Static tracepoints support, and UST integration.
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
121
122 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static void debug_to_terminal_init (void);
134
135 static void debug_to_terminal_inferior (void);
136
137 static void debug_to_terminal_ours_for_output (void);
138
139 static void debug_to_terminal_save_ours (void);
140
141 static void debug_to_terminal_ours (void);
142
143 static void debug_to_terminal_info (char *, int);
144
145 static void debug_to_load (char *, int);
146
147 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_notice_signals (ptid_t);
152
153 static void debug_to_stop (ptid_t);
154
155 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
156 wierd and mysterious ways. Putting the variable here lets those
157 wierd and mysterious ways keep building while they are being
158 converted to the inferior inheritance structure. */
159 struct target_ops deprecated_child_ops;
160
161 /* Pointer to array of target architecture structures; the size of the
162 array; the current index into the array; the allocated size of the
163 array. */
164 struct target_ops **target_structs;
165 unsigned target_struct_size;
166 unsigned target_struct_index;
167 unsigned target_struct_allocsize;
168 #define DEFAULT_ALLOCSIZE 10
169
170 /* The initial current target, so that there is always a semi-valid
171 current target. */
172
173 static struct target_ops dummy_target;
174
175 /* Top of target stack. */
176
177 static struct target_ops *target_stack;
178
179 /* The target structure we are currently using to talk to a process
180 or file or whatever "inferior" we have. */
181
182 struct target_ops current_target;
183
184 /* Command list for target. */
185
186 static struct cmd_list_element *targetlist = NULL;
187
188 /* Nonzero if we should trust readonly sections from the
189 executable when reading memory. */
190
191 static int trust_readonly = 0;
192
193 /* Nonzero if we should show true memory content including
194 memory breakpoint inserted by gdb. */
195
196 static int show_memory_breakpoints = 0;
197
198 /* These globals control whether GDB attempts to perform these
199 operations; they are useful for targets that need to prevent
200 inadvertant disruption, such as in non-stop mode. */
201
202 int may_write_registers = 1;
203
204 int may_write_memory = 1;
205
206 int may_insert_breakpoints = 1;
207
208 int may_insert_tracepoints = 1;
209
210 int may_insert_fast_tracepoints = 1;
211
212 int may_stop = 1;
213
214 /* Non-zero if we want to see trace of target level stuff. */
215
216 static int targetdebug = 0;
217 static void
218 show_targetdebug (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
222 }
223
224 static void setup_target_debug (void);
225
226 /* The option sets this. */
227 static int stack_cache_enabled_p_1 = 1;
228 /* And set_stack_cache_enabled_p updates this.
229 The reason for the separation is so that we don't flush the cache for
230 on->on transitions. */
231 static int stack_cache_enabled_p = 1;
232
233 /* This is called *after* the stack-cache has been set.
234 Flush the cache for off->on and on->off transitions.
235 There's no real need to flush the cache for on->off transitions,
236 except cleanliness. */
237
238 static void
239 set_stack_cache_enabled_p (char *args, int from_tty,
240 struct cmd_list_element *c)
241 {
242 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
243 target_dcache_invalidate ();
244
245 stack_cache_enabled_p = stack_cache_enabled_p_1;
246 }
247
248 static void
249 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
253 }
254
255 /* Cache of memory operations, to speed up remote access. */
256 static DCACHE *target_dcache;
257
258 /* Invalidate the target dcache. */
259
260 void
261 target_dcache_invalidate (void)
262 {
263 dcache_invalidate (target_dcache);
264 }
265
266 /* The user just typed 'target' without the name of a target. */
267
268 static void
269 target_command (char *arg, int from_tty)
270 {
271 fputs_filtered ("Argument required (target name). Try `help target'\n",
272 gdb_stdout);
273 }
274
275 /* Default target_has_* methods for process_stratum targets. */
276
277 int
278 default_child_has_all_memory (struct target_ops *ops)
279 {
280 /* If no inferior selected, then we can't read memory here. */
281 if (ptid_equal (inferior_ptid, null_ptid))
282 return 0;
283
284 return 1;
285 }
286
287 int
288 default_child_has_memory (struct target_ops *ops)
289 {
290 /* If no inferior selected, then we can't read memory here. */
291 if (ptid_equal (inferior_ptid, null_ptid))
292 return 0;
293
294 return 1;
295 }
296
297 int
298 default_child_has_stack (struct target_ops *ops)
299 {
300 /* If no inferior selected, there's no stack. */
301 if (ptid_equal (inferior_ptid, null_ptid))
302 return 0;
303
304 return 1;
305 }
306
307 int
308 default_child_has_registers (struct target_ops *ops)
309 {
310 /* Can't read registers from no inferior. */
311 if (ptid_equal (inferior_ptid, null_ptid))
312 return 0;
313
314 return 1;
315 }
316
317 int
318 default_child_has_execution (struct target_ops *ops)
319 {
320 /* If there's no thread selected, then we can't make it run through
321 hoops. */
322 if (ptid_equal (inferior_ptid, null_ptid))
323 return 0;
324
325 return 1;
326 }
327
328
329 int
330 target_has_all_memory_1 (void)
331 {
332 struct target_ops *t;
333
334 for (t = current_target.beneath; t != NULL; t = t->beneath)
335 if (t->to_has_all_memory (t))
336 return 1;
337
338 return 0;
339 }
340
341 int
342 target_has_memory_1 (void)
343 {
344 struct target_ops *t;
345
346 for (t = current_target.beneath; t != NULL; t = t->beneath)
347 if (t->to_has_memory (t))
348 return 1;
349
350 return 0;
351 }
352
353 int
354 target_has_stack_1 (void)
355 {
356 struct target_ops *t;
357
358 for (t = current_target.beneath; t != NULL; t = t->beneath)
359 if (t->to_has_stack (t))
360 return 1;
361
362 return 0;
363 }
364
365 int
366 target_has_registers_1 (void)
367 {
368 struct target_ops *t;
369
370 for (t = current_target.beneath; t != NULL; t = t->beneath)
371 if (t->to_has_registers (t))
372 return 1;
373
374 return 0;
375 }
376
377 int
378 target_has_execution_1 (void)
379 {
380 struct target_ops *t;
381
382 for (t = current_target.beneath; t != NULL; t = t->beneath)
383 if (t->to_has_execution (t))
384 return 1;
385
386 return 0;
387 }
388
389 /* Add a possible target architecture to the list. */
390
391 void
392 add_target (struct target_ops *t)
393 {
394 /* Provide default values for all "must have" methods. */
395 if (t->to_xfer_partial == NULL)
396 t->to_xfer_partial = default_xfer_partial;
397
398 if (t->to_has_all_memory == NULL)
399 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
400
401 if (t->to_has_memory == NULL)
402 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
403
404 if (t->to_has_stack == NULL)
405 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
406
407 if (t->to_has_registers == NULL)
408 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
409
410 if (t->to_has_execution == NULL)
411 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
412
413 if (!target_structs)
414 {
415 target_struct_allocsize = DEFAULT_ALLOCSIZE;
416 target_structs = (struct target_ops **) xmalloc
417 (target_struct_allocsize * sizeof (*target_structs));
418 }
419 if (target_struct_size >= target_struct_allocsize)
420 {
421 target_struct_allocsize *= 2;
422 target_structs = (struct target_ops **)
423 xrealloc ((char *) target_structs,
424 target_struct_allocsize * sizeof (*target_structs));
425 }
426 target_structs[target_struct_size++] = t;
427
428 if (targetlist == NULL)
429 add_prefix_cmd ("target", class_run, target_command, _("\
430 Connect to a target machine or process.\n\
431 The first argument is the type or protocol of the target machine.\n\
432 Remaining arguments are interpreted by the target protocol. For more\n\
433 information on the arguments for a particular protocol, type\n\
434 `help target ' followed by the protocol name."),
435 &targetlist, "target ", 0, &cmdlist);
436 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
437 }
438
439 /* Stub functions */
440
441 void
442 target_ignore (void)
443 {
444 }
445
446 void
447 target_kill (void)
448 {
449 struct target_ops *t;
450
451 for (t = current_target.beneath; t != NULL; t = t->beneath)
452 if (t->to_kill != NULL)
453 {
454 if (targetdebug)
455 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
456
457 t->to_kill (t);
458 return;
459 }
460
461 noprocess ();
462 }
463
464 void
465 target_load (char *arg, int from_tty)
466 {
467 target_dcache_invalidate ();
468 (*current_target.to_load) (arg, from_tty);
469 }
470
471 void
472 target_create_inferior (char *exec_file, char *args,
473 char **env, int from_tty)
474 {
475 struct target_ops *t;
476
477 for (t = current_target.beneath; t != NULL; t = t->beneath)
478 {
479 if (t->to_create_inferior != NULL)
480 {
481 t->to_create_inferior (t, exec_file, args, env, from_tty);
482 if (targetdebug)
483 fprintf_unfiltered (gdb_stdlog,
484 "target_create_inferior (%s, %s, xxx, %d)\n",
485 exec_file, args, from_tty);
486 return;
487 }
488 }
489
490 internal_error (__FILE__, __LINE__,
491 "could not find a target to create inferior");
492 }
493
494 void
495 target_terminal_inferior (void)
496 {
497 /* A background resume (``run&'') should leave GDB in control of the
498 terminal. Use target_can_async_p, not target_is_async_p, since at
499 this point the target is not async yet. However, if sync_execution
500 is not set, we know it will become async prior to resume. */
501 if (target_can_async_p () && !sync_execution)
502 return;
503
504 /* If GDB is resuming the inferior in the foreground, install
505 inferior's terminal modes. */
506 (*current_target.to_terminal_inferior) ();
507 }
508
509 static int
510 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
511 struct target_ops *t)
512 {
513 errno = EIO; /* Can't read/write this location */
514 return 0; /* No bytes handled */
515 }
516
517 static void
518 tcomplain (void)
519 {
520 error (_("You can't do that when your target is `%s'"),
521 current_target.to_shortname);
522 }
523
524 void
525 noprocess (void)
526 {
527 error (_("You can't do that without a process to debug."));
528 }
529
530 static int
531 nosymbol (char *name, CORE_ADDR *addrp)
532 {
533 return 1; /* Symbol does not exist in target env */
534 }
535
536 static void
537 default_terminal_info (char *args, int from_tty)
538 {
539 printf_unfiltered (_("No saved terminal information.\n"));
540 }
541
542 /* A default implementation for the to_get_ada_task_ptid target method.
543
544 This function builds the PTID by using both LWP and TID as part of
545 the PTID lwp and tid elements. The pid used is the pid of the
546 inferior_ptid. */
547
548 static ptid_t
549 default_get_ada_task_ptid (long lwp, long tid)
550 {
551 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
552 }
553
554 /* Go through the target stack from top to bottom, copying over zero
555 entries in current_target, then filling in still empty entries. In
556 effect, we are doing class inheritance through the pushed target
557 vectors.
558
559 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
560 is currently implemented, is that it discards any knowledge of
561 which target an inherited method originally belonged to.
562 Consequently, new new target methods should instead explicitly and
563 locally search the target stack for the target that can handle the
564 request. */
565
566 static void
567 update_current_target (void)
568 {
569 struct target_ops *t;
570
571 /* First, reset current's contents. */
572 memset (&current_target, 0, sizeof (current_target));
573
574 #define INHERIT(FIELD, TARGET) \
575 if (!current_target.FIELD) \
576 current_target.FIELD = (TARGET)->FIELD
577
578 for (t = target_stack; t; t = t->beneath)
579 {
580 INHERIT (to_shortname, t);
581 INHERIT (to_longname, t);
582 INHERIT (to_doc, t);
583 /* Do not inherit to_open. */
584 /* Do not inherit to_close. */
585 /* Do not inherit to_attach. */
586 INHERIT (to_post_attach, t);
587 INHERIT (to_attach_no_wait, t);
588 /* Do not inherit to_detach. */
589 /* Do not inherit to_disconnect. */
590 /* Do not inherit to_resume. */
591 /* Do not inherit to_wait. */
592 /* Do not inherit to_fetch_registers. */
593 /* Do not inherit to_store_registers. */
594 INHERIT (to_prepare_to_store, t);
595 INHERIT (deprecated_xfer_memory, t);
596 INHERIT (to_files_info, t);
597 INHERIT (to_insert_breakpoint, t);
598 INHERIT (to_remove_breakpoint, t);
599 INHERIT (to_can_use_hw_breakpoint, t);
600 INHERIT (to_insert_hw_breakpoint, t);
601 INHERIT (to_remove_hw_breakpoint, t);
602 INHERIT (to_insert_watchpoint, t);
603 INHERIT (to_remove_watchpoint, t);
604 INHERIT (to_stopped_data_address, t);
605 INHERIT (to_have_steppable_watchpoint, t);
606 INHERIT (to_have_continuable_watchpoint, t);
607 INHERIT (to_stopped_by_watchpoint, t);
608 INHERIT (to_watchpoint_addr_within_range, t);
609 INHERIT (to_region_ok_for_hw_watchpoint, t);
610 INHERIT (to_terminal_init, t);
611 INHERIT (to_terminal_inferior, t);
612 INHERIT (to_terminal_ours_for_output, t);
613 INHERIT (to_terminal_ours, t);
614 INHERIT (to_terminal_save_ours, t);
615 INHERIT (to_terminal_info, t);
616 /* Do not inherit to_kill. */
617 INHERIT (to_load, t);
618 INHERIT (to_lookup_symbol, t);
619 /* Do no inherit to_create_inferior. */
620 INHERIT (to_post_startup_inferior, t);
621 INHERIT (to_acknowledge_created_inferior, t);
622 INHERIT (to_insert_fork_catchpoint, t);
623 INHERIT (to_remove_fork_catchpoint, t);
624 INHERIT (to_insert_vfork_catchpoint, t);
625 INHERIT (to_remove_vfork_catchpoint, t);
626 /* Do not inherit to_follow_fork. */
627 INHERIT (to_insert_exec_catchpoint, t);
628 INHERIT (to_remove_exec_catchpoint, t);
629 INHERIT (to_set_syscall_catchpoint, t);
630 INHERIT (to_has_exited, t);
631 /* Do not inherit to_mourn_inferior. */
632 INHERIT (to_can_run, t);
633 INHERIT (to_notice_signals, t);
634 /* Do not inherit to_thread_alive. */
635 /* Do not inherit to_find_new_threads. */
636 /* Do not inherit to_pid_to_str. */
637 INHERIT (to_extra_thread_info, t);
638 INHERIT (to_stop, t);
639 /* Do not inherit to_xfer_partial. */
640 INHERIT (to_rcmd, t);
641 INHERIT (to_pid_to_exec_file, t);
642 INHERIT (to_log_command, t);
643 INHERIT (to_stratum, t);
644 /* Do not inherit to_has_all_memory */
645 /* Do not inherit to_has_memory */
646 /* Do not inherit to_has_stack */
647 /* Do not inherit to_has_registers */
648 /* Do not inherit to_has_execution */
649 INHERIT (to_has_thread_control, t);
650 INHERIT (to_can_async_p, t);
651 INHERIT (to_is_async_p, t);
652 INHERIT (to_async, t);
653 INHERIT (to_async_mask, t);
654 INHERIT (to_find_memory_regions, t);
655 INHERIT (to_make_corefile_notes, t);
656 INHERIT (to_get_bookmark, t);
657 INHERIT (to_goto_bookmark, t);
658 /* Do not inherit to_get_thread_local_address. */
659 INHERIT (to_can_execute_reverse, t);
660 INHERIT (to_thread_architecture, t);
661 /* Do not inherit to_read_description. */
662 INHERIT (to_get_ada_task_ptid, t);
663 /* Do not inherit to_search_memory. */
664 INHERIT (to_supports_multi_process, t);
665 INHERIT (to_trace_init, t);
666 INHERIT (to_download_tracepoint, t);
667 INHERIT (to_download_trace_state_variable, t);
668 INHERIT (to_trace_set_readonly_regions, t);
669 INHERIT (to_trace_start, t);
670 INHERIT (to_get_trace_status, t);
671 INHERIT (to_trace_stop, t);
672 INHERIT (to_trace_find, t);
673 INHERIT (to_get_trace_state_variable_value, t);
674 INHERIT (to_save_trace_data, t);
675 INHERIT (to_upload_tracepoints, t);
676 INHERIT (to_upload_trace_state_variables, t);
677 INHERIT (to_get_raw_trace_data, t);
678 INHERIT (to_set_disconnected_tracing, t);
679 INHERIT (to_set_circular_trace_buffer, t);
680 INHERIT (to_get_tib_address, t);
681 INHERIT (to_set_permissions, t);
682 INHERIT (to_static_tracepoint_marker_at, t);
683 INHERIT (to_static_tracepoint_markers_by_strid, t);
684 INHERIT (to_magic, t);
685 /* Do not inherit to_memory_map. */
686 /* Do not inherit to_flash_erase. */
687 /* Do not inherit to_flash_done. */
688 }
689 #undef INHERIT
690
691 /* Clean up a target struct so it no longer has any zero pointers in
692 it. Some entries are defaulted to a method that print an error,
693 others are hard-wired to a standard recursive default. */
694
695 #define de_fault(field, value) \
696 if (!current_target.field) \
697 current_target.field = value
698
699 de_fault (to_open,
700 (void (*) (char *, int))
701 tcomplain);
702 de_fault (to_close,
703 (void (*) (int))
704 target_ignore);
705 de_fault (to_post_attach,
706 (void (*) (int))
707 target_ignore);
708 de_fault (to_prepare_to_store,
709 (void (*) (struct regcache *))
710 noprocess);
711 de_fault (deprecated_xfer_memory,
712 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
713 nomemory);
714 de_fault (to_files_info,
715 (void (*) (struct target_ops *))
716 target_ignore);
717 de_fault (to_insert_breakpoint,
718 memory_insert_breakpoint);
719 de_fault (to_remove_breakpoint,
720 memory_remove_breakpoint);
721 de_fault (to_can_use_hw_breakpoint,
722 (int (*) (int, int, int))
723 return_zero);
724 de_fault (to_insert_hw_breakpoint,
725 (int (*) (struct gdbarch *, struct bp_target_info *))
726 return_minus_one);
727 de_fault (to_remove_hw_breakpoint,
728 (int (*) (struct gdbarch *, struct bp_target_info *))
729 return_minus_one);
730 de_fault (to_insert_watchpoint,
731 (int (*) (CORE_ADDR, int, int))
732 return_minus_one);
733 de_fault (to_remove_watchpoint,
734 (int (*) (CORE_ADDR, int, int))
735 return_minus_one);
736 de_fault (to_stopped_by_watchpoint,
737 (int (*) (void))
738 return_zero);
739 de_fault (to_stopped_data_address,
740 (int (*) (struct target_ops *, CORE_ADDR *))
741 return_zero);
742 de_fault (to_watchpoint_addr_within_range,
743 default_watchpoint_addr_within_range);
744 de_fault (to_region_ok_for_hw_watchpoint,
745 default_region_ok_for_hw_watchpoint);
746 de_fault (to_terminal_init,
747 (void (*) (void))
748 target_ignore);
749 de_fault (to_terminal_inferior,
750 (void (*) (void))
751 target_ignore);
752 de_fault (to_terminal_ours_for_output,
753 (void (*) (void))
754 target_ignore);
755 de_fault (to_terminal_ours,
756 (void (*) (void))
757 target_ignore);
758 de_fault (to_terminal_save_ours,
759 (void (*) (void))
760 target_ignore);
761 de_fault (to_terminal_info,
762 default_terminal_info);
763 de_fault (to_load,
764 (void (*) (char *, int))
765 tcomplain);
766 de_fault (to_lookup_symbol,
767 (int (*) (char *, CORE_ADDR *))
768 nosymbol);
769 de_fault (to_post_startup_inferior,
770 (void (*) (ptid_t))
771 target_ignore);
772 de_fault (to_acknowledge_created_inferior,
773 (void (*) (int))
774 target_ignore);
775 de_fault (to_insert_fork_catchpoint,
776 (void (*) (int))
777 tcomplain);
778 de_fault (to_remove_fork_catchpoint,
779 (int (*) (int))
780 tcomplain);
781 de_fault (to_insert_vfork_catchpoint,
782 (void (*) (int))
783 tcomplain);
784 de_fault (to_remove_vfork_catchpoint,
785 (int (*) (int))
786 tcomplain);
787 de_fault (to_insert_exec_catchpoint,
788 (void (*) (int))
789 tcomplain);
790 de_fault (to_remove_exec_catchpoint,
791 (int (*) (int))
792 tcomplain);
793 de_fault (to_set_syscall_catchpoint,
794 (int (*) (int, int, int, int, int *))
795 tcomplain);
796 de_fault (to_has_exited,
797 (int (*) (int, int, int *))
798 return_zero);
799 de_fault (to_can_run,
800 return_zero);
801 de_fault (to_notice_signals,
802 (void (*) (ptid_t))
803 target_ignore);
804 de_fault (to_extra_thread_info,
805 (char *(*) (struct thread_info *))
806 return_zero);
807 de_fault (to_stop,
808 (void (*) (ptid_t))
809 target_ignore);
810 current_target.to_xfer_partial = current_xfer_partial;
811 de_fault (to_rcmd,
812 (void (*) (char *, struct ui_file *))
813 tcomplain);
814 de_fault (to_pid_to_exec_file,
815 (char *(*) (int))
816 return_zero);
817 de_fault (to_async,
818 (void (*) (void (*) (enum inferior_event_type, void*), void*))
819 tcomplain);
820 de_fault (to_async_mask,
821 (int (*) (int))
822 return_one);
823 de_fault (to_thread_architecture,
824 default_thread_architecture);
825 current_target.to_read_description = NULL;
826 de_fault (to_get_ada_task_ptid,
827 (ptid_t (*) (long, long))
828 default_get_ada_task_ptid);
829 de_fault (to_supports_multi_process,
830 (int (*) (void))
831 return_zero);
832 de_fault (to_trace_init,
833 (void (*) (void))
834 tcomplain);
835 de_fault (to_download_tracepoint,
836 (void (*) (struct breakpoint *))
837 tcomplain);
838 de_fault (to_download_trace_state_variable,
839 (void (*) (struct trace_state_variable *))
840 tcomplain);
841 de_fault (to_trace_set_readonly_regions,
842 (void (*) (void))
843 tcomplain);
844 de_fault (to_trace_start,
845 (void (*) (void))
846 tcomplain);
847 de_fault (to_get_trace_status,
848 (int (*) (struct trace_status *))
849 return_minus_one);
850 de_fault (to_trace_stop,
851 (void (*) (void))
852 tcomplain);
853 de_fault (to_trace_find,
854 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
855 return_minus_one);
856 de_fault (to_get_trace_state_variable_value,
857 (int (*) (int, LONGEST *))
858 return_zero);
859 de_fault (to_save_trace_data,
860 (int (*) (const char *))
861 tcomplain);
862 de_fault (to_upload_tracepoints,
863 (int (*) (struct uploaded_tp **))
864 return_zero);
865 de_fault (to_upload_trace_state_variables,
866 (int (*) (struct uploaded_tsv **))
867 return_zero);
868 de_fault (to_get_raw_trace_data,
869 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
870 tcomplain);
871 de_fault (to_set_disconnected_tracing,
872 (void (*) (int))
873 target_ignore);
874 de_fault (to_set_circular_trace_buffer,
875 (void (*) (int))
876 target_ignore);
877 de_fault (to_get_tib_address,
878 (int (*) (ptid_t, CORE_ADDR *))
879 tcomplain);
880 de_fault (to_set_permissions,
881 (void (*) (void))
882 target_ignore);
883 de_fault (to_static_tracepoint_marker_at,
884 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
885 return_zero);
886 de_fault (to_static_tracepoint_markers_by_strid,
887 (VEC(static_tracepoint_marker_p) * (*) (const char *))
888 tcomplain);
889 #undef de_fault
890
891 /* Finally, position the target-stack beneath the squashed
892 "current_target". That way code looking for a non-inherited
893 target method can quickly and simply find it. */
894 current_target.beneath = target_stack;
895
896 if (targetdebug)
897 setup_target_debug ();
898 }
899
900 /* Push a new target type into the stack of the existing target accessors,
901 possibly superseding some of the existing accessors.
902
903 Rather than allow an empty stack, we always have the dummy target at
904 the bottom stratum, so we can call the function vectors without
905 checking them. */
906
907 void
908 push_target (struct target_ops *t)
909 {
910 struct target_ops **cur;
911
912 /* Check magic number. If wrong, it probably means someone changed
913 the struct definition, but not all the places that initialize one. */
914 if (t->to_magic != OPS_MAGIC)
915 {
916 fprintf_unfiltered (gdb_stderr,
917 "Magic number of %s target struct wrong\n",
918 t->to_shortname);
919 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
920 }
921
922 /* Find the proper stratum to install this target in. */
923 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
924 {
925 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
926 break;
927 }
928
929 /* If there's already targets at this stratum, remove them. */
930 /* FIXME: cagney/2003-10-15: I think this should be popping all
931 targets to CUR, and not just those at this stratum level. */
932 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
933 {
934 /* There's already something at this stratum level. Close it,
935 and un-hook it from the stack. */
936 struct target_ops *tmp = (*cur);
937
938 (*cur) = (*cur)->beneath;
939 tmp->beneath = NULL;
940 target_close (tmp, 0);
941 }
942
943 /* We have removed all targets in our stratum, now add the new one. */
944 t->beneath = (*cur);
945 (*cur) = t;
946
947 update_current_target ();
948 }
949
950 /* Remove a target_ops vector from the stack, wherever it may be.
951 Return how many times it was removed (0 or 1). */
952
953 int
954 unpush_target (struct target_ops *t)
955 {
956 struct target_ops **cur;
957 struct target_ops *tmp;
958
959 if (t->to_stratum == dummy_stratum)
960 internal_error (__FILE__, __LINE__,
961 "Attempt to unpush the dummy target");
962
963 /* Look for the specified target. Note that we assume that a target
964 can only occur once in the target stack. */
965
966 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
967 {
968 if ((*cur) == t)
969 break;
970 }
971
972 if ((*cur) == NULL)
973 return 0; /* Didn't find target_ops, quit now */
974
975 /* NOTE: cagney/2003-12-06: In '94 the close call was made
976 unconditional by moving it to before the above check that the
977 target was in the target stack (something about "Change the way
978 pushing and popping of targets work to support target overlays
979 and inheritance"). This doesn't make much sense - only open
980 targets should be closed. */
981 target_close (t, 0);
982
983 /* Unchain the target */
984 tmp = (*cur);
985 (*cur) = (*cur)->beneath;
986 tmp->beneath = NULL;
987
988 update_current_target ();
989
990 return 1;
991 }
992
993 void
994 pop_target (void)
995 {
996 target_close (target_stack, 0); /* Let it clean up */
997 if (unpush_target (target_stack) == 1)
998 return;
999
1000 fprintf_unfiltered (gdb_stderr,
1001 "pop_target couldn't find target %s\n",
1002 current_target.to_shortname);
1003 internal_error (__FILE__, __LINE__,
1004 _("failed internal consistency check"));
1005 }
1006
1007 void
1008 pop_all_targets_above (enum strata above_stratum, int quitting)
1009 {
1010 while ((int) (current_target.to_stratum) > (int) above_stratum)
1011 {
1012 target_close (target_stack, quitting);
1013 if (!unpush_target (target_stack))
1014 {
1015 fprintf_unfiltered (gdb_stderr,
1016 "pop_all_targets couldn't find target %s\n",
1017 target_stack->to_shortname);
1018 internal_error (__FILE__, __LINE__,
1019 _("failed internal consistency check"));
1020 break;
1021 }
1022 }
1023 }
1024
1025 void
1026 pop_all_targets (int quitting)
1027 {
1028 pop_all_targets_above (dummy_stratum, quitting);
1029 }
1030
1031 /* Using the objfile specified in OBJFILE, find the address for the
1032 current thread's thread-local storage with offset OFFSET. */
1033 CORE_ADDR
1034 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1035 {
1036 volatile CORE_ADDR addr = 0;
1037 struct target_ops *target;
1038
1039 for (target = current_target.beneath;
1040 target != NULL;
1041 target = target->beneath)
1042 {
1043 if (target->to_get_thread_local_address != NULL)
1044 break;
1045 }
1046
1047 if (target != NULL
1048 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1049 {
1050 ptid_t ptid = inferior_ptid;
1051 volatile struct gdb_exception ex;
1052
1053 TRY_CATCH (ex, RETURN_MASK_ALL)
1054 {
1055 CORE_ADDR lm_addr;
1056
1057 /* Fetch the load module address for this objfile. */
1058 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1059 objfile);
1060 /* If it's 0, throw the appropriate exception. */
1061 if (lm_addr == 0)
1062 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1063 _("TLS load module not found"));
1064
1065 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1066 }
1067 /* If an error occurred, print TLS related messages here. Otherwise,
1068 throw the error to some higher catcher. */
1069 if (ex.reason < 0)
1070 {
1071 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1072
1073 switch (ex.error)
1074 {
1075 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1076 error (_("Cannot find thread-local variables in this thread library."));
1077 break;
1078 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1079 if (objfile_is_library)
1080 error (_("Cannot find shared library `%s' in dynamic"
1081 " linker's load module list"), objfile->name);
1082 else
1083 error (_("Cannot find executable file `%s' in dynamic"
1084 " linker's load module list"), objfile->name);
1085 break;
1086 case TLS_NOT_ALLOCATED_YET_ERROR:
1087 if (objfile_is_library)
1088 error (_("The inferior has not yet allocated storage for"
1089 " thread-local variables in\n"
1090 "the shared library `%s'\n"
1091 "for %s"),
1092 objfile->name, target_pid_to_str (ptid));
1093 else
1094 error (_("The inferior has not yet allocated storage for"
1095 " thread-local variables in\n"
1096 "the executable `%s'\n"
1097 "for %s"),
1098 objfile->name, target_pid_to_str (ptid));
1099 break;
1100 case TLS_GENERIC_ERROR:
1101 if (objfile_is_library)
1102 error (_("Cannot find thread-local storage for %s, "
1103 "shared library %s:\n%s"),
1104 target_pid_to_str (ptid),
1105 objfile->name, ex.message);
1106 else
1107 error (_("Cannot find thread-local storage for %s, "
1108 "executable file %s:\n%s"),
1109 target_pid_to_str (ptid),
1110 objfile->name, ex.message);
1111 break;
1112 default:
1113 throw_exception (ex);
1114 break;
1115 }
1116 }
1117 }
1118 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1119 TLS is an ABI-specific thing. But we don't do that yet. */
1120 else
1121 error (_("Cannot find thread-local variables on this target"));
1122
1123 return addr;
1124 }
1125
1126 #undef MIN
1127 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1128
1129 /* target_read_string -- read a null terminated string, up to LEN bytes,
1130 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1131 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1132 is responsible for freeing it. Return the number of bytes successfully
1133 read. */
1134
1135 int
1136 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1137 {
1138 int tlen, origlen, offset, i;
1139 gdb_byte buf[4];
1140 int errcode = 0;
1141 char *buffer;
1142 int buffer_allocated;
1143 char *bufptr;
1144 unsigned int nbytes_read = 0;
1145
1146 gdb_assert (string);
1147
1148 /* Small for testing. */
1149 buffer_allocated = 4;
1150 buffer = xmalloc (buffer_allocated);
1151 bufptr = buffer;
1152
1153 origlen = len;
1154
1155 while (len > 0)
1156 {
1157 tlen = MIN (len, 4 - (memaddr & 3));
1158 offset = memaddr & 3;
1159
1160 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1161 if (errcode != 0)
1162 {
1163 /* The transfer request might have crossed the boundary to an
1164 unallocated region of memory. Retry the transfer, requesting
1165 a single byte. */
1166 tlen = 1;
1167 offset = 0;
1168 errcode = target_read_memory (memaddr, buf, 1);
1169 if (errcode != 0)
1170 goto done;
1171 }
1172
1173 if (bufptr - buffer + tlen > buffer_allocated)
1174 {
1175 unsigned int bytes;
1176
1177 bytes = bufptr - buffer;
1178 buffer_allocated *= 2;
1179 buffer = xrealloc (buffer, buffer_allocated);
1180 bufptr = buffer + bytes;
1181 }
1182
1183 for (i = 0; i < tlen; i++)
1184 {
1185 *bufptr++ = buf[i + offset];
1186 if (buf[i + offset] == '\000')
1187 {
1188 nbytes_read += i + 1;
1189 goto done;
1190 }
1191 }
1192
1193 memaddr += tlen;
1194 len -= tlen;
1195 nbytes_read += tlen;
1196 }
1197 done:
1198 *string = buffer;
1199 if (errnop != NULL)
1200 *errnop = errcode;
1201 return nbytes_read;
1202 }
1203
1204 struct target_section_table *
1205 target_get_section_table (struct target_ops *target)
1206 {
1207 struct target_ops *t;
1208
1209 if (targetdebug)
1210 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1211
1212 for (t = target; t != NULL; t = t->beneath)
1213 if (t->to_get_section_table != NULL)
1214 return (*t->to_get_section_table) (t);
1215
1216 return NULL;
1217 }
1218
1219 /* Find a section containing ADDR. */
1220
1221 struct target_section *
1222 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1223 {
1224 struct target_section_table *table = target_get_section_table (target);
1225 struct target_section *secp;
1226
1227 if (table == NULL)
1228 return NULL;
1229
1230 for (secp = table->sections; secp < table->sections_end; secp++)
1231 {
1232 if (addr >= secp->addr && addr < secp->endaddr)
1233 return secp;
1234 }
1235 return NULL;
1236 }
1237
1238 /* Perform a partial memory transfer.
1239 For docs see target.h, to_xfer_partial. */
1240
1241 static LONGEST
1242 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1243 void *readbuf, const void *writebuf, ULONGEST memaddr,
1244 LONGEST len)
1245 {
1246 LONGEST res;
1247 int reg_len;
1248 struct mem_region *region;
1249 struct inferior *inf;
1250
1251 /* Zero length requests are ok and require no work. */
1252 if (len == 0)
1253 return 0;
1254
1255 /* For accesses to unmapped overlay sections, read directly from
1256 files. Must do this first, as MEMADDR may need adjustment. */
1257 if (readbuf != NULL && overlay_debugging)
1258 {
1259 struct obj_section *section = find_pc_overlay (memaddr);
1260
1261 if (pc_in_unmapped_range (memaddr, section))
1262 {
1263 struct target_section_table *table
1264 = target_get_section_table (ops);
1265 const char *section_name = section->the_bfd_section->name;
1266
1267 memaddr = overlay_mapped_address (memaddr, section);
1268 return section_table_xfer_memory_partial (readbuf, writebuf,
1269 memaddr, len,
1270 table->sections,
1271 table->sections_end,
1272 section_name);
1273 }
1274 }
1275
1276 /* Try the executable files, if "trust-readonly-sections" is set. */
1277 if (readbuf != NULL && trust_readonly)
1278 {
1279 struct target_section *secp;
1280 struct target_section_table *table;
1281
1282 secp = target_section_by_addr (ops, memaddr);
1283 if (secp != NULL
1284 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1285 & SEC_READONLY))
1286 {
1287 table = target_get_section_table (ops);
1288 return section_table_xfer_memory_partial (readbuf, writebuf,
1289 memaddr, len,
1290 table->sections,
1291 table->sections_end,
1292 NULL);
1293 }
1294 }
1295
1296 /* Try GDB's internal data cache. */
1297 region = lookup_mem_region (memaddr);
1298 /* region->hi == 0 means there's no upper bound. */
1299 if (memaddr + len < region->hi || region->hi == 0)
1300 reg_len = len;
1301 else
1302 reg_len = region->hi - memaddr;
1303
1304 switch (region->attrib.mode)
1305 {
1306 case MEM_RO:
1307 if (writebuf != NULL)
1308 return -1;
1309 break;
1310
1311 case MEM_WO:
1312 if (readbuf != NULL)
1313 return -1;
1314 break;
1315
1316 case MEM_FLASH:
1317 /* We only support writing to flash during "load" for now. */
1318 if (writebuf != NULL)
1319 error (_("Writing to flash memory forbidden in this context"));
1320 break;
1321
1322 case MEM_NONE:
1323 return -1;
1324 }
1325
1326 if (!ptid_equal (inferior_ptid, null_ptid))
1327 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1328 else
1329 inf = NULL;
1330
1331 if (inf != NULL
1332 /* The dcache reads whole cache lines; that doesn't play well
1333 with reading from a trace buffer, because reading outside of
1334 the collected memory range fails. */
1335 && get_traceframe_number () == -1
1336 && (region->attrib.cache
1337 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1338 {
1339 if (readbuf != NULL)
1340 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1341 reg_len, 0);
1342 else
1343 /* FIXME drow/2006-08-09: If we're going to preserve const
1344 correctness dcache_xfer_memory should take readbuf and
1345 writebuf. */
1346 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1347 (void *) writebuf,
1348 reg_len, 1);
1349 if (res <= 0)
1350 return -1;
1351 else
1352 {
1353 if (readbuf && !show_memory_breakpoints)
1354 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1355 return res;
1356 }
1357 }
1358
1359 /* If none of those methods found the memory we wanted, fall back
1360 to a target partial transfer. Normally a single call to
1361 to_xfer_partial is enough; if it doesn't recognize an object
1362 it will call the to_xfer_partial of the next target down.
1363 But for memory this won't do. Memory is the only target
1364 object which can be read from more than one valid target.
1365 A core file, for instance, could have some of memory but
1366 delegate other bits to the target below it. So, we must
1367 manually try all targets. */
1368
1369 do
1370 {
1371 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1372 readbuf, writebuf, memaddr, reg_len);
1373 if (res > 0)
1374 break;
1375
1376 /* We want to continue past core files to executables, but not
1377 past a running target's memory. */
1378 if (ops->to_has_all_memory (ops))
1379 break;
1380
1381 ops = ops->beneath;
1382 }
1383 while (ops != NULL);
1384
1385 if (readbuf && !show_memory_breakpoints)
1386 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1387
1388 /* Make sure the cache gets updated no matter what - if we are writing
1389 to the stack. Even if this write is not tagged as such, we still need
1390 to update the cache. */
1391
1392 if (res > 0
1393 && inf != NULL
1394 && writebuf != NULL
1395 && !region->attrib.cache
1396 && stack_cache_enabled_p
1397 && object != TARGET_OBJECT_STACK_MEMORY)
1398 {
1399 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1400 }
1401
1402 /* If we still haven't got anything, return the last error. We
1403 give up. */
1404 return res;
1405 }
1406
1407 static void
1408 restore_show_memory_breakpoints (void *arg)
1409 {
1410 show_memory_breakpoints = (uintptr_t) arg;
1411 }
1412
1413 struct cleanup *
1414 make_show_memory_breakpoints_cleanup (int show)
1415 {
1416 int current = show_memory_breakpoints;
1417
1418 show_memory_breakpoints = show;
1419 return make_cleanup (restore_show_memory_breakpoints,
1420 (void *) (uintptr_t) current);
1421 }
1422
1423 /* For docs see target.h, to_xfer_partial. */
1424
1425 static LONGEST
1426 target_xfer_partial (struct target_ops *ops,
1427 enum target_object object, const char *annex,
1428 void *readbuf, const void *writebuf,
1429 ULONGEST offset, LONGEST len)
1430 {
1431 LONGEST retval;
1432
1433 gdb_assert (ops->to_xfer_partial != NULL);
1434
1435 if (writebuf && !may_write_memory)
1436 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1437 core_addr_to_string_nz (offset), plongest (len));
1438
1439 /* If this is a memory transfer, let the memory-specific code
1440 have a look at it instead. Memory transfers are more
1441 complicated. */
1442 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1443 retval = memory_xfer_partial (ops, object, readbuf,
1444 writebuf, offset, len);
1445 else
1446 {
1447 enum target_object raw_object = object;
1448
1449 /* If this is a raw memory transfer, request the normal
1450 memory object from other layers. */
1451 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1452 raw_object = TARGET_OBJECT_MEMORY;
1453
1454 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1455 writebuf, offset, len);
1456 }
1457
1458 if (targetdebug)
1459 {
1460 const unsigned char *myaddr = NULL;
1461
1462 fprintf_unfiltered (gdb_stdlog,
1463 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1464 ops->to_shortname,
1465 (int) object,
1466 (annex ? annex : "(null)"),
1467 host_address_to_string (readbuf),
1468 host_address_to_string (writebuf),
1469 core_addr_to_string_nz (offset),
1470 plongest (len), plongest (retval));
1471
1472 if (readbuf)
1473 myaddr = readbuf;
1474 if (writebuf)
1475 myaddr = writebuf;
1476 if (retval > 0 && myaddr != NULL)
1477 {
1478 int i;
1479
1480 fputs_unfiltered (", bytes =", gdb_stdlog);
1481 for (i = 0; i < retval; i++)
1482 {
1483 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1484 {
1485 if (targetdebug < 2 && i > 0)
1486 {
1487 fprintf_unfiltered (gdb_stdlog, " ...");
1488 break;
1489 }
1490 fprintf_unfiltered (gdb_stdlog, "\n");
1491 }
1492
1493 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1494 }
1495 }
1496
1497 fputc_unfiltered ('\n', gdb_stdlog);
1498 }
1499 return retval;
1500 }
1501
1502 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1503 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1504 if any error occurs.
1505
1506 If an error occurs, no guarantee is made about the contents of the data at
1507 MYADDR. In particular, the caller should not depend upon partial reads
1508 filling the buffer with good data. There is no way for the caller to know
1509 how much good data might have been transfered anyway. Callers that can
1510 deal with partial reads should call target_read (which will retry until
1511 it makes no progress, and then return how much was transferred). */
1512
1513 int
1514 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1515 {
1516 /* Dispatch to the topmost target, not the flattened current_target.
1517 Memory accesses check target->to_has_(all_)memory, and the
1518 flattened target doesn't inherit those. */
1519 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1520 myaddr, memaddr, len) == len)
1521 return 0;
1522 else
1523 return EIO;
1524 }
1525
1526 /* Like target_read_memory, but specify explicitly that this is a read from
1527 the target's stack. This may trigger different cache behavior. */
1528
1529 int
1530 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1531 {
1532 /* Dispatch to the topmost target, not the flattened current_target.
1533 Memory accesses check target->to_has_(all_)memory, and the
1534 flattened target doesn't inherit those. */
1535
1536 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1537 myaddr, memaddr, len) == len)
1538 return 0;
1539 else
1540 return EIO;
1541 }
1542
1543 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1544 Returns either 0 for success or an errno value if any error occurs.
1545 If an error occurs, no guarantee is made about how much data got written.
1546 Callers that can deal with partial writes should call target_write. */
1547
1548 int
1549 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1550 {
1551 /* Dispatch to the topmost target, not the flattened current_target.
1552 Memory accesses check target->to_has_(all_)memory, and the
1553 flattened target doesn't inherit those. */
1554 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1555 myaddr, memaddr, len) == len)
1556 return 0;
1557 else
1558 return EIO;
1559 }
1560
1561 /* Fetch the target's memory map. */
1562
1563 VEC(mem_region_s) *
1564 target_memory_map (void)
1565 {
1566 VEC(mem_region_s) *result;
1567 struct mem_region *last_one, *this_one;
1568 int ix;
1569 struct target_ops *t;
1570
1571 if (targetdebug)
1572 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1573
1574 for (t = current_target.beneath; t != NULL; t = t->beneath)
1575 if (t->to_memory_map != NULL)
1576 break;
1577
1578 if (t == NULL)
1579 return NULL;
1580
1581 result = t->to_memory_map (t);
1582 if (result == NULL)
1583 return NULL;
1584
1585 qsort (VEC_address (mem_region_s, result),
1586 VEC_length (mem_region_s, result),
1587 sizeof (struct mem_region), mem_region_cmp);
1588
1589 /* Check that regions do not overlap. Simultaneously assign
1590 a numbering for the "mem" commands to use to refer to
1591 each region. */
1592 last_one = NULL;
1593 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1594 {
1595 this_one->number = ix;
1596
1597 if (last_one && last_one->hi > this_one->lo)
1598 {
1599 warning (_("Overlapping regions in memory map: ignoring"));
1600 VEC_free (mem_region_s, result);
1601 return NULL;
1602 }
1603 last_one = this_one;
1604 }
1605
1606 return result;
1607 }
1608
1609 void
1610 target_flash_erase (ULONGEST address, LONGEST length)
1611 {
1612 struct target_ops *t;
1613
1614 for (t = current_target.beneath; t != NULL; t = t->beneath)
1615 if (t->to_flash_erase != NULL)
1616 {
1617 if (targetdebug)
1618 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1619 hex_string (address), phex (length, 0));
1620 t->to_flash_erase (t, address, length);
1621 return;
1622 }
1623
1624 tcomplain ();
1625 }
1626
1627 void
1628 target_flash_done (void)
1629 {
1630 struct target_ops *t;
1631
1632 for (t = current_target.beneath; t != NULL; t = t->beneath)
1633 if (t->to_flash_done != NULL)
1634 {
1635 if (targetdebug)
1636 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1637 t->to_flash_done (t);
1638 return;
1639 }
1640
1641 tcomplain ();
1642 }
1643
1644 static void
1645 show_trust_readonly (struct ui_file *file, int from_tty,
1646 struct cmd_list_element *c, const char *value)
1647 {
1648 fprintf_filtered (file, _("\
1649 Mode for reading from readonly sections is %s.\n"),
1650 value);
1651 }
1652
1653 /* More generic transfers. */
1654
1655 static LONGEST
1656 default_xfer_partial (struct target_ops *ops, enum target_object object,
1657 const char *annex, gdb_byte *readbuf,
1658 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1659 {
1660 if (object == TARGET_OBJECT_MEMORY
1661 && ops->deprecated_xfer_memory != NULL)
1662 /* If available, fall back to the target's
1663 "deprecated_xfer_memory" method. */
1664 {
1665 int xfered = -1;
1666
1667 errno = 0;
1668 if (writebuf != NULL)
1669 {
1670 void *buffer = xmalloc (len);
1671 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1672
1673 memcpy (buffer, writebuf, len);
1674 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1675 1/*write*/, NULL, ops);
1676 do_cleanups (cleanup);
1677 }
1678 if (readbuf != NULL)
1679 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1680 0/*read*/, NULL, ops);
1681 if (xfered > 0)
1682 return xfered;
1683 else if (xfered == 0 && errno == 0)
1684 /* "deprecated_xfer_memory" uses 0, cross checked against
1685 ERRNO as one indication of an error. */
1686 return 0;
1687 else
1688 return -1;
1689 }
1690 else if (ops->beneath != NULL)
1691 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1692 readbuf, writebuf, offset, len);
1693 else
1694 return -1;
1695 }
1696
1697 /* The xfer_partial handler for the topmost target. Unlike the default,
1698 it does not need to handle memory specially; it just passes all
1699 requests down the stack. */
1700
1701 static LONGEST
1702 current_xfer_partial (struct target_ops *ops, enum target_object object,
1703 const char *annex, gdb_byte *readbuf,
1704 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1705 {
1706 if (ops->beneath != NULL)
1707 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1708 readbuf, writebuf, offset, len);
1709 else
1710 return -1;
1711 }
1712
1713 /* Target vector read/write partial wrapper functions. */
1714
1715 static LONGEST
1716 target_read_partial (struct target_ops *ops,
1717 enum target_object object,
1718 const char *annex, gdb_byte *buf,
1719 ULONGEST offset, LONGEST len)
1720 {
1721 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1722 }
1723
1724 static LONGEST
1725 target_write_partial (struct target_ops *ops,
1726 enum target_object object,
1727 const char *annex, const gdb_byte *buf,
1728 ULONGEST offset, LONGEST len)
1729 {
1730 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1731 }
1732
1733 /* Wrappers to perform the full transfer. */
1734
1735 /* For docs on target_read see target.h. */
1736
1737 LONGEST
1738 target_read (struct target_ops *ops,
1739 enum target_object object,
1740 const char *annex, gdb_byte *buf,
1741 ULONGEST offset, LONGEST len)
1742 {
1743 LONGEST xfered = 0;
1744
1745 while (xfered < len)
1746 {
1747 LONGEST xfer = target_read_partial (ops, object, annex,
1748 (gdb_byte *) buf + xfered,
1749 offset + xfered, len - xfered);
1750
1751 /* Call an observer, notifying them of the xfer progress? */
1752 if (xfer == 0)
1753 return xfered;
1754 if (xfer < 0)
1755 return -1;
1756 xfered += xfer;
1757 QUIT;
1758 }
1759 return len;
1760 }
1761
1762 LONGEST
1763 target_read_until_error (struct target_ops *ops,
1764 enum target_object object,
1765 const char *annex, gdb_byte *buf,
1766 ULONGEST offset, LONGEST len)
1767 {
1768 LONGEST xfered = 0;
1769
1770 while (xfered < len)
1771 {
1772 LONGEST xfer = target_read_partial (ops, object, annex,
1773 (gdb_byte *) buf + xfered,
1774 offset + xfered, len - xfered);
1775
1776 /* Call an observer, notifying them of the xfer progress? */
1777 if (xfer == 0)
1778 return xfered;
1779 if (xfer < 0)
1780 {
1781 /* We've got an error. Try to read in smaller blocks. */
1782 ULONGEST start = offset + xfered;
1783 ULONGEST remaining = len - xfered;
1784 ULONGEST half;
1785
1786 /* If an attempt was made to read a random memory address,
1787 it's likely that the very first byte is not accessible.
1788 Try reading the first byte, to avoid doing log N tries
1789 below. */
1790 xfer = target_read_partial (ops, object, annex,
1791 (gdb_byte *) buf + xfered, start, 1);
1792 if (xfer <= 0)
1793 return xfered;
1794 start += 1;
1795 remaining -= 1;
1796 half = remaining/2;
1797
1798 while (half > 0)
1799 {
1800 xfer = target_read_partial (ops, object, annex,
1801 (gdb_byte *) buf + xfered,
1802 start, half);
1803 if (xfer == 0)
1804 return xfered;
1805 if (xfer < 0)
1806 {
1807 remaining = half;
1808 }
1809 else
1810 {
1811 /* We have successfully read the first half. So, the
1812 error must be in the second half. Adjust start and
1813 remaining to point at the second half. */
1814 xfered += xfer;
1815 start += xfer;
1816 remaining -= xfer;
1817 }
1818 half = remaining/2;
1819 }
1820
1821 return xfered;
1822 }
1823 xfered += xfer;
1824 QUIT;
1825 }
1826 return len;
1827 }
1828
1829 /* An alternative to target_write with progress callbacks. */
1830
1831 LONGEST
1832 target_write_with_progress (struct target_ops *ops,
1833 enum target_object object,
1834 const char *annex, const gdb_byte *buf,
1835 ULONGEST offset, LONGEST len,
1836 void (*progress) (ULONGEST, void *), void *baton)
1837 {
1838 LONGEST xfered = 0;
1839
1840 /* Give the progress callback a chance to set up. */
1841 if (progress)
1842 (*progress) (0, baton);
1843
1844 while (xfered < len)
1845 {
1846 LONGEST xfer = target_write_partial (ops, object, annex,
1847 (gdb_byte *) buf + xfered,
1848 offset + xfered, len - xfered);
1849
1850 if (xfer == 0)
1851 return xfered;
1852 if (xfer < 0)
1853 return -1;
1854
1855 if (progress)
1856 (*progress) (xfer, baton);
1857
1858 xfered += xfer;
1859 QUIT;
1860 }
1861 return len;
1862 }
1863
1864 /* For docs on target_write see target.h. */
1865
1866 LONGEST
1867 target_write (struct target_ops *ops,
1868 enum target_object object,
1869 const char *annex, const gdb_byte *buf,
1870 ULONGEST offset, LONGEST len)
1871 {
1872 return target_write_with_progress (ops, object, annex, buf, offset, len,
1873 NULL, NULL);
1874 }
1875
1876 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1877 the size of the transferred data. PADDING additional bytes are
1878 available in *BUF_P. This is a helper function for
1879 target_read_alloc; see the declaration of that function for more
1880 information. */
1881
1882 static LONGEST
1883 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1884 const char *annex, gdb_byte **buf_p, int padding)
1885 {
1886 size_t buf_alloc, buf_pos;
1887 gdb_byte *buf;
1888 LONGEST n;
1889
1890 /* This function does not have a length parameter; it reads the
1891 entire OBJECT). Also, it doesn't support objects fetched partly
1892 from one target and partly from another (in a different stratum,
1893 e.g. a core file and an executable). Both reasons make it
1894 unsuitable for reading memory. */
1895 gdb_assert (object != TARGET_OBJECT_MEMORY);
1896
1897 /* Start by reading up to 4K at a time. The target will throttle
1898 this number down if necessary. */
1899 buf_alloc = 4096;
1900 buf = xmalloc (buf_alloc);
1901 buf_pos = 0;
1902 while (1)
1903 {
1904 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1905 buf_pos, buf_alloc - buf_pos - padding);
1906 if (n < 0)
1907 {
1908 /* An error occurred. */
1909 xfree (buf);
1910 return -1;
1911 }
1912 else if (n == 0)
1913 {
1914 /* Read all there was. */
1915 if (buf_pos == 0)
1916 xfree (buf);
1917 else
1918 *buf_p = buf;
1919 return buf_pos;
1920 }
1921
1922 buf_pos += n;
1923
1924 /* If the buffer is filling up, expand it. */
1925 if (buf_alloc < buf_pos * 2)
1926 {
1927 buf_alloc *= 2;
1928 buf = xrealloc (buf, buf_alloc);
1929 }
1930
1931 QUIT;
1932 }
1933 }
1934
1935 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1936 the size of the transferred data. See the declaration in "target.h"
1937 function for more information about the return value. */
1938
1939 LONGEST
1940 target_read_alloc (struct target_ops *ops, enum target_object object,
1941 const char *annex, gdb_byte **buf_p)
1942 {
1943 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1944 }
1945
1946 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1947 returned as a string, allocated using xmalloc. If an error occurs
1948 or the transfer is unsupported, NULL is returned. Empty objects
1949 are returned as allocated but empty strings. A warning is issued
1950 if the result contains any embedded NUL bytes. */
1951
1952 char *
1953 target_read_stralloc (struct target_ops *ops, enum target_object object,
1954 const char *annex)
1955 {
1956 gdb_byte *buffer;
1957 LONGEST transferred;
1958
1959 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1960
1961 if (transferred < 0)
1962 return NULL;
1963
1964 if (transferred == 0)
1965 return xstrdup ("");
1966
1967 buffer[transferred] = 0;
1968 if (strlen (buffer) < transferred)
1969 warning (_("target object %d, annex %s, "
1970 "contained unexpected null characters"),
1971 (int) object, annex ? annex : "(none)");
1972
1973 return (char *) buffer;
1974 }
1975
1976 /* Memory transfer methods. */
1977
1978 void
1979 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1980 LONGEST len)
1981 {
1982 /* This method is used to read from an alternate, non-current
1983 target. This read must bypass the overlay support (as symbols
1984 don't match this target), and GDB's internal cache (wrong cache
1985 for this target). */
1986 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1987 != len)
1988 memory_error (EIO, addr);
1989 }
1990
1991 ULONGEST
1992 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1993 int len, enum bfd_endian byte_order)
1994 {
1995 gdb_byte buf[sizeof (ULONGEST)];
1996
1997 gdb_assert (len <= sizeof (buf));
1998 get_target_memory (ops, addr, buf, len);
1999 return extract_unsigned_integer (buf, len, byte_order);
2000 }
2001
2002 int
2003 target_insert_breakpoint (struct gdbarch *gdbarch,
2004 struct bp_target_info *bp_tgt)
2005 {
2006 if (!may_insert_breakpoints)
2007 {
2008 warning (_("May not insert breakpoints"));
2009 return 1;
2010 }
2011
2012 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2013 }
2014
2015 int
2016 target_remove_breakpoint (struct gdbarch *gdbarch,
2017 struct bp_target_info *bp_tgt)
2018 {
2019 /* This is kind of a weird case to handle, but the permission might
2020 have been changed after breakpoints were inserted - in which case
2021 we should just take the user literally and assume that any
2022 breakpoints should be left in place. */
2023 if (!may_insert_breakpoints)
2024 {
2025 warning (_("May not remove breakpoints"));
2026 return 1;
2027 }
2028
2029 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2030 }
2031
2032 static void
2033 target_info (char *args, int from_tty)
2034 {
2035 struct target_ops *t;
2036 int has_all_mem = 0;
2037
2038 if (symfile_objfile != NULL)
2039 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2040
2041 for (t = target_stack; t != NULL; t = t->beneath)
2042 {
2043 if (!(*t->to_has_memory) (t))
2044 continue;
2045
2046 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2047 continue;
2048 if (has_all_mem)
2049 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
2050 printf_unfiltered ("%s:\n", t->to_longname);
2051 (t->to_files_info) (t);
2052 has_all_mem = (*t->to_has_all_memory) (t);
2053 }
2054 }
2055
2056 /* This function is called before any new inferior is created, e.g.
2057 by running a program, attaching, or connecting to a target.
2058 It cleans up any state from previous invocations which might
2059 change between runs. This is a subset of what target_preopen
2060 resets (things which might change between targets). */
2061
2062 void
2063 target_pre_inferior (int from_tty)
2064 {
2065 /* Clear out solib state. Otherwise the solib state of the previous
2066 inferior might have survived and is entirely wrong for the new
2067 target. This has been observed on GNU/Linux using glibc 2.3. How
2068 to reproduce:
2069
2070 bash$ ./foo&
2071 [1] 4711
2072 bash$ ./foo&
2073 [1] 4712
2074 bash$ gdb ./foo
2075 [...]
2076 (gdb) attach 4711
2077 (gdb) detach
2078 (gdb) attach 4712
2079 Cannot access memory at address 0xdeadbeef
2080 */
2081
2082 /* In some OSs, the shared library list is the same/global/shared
2083 across inferiors. If code is shared between processes, so are
2084 memory regions and features. */
2085 if (!gdbarch_has_global_solist (target_gdbarch))
2086 {
2087 no_shared_libraries (NULL, from_tty);
2088
2089 invalidate_target_mem_regions ();
2090
2091 target_clear_description ();
2092 }
2093 }
2094
2095 /* Callback for iterate_over_inferiors. Gets rid of the given
2096 inferior. */
2097
2098 static int
2099 dispose_inferior (struct inferior *inf, void *args)
2100 {
2101 struct thread_info *thread;
2102
2103 thread = any_thread_of_process (inf->pid);
2104 if (thread)
2105 {
2106 switch_to_thread (thread->ptid);
2107
2108 /* Core inferiors actually should be detached, not killed. */
2109 if (target_has_execution)
2110 target_kill ();
2111 else
2112 target_detach (NULL, 0);
2113 }
2114
2115 return 0;
2116 }
2117
2118 /* This is to be called by the open routine before it does
2119 anything. */
2120
2121 void
2122 target_preopen (int from_tty)
2123 {
2124 dont_repeat ();
2125
2126 if (have_inferiors ())
2127 {
2128 if (!from_tty
2129 || !have_live_inferiors ()
2130 || query (_("A program is being debugged already. Kill it? ")))
2131 iterate_over_inferiors (dispose_inferior, NULL);
2132 else
2133 error (_("Program not killed."));
2134 }
2135
2136 /* Calling target_kill may remove the target from the stack. But if
2137 it doesn't (which seems like a win for UDI), remove it now. */
2138 /* Leave the exec target, though. The user may be switching from a
2139 live process to a core of the same program. */
2140 pop_all_targets_above (file_stratum, 0);
2141
2142 target_pre_inferior (from_tty);
2143 }
2144
2145 /* Detach a target after doing deferred register stores. */
2146
2147 void
2148 target_detach (char *args, int from_tty)
2149 {
2150 struct target_ops* t;
2151
2152 if (gdbarch_has_global_breakpoints (target_gdbarch))
2153 /* Don't remove global breakpoints here. They're removed on
2154 disconnection from the target. */
2155 ;
2156 else
2157 /* If we're in breakpoints-always-inserted mode, have to remove
2158 them before detaching. */
2159 remove_breakpoints_pid (PIDGET (inferior_ptid));
2160
2161 prepare_for_detach ();
2162
2163 for (t = current_target.beneath; t != NULL; t = t->beneath)
2164 {
2165 if (t->to_detach != NULL)
2166 {
2167 t->to_detach (t, args, from_tty);
2168 if (targetdebug)
2169 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2170 args, from_tty);
2171 return;
2172 }
2173 }
2174
2175 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2176 }
2177
2178 void
2179 target_disconnect (char *args, int from_tty)
2180 {
2181 struct target_ops *t;
2182
2183 /* If we're in breakpoints-always-inserted mode or if breakpoints
2184 are global across processes, we have to remove them before
2185 disconnecting. */
2186 remove_breakpoints ();
2187
2188 for (t = current_target.beneath; t != NULL; t = t->beneath)
2189 if (t->to_disconnect != NULL)
2190 {
2191 if (targetdebug)
2192 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2193 args, from_tty);
2194 t->to_disconnect (t, args, from_tty);
2195 return;
2196 }
2197
2198 tcomplain ();
2199 }
2200
2201 ptid_t
2202 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2203 {
2204 struct target_ops *t;
2205
2206 for (t = current_target.beneath; t != NULL; t = t->beneath)
2207 {
2208 if (t->to_wait != NULL)
2209 {
2210 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2211
2212 if (targetdebug)
2213 {
2214 char *status_string;
2215
2216 status_string = target_waitstatus_to_string (status);
2217 fprintf_unfiltered (gdb_stdlog,
2218 "target_wait (%d, status) = %d, %s\n",
2219 PIDGET (ptid), PIDGET (retval),
2220 status_string);
2221 xfree (status_string);
2222 }
2223
2224 return retval;
2225 }
2226 }
2227
2228 noprocess ();
2229 }
2230
2231 char *
2232 target_pid_to_str (ptid_t ptid)
2233 {
2234 struct target_ops *t;
2235
2236 for (t = current_target.beneath; t != NULL; t = t->beneath)
2237 {
2238 if (t->to_pid_to_str != NULL)
2239 return (*t->to_pid_to_str) (t, ptid);
2240 }
2241
2242 return normal_pid_to_str (ptid);
2243 }
2244
2245 void
2246 target_resume (ptid_t ptid, int step, enum target_signal signal)
2247 {
2248 struct target_ops *t;
2249
2250 target_dcache_invalidate ();
2251
2252 for (t = current_target.beneath; t != NULL; t = t->beneath)
2253 {
2254 if (t->to_resume != NULL)
2255 {
2256 t->to_resume (t, ptid, step, signal);
2257 if (targetdebug)
2258 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2259 PIDGET (ptid),
2260 step ? "step" : "continue",
2261 target_signal_to_name (signal));
2262
2263 registers_changed_ptid (ptid);
2264 set_executing (ptid, 1);
2265 set_running (ptid, 1);
2266 clear_inline_frame_state (ptid);
2267 return;
2268 }
2269 }
2270
2271 noprocess ();
2272 }
2273 /* Look through the list of possible targets for a target that can
2274 follow forks. */
2275
2276 int
2277 target_follow_fork (int follow_child)
2278 {
2279 struct target_ops *t;
2280
2281 for (t = current_target.beneath; t != NULL; t = t->beneath)
2282 {
2283 if (t->to_follow_fork != NULL)
2284 {
2285 int retval = t->to_follow_fork (t, follow_child);
2286
2287 if (targetdebug)
2288 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2289 follow_child, retval);
2290 return retval;
2291 }
2292 }
2293
2294 /* Some target returned a fork event, but did not know how to follow it. */
2295 internal_error (__FILE__, __LINE__,
2296 "could not find a target to follow fork");
2297 }
2298
2299 void
2300 target_mourn_inferior (void)
2301 {
2302 struct target_ops *t;
2303
2304 for (t = current_target.beneath; t != NULL; t = t->beneath)
2305 {
2306 if (t->to_mourn_inferior != NULL)
2307 {
2308 t->to_mourn_inferior (t);
2309 if (targetdebug)
2310 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2311
2312 /* We no longer need to keep handles on any of the object files.
2313 Make sure to release them to avoid unnecessarily locking any
2314 of them while we're not actually debugging. */
2315 bfd_cache_close_all ();
2316
2317 return;
2318 }
2319 }
2320
2321 internal_error (__FILE__, __LINE__,
2322 "could not find a target to follow mourn inferior");
2323 }
2324
2325 /* Look for a target which can describe architectural features, starting
2326 from TARGET. If we find one, return its description. */
2327
2328 const struct target_desc *
2329 target_read_description (struct target_ops *target)
2330 {
2331 struct target_ops *t;
2332
2333 for (t = target; t != NULL; t = t->beneath)
2334 if (t->to_read_description != NULL)
2335 {
2336 const struct target_desc *tdesc;
2337
2338 tdesc = t->to_read_description (t);
2339 if (tdesc)
2340 return tdesc;
2341 }
2342
2343 return NULL;
2344 }
2345
2346 /* The default implementation of to_search_memory.
2347 This implements a basic search of memory, reading target memory and
2348 performing the search here (as opposed to performing the search in on the
2349 target side with, for example, gdbserver). */
2350
2351 int
2352 simple_search_memory (struct target_ops *ops,
2353 CORE_ADDR start_addr, ULONGEST search_space_len,
2354 const gdb_byte *pattern, ULONGEST pattern_len,
2355 CORE_ADDR *found_addrp)
2356 {
2357 /* NOTE: also defined in find.c testcase. */
2358 #define SEARCH_CHUNK_SIZE 16000
2359 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2360 /* Buffer to hold memory contents for searching. */
2361 gdb_byte *search_buf;
2362 unsigned search_buf_size;
2363 struct cleanup *old_cleanups;
2364
2365 search_buf_size = chunk_size + pattern_len - 1;
2366
2367 /* No point in trying to allocate a buffer larger than the search space. */
2368 if (search_space_len < search_buf_size)
2369 search_buf_size = search_space_len;
2370
2371 search_buf = malloc (search_buf_size);
2372 if (search_buf == NULL)
2373 error (_("Unable to allocate memory to perform the search."));
2374 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2375
2376 /* Prime the search buffer. */
2377
2378 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2379 search_buf, start_addr, search_buf_size) != search_buf_size)
2380 {
2381 warning (_("Unable to access target memory at %s, halting search."),
2382 hex_string (start_addr));
2383 do_cleanups (old_cleanups);
2384 return -1;
2385 }
2386
2387 /* Perform the search.
2388
2389 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2390 When we've scanned N bytes we copy the trailing bytes to the start and
2391 read in another N bytes. */
2392
2393 while (search_space_len >= pattern_len)
2394 {
2395 gdb_byte *found_ptr;
2396 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2397
2398 found_ptr = memmem (search_buf, nr_search_bytes,
2399 pattern, pattern_len);
2400
2401 if (found_ptr != NULL)
2402 {
2403 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2404
2405 *found_addrp = found_addr;
2406 do_cleanups (old_cleanups);
2407 return 1;
2408 }
2409
2410 /* Not found in this chunk, skip to next chunk. */
2411
2412 /* Don't let search_space_len wrap here, it's unsigned. */
2413 if (search_space_len >= chunk_size)
2414 search_space_len -= chunk_size;
2415 else
2416 search_space_len = 0;
2417
2418 if (search_space_len >= pattern_len)
2419 {
2420 unsigned keep_len = search_buf_size - chunk_size;
2421 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2422 int nr_to_read;
2423
2424 /* Copy the trailing part of the previous iteration to the front
2425 of the buffer for the next iteration. */
2426 gdb_assert (keep_len == pattern_len - 1);
2427 memcpy (search_buf, search_buf + chunk_size, keep_len);
2428
2429 nr_to_read = min (search_space_len - keep_len, chunk_size);
2430
2431 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2432 search_buf + keep_len, read_addr,
2433 nr_to_read) != nr_to_read)
2434 {
2435 warning (_("Unable to access target memory at %s, halting search."),
2436 hex_string (read_addr));
2437 do_cleanups (old_cleanups);
2438 return -1;
2439 }
2440
2441 start_addr += chunk_size;
2442 }
2443 }
2444
2445 /* Not found. */
2446
2447 do_cleanups (old_cleanups);
2448 return 0;
2449 }
2450
2451 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2452 sequence of bytes in PATTERN with length PATTERN_LEN.
2453
2454 The result is 1 if found, 0 if not found, and -1 if there was an error
2455 requiring halting of the search (e.g. memory read error).
2456 If the pattern is found the address is recorded in FOUND_ADDRP. */
2457
2458 int
2459 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2460 const gdb_byte *pattern, ULONGEST pattern_len,
2461 CORE_ADDR *found_addrp)
2462 {
2463 struct target_ops *t;
2464 int found;
2465
2466 /* We don't use INHERIT to set current_target.to_search_memory,
2467 so we have to scan the target stack and handle targetdebug
2468 ourselves. */
2469
2470 if (targetdebug)
2471 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2472 hex_string (start_addr));
2473
2474 for (t = current_target.beneath; t != NULL; t = t->beneath)
2475 if (t->to_search_memory != NULL)
2476 break;
2477
2478 if (t != NULL)
2479 {
2480 found = t->to_search_memory (t, start_addr, search_space_len,
2481 pattern, pattern_len, found_addrp);
2482 }
2483 else
2484 {
2485 /* If a special version of to_search_memory isn't available, use the
2486 simple version. */
2487 found = simple_search_memory (current_target.beneath,
2488 start_addr, search_space_len,
2489 pattern, pattern_len, found_addrp);
2490 }
2491
2492 if (targetdebug)
2493 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2494
2495 return found;
2496 }
2497
2498 /* Look through the currently pushed targets. If none of them will
2499 be able to restart the currently running process, issue an error
2500 message. */
2501
2502 void
2503 target_require_runnable (void)
2504 {
2505 struct target_ops *t;
2506
2507 for (t = target_stack; t != NULL; t = t->beneath)
2508 {
2509 /* If this target knows how to create a new program, then
2510 assume we will still be able to after killing the current
2511 one. Either killing and mourning will not pop T, or else
2512 find_default_run_target will find it again. */
2513 if (t->to_create_inferior != NULL)
2514 return;
2515
2516 /* Do not worry about thread_stratum targets that can not
2517 create inferiors. Assume they will be pushed again if
2518 necessary, and continue to the process_stratum. */
2519 if (t->to_stratum == thread_stratum
2520 || t->to_stratum == arch_stratum)
2521 continue;
2522
2523 error (_("\
2524 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2525 t->to_shortname);
2526 }
2527
2528 /* This function is only called if the target is running. In that
2529 case there should have been a process_stratum target and it
2530 should either know how to create inferiors, or not... */
2531 internal_error (__FILE__, __LINE__, "No targets found");
2532 }
2533
2534 /* Look through the list of possible targets for a target that can
2535 execute a run or attach command without any other data. This is
2536 used to locate the default process stratum.
2537
2538 If DO_MESG is not NULL, the result is always valid (error() is
2539 called for errors); else, return NULL on error. */
2540
2541 static struct target_ops *
2542 find_default_run_target (char *do_mesg)
2543 {
2544 struct target_ops **t;
2545 struct target_ops *runable = NULL;
2546 int count;
2547
2548 count = 0;
2549
2550 for (t = target_structs; t < target_structs + target_struct_size;
2551 ++t)
2552 {
2553 if ((*t)->to_can_run && target_can_run (*t))
2554 {
2555 runable = *t;
2556 ++count;
2557 }
2558 }
2559
2560 if (count != 1)
2561 {
2562 if (do_mesg)
2563 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2564 else
2565 return NULL;
2566 }
2567
2568 return runable;
2569 }
2570
2571 void
2572 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2573 {
2574 struct target_ops *t;
2575
2576 t = find_default_run_target ("attach");
2577 (t->to_attach) (t, args, from_tty);
2578 return;
2579 }
2580
2581 void
2582 find_default_create_inferior (struct target_ops *ops,
2583 char *exec_file, char *allargs, char **env,
2584 int from_tty)
2585 {
2586 struct target_ops *t;
2587
2588 t = find_default_run_target ("run");
2589 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2590 return;
2591 }
2592
2593 static int
2594 find_default_can_async_p (void)
2595 {
2596 struct target_ops *t;
2597
2598 /* This may be called before the target is pushed on the stack;
2599 look for the default process stratum. If there's none, gdb isn't
2600 configured with a native debugger, and target remote isn't
2601 connected yet. */
2602 t = find_default_run_target (NULL);
2603 if (t && t->to_can_async_p)
2604 return (t->to_can_async_p) ();
2605 return 0;
2606 }
2607
2608 static int
2609 find_default_is_async_p (void)
2610 {
2611 struct target_ops *t;
2612
2613 /* This may be called before the target is pushed on the stack;
2614 look for the default process stratum. If there's none, gdb isn't
2615 configured with a native debugger, and target remote isn't
2616 connected yet. */
2617 t = find_default_run_target (NULL);
2618 if (t && t->to_is_async_p)
2619 return (t->to_is_async_p) ();
2620 return 0;
2621 }
2622
2623 static int
2624 find_default_supports_non_stop (void)
2625 {
2626 struct target_ops *t;
2627
2628 t = find_default_run_target (NULL);
2629 if (t && t->to_supports_non_stop)
2630 return (t->to_supports_non_stop) ();
2631 return 0;
2632 }
2633
2634 int
2635 target_supports_non_stop (void)
2636 {
2637 struct target_ops *t;
2638
2639 for (t = &current_target; t != NULL; t = t->beneath)
2640 if (t->to_supports_non_stop)
2641 return t->to_supports_non_stop ();
2642
2643 return 0;
2644 }
2645
2646
2647 char *
2648 target_get_osdata (const char *type)
2649 {
2650 struct target_ops *t;
2651
2652 /* If we're already connected to something that can get us OS
2653 related data, use it. Otherwise, try using the native
2654 target. */
2655 if (current_target.to_stratum >= process_stratum)
2656 t = current_target.beneath;
2657 else
2658 t = find_default_run_target ("get OS data");
2659
2660 if (!t)
2661 return NULL;
2662
2663 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2664 }
2665
2666 /* Determine the current address space of thread PTID. */
2667
2668 struct address_space *
2669 target_thread_address_space (ptid_t ptid)
2670 {
2671 struct address_space *aspace;
2672 struct inferior *inf;
2673 struct target_ops *t;
2674
2675 for (t = current_target.beneath; t != NULL; t = t->beneath)
2676 {
2677 if (t->to_thread_address_space != NULL)
2678 {
2679 aspace = t->to_thread_address_space (t, ptid);
2680 gdb_assert (aspace);
2681
2682 if (targetdebug)
2683 fprintf_unfiltered (gdb_stdlog,
2684 "target_thread_address_space (%s) = %d\n",
2685 target_pid_to_str (ptid),
2686 address_space_num (aspace));
2687 return aspace;
2688 }
2689 }
2690
2691 /* Fall-back to the "main" address space of the inferior. */
2692 inf = find_inferior_pid (ptid_get_pid (ptid));
2693
2694 if (inf == NULL || inf->aspace == NULL)
2695 internal_error (__FILE__, __LINE__, "\
2696 Can't determine the current address space of thread %s\n",
2697 target_pid_to_str (ptid));
2698
2699 return inf->aspace;
2700 }
2701
2702 static int
2703 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2704 {
2705 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2706 }
2707
2708 static int
2709 default_watchpoint_addr_within_range (struct target_ops *target,
2710 CORE_ADDR addr,
2711 CORE_ADDR start, int length)
2712 {
2713 return addr >= start && addr < start + length;
2714 }
2715
2716 static struct gdbarch *
2717 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2718 {
2719 return target_gdbarch;
2720 }
2721
2722 static int
2723 return_zero (void)
2724 {
2725 return 0;
2726 }
2727
2728 static int
2729 return_one (void)
2730 {
2731 return 1;
2732 }
2733
2734 static int
2735 return_minus_one (void)
2736 {
2737 return -1;
2738 }
2739
2740 /* Find a single runnable target in the stack and return it. If for
2741 some reason there is more than one, return NULL. */
2742
2743 struct target_ops *
2744 find_run_target (void)
2745 {
2746 struct target_ops **t;
2747 struct target_ops *runable = NULL;
2748 int count;
2749
2750 count = 0;
2751
2752 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2753 {
2754 if ((*t)->to_can_run && target_can_run (*t))
2755 {
2756 runable = *t;
2757 ++count;
2758 }
2759 }
2760
2761 return (count == 1 ? runable : NULL);
2762 }
2763
2764 /* Find a single core_stratum target in the list of targets and return it.
2765 If for some reason there is more than one, return NULL. */
2766
2767 struct target_ops *
2768 find_core_target (void)
2769 {
2770 struct target_ops **t;
2771 struct target_ops *runable = NULL;
2772 int count;
2773
2774 count = 0;
2775
2776 for (t = target_structs; t < target_structs + target_struct_size;
2777 ++t)
2778 {
2779 if ((*t)->to_stratum == core_stratum)
2780 {
2781 runable = *t;
2782 ++count;
2783 }
2784 }
2785
2786 return (count == 1 ? runable : NULL);
2787 }
2788
2789 /*
2790 * Find the next target down the stack from the specified target.
2791 */
2792
2793 struct target_ops *
2794 find_target_beneath (struct target_ops *t)
2795 {
2796 return t->beneath;
2797 }
2798
2799 \f
2800 /* The inferior process has died. Long live the inferior! */
2801
2802 void
2803 generic_mourn_inferior (void)
2804 {
2805 ptid_t ptid;
2806
2807 ptid = inferior_ptid;
2808 inferior_ptid = null_ptid;
2809
2810 if (!ptid_equal (ptid, null_ptid))
2811 {
2812 int pid = ptid_get_pid (ptid);
2813 exit_inferior (pid);
2814 }
2815
2816 breakpoint_init_inferior (inf_exited);
2817 registers_changed ();
2818
2819 reopen_exec_file ();
2820 reinit_frame_cache ();
2821
2822 if (deprecated_detach_hook)
2823 deprecated_detach_hook ();
2824 }
2825 \f
2826 /* Helper function for child_wait and the derivatives of child_wait.
2827 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2828 translation of that in OURSTATUS. */
2829 void
2830 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2831 {
2832 if (WIFEXITED (hoststatus))
2833 {
2834 ourstatus->kind = TARGET_WAITKIND_EXITED;
2835 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2836 }
2837 else if (!WIFSTOPPED (hoststatus))
2838 {
2839 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2840 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2841 }
2842 else
2843 {
2844 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2845 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2846 }
2847 }
2848 \f
2849 /* Convert a normal process ID to a string. Returns the string in a
2850 static buffer. */
2851
2852 char *
2853 normal_pid_to_str (ptid_t ptid)
2854 {
2855 static char buf[32];
2856
2857 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2858 return buf;
2859 }
2860
2861 static char *
2862 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2863 {
2864 return normal_pid_to_str (ptid);
2865 }
2866
2867 /* Error-catcher for target_find_memory_regions. */
2868 static int
2869 dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2870 {
2871 error (_("Command not implemented for this target."));
2872 return 0;
2873 }
2874
2875 /* Error-catcher for target_make_corefile_notes. */
2876 static char *
2877 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2878 {
2879 error (_("Command not implemented for this target."));
2880 return NULL;
2881 }
2882
2883 /* Error-catcher for target_get_bookmark. */
2884 static gdb_byte *
2885 dummy_get_bookmark (char *ignore1, int ignore2)
2886 {
2887 tcomplain ();
2888 return NULL;
2889 }
2890
2891 /* Error-catcher for target_goto_bookmark. */
2892 static void
2893 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
2894 {
2895 tcomplain ();
2896 }
2897
2898 /* Set up the handful of non-empty slots needed by the dummy target
2899 vector. */
2900
2901 static void
2902 init_dummy_target (void)
2903 {
2904 dummy_target.to_shortname = "None";
2905 dummy_target.to_longname = "None";
2906 dummy_target.to_doc = "";
2907 dummy_target.to_attach = find_default_attach;
2908 dummy_target.to_detach =
2909 (void (*)(struct target_ops *, char *, int))target_ignore;
2910 dummy_target.to_create_inferior = find_default_create_inferior;
2911 dummy_target.to_can_async_p = find_default_can_async_p;
2912 dummy_target.to_is_async_p = find_default_is_async_p;
2913 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2914 dummy_target.to_pid_to_str = dummy_pid_to_str;
2915 dummy_target.to_stratum = dummy_stratum;
2916 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2917 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2918 dummy_target.to_get_bookmark = dummy_get_bookmark;
2919 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
2920 dummy_target.to_xfer_partial = default_xfer_partial;
2921 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2922 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2923 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2924 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2925 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2926 dummy_target.to_stopped_by_watchpoint = return_zero;
2927 dummy_target.to_stopped_data_address =
2928 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
2929 dummy_target.to_magic = OPS_MAGIC;
2930 }
2931 \f
2932 static void
2933 debug_to_open (char *args, int from_tty)
2934 {
2935 debug_target.to_open (args, from_tty);
2936
2937 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2938 }
2939
2940 void
2941 target_close (struct target_ops *targ, int quitting)
2942 {
2943 if (targ->to_xclose != NULL)
2944 targ->to_xclose (targ, quitting);
2945 else if (targ->to_close != NULL)
2946 targ->to_close (quitting);
2947
2948 if (targetdebug)
2949 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2950 }
2951
2952 void
2953 target_attach (char *args, int from_tty)
2954 {
2955 struct target_ops *t;
2956
2957 for (t = current_target.beneath; t != NULL; t = t->beneath)
2958 {
2959 if (t->to_attach != NULL)
2960 {
2961 t->to_attach (t, args, from_tty);
2962 if (targetdebug)
2963 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2964 args, from_tty);
2965 return;
2966 }
2967 }
2968
2969 internal_error (__FILE__, __LINE__,
2970 "could not find a target to attach");
2971 }
2972
2973 int
2974 target_thread_alive (ptid_t ptid)
2975 {
2976 struct target_ops *t;
2977
2978 for (t = current_target.beneath; t != NULL; t = t->beneath)
2979 {
2980 if (t->to_thread_alive != NULL)
2981 {
2982 int retval;
2983
2984 retval = t->to_thread_alive (t, ptid);
2985 if (targetdebug)
2986 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2987 PIDGET (ptid), retval);
2988
2989 return retval;
2990 }
2991 }
2992
2993 return 0;
2994 }
2995
2996 void
2997 target_find_new_threads (void)
2998 {
2999 struct target_ops *t;
3000
3001 for (t = current_target.beneath; t != NULL; t = t->beneath)
3002 {
3003 if (t->to_find_new_threads != NULL)
3004 {
3005 t->to_find_new_threads (t);
3006 if (targetdebug)
3007 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3008
3009 return;
3010 }
3011 }
3012 }
3013
3014 void
3015 target_stop (ptid_t ptid)
3016 {
3017 if (!may_stop)
3018 {
3019 warning (_("May not interrupt or stop the target, ignoring attempt"));
3020 return;
3021 }
3022
3023 (*current_target.to_stop) (ptid);
3024 }
3025
3026 static void
3027 debug_to_post_attach (int pid)
3028 {
3029 debug_target.to_post_attach (pid);
3030
3031 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3032 }
3033
3034 /* Return a pretty printed form of target_waitstatus.
3035 Space for the result is malloc'd, caller must free. */
3036
3037 char *
3038 target_waitstatus_to_string (const struct target_waitstatus *ws)
3039 {
3040 const char *kind_str = "status->kind = ";
3041
3042 switch (ws->kind)
3043 {
3044 case TARGET_WAITKIND_EXITED:
3045 return xstrprintf ("%sexited, status = %d",
3046 kind_str, ws->value.integer);
3047 case TARGET_WAITKIND_STOPPED:
3048 return xstrprintf ("%sstopped, signal = %s",
3049 kind_str, target_signal_to_name (ws->value.sig));
3050 case TARGET_WAITKIND_SIGNALLED:
3051 return xstrprintf ("%ssignalled, signal = %s",
3052 kind_str, target_signal_to_name (ws->value.sig));
3053 case TARGET_WAITKIND_LOADED:
3054 return xstrprintf ("%sloaded", kind_str);
3055 case TARGET_WAITKIND_FORKED:
3056 return xstrprintf ("%sforked", kind_str);
3057 case TARGET_WAITKIND_VFORKED:
3058 return xstrprintf ("%svforked", kind_str);
3059 case TARGET_WAITKIND_EXECD:
3060 return xstrprintf ("%sexecd", kind_str);
3061 case TARGET_WAITKIND_SYSCALL_ENTRY:
3062 return xstrprintf ("%sentered syscall", kind_str);
3063 case TARGET_WAITKIND_SYSCALL_RETURN:
3064 return xstrprintf ("%sexited syscall", kind_str);
3065 case TARGET_WAITKIND_SPURIOUS:
3066 return xstrprintf ("%sspurious", kind_str);
3067 case TARGET_WAITKIND_IGNORE:
3068 return xstrprintf ("%signore", kind_str);
3069 case TARGET_WAITKIND_NO_HISTORY:
3070 return xstrprintf ("%sno-history", kind_str);
3071 default:
3072 return xstrprintf ("%sunknown???", kind_str);
3073 }
3074 }
3075
3076 static void
3077 debug_print_register (const char * func,
3078 struct regcache *regcache, int regno)
3079 {
3080 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3081
3082 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3083 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3084 && gdbarch_register_name (gdbarch, regno) != NULL
3085 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3086 fprintf_unfiltered (gdb_stdlog, "(%s)",
3087 gdbarch_register_name (gdbarch, regno));
3088 else
3089 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3090 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3091 {
3092 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3093 int i, size = register_size (gdbarch, regno);
3094 unsigned char buf[MAX_REGISTER_SIZE];
3095
3096 regcache_raw_collect (regcache, regno, buf);
3097 fprintf_unfiltered (gdb_stdlog, " = ");
3098 for (i = 0; i < size; i++)
3099 {
3100 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3101 }
3102 if (size <= sizeof (LONGEST))
3103 {
3104 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3105
3106 fprintf_unfiltered (gdb_stdlog, " %s %s",
3107 core_addr_to_string_nz (val), plongest (val));
3108 }
3109 }
3110 fprintf_unfiltered (gdb_stdlog, "\n");
3111 }
3112
3113 void
3114 target_fetch_registers (struct regcache *regcache, int regno)
3115 {
3116 struct target_ops *t;
3117
3118 for (t = current_target.beneath; t != NULL; t = t->beneath)
3119 {
3120 if (t->to_fetch_registers != NULL)
3121 {
3122 t->to_fetch_registers (t, regcache, regno);
3123 if (targetdebug)
3124 debug_print_register ("target_fetch_registers", regcache, regno);
3125 return;
3126 }
3127 }
3128 }
3129
3130 void
3131 target_store_registers (struct regcache *regcache, int regno)
3132 {
3133 struct target_ops *t;
3134
3135 if (!may_write_registers)
3136 error (_("Writing to registers is not allowed (regno %d)"), regno);
3137
3138 for (t = current_target.beneath; t != NULL; t = t->beneath)
3139 {
3140 if (t->to_store_registers != NULL)
3141 {
3142 t->to_store_registers (t, regcache, regno);
3143 if (targetdebug)
3144 {
3145 debug_print_register ("target_store_registers", regcache, regno);
3146 }
3147 return;
3148 }
3149 }
3150
3151 noprocess ();
3152 }
3153
3154 int
3155 target_core_of_thread (ptid_t ptid)
3156 {
3157 struct target_ops *t;
3158
3159 for (t = current_target.beneath; t != NULL; t = t->beneath)
3160 {
3161 if (t->to_core_of_thread != NULL)
3162 {
3163 int retval = t->to_core_of_thread (t, ptid);
3164
3165 if (targetdebug)
3166 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3167 PIDGET (ptid), retval);
3168 return retval;
3169 }
3170 }
3171
3172 return -1;
3173 }
3174
3175 int
3176 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3177 {
3178 struct target_ops *t;
3179
3180 for (t = current_target.beneath; t != NULL; t = t->beneath)
3181 {
3182 if (t->to_verify_memory != NULL)
3183 {
3184 int retval = t->to_verify_memory (t, data, memaddr, size);
3185
3186 if (targetdebug)
3187 fprintf_unfiltered (gdb_stdlog, "target_verify_memory (%s, %s) = %d\n",
3188 paddress (target_gdbarch, memaddr),
3189 pulongest (size),
3190 retval);
3191 return retval;
3192 }
3193 }
3194
3195 tcomplain ();
3196 }
3197
3198 static void
3199 debug_to_prepare_to_store (struct regcache *regcache)
3200 {
3201 debug_target.to_prepare_to_store (regcache);
3202
3203 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3204 }
3205
3206 static int
3207 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3208 int write, struct mem_attrib *attrib,
3209 struct target_ops *target)
3210 {
3211 int retval;
3212
3213 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3214 attrib, target);
3215
3216 fprintf_unfiltered (gdb_stdlog,
3217 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3218 paddress (target_gdbarch, memaddr), len,
3219 write ? "write" : "read", retval);
3220
3221 if (retval > 0)
3222 {
3223 int i;
3224
3225 fputs_unfiltered (", bytes =", gdb_stdlog);
3226 for (i = 0; i < retval; i++)
3227 {
3228 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3229 {
3230 if (targetdebug < 2 && i > 0)
3231 {
3232 fprintf_unfiltered (gdb_stdlog, " ...");
3233 break;
3234 }
3235 fprintf_unfiltered (gdb_stdlog, "\n");
3236 }
3237
3238 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3239 }
3240 }
3241
3242 fputc_unfiltered ('\n', gdb_stdlog);
3243
3244 return retval;
3245 }
3246
3247 static void
3248 debug_to_files_info (struct target_ops *target)
3249 {
3250 debug_target.to_files_info (target);
3251
3252 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3253 }
3254
3255 static int
3256 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3257 struct bp_target_info *bp_tgt)
3258 {
3259 int retval;
3260
3261 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3262
3263 fprintf_unfiltered (gdb_stdlog,
3264 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
3265 (unsigned long) bp_tgt->placed_address,
3266 (unsigned long) retval);
3267 return retval;
3268 }
3269
3270 static int
3271 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3272 struct bp_target_info *bp_tgt)
3273 {
3274 int retval;
3275
3276 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3277
3278 fprintf_unfiltered (gdb_stdlog,
3279 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
3280 (unsigned long) bp_tgt->placed_address,
3281 (unsigned long) retval);
3282 return retval;
3283 }
3284
3285 static int
3286 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3287 {
3288 int retval;
3289
3290 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3291
3292 fprintf_unfiltered (gdb_stdlog,
3293 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3294 (unsigned long) type,
3295 (unsigned long) cnt,
3296 (unsigned long) from_tty,
3297 (unsigned long) retval);
3298 return retval;
3299 }
3300
3301 static int
3302 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3303 {
3304 CORE_ADDR retval;
3305
3306 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3307
3308 fprintf_unfiltered (gdb_stdlog,
3309 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
3310 (unsigned long) addr,
3311 (unsigned long) len,
3312 (unsigned long) retval);
3313 return retval;
3314 }
3315
3316 static int
3317 debug_to_stopped_by_watchpoint (void)
3318 {
3319 int retval;
3320
3321 retval = debug_target.to_stopped_by_watchpoint ();
3322
3323 fprintf_unfiltered (gdb_stdlog,
3324 "target_stopped_by_watchpoint () = %ld\n",
3325 (unsigned long) retval);
3326 return retval;
3327 }
3328
3329 static int
3330 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3331 {
3332 int retval;
3333
3334 retval = debug_target.to_stopped_data_address (target, addr);
3335
3336 fprintf_unfiltered (gdb_stdlog,
3337 "target_stopped_data_address ([0x%lx]) = %ld\n",
3338 (unsigned long)*addr,
3339 (unsigned long)retval);
3340 return retval;
3341 }
3342
3343 static int
3344 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3345 CORE_ADDR addr,
3346 CORE_ADDR start, int length)
3347 {
3348 int retval;
3349
3350 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3351 start, length);
3352
3353 fprintf_filtered (gdb_stdlog,
3354 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
3355 (unsigned long) addr, (unsigned long) start, length,
3356 retval);
3357 return retval;
3358 }
3359
3360 static int
3361 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3362 struct bp_target_info *bp_tgt)
3363 {
3364 int retval;
3365
3366 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3367
3368 fprintf_unfiltered (gdb_stdlog,
3369 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
3370 (unsigned long) bp_tgt->placed_address,
3371 (unsigned long) retval);
3372 return retval;
3373 }
3374
3375 static int
3376 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3377 struct bp_target_info *bp_tgt)
3378 {
3379 int retval;
3380
3381 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3382
3383 fprintf_unfiltered (gdb_stdlog,
3384 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
3385 (unsigned long) bp_tgt->placed_address,
3386 (unsigned long) retval);
3387 return retval;
3388 }
3389
3390 static int
3391 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
3392 {
3393 int retval;
3394
3395 retval = debug_target.to_insert_watchpoint (addr, len, type);
3396
3397 fprintf_unfiltered (gdb_stdlog,
3398 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
3399 (unsigned long) addr, len, type, (unsigned long) retval);
3400 return retval;
3401 }
3402
3403 static int
3404 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
3405 {
3406 int retval;
3407
3408 retval = debug_target.to_remove_watchpoint (addr, len, type);
3409
3410 fprintf_unfiltered (gdb_stdlog,
3411 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
3412 (unsigned long) addr, len, type, (unsigned long) retval);
3413 return retval;
3414 }
3415
3416 static void
3417 debug_to_terminal_init (void)
3418 {
3419 debug_target.to_terminal_init ();
3420
3421 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3422 }
3423
3424 static void
3425 debug_to_terminal_inferior (void)
3426 {
3427 debug_target.to_terminal_inferior ();
3428
3429 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3430 }
3431
3432 static void
3433 debug_to_terminal_ours_for_output (void)
3434 {
3435 debug_target.to_terminal_ours_for_output ();
3436
3437 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3438 }
3439
3440 static void
3441 debug_to_terminal_ours (void)
3442 {
3443 debug_target.to_terminal_ours ();
3444
3445 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3446 }
3447
3448 static void
3449 debug_to_terminal_save_ours (void)
3450 {
3451 debug_target.to_terminal_save_ours ();
3452
3453 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3454 }
3455
3456 static void
3457 debug_to_terminal_info (char *arg, int from_tty)
3458 {
3459 debug_target.to_terminal_info (arg, from_tty);
3460
3461 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3462 from_tty);
3463 }
3464
3465 static void
3466 debug_to_load (char *args, int from_tty)
3467 {
3468 debug_target.to_load (args, from_tty);
3469
3470 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3471 }
3472
3473 static int
3474 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3475 {
3476 int retval;
3477
3478 retval = debug_target.to_lookup_symbol (name, addrp);
3479
3480 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3481
3482 return retval;
3483 }
3484
3485 static void
3486 debug_to_post_startup_inferior (ptid_t ptid)
3487 {
3488 debug_target.to_post_startup_inferior (ptid);
3489
3490 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3491 PIDGET (ptid));
3492 }
3493
3494 static void
3495 debug_to_acknowledge_created_inferior (int pid)
3496 {
3497 debug_target.to_acknowledge_created_inferior (pid);
3498
3499 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3500 pid);
3501 }
3502
3503 static void
3504 debug_to_insert_fork_catchpoint (int pid)
3505 {
3506 debug_target.to_insert_fork_catchpoint (pid);
3507
3508 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3509 pid);
3510 }
3511
3512 static int
3513 debug_to_remove_fork_catchpoint (int pid)
3514 {
3515 int retval;
3516
3517 retval = debug_target.to_remove_fork_catchpoint (pid);
3518
3519 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3520 pid, retval);
3521
3522 return retval;
3523 }
3524
3525 static void
3526 debug_to_insert_vfork_catchpoint (int pid)
3527 {
3528 debug_target.to_insert_vfork_catchpoint (pid);
3529
3530 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3531 pid);
3532 }
3533
3534 static int
3535 debug_to_remove_vfork_catchpoint (int pid)
3536 {
3537 int retval;
3538
3539 retval = debug_target.to_remove_vfork_catchpoint (pid);
3540
3541 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3542 pid, retval);
3543
3544 return retval;
3545 }
3546
3547 static void
3548 debug_to_insert_exec_catchpoint (int pid)
3549 {
3550 debug_target.to_insert_exec_catchpoint (pid);
3551
3552 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3553 pid);
3554 }
3555
3556 static int
3557 debug_to_remove_exec_catchpoint (int pid)
3558 {
3559 int retval;
3560
3561 retval = debug_target.to_remove_exec_catchpoint (pid);
3562
3563 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3564 pid, retval);
3565
3566 return retval;
3567 }
3568
3569 static int
3570 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3571 {
3572 int has_exited;
3573
3574 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3575
3576 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3577 pid, wait_status, *exit_status, has_exited);
3578
3579 return has_exited;
3580 }
3581
3582 static int
3583 debug_to_can_run (void)
3584 {
3585 int retval;
3586
3587 retval = debug_target.to_can_run ();
3588
3589 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3590
3591 return retval;
3592 }
3593
3594 static void
3595 debug_to_notice_signals (ptid_t ptid)
3596 {
3597 debug_target.to_notice_signals (ptid);
3598
3599 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3600 PIDGET (ptid));
3601 }
3602
3603 static struct gdbarch *
3604 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3605 {
3606 struct gdbarch *retval;
3607
3608 retval = debug_target.to_thread_architecture (ops, ptid);
3609
3610 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3611 target_pid_to_str (ptid), host_address_to_string (retval),
3612 gdbarch_bfd_arch_info (retval)->printable_name);
3613 return retval;
3614 }
3615
3616 static void
3617 debug_to_stop (ptid_t ptid)
3618 {
3619 debug_target.to_stop (ptid);
3620
3621 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3622 target_pid_to_str (ptid));
3623 }
3624
3625 static void
3626 debug_to_rcmd (char *command,
3627 struct ui_file *outbuf)
3628 {
3629 debug_target.to_rcmd (command, outbuf);
3630 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3631 }
3632
3633 static char *
3634 debug_to_pid_to_exec_file (int pid)
3635 {
3636 char *exec_file;
3637
3638 exec_file = debug_target.to_pid_to_exec_file (pid);
3639
3640 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3641 pid, exec_file);
3642
3643 return exec_file;
3644 }
3645
3646 static void
3647 setup_target_debug (void)
3648 {
3649 memcpy (&debug_target, &current_target, sizeof debug_target);
3650
3651 current_target.to_open = debug_to_open;
3652 current_target.to_post_attach = debug_to_post_attach;
3653 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3654 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3655 current_target.to_files_info = debug_to_files_info;
3656 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3657 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3658 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3659 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3660 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3661 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3662 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3663 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3664 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3665 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3666 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3667 current_target.to_terminal_init = debug_to_terminal_init;
3668 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3669 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3670 current_target.to_terminal_ours = debug_to_terminal_ours;
3671 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3672 current_target.to_terminal_info = debug_to_terminal_info;
3673 current_target.to_load = debug_to_load;
3674 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3675 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3676 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3677 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3678 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3679 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3680 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3681 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3682 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3683 current_target.to_has_exited = debug_to_has_exited;
3684 current_target.to_can_run = debug_to_can_run;
3685 current_target.to_notice_signals = debug_to_notice_signals;
3686 current_target.to_stop = debug_to_stop;
3687 current_target.to_rcmd = debug_to_rcmd;
3688 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3689 current_target.to_thread_architecture = debug_to_thread_architecture;
3690 }
3691 \f
3692
3693 static char targ_desc[] =
3694 "Names of targets and files being debugged.\n\
3695 Shows the entire stack of targets currently in use (including the exec-file,\n\
3696 core-file, and process, if any), as well as the symbol file name.";
3697
3698 static void
3699 do_monitor_command (char *cmd,
3700 int from_tty)
3701 {
3702 if ((current_target.to_rcmd
3703 == (void (*) (char *, struct ui_file *)) tcomplain)
3704 || (current_target.to_rcmd == debug_to_rcmd
3705 && (debug_target.to_rcmd
3706 == (void (*) (char *, struct ui_file *)) tcomplain)))
3707 error (_("\"monitor\" command not supported by this target."));
3708 target_rcmd (cmd, gdb_stdtarg);
3709 }
3710
3711 /* Print the name of each layers of our target stack. */
3712
3713 static void
3714 maintenance_print_target_stack (char *cmd, int from_tty)
3715 {
3716 struct target_ops *t;
3717
3718 printf_filtered (_("The current target stack is:\n"));
3719
3720 for (t = target_stack; t != NULL; t = t->beneath)
3721 {
3722 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3723 }
3724 }
3725
3726 /* Controls if async mode is permitted. */
3727 int target_async_permitted = 0;
3728
3729 /* The set command writes to this variable. If the inferior is
3730 executing, linux_nat_async_permitted is *not* updated. */
3731 static int target_async_permitted_1 = 0;
3732
3733 static void
3734 set_maintenance_target_async_permitted (char *args, int from_tty,
3735 struct cmd_list_element *c)
3736 {
3737 if (have_live_inferiors ())
3738 {
3739 target_async_permitted_1 = target_async_permitted;
3740 error (_("Cannot change this setting while the inferior is running."));
3741 }
3742
3743 target_async_permitted = target_async_permitted_1;
3744 }
3745
3746 static void
3747 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3748 struct cmd_list_element *c,
3749 const char *value)
3750 {
3751 fprintf_filtered (file, _("\
3752 Controlling the inferior in asynchronous mode is %s.\n"), value);
3753 }
3754
3755 /* Temporary copies of permission settings. */
3756
3757 static int may_write_registers_1 = 1;
3758 static int may_write_memory_1 = 1;
3759 static int may_insert_breakpoints_1 = 1;
3760 static int may_insert_tracepoints_1 = 1;
3761 static int may_insert_fast_tracepoints_1 = 1;
3762 static int may_stop_1 = 1;
3763
3764 /* Make the user-set values match the real values again. */
3765
3766 void
3767 update_target_permissions (void)
3768 {
3769 may_write_registers_1 = may_write_registers;
3770 may_write_memory_1 = may_write_memory;
3771 may_insert_breakpoints_1 = may_insert_breakpoints;
3772 may_insert_tracepoints_1 = may_insert_tracepoints;
3773 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3774 may_stop_1 = may_stop;
3775 }
3776
3777 /* The one function handles (most of) the permission flags in the same
3778 way. */
3779
3780 static void
3781 set_target_permissions (char *args, int from_tty,
3782 struct cmd_list_element *c)
3783 {
3784 if (target_has_execution)
3785 {
3786 update_target_permissions ();
3787 error (_("Cannot change this setting while the inferior is running."));
3788 }
3789
3790 /* Make the real values match the user-changed values. */
3791 may_write_registers = may_write_registers_1;
3792 may_insert_breakpoints = may_insert_breakpoints_1;
3793 may_insert_tracepoints = may_insert_tracepoints_1;
3794 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3795 may_stop = may_stop_1;
3796 update_observer_mode ();
3797 }
3798
3799 /* Set memory write permission independently of observer mode. */
3800
3801 static void
3802 set_write_memory_permission (char *args, int from_tty,
3803 struct cmd_list_element *c)
3804 {
3805 /* Make the real values match the user-changed values. */
3806 may_write_memory = may_write_memory_1;
3807 update_observer_mode ();
3808 }
3809
3810
3811 void
3812 initialize_targets (void)
3813 {
3814 init_dummy_target ();
3815 push_target (&dummy_target);
3816
3817 add_info ("target", target_info, targ_desc);
3818 add_info ("files", target_info, targ_desc);
3819
3820 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3821 Set target debugging."), _("\
3822 Show target debugging."), _("\
3823 When non-zero, target debugging is enabled. Higher numbers are more\n\
3824 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3825 command."),
3826 NULL,
3827 show_targetdebug,
3828 &setdebuglist, &showdebuglist);
3829
3830 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3831 &trust_readonly, _("\
3832 Set mode for reading from readonly sections."), _("\
3833 Show mode for reading from readonly sections."), _("\
3834 When this mode is on, memory reads from readonly sections (such as .text)\n\
3835 will be read from the object file instead of from the target. This will\n\
3836 result in significant performance improvement for remote targets."),
3837 NULL,
3838 show_trust_readonly,
3839 &setlist, &showlist);
3840
3841 add_com ("monitor", class_obscure, do_monitor_command,
3842 _("Send a command to the remote monitor (remote targets only)."));
3843
3844 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3845 _("Print the name of each layer of the internal target stack."),
3846 &maintenanceprintlist);
3847
3848 add_setshow_boolean_cmd ("target-async", no_class,
3849 &target_async_permitted_1, _("\
3850 Set whether gdb controls the inferior in asynchronous mode."), _("\
3851 Show whether gdb controls the inferior in asynchronous mode."), _("\
3852 Tells gdb whether to control the inferior in asynchronous mode."),
3853 set_maintenance_target_async_permitted,
3854 show_maintenance_target_async_permitted,
3855 &setlist,
3856 &showlist);
3857
3858 add_setshow_boolean_cmd ("stack-cache", class_support,
3859 &stack_cache_enabled_p_1, _("\
3860 Set cache use for stack access."), _("\
3861 Show cache use for stack access."), _("\
3862 When on, use the data cache for all stack access, regardless of any\n\
3863 configured memory regions. This improves remote performance significantly.\n\
3864 By default, caching for stack access is on."),
3865 set_stack_cache_enabled_p,
3866 show_stack_cache_enabled_p,
3867 &setlist, &showlist);
3868
3869 add_setshow_boolean_cmd ("may-write-registers", class_support,
3870 &may_write_registers_1, _("\
3871 Set permission to write into registers."), _("\
3872 Show permission to write into registers."), _("\
3873 When this permission is on, GDB may write into the target's registers.\n\
3874 Otherwise, any sort of write attempt will result in an error."),
3875 set_target_permissions, NULL,
3876 &setlist, &showlist);
3877
3878 add_setshow_boolean_cmd ("may-write-memory", class_support,
3879 &may_write_memory_1, _("\
3880 Set permission to write into target memory."), _("\
3881 Show permission to write into target memory."), _("\
3882 When this permission is on, GDB may write into the target's memory.\n\
3883 Otherwise, any sort of write attempt will result in an error."),
3884 set_write_memory_permission, NULL,
3885 &setlist, &showlist);
3886
3887 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3888 &may_insert_breakpoints_1, _("\
3889 Set permission to insert breakpoints in the target."), _("\
3890 Show permission to insert breakpoints in the target."), _("\
3891 When this permission is on, GDB may insert breakpoints in the program.\n\
3892 Otherwise, any sort of insertion attempt will result in an error."),
3893 set_target_permissions, NULL,
3894 &setlist, &showlist);
3895
3896 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3897 &may_insert_tracepoints_1, _("\
3898 Set permission to insert tracepoints in the target."), _("\
3899 Show permission to insert tracepoints in the target."), _("\
3900 When this permission is on, GDB may insert tracepoints in the program.\n\
3901 Otherwise, any sort of insertion attempt will result in an error."),
3902 set_target_permissions, NULL,
3903 &setlist, &showlist);
3904
3905 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3906 &may_insert_fast_tracepoints_1, _("\
3907 Set permission to insert fast tracepoints in the target."), _("\
3908 Show permission to insert fast tracepoints in the target."), _("\
3909 When this permission is on, GDB may insert fast tracepoints.\n\
3910 Otherwise, any sort of insertion attempt will result in an error."),
3911 set_target_permissions, NULL,
3912 &setlist, &showlist);
3913
3914 add_setshow_boolean_cmd ("may-interrupt", class_support,
3915 &may_stop_1, _("\
3916 Set permission to interrupt or signal the target."), _("\
3917 Show permission to interrupt or signal the target."), _("\
3918 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3919 Otherwise, any attempt to interrupt or stop will be ignored."),
3920 set_target_permissions, NULL,
3921 &setlist, &showlist);
3922
3923
3924 target_dcache = dcache_init ();
3925 }