convert to_disable_tracepoint
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static void tcomplain (void) ATTRIBUTE_NORETURN;
64
65 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
66
67 static int return_zero (void);
68
69 static int return_minus_one (void);
70
71 static void *return_null (void);
72
73 void target_ignore (void);
74
75 static void target_command (char *, int);
76
77 static struct target_ops *find_default_run_target (char *);
78
79 static target_xfer_partial_ftype default_xfer_partial;
80
81 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
82 ptid_t ptid);
83
84 static int dummy_find_memory_regions (struct target_ops *self,
85 find_memory_region_ftype ignore1,
86 void *ignore2);
87
88 static char *dummy_make_corefile_notes (struct target_ops *self,
89 bfd *ignore1, int *ignore2);
90
91 static int find_default_can_async_p (struct target_ops *ignore);
92
93 static int find_default_is_async_p (struct target_ops *ignore);
94
95 static enum exec_direction_kind default_execution_direction
96 (struct target_ops *self);
97
98 #include "target-delegates.c"
99
100 static void init_dummy_target (void);
101
102 static struct target_ops debug_target;
103
104 static void debug_to_open (char *, int);
105
106 static void debug_to_prepare_to_store (struct target_ops *self,
107 struct regcache *);
108
109 static void debug_to_files_info (struct target_ops *);
110
111 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
118 int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
121 struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
125 struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (struct target_ops *self,
129 CORE_ADDR, int, int,
130 struct expression *);
131
132 static int debug_to_remove_watchpoint (struct target_ops *self,
133 CORE_ADDR, int, int,
134 struct expression *);
135
136 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
137
138 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
139 CORE_ADDR, CORE_ADDR, int);
140
141 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
142 CORE_ADDR, int);
143
144 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
145 CORE_ADDR, int, int,
146 struct expression *);
147
148 static void debug_to_terminal_init (struct target_ops *self);
149
150 static void debug_to_terminal_inferior (struct target_ops *self);
151
152 static void debug_to_terminal_ours_for_output (struct target_ops *self);
153
154 static void debug_to_terminal_save_ours (struct target_ops *self);
155
156 static void debug_to_terminal_ours (struct target_ops *self);
157
158 static void debug_to_load (struct target_ops *self, char *, int);
159
160 static int debug_to_can_run (struct target_ops *self);
161
162 static void debug_to_stop (struct target_ops *self, ptid_t);
163
164 /* Pointer to array of target architecture structures; the size of the
165 array; the current index into the array; the allocated size of the
166 array. */
167 struct target_ops **target_structs;
168 unsigned target_struct_size;
169 unsigned target_struct_allocsize;
170 #define DEFAULT_ALLOCSIZE 10
171
172 /* The initial current target, so that there is always a semi-valid
173 current target. */
174
175 static struct target_ops dummy_target;
176
177 /* Top of target stack. */
178
179 static struct target_ops *target_stack;
180
181 /* The target structure we are currently using to talk to a process
182 or file or whatever "inferior" we have. */
183
184 struct target_ops current_target;
185
186 /* Command list for target. */
187
188 static struct cmd_list_element *targetlist = NULL;
189
190 /* Nonzero if we should trust readonly sections from the
191 executable when reading memory. */
192
193 static int trust_readonly = 0;
194
195 /* Nonzero if we should show true memory content including
196 memory breakpoint inserted by gdb. */
197
198 static int show_memory_breakpoints = 0;
199
200 /* These globals control whether GDB attempts to perform these
201 operations; they are useful for targets that need to prevent
202 inadvertant disruption, such as in non-stop mode. */
203
204 int may_write_registers = 1;
205
206 int may_write_memory = 1;
207
208 int may_insert_breakpoints = 1;
209
210 int may_insert_tracepoints = 1;
211
212 int may_insert_fast_tracepoints = 1;
213
214 int may_stop = 1;
215
216 /* Non-zero if we want to see trace of target level stuff. */
217
218 static unsigned int targetdebug = 0;
219 static void
220 show_targetdebug (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
224 }
225
226 static void setup_target_debug (void);
227
228 /* The user just typed 'target' without the name of a target. */
229
230 static void
231 target_command (char *arg, int from_tty)
232 {
233 fputs_filtered ("Argument required (target name). Try `help target'\n",
234 gdb_stdout);
235 }
236
237 /* Default target_has_* methods for process_stratum targets. */
238
239 int
240 default_child_has_all_memory (struct target_ops *ops)
241 {
242 /* If no inferior selected, then we can't read memory here. */
243 if (ptid_equal (inferior_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249 int
250 default_child_has_memory (struct target_ops *ops)
251 {
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257 }
258
259 int
260 default_child_has_stack (struct target_ops *ops)
261 {
262 /* If no inferior selected, there's no stack. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269 int
270 default_child_has_registers (struct target_ops *ops)
271 {
272 /* Can't read registers from no inferior. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
281 {
282 /* If there's no thread selected, then we can't make it run through
283 hoops. */
284 if (ptid_equal (the_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290
291 int
292 target_has_all_memory_1 (void)
293 {
294 struct target_ops *t;
295
296 for (t = current_target.beneath; t != NULL; t = t->beneath)
297 if (t->to_has_all_memory (t))
298 return 1;
299
300 return 0;
301 }
302
303 int
304 target_has_memory_1 (void)
305 {
306 struct target_ops *t;
307
308 for (t = current_target.beneath; t != NULL; t = t->beneath)
309 if (t->to_has_memory (t))
310 return 1;
311
312 return 0;
313 }
314
315 int
316 target_has_stack_1 (void)
317 {
318 struct target_ops *t;
319
320 for (t = current_target.beneath; t != NULL; t = t->beneath)
321 if (t->to_has_stack (t))
322 return 1;
323
324 return 0;
325 }
326
327 int
328 target_has_registers_1 (void)
329 {
330 struct target_ops *t;
331
332 for (t = current_target.beneath; t != NULL; t = t->beneath)
333 if (t->to_has_registers (t))
334 return 1;
335
336 return 0;
337 }
338
339 int
340 target_has_execution_1 (ptid_t the_ptid)
341 {
342 struct target_ops *t;
343
344 for (t = current_target.beneath; t != NULL; t = t->beneath)
345 if (t->to_has_execution (t, the_ptid))
346 return 1;
347
348 return 0;
349 }
350
351 int
352 target_has_execution_current (void)
353 {
354 return target_has_execution_1 (inferior_ptid);
355 }
356
357 /* Complete initialization of T. This ensures that various fields in
358 T are set, if needed by the target implementation. */
359
360 void
361 complete_target_initialization (struct target_ops *t)
362 {
363 /* Provide default values for all "must have" methods. */
364 if (t->to_xfer_partial == NULL)
365 t->to_xfer_partial = default_xfer_partial;
366
367 if (t->to_has_all_memory == NULL)
368 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
369
370 if (t->to_has_memory == NULL)
371 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_stack == NULL)
374 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_registers == NULL)
377 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_execution == NULL)
380 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
381
382 install_delegators (t);
383 }
384
385 /* Add possible target architecture T to the list and add a new
386 command 'target T->to_shortname'. Set COMPLETER as the command's
387 completer if not NULL. */
388
389 void
390 add_target_with_completer (struct target_ops *t,
391 completer_ftype *completer)
392 {
393 struct cmd_list_element *c;
394
395 complete_target_initialization (t);
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
421 &targetlist);
422 if (completer != NULL)
423 set_cmd_completer (c, completer);
424 }
425
426 /* Add a possible target architecture to the list. */
427
428 void
429 add_target (struct target_ops *t)
430 {
431 add_target_with_completer (t, NULL);
432 }
433
434 /* See target.h. */
435
436 void
437 add_deprecated_target_alias (struct target_ops *t, char *alias)
438 {
439 struct cmd_list_element *c;
440 char *alt;
441
442 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
443 see PR cli/15104. */
444 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
445 alt = xstrprintf ("target %s", t->to_shortname);
446 deprecate_cmd (c, alt);
447 }
448
449 /* Stub functions */
450
451 void
452 target_ignore (void)
453 {
454 }
455
456 void
457 target_kill (void)
458 {
459 struct target_ops *t;
460
461 for (t = current_target.beneath; t != NULL; t = t->beneath)
462 if (t->to_kill != NULL)
463 {
464 if (targetdebug)
465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
466
467 t->to_kill (t);
468 return;
469 }
470
471 noprocess ();
472 }
473
474 void
475 target_load (char *arg, int from_tty)
476 {
477 target_dcache_invalidate ();
478 (*current_target.to_load) (&current_target, arg, from_tty);
479 }
480
481 void
482 target_create_inferior (char *exec_file, char *args,
483 char **env, int from_tty)
484 {
485 struct target_ops *t;
486
487 for (t = current_target.beneath; t != NULL; t = t->beneath)
488 {
489 if (t->to_create_inferior != NULL)
490 {
491 t->to_create_inferior (t, exec_file, args, env, from_tty);
492 if (targetdebug)
493 fprintf_unfiltered (gdb_stdlog,
494 "target_create_inferior (%s, %s, xxx, %d)\n",
495 exec_file, args, from_tty);
496 return;
497 }
498 }
499
500 internal_error (__FILE__, __LINE__,
501 _("could not find a target to create inferior"));
502 }
503
504 void
505 target_terminal_inferior (void)
506 {
507 /* A background resume (``run&'') should leave GDB in control of the
508 terminal. Use target_can_async_p, not target_is_async_p, since at
509 this point the target is not async yet. However, if sync_execution
510 is not set, we know it will become async prior to resume. */
511 if (target_can_async_p () && !sync_execution)
512 return;
513
514 /* If GDB is resuming the inferior in the foreground, install
515 inferior's terminal modes. */
516 (*current_target.to_terminal_inferior) (&current_target);
517 }
518
519 static int
520 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
521 struct target_ops *t)
522 {
523 errno = EIO; /* Can't read/write this location. */
524 return 0; /* No bytes handled. */
525 }
526
527 static void
528 tcomplain (void)
529 {
530 error (_("You can't do that when your target is `%s'"),
531 current_target.to_shortname);
532 }
533
534 void
535 noprocess (void)
536 {
537 error (_("You can't do that without a process to debug."));
538 }
539
540 static void
541 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
542 {
543 printf_unfiltered (_("No saved terminal information.\n"));
544 }
545
546 /* A default implementation for the to_get_ada_task_ptid target method.
547
548 This function builds the PTID by using both LWP and TID as part of
549 the PTID lwp and tid elements. The pid used is the pid of the
550 inferior_ptid. */
551
552 static ptid_t
553 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
554 {
555 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
556 }
557
558 static enum exec_direction_kind
559 default_execution_direction (struct target_ops *self)
560 {
561 if (!target_can_execute_reverse)
562 return EXEC_FORWARD;
563 else if (!target_can_async_p ())
564 return EXEC_FORWARD;
565 else
566 gdb_assert_not_reached ("\
567 to_execution_direction must be implemented for reverse async");
568 }
569
570 /* Go through the target stack from top to bottom, copying over zero
571 entries in current_target, then filling in still empty entries. In
572 effect, we are doing class inheritance through the pushed target
573 vectors.
574
575 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
576 is currently implemented, is that it discards any knowledge of
577 which target an inherited method originally belonged to.
578 Consequently, new new target methods should instead explicitly and
579 locally search the target stack for the target that can handle the
580 request. */
581
582 static void
583 update_current_target (void)
584 {
585 struct target_ops *t;
586
587 /* First, reset current's contents. */
588 memset (&current_target, 0, sizeof (current_target));
589
590 /* Install the delegators. */
591 install_delegators (&current_target);
592
593 #define INHERIT(FIELD, TARGET) \
594 if (!current_target.FIELD) \
595 current_target.FIELD = (TARGET)->FIELD
596
597 for (t = target_stack; t; t = t->beneath)
598 {
599 INHERIT (to_shortname, t);
600 INHERIT (to_longname, t);
601 INHERIT (to_doc, t);
602 /* Do not inherit to_open. */
603 /* Do not inherit to_close. */
604 /* Do not inherit to_attach. */
605 /* Do not inherit to_post_attach. */
606 INHERIT (to_attach_no_wait, t);
607 /* Do not inherit to_detach. */
608 /* Do not inherit to_disconnect. */
609 /* Do not inherit to_resume. */
610 /* Do not inherit to_wait. */
611 /* Do not inherit to_fetch_registers. */
612 /* Do not inherit to_store_registers. */
613 /* Do not inherit to_prepare_to_store. */
614 INHERIT (deprecated_xfer_memory, t);
615 /* Do not inherit to_files_info. */
616 /* Do not inherit to_insert_breakpoint. */
617 /* Do not inherit to_remove_breakpoint. */
618 /* Do not inherit to_can_use_hw_breakpoint. */
619 /* Do not inherit to_insert_hw_breakpoint. */
620 /* Do not inherit to_remove_hw_breakpoint. */
621 /* Do not inherit to_ranged_break_num_registers. */
622 /* Do not inherit to_insert_watchpoint. */
623 /* Do not inherit to_remove_watchpoint. */
624 /* Do not inherit to_insert_mask_watchpoint. */
625 /* Do not inherit to_remove_mask_watchpoint. */
626 /* Do not inherit to_stopped_data_address. */
627 INHERIT (to_have_steppable_watchpoint, t);
628 INHERIT (to_have_continuable_watchpoint, t);
629 /* Do not inherit to_stopped_by_watchpoint. */
630 /* Do not inherit to_watchpoint_addr_within_range. */
631 /* Do not inherit to_region_ok_for_hw_watchpoint. */
632 /* Do not inherit to_can_accel_watchpoint_condition. */
633 /* Do not inherit to_masked_watch_num_registers. */
634 /* Do not inherit to_terminal_init. */
635 /* Do not inherit to_terminal_inferior. */
636 /* Do not inherit to_terminal_ours_for_output. */
637 /* Do not inherit to_terminal_ours. */
638 /* Do not inherit to_terminal_save_ours. */
639 /* Do not inherit to_terminal_info. */
640 /* Do not inherit to_kill. */
641 /* Do not inherit to_load. */
642 /* Do no inherit to_create_inferior. */
643 /* Do not inherit to_post_startup_inferior. */
644 /* Do not inherit to_insert_fork_catchpoint. */
645 /* Do not inherit to_remove_fork_catchpoint. */
646 /* Do not inherit to_insert_vfork_catchpoint. */
647 /* Do not inherit to_remove_vfork_catchpoint. */
648 /* Do not inherit to_follow_fork. */
649 /* Do not inherit to_insert_exec_catchpoint. */
650 /* Do not inherit to_remove_exec_catchpoint. */
651 /* Do not inherit to_set_syscall_catchpoint. */
652 /* Do not inherit to_has_exited. */
653 /* Do not inherit to_mourn_inferior. */
654 INHERIT (to_can_run, t);
655 /* Do not inherit to_pass_signals. */
656 /* Do not inherit to_program_signals. */
657 /* Do not inherit to_thread_alive. */
658 /* Do not inherit to_find_new_threads. */
659 /* Do not inherit to_pid_to_str. */
660 /* Do not inherit to_extra_thread_info. */
661 /* Do not inherit to_thread_name. */
662 INHERIT (to_stop, t);
663 /* Do not inherit to_xfer_partial. */
664 /* Do not inherit to_rcmd. */
665 /* Do not inherit to_pid_to_exec_file. */
666 /* Do not inherit to_log_command. */
667 INHERIT (to_stratum, t);
668 /* Do not inherit to_has_all_memory. */
669 /* Do not inherit to_has_memory. */
670 /* Do not inherit to_has_stack. */
671 /* Do not inherit to_has_registers. */
672 /* Do not inherit to_has_execution. */
673 INHERIT (to_has_thread_control, t);
674 /* Do not inherit to_can_async_p. */
675 /* Do not inherit to_is_async_p. */
676 /* Do not inherit to_async. */
677 /* Do not inherit to_find_memory_regions. */
678 /* Do not inherit to_make_corefile_notes. */
679 /* Do not inherit to_get_bookmark. */
680 /* Do not inherit to_goto_bookmark. */
681 /* Do not inherit to_get_thread_local_address. */
682 /* Do not inherit to_can_execute_reverse. */
683 /* Do not inherit to_execution_direction. */
684 /* Do not inherit to_thread_architecture. */
685 /* Do not inherit to_read_description. */
686 /* Do not inherit to_get_ada_task_ptid. */
687 /* Do not inherit to_search_memory. */
688 /* Do not inherit to_supports_multi_process. */
689 /* Do not inherit to_supports_enable_disable_tracepoint. */
690 /* Do not inherit to_supports_string_tracing. */
691 /* Do not inherit to_trace_init. */
692 /* Do not inherit to_download_tracepoint. */
693 /* Do not inherit to_can_download_tracepoint. */
694 /* Do not inherit to_download_trace_state_variable. */
695 /* Do not inherit to_enable_tracepoint. */
696 /* Do not inherit to_disable_tracepoint. */
697 INHERIT (to_trace_set_readonly_regions, t);
698 INHERIT (to_trace_start, t);
699 INHERIT (to_get_trace_status, t);
700 INHERIT (to_get_tracepoint_status, t);
701 INHERIT (to_trace_stop, t);
702 INHERIT (to_trace_find, t);
703 INHERIT (to_get_trace_state_variable_value, t);
704 INHERIT (to_save_trace_data, t);
705 INHERIT (to_upload_tracepoints, t);
706 INHERIT (to_upload_trace_state_variables, t);
707 INHERIT (to_get_raw_trace_data, t);
708 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
709 INHERIT (to_set_disconnected_tracing, t);
710 INHERIT (to_set_circular_trace_buffer, t);
711 INHERIT (to_set_trace_buffer_size, t);
712 INHERIT (to_set_trace_notes, t);
713 INHERIT (to_get_tib_address, t);
714 INHERIT (to_set_permissions, t);
715 INHERIT (to_static_tracepoint_marker_at, t);
716 INHERIT (to_static_tracepoint_markers_by_strid, t);
717 INHERIT (to_traceframe_info, t);
718 INHERIT (to_use_agent, t);
719 INHERIT (to_can_use_agent, t);
720 INHERIT (to_augmented_libraries_svr4_read, t);
721 INHERIT (to_magic, t);
722 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
723 INHERIT (to_can_run_breakpoint_commands, t);
724 /* Do not inherit to_memory_map. */
725 /* Do not inherit to_flash_erase. */
726 /* Do not inherit to_flash_done. */
727 }
728 #undef INHERIT
729
730 /* Clean up a target struct so it no longer has any zero pointers in
731 it. Some entries are defaulted to a method that print an error,
732 others are hard-wired to a standard recursive default. */
733
734 #define de_fault(field, value) \
735 if (!current_target.field) \
736 current_target.field = value
737
738 de_fault (to_open,
739 (void (*) (char *, int))
740 tcomplain);
741 de_fault (to_close,
742 (void (*) (struct target_ops *))
743 target_ignore);
744 de_fault (deprecated_xfer_memory,
745 (int (*) (CORE_ADDR, gdb_byte *, int, int,
746 struct mem_attrib *, struct target_ops *))
747 nomemory);
748 de_fault (to_can_run,
749 (int (*) (struct target_ops *))
750 return_zero);
751 de_fault (to_stop,
752 (void (*) (struct target_ops *, ptid_t))
753 target_ignore);
754 current_target.to_read_description = NULL;
755 de_fault (to_trace_set_readonly_regions,
756 (void (*) (struct target_ops *))
757 tcomplain);
758 de_fault (to_trace_start,
759 (void (*) (struct target_ops *))
760 tcomplain);
761 de_fault (to_get_trace_status,
762 (int (*) (struct target_ops *, struct trace_status *))
763 return_minus_one);
764 de_fault (to_get_tracepoint_status,
765 (void (*) (struct target_ops *, struct breakpoint *,
766 struct uploaded_tp *))
767 tcomplain);
768 de_fault (to_trace_stop,
769 (void (*) (struct target_ops *))
770 tcomplain);
771 de_fault (to_trace_find,
772 (int (*) (struct target_ops *,
773 enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
774 return_minus_one);
775 de_fault (to_get_trace_state_variable_value,
776 (int (*) (struct target_ops *, int, LONGEST *))
777 return_zero);
778 de_fault (to_save_trace_data,
779 (int (*) (struct target_ops *, const char *))
780 tcomplain);
781 de_fault (to_upload_tracepoints,
782 (int (*) (struct target_ops *, struct uploaded_tp **))
783 return_zero);
784 de_fault (to_upload_trace_state_variables,
785 (int (*) (struct target_ops *, struct uploaded_tsv **))
786 return_zero);
787 de_fault (to_get_raw_trace_data,
788 (LONGEST (*) (struct target_ops *, gdb_byte *, ULONGEST, LONGEST))
789 tcomplain);
790 de_fault (to_get_min_fast_tracepoint_insn_len,
791 (int (*) (struct target_ops *))
792 return_minus_one);
793 de_fault (to_set_disconnected_tracing,
794 (void (*) (struct target_ops *, int))
795 target_ignore);
796 de_fault (to_set_circular_trace_buffer,
797 (void (*) (struct target_ops *, int))
798 target_ignore);
799 de_fault (to_set_trace_buffer_size,
800 (void (*) (struct target_ops *, LONGEST))
801 target_ignore);
802 de_fault (to_set_trace_notes,
803 (int (*) (struct target_ops *,
804 const char *, const char *, const char *))
805 return_zero);
806 de_fault (to_get_tib_address,
807 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
808 tcomplain);
809 de_fault (to_set_permissions,
810 (void (*) (struct target_ops *))
811 target_ignore);
812 de_fault (to_static_tracepoint_marker_at,
813 (int (*) (struct target_ops *,
814 CORE_ADDR, struct static_tracepoint_marker *))
815 return_zero);
816 de_fault (to_static_tracepoint_markers_by_strid,
817 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
818 const char *))
819 tcomplain);
820 de_fault (to_traceframe_info,
821 (struct traceframe_info * (*) (struct target_ops *))
822 return_null);
823 de_fault (to_supports_evaluation_of_breakpoint_conditions,
824 (int (*) (struct target_ops *))
825 return_zero);
826 de_fault (to_can_run_breakpoint_commands,
827 (int (*) (struct target_ops *))
828 return_zero);
829 de_fault (to_use_agent,
830 (int (*) (struct target_ops *, int))
831 tcomplain);
832 de_fault (to_can_use_agent,
833 (int (*) (struct target_ops *))
834 return_zero);
835 de_fault (to_augmented_libraries_svr4_read,
836 (int (*) (struct target_ops *))
837 return_zero);
838
839 #undef de_fault
840
841 /* Finally, position the target-stack beneath the squashed
842 "current_target". That way code looking for a non-inherited
843 target method can quickly and simply find it. */
844 current_target.beneath = target_stack;
845
846 if (targetdebug)
847 setup_target_debug ();
848 }
849
850 /* Push a new target type into the stack of the existing target accessors,
851 possibly superseding some of the existing accessors.
852
853 Rather than allow an empty stack, we always have the dummy target at
854 the bottom stratum, so we can call the function vectors without
855 checking them. */
856
857 void
858 push_target (struct target_ops *t)
859 {
860 struct target_ops **cur;
861
862 /* Check magic number. If wrong, it probably means someone changed
863 the struct definition, but not all the places that initialize one. */
864 if (t->to_magic != OPS_MAGIC)
865 {
866 fprintf_unfiltered (gdb_stderr,
867 "Magic number of %s target struct wrong\n",
868 t->to_shortname);
869 internal_error (__FILE__, __LINE__,
870 _("failed internal consistency check"));
871 }
872
873 /* Find the proper stratum to install this target in. */
874 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
875 {
876 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
877 break;
878 }
879
880 /* If there's already targets at this stratum, remove them. */
881 /* FIXME: cagney/2003-10-15: I think this should be popping all
882 targets to CUR, and not just those at this stratum level. */
883 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
884 {
885 /* There's already something at this stratum level. Close it,
886 and un-hook it from the stack. */
887 struct target_ops *tmp = (*cur);
888
889 (*cur) = (*cur)->beneath;
890 tmp->beneath = NULL;
891 target_close (tmp);
892 }
893
894 /* We have removed all targets in our stratum, now add the new one. */
895 t->beneath = (*cur);
896 (*cur) = t;
897
898 update_current_target ();
899 }
900
901 /* Remove a target_ops vector from the stack, wherever it may be.
902 Return how many times it was removed (0 or 1). */
903
904 int
905 unpush_target (struct target_ops *t)
906 {
907 struct target_ops **cur;
908 struct target_ops *tmp;
909
910 if (t->to_stratum == dummy_stratum)
911 internal_error (__FILE__, __LINE__,
912 _("Attempt to unpush the dummy target"));
913
914 /* Look for the specified target. Note that we assume that a target
915 can only occur once in the target stack. */
916
917 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
918 {
919 if ((*cur) == t)
920 break;
921 }
922
923 /* If we don't find target_ops, quit. Only open targets should be
924 closed. */
925 if ((*cur) == NULL)
926 return 0;
927
928 /* Unchain the target. */
929 tmp = (*cur);
930 (*cur) = (*cur)->beneath;
931 tmp->beneath = NULL;
932
933 update_current_target ();
934
935 /* Finally close the target. Note we do this after unchaining, so
936 any target method calls from within the target_close
937 implementation don't end up in T anymore. */
938 target_close (t);
939
940 return 1;
941 }
942
943 void
944 pop_all_targets_above (enum strata above_stratum)
945 {
946 while ((int) (current_target.to_stratum) > (int) above_stratum)
947 {
948 if (!unpush_target (target_stack))
949 {
950 fprintf_unfiltered (gdb_stderr,
951 "pop_all_targets couldn't find target %s\n",
952 target_stack->to_shortname);
953 internal_error (__FILE__, __LINE__,
954 _("failed internal consistency check"));
955 break;
956 }
957 }
958 }
959
960 void
961 pop_all_targets (void)
962 {
963 pop_all_targets_above (dummy_stratum);
964 }
965
966 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
967
968 int
969 target_is_pushed (struct target_ops *t)
970 {
971 struct target_ops **cur;
972
973 /* Check magic number. If wrong, it probably means someone changed
974 the struct definition, but not all the places that initialize one. */
975 if (t->to_magic != OPS_MAGIC)
976 {
977 fprintf_unfiltered (gdb_stderr,
978 "Magic number of %s target struct wrong\n",
979 t->to_shortname);
980 internal_error (__FILE__, __LINE__,
981 _("failed internal consistency check"));
982 }
983
984 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
985 if (*cur == t)
986 return 1;
987
988 return 0;
989 }
990
991 /* Using the objfile specified in OBJFILE, find the address for the
992 current thread's thread-local storage with offset OFFSET. */
993 CORE_ADDR
994 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
995 {
996 volatile CORE_ADDR addr = 0;
997 struct target_ops *target;
998
999 for (target = current_target.beneath;
1000 target != NULL;
1001 target = target->beneath)
1002 {
1003 if (target->to_get_thread_local_address != NULL)
1004 break;
1005 }
1006
1007 if (target != NULL
1008 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1009 {
1010 ptid_t ptid = inferior_ptid;
1011 volatile struct gdb_exception ex;
1012
1013 TRY_CATCH (ex, RETURN_MASK_ALL)
1014 {
1015 CORE_ADDR lm_addr;
1016
1017 /* Fetch the load module address for this objfile. */
1018 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1019 objfile);
1020 /* If it's 0, throw the appropriate exception. */
1021 if (lm_addr == 0)
1022 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1023 _("TLS load module not found"));
1024
1025 addr = target->to_get_thread_local_address (target, ptid,
1026 lm_addr, offset);
1027 }
1028 /* If an error occurred, print TLS related messages here. Otherwise,
1029 throw the error to some higher catcher. */
1030 if (ex.reason < 0)
1031 {
1032 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1033
1034 switch (ex.error)
1035 {
1036 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1037 error (_("Cannot find thread-local variables "
1038 "in this thread library."));
1039 break;
1040 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1041 if (objfile_is_library)
1042 error (_("Cannot find shared library `%s' in dynamic"
1043 " linker's load module list"), objfile_name (objfile));
1044 else
1045 error (_("Cannot find executable file `%s' in dynamic"
1046 " linker's load module list"), objfile_name (objfile));
1047 break;
1048 case TLS_NOT_ALLOCATED_YET_ERROR:
1049 if (objfile_is_library)
1050 error (_("The inferior has not yet allocated storage for"
1051 " thread-local variables in\n"
1052 "the shared library `%s'\n"
1053 "for %s"),
1054 objfile_name (objfile), target_pid_to_str (ptid));
1055 else
1056 error (_("The inferior has not yet allocated storage for"
1057 " thread-local variables in\n"
1058 "the executable `%s'\n"
1059 "for %s"),
1060 objfile_name (objfile), target_pid_to_str (ptid));
1061 break;
1062 case TLS_GENERIC_ERROR:
1063 if (objfile_is_library)
1064 error (_("Cannot find thread-local storage for %s, "
1065 "shared library %s:\n%s"),
1066 target_pid_to_str (ptid),
1067 objfile_name (objfile), ex.message);
1068 else
1069 error (_("Cannot find thread-local storage for %s, "
1070 "executable file %s:\n%s"),
1071 target_pid_to_str (ptid),
1072 objfile_name (objfile), ex.message);
1073 break;
1074 default:
1075 throw_exception (ex);
1076 break;
1077 }
1078 }
1079 }
1080 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1081 TLS is an ABI-specific thing. But we don't do that yet. */
1082 else
1083 error (_("Cannot find thread-local variables on this target"));
1084
1085 return addr;
1086 }
1087
1088 const char *
1089 target_xfer_status_to_string (enum target_xfer_status err)
1090 {
1091 #define CASE(X) case X: return #X
1092 switch (err)
1093 {
1094 CASE(TARGET_XFER_E_IO);
1095 CASE(TARGET_XFER_E_UNAVAILABLE);
1096 default:
1097 return "<unknown>";
1098 }
1099 #undef CASE
1100 };
1101
1102
1103 #undef MIN
1104 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1105
1106 /* target_read_string -- read a null terminated string, up to LEN bytes,
1107 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1108 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1109 is responsible for freeing it. Return the number of bytes successfully
1110 read. */
1111
1112 int
1113 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1114 {
1115 int tlen, offset, i;
1116 gdb_byte buf[4];
1117 int errcode = 0;
1118 char *buffer;
1119 int buffer_allocated;
1120 char *bufptr;
1121 unsigned int nbytes_read = 0;
1122
1123 gdb_assert (string);
1124
1125 /* Small for testing. */
1126 buffer_allocated = 4;
1127 buffer = xmalloc (buffer_allocated);
1128 bufptr = buffer;
1129
1130 while (len > 0)
1131 {
1132 tlen = MIN (len, 4 - (memaddr & 3));
1133 offset = memaddr & 3;
1134
1135 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1136 if (errcode != 0)
1137 {
1138 /* The transfer request might have crossed the boundary to an
1139 unallocated region of memory. Retry the transfer, requesting
1140 a single byte. */
1141 tlen = 1;
1142 offset = 0;
1143 errcode = target_read_memory (memaddr, buf, 1);
1144 if (errcode != 0)
1145 goto done;
1146 }
1147
1148 if (bufptr - buffer + tlen > buffer_allocated)
1149 {
1150 unsigned int bytes;
1151
1152 bytes = bufptr - buffer;
1153 buffer_allocated *= 2;
1154 buffer = xrealloc (buffer, buffer_allocated);
1155 bufptr = buffer + bytes;
1156 }
1157
1158 for (i = 0; i < tlen; i++)
1159 {
1160 *bufptr++ = buf[i + offset];
1161 if (buf[i + offset] == '\000')
1162 {
1163 nbytes_read += i + 1;
1164 goto done;
1165 }
1166 }
1167
1168 memaddr += tlen;
1169 len -= tlen;
1170 nbytes_read += tlen;
1171 }
1172 done:
1173 *string = buffer;
1174 if (errnop != NULL)
1175 *errnop = errcode;
1176 return nbytes_read;
1177 }
1178
1179 struct target_section_table *
1180 target_get_section_table (struct target_ops *target)
1181 {
1182 struct target_ops *t;
1183
1184 if (targetdebug)
1185 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1186
1187 for (t = target; t != NULL; t = t->beneath)
1188 if (t->to_get_section_table != NULL)
1189 return (*t->to_get_section_table) (t);
1190
1191 return NULL;
1192 }
1193
1194 /* Find a section containing ADDR. */
1195
1196 struct target_section *
1197 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1198 {
1199 struct target_section_table *table = target_get_section_table (target);
1200 struct target_section *secp;
1201
1202 if (table == NULL)
1203 return NULL;
1204
1205 for (secp = table->sections; secp < table->sections_end; secp++)
1206 {
1207 if (addr >= secp->addr && addr < secp->endaddr)
1208 return secp;
1209 }
1210 return NULL;
1211 }
1212
1213 /* Read memory from the live target, even if currently inspecting a
1214 traceframe. The return is the same as that of target_read. */
1215
1216 static enum target_xfer_status
1217 target_read_live_memory (enum target_object object,
1218 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1219 ULONGEST *xfered_len)
1220 {
1221 enum target_xfer_status ret;
1222 struct cleanup *cleanup;
1223
1224 /* Switch momentarily out of tfind mode so to access live memory.
1225 Note that this must not clear global state, such as the frame
1226 cache, which must still remain valid for the previous traceframe.
1227 We may be _building_ the frame cache at this point. */
1228 cleanup = make_cleanup_restore_traceframe_number ();
1229 set_traceframe_number (-1);
1230
1231 ret = target_xfer_partial (current_target.beneath, object, NULL,
1232 myaddr, NULL, memaddr, len, xfered_len);
1233
1234 do_cleanups (cleanup);
1235 return ret;
1236 }
1237
1238 /* Using the set of read-only target sections of OPS, read live
1239 read-only memory. Note that the actual reads start from the
1240 top-most target again.
1241
1242 For interface/parameters/return description see target.h,
1243 to_xfer_partial. */
1244
1245 static enum target_xfer_status
1246 memory_xfer_live_readonly_partial (struct target_ops *ops,
1247 enum target_object object,
1248 gdb_byte *readbuf, ULONGEST memaddr,
1249 ULONGEST len, ULONGEST *xfered_len)
1250 {
1251 struct target_section *secp;
1252 struct target_section_table *table;
1253
1254 secp = target_section_by_addr (ops, memaddr);
1255 if (secp != NULL
1256 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1257 secp->the_bfd_section)
1258 & SEC_READONLY))
1259 {
1260 struct target_section *p;
1261 ULONGEST memend = memaddr + len;
1262
1263 table = target_get_section_table (ops);
1264
1265 for (p = table->sections; p < table->sections_end; p++)
1266 {
1267 if (memaddr >= p->addr)
1268 {
1269 if (memend <= p->endaddr)
1270 {
1271 /* Entire transfer is within this section. */
1272 return target_read_live_memory (object, memaddr,
1273 readbuf, len, xfered_len);
1274 }
1275 else if (memaddr >= p->endaddr)
1276 {
1277 /* This section ends before the transfer starts. */
1278 continue;
1279 }
1280 else
1281 {
1282 /* This section overlaps the transfer. Just do half. */
1283 len = p->endaddr - memaddr;
1284 return target_read_live_memory (object, memaddr,
1285 readbuf, len, xfered_len);
1286 }
1287 }
1288 }
1289 }
1290
1291 return TARGET_XFER_EOF;
1292 }
1293
1294 /* Read memory from more than one valid target. A core file, for
1295 instance, could have some of memory but delegate other bits to
1296 the target below it. So, we must manually try all targets. */
1297
1298 static enum target_xfer_status
1299 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1300 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1301 ULONGEST *xfered_len)
1302 {
1303 enum target_xfer_status res;
1304
1305 do
1306 {
1307 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1308 readbuf, writebuf, memaddr, len,
1309 xfered_len);
1310 if (res == TARGET_XFER_OK)
1311 break;
1312
1313 /* Stop if the target reports that the memory is not available. */
1314 if (res == TARGET_XFER_E_UNAVAILABLE)
1315 break;
1316
1317 /* We want to continue past core files to executables, but not
1318 past a running target's memory. */
1319 if (ops->to_has_all_memory (ops))
1320 break;
1321
1322 ops = ops->beneath;
1323 }
1324 while (ops != NULL);
1325
1326 return res;
1327 }
1328
1329 /* Perform a partial memory transfer.
1330 For docs see target.h, to_xfer_partial. */
1331
1332 static enum target_xfer_status
1333 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1334 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1335 ULONGEST len, ULONGEST *xfered_len)
1336 {
1337 enum target_xfer_status res;
1338 int reg_len;
1339 struct mem_region *region;
1340 struct inferior *inf;
1341
1342 /* For accesses to unmapped overlay sections, read directly from
1343 files. Must do this first, as MEMADDR may need adjustment. */
1344 if (readbuf != NULL && overlay_debugging)
1345 {
1346 struct obj_section *section = find_pc_overlay (memaddr);
1347
1348 if (pc_in_unmapped_range (memaddr, section))
1349 {
1350 struct target_section_table *table
1351 = target_get_section_table (ops);
1352 const char *section_name = section->the_bfd_section->name;
1353
1354 memaddr = overlay_mapped_address (memaddr, section);
1355 return section_table_xfer_memory_partial (readbuf, writebuf,
1356 memaddr, len, xfered_len,
1357 table->sections,
1358 table->sections_end,
1359 section_name);
1360 }
1361 }
1362
1363 /* Try the executable files, if "trust-readonly-sections" is set. */
1364 if (readbuf != NULL && trust_readonly)
1365 {
1366 struct target_section *secp;
1367 struct target_section_table *table;
1368
1369 secp = target_section_by_addr (ops, memaddr);
1370 if (secp != NULL
1371 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1372 secp->the_bfd_section)
1373 & SEC_READONLY))
1374 {
1375 table = target_get_section_table (ops);
1376 return section_table_xfer_memory_partial (readbuf, writebuf,
1377 memaddr, len, xfered_len,
1378 table->sections,
1379 table->sections_end,
1380 NULL);
1381 }
1382 }
1383
1384 /* If reading unavailable memory in the context of traceframes, and
1385 this address falls within a read-only section, fallback to
1386 reading from live memory. */
1387 if (readbuf != NULL && get_traceframe_number () != -1)
1388 {
1389 VEC(mem_range_s) *available;
1390
1391 /* If we fail to get the set of available memory, then the
1392 target does not support querying traceframe info, and so we
1393 attempt reading from the traceframe anyway (assuming the
1394 target implements the old QTro packet then). */
1395 if (traceframe_available_memory (&available, memaddr, len))
1396 {
1397 struct cleanup *old_chain;
1398
1399 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1400
1401 if (VEC_empty (mem_range_s, available)
1402 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1403 {
1404 /* Don't read into the traceframe's available
1405 memory. */
1406 if (!VEC_empty (mem_range_s, available))
1407 {
1408 LONGEST oldlen = len;
1409
1410 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1411 gdb_assert (len <= oldlen);
1412 }
1413
1414 do_cleanups (old_chain);
1415
1416 /* This goes through the topmost target again. */
1417 res = memory_xfer_live_readonly_partial (ops, object,
1418 readbuf, memaddr,
1419 len, xfered_len);
1420 if (res == TARGET_XFER_OK)
1421 return TARGET_XFER_OK;
1422 else
1423 {
1424 /* No use trying further, we know some memory starting
1425 at MEMADDR isn't available. */
1426 *xfered_len = len;
1427 return TARGET_XFER_E_UNAVAILABLE;
1428 }
1429 }
1430
1431 /* Don't try to read more than how much is available, in
1432 case the target implements the deprecated QTro packet to
1433 cater for older GDBs (the target's knowledge of read-only
1434 sections may be outdated by now). */
1435 len = VEC_index (mem_range_s, available, 0)->length;
1436
1437 do_cleanups (old_chain);
1438 }
1439 }
1440
1441 /* Try GDB's internal data cache. */
1442 region = lookup_mem_region (memaddr);
1443 /* region->hi == 0 means there's no upper bound. */
1444 if (memaddr + len < region->hi || region->hi == 0)
1445 reg_len = len;
1446 else
1447 reg_len = region->hi - memaddr;
1448
1449 switch (region->attrib.mode)
1450 {
1451 case MEM_RO:
1452 if (writebuf != NULL)
1453 return TARGET_XFER_E_IO;
1454 break;
1455
1456 case MEM_WO:
1457 if (readbuf != NULL)
1458 return TARGET_XFER_E_IO;
1459 break;
1460
1461 case MEM_FLASH:
1462 /* We only support writing to flash during "load" for now. */
1463 if (writebuf != NULL)
1464 error (_("Writing to flash memory forbidden in this context"));
1465 break;
1466
1467 case MEM_NONE:
1468 return TARGET_XFER_E_IO;
1469 }
1470
1471 if (!ptid_equal (inferior_ptid, null_ptid))
1472 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1473 else
1474 inf = NULL;
1475
1476 if (inf != NULL
1477 /* The dcache reads whole cache lines; that doesn't play well
1478 with reading from a trace buffer, because reading outside of
1479 the collected memory range fails. */
1480 && get_traceframe_number () == -1
1481 && (region->attrib.cache
1482 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1483 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1484 {
1485 DCACHE *dcache = target_dcache_get_or_init ();
1486 int l;
1487
1488 if (readbuf != NULL)
1489 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1490 else
1491 /* FIXME drow/2006-08-09: If we're going to preserve const
1492 correctness dcache_xfer_memory should take readbuf and
1493 writebuf. */
1494 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1495 reg_len, 1);
1496 if (l <= 0)
1497 return TARGET_XFER_E_IO;
1498 else
1499 {
1500 *xfered_len = (ULONGEST) l;
1501 return TARGET_XFER_OK;
1502 }
1503 }
1504
1505 /* If none of those methods found the memory we wanted, fall back
1506 to a target partial transfer. Normally a single call to
1507 to_xfer_partial is enough; if it doesn't recognize an object
1508 it will call the to_xfer_partial of the next target down.
1509 But for memory this won't do. Memory is the only target
1510 object which can be read from more than one valid target.
1511 A core file, for instance, could have some of memory but
1512 delegate other bits to the target below it. So, we must
1513 manually try all targets. */
1514
1515 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1516 xfered_len);
1517
1518 /* Make sure the cache gets updated no matter what - if we are writing
1519 to the stack. Even if this write is not tagged as such, we still need
1520 to update the cache. */
1521
1522 if (res == TARGET_XFER_OK
1523 && inf != NULL
1524 && writebuf != NULL
1525 && target_dcache_init_p ()
1526 && !region->attrib.cache
1527 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1528 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1529 {
1530 DCACHE *dcache = target_dcache_get ();
1531
1532 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1533 }
1534
1535 /* If we still haven't got anything, return the last error. We
1536 give up. */
1537 return res;
1538 }
1539
1540 /* Perform a partial memory transfer. For docs see target.h,
1541 to_xfer_partial. */
1542
1543 static enum target_xfer_status
1544 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1545 gdb_byte *readbuf, const gdb_byte *writebuf,
1546 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1547 {
1548 enum target_xfer_status res;
1549
1550 /* Zero length requests are ok and require no work. */
1551 if (len == 0)
1552 return TARGET_XFER_EOF;
1553
1554 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1555 breakpoint insns, thus hiding out from higher layers whether
1556 there are software breakpoints inserted in the code stream. */
1557 if (readbuf != NULL)
1558 {
1559 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1560 xfered_len);
1561
1562 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1563 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1564 }
1565 else
1566 {
1567 void *buf;
1568 struct cleanup *old_chain;
1569
1570 /* A large write request is likely to be partially satisfied
1571 by memory_xfer_partial_1. We will continually malloc
1572 and free a copy of the entire write request for breakpoint
1573 shadow handling even though we only end up writing a small
1574 subset of it. Cap writes to 4KB to mitigate this. */
1575 len = min (4096, len);
1576
1577 buf = xmalloc (len);
1578 old_chain = make_cleanup (xfree, buf);
1579 memcpy (buf, writebuf, len);
1580
1581 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1582 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1583 xfered_len);
1584
1585 do_cleanups (old_chain);
1586 }
1587
1588 return res;
1589 }
1590
1591 static void
1592 restore_show_memory_breakpoints (void *arg)
1593 {
1594 show_memory_breakpoints = (uintptr_t) arg;
1595 }
1596
1597 struct cleanup *
1598 make_show_memory_breakpoints_cleanup (int show)
1599 {
1600 int current = show_memory_breakpoints;
1601
1602 show_memory_breakpoints = show;
1603 return make_cleanup (restore_show_memory_breakpoints,
1604 (void *) (uintptr_t) current);
1605 }
1606
1607 /* For docs see target.h, to_xfer_partial. */
1608
1609 enum target_xfer_status
1610 target_xfer_partial (struct target_ops *ops,
1611 enum target_object object, const char *annex,
1612 gdb_byte *readbuf, const gdb_byte *writebuf,
1613 ULONGEST offset, ULONGEST len,
1614 ULONGEST *xfered_len)
1615 {
1616 enum target_xfer_status retval;
1617
1618 gdb_assert (ops->to_xfer_partial != NULL);
1619
1620 /* Transfer is done when LEN is zero. */
1621 if (len == 0)
1622 return TARGET_XFER_EOF;
1623
1624 if (writebuf && !may_write_memory)
1625 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1626 core_addr_to_string_nz (offset), plongest (len));
1627
1628 *xfered_len = 0;
1629
1630 /* If this is a memory transfer, let the memory-specific code
1631 have a look at it instead. Memory transfers are more
1632 complicated. */
1633 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1634 || object == TARGET_OBJECT_CODE_MEMORY)
1635 retval = memory_xfer_partial (ops, object, readbuf,
1636 writebuf, offset, len, xfered_len);
1637 else if (object == TARGET_OBJECT_RAW_MEMORY)
1638 {
1639 /* Request the normal memory object from other layers. */
1640 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1641 xfered_len);
1642 }
1643 else
1644 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1645 writebuf, offset, len, xfered_len);
1646
1647 if (targetdebug)
1648 {
1649 const unsigned char *myaddr = NULL;
1650
1651 fprintf_unfiltered (gdb_stdlog,
1652 "%s:target_xfer_partial "
1653 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1654 ops->to_shortname,
1655 (int) object,
1656 (annex ? annex : "(null)"),
1657 host_address_to_string (readbuf),
1658 host_address_to_string (writebuf),
1659 core_addr_to_string_nz (offset),
1660 pulongest (len), retval,
1661 pulongest (*xfered_len));
1662
1663 if (readbuf)
1664 myaddr = readbuf;
1665 if (writebuf)
1666 myaddr = writebuf;
1667 if (retval == TARGET_XFER_OK && myaddr != NULL)
1668 {
1669 int i;
1670
1671 fputs_unfiltered (", bytes =", gdb_stdlog);
1672 for (i = 0; i < *xfered_len; i++)
1673 {
1674 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1675 {
1676 if (targetdebug < 2 && i > 0)
1677 {
1678 fprintf_unfiltered (gdb_stdlog, " ...");
1679 break;
1680 }
1681 fprintf_unfiltered (gdb_stdlog, "\n");
1682 }
1683
1684 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1685 }
1686 }
1687
1688 fputc_unfiltered ('\n', gdb_stdlog);
1689 }
1690
1691 /* Check implementations of to_xfer_partial update *XFERED_LEN
1692 properly. Do assertion after printing debug messages, so that we
1693 can find more clues on assertion failure from debugging messages. */
1694 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1695 gdb_assert (*xfered_len > 0);
1696
1697 return retval;
1698 }
1699
1700 /* Read LEN bytes of target memory at address MEMADDR, placing the
1701 results in GDB's memory at MYADDR. Returns either 0 for success or
1702 TARGET_XFER_E_IO if any error occurs.
1703
1704 If an error occurs, no guarantee is made about the contents of the data at
1705 MYADDR. In particular, the caller should not depend upon partial reads
1706 filling the buffer with good data. There is no way for the caller to know
1707 how much good data might have been transfered anyway. Callers that can
1708 deal with partial reads should call target_read (which will retry until
1709 it makes no progress, and then return how much was transferred). */
1710
1711 int
1712 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1713 {
1714 /* Dispatch to the topmost target, not the flattened current_target.
1715 Memory accesses check target->to_has_(all_)memory, and the
1716 flattened target doesn't inherit those. */
1717 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1718 myaddr, memaddr, len) == len)
1719 return 0;
1720 else
1721 return TARGET_XFER_E_IO;
1722 }
1723
1724 /* Like target_read_memory, but specify explicitly that this is a read
1725 from the target's raw memory. That is, this read bypasses the
1726 dcache, breakpoint shadowing, etc. */
1727
1728 int
1729 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1730 {
1731 /* See comment in target_read_memory about why the request starts at
1732 current_target.beneath. */
1733 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1734 myaddr, memaddr, len) == len)
1735 return 0;
1736 else
1737 return TARGET_XFER_E_IO;
1738 }
1739
1740 /* Like target_read_memory, but specify explicitly that this is a read from
1741 the target's stack. This may trigger different cache behavior. */
1742
1743 int
1744 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1745 {
1746 /* See comment in target_read_memory about why the request starts at
1747 current_target.beneath. */
1748 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1749 myaddr, memaddr, len) == len)
1750 return 0;
1751 else
1752 return TARGET_XFER_E_IO;
1753 }
1754
1755 /* Like target_read_memory, but specify explicitly that this is a read from
1756 the target's code. This may trigger different cache behavior. */
1757
1758 int
1759 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1760 {
1761 /* See comment in target_read_memory about why the request starts at
1762 current_target.beneath. */
1763 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1764 myaddr, memaddr, len) == len)
1765 return 0;
1766 else
1767 return TARGET_XFER_E_IO;
1768 }
1769
1770 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1771 Returns either 0 for success or TARGET_XFER_E_IO if any
1772 error occurs. If an error occurs, no guarantee is made about how
1773 much data got written. Callers that can deal with partial writes
1774 should call target_write. */
1775
1776 int
1777 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1778 {
1779 /* See comment in target_read_memory about why the request starts at
1780 current_target.beneath. */
1781 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1782 myaddr, memaddr, len) == len)
1783 return 0;
1784 else
1785 return TARGET_XFER_E_IO;
1786 }
1787
1788 /* Write LEN bytes from MYADDR to target raw memory at address
1789 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1790 if any error occurs. If an error occurs, no guarantee is made
1791 about how much data got written. Callers that can deal with
1792 partial writes should call target_write. */
1793
1794 int
1795 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1796 {
1797 /* See comment in target_read_memory about why the request starts at
1798 current_target.beneath. */
1799 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1800 myaddr, memaddr, len) == len)
1801 return 0;
1802 else
1803 return TARGET_XFER_E_IO;
1804 }
1805
1806 /* Fetch the target's memory map. */
1807
1808 VEC(mem_region_s) *
1809 target_memory_map (void)
1810 {
1811 VEC(mem_region_s) *result;
1812 struct mem_region *last_one, *this_one;
1813 int ix;
1814 struct target_ops *t;
1815
1816 if (targetdebug)
1817 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1818
1819 for (t = current_target.beneath; t != NULL; t = t->beneath)
1820 if (t->to_memory_map != NULL)
1821 break;
1822
1823 if (t == NULL)
1824 return NULL;
1825
1826 result = t->to_memory_map (t);
1827 if (result == NULL)
1828 return NULL;
1829
1830 qsort (VEC_address (mem_region_s, result),
1831 VEC_length (mem_region_s, result),
1832 sizeof (struct mem_region), mem_region_cmp);
1833
1834 /* Check that regions do not overlap. Simultaneously assign
1835 a numbering for the "mem" commands to use to refer to
1836 each region. */
1837 last_one = NULL;
1838 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1839 {
1840 this_one->number = ix;
1841
1842 if (last_one && last_one->hi > this_one->lo)
1843 {
1844 warning (_("Overlapping regions in memory map: ignoring"));
1845 VEC_free (mem_region_s, result);
1846 return NULL;
1847 }
1848 last_one = this_one;
1849 }
1850
1851 return result;
1852 }
1853
1854 void
1855 target_flash_erase (ULONGEST address, LONGEST length)
1856 {
1857 struct target_ops *t;
1858
1859 for (t = current_target.beneath; t != NULL; t = t->beneath)
1860 if (t->to_flash_erase != NULL)
1861 {
1862 if (targetdebug)
1863 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1864 hex_string (address), phex (length, 0));
1865 t->to_flash_erase (t, address, length);
1866 return;
1867 }
1868
1869 tcomplain ();
1870 }
1871
1872 void
1873 target_flash_done (void)
1874 {
1875 struct target_ops *t;
1876
1877 for (t = current_target.beneath; t != NULL; t = t->beneath)
1878 if (t->to_flash_done != NULL)
1879 {
1880 if (targetdebug)
1881 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1882 t->to_flash_done (t);
1883 return;
1884 }
1885
1886 tcomplain ();
1887 }
1888
1889 static void
1890 show_trust_readonly (struct ui_file *file, int from_tty,
1891 struct cmd_list_element *c, const char *value)
1892 {
1893 fprintf_filtered (file,
1894 _("Mode for reading from readonly sections is %s.\n"),
1895 value);
1896 }
1897
1898 /* More generic transfers. */
1899
1900 static enum target_xfer_status
1901 default_xfer_partial (struct target_ops *ops, enum target_object object,
1902 const char *annex, gdb_byte *readbuf,
1903 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1904 ULONGEST *xfered_len)
1905 {
1906 if (object == TARGET_OBJECT_MEMORY
1907 && ops->deprecated_xfer_memory != NULL)
1908 /* If available, fall back to the target's
1909 "deprecated_xfer_memory" method. */
1910 {
1911 int xfered = -1;
1912
1913 errno = 0;
1914 if (writebuf != NULL)
1915 {
1916 void *buffer = xmalloc (len);
1917 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1918
1919 memcpy (buffer, writebuf, len);
1920 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1921 1/*write*/, NULL, ops);
1922 do_cleanups (cleanup);
1923 }
1924 if (readbuf != NULL)
1925 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1926 0/*read*/, NULL, ops);
1927 if (xfered > 0)
1928 {
1929 *xfered_len = (ULONGEST) xfered;
1930 return TARGET_XFER_E_IO;
1931 }
1932 else if (xfered == 0 && errno == 0)
1933 /* "deprecated_xfer_memory" uses 0, cross checked against
1934 ERRNO as one indication of an error. */
1935 return TARGET_XFER_EOF;
1936 else
1937 return TARGET_XFER_E_IO;
1938 }
1939 else
1940 {
1941 gdb_assert (ops->beneath != NULL);
1942 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1943 readbuf, writebuf, offset, len,
1944 xfered_len);
1945 }
1946 }
1947
1948 /* Target vector read/write partial wrapper functions. */
1949
1950 static enum target_xfer_status
1951 target_read_partial (struct target_ops *ops,
1952 enum target_object object,
1953 const char *annex, gdb_byte *buf,
1954 ULONGEST offset, ULONGEST len,
1955 ULONGEST *xfered_len)
1956 {
1957 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1958 xfered_len);
1959 }
1960
1961 static enum target_xfer_status
1962 target_write_partial (struct target_ops *ops,
1963 enum target_object object,
1964 const char *annex, const gdb_byte *buf,
1965 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1966 {
1967 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1968 xfered_len);
1969 }
1970
1971 /* Wrappers to perform the full transfer. */
1972
1973 /* For docs on target_read see target.h. */
1974
1975 LONGEST
1976 target_read (struct target_ops *ops,
1977 enum target_object object,
1978 const char *annex, gdb_byte *buf,
1979 ULONGEST offset, LONGEST len)
1980 {
1981 LONGEST xfered = 0;
1982
1983 while (xfered < len)
1984 {
1985 ULONGEST xfered_len;
1986 enum target_xfer_status status;
1987
1988 status = target_read_partial (ops, object, annex,
1989 (gdb_byte *) buf + xfered,
1990 offset + xfered, len - xfered,
1991 &xfered_len);
1992
1993 /* Call an observer, notifying them of the xfer progress? */
1994 if (status == TARGET_XFER_EOF)
1995 return xfered;
1996 else if (status == TARGET_XFER_OK)
1997 {
1998 xfered += xfered_len;
1999 QUIT;
2000 }
2001 else
2002 return -1;
2003
2004 }
2005 return len;
2006 }
2007
2008 /* Assuming that the entire [begin, end) range of memory cannot be
2009 read, try to read whatever subrange is possible to read.
2010
2011 The function returns, in RESULT, either zero or one memory block.
2012 If there's a readable subrange at the beginning, it is completely
2013 read and returned. Any further readable subrange will not be read.
2014 Otherwise, if there's a readable subrange at the end, it will be
2015 completely read and returned. Any readable subranges before it
2016 (obviously, not starting at the beginning), will be ignored. In
2017 other cases -- either no readable subrange, or readable subrange(s)
2018 that is neither at the beginning, or end, nothing is returned.
2019
2020 The purpose of this function is to handle a read across a boundary
2021 of accessible memory in a case when memory map is not available.
2022 The above restrictions are fine for this case, but will give
2023 incorrect results if the memory is 'patchy'. However, supporting
2024 'patchy' memory would require trying to read every single byte,
2025 and it seems unacceptable solution. Explicit memory map is
2026 recommended for this case -- and target_read_memory_robust will
2027 take care of reading multiple ranges then. */
2028
2029 static void
2030 read_whatever_is_readable (struct target_ops *ops,
2031 ULONGEST begin, ULONGEST end,
2032 VEC(memory_read_result_s) **result)
2033 {
2034 gdb_byte *buf = xmalloc (end - begin);
2035 ULONGEST current_begin = begin;
2036 ULONGEST current_end = end;
2037 int forward;
2038 memory_read_result_s r;
2039 ULONGEST xfered_len;
2040
2041 /* If we previously failed to read 1 byte, nothing can be done here. */
2042 if (end - begin <= 1)
2043 {
2044 xfree (buf);
2045 return;
2046 }
2047
2048 /* Check that either first or the last byte is readable, and give up
2049 if not. This heuristic is meant to permit reading accessible memory
2050 at the boundary of accessible region. */
2051 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2052 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2053 {
2054 forward = 1;
2055 ++current_begin;
2056 }
2057 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2058 buf + (end-begin) - 1, end - 1, 1,
2059 &xfered_len) == TARGET_XFER_OK)
2060 {
2061 forward = 0;
2062 --current_end;
2063 }
2064 else
2065 {
2066 xfree (buf);
2067 return;
2068 }
2069
2070 /* Loop invariant is that the [current_begin, current_end) was previously
2071 found to be not readable as a whole.
2072
2073 Note loop condition -- if the range has 1 byte, we can't divide the range
2074 so there's no point trying further. */
2075 while (current_end - current_begin > 1)
2076 {
2077 ULONGEST first_half_begin, first_half_end;
2078 ULONGEST second_half_begin, second_half_end;
2079 LONGEST xfer;
2080 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2081
2082 if (forward)
2083 {
2084 first_half_begin = current_begin;
2085 first_half_end = middle;
2086 second_half_begin = middle;
2087 second_half_end = current_end;
2088 }
2089 else
2090 {
2091 first_half_begin = middle;
2092 first_half_end = current_end;
2093 second_half_begin = current_begin;
2094 second_half_end = middle;
2095 }
2096
2097 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2098 buf + (first_half_begin - begin),
2099 first_half_begin,
2100 first_half_end - first_half_begin);
2101
2102 if (xfer == first_half_end - first_half_begin)
2103 {
2104 /* This half reads up fine. So, the error must be in the
2105 other half. */
2106 current_begin = second_half_begin;
2107 current_end = second_half_end;
2108 }
2109 else
2110 {
2111 /* This half is not readable. Because we've tried one byte, we
2112 know some part of this half if actually redable. Go to the next
2113 iteration to divide again and try to read.
2114
2115 We don't handle the other half, because this function only tries
2116 to read a single readable subrange. */
2117 current_begin = first_half_begin;
2118 current_end = first_half_end;
2119 }
2120 }
2121
2122 if (forward)
2123 {
2124 /* The [begin, current_begin) range has been read. */
2125 r.begin = begin;
2126 r.end = current_begin;
2127 r.data = buf;
2128 }
2129 else
2130 {
2131 /* The [current_end, end) range has been read. */
2132 LONGEST rlen = end - current_end;
2133
2134 r.data = xmalloc (rlen);
2135 memcpy (r.data, buf + current_end - begin, rlen);
2136 r.begin = current_end;
2137 r.end = end;
2138 xfree (buf);
2139 }
2140 VEC_safe_push(memory_read_result_s, (*result), &r);
2141 }
2142
2143 void
2144 free_memory_read_result_vector (void *x)
2145 {
2146 VEC(memory_read_result_s) *v = x;
2147 memory_read_result_s *current;
2148 int ix;
2149
2150 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2151 {
2152 xfree (current->data);
2153 }
2154 VEC_free (memory_read_result_s, v);
2155 }
2156
2157 VEC(memory_read_result_s) *
2158 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2159 {
2160 VEC(memory_read_result_s) *result = 0;
2161
2162 LONGEST xfered = 0;
2163 while (xfered < len)
2164 {
2165 struct mem_region *region = lookup_mem_region (offset + xfered);
2166 LONGEST rlen;
2167
2168 /* If there is no explicit region, a fake one should be created. */
2169 gdb_assert (region);
2170
2171 if (region->hi == 0)
2172 rlen = len - xfered;
2173 else
2174 rlen = region->hi - offset;
2175
2176 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2177 {
2178 /* Cannot read this region. Note that we can end up here only
2179 if the region is explicitly marked inaccessible, or
2180 'inaccessible-by-default' is in effect. */
2181 xfered += rlen;
2182 }
2183 else
2184 {
2185 LONGEST to_read = min (len - xfered, rlen);
2186 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2187
2188 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2189 (gdb_byte *) buffer,
2190 offset + xfered, to_read);
2191 /* Call an observer, notifying them of the xfer progress? */
2192 if (xfer <= 0)
2193 {
2194 /* Got an error reading full chunk. See if maybe we can read
2195 some subrange. */
2196 xfree (buffer);
2197 read_whatever_is_readable (ops, offset + xfered,
2198 offset + xfered + to_read, &result);
2199 xfered += to_read;
2200 }
2201 else
2202 {
2203 struct memory_read_result r;
2204 r.data = buffer;
2205 r.begin = offset + xfered;
2206 r.end = r.begin + xfer;
2207 VEC_safe_push (memory_read_result_s, result, &r);
2208 xfered += xfer;
2209 }
2210 QUIT;
2211 }
2212 }
2213 return result;
2214 }
2215
2216
2217 /* An alternative to target_write with progress callbacks. */
2218
2219 LONGEST
2220 target_write_with_progress (struct target_ops *ops,
2221 enum target_object object,
2222 const char *annex, const gdb_byte *buf,
2223 ULONGEST offset, LONGEST len,
2224 void (*progress) (ULONGEST, void *), void *baton)
2225 {
2226 LONGEST xfered = 0;
2227
2228 /* Give the progress callback a chance to set up. */
2229 if (progress)
2230 (*progress) (0, baton);
2231
2232 while (xfered < len)
2233 {
2234 ULONGEST xfered_len;
2235 enum target_xfer_status status;
2236
2237 status = target_write_partial (ops, object, annex,
2238 (gdb_byte *) buf + xfered,
2239 offset + xfered, len - xfered,
2240 &xfered_len);
2241
2242 if (status == TARGET_XFER_EOF)
2243 return xfered;
2244 if (TARGET_XFER_STATUS_ERROR_P (status))
2245 return -1;
2246
2247 gdb_assert (status == TARGET_XFER_OK);
2248 if (progress)
2249 (*progress) (xfered_len, baton);
2250
2251 xfered += xfered_len;
2252 QUIT;
2253 }
2254 return len;
2255 }
2256
2257 /* For docs on target_write see target.h. */
2258
2259 LONGEST
2260 target_write (struct target_ops *ops,
2261 enum target_object object,
2262 const char *annex, const gdb_byte *buf,
2263 ULONGEST offset, LONGEST len)
2264 {
2265 return target_write_with_progress (ops, object, annex, buf, offset, len,
2266 NULL, NULL);
2267 }
2268
2269 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2270 the size of the transferred data. PADDING additional bytes are
2271 available in *BUF_P. This is a helper function for
2272 target_read_alloc; see the declaration of that function for more
2273 information. */
2274
2275 static LONGEST
2276 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2277 const char *annex, gdb_byte **buf_p, int padding)
2278 {
2279 size_t buf_alloc, buf_pos;
2280 gdb_byte *buf;
2281
2282 /* This function does not have a length parameter; it reads the
2283 entire OBJECT). Also, it doesn't support objects fetched partly
2284 from one target and partly from another (in a different stratum,
2285 e.g. a core file and an executable). Both reasons make it
2286 unsuitable for reading memory. */
2287 gdb_assert (object != TARGET_OBJECT_MEMORY);
2288
2289 /* Start by reading up to 4K at a time. The target will throttle
2290 this number down if necessary. */
2291 buf_alloc = 4096;
2292 buf = xmalloc (buf_alloc);
2293 buf_pos = 0;
2294 while (1)
2295 {
2296 ULONGEST xfered_len;
2297 enum target_xfer_status status;
2298
2299 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2300 buf_pos, buf_alloc - buf_pos - padding,
2301 &xfered_len);
2302
2303 if (status == TARGET_XFER_EOF)
2304 {
2305 /* Read all there was. */
2306 if (buf_pos == 0)
2307 xfree (buf);
2308 else
2309 *buf_p = buf;
2310 return buf_pos;
2311 }
2312 else if (status != TARGET_XFER_OK)
2313 {
2314 /* An error occurred. */
2315 xfree (buf);
2316 return TARGET_XFER_E_IO;
2317 }
2318
2319 buf_pos += xfered_len;
2320
2321 /* If the buffer is filling up, expand it. */
2322 if (buf_alloc < buf_pos * 2)
2323 {
2324 buf_alloc *= 2;
2325 buf = xrealloc (buf, buf_alloc);
2326 }
2327
2328 QUIT;
2329 }
2330 }
2331
2332 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2333 the size of the transferred data. See the declaration in "target.h"
2334 function for more information about the return value. */
2335
2336 LONGEST
2337 target_read_alloc (struct target_ops *ops, enum target_object object,
2338 const char *annex, gdb_byte **buf_p)
2339 {
2340 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2341 }
2342
2343 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2344 returned as a string, allocated using xmalloc. If an error occurs
2345 or the transfer is unsupported, NULL is returned. Empty objects
2346 are returned as allocated but empty strings. A warning is issued
2347 if the result contains any embedded NUL bytes. */
2348
2349 char *
2350 target_read_stralloc (struct target_ops *ops, enum target_object object,
2351 const char *annex)
2352 {
2353 gdb_byte *buffer;
2354 char *bufstr;
2355 LONGEST i, transferred;
2356
2357 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2358 bufstr = (char *) buffer;
2359
2360 if (transferred < 0)
2361 return NULL;
2362
2363 if (transferred == 0)
2364 return xstrdup ("");
2365
2366 bufstr[transferred] = 0;
2367
2368 /* Check for embedded NUL bytes; but allow trailing NULs. */
2369 for (i = strlen (bufstr); i < transferred; i++)
2370 if (bufstr[i] != 0)
2371 {
2372 warning (_("target object %d, annex %s, "
2373 "contained unexpected null characters"),
2374 (int) object, annex ? annex : "(none)");
2375 break;
2376 }
2377
2378 return bufstr;
2379 }
2380
2381 /* Memory transfer methods. */
2382
2383 void
2384 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2385 LONGEST len)
2386 {
2387 /* This method is used to read from an alternate, non-current
2388 target. This read must bypass the overlay support (as symbols
2389 don't match this target), and GDB's internal cache (wrong cache
2390 for this target). */
2391 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2392 != len)
2393 memory_error (TARGET_XFER_E_IO, addr);
2394 }
2395
2396 ULONGEST
2397 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2398 int len, enum bfd_endian byte_order)
2399 {
2400 gdb_byte buf[sizeof (ULONGEST)];
2401
2402 gdb_assert (len <= sizeof (buf));
2403 get_target_memory (ops, addr, buf, len);
2404 return extract_unsigned_integer (buf, len, byte_order);
2405 }
2406
2407 /* See target.h. */
2408
2409 int
2410 target_insert_breakpoint (struct gdbarch *gdbarch,
2411 struct bp_target_info *bp_tgt)
2412 {
2413 if (!may_insert_breakpoints)
2414 {
2415 warning (_("May not insert breakpoints"));
2416 return 1;
2417 }
2418
2419 return current_target.to_insert_breakpoint (&current_target,
2420 gdbarch, bp_tgt);
2421 }
2422
2423 /* See target.h. */
2424
2425 int
2426 target_remove_breakpoint (struct gdbarch *gdbarch,
2427 struct bp_target_info *bp_tgt)
2428 {
2429 /* This is kind of a weird case to handle, but the permission might
2430 have been changed after breakpoints were inserted - in which case
2431 we should just take the user literally and assume that any
2432 breakpoints should be left in place. */
2433 if (!may_insert_breakpoints)
2434 {
2435 warning (_("May not remove breakpoints"));
2436 return 1;
2437 }
2438
2439 return current_target.to_remove_breakpoint (&current_target,
2440 gdbarch, bp_tgt);
2441 }
2442
2443 static void
2444 target_info (char *args, int from_tty)
2445 {
2446 struct target_ops *t;
2447 int has_all_mem = 0;
2448
2449 if (symfile_objfile != NULL)
2450 printf_unfiltered (_("Symbols from \"%s\".\n"),
2451 objfile_name (symfile_objfile));
2452
2453 for (t = target_stack; t != NULL; t = t->beneath)
2454 {
2455 if (!(*t->to_has_memory) (t))
2456 continue;
2457
2458 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2459 continue;
2460 if (has_all_mem)
2461 printf_unfiltered (_("\tWhile running this, "
2462 "GDB does not access memory from...\n"));
2463 printf_unfiltered ("%s:\n", t->to_longname);
2464 (t->to_files_info) (t);
2465 has_all_mem = (*t->to_has_all_memory) (t);
2466 }
2467 }
2468
2469 /* This function is called before any new inferior is created, e.g.
2470 by running a program, attaching, or connecting to a target.
2471 It cleans up any state from previous invocations which might
2472 change between runs. This is a subset of what target_preopen
2473 resets (things which might change between targets). */
2474
2475 void
2476 target_pre_inferior (int from_tty)
2477 {
2478 /* Clear out solib state. Otherwise the solib state of the previous
2479 inferior might have survived and is entirely wrong for the new
2480 target. This has been observed on GNU/Linux using glibc 2.3. How
2481 to reproduce:
2482
2483 bash$ ./foo&
2484 [1] 4711
2485 bash$ ./foo&
2486 [1] 4712
2487 bash$ gdb ./foo
2488 [...]
2489 (gdb) attach 4711
2490 (gdb) detach
2491 (gdb) attach 4712
2492 Cannot access memory at address 0xdeadbeef
2493 */
2494
2495 /* In some OSs, the shared library list is the same/global/shared
2496 across inferiors. If code is shared between processes, so are
2497 memory regions and features. */
2498 if (!gdbarch_has_global_solist (target_gdbarch ()))
2499 {
2500 no_shared_libraries (NULL, from_tty);
2501
2502 invalidate_target_mem_regions ();
2503
2504 target_clear_description ();
2505 }
2506
2507 agent_capability_invalidate ();
2508 }
2509
2510 /* Callback for iterate_over_inferiors. Gets rid of the given
2511 inferior. */
2512
2513 static int
2514 dispose_inferior (struct inferior *inf, void *args)
2515 {
2516 struct thread_info *thread;
2517
2518 thread = any_thread_of_process (inf->pid);
2519 if (thread)
2520 {
2521 switch_to_thread (thread->ptid);
2522
2523 /* Core inferiors actually should be detached, not killed. */
2524 if (target_has_execution)
2525 target_kill ();
2526 else
2527 target_detach (NULL, 0);
2528 }
2529
2530 return 0;
2531 }
2532
2533 /* This is to be called by the open routine before it does
2534 anything. */
2535
2536 void
2537 target_preopen (int from_tty)
2538 {
2539 dont_repeat ();
2540
2541 if (have_inferiors ())
2542 {
2543 if (!from_tty
2544 || !have_live_inferiors ()
2545 || query (_("A program is being debugged already. Kill it? ")))
2546 iterate_over_inferiors (dispose_inferior, NULL);
2547 else
2548 error (_("Program not killed."));
2549 }
2550
2551 /* Calling target_kill may remove the target from the stack. But if
2552 it doesn't (which seems like a win for UDI), remove it now. */
2553 /* Leave the exec target, though. The user may be switching from a
2554 live process to a core of the same program. */
2555 pop_all_targets_above (file_stratum);
2556
2557 target_pre_inferior (from_tty);
2558 }
2559
2560 /* Detach a target after doing deferred register stores. */
2561
2562 void
2563 target_detach (const char *args, int from_tty)
2564 {
2565 struct target_ops* t;
2566
2567 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2568 /* Don't remove global breakpoints here. They're removed on
2569 disconnection from the target. */
2570 ;
2571 else
2572 /* If we're in breakpoints-always-inserted mode, have to remove
2573 them before detaching. */
2574 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2575
2576 prepare_for_detach ();
2577
2578 current_target.to_detach (&current_target, args, from_tty);
2579 if (targetdebug)
2580 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2581 args, from_tty);
2582 }
2583
2584 void
2585 target_disconnect (char *args, int from_tty)
2586 {
2587 struct target_ops *t;
2588
2589 /* If we're in breakpoints-always-inserted mode or if breakpoints
2590 are global across processes, we have to remove them before
2591 disconnecting. */
2592 remove_breakpoints ();
2593
2594 for (t = current_target.beneath; t != NULL; t = t->beneath)
2595 if (t->to_disconnect != NULL)
2596 {
2597 if (targetdebug)
2598 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2599 args, from_tty);
2600 t->to_disconnect (t, args, from_tty);
2601 return;
2602 }
2603
2604 tcomplain ();
2605 }
2606
2607 ptid_t
2608 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2609 {
2610 struct target_ops *t;
2611 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2612 status, options);
2613
2614 if (targetdebug)
2615 {
2616 char *status_string;
2617 char *options_string;
2618
2619 status_string = target_waitstatus_to_string (status);
2620 options_string = target_options_to_string (options);
2621 fprintf_unfiltered (gdb_stdlog,
2622 "target_wait (%d, status, options={%s})"
2623 " = %d, %s\n",
2624 ptid_get_pid (ptid), options_string,
2625 ptid_get_pid (retval), status_string);
2626 xfree (status_string);
2627 xfree (options_string);
2628 }
2629
2630 return retval;
2631 }
2632
2633 char *
2634 target_pid_to_str (ptid_t ptid)
2635 {
2636 struct target_ops *t;
2637
2638 for (t = current_target.beneath; t != NULL; t = t->beneath)
2639 {
2640 if (t->to_pid_to_str != NULL)
2641 return (*t->to_pid_to_str) (t, ptid);
2642 }
2643
2644 return normal_pid_to_str (ptid);
2645 }
2646
2647 char *
2648 target_thread_name (struct thread_info *info)
2649 {
2650 return current_target.to_thread_name (&current_target, info);
2651 }
2652
2653 void
2654 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2655 {
2656 struct target_ops *t;
2657
2658 target_dcache_invalidate ();
2659
2660 current_target.to_resume (&current_target, ptid, step, signal);
2661 if (targetdebug)
2662 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2663 ptid_get_pid (ptid),
2664 step ? "step" : "continue",
2665 gdb_signal_to_name (signal));
2666
2667 registers_changed_ptid (ptid);
2668 set_executing (ptid, 1);
2669 set_running (ptid, 1);
2670 clear_inline_frame_state (ptid);
2671 }
2672
2673 void
2674 target_pass_signals (int numsigs, unsigned char *pass_signals)
2675 {
2676 struct target_ops *t;
2677
2678 for (t = current_target.beneath; t != NULL; t = t->beneath)
2679 {
2680 if (t->to_pass_signals != NULL)
2681 {
2682 if (targetdebug)
2683 {
2684 int i;
2685
2686 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2687 numsigs);
2688
2689 for (i = 0; i < numsigs; i++)
2690 if (pass_signals[i])
2691 fprintf_unfiltered (gdb_stdlog, " %s",
2692 gdb_signal_to_name (i));
2693
2694 fprintf_unfiltered (gdb_stdlog, " })\n");
2695 }
2696
2697 (*t->to_pass_signals) (t, numsigs, pass_signals);
2698 return;
2699 }
2700 }
2701 }
2702
2703 void
2704 target_program_signals (int numsigs, unsigned char *program_signals)
2705 {
2706 struct target_ops *t;
2707
2708 for (t = current_target.beneath; t != NULL; t = t->beneath)
2709 {
2710 if (t->to_program_signals != NULL)
2711 {
2712 if (targetdebug)
2713 {
2714 int i;
2715
2716 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2717 numsigs);
2718
2719 for (i = 0; i < numsigs; i++)
2720 if (program_signals[i])
2721 fprintf_unfiltered (gdb_stdlog, " %s",
2722 gdb_signal_to_name (i));
2723
2724 fprintf_unfiltered (gdb_stdlog, " })\n");
2725 }
2726
2727 (*t->to_program_signals) (t, numsigs, program_signals);
2728 return;
2729 }
2730 }
2731 }
2732
2733 /* Look through the list of possible targets for a target that can
2734 follow forks. */
2735
2736 int
2737 target_follow_fork (int follow_child, int detach_fork)
2738 {
2739 struct target_ops *t;
2740
2741 for (t = current_target.beneath; t != NULL; t = t->beneath)
2742 {
2743 if (t->to_follow_fork != NULL)
2744 {
2745 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2746
2747 if (targetdebug)
2748 fprintf_unfiltered (gdb_stdlog,
2749 "target_follow_fork (%d, %d) = %d\n",
2750 follow_child, detach_fork, retval);
2751 return retval;
2752 }
2753 }
2754
2755 /* Some target returned a fork event, but did not know how to follow it. */
2756 internal_error (__FILE__, __LINE__,
2757 _("could not find a target to follow fork"));
2758 }
2759
2760 void
2761 target_mourn_inferior (void)
2762 {
2763 struct target_ops *t;
2764
2765 for (t = current_target.beneath; t != NULL; t = t->beneath)
2766 {
2767 if (t->to_mourn_inferior != NULL)
2768 {
2769 t->to_mourn_inferior (t);
2770 if (targetdebug)
2771 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2772
2773 /* We no longer need to keep handles on any of the object files.
2774 Make sure to release them to avoid unnecessarily locking any
2775 of them while we're not actually debugging. */
2776 bfd_cache_close_all ();
2777
2778 return;
2779 }
2780 }
2781
2782 internal_error (__FILE__, __LINE__,
2783 _("could not find a target to follow mourn inferior"));
2784 }
2785
2786 /* Look for a target which can describe architectural features, starting
2787 from TARGET. If we find one, return its description. */
2788
2789 const struct target_desc *
2790 target_read_description (struct target_ops *target)
2791 {
2792 struct target_ops *t;
2793
2794 for (t = target; t != NULL; t = t->beneath)
2795 if (t->to_read_description != NULL)
2796 {
2797 const struct target_desc *tdesc;
2798
2799 tdesc = t->to_read_description (t);
2800 if (tdesc)
2801 return tdesc;
2802 }
2803
2804 return NULL;
2805 }
2806
2807 /* The default implementation of to_search_memory.
2808 This implements a basic search of memory, reading target memory and
2809 performing the search here (as opposed to performing the search in on the
2810 target side with, for example, gdbserver). */
2811
2812 int
2813 simple_search_memory (struct target_ops *ops,
2814 CORE_ADDR start_addr, ULONGEST search_space_len,
2815 const gdb_byte *pattern, ULONGEST pattern_len,
2816 CORE_ADDR *found_addrp)
2817 {
2818 /* NOTE: also defined in find.c testcase. */
2819 #define SEARCH_CHUNK_SIZE 16000
2820 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2821 /* Buffer to hold memory contents for searching. */
2822 gdb_byte *search_buf;
2823 unsigned search_buf_size;
2824 struct cleanup *old_cleanups;
2825
2826 search_buf_size = chunk_size + pattern_len - 1;
2827
2828 /* No point in trying to allocate a buffer larger than the search space. */
2829 if (search_space_len < search_buf_size)
2830 search_buf_size = search_space_len;
2831
2832 search_buf = malloc (search_buf_size);
2833 if (search_buf == NULL)
2834 error (_("Unable to allocate memory to perform the search."));
2835 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2836
2837 /* Prime the search buffer. */
2838
2839 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2840 search_buf, start_addr, search_buf_size) != search_buf_size)
2841 {
2842 warning (_("Unable to access %s bytes of target "
2843 "memory at %s, halting search."),
2844 pulongest (search_buf_size), hex_string (start_addr));
2845 do_cleanups (old_cleanups);
2846 return -1;
2847 }
2848
2849 /* Perform the search.
2850
2851 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2852 When we've scanned N bytes we copy the trailing bytes to the start and
2853 read in another N bytes. */
2854
2855 while (search_space_len >= pattern_len)
2856 {
2857 gdb_byte *found_ptr;
2858 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2859
2860 found_ptr = memmem (search_buf, nr_search_bytes,
2861 pattern, pattern_len);
2862
2863 if (found_ptr != NULL)
2864 {
2865 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2866
2867 *found_addrp = found_addr;
2868 do_cleanups (old_cleanups);
2869 return 1;
2870 }
2871
2872 /* Not found in this chunk, skip to next chunk. */
2873
2874 /* Don't let search_space_len wrap here, it's unsigned. */
2875 if (search_space_len >= chunk_size)
2876 search_space_len -= chunk_size;
2877 else
2878 search_space_len = 0;
2879
2880 if (search_space_len >= pattern_len)
2881 {
2882 unsigned keep_len = search_buf_size - chunk_size;
2883 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2884 int nr_to_read;
2885
2886 /* Copy the trailing part of the previous iteration to the front
2887 of the buffer for the next iteration. */
2888 gdb_assert (keep_len == pattern_len - 1);
2889 memcpy (search_buf, search_buf + chunk_size, keep_len);
2890
2891 nr_to_read = min (search_space_len - keep_len, chunk_size);
2892
2893 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2894 search_buf + keep_len, read_addr,
2895 nr_to_read) != nr_to_read)
2896 {
2897 warning (_("Unable to access %s bytes of target "
2898 "memory at %s, halting search."),
2899 plongest (nr_to_read),
2900 hex_string (read_addr));
2901 do_cleanups (old_cleanups);
2902 return -1;
2903 }
2904
2905 start_addr += chunk_size;
2906 }
2907 }
2908
2909 /* Not found. */
2910
2911 do_cleanups (old_cleanups);
2912 return 0;
2913 }
2914
2915 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2916 sequence of bytes in PATTERN with length PATTERN_LEN.
2917
2918 The result is 1 if found, 0 if not found, and -1 if there was an error
2919 requiring halting of the search (e.g. memory read error).
2920 If the pattern is found the address is recorded in FOUND_ADDRP. */
2921
2922 int
2923 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2924 const gdb_byte *pattern, ULONGEST pattern_len,
2925 CORE_ADDR *found_addrp)
2926 {
2927 struct target_ops *t;
2928 int found;
2929
2930 /* We don't use INHERIT to set current_target.to_search_memory,
2931 so we have to scan the target stack and handle targetdebug
2932 ourselves. */
2933
2934 if (targetdebug)
2935 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2936 hex_string (start_addr));
2937
2938 for (t = current_target.beneath; t != NULL; t = t->beneath)
2939 if (t->to_search_memory != NULL)
2940 break;
2941
2942 if (t != NULL)
2943 {
2944 found = t->to_search_memory (t, start_addr, search_space_len,
2945 pattern, pattern_len, found_addrp);
2946 }
2947 else
2948 {
2949 /* If a special version of to_search_memory isn't available, use the
2950 simple version. */
2951 found = simple_search_memory (current_target.beneath,
2952 start_addr, search_space_len,
2953 pattern, pattern_len, found_addrp);
2954 }
2955
2956 if (targetdebug)
2957 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2958
2959 return found;
2960 }
2961
2962 /* Look through the currently pushed targets. If none of them will
2963 be able to restart the currently running process, issue an error
2964 message. */
2965
2966 void
2967 target_require_runnable (void)
2968 {
2969 struct target_ops *t;
2970
2971 for (t = target_stack; t != NULL; t = t->beneath)
2972 {
2973 /* If this target knows how to create a new program, then
2974 assume we will still be able to after killing the current
2975 one. Either killing and mourning will not pop T, or else
2976 find_default_run_target will find it again. */
2977 if (t->to_create_inferior != NULL)
2978 return;
2979
2980 /* Do not worry about thread_stratum targets that can not
2981 create inferiors. Assume they will be pushed again if
2982 necessary, and continue to the process_stratum. */
2983 if (t->to_stratum == thread_stratum
2984 || t->to_stratum == arch_stratum)
2985 continue;
2986
2987 error (_("The \"%s\" target does not support \"run\". "
2988 "Try \"help target\" or \"continue\"."),
2989 t->to_shortname);
2990 }
2991
2992 /* This function is only called if the target is running. In that
2993 case there should have been a process_stratum target and it
2994 should either know how to create inferiors, or not... */
2995 internal_error (__FILE__, __LINE__, _("No targets found"));
2996 }
2997
2998 /* Look through the list of possible targets for a target that can
2999 execute a run or attach command without any other data. This is
3000 used to locate the default process stratum.
3001
3002 If DO_MESG is not NULL, the result is always valid (error() is
3003 called for errors); else, return NULL on error. */
3004
3005 static struct target_ops *
3006 find_default_run_target (char *do_mesg)
3007 {
3008 struct target_ops **t;
3009 struct target_ops *runable = NULL;
3010 int count;
3011
3012 count = 0;
3013
3014 for (t = target_structs; t < target_structs + target_struct_size;
3015 ++t)
3016 {
3017 if ((*t)->to_can_run && target_can_run (*t))
3018 {
3019 runable = *t;
3020 ++count;
3021 }
3022 }
3023
3024 if (count != 1)
3025 {
3026 if (do_mesg)
3027 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3028 else
3029 return NULL;
3030 }
3031
3032 return runable;
3033 }
3034
3035 void
3036 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3037 {
3038 struct target_ops *t;
3039
3040 t = find_default_run_target ("attach");
3041 (t->to_attach) (t, args, from_tty);
3042 return;
3043 }
3044
3045 void
3046 find_default_create_inferior (struct target_ops *ops,
3047 char *exec_file, char *allargs, char **env,
3048 int from_tty)
3049 {
3050 struct target_ops *t;
3051
3052 t = find_default_run_target ("run");
3053 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3054 return;
3055 }
3056
3057 static int
3058 find_default_can_async_p (struct target_ops *ignore)
3059 {
3060 struct target_ops *t;
3061
3062 /* This may be called before the target is pushed on the stack;
3063 look for the default process stratum. If there's none, gdb isn't
3064 configured with a native debugger, and target remote isn't
3065 connected yet. */
3066 t = find_default_run_target (NULL);
3067 if (t && t->to_can_async_p != delegate_can_async_p)
3068 return (t->to_can_async_p) (t);
3069 return 0;
3070 }
3071
3072 static int
3073 find_default_is_async_p (struct target_ops *ignore)
3074 {
3075 struct target_ops *t;
3076
3077 /* This may be called before the target is pushed on the stack;
3078 look for the default process stratum. If there's none, gdb isn't
3079 configured with a native debugger, and target remote isn't
3080 connected yet. */
3081 t = find_default_run_target (NULL);
3082 if (t && t->to_is_async_p != delegate_is_async_p)
3083 return (t->to_is_async_p) (t);
3084 return 0;
3085 }
3086
3087 static int
3088 find_default_supports_non_stop (struct target_ops *self)
3089 {
3090 struct target_ops *t;
3091
3092 t = find_default_run_target (NULL);
3093 if (t && t->to_supports_non_stop)
3094 return (t->to_supports_non_stop) (t);
3095 return 0;
3096 }
3097
3098 int
3099 target_supports_non_stop (void)
3100 {
3101 struct target_ops *t;
3102
3103 for (t = &current_target; t != NULL; t = t->beneath)
3104 if (t->to_supports_non_stop)
3105 return t->to_supports_non_stop (t);
3106
3107 return 0;
3108 }
3109
3110 /* Implement the "info proc" command. */
3111
3112 int
3113 target_info_proc (char *args, enum info_proc_what what)
3114 {
3115 struct target_ops *t;
3116
3117 /* If we're already connected to something that can get us OS
3118 related data, use it. Otherwise, try using the native
3119 target. */
3120 if (current_target.to_stratum >= process_stratum)
3121 t = current_target.beneath;
3122 else
3123 t = find_default_run_target (NULL);
3124
3125 for (; t != NULL; t = t->beneath)
3126 {
3127 if (t->to_info_proc != NULL)
3128 {
3129 t->to_info_proc (t, args, what);
3130
3131 if (targetdebug)
3132 fprintf_unfiltered (gdb_stdlog,
3133 "target_info_proc (\"%s\", %d)\n", args, what);
3134
3135 return 1;
3136 }
3137 }
3138
3139 return 0;
3140 }
3141
3142 static int
3143 find_default_supports_disable_randomization (struct target_ops *self)
3144 {
3145 struct target_ops *t;
3146
3147 t = find_default_run_target (NULL);
3148 if (t && t->to_supports_disable_randomization)
3149 return (t->to_supports_disable_randomization) (t);
3150 return 0;
3151 }
3152
3153 int
3154 target_supports_disable_randomization (void)
3155 {
3156 struct target_ops *t;
3157
3158 for (t = &current_target; t != NULL; t = t->beneath)
3159 if (t->to_supports_disable_randomization)
3160 return t->to_supports_disable_randomization (t);
3161
3162 return 0;
3163 }
3164
3165 char *
3166 target_get_osdata (const char *type)
3167 {
3168 struct target_ops *t;
3169
3170 /* If we're already connected to something that can get us OS
3171 related data, use it. Otherwise, try using the native
3172 target. */
3173 if (current_target.to_stratum >= process_stratum)
3174 t = current_target.beneath;
3175 else
3176 t = find_default_run_target ("get OS data");
3177
3178 if (!t)
3179 return NULL;
3180
3181 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3182 }
3183
3184 /* Determine the current address space of thread PTID. */
3185
3186 struct address_space *
3187 target_thread_address_space (ptid_t ptid)
3188 {
3189 struct address_space *aspace;
3190 struct inferior *inf;
3191 struct target_ops *t;
3192
3193 for (t = current_target.beneath; t != NULL; t = t->beneath)
3194 {
3195 if (t->to_thread_address_space != NULL)
3196 {
3197 aspace = t->to_thread_address_space (t, ptid);
3198 gdb_assert (aspace);
3199
3200 if (targetdebug)
3201 fprintf_unfiltered (gdb_stdlog,
3202 "target_thread_address_space (%s) = %d\n",
3203 target_pid_to_str (ptid),
3204 address_space_num (aspace));
3205 return aspace;
3206 }
3207 }
3208
3209 /* Fall-back to the "main" address space of the inferior. */
3210 inf = find_inferior_pid (ptid_get_pid (ptid));
3211
3212 if (inf == NULL || inf->aspace == NULL)
3213 internal_error (__FILE__, __LINE__,
3214 _("Can't determine the current "
3215 "address space of thread %s\n"),
3216 target_pid_to_str (ptid));
3217
3218 return inf->aspace;
3219 }
3220
3221
3222 /* Target file operations. */
3223
3224 static struct target_ops *
3225 default_fileio_target (void)
3226 {
3227 /* If we're already connected to something that can perform
3228 file I/O, use it. Otherwise, try using the native target. */
3229 if (current_target.to_stratum >= process_stratum)
3230 return current_target.beneath;
3231 else
3232 return find_default_run_target ("file I/O");
3233 }
3234
3235 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3236 target file descriptor, or -1 if an error occurs (and set
3237 *TARGET_ERRNO). */
3238 int
3239 target_fileio_open (const char *filename, int flags, int mode,
3240 int *target_errno)
3241 {
3242 struct target_ops *t;
3243
3244 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3245 {
3246 if (t->to_fileio_open != NULL)
3247 {
3248 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3249
3250 if (targetdebug)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3253 filename, flags, mode,
3254 fd, fd != -1 ? 0 : *target_errno);
3255 return fd;
3256 }
3257 }
3258
3259 *target_errno = FILEIO_ENOSYS;
3260 return -1;
3261 }
3262
3263 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3264 Return the number of bytes written, or -1 if an error occurs
3265 (and set *TARGET_ERRNO). */
3266 int
3267 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3268 ULONGEST offset, int *target_errno)
3269 {
3270 struct target_ops *t;
3271
3272 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3273 {
3274 if (t->to_fileio_pwrite != NULL)
3275 {
3276 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3277 target_errno);
3278
3279 if (targetdebug)
3280 fprintf_unfiltered (gdb_stdlog,
3281 "target_fileio_pwrite (%d,...,%d,%s) "
3282 "= %d (%d)\n",
3283 fd, len, pulongest (offset),
3284 ret, ret != -1 ? 0 : *target_errno);
3285 return ret;
3286 }
3287 }
3288
3289 *target_errno = FILEIO_ENOSYS;
3290 return -1;
3291 }
3292
3293 /* Read up to LEN bytes FD on the target into READ_BUF.
3294 Return the number of bytes read, or -1 if an error occurs
3295 (and set *TARGET_ERRNO). */
3296 int
3297 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3298 ULONGEST offset, int *target_errno)
3299 {
3300 struct target_ops *t;
3301
3302 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3303 {
3304 if (t->to_fileio_pread != NULL)
3305 {
3306 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3307 target_errno);
3308
3309 if (targetdebug)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "target_fileio_pread (%d,...,%d,%s) "
3312 "= %d (%d)\n",
3313 fd, len, pulongest (offset),
3314 ret, ret != -1 ? 0 : *target_errno);
3315 return ret;
3316 }
3317 }
3318
3319 *target_errno = FILEIO_ENOSYS;
3320 return -1;
3321 }
3322
3323 /* Close FD on the target. Return 0, or -1 if an error occurs
3324 (and set *TARGET_ERRNO). */
3325 int
3326 target_fileio_close (int fd, int *target_errno)
3327 {
3328 struct target_ops *t;
3329
3330 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3331 {
3332 if (t->to_fileio_close != NULL)
3333 {
3334 int ret = t->to_fileio_close (t, fd, target_errno);
3335
3336 if (targetdebug)
3337 fprintf_unfiltered (gdb_stdlog,
3338 "target_fileio_close (%d) = %d (%d)\n",
3339 fd, ret, ret != -1 ? 0 : *target_errno);
3340 return ret;
3341 }
3342 }
3343
3344 *target_errno = FILEIO_ENOSYS;
3345 return -1;
3346 }
3347
3348 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3349 occurs (and set *TARGET_ERRNO). */
3350 int
3351 target_fileio_unlink (const char *filename, int *target_errno)
3352 {
3353 struct target_ops *t;
3354
3355 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3356 {
3357 if (t->to_fileio_unlink != NULL)
3358 {
3359 int ret = t->to_fileio_unlink (t, filename, target_errno);
3360
3361 if (targetdebug)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "target_fileio_unlink (%s) = %d (%d)\n",
3364 filename, ret, ret != -1 ? 0 : *target_errno);
3365 return ret;
3366 }
3367 }
3368
3369 *target_errno = FILEIO_ENOSYS;
3370 return -1;
3371 }
3372
3373 /* Read value of symbolic link FILENAME on the target. Return a
3374 null-terminated string allocated via xmalloc, or NULL if an error
3375 occurs (and set *TARGET_ERRNO). */
3376 char *
3377 target_fileio_readlink (const char *filename, int *target_errno)
3378 {
3379 struct target_ops *t;
3380
3381 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3382 {
3383 if (t->to_fileio_readlink != NULL)
3384 {
3385 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3386
3387 if (targetdebug)
3388 fprintf_unfiltered (gdb_stdlog,
3389 "target_fileio_readlink (%s) = %s (%d)\n",
3390 filename, ret? ret : "(nil)",
3391 ret? 0 : *target_errno);
3392 return ret;
3393 }
3394 }
3395
3396 *target_errno = FILEIO_ENOSYS;
3397 return NULL;
3398 }
3399
3400 static void
3401 target_fileio_close_cleanup (void *opaque)
3402 {
3403 int fd = *(int *) opaque;
3404 int target_errno;
3405
3406 target_fileio_close (fd, &target_errno);
3407 }
3408
3409 /* Read target file FILENAME. Store the result in *BUF_P and
3410 return the size of the transferred data. PADDING additional bytes are
3411 available in *BUF_P. This is a helper function for
3412 target_fileio_read_alloc; see the declaration of that function for more
3413 information. */
3414
3415 static LONGEST
3416 target_fileio_read_alloc_1 (const char *filename,
3417 gdb_byte **buf_p, int padding)
3418 {
3419 struct cleanup *close_cleanup;
3420 size_t buf_alloc, buf_pos;
3421 gdb_byte *buf;
3422 LONGEST n;
3423 int fd;
3424 int target_errno;
3425
3426 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3427 if (fd == -1)
3428 return -1;
3429
3430 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3431
3432 /* Start by reading up to 4K at a time. The target will throttle
3433 this number down if necessary. */
3434 buf_alloc = 4096;
3435 buf = xmalloc (buf_alloc);
3436 buf_pos = 0;
3437 while (1)
3438 {
3439 n = target_fileio_pread (fd, &buf[buf_pos],
3440 buf_alloc - buf_pos - padding, buf_pos,
3441 &target_errno);
3442 if (n < 0)
3443 {
3444 /* An error occurred. */
3445 do_cleanups (close_cleanup);
3446 xfree (buf);
3447 return -1;
3448 }
3449 else if (n == 0)
3450 {
3451 /* Read all there was. */
3452 do_cleanups (close_cleanup);
3453 if (buf_pos == 0)
3454 xfree (buf);
3455 else
3456 *buf_p = buf;
3457 return buf_pos;
3458 }
3459
3460 buf_pos += n;
3461
3462 /* If the buffer is filling up, expand it. */
3463 if (buf_alloc < buf_pos * 2)
3464 {
3465 buf_alloc *= 2;
3466 buf = xrealloc (buf, buf_alloc);
3467 }
3468
3469 QUIT;
3470 }
3471 }
3472
3473 /* Read target file FILENAME. Store the result in *BUF_P and return
3474 the size of the transferred data. See the declaration in "target.h"
3475 function for more information about the return value. */
3476
3477 LONGEST
3478 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3479 {
3480 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3481 }
3482
3483 /* Read target file FILENAME. The result is NUL-terminated and
3484 returned as a string, allocated using xmalloc. If an error occurs
3485 or the transfer is unsupported, NULL is returned. Empty objects
3486 are returned as allocated but empty strings. A warning is issued
3487 if the result contains any embedded NUL bytes. */
3488
3489 char *
3490 target_fileio_read_stralloc (const char *filename)
3491 {
3492 gdb_byte *buffer;
3493 char *bufstr;
3494 LONGEST i, transferred;
3495
3496 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3497 bufstr = (char *) buffer;
3498
3499 if (transferred < 0)
3500 return NULL;
3501
3502 if (transferred == 0)
3503 return xstrdup ("");
3504
3505 bufstr[transferred] = 0;
3506
3507 /* Check for embedded NUL bytes; but allow trailing NULs. */
3508 for (i = strlen (bufstr); i < transferred; i++)
3509 if (bufstr[i] != 0)
3510 {
3511 warning (_("target file %s "
3512 "contained unexpected null characters"),
3513 filename);
3514 break;
3515 }
3516
3517 return bufstr;
3518 }
3519
3520
3521 static int
3522 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3523 CORE_ADDR addr, int len)
3524 {
3525 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3526 }
3527
3528 static int
3529 default_watchpoint_addr_within_range (struct target_ops *target,
3530 CORE_ADDR addr,
3531 CORE_ADDR start, int length)
3532 {
3533 return addr >= start && addr < start + length;
3534 }
3535
3536 static struct gdbarch *
3537 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3538 {
3539 return target_gdbarch ();
3540 }
3541
3542 static int
3543 return_zero (void)
3544 {
3545 return 0;
3546 }
3547
3548 static int
3549 return_minus_one (void)
3550 {
3551 return -1;
3552 }
3553
3554 static void *
3555 return_null (void)
3556 {
3557 return 0;
3558 }
3559
3560 /*
3561 * Find the next target down the stack from the specified target.
3562 */
3563
3564 struct target_ops *
3565 find_target_beneath (struct target_ops *t)
3566 {
3567 return t->beneath;
3568 }
3569
3570 /* See target.h. */
3571
3572 struct target_ops *
3573 find_target_at (enum strata stratum)
3574 {
3575 struct target_ops *t;
3576
3577 for (t = current_target.beneath; t != NULL; t = t->beneath)
3578 if (t->to_stratum == stratum)
3579 return t;
3580
3581 return NULL;
3582 }
3583
3584 \f
3585 /* The inferior process has died. Long live the inferior! */
3586
3587 void
3588 generic_mourn_inferior (void)
3589 {
3590 ptid_t ptid;
3591
3592 ptid = inferior_ptid;
3593 inferior_ptid = null_ptid;
3594
3595 /* Mark breakpoints uninserted in case something tries to delete a
3596 breakpoint while we delete the inferior's threads (which would
3597 fail, since the inferior is long gone). */
3598 mark_breakpoints_out ();
3599
3600 if (!ptid_equal (ptid, null_ptid))
3601 {
3602 int pid = ptid_get_pid (ptid);
3603 exit_inferior (pid);
3604 }
3605
3606 /* Note this wipes step-resume breakpoints, so needs to be done
3607 after exit_inferior, which ends up referencing the step-resume
3608 breakpoints through clear_thread_inferior_resources. */
3609 breakpoint_init_inferior (inf_exited);
3610
3611 registers_changed ();
3612
3613 reopen_exec_file ();
3614 reinit_frame_cache ();
3615
3616 if (deprecated_detach_hook)
3617 deprecated_detach_hook ();
3618 }
3619 \f
3620 /* Convert a normal process ID to a string. Returns the string in a
3621 static buffer. */
3622
3623 char *
3624 normal_pid_to_str (ptid_t ptid)
3625 {
3626 static char buf[32];
3627
3628 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3629 return buf;
3630 }
3631
3632 static char *
3633 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3634 {
3635 return normal_pid_to_str (ptid);
3636 }
3637
3638 /* Error-catcher for target_find_memory_regions. */
3639 static int
3640 dummy_find_memory_regions (struct target_ops *self,
3641 find_memory_region_ftype ignore1, void *ignore2)
3642 {
3643 error (_("Command not implemented for this target."));
3644 return 0;
3645 }
3646
3647 /* Error-catcher for target_make_corefile_notes. */
3648 static char *
3649 dummy_make_corefile_notes (struct target_ops *self,
3650 bfd *ignore1, int *ignore2)
3651 {
3652 error (_("Command not implemented for this target."));
3653 return NULL;
3654 }
3655
3656 /* Set up the handful of non-empty slots needed by the dummy target
3657 vector. */
3658
3659 static void
3660 init_dummy_target (void)
3661 {
3662 dummy_target.to_shortname = "None";
3663 dummy_target.to_longname = "None";
3664 dummy_target.to_doc = "";
3665 dummy_target.to_create_inferior = find_default_create_inferior;
3666 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3667 dummy_target.to_supports_disable_randomization
3668 = find_default_supports_disable_randomization;
3669 dummy_target.to_pid_to_str = dummy_pid_to_str;
3670 dummy_target.to_stratum = dummy_stratum;
3671 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3672 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3673 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3674 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3675 dummy_target.to_has_execution
3676 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3677 dummy_target.to_magic = OPS_MAGIC;
3678
3679 install_dummy_methods (&dummy_target);
3680 }
3681 \f
3682 static void
3683 debug_to_open (char *args, int from_tty)
3684 {
3685 debug_target.to_open (args, from_tty);
3686
3687 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3688 }
3689
3690 void
3691 target_close (struct target_ops *targ)
3692 {
3693 gdb_assert (!target_is_pushed (targ));
3694
3695 if (targ->to_xclose != NULL)
3696 targ->to_xclose (targ);
3697 else if (targ->to_close != NULL)
3698 targ->to_close (targ);
3699
3700 if (targetdebug)
3701 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3702 }
3703
3704 void
3705 target_attach (char *args, int from_tty)
3706 {
3707 current_target.to_attach (&current_target, args, from_tty);
3708 if (targetdebug)
3709 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3710 args, from_tty);
3711 }
3712
3713 int
3714 target_thread_alive (ptid_t ptid)
3715 {
3716 struct target_ops *t;
3717
3718 for (t = current_target.beneath; t != NULL; t = t->beneath)
3719 {
3720 if (t->to_thread_alive != NULL)
3721 {
3722 int retval;
3723
3724 retval = t->to_thread_alive (t, ptid);
3725 if (targetdebug)
3726 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3727 ptid_get_pid (ptid), retval);
3728
3729 return retval;
3730 }
3731 }
3732
3733 return 0;
3734 }
3735
3736 void
3737 target_find_new_threads (void)
3738 {
3739 struct target_ops *t;
3740
3741 for (t = current_target.beneath; t != NULL; t = t->beneath)
3742 {
3743 if (t->to_find_new_threads != NULL)
3744 {
3745 t->to_find_new_threads (t);
3746 if (targetdebug)
3747 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3748
3749 return;
3750 }
3751 }
3752 }
3753
3754 void
3755 target_stop (ptid_t ptid)
3756 {
3757 if (!may_stop)
3758 {
3759 warning (_("May not interrupt or stop the target, ignoring attempt"));
3760 return;
3761 }
3762
3763 (*current_target.to_stop) (&current_target, ptid);
3764 }
3765
3766 static void
3767 debug_to_post_attach (struct target_ops *self, int pid)
3768 {
3769 debug_target.to_post_attach (&debug_target, pid);
3770
3771 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3772 }
3773
3774 /* Concatenate ELEM to LIST, a comma separate list, and return the
3775 result. The LIST incoming argument is released. */
3776
3777 static char *
3778 str_comma_list_concat_elem (char *list, const char *elem)
3779 {
3780 if (list == NULL)
3781 return xstrdup (elem);
3782 else
3783 return reconcat (list, list, ", ", elem, (char *) NULL);
3784 }
3785
3786 /* Helper for target_options_to_string. If OPT is present in
3787 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3788 Returns the new resulting string. OPT is removed from
3789 TARGET_OPTIONS. */
3790
3791 static char *
3792 do_option (int *target_options, char *ret,
3793 int opt, char *opt_str)
3794 {
3795 if ((*target_options & opt) != 0)
3796 {
3797 ret = str_comma_list_concat_elem (ret, opt_str);
3798 *target_options &= ~opt;
3799 }
3800
3801 return ret;
3802 }
3803
3804 char *
3805 target_options_to_string (int target_options)
3806 {
3807 char *ret = NULL;
3808
3809 #define DO_TARG_OPTION(OPT) \
3810 ret = do_option (&target_options, ret, OPT, #OPT)
3811
3812 DO_TARG_OPTION (TARGET_WNOHANG);
3813
3814 if (target_options != 0)
3815 ret = str_comma_list_concat_elem (ret, "unknown???");
3816
3817 if (ret == NULL)
3818 ret = xstrdup ("");
3819 return ret;
3820 }
3821
3822 static void
3823 debug_print_register (const char * func,
3824 struct regcache *regcache, int regno)
3825 {
3826 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3827
3828 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3829 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3830 && gdbarch_register_name (gdbarch, regno) != NULL
3831 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3832 fprintf_unfiltered (gdb_stdlog, "(%s)",
3833 gdbarch_register_name (gdbarch, regno));
3834 else
3835 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3836 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3837 {
3838 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3839 int i, size = register_size (gdbarch, regno);
3840 gdb_byte buf[MAX_REGISTER_SIZE];
3841
3842 regcache_raw_collect (regcache, regno, buf);
3843 fprintf_unfiltered (gdb_stdlog, " = ");
3844 for (i = 0; i < size; i++)
3845 {
3846 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3847 }
3848 if (size <= sizeof (LONGEST))
3849 {
3850 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3851
3852 fprintf_unfiltered (gdb_stdlog, " %s %s",
3853 core_addr_to_string_nz (val), plongest (val));
3854 }
3855 }
3856 fprintf_unfiltered (gdb_stdlog, "\n");
3857 }
3858
3859 void
3860 target_fetch_registers (struct regcache *regcache, int regno)
3861 {
3862 struct target_ops *t;
3863
3864 for (t = current_target.beneath; t != NULL; t = t->beneath)
3865 {
3866 if (t->to_fetch_registers != NULL)
3867 {
3868 t->to_fetch_registers (t, regcache, regno);
3869 if (targetdebug)
3870 debug_print_register ("target_fetch_registers", regcache, regno);
3871 return;
3872 }
3873 }
3874 }
3875
3876 void
3877 target_store_registers (struct regcache *regcache, int regno)
3878 {
3879 struct target_ops *t;
3880
3881 if (!may_write_registers)
3882 error (_("Writing to registers is not allowed (regno %d)"), regno);
3883
3884 current_target.to_store_registers (&current_target, regcache, regno);
3885 if (targetdebug)
3886 {
3887 debug_print_register ("target_store_registers", regcache, regno);
3888 }
3889 }
3890
3891 int
3892 target_core_of_thread (ptid_t ptid)
3893 {
3894 struct target_ops *t;
3895
3896 for (t = current_target.beneath; t != NULL; t = t->beneath)
3897 {
3898 if (t->to_core_of_thread != NULL)
3899 {
3900 int retval = t->to_core_of_thread (t, ptid);
3901
3902 if (targetdebug)
3903 fprintf_unfiltered (gdb_stdlog,
3904 "target_core_of_thread (%d) = %d\n",
3905 ptid_get_pid (ptid), retval);
3906 return retval;
3907 }
3908 }
3909
3910 return -1;
3911 }
3912
3913 int
3914 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3915 {
3916 struct target_ops *t;
3917
3918 for (t = current_target.beneath; t != NULL; t = t->beneath)
3919 {
3920 if (t->to_verify_memory != NULL)
3921 {
3922 int retval = t->to_verify_memory (t, data, memaddr, size);
3923
3924 if (targetdebug)
3925 fprintf_unfiltered (gdb_stdlog,
3926 "target_verify_memory (%s, %s) = %d\n",
3927 paddress (target_gdbarch (), memaddr),
3928 pulongest (size),
3929 retval);
3930 return retval;
3931 }
3932 }
3933
3934 tcomplain ();
3935 }
3936
3937 /* The documentation for this function is in its prototype declaration in
3938 target.h. */
3939
3940 int
3941 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3942 {
3943 struct target_ops *t;
3944
3945 for (t = current_target.beneath; t != NULL; t = t->beneath)
3946 if (t->to_insert_mask_watchpoint != NULL)
3947 {
3948 int ret;
3949
3950 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3951
3952 if (targetdebug)
3953 fprintf_unfiltered (gdb_stdlog, "\
3954 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3955 core_addr_to_string (addr),
3956 core_addr_to_string (mask), rw, ret);
3957
3958 return ret;
3959 }
3960
3961 return 1;
3962 }
3963
3964 /* The documentation for this function is in its prototype declaration in
3965 target.h. */
3966
3967 int
3968 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3969 {
3970 struct target_ops *t;
3971
3972 for (t = current_target.beneath; t != NULL; t = t->beneath)
3973 if (t->to_remove_mask_watchpoint != NULL)
3974 {
3975 int ret;
3976
3977 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3978
3979 if (targetdebug)
3980 fprintf_unfiltered (gdb_stdlog, "\
3981 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3982 core_addr_to_string (addr),
3983 core_addr_to_string (mask), rw, ret);
3984
3985 return ret;
3986 }
3987
3988 return 1;
3989 }
3990
3991 /* The documentation for this function is in its prototype declaration
3992 in target.h. */
3993
3994 int
3995 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3996 {
3997 struct target_ops *t;
3998
3999 for (t = current_target.beneath; t != NULL; t = t->beneath)
4000 if (t->to_masked_watch_num_registers != NULL)
4001 return t->to_masked_watch_num_registers (t, addr, mask);
4002
4003 return -1;
4004 }
4005
4006 /* The documentation for this function is in its prototype declaration
4007 in target.h. */
4008
4009 int
4010 target_ranged_break_num_registers (void)
4011 {
4012 struct target_ops *t;
4013
4014 for (t = current_target.beneath; t != NULL; t = t->beneath)
4015 if (t->to_ranged_break_num_registers != NULL)
4016 return t->to_ranged_break_num_registers (t);
4017
4018 return -1;
4019 }
4020
4021 /* See target.h. */
4022
4023 struct btrace_target_info *
4024 target_enable_btrace (ptid_t ptid)
4025 {
4026 struct target_ops *t;
4027
4028 for (t = current_target.beneath; t != NULL; t = t->beneath)
4029 if (t->to_enable_btrace != NULL)
4030 return t->to_enable_btrace (t, ptid);
4031
4032 tcomplain ();
4033 return NULL;
4034 }
4035
4036 /* See target.h. */
4037
4038 void
4039 target_disable_btrace (struct btrace_target_info *btinfo)
4040 {
4041 struct target_ops *t;
4042
4043 for (t = current_target.beneath; t != NULL; t = t->beneath)
4044 if (t->to_disable_btrace != NULL)
4045 {
4046 t->to_disable_btrace (t, btinfo);
4047 return;
4048 }
4049
4050 tcomplain ();
4051 }
4052
4053 /* See target.h. */
4054
4055 void
4056 target_teardown_btrace (struct btrace_target_info *btinfo)
4057 {
4058 struct target_ops *t;
4059
4060 for (t = current_target.beneath; t != NULL; t = t->beneath)
4061 if (t->to_teardown_btrace != NULL)
4062 {
4063 t->to_teardown_btrace (t, btinfo);
4064 return;
4065 }
4066
4067 tcomplain ();
4068 }
4069
4070 /* See target.h. */
4071
4072 enum btrace_error
4073 target_read_btrace (VEC (btrace_block_s) **btrace,
4074 struct btrace_target_info *btinfo,
4075 enum btrace_read_type type)
4076 {
4077 struct target_ops *t;
4078
4079 for (t = current_target.beneath; t != NULL; t = t->beneath)
4080 if (t->to_read_btrace != NULL)
4081 return t->to_read_btrace (t, btrace, btinfo, type);
4082
4083 tcomplain ();
4084 return BTRACE_ERR_NOT_SUPPORTED;
4085 }
4086
4087 /* See target.h. */
4088
4089 void
4090 target_stop_recording (void)
4091 {
4092 struct target_ops *t;
4093
4094 for (t = current_target.beneath; t != NULL; t = t->beneath)
4095 if (t->to_stop_recording != NULL)
4096 {
4097 t->to_stop_recording (t);
4098 return;
4099 }
4100
4101 /* This is optional. */
4102 }
4103
4104 /* See target.h. */
4105
4106 void
4107 target_info_record (void)
4108 {
4109 struct target_ops *t;
4110
4111 for (t = current_target.beneath; t != NULL; t = t->beneath)
4112 if (t->to_info_record != NULL)
4113 {
4114 t->to_info_record (t);
4115 return;
4116 }
4117
4118 tcomplain ();
4119 }
4120
4121 /* See target.h. */
4122
4123 void
4124 target_save_record (const char *filename)
4125 {
4126 struct target_ops *t;
4127
4128 for (t = current_target.beneath; t != NULL; t = t->beneath)
4129 if (t->to_save_record != NULL)
4130 {
4131 t->to_save_record (t, filename);
4132 return;
4133 }
4134
4135 tcomplain ();
4136 }
4137
4138 /* See target.h. */
4139
4140 int
4141 target_supports_delete_record (void)
4142 {
4143 struct target_ops *t;
4144
4145 for (t = current_target.beneath; t != NULL; t = t->beneath)
4146 if (t->to_delete_record != NULL)
4147 return 1;
4148
4149 return 0;
4150 }
4151
4152 /* See target.h. */
4153
4154 void
4155 target_delete_record (void)
4156 {
4157 struct target_ops *t;
4158
4159 for (t = current_target.beneath; t != NULL; t = t->beneath)
4160 if (t->to_delete_record != NULL)
4161 {
4162 t->to_delete_record (t);
4163 return;
4164 }
4165
4166 tcomplain ();
4167 }
4168
4169 /* See target.h. */
4170
4171 int
4172 target_record_is_replaying (void)
4173 {
4174 struct target_ops *t;
4175
4176 for (t = current_target.beneath; t != NULL; t = t->beneath)
4177 if (t->to_record_is_replaying != NULL)
4178 return t->to_record_is_replaying (t);
4179
4180 return 0;
4181 }
4182
4183 /* See target.h. */
4184
4185 void
4186 target_goto_record_begin (void)
4187 {
4188 struct target_ops *t;
4189
4190 for (t = current_target.beneath; t != NULL; t = t->beneath)
4191 if (t->to_goto_record_begin != NULL)
4192 {
4193 t->to_goto_record_begin (t);
4194 return;
4195 }
4196
4197 tcomplain ();
4198 }
4199
4200 /* See target.h. */
4201
4202 void
4203 target_goto_record_end (void)
4204 {
4205 struct target_ops *t;
4206
4207 for (t = current_target.beneath; t != NULL; t = t->beneath)
4208 if (t->to_goto_record_end != NULL)
4209 {
4210 t->to_goto_record_end (t);
4211 return;
4212 }
4213
4214 tcomplain ();
4215 }
4216
4217 /* See target.h. */
4218
4219 void
4220 target_goto_record (ULONGEST insn)
4221 {
4222 struct target_ops *t;
4223
4224 for (t = current_target.beneath; t != NULL; t = t->beneath)
4225 if (t->to_goto_record != NULL)
4226 {
4227 t->to_goto_record (t, insn);
4228 return;
4229 }
4230
4231 tcomplain ();
4232 }
4233
4234 /* See target.h. */
4235
4236 void
4237 target_insn_history (int size, int flags)
4238 {
4239 struct target_ops *t;
4240
4241 for (t = current_target.beneath; t != NULL; t = t->beneath)
4242 if (t->to_insn_history != NULL)
4243 {
4244 t->to_insn_history (t, size, flags);
4245 return;
4246 }
4247
4248 tcomplain ();
4249 }
4250
4251 /* See target.h. */
4252
4253 void
4254 target_insn_history_from (ULONGEST from, int size, int flags)
4255 {
4256 struct target_ops *t;
4257
4258 for (t = current_target.beneath; t != NULL; t = t->beneath)
4259 if (t->to_insn_history_from != NULL)
4260 {
4261 t->to_insn_history_from (t, from, size, flags);
4262 return;
4263 }
4264
4265 tcomplain ();
4266 }
4267
4268 /* See target.h. */
4269
4270 void
4271 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4272 {
4273 struct target_ops *t;
4274
4275 for (t = current_target.beneath; t != NULL; t = t->beneath)
4276 if (t->to_insn_history_range != NULL)
4277 {
4278 t->to_insn_history_range (t, begin, end, flags);
4279 return;
4280 }
4281
4282 tcomplain ();
4283 }
4284
4285 /* See target.h. */
4286
4287 void
4288 target_call_history (int size, int flags)
4289 {
4290 struct target_ops *t;
4291
4292 for (t = current_target.beneath; t != NULL; t = t->beneath)
4293 if (t->to_call_history != NULL)
4294 {
4295 t->to_call_history (t, size, flags);
4296 return;
4297 }
4298
4299 tcomplain ();
4300 }
4301
4302 /* See target.h. */
4303
4304 void
4305 target_call_history_from (ULONGEST begin, int size, int flags)
4306 {
4307 struct target_ops *t;
4308
4309 for (t = current_target.beneath; t != NULL; t = t->beneath)
4310 if (t->to_call_history_from != NULL)
4311 {
4312 t->to_call_history_from (t, begin, size, flags);
4313 return;
4314 }
4315
4316 tcomplain ();
4317 }
4318
4319 /* See target.h. */
4320
4321 void
4322 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4323 {
4324 struct target_ops *t;
4325
4326 for (t = current_target.beneath; t != NULL; t = t->beneath)
4327 if (t->to_call_history_range != NULL)
4328 {
4329 t->to_call_history_range (t, begin, end, flags);
4330 return;
4331 }
4332
4333 tcomplain ();
4334 }
4335
4336 static void
4337 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4338 {
4339 debug_target.to_prepare_to_store (&debug_target, regcache);
4340
4341 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4342 }
4343
4344 /* See target.h. */
4345
4346 const struct frame_unwind *
4347 target_get_unwinder (void)
4348 {
4349 struct target_ops *t;
4350
4351 for (t = current_target.beneath; t != NULL; t = t->beneath)
4352 if (t->to_get_unwinder != NULL)
4353 return t->to_get_unwinder;
4354
4355 return NULL;
4356 }
4357
4358 /* See target.h. */
4359
4360 const struct frame_unwind *
4361 target_get_tailcall_unwinder (void)
4362 {
4363 struct target_ops *t;
4364
4365 for (t = current_target.beneath; t != NULL; t = t->beneath)
4366 if (t->to_get_tailcall_unwinder != NULL)
4367 return t->to_get_tailcall_unwinder;
4368
4369 return NULL;
4370 }
4371
4372 /* See target.h. */
4373
4374 CORE_ADDR
4375 forward_target_decr_pc_after_break (struct target_ops *ops,
4376 struct gdbarch *gdbarch)
4377 {
4378 for (; ops != NULL; ops = ops->beneath)
4379 if (ops->to_decr_pc_after_break != NULL)
4380 return ops->to_decr_pc_after_break (ops, gdbarch);
4381
4382 return gdbarch_decr_pc_after_break (gdbarch);
4383 }
4384
4385 /* See target.h. */
4386
4387 CORE_ADDR
4388 target_decr_pc_after_break (struct gdbarch *gdbarch)
4389 {
4390 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4391 }
4392
4393 static int
4394 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4395 int write, struct mem_attrib *attrib,
4396 struct target_ops *target)
4397 {
4398 int retval;
4399
4400 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4401 attrib, target);
4402
4403 fprintf_unfiltered (gdb_stdlog,
4404 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4405 paddress (target_gdbarch (), memaddr), len,
4406 write ? "write" : "read", retval);
4407
4408 if (retval > 0)
4409 {
4410 int i;
4411
4412 fputs_unfiltered (", bytes =", gdb_stdlog);
4413 for (i = 0; i < retval; i++)
4414 {
4415 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4416 {
4417 if (targetdebug < 2 && i > 0)
4418 {
4419 fprintf_unfiltered (gdb_stdlog, " ...");
4420 break;
4421 }
4422 fprintf_unfiltered (gdb_stdlog, "\n");
4423 }
4424
4425 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4426 }
4427 }
4428
4429 fputc_unfiltered ('\n', gdb_stdlog);
4430
4431 return retval;
4432 }
4433
4434 static void
4435 debug_to_files_info (struct target_ops *target)
4436 {
4437 debug_target.to_files_info (target);
4438
4439 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4440 }
4441
4442 static int
4443 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4444 struct bp_target_info *bp_tgt)
4445 {
4446 int retval;
4447
4448 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4449
4450 fprintf_unfiltered (gdb_stdlog,
4451 "target_insert_breakpoint (%s, xxx) = %ld\n",
4452 core_addr_to_string (bp_tgt->placed_address),
4453 (unsigned long) retval);
4454 return retval;
4455 }
4456
4457 static int
4458 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4459 struct bp_target_info *bp_tgt)
4460 {
4461 int retval;
4462
4463 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4464
4465 fprintf_unfiltered (gdb_stdlog,
4466 "target_remove_breakpoint (%s, xxx) = %ld\n",
4467 core_addr_to_string (bp_tgt->placed_address),
4468 (unsigned long) retval);
4469 return retval;
4470 }
4471
4472 static int
4473 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4474 int type, int cnt, int from_tty)
4475 {
4476 int retval;
4477
4478 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4479 type, cnt, from_tty);
4480
4481 fprintf_unfiltered (gdb_stdlog,
4482 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4483 (unsigned long) type,
4484 (unsigned long) cnt,
4485 (unsigned long) from_tty,
4486 (unsigned long) retval);
4487 return retval;
4488 }
4489
4490 static int
4491 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4492 CORE_ADDR addr, int len)
4493 {
4494 CORE_ADDR retval;
4495
4496 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4497 addr, len);
4498
4499 fprintf_unfiltered (gdb_stdlog,
4500 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4501 core_addr_to_string (addr), (unsigned long) len,
4502 core_addr_to_string (retval));
4503 return retval;
4504 }
4505
4506 static int
4507 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4508 CORE_ADDR addr, int len, int rw,
4509 struct expression *cond)
4510 {
4511 int retval;
4512
4513 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4514 addr, len,
4515 rw, cond);
4516
4517 fprintf_unfiltered (gdb_stdlog,
4518 "target_can_accel_watchpoint_condition "
4519 "(%s, %d, %d, %s) = %ld\n",
4520 core_addr_to_string (addr), len, rw,
4521 host_address_to_string (cond), (unsigned long) retval);
4522 return retval;
4523 }
4524
4525 static int
4526 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4527 {
4528 int retval;
4529
4530 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4531
4532 fprintf_unfiltered (gdb_stdlog,
4533 "target_stopped_by_watchpoint () = %ld\n",
4534 (unsigned long) retval);
4535 return retval;
4536 }
4537
4538 static int
4539 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4540 {
4541 int retval;
4542
4543 retval = debug_target.to_stopped_data_address (target, addr);
4544
4545 fprintf_unfiltered (gdb_stdlog,
4546 "target_stopped_data_address ([%s]) = %ld\n",
4547 core_addr_to_string (*addr),
4548 (unsigned long)retval);
4549 return retval;
4550 }
4551
4552 static int
4553 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4554 CORE_ADDR addr,
4555 CORE_ADDR start, int length)
4556 {
4557 int retval;
4558
4559 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4560 start, length);
4561
4562 fprintf_filtered (gdb_stdlog,
4563 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4564 core_addr_to_string (addr), core_addr_to_string (start),
4565 length, retval);
4566 return retval;
4567 }
4568
4569 static int
4570 debug_to_insert_hw_breakpoint (struct target_ops *self,
4571 struct gdbarch *gdbarch,
4572 struct bp_target_info *bp_tgt)
4573 {
4574 int retval;
4575
4576 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4577 gdbarch, bp_tgt);
4578
4579 fprintf_unfiltered (gdb_stdlog,
4580 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4581 core_addr_to_string (bp_tgt->placed_address),
4582 (unsigned long) retval);
4583 return retval;
4584 }
4585
4586 static int
4587 debug_to_remove_hw_breakpoint (struct target_ops *self,
4588 struct gdbarch *gdbarch,
4589 struct bp_target_info *bp_tgt)
4590 {
4591 int retval;
4592
4593 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4594 gdbarch, bp_tgt);
4595
4596 fprintf_unfiltered (gdb_stdlog,
4597 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4598 core_addr_to_string (bp_tgt->placed_address),
4599 (unsigned long) retval);
4600 return retval;
4601 }
4602
4603 static int
4604 debug_to_insert_watchpoint (struct target_ops *self,
4605 CORE_ADDR addr, int len, int type,
4606 struct expression *cond)
4607 {
4608 int retval;
4609
4610 retval = debug_target.to_insert_watchpoint (&debug_target,
4611 addr, len, type, cond);
4612
4613 fprintf_unfiltered (gdb_stdlog,
4614 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4615 core_addr_to_string (addr), len, type,
4616 host_address_to_string (cond), (unsigned long) retval);
4617 return retval;
4618 }
4619
4620 static int
4621 debug_to_remove_watchpoint (struct target_ops *self,
4622 CORE_ADDR addr, int len, int type,
4623 struct expression *cond)
4624 {
4625 int retval;
4626
4627 retval = debug_target.to_remove_watchpoint (&debug_target,
4628 addr, len, type, cond);
4629
4630 fprintf_unfiltered (gdb_stdlog,
4631 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4632 core_addr_to_string (addr), len, type,
4633 host_address_to_string (cond), (unsigned long) retval);
4634 return retval;
4635 }
4636
4637 static void
4638 debug_to_terminal_init (struct target_ops *self)
4639 {
4640 debug_target.to_terminal_init (&debug_target);
4641
4642 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4643 }
4644
4645 static void
4646 debug_to_terminal_inferior (struct target_ops *self)
4647 {
4648 debug_target.to_terminal_inferior (&debug_target);
4649
4650 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4651 }
4652
4653 static void
4654 debug_to_terminal_ours_for_output (struct target_ops *self)
4655 {
4656 debug_target.to_terminal_ours_for_output (&debug_target);
4657
4658 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4659 }
4660
4661 static void
4662 debug_to_terminal_ours (struct target_ops *self)
4663 {
4664 debug_target.to_terminal_ours (&debug_target);
4665
4666 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4667 }
4668
4669 static void
4670 debug_to_terminal_save_ours (struct target_ops *self)
4671 {
4672 debug_target.to_terminal_save_ours (&debug_target);
4673
4674 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4675 }
4676
4677 static void
4678 debug_to_terminal_info (struct target_ops *self,
4679 const char *arg, int from_tty)
4680 {
4681 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4682
4683 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4684 from_tty);
4685 }
4686
4687 static void
4688 debug_to_load (struct target_ops *self, char *args, int from_tty)
4689 {
4690 debug_target.to_load (&debug_target, args, from_tty);
4691
4692 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4693 }
4694
4695 static void
4696 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4697 {
4698 debug_target.to_post_startup_inferior (&debug_target, ptid);
4699
4700 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4701 ptid_get_pid (ptid));
4702 }
4703
4704 static int
4705 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4706 {
4707 int retval;
4708
4709 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4710
4711 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4712 pid, retval);
4713
4714 return retval;
4715 }
4716
4717 static int
4718 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4719 {
4720 int retval;
4721
4722 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4723
4724 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4725 pid, retval);
4726
4727 return retval;
4728 }
4729
4730 static int
4731 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4732 {
4733 int retval;
4734
4735 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4736
4737 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4738 pid, retval);
4739
4740 return retval;
4741 }
4742
4743 static int
4744 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4745 {
4746 int retval;
4747
4748 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4749
4750 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4751 pid, retval);
4752
4753 return retval;
4754 }
4755
4756 static int
4757 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4758 {
4759 int retval;
4760
4761 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4762
4763 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4764 pid, retval);
4765
4766 return retval;
4767 }
4768
4769 static int
4770 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4771 {
4772 int retval;
4773
4774 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4775
4776 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4777 pid, retval);
4778
4779 return retval;
4780 }
4781
4782 static int
4783 debug_to_has_exited (struct target_ops *self,
4784 int pid, int wait_status, int *exit_status)
4785 {
4786 int has_exited;
4787
4788 has_exited = debug_target.to_has_exited (&debug_target,
4789 pid, wait_status, exit_status);
4790
4791 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4792 pid, wait_status, *exit_status, has_exited);
4793
4794 return has_exited;
4795 }
4796
4797 static int
4798 debug_to_can_run (struct target_ops *self)
4799 {
4800 int retval;
4801
4802 retval = debug_target.to_can_run (&debug_target);
4803
4804 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4805
4806 return retval;
4807 }
4808
4809 static struct gdbarch *
4810 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4811 {
4812 struct gdbarch *retval;
4813
4814 retval = debug_target.to_thread_architecture (ops, ptid);
4815
4816 fprintf_unfiltered (gdb_stdlog,
4817 "target_thread_architecture (%s) = %s [%s]\n",
4818 target_pid_to_str (ptid),
4819 host_address_to_string (retval),
4820 gdbarch_bfd_arch_info (retval)->printable_name);
4821 return retval;
4822 }
4823
4824 static void
4825 debug_to_stop (struct target_ops *self, ptid_t ptid)
4826 {
4827 debug_target.to_stop (&debug_target, ptid);
4828
4829 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4830 target_pid_to_str (ptid));
4831 }
4832
4833 static void
4834 debug_to_rcmd (struct target_ops *self, char *command,
4835 struct ui_file *outbuf)
4836 {
4837 debug_target.to_rcmd (&debug_target, command, outbuf);
4838 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4839 }
4840
4841 static char *
4842 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4843 {
4844 char *exec_file;
4845
4846 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4847
4848 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4849 pid, exec_file);
4850
4851 return exec_file;
4852 }
4853
4854 static void
4855 setup_target_debug (void)
4856 {
4857 memcpy (&debug_target, &current_target, sizeof debug_target);
4858
4859 current_target.to_open = debug_to_open;
4860 current_target.to_post_attach = debug_to_post_attach;
4861 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4862 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4863 current_target.to_files_info = debug_to_files_info;
4864 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4865 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4866 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4867 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4868 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4869 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4870 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4871 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4872 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4873 current_target.to_watchpoint_addr_within_range
4874 = debug_to_watchpoint_addr_within_range;
4875 current_target.to_region_ok_for_hw_watchpoint
4876 = debug_to_region_ok_for_hw_watchpoint;
4877 current_target.to_can_accel_watchpoint_condition
4878 = debug_to_can_accel_watchpoint_condition;
4879 current_target.to_terminal_init = debug_to_terminal_init;
4880 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4881 current_target.to_terminal_ours_for_output
4882 = debug_to_terminal_ours_for_output;
4883 current_target.to_terminal_ours = debug_to_terminal_ours;
4884 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4885 current_target.to_terminal_info = debug_to_terminal_info;
4886 current_target.to_load = debug_to_load;
4887 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4888 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4889 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4890 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4891 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4892 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4893 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4894 current_target.to_has_exited = debug_to_has_exited;
4895 current_target.to_can_run = debug_to_can_run;
4896 current_target.to_stop = debug_to_stop;
4897 current_target.to_rcmd = debug_to_rcmd;
4898 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4899 current_target.to_thread_architecture = debug_to_thread_architecture;
4900 }
4901 \f
4902
4903 static char targ_desc[] =
4904 "Names of targets and files being debugged.\nShows the entire \
4905 stack of targets currently in use (including the exec-file,\n\
4906 core-file, and process, if any), as well as the symbol file name.";
4907
4908 static void
4909 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4910 {
4911 error (_("\"monitor\" command not supported by this target."));
4912 }
4913
4914 static void
4915 do_monitor_command (char *cmd,
4916 int from_tty)
4917 {
4918 target_rcmd (cmd, gdb_stdtarg);
4919 }
4920
4921 /* Print the name of each layers of our target stack. */
4922
4923 static void
4924 maintenance_print_target_stack (char *cmd, int from_tty)
4925 {
4926 struct target_ops *t;
4927
4928 printf_filtered (_("The current target stack is:\n"));
4929
4930 for (t = target_stack; t != NULL; t = t->beneath)
4931 {
4932 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4933 }
4934 }
4935
4936 /* Controls if async mode is permitted. */
4937 int target_async_permitted = 0;
4938
4939 /* The set command writes to this variable. If the inferior is
4940 executing, target_async_permitted is *not* updated. */
4941 static int target_async_permitted_1 = 0;
4942
4943 static void
4944 set_target_async_command (char *args, int from_tty,
4945 struct cmd_list_element *c)
4946 {
4947 if (have_live_inferiors ())
4948 {
4949 target_async_permitted_1 = target_async_permitted;
4950 error (_("Cannot change this setting while the inferior is running."));
4951 }
4952
4953 target_async_permitted = target_async_permitted_1;
4954 }
4955
4956 static void
4957 show_target_async_command (struct ui_file *file, int from_tty,
4958 struct cmd_list_element *c,
4959 const char *value)
4960 {
4961 fprintf_filtered (file,
4962 _("Controlling the inferior in "
4963 "asynchronous mode is %s.\n"), value);
4964 }
4965
4966 /* Temporary copies of permission settings. */
4967
4968 static int may_write_registers_1 = 1;
4969 static int may_write_memory_1 = 1;
4970 static int may_insert_breakpoints_1 = 1;
4971 static int may_insert_tracepoints_1 = 1;
4972 static int may_insert_fast_tracepoints_1 = 1;
4973 static int may_stop_1 = 1;
4974
4975 /* Make the user-set values match the real values again. */
4976
4977 void
4978 update_target_permissions (void)
4979 {
4980 may_write_registers_1 = may_write_registers;
4981 may_write_memory_1 = may_write_memory;
4982 may_insert_breakpoints_1 = may_insert_breakpoints;
4983 may_insert_tracepoints_1 = may_insert_tracepoints;
4984 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4985 may_stop_1 = may_stop;
4986 }
4987
4988 /* The one function handles (most of) the permission flags in the same
4989 way. */
4990
4991 static void
4992 set_target_permissions (char *args, int from_tty,
4993 struct cmd_list_element *c)
4994 {
4995 if (target_has_execution)
4996 {
4997 update_target_permissions ();
4998 error (_("Cannot change this setting while the inferior is running."));
4999 }
5000
5001 /* Make the real values match the user-changed values. */
5002 may_write_registers = may_write_registers_1;
5003 may_insert_breakpoints = may_insert_breakpoints_1;
5004 may_insert_tracepoints = may_insert_tracepoints_1;
5005 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5006 may_stop = may_stop_1;
5007 update_observer_mode ();
5008 }
5009
5010 /* Set memory write permission independently of observer mode. */
5011
5012 static void
5013 set_write_memory_permission (char *args, int from_tty,
5014 struct cmd_list_element *c)
5015 {
5016 /* Make the real values match the user-changed values. */
5017 may_write_memory = may_write_memory_1;
5018 update_observer_mode ();
5019 }
5020
5021
5022 void
5023 initialize_targets (void)
5024 {
5025 init_dummy_target ();
5026 push_target (&dummy_target);
5027
5028 add_info ("target", target_info, targ_desc);
5029 add_info ("files", target_info, targ_desc);
5030
5031 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5032 Set target debugging."), _("\
5033 Show target debugging."), _("\
5034 When non-zero, target debugging is enabled. Higher numbers are more\n\
5035 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5036 command."),
5037 NULL,
5038 show_targetdebug,
5039 &setdebuglist, &showdebuglist);
5040
5041 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5042 &trust_readonly, _("\
5043 Set mode for reading from readonly sections."), _("\
5044 Show mode for reading from readonly sections."), _("\
5045 When this mode is on, memory reads from readonly sections (such as .text)\n\
5046 will be read from the object file instead of from the target. This will\n\
5047 result in significant performance improvement for remote targets."),
5048 NULL,
5049 show_trust_readonly,
5050 &setlist, &showlist);
5051
5052 add_com ("monitor", class_obscure, do_monitor_command,
5053 _("Send a command to the remote monitor (remote targets only)."));
5054
5055 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5056 _("Print the name of each layer of the internal target stack."),
5057 &maintenanceprintlist);
5058
5059 add_setshow_boolean_cmd ("target-async", no_class,
5060 &target_async_permitted_1, _("\
5061 Set whether gdb controls the inferior in asynchronous mode."), _("\
5062 Show whether gdb controls the inferior in asynchronous mode."), _("\
5063 Tells gdb whether to control the inferior in asynchronous mode."),
5064 set_target_async_command,
5065 show_target_async_command,
5066 &setlist,
5067 &showlist);
5068
5069 add_setshow_boolean_cmd ("may-write-registers", class_support,
5070 &may_write_registers_1, _("\
5071 Set permission to write into registers."), _("\
5072 Show permission to write into registers."), _("\
5073 When this permission is on, GDB may write into the target's registers.\n\
5074 Otherwise, any sort of write attempt will result in an error."),
5075 set_target_permissions, NULL,
5076 &setlist, &showlist);
5077
5078 add_setshow_boolean_cmd ("may-write-memory", class_support,
5079 &may_write_memory_1, _("\
5080 Set permission to write into target memory."), _("\
5081 Show permission to write into target memory."), _("\
5082 When this permission is on, GDB may write into the target's memory.\n\
5083 Otherwise, any sort of write attempt will result in an error."),
5084 set_write_memory_permission, NULL,
5085 &setlist, &showlist);
5086
5087 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5088 &may_insert_breakpoints_1, _("\
5089 Set permission to insert breakpoints in the target."), _("\
5090 Show permission to insert breakpoints in the target."), _("\
5091 When this permission is on, GDB may insert breakpoints in the program.\n\
5092 Otherwise, any sort of insertion attempt will result in an error."),
5093 set_target_permissions, NULL,
5094 &setlist, &showlist);
5095
5096 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5097 &may_insert_tracepoints_1, _("\
5098 Set permission to insert tracepoints in the target."), _("\
5099 Show permission to insert tracepoints in the target."), _("\
5100 When this permission is on, GDB may insert tracepoints in the program.\n\
5101 Otherwise, any sort of insertion attempt will result in an error."),
5102 set_target_permissions, NULL,
5103 &setlist, &showlist);
5104
5105 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5106 &may_insert_fast_tracepoints_1, _("\
5107 Set permission to insert fast tracepoints in the target."), _("\
5108 Show permission to insert fast tracepoints in the target."), _("\
5109 When this permission is on, GDB may insert fast tracepoints.\n\
5110 Otherwise, any sort of insertion attempt will result in an error."),
5111 set_target_permissions, NULL,
5112 &setlist, &showlist);
5113
5114 add_setshow_boolean_cmd ("may-interrupt", class_support,
5115 &may_stop_1, _("\
5116 Set permission to interrupt or signal the target."), _("\
5117 Show permission to interrupt or signal the target."), _("\
5118 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5119 Otherwise, any attempt to interrupt or stop will be ignored."),
5120 set_target_permissions, NULL,
5121 &setlist, &showlist);
5122 }