the collected memory range fails. */
1299 && get_traceframe_number () == -1
1300 && (region->attrib.cache
1301 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1302 {
1303 if (readbuf != NULL)
1304 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1305 reg_len, 0);
1306 else
1307 /* FIXME drow/2006-08-09: If we're going to preserve const
1308 correctness dcache_xfer_memory should take readbuf and
1309 writebuf. */
1310 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1311 (void *) writebuf,
1312 reg_len, 1);
1313 if (res <= 0)
1314 return -1;
1315 else
1316 {
1317 if (readbuf && !show_memory_breakpoints)
1318 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1319 return res;
1320 }
1321 }
1322
1323 /* If none of those methods found the memory we wanted, fall back
1324 to a target partial transfer. Normally a single call to
1325 to_xfer_partial is enough; if it doesn't recognize an object
1326 it will call the to_xfer_partial of the next target down.
1327 But for memory this won't do. Memory is the only target
1328 object which can be read from more than one valid target.
1329 A core file, for instance, could have some of memory but
1330 delegate other bits to the target below it. So, we must
1331 manually try all targets. */
1332
1333 do
1334 {
1335 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1336 readbuf, writebuf, memaddr, reg_len);
1337 if (res > 0)
1338 break;
1339
1340 /* We want to continue past core files to executables, but not
1341 past a running target's memory. */
1342 if (ops->to_has_all_memory (ops))
1343 break;
1344
1345 ops = ops->beneath;
1346 }
1347 while (ops != NULL);
1348
1349 if (readbuf && !show_memory_breakpoints)
1350 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1351
1352 /* Make sure the cache gets updated no matter what - if we are writing
1353 to the stack. Even if this write is not tagged as such, we still need
1354 to update the cache. */
1355
1356 if (res > 0
1357 && inf != NULL
1358 && writebuf != NULL
1359 && !region->attrib.cache
1360 && stack_cache_enabled_p
1361 && object != TARGET_OBJECT_STACK_MEMORY)
1362 {
1363 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1364 }
1365
1366 /* If we still haven't got anything, return the last error. We
1367 give up. */
1368 return res;
1369 }
1370
1371 static void
1372 restore_show_memory_breakpoints (void *arg)
1373 {
1374 show_memory_breakpoints = (uintptr_t) arg;
1375 }
1376
1377 struct cleanup *
1378 make_show_memory_breakpoints_cleanup (int show)
1379 {
1380 int current = show_memory_breakpoints;
1381 show_memory_breakpoints = show;
1382
1383 return make_cleanup (restore_show_memory_breakpoints,
1384 (void *) (uintptr_t) current);
1385 }
1386
1387 /* For docs see target.h, to_xfer_partial. */
1388
1389 static LONGEST
1390 target_xfer_partial (struct target_ops *ops,
1391 enum target_object object, const char *annex,
1392 void *readbuf, const void *writebuf,
1393 ULONGEST offset, LONGEST len)
1394 {
1395 LONGEST retval;
1396
1397 gdb_assert (ops->to_xfer_partial != NULL);
1398
1399 /* If this is a memory transfer, let the memory-specific code
1400 have a look at it instead. Memory transfers are more
1401 complicated. */
1402 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1403 retval = memory_xfer_partial (ops, object, readbuf,
1404 writebuf, offset, len);
1405 else
1406 {
1407 enum target_object raw_object = object;
1408
1409 /* If this is a raw memory transfer, request the normal
1410 memory object from other layers. */
1411 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1412 raw_object = TARGET_OBJECT_MEMORY;
1413
1414 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1415 writebuf, offset, len);
1416 }
1417
1418 if (targetdebug)
1419 {
1420 const unsigned char *myaddr = NULL;
1421
1422 fprintf_unfiltered (gdb_stdlog,
1423 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1424 ops->to_shortname,
1425 (int) object,
1426 (annex ? annex : "(null)"),
1427 host_address_to_string (readbuf),
1428 host_address_to_string (writebuf),
1429 core_addr_to_string_nz (offset),
1430 plongest (len), plongest (retval));
1431
1432 if (readbuf)
1433 myaddr = readbuf;
1434 if (writebuf)
1435 myaddr = writebuf;
1436 if (retval > 0 && myaddr != NULL)
1437 {
1438 int i;
1439
1440 fputs_unfiltered (", bytes =", gdb_stdlog);
1441 for (i = 0; i < retval; i++)
1442 {
1443 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1444 {
1445 if (targetdebug < 2 && i > 0)
1446 {
1447 fprintf_unfiltered (gdb_stdlog, " ...");
1448 break;
1449 }
1450 fprintf_unfiltered (gdb_stdlog, "\n");
1451 }
1452
1453 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1454 }
1455 }
1456
1457 fputc_unfiltered ('\n', gdb_stdlog);
1458 }
1459 return retval;
1460 }
1461
1462 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1463 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1464 if any error occurs.
1465
1466 If an error occurs, no guarantee is made about the contents of the data at
1467 MYADDR. In particular, the caller should not depend upon partial reads
1468 filling the buffer with good data. There is no way for the caller to know
1469 how much good data might have been transfered anyway. Callers that can
1470 deal with partial reads should call target_read (which will retry until
1471 it makes no progress, and then return how much was transferred). */
1472
1473 int
1474 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1475 {
1476 /* Dispatch to the topmost target, not the flattened current_target.
1477 Memory accesses check target->to_has_(all_)memory, and the
1478 flattened target doesn't inherit those. */
1479 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1480 myaddr, memaddr, len) == len)
1481 return 0;
1482 else
1483 return EIO;
1484 }
1485
1486 /* Like target_read_memory, but specify explicitly that this is a read from
1487 the target's stack. This may trigger different cache behavior. */
1488
1489 int
1490 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1491 {
1492 /* Dispatch to the topmost target, not the flattened current_target.
1493 Memory accesses check target->to_has_(all_)memory, and the
1494 flattened target doesn't inherit those. */
1495
1496 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1497 myaddr, memaddr, len) == len)
1498 return 0;
1499 else
1500 return EIO;
1501 }
1502
1503 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1504 Returns either 0 for success or an errno value if any error occurs.
1505 If an error occurs, no guarantee is made about how much data got written.
1506 Callers that can deal with partial writes should call target_write. */
1507
1508 int
1509 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1510 {
1511 /* Dispatch to the topmost target, not the flattened current_target.
1512 Memory accesses check target->to_has_(all_)memory, and the
1513 flattened target doesn't inherit those. */
1514 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1515 myaddr, memaddr, len) == len)
1516 return 0;
1517 else
1518 return EIO;
1519 }
1520
1521 /* Fetch the target's memory map. */
1522
1523 VEC(mem_region_s) *
1524 target_memory_map (void)
1525 {
1526 VEC(mem_region_s) *result;
1527 struct mem_region *last_one, *this_one;
1528 int ix;
1529 struct target_ops *t;
1530
1531 if (targetdebug)
1532 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1533
1534 for (t = current_target.beneath; t != NULL; t = t->beneath)
1535 if (t->to_memory_map != NULL)
1536 break;
1537
1538 if (t == NULL)
1539 return NULL;
1540
1541 result = t->to_memory_map (t);
1542 if (result == NULL)
1543 return NULL;
1544
1545 qsort (VEC_address (mem_region_s, result),
1546 VEC_length (mem_region_s, result),
1547 sizeof (struct mem_region), mem_region_cmp);
1548
1549 /* Check that regions do not overlap. Simultaneously assign
1550 a numbering for the "mem" commands to use to refer to
1551 each region. */
1552 last_one = NULL;
1553 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1554 {
1555 this_one->number = ix;
1556
1557 if (last_one && last_one->hi > this_one->lo)
1558 {
1559 warning (_("Overlapping regions in memory map: ignoring"));
1560 VEC_free (mem_region_s, result);
1561 return NULL;
1562 }
1563 last_one = this_one;
1564 }
1565
1566 return result;
1567 }
1568
1569 void
1570 target_flash_erase (ULONGEST address, LONGEST length)
1571 {
1572 struct target_ops *t;
1573
1574 for (t = current_target.beneath; t != NULL; t = t->beneath)
1575 if (t->to_flash_erase != NULL)
1576 {
1577 if (targetdebug)
1578 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1579 hex_string (address), phex (length, 0));
1580 t->to_flash_erase (t, address, length);
1581 return;
1582 }
1583
1584 tcomplain ();
1585 }
1586
1587 void
1588 target_flash_done (void)
1589 {
1590 struct target_ops *t;
1591
1592 for (t = current_target.beneath; t != NULL; t = t->beneath)
1593 if (t->to_flash_done != NULL)
1594 {
1595 if (targetdebug)
1596 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1597 t->to_flash_done (t);
1598 return;
1599 }
1600
1601 tcomplain ();
1602 }
1603
1604 static void
1605 show_trust_readonly (struct ui_file *file, int from_tty,
1606 struct cmd_list_element *c, const char *value)
1607 {
1608 fprintf_filtered (file, _("\
1609 Mode for reading from readonly sections is %s.\n"),
1610 value);
1611 }
1612
1613 /* More generic transfers. */
1614
1615 static LONGEST
1616 default_xfer_partial (struct target_ops *ops, enum target_object object,
1617 const char *annex, gdb_byte *readbuf,
1618 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1619 {
1620 if (object == TARGET_OBJECT_MEMORY
1621 && ops->deprecated_xfer_memory != NULL)
1622 /* If available, fall back to the target's
1623 "deprecated_xfer_memory" method. */
1624 {
1625 int xfered = -1;
1626 errno = 0;
1627 if (writebuf != NULL)
1628 {
1629 void *buffer = xmalloc (len);
1630 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1631 memcpy (buffer, writebuf, len);
1632 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1633 1/*write*/, NULL, ops);
1634 do_cleanups (cleanup);
1635 }
1636 if (readbuf != NULL)
1637 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1638 0/*read*/, NULL, ops);
1639 if (xfered > 0)
1640 return xfered;
1641 else if (xfered == 0 && errno == 0)
1642 /* "deprecated_xfer_memory" uses 0, cross checked against
1643 ERRNO as one indication of an error. */
1644 return 0;
1645 else
1646 return -1;
1647 }
1648 else if (ops->beneath != NULL)
1649 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1650 readbuf, writebuf, offset, len);
1651 else
1652 return -1;
1653 }
1654
1655 /* The xfer_partial handler for the topmost target. Unlike the default,
1656 it does not need to handle memory specially; it just passes all
1657 requests down the stack. */
1658
1659 static LONGEST
1660 current_xfer_partial (struct target_ops *ops, enum target_object object,
1661 const char *annex, gdb_byte *readbuf,
1662 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1663 {
1664 if (ops->beneath != NULL)
1665 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1666 readbuf, writebuf, offset, len);
1667 else
1668 return -1;
1669 }
1670
1671 /* Target vector read/write partial wrapper functions. */
1672
1673 static LONGEST
1674 target_read_partial (struct target_ops *ops,
1675 enum target_object object,
1676 const char *annex, gdb_byte *buf,
1677 ULONGEST offset, LONGEST len)
1678 {
1679 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1680 }
1681
1682 static LONGEST
1683 target_write_partial (struct target_ops *ops,
1684 enum target_object object,
1685 const char *annex, const gdb_byte *buf,
1686 ULONGEST offset, LONGEST len)
1687 {
1688 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1689 }
1690
1691 /* Wrappers to perform the full transfer. */
1692
1693 /* For docs on target_read see target.h. */
1694
1695 LONGEST
1696 target_read (struct target_ops *ops,
1697 enum target_object object,
1698 const char *annex, gdb_byte *buf,
1699 ULONGEST offset, LONGEST len)
1700 {
1701 LONGEST xfered = 0;
1702 while (xfered < len)
1703 {
1704 LONGEST xfer = target_read_partial (ops, object, annex,
1705 (gdb_byte *) buf + xfered,
1706 offset + xfered, len - xfered);
1707 /* Call an observer, notifying them of the xfer progress? */
1708 if (xfer == 0)
1709 return xfered;
1710 if (xfer < 0)
1711 return -1;
1712 xfered += xfer;
1713 QUIT;
1714 }
1715 return len;
1716 }
1717
1718 LONGEST
1719 target_read_until_error (struct target_ops *ops,
1720 enum target_object object,
1721 const char *annex, gdb_byte *buf,
1722 ULONGEST offset, LONGEST len)
1723 {
1724 LONGEST xfered = 0;
1725 while (xfered < len)
1726 {
1727 LONGEST xfer = target_read_partial (ops, object, annex,
1728 (gdb_byte *) buf + xfered,
1729 offset + xfered, len - xfered);
1730 /* Call an observer, notifying them of the xfer progress? */
1731 if (xfer == 0)
1732 return xfered;
1733 if (xfer < 0)
1734 {
1735 /* We've got an error. Try to read in smaller blocks. */
1736 ULONGEST start = offset + xfered;
1737 ULONGEST remaining = len - xfered;
1738 ULONGEST half;
1739
1740 /* If an attempt was made to read a random memory address,
1741 it's likely that the very first byte is not accessible.
1742 Try reading the first byte, to avoid doing log N tries
1743 below. */
1744 xfer = target_read_partial (ops, object, annex,
1745 (gdb_byte *) buf + xfered, start, 1);
1746 if (xfer <= 0)
1747 return xfered;
1748 start += 1;
1749 remaining -= 1;
1750 half = remaining/2;
1751
1752 while (half > 0)
1753 {
1754 xfer = target_read_partial (ops, object, annex,
1755 (gdb_byte *) buf + xfered,
1756 start, half);
1757 if (xfer == 0)
1758 return xfered;
1759 if (xfer < 0)
1760 {
1761 remaining = half;
1762 }
1763 else
1764 {
1765 /* We have successfully read the first half. So, the
1766 error must be in the second half. Adjust start and
1767 remaining to point at the second half. */
1768 xfered += xfer;
1769 start += xfer;
1770 remaining -= xfer;
1771 }
1772 half = remaining/2;
1773 }
1774
1775 return xfered;
1776 }
1777 xfered += xfer;
1778 QUIT;
1779 }
1780 return len;
1781 }
1782
1783 /* An alternative to target_write with progress callbacks. */
1784
1785 LONGEST
1786 target_write_with_progress (struct target_ops *ops,
1787 enum target_object object,
1788 const char *annex, const gdb_byte *buf,
1789 ULONGEST offset, LONGEST len,
1790 void (*progress) (ULONGEST, void *), void *baton)
1791 {
1792 LONGEST xfered = 0;
1793
1794 /* Give the progress callback a chance to set up. */
1795 if (progress)
1796 (*progress) (0, baton);
1797
1798 while (xfered < len)
1799 {
1800 LONGEST xfer = target_write_partial (ops, object, annex,
1801 (gdb_byte *) buf + xfered,
1802 offset + xfered, len - xfered);
1803
1804 if (xfer == 0)
1805 return xfered;
1806 if (xfer < 0)
1807 return -1;
1808
1809 if (progress)
1810 (*progress) (xfer, baton);
1811
1812 xfered += xfer;
1813 QUIT;
1814 }
1815 return len;
1816 }
1817
1818 /* For docs on target_write see target.h. */
1819
1820 LONGEST
1821 target_write (struct target_ops *ops,
1822 enum target_object object,
1823 const char *annex, const gdb_byte *buf,
1824 ULONGEST offset, LONGEST len)
1825 {
1826 return target_write_with_progress (ops, object, annex, buf, offset, len,
1827 NULL, NULL);
1828 }
1829
1830 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1831 the size of the transferred data. PADDING additional bytes are
1832 available in *BUF_P. This is a helper function for
1833 target_read_alloc; see the declaration of that function for more
1834 information. */
1835
1836 static LONGEST
1837 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1838 const char *annex, gdb_byte **buf_p, int padding)
1839 {
1840 size_t buf_alloc, buf_pos;
1841 gdb_byte *buf;
1842 LONGEST n;
1843
1844 /* This function does not have a length parameter; it reads the
1845 entire OBJECT). Also, it doesn't support objects fetched partly
1846 from one target and partly from another (in a different stratum,
1847 e.g. a core file and an executable). Both reasons make it
1848 unsuitable for reading memory. */
1849 gdb_assert (object != TARGET_OBJECT_MEMORY);
1850
1851 /* Start by reading up to 4K at a time. The target will throttle
1852 this number down if necessary. */
1853 buf_alloc = 4096;
1854 buf = xmalloc (buf_alloc);
1855 buf_pos = 0;
1856 while (1)
1857 {
1858 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1859 buf_pos, buf_alloc - buf_pos - padding);
1860 if (n < 0)
1861 {
1862 /* An error occurred. */
1863 xfree (buf);
1864 return -1;
1865 }
1866 else if (n == 0)
1867 {
1868 /* Read all there was. */
1869 if (buf_pos == 0)
1870 xfree (buf);
1871 else
1872 *buf_p = buf;
1873 return buf_pos;
1874 }
1875
1876 buf_pos += n;
1877
1878 /* If the buffer is filling up, expand it. */
1879 if (buf_alloc < buf_pos * 2)
1880 {
1881 buf_alloc *= 2;
1882 buf = xrealloc (buf, buf_alloc);
1883 }
1884
1885 QUIT;
1886 }
1887 }
1888
1889 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1890 the size of the transferred data. See the declaration in "target.h"
1891 function for more information about the return value. */
1892
1893 LONGEST
1894 target_read_alloc (struct target_ops *ops, enum target_object object,
1895 const char *annex, gdb_byte **buf_p)
1896 {
1897 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1898 }
1899
1900 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1901 returned as a string, allocated using xmalloc. If an error occurs
1902 or the transfer is unsupported, NULL is returned. Empty objects
1903 are returned as allocated but empty strings. A warning is issued
1904 if the result contains any embedded NUL bytes. */
1905
1906 char *
1907 target_read_stralloc (struct target_ops *ops, enum target_object object,
1908 const char *annex)
1909 {
1910 gdb_byte *buffer;
1911 LONGEST transferred;
1912
1913 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1914
1915 if (transferred < 0)
1916 return NULL;
1917
1918 if (transferred == 0)
1919 return xstrdup ("");
1920
1921 buffer[transferred] = 0;
1922 if (strlen (buffer) < transferred)
1923 warning (_("target object %d, annex %s, "
1924 "contained unexpected null characters"),
1925 (int) object, annex ? annex : "(none)");
1926
1927 return (char *) buffer;
1928 }
1929
1930 /* Memory transfer methods. */
1931
1932 void
1933 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1934 LONGEST len)
1935 {
1936 /* This method is used to read from an alternate, non-current
1937 target. This read must bypass the overlay support (as symbols
1938 don't match this target), and GDB's internal cache (wrong cache
1939 for this target). */
1940 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1941 != len)
1942 memory_error (EIO, addr);
1943 }
1944
1945 ULONGEST
1946 get_target_memory_unsigned (struct target_ops *ops,
1947 CORE_ADDR addr, int len, enum bfd_endian byte_order)
1948 {
1949 gdb_byte buf[sizeof (ULONGEST)];
1950
1951 gdb_assert (len <= sizeof (buf));
1952 get_target_memory (ops, addr, buf, len);
1953 return extract_unsigned_integer (buf, len, byte_order);
1954 }
1955
1956 static void
1957 target_info (char *args, int from_tty)
1958 {
1959 struct target_ops *t;
1960 int has_all_mem = 0;
1961
1962 if (symfile_objfile != NULL)
1963 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1964
1965 for (t = target_stack; t != NULL; t = t->beneath)
1966 {
1967 if (!(*t->to_has_memory) (t))
1968 continue;
1969
1970 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1971 continue;
1972 if (has_all_mem)
1973 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1974 printf_unfiltered ("%s:\n", t->to_longname);
1975 (t->to_files_info) (t);
1976 has_all_mem = (*t->to_has_all_memory) (t);
1977 }
1978 }
1979
1980 /* This function is called before any new inferior is created, e.g.
1981 by running a program, attaching, or connecting to a target.
1982 It cleans up any state from previous invocations which might
1983 change between runs. This is a subset of what target_preopen
1984 resets (things which might change between targets). */
1985
1986 void
1987 target_pre_inferior (int from_tty)
1988 {
1989 /* Clear out solib state. Otherwise the solib state of the previous
1990 inferior might have survived and is entirely wrong for the new
1991 target. This has been observed on GNU/Linux using glibc 2.3. How
1992 to reproduce:
1993
1994 bash$ ./foo&
1995 [1] 4711
1996 bash$ ./foo&
1997 [1] 4712
1998 bash$ gdb ./foo
1999 [...]
2000 (gdb) attach 4711
2001 (gdb) detach
2002 (gdb) attach 4712
2003 Cannot access memory at address 0xdeadbeef
2004 */
2005
2006 /* In some OSs, the shared library list is the same/global/shared
2007 across inferiors. If code is shared between processes, so are
2008 memory regions and features. */
2009 if (!gdbarch_has_global_solist (target_gdbarch))
2010 {
2011 no_shared_libraries (NULL, from_tty);
2012
2013 invalidate_target_mem_regions ();
2014
2015 target_clear_description ();
2016 }
2017 }
2018
2019 /* Callback for iterate_over_inferiors. Gets rid of the given
2020 inferior. */
2021
2022 static int
2023 dispose_inferior (struct inferior *inf, void *args)
2024 {
2025 struct thread_info *thread;
2026
2027 thread = any_thread_of_process (inf->pid);
2028 if (thread)
2029 {
2030 switch_to_thread (thread->ptid);
2031
2032 /* Core inferiors actually should be detached, not killed. */
2033 if (target_has_execution)
2034 target_kill ();
2035 else
2036 target_detach (NULL, 0);
2037 }
2038
2039 return 0;
2040 }
2041
2042 /* This is to be called by the open routine before it does
2043 anything. */
2044
2045 void
2046 target_preopen (int from_tty)
2047 {
2048 dont_repeat ();
2049
2050 if (have_inferiors ())
2051 {
2052 if (!from_tty
2053 || !have_live_inferiors ()
2054 || query (_("A program is being debugged already. Kill it? ")))
2055 iterate_over_inferiors (dispose_inferior, NULL);
2056 else
2057 error (_("Program not killed."));
2058 }
2059
2060 /* Calling target_kill may remove the target from the stack. But if
2061 it doesn't (which seems like a win for UDI), remove it now. */
2062 /* Leave the exec target, though. The user may be switching from a
2063 live process to a core of the same program. */
2064 pop_all_targets_above (file_stratum, 0);
2065
2066 target_pre_inferior (from_tty);
2067 }
2068
2069 /* Detach a target after doing deferred register stores. */
2070
2071 void
2072 target_detach (char *args, int from_tty)
2073 {
2074 struct target_ops* t;
2075
2076 if (gdbarch_has_global_breakpoints (target_gdbarch))
2077 /* Don't remove global breakpoints here. They're removed on
2078 disconnection from the target. */
2079 ;
2080 else
2081 /* If we're in breakpoints-always-inserted mode, have to remove
2082 them before detaching. */
2083 remove_breakpoints_pid (PIDGET (inferior_ptid));
2084
2085 prepare_for_detach ();
2086
2087 for (t = current_target.beneath; t != NULL; t = t->beneath)
2088 {
2089 if (t->to_detach != NULL)
2090 {
2091 t->to_detach (t, args, from_tty);
2092 if (targetdebug)
2093 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2094 args, from_tty);
2095 return;
2096 }
2097 }
2098
2099 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2100 }
2101
2102 void
2103 target_disconnect (char *args, int from_tty)
2104 {
2105 struct target_ops *t;
2106
2107 /* If we're in breakpoints-always-inserted mode or if breakpoints
2108 are global across processes, we have to remove them before
2109 disconnecting. */
2110 remove_breakpoints ();
2111
2112 for (t = current_target.beneath; t != NULL; t = t->beneath)
2113 if (t->to_disconnect != NULL)
2114 {
2115 if (targetdebug)
2116 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2117 args, from_tty);
2118 t->to_disconnect (t, args, from_tty);
2119 return;
2120 }
2121
2122 tcomplain ();
2123 }
2124
2125 ptid_t
2126 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2127 {
2128 struct target_ops *t;
2129
2130 for (t = current_target.beneath; t != NULL; t = t->beneath)
2131 {
2132 if (t->to_wait != NULL)
2133 {
2134 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2135
2136 if (targetdebug)
2137 {
2138 char *status_string;
2139
2140 status_string = target_waitstatus_to_string (status);
2141 fprintf_unfiltered (gdb_stdlog,
2142 "target_wait (%d, status) = %d, %s\n",
2143 PIDGET (ptid), PIDGET (retval),
2144 status_string);
2145 xfree (status_string);
2146 }
2147
2148 return retval;
2149 }
2150 }
2151
2152 noprocess ();
2153 }
2154
2155 char *
2156 target_pid_to_str (ptid_t ptid)
2157 {
2158 struct target_ops *t;
2159
2160 for (t = current_target.beneath; t != NULL; t = t->beneath)
2161 {
2162 if (t->to_pid_to_str != NULL)
2163 return (*t->to_pid_to_str) (t, ptid);
2164 }
2165
2166 return normal_pid_to_str (ptid);
2167 }
2168
2169 void
2170 target_resume (ptid_t ptid, int step, enum target_signal signal)
2171 {
2172 struct target_ops *t;
2173
2174 target_dcache_invalidate ();
2175
2176 for (t = current_target.beneath; t != NULL; t = t->beneath)
2177 {
2178 if (t->to_resume != NULL)
2179 {
2180 t->to_resume (t, ptid, step, signal);
2181 if (targetdebug)
2182 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2183 PIDGET (ptid),
2184 step ? "step" : "continue",
2185 target_signal_to_name (signal));
2186
2187 set_executing (ptid, 1);
2188 set_running (ptid, 1);
2189 clear_inline_frame_state (ptid);
2190 return;
2191 }
2192 }
2193
2194 noprocess ();
2195 }
2196 /* Look through the list of possible targets for a target that can
2197 follow forks. */
2198
2199 int
2200 target_follow_fork (int follow_child)
2201 {
2202 struct target_ops *t;
2203
2204 for (t = current_target.beneath; t != NULL; t = t->beneath)
2205 {
2206 if (t->to_follow_fork != NULL)
2207 {
2208 int retval = t->to_follow_fork (t, follow_child);
2209 if (targetdebug)
2210 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2211 follow_child, retval);
2212 return retval;
2213 }
2214 }
2215
2216 /* Some target returned a fork event, but did not know how to follow it. */
2217 internal_error (__FILE__, __LINE__,
2218 "could not find a target to follow fork");
2219 }
2220
2221 void
2222 target_mourn_inferior (void)
2223 {
2224 struct target_ops *t;
2225 for (t = current_target.beneath; t != NULL; t = t->beneath)
2226 {
2227 if (t->to_mourn_inferior != NULL)
2228 {
2229 t->to_mourn_inferior (t);
2230 if (targetdebug)
2231 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2232
2233 /* We no longer need to keep handles on any of the object files.
2234 Make sure to release them to avoid unnecessarily locking any
2235 of them while we're not actually debugging. */
2236 bfd_cache_close_all ();
2237
2238 return;
2239 }
2240 }
2241
2242 internal_error (__FILE__, __LINE__,
2243 "could not find a target to follow mourn inferiour");
2244 }
2245
2246 /* Look for a target which can describe architectural features, starting
2247 from TARGET. If we find one, return its description. */
2248
2249 const struct target_desc *
2250 target_read_description (struct target_ops *target)
2251 {
2252 struct target_ops *t;
2253
2254 for (t = target; t != NULL; t = t->beneath)
2255 if (t->to_read_description != NULL)
2256 {
2257 const struct target_desc *tdesc;
2258
2259 tdesc = t->to_read_description (t);
2260 if (tdesc)
2261 return tdesc;
2262 }
2263
2264 return NULL;
2265 }
2266
2267 /* The default implementation of to_search_memory.
2268 This implements a basic search of memory, reading target memory and
2269 performing the search here (as opposed to performing the search in on the
2270 target side with, for example, gdbserver). */
2271
2272 int
2273 simple_search_memory (struct target_ops *ops,
2274 CORE_ADDR start_addr, ULONGEST search_space_len,
2275 const gdb_byte *pattern, ULONGEST pattern_len,
2276 CORE_ADDR *found_addrp)
2277 {
2278 /* NOTE: also defined in find.c testcase. */
2279 #define SEARCH_CHUNK_SIZE 16000
2280 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2281 /* Buffer to hold memory contents for searching. */
2282 gdb_byte *search_buf;
2283 unsigned search_buf_size;
2284 struct cleanup *old_cleanups;
2285
2286 search_buf_size = chunk_size + pattern_len - 1;
2287
2288 /* No point in trying to allocate a buffer larger than the search space. */
2289 if (search_space_len < search_buf_size)
2290 search_buf_size = search_space_len;
2291
2292 search_buf = malloc (search_buf_size);
2293 if (search_buf == NULL)
2294 error (_("Unable to allocate memory to perform the search."));
2295 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2296
2297 /* Prime the search buffer. */
2298
2299 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2300 search_buf, start_addr, search_buf_size) != search_buf_size)
2301 {
2302 warning (_("Unable to access target memory at %s, halting search."),
2303 hex_string (start_addr));
2304 do_cleanups (old_cleanups);
2305 return -1;
2306 }
2307
2308 /* Perform the search.
2309
2310 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2311 When we've scanned N bytes we copy the trailing bytes to the start and
2312 read in another N bytes. */
2313
2314 while (search_space_len >= pattern_len)
2315 {
2316 gdb_byte *found_ptr;
2317 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2318
2319 found_ptr = memmem (search_buf, nr_search_bytes,
2320 pattern, pattern_len);
2321
2322 if (found_ptr != NULL)
2323 {
2324 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2325 *found_addrp = found_addr;
2326 do_cleanups (old_cleanups);
2327 return 1;
2328 }
2329
2330 /* Not found in this chunk, skip to next chunk. */
2331
2332 /* Don't let search_space_len wrap here, it's unsigned. */
2333 if (search_space_len >= chunk_size)
2334 search_space_len -= chunk_size;
2335 else
2336 search_space_len = 0;
2337
2338 if (search_space_len >= pattern_len)
2339 {
2340 unsigned keep_len = search_buf_size - chunk_size;
2341 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2342 int nr_to_read;
2343
2344 /* Copy the trailing part of the previous iteration to the front
2345 of the buffer for the next iteration. */
2346 gdb_assert (keep_len == pattern_len - 1);
2347 memcpy (search_buf, search_buf + chunk_size, keep_len);
2348
2349 nr_to_read = min (search_space_len - keep_len, chunk_size);
2350
2351 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2352 search_buf + keep_len, read_addr,
2353 nr_to_read) != nr_to_read)
2354 {
2355 warning (_("Unable to access target memory at %s, halting search."),
2356 hex_string (read_addr));
2357 do_cleanups (old_cleanups);
2358 return -1;
2359 }
2360
2361 start_addr += chunk_size;
2362 }
2363 }
2364
2365 /* Not found. */
2366
2367 do_cleanups (old_cleanups);
2368 return 0;
2369 }
2370
2371 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2372 sequence of bytes in PATTERN with length PATTERN_LEN.
2373
2374 The result is 1 if found, 0 if not found, and -1 if there was an error
2375 requiring halting of the search (e.g. memory read error).
2376 If the pattern is found the address is recorded in FOUND_ADDRP. */
2377
2378 int
2379 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2380 const gdb_byte *pattern, ULONGEST pattern_len,
2381 CORE_ADDR *found_addrp)
2382 {
2383 struct target_ops *t;
2384 int found;
2385
2386 /* We don't use INHERIT to set current_target.to_search_memory,
2387 so we have to scan the target stack and handle targetdebug
2388 ourselves. */
2389
2390 if (targetdebug)
2391 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2392 hex_string (start_addr));
2393
2394 for (t = current_target.beneath; t != NULL; t = t->beneath)
2395 if (t->to_search_memory != NULL)
2396 break;
2397
2398 if (t != NULL)
2399 {
2400 found = t->to_search_memory (t, start_addr, search_space_len,
2401 pattern, pattern_len, found_addrp);
2402 }
2403 else
2404 {
2405 /* If a special version of to_search_memory isn't available, use the
2406 simple version. */
2407 found = simple_search_memory (current_target.beneath,
2408 start_addr, search_space_len,
2409 pattern, pattern_len, found_addrp);
2410 }
2411
2412 if (targetdebug)
2413 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2414
2415 return found;
2416 }
2417
2418 /* Look through the currently pushed targets. If none of them will
2419 be able to restart the currently running process, issue an error
2420 message. */
2421
2422 void
2423 target_require_runnable (void)
2424 {
2425 struct target_ops *t;
2426
2427 for (t = target_stack; t != NULL; t = t->beneath)
2428 {
2429 /* If this target knows how to create a new program, then
2430 assume we will still be able to after killing the current
2431 one. Either killing and mourning will not pop T, or else
2432 find_default_run_target will find it again. */
2433 if (t->to_create_inferior != NULL)
2434 return;
2435
2436 /* Do not worry about thread_stratum targets that can not
2437 create inferiors. Assume they will be pushed again if
2438 necessary, and continue to the process_stratum. */
2439 if (t->to_stratum == thread_stratum
2440 || t->to_stratum == arch_stratum)
2441 continue;
2442
2443 error (_("\
2444 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2445 t->to_shortname);
2446 }
2447
2448 /* This function is only called if the target is running. In that
2449 case there should have been a process_stratum target and it
2450 should either know how to create inferiors, or not... */
2451 internal_error (__FILE__, __LINE__, "No targets found");
2452 }
2453
2454 /* Look through the list of possible targets for a target that can
2455 execute a run or attach command without any other data. This is
2456 used to locate the default process stratum.
2457
2458 If DO_MESG is not NULL, the result is always valid (error() is
2459 called for errors); else, return NULL on error. */
2460
2461 static struct target_ops *
2462 find_default_run_target (char *do_mesg)
2463 {
2464 struct target_ops **t;
2465 struct target_ops *runable = NULL;
2466 int count;
2467
2468 count = 0;
2469
2470 for (t = target_structs; t < target_structs + target_struct_size;
2471 ++t)
2472 {
2473 if ((*t)->to_can_run && target_can_run (*t))
2474 {
2475 runable = *t;
2476 ++count;
2477 }
2478 }
2479
2480 if (count != 1)
2481 {
2482 if (do_mesg)
2483 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2484 else
2485 return NULL;
2486 }
2487
2488 return runable;
2489 }
2490
2491 void
2492 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2493 {
2494 struct target_ops *t;
2495
2496 t = find_default_run_target ("attach");
2497 (t->to_attach) (t, args, from_tty);
2498 return;
2499 }
2500
2501 void
2502 find_default_create_inferior (struct target_ops *ops,
2503 char *exec_file, char *allargs, char **env,
2504 int from_tty)
2505 {
2506 struct target_ops *t;
2507
2508 t = find_default_run_target ("run");
2509 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2510 return;
2511 }
2512
2513 static int
2514 find_default_can_async_p (void)
2515 {
2516 struct target_ops *t;
2517
2518 /* This may be called before the target is pushed on the stack;
2519 look for the default process stratum. If there's none, gdb isn't
2520 configured with a native debugger, and target remote isn't
2521 connected yet. */
2522 t = find_default_run_target (NULL);
2523 if (t && t->to_can_async_p)
2524 return (t->to_can_async_p) ();
2525 return 0;
2526 }
2527
2528 static int
2529 find_default_is_async_p (void)
2530 {
2531 struct target_ops *t;
2532
2533 /* This may be called before the target is pushed on the stack;
2534 look for the default process stratum. If there's none, gdb isn't
2535 configured with a native debugger, and target remote isn't
2536 connected yet. */
2537 t = find_default_run_target (NULL);
2538 if (t && t->to_is_async_p)
2539 return (t->to_is_async_p) ();
2540 return 0;
2541 }
2542
2543 static int
2544 find_default_supports_non_stop (void)
2545 {
2546 struct target_ops *t;
2547
2548 t = find_default_run_target (NULL);
2549 if (t && t->to_supports_non_stop)
2550 return (t->to_supports_non_stop) ();
2551 return 0;
2552 }
2553
2554 int
2555 target_supports_non_stop (void)
2556 {
2557 struct target_ops *t;
2558 for (t = &current_target; t != NULL; t = t->beneath)
2559 if (t->to_supports_non_stop)
2560 return t->to_supports_non_stop ();
2561
2562 return 0;
2563 }
2564
2565
2566 char *
2567 target_get_osdata (const char *type)
2568 {
2569 char *document;
2570 struct target_ops *t;
2571
2572 /* If we're already connected to something that can get us OS
2573 related data, use it. Otherwise, try using the native
2574 target. */
2575 if (current_target.to_stratum >= process_stratum)
2576 t = current_target.beneath;
2577 else
2578 t = find_default_run_target ("get OS data");
2579
2580 if (!t)
2581 return NULL;
2582
2583 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2584 }
2585
2586 /* Determine the current address space of thread PTID. */
2587
2588 struct address_space *
2589 target_thread_address_space (ptid_t ptid)
2590 {
2591 struct address_space *aspace;
2592 struct inferior *inf;
2593 struct target_ops *t;
2594
2595 for (t = current_target.beneath; t != NULL; t = t->beneath)
2596 {
2597 if (t->to_thread_address_space != NULL)
2598 {
2599 aspace = t->to_thread_address_space (t, ptid);
2600 gdb_assert (aspace);
2601
2602 if (targetdebug)
2603 fprintf_unfiltered (gdb_stdlog,
2604 "target_thread_address_space (%s) = %d\n",
2605 target_pid_to_str (ptid),
2606 address_space_num (aspace));
2607 return aspace;
2608 }
2609 }
2610
2611 /* Fall-back to the "main" address space of the inferior. */
2612 inf = find_inferior_pid (ptid_get_pid (ptid));
2613
2614 if (inf == NULL || inf->aspace == NULL)
2615 internal_error (__FILE__, __LINE__, "\
2616 Can't determine the current address space of thread %s\n",
2617 target_pid_to_str (ptid));
2618
2619 return inf->aspace;
2620 }
2621
2622 static int
2623 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2624 {
2625 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2626 }
2627
2628 static int
2629 default_watchpoint_addr_within_range (struct target_ops *target,
2630 CORE_ADDR addr,
2631 CORE_ADDR start, int length)
2632 {
2633 return addr >= start && addr < start + length;
2634 }
2635
2636 static struct gdbarch *
2637 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2638 {
2639 return target_gdbarch;
2640 }
2641
2642 static int
2643 return_zero (void)
2644 {
2645 return 0;
2646 }
2647
2648 static int
2649 return_one (void)
2650 {
2651 return 1;
2652 }
2653
2654 static int
2655 return_minus_one (void)
2656 {
2657 return -1;
2658 }
2659
2660 /* Find a single runnable target in the stack and return it. If for
2661 some reason there is more than one, return NULL. */
2662
2663 struct target_ops *
2664 find_run_target (void)
2665 {
2666 struct target_ops **t;
2667 struct target_ops *runable = NULL;
2668 int count;
2669
2670 count = 0;
2671
2672 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2673 {
2674 if ((*t)->to_can_run && target_can_run (*t))
2675 {
2676 runable = *t;
2677 ++count;
2678 }
2679 }
2680
2681 return (count == 1 ? runable : NULL);
2682 }
2683
2684 /* Find a single core_stratum target in the list of targets and return it.
2685 If for some reason there is more than one, return NULL. */
2686
2687 struct target_ops *
2688 find_core_target (void)
2689 {
2690 struct target_ops **t;
2691 struct target_ops *runable = NULL;
2692 int count;
2693
2694 count = 0;
2695
2696 for (t = target_structs; t < target_structs + target_struct_size;
2697 ++t)
2698 {
2699 if ((*t)->to_stratum == core_stratum)
2700 {
2701 runable = *t;
2702 ++count;
2703 }
2704 }
2705
2706 return (count == 1 ? runable : NULL);
2707 }
2708
2709 /*
2710 * Find the next target down the stack from the specified target.
2711 */
2712
2713 struct target_ops *
2714 find_target_beneath (struct target_ops *t)
2715 {
2716 return t->beneath;
2717 }
2718
2719 \f
2720 /* The inferior process has died. Long live the inferior! */
2721
2722 void
2723 generic_mourn_inferior (void)
2724 {
2725 ptid_t ptid;
2726
2727 ptid = inferior_ptid;
2728 inferior_ptid = null_ptid;
2729
2730 if (!ptid_equal (ptid, null_ptid))
2731 {
2732 int pid = ptid_get_pid (ptid);
2733 exit_inferior (pid);
2734 }
2735
2736 breakpoint_init_inferior (inf_exited);
2737 registers_changed ();
2738
2739 reopen_exec_file ();
2740 reinit_frame_cache ();
2741
2742 if (deprecated_detach_hook)
2743 deprecated_detach_hook ();
2744 }
2745 \f
2746 /* Helper function for child_wait and the derivatives of child_wait.
2747 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2748 translation of that in OURSTATUS. */
2749 void
2750 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2751 {
2752 if (WIFEXITED (hoststatus))
2753 {
2754 ourstatus->kind = TARGET_WAITKIND_EXITED;
2755 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2756 }
2757 else if (!WIFSTOPPED (hoststatus))
2758 {
2759 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2760 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2761 }
2762 else
2763 {
2764 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2765 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2766 }
2767 }
2768 \f
2769 /* Convert a normal process ID to a string. Returns the string in a
2770 static buffer. */
2771
2772 char *
2773 normal_pid_to_str (ptid_t ptid)
2774 {
2775 static char buf[32];
2776
2777 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2778 return buf;
2779 }
2780
2781 static char *
2782 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2783 {
2784 return normal_pid_to_str (ptid);
2785 }
2786
2787 /* Error-catcher for target_find_memory_regions. */
2788 static int
2789 dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2790 {
2791 error (_("Command not implemented for this target."));
2792 return 0;
2793 }
2794
2795 /* Error-catcher for target_make_corefile_notes. */
2796 static char *
2797 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2798 {
2799 error (_("Command not implemented for this target."));
2800 return NULL;
2801 }
2802
2803 /* Error-catcher for target_get_bookmark. */
2804 static gdb_byte *
2805 dummy_get_bookmark (char *ignore1, int ignore2)
2806 {
2807 tcomplain ();
2808 return NULL;
2809 }
2810
2811 /* Error-catcher for target_goto_bookmark. */
2812 static void
2813 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
2814 {
2815 tcomplain ();
2816 }
2817
2818 /* Set up the handful of non-empty slots needed by the dummy target
2819 vector. */
2820
2821 static void
2822 init_dummy_target (void)
2823 {
2824 dummy_target.to_shortname = "None";
2825 dummy_target.to_longname = "None";
2826 dummy_target.to_doc = "";
2827 dummy_target.to_attach = find_default_attach;
2828 dummy_target.to_detach =
2829 (void (*)(struct target_ops *, char *, int))target_ignore;
2830 dummy_target.to_create_inferior = find_default_create_inferior;
2831 dummy_target.to_can_async_p = find_default_can_async_p;
2832 dummy_target.to_is_async_p = find_default_is_async_p;
2833 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2834 dummy_target.to_pid_to_str = dummy_pid_to_str;
2835 dummy_target.to_stratum = dummy_stratum;
2836 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2837 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2838 dummy_target.to_get_bookmark = dummy_get_bookmark;
2839 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
2840 dummy_target.to_xfer_partial = default_xfer_partial;
2841 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2842 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2843 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2844 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2845 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2846 dummy_target.to_stopped_by_watchpoint = return_zero;
2847 dummy_target.to_stopped_data_address =
2848 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
2849 dummy_target.to_magic = OPS_MAGIC;
2850 }
2851 \f
2852 static void
2853 debug_to_open (char *args, int from_tty)
2854 {
2855 debug_target.to_open (args, from_tty);
2856
2857 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2858 }
2859
2860 void
2861 target_close (struct target_ops *targ, int quitting)
2862 {
2863 if (targ->to_xclose != NULL)
2864 targ->to_xclose (targ, quitting);
2865 else if (targ->to_close != NULL)
2866 targ->to_close (quitting);
2867
2868 if (targetdebug)
2869 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2870 }
2871
2872 void
2873 target_attach (char *args, int from_tty)
2874 {
2875 struct target_ops *t;
2876 for (t = current_target.beneath; t != NULL; t = t->beneath)
2877 {
2878 if (t->to_attach != NULL)
2879 {
2880 t->to_attach (t, args, from_tty);
2881 if (targetdebug)
2882 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2883 args, from_tty);
2884 return;
2885 }
2886 }
2887
2888 internal_error (__FILE__, __LINE__,
2889 "could not find a target to attach");
2890 }
2891
2892 int
2893 target_thread_alive (ptid_t ptid)
2894 {
2895 struct target_ops *t;
2896 for (t = current_target.beneath; t != NULL; t = t->beneath)
2897 {
2898 if (t->to_thread_alive != NULL)
2899 {
2900 int retval;
2901
2902 retval = t->to_thread_alive (t, ptid);
2903 if (targetdebug)
2904 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2905 PIDGET (ptid), retval);
2906
2907 return retval;
2908 }
2909 }
2910
2911 return 0;
2912 }
2913
2914 void
2915 target_find_new_threads (void)
2916 {
2917 struct target_ops *t;
2918 for (t = current_target.beneath; t != NULL; t = t->beneath)
2919 {
2920 if (t->to_find_new_threads != NULL)
2921 {
2922 t->to_find_new_threads (t);
2923 if (targetdebug)
2924 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2925
2926 return;
2927 }
2928 }
2929 }
2930
2931 static void
2932 debug_to_post_attach (int pid)
2933 {
2934 debug_target.to_post_attach (pid);
2935
2936 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2937 }
2938
2939 /* Return a pretty printed form of target_waitstatus.
2940 Space for the result is malloc'd, caller must free. */
2941
2942 char *
2943 target_waitstatus_to_string (const struct target_waitstatus *ws)
2944 {
2945 const char *kind_str = "status->kind = ";
2946
2947 switch (ws->kind)
2948 {
2949 case TARGET_WAITKIND_EXITED:
2950 return xstrprintf ("%sexited, status = %d",
2951 kind_str, ws->value.integer);
2952 case TARGET_WAITKIND_STOPPED:
2953 return xstrprintf ("%sstopped, signal = %s",
2954 kind_str, target_signal_to_name (ws->value.sig));
2955 case TARGET_WAITKIND_SIGNALLED:
2956 return xstrprintf ("%ssignalled, signal = %s",
2957 kind_str, target_signal_to_name (ws->value.sig));
2958 case TARGET_WAITKIND_LOADED:
2959 return xstrprintf ("%sloaded", kind_str);
2960 case TARGET_WAITKIND_FORKED:
2961 return xstrprintf ("%sforked", kind_str);
2962 case TARGET_WAITKIND_VFORKED:
2963 return xstrprintf ("%svforked", kind_str);
2964 case TARGET_WAITKIND_EXECD:
2965 return xstrprintf ("%sexecd", kind_str);
2966 case TARGET_WAITKIND_SYSCALL_ENTRY:
2967 return xstrprintf ("%sentered syscall", kind_str);
2968 case TARGET_WAITKIND_SYSCALL_RETURN:
2969 return xstrprintf ("%sexited syscall", kind_str);
2970 case TARGET_WAITKIND_SPURIOUS:
2971 return xstrprintf ("%sspurious", kind_str);
2972 case TARGET_WAITKIND_IGNORE:
2973 return xstrprintf ("%signore", kind_str);
2974 case TARGET_WAITKIND_NO_HISTORY:
2975 return xstrprintf ("%sno-history", kind_str);
2976 default:
2977 return xstrprintf ("%sunknown???", kind_str);
2978 }
2979 }
2980
2981 static void
2982 debug_print_register (const char * func,
2983 struct regcache *regcache, int regno)
2984 {
2985 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2986 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2987 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2988 && gdbarch_register_name (gdbarch, regno) != NULL
2989 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2990 fprintf_unfiltered (gdb_stdlog, "(%s)",
2991 gdbarch_register_name (gdbarch, regno));
2992 else
2993 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2994 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2995 {
2996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2997 int i, size = register_size (gdbarch, regno);
2998 unsigned char buf[MAX_REGISTER_SIZE];
2999 regcache_raw_collect (regcache, regno, buf);
3000 fprintf_unfiltered (gdb_stdlog, " = ");
3001 for (i = 0; i < size; i++)
3002 {
3003 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3004 }
3005 if (size <= sizeof (LONGEST))
3006 {
3007 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3008 fprintf_unfiltered (gdb_stdlog, " %s %s",
3009 core_addr_to_string_nz (val), plongest (val));
3010 }
3011 }
3012 fprintf_unfiltered (gdb_stdlog, "\n");
3013 }
3014
3015 void
3016 target_fetch_registers (struct regcache *regcache, int regno)
3017 {
3018 struct target_ops *t;
3019 for (t = current_target.beneath; t != NULL; t = t->beneath)
3020 {
3021 if (t->to_fetch_registers != NULL)
3022 {
3023 t->to_fetch_registers (t, regcache, regno);
3024 if (targetdebug)
3025 debug_print_register ("target_fetch_registers", regcache, regno);
3026 return;
3027 }
3028 }
3029 }
3030
3031 void
3032 target_store_registers (struct regcache *regcache, int regno)
3033 {
3034
3035 struct target_ops *t;
3036 for (t = current_target.beneath; t != NULL; t = t->beneath)
3037 {
3038 if (t->to_store_registers != NULL)
3039 {
3040 t->to_store_registers (t, regcache, regno);
3041 if (targetdebug)
3042 {
3043 debug_print_register ("target_store_registers", regcache, regno);
3044 }
3045 return;
3046 }
3047 }
3048
3049 noprocess ();
3050 }
3051
3052 int
3053 target_core_of_thread (ptid_t ptid)
3054 {
3055 struct target_ops *t;
3056
3057 for (t = current_target.beneath; t != NULL; t = t->beneath)
3058 {
3059 if (t->to_core_of_thread != NULL)
3060 {
3061 int retval = t->to_core_of_thread (t, ptid);
3062 if (targetdebug)
3063 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3064 PIDGET (ptid), retval);
3065 return retval;
3066 }
3067 }
3068
3069 return -1;
3070 }
3071
3072 static void
3073 debug_to_prepare_to_store (struct regcache *regcache)
3074 {
3075 debug_target.to_prepare_to_store (regcache);
3076
3077 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3078 }
3079
3080 static int
3081 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3082 int write, struct mem_attrib *attrib,
3083 struct target_ops *target)
3084 {
3085 int retval;
3086
3087 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3088 attrib, target);
3089
3090 fprintf_unfiltered (gdb_stdlog,
3091 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3092 paddress (target_gdbarch, memaddr), len,
3093 write ? "write" : "read", retval);
3094
3095 if (retval > 0)
3096 {
3097 int i;
3098
3099 fputs_unfiltered (", bytes =", gdb_stdlog);
3100 for (i = 0; i < retval; i++)
3101 {
3102 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3103 {
3104 if (targetdebug < 2 && i > 0)
3105 {
3106 fprintf_unfiltered (gdb_stdlog, " ...");
3107 break;
3108 }
3109 fprintf_unfiltered (gdb_stdlog, "\n");
3110 }
3111
3112 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3113 }
3114 }
3115
3116 fputc_unfiltered ('\n', gdb_stdlog);
3117
3118 return retval;
3119 }
3120
3121 static void
3122 debug_to_files_info (struct target_ops *target)
3123 {
3124 debug_target.to_files_info (target);
3125
3126 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3127 }
3128
3129 static int
3130 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3131 struct bp_target_info *bp_tgt)
3132 {
3133 int retval;
3134
3135 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3136
3137 fprintf_unfiltered (gdb_stdlog,
3138 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
3139 (unsigned long) bp_tgt->placed_address,
3140 (unsigned long) retval);
3141 return retval;
3142 }
3143
3144 static int
3145 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3146 struct bp_target_info *bp_tgt)
3147 {
3148 int retval;
3149
3150 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3151
3152 fprintf_unfiltered (gdb_stdlog,
3153 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
3154 (unsigned long) bp_tgt->placed_address,
3155 (unsigned long) retval);
3156 return retval;
3157 }
3158
3159 static int
3160 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3161 {
3162 int retval;
3163
3164 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3165
3166 fprintf_unfiltered (gdb_stdlog,
3167 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3168 (unsigned long) type,
3169 (unsigned long) cnt,
3170 (unsigned long) from_tty,
3171 (unsigned long) retval);
3172 return retval;
3173 }
3174
3175 static int
3176 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3177 {
3178 CORE_ADDR retval;
3179
3180 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3181
3182 fprintf_unfiltered (gdb_stdlog,
3183 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
3184 (unsigned long) addr,
3185 (unsigned long) len,
3186 (unsigned long) retval);
3187 return retval;
3188 }
3189
3190 static int
3191 debug_to_stopped_by_watchpoint (void)
3192 {
3193 int retval;
3194
3195 retval = debug_target.to_stopped_by_watchpoint ();
3196
3197 fprintf_unfiltered (gdb_stdlog,
3198 "target_stopped_by_watchpoint () = %ld\n",
3199 (unsigned long) retval);
3200 return retval;
3201 }
3202
3203 static int
3204 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3205 {
3206 int retval;
3207
3208 retval = debug_target.to_stopped_data_address (target, addr);
3209
3210 fprintf_unfiltered (gdb_stdlog,
3211 "target_stopped_data_address ([0x%lx]) = %ld\n",
3212 (unsigned long)*addr,
3213 (unsigned long)retval);
3214 return retval;
3215 }
3216
3217 static int
3218 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3219 CORE_ADDR addr,
3220 CORE_ADDR start, int length)
3221 {
3222 int retval;
3223
3224 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3225 start, length);
3226
3227 fprintf_filtered (gdb_stdlog,
3228 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
3229 (unsigned long) addr, (unsigned long) start, length,
3230 retval);
3231 return retval;
3232 }
3233
3234 static int
3235 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3236 struct bp_target_info *bp_tgt)
3237 {
3238 int retval;
3239
3240 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3241
3242 fprintf_unfiltered (gdb_stdlog,
3243 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
3244 (unsigned long) bp_tgt->placed_address,
3245 (unsigned long) retval);
3246 return retval;
3247 }
3248
3249 static int
3250 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3251 struct bp_target_info *bp_tgt)
3252 {
3253 int retval;
3254
3255 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3256
3257 fprintf_unfiltered (gdb_stdlog,
3258 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
3259 (unsigned long) bp_tgt->placed_address,
3260 (unsigned long) retval);
3261 return retval;
3262 }
3263
3264 static int
3265 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
3266 {
3267 int retval;
3268
3269 retval = debug_target.to_insert_watchpoint (addr, len, type);
3270
3271 fprintf_unfiltered (gdb_stdlog,
3272 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
3273 (unsigned long) addr, len, type, (unsigned long) retval);
3274 return retval;
3275 }
3276
3277 static int
3278 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
3279 {
3280 int retval;
3281
3282 retval = debug_target.to_remove_watchpoint (addr, len, type);
3283
3284 fprintf_unfiltered (gdb_stdlog,
3285 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
3286 (unsigned long) addr, len, type, (unsigned long) retval);
3287 return retval;
3288 }
3289
3290 static void
3291 debug_to_terminal_init (void)
3292 {
3293 debug_target.to_terminal_init ();
3294
3295 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3296 }
3297
3298 static void
3299 debug_to_terminal_inferior (void)
3300 {
3301 debug_target.to_terminal_inferior ();
3302
3303 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3304 }
3305
3306 static void
3307 debug_to_terminal_ours_for_output (void)
3308 {
3309 debug_target.to_terminal_ours_for_output ();
3310
3311 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3312 }
3313
3314 static void
3315 debug_to_terminal_ours (void)
3316 {
3317 debug_target.to_terminal_ours ();
3318
3319 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3320 }
3321
3322 static void
3323 debug_to_terminal_save_ours (void)
3324 {
3325 debug_target.to_terminal_save_ours ();
3326
3327 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3328 }
3329
3330 static void
3331 debug_to_terminal_info (char *arg, int from_tty)
3332 {
3333 debug_target.to_terminal_info (arg, from_tty);
3334
3335 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3336 from_tty);
3337 }
3338
3339 static void
3340 debug_to_load (char *args, int from_tty)
3341 {
3342 debug_target.to_load (args, from_tty);
3343
3344 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3345 }
3346
3347 static int
3348 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3349 {
3350 int retval;
3351
3352 retval = debug_target.to_lookup_symbol (name, addrp);
3353
3354 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3355
3356 return retval;
3357 }
3358
3359 static void
3360 debug_to_post_startup_inferior (ptid_t ptid)
3361 {
3362 debug_target.to_post_startup_inferior (ptid);
3363
3364 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3365 PIDGET (ptid));
3366 }
3367
3368 static void
3369 debug_to_acknowledge_created_inferior (int pid)
3370 {
3371 debug_target.to_acknowledge_created_inferior (pid);
3372
3373 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3374 pid);
3375 }
3376
3377 static void
3378 debug_to_insert_fork_catchpoint (int pid)
3379 {
3380 debug_target.to_insert_fork_catchpoint (pid);
3381
3382 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3383 pid);
3384 }
3385
3386 static int
3387 debug_to_remove_fork_catchpoint (int pid)
3388 {
3389 int retval;
3390
3391 retval = debug_target.to_remove_fork_catchpoint (pid);
3392
3393 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3394 pid, retval);
3395
3396 return retval;
3397 }
3398
3399 static void
3400 debug_to_insert_vfork_catchpoint (int pid)
3401 {
3402 debug_target.to_insert_vfork_catchpoint (pid);
3403
3404 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3405 pid);
3406 }
3407
3408 static int
3409 debug_to_remove_vfork_catchpoint (int pid)
3410 {
3411 int retval;
3412
3413 retval = debug_target.to_remove_vfork_catchpoint (pid);
3414
3415 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3416 pid, retval);
3417
3418 return retval;
3419 }
3420
3421 static void
3422 debug_to_insert_exec_catchpoint (int pid)
3423 {
3424 debug_target.to_insert_exec_catchpoint (pid);
3425
3426 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3427 pid);
3428 }
3429
3430 static int
3431 debug_to_remove_exec_catchpoint (int pid)
3432 {
3433 int retval;
3434
3435 retval = debug_target.to_remove_exec_catchpoint (pid);
3436
3437 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3438 pid, retval);
3439
3440 return retval;
3441 }
3442
3443 static int
3444 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3445 {
3446 int has_exited;
3447
3448 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3449
3450 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3451 pid, wait_status, *exit_status, has_exited);
3452
3453 return has_exited;
3454 }
3455
3456 static int
3457 debug_to_can_run (void)
3458 {
3459 int retval;
3460
3461 retval = debug_target.to_can_run ();
3462
3463 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3464
3465 return retval;
3466 }
3467
3468 static void
3469 debug_to_notice_signals (ptid_t ptid)
3470 {
3471 debug_target.to_notice_signals (ptid);
3472
3473 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3474 PIDGET (ptid));
3475 }
3476
3477 static struct gdbarch *
3478 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3479 {
3480 struct gdbarch *retval;
3481
3482 retval = debug_target.to_thread_architecture (ops, ptid);
3483
3484 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3485 target_pid_to_str (ptid), host_address_to_string (retval),
3486 gdbarch_bfd_arch_info (retval)->printable_name);
3487 return retval;
3488 }
3489
3490 static void
3491 debug_to_stop (ptid_t ptid)
3492 {
3493 debug_target.to_stop (ptid);
3494
3495 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3496 target_pid_to_str (ptid));
3497 }
3498
3499 static void
3500 debug_to_rcmd (char *command,
3501 struct ui_file *outbuf)
3502 {
3503 debug_target.to_rcmd (command, outbuf);
3504 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3505 }
3506
3507 static char *
3508 debug_to_pid_to_exec_file (int pid)
3509 {
3510 char *exec_file;
3511
3512 exec_file = debug_target.to_pid_to_exec_file (pid);
3513
3514 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3515 pid, exec_file);
3516
3517 return exec_file;
3518 }
3519
3520 static void
3521 setup_target_debug (void)
3522 {
3523 memcpy (&debug_target, &current_target, sizeof debug_target);
3524
3525 current_target.to_open = debug_to_open;
3526 current_target.to_post_attach = debug_to_post_attach;
3527 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3528 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3529 current_target.to_files_info = debug_to_files_info;
3530 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3531 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3532 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3533 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3534 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3535 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3536 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3537 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3538 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3539 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3540 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3541 current_target.to_terminal_init = debug_to_terminal_init;
3542 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3543 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3544 current_target.to_terminal_ours = debug_to_terminal_ours;
3545 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3546 current_target.to_terminal_info = debug_to_terminal_info;
3547 current_target.to_load = debug_to_load;
3548 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3549 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3550 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3551 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3552 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3553 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3554 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3555 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3556 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3557 current_target.to_has_exited = debug_to_has_exited;
3558 current_target.to_can_run = debug_to_can_run;
3559 current_target.to_notice_signals = debug_to_notice_signals;
3560 current_target.to_stop = debug_to_stop;
3561 current_target.to_rcmd = debug_to_rcmd;
3562 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3563 current_target.to_thread_architecture = debug_to_thread_architecture;
3564 }
3565 \f
3566
3567 static char targ_desc[] =
3568 "Names of targets and files being debugged.\n\
3569 Shows the entire stack of targets currently in use (including the exec-file,\n\
3570 core-file, and process, if any), as well as the symbol file name.";
3571
3572 static void
3573 do_monitor_command (char *cmd,
3574 int from_tty)
3575 {
3576 if ((current_target.to_rcmd
3577 == (void (*) (char *, struct ui_file *)) tcomplain)
3578 || (current_target.to_rcmd == debug_to_rcmd
3579 && (debug_target.to_rcmd
3580 == (void (*) (char *, struct ui_file *)) tcomplain)))
3581 error (_("\"monitor\" command not supported by this target."));
3582 target_rcmd (cmd, gdb_stdtarg);
3583 }
3584
3585 /* Print the name of each layers of our target stack. */
3586
3587 static void
3588 maintenance_print_target_stack (char *cmd, int from_tty)
3589 {
3590 struct target_ops *t;
3591
3592 printf_filtered (_("The current target stack is:\n"));
3593
3594 for (t = target_stack; t != NULL; t = t->beneath)
3595 {
3596 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3597 }
3598 }
3599
3600 /* Controls if async mode is permitted. */
3601 int target_async_permitted = 0;
3602
3603 /* The set command writes to this variable. If the inferior is
3604 executing, linux_nat_async_permitted is *not* updated. */
3605 static int target_async_permitted_1 = 0;
3606
3607 static void
3608 set_maintenance_target_async_permitted (char *args, int from_tty,
3609 struct cmd_list_element *c)
3610 {
3611 if (have_live_inferiors ())
3612 {
3613 target_async_permitted_1 = target_async_permitted;
3614 error (_("Cannot change this setting while the inferior is running."));
3615 }
3616
3617 target_async_permitted = target_async_permitted_1;
3618 }
3619
3620 static void
3621 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3622 struct cmd_list_element *c,
3623 const char *value)
3624 {
3625 fprintf_filtered (file, _("\
3626 Controlling the inferior in asynchronous mode is %s.\n"), value);
3627 }
3628
3629 void
3630 initialize_targets (void)
3631 {
3632 init_dummy_target ();
3633 push_target (&dummy_target);
3634
3635 add_info ("target", target_info, targ_desc);
3636 add_info ("files", target_info, targ_desc);
3637
3638 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3639 Set target debugging."), _("\
3640 Show target debugging."), _("\
3641 When non-zero, target debugging is enabled. Higher numbers are more\n\
3642 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3643 command."),
3644 NULL,
3645 show_targetdebug,
3646 &setdebuglist, &showdebuglist);
3647
3648 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3649 &trust_readonly, _("\
3650 Set mode for reading from readonly sections."), _("\
3651 Show mode for reading from readonly sections."), _("\
3652 When this mode is on, memory reads from readonly sections (such as .text)\n\
3653 will be read from the object file instead of from the target. This will\n\
3654 result in significant performance improvement for remote targets."),
3655 NULL,
3656 show_trust_readonly,
3657 &setlist, &showlist);
3658
3659 add_com ("monitor", class_obscure, do_monitor_command,
3660 _("Send a command to the remote monitor (remote targets only)."));
3661
3662 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3663 _("Print the name of each layer of the internal target stack."),
3664 &maintenanceprintlist);
3665
3666 add_setshow_boolean_cmd ("target-async", no_class,
3667 &target_async_permitted_1, _("\
3668 Set whether gdb controls the inferior in asynchronous mode."), _("\
3669 Show whether gdb controls the inferior in asynchronous mode."), _("\
3670 Tells gdb whether to control the inferior in asynchronous mode."),
3671 set_maintenance_target_async_permitted,
3672 show_maintenance_target_async_permitted,
3673 &setlist,
3674 &showlist);
3675
3676 add_setshow_boolean_cmd ("stack-cache", class_support,
3677 &stack_cache_enabled_p_1, _("\
3678 Set cache use for stack access."), _("\
3679 Show cache use for stack access."), _("\
3680 When on, use the data cache for all stack access, regardless of any\n\
3681 configured memory regions. This improves remote performance significantly.\n\
3682 By default, caching for stack access is on."),
3683 set_stack_cache_enabled_p,
3684 show_stack_cache_enabled_p,
3685 &setlist, &showlist);
3686
3687 target_dcache = dcache_init ();
3688 }