target, breakpoint: allow insert/remove breakpoint to be forwarded
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static void tcomplain (void) ATTRIBUTE_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 static void *return_null (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static target_xfer_partial_ftype default_xfer_partial;
76
77 static target_xfer_partial_ftype current_xfer_partial;
78
79 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
80 ptid_t ptid);
81
82 static void init_dummy_target (void);
83
84 static struct target_ops debug_target;
85
86 static void debug_to_open (char *, int);
87
88 static void debug_to_prepare_to_store (struct target_ops *self,
89 struct regcache *);
90
91 static void debug_to_files_info (struct target_ops *);
92
93 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
94 struct bp_target_info *);
95
96 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
97 struct bp_target_info *);
98
99 static int debug_to_can_use_hw_breakpoint (int, int, int);
100
101 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
102 struct bp_target_info *);
103
104 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
105 struct bp_target_info *);
106
107 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
108 struct expression *);
109
110 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
111 struct expression *);
112
113 static int debug_to_stopped_by_watchpoint (void);
114
115 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
116
117 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
118 CORE_ADDR, CORE_ADDR, int);
119
120 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
121
122 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
123 struct expression *);
124
125 static void debug_to_terminal_init (void);
126
127 static void debug_to_terminal_inferior (void);
128
129 static void debug_to_terminal_ours_for_output (void);
130
131 static void debug_to_terminal_save_ours (void);
132
133 static void debug_to_terminal_ours (void);
134
135 static void debug_to_load (char *, int);
136
137 static int debug_to_can_run (void);
138
139 static void debug_to_stop (ptid_t);
140
141 /* Pointer to array of target architecture structures; the size of the
142 array; the current index into the array; the allocated size of the
143 array. */
144 struct target_ops **target_structs;
145 unsigned target_struct_size;
146 unsigned target_struct_allocsize;
147 #define DEFAULT_ALLOCSIZE 10
148
149 /* The initial current target, so that there is always a semi-valid
150 current target. */
151
152 static struct target_ops dummy_target;
153
154 /* Top of target stack. */
155
156 static struct target_ops *target_stack;
157
158 /* The target structure we are currently using to talk to a process
159 or file or whatever "inferior" we have. */
160
161 struct target_ops current_target;
162
163 /* Command list for target. */
164
165 static struct cmd_list_element *targetlist = NULL;
166
167 /* Nonzero if we should trust readonly sections from the
168 executable when reading memory. */
169
170 static int trust_readonly = 0;
171
172 /* Nonzero if we should show true memory content including
173 memory breakpoint inserted by gdb. */
174
175 static int show_memory_breakpoints = 0;
176
177 /* These globals control whether GDB attempts to perform these
178 operations; they are useful for targets that need to prevent
179 inadvertant disruption, such as in non-stop mode. */
180
181 int may_write_registers = 1;
182
183 int may_write_memory = 1;
184
185 int may_insert_breakpoints = 1;
186
187 int may_insert_tracepoints = 1;
188
189 int may_insert_fast_tracepoints = 1;
190
191 int may_stop = 1;
192
193 /* Non-zero if we want to see trace of target level stuff. */
194
195 static unsigned int targetdebug = 0;
196 static void
197 show_targetdebug (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
201 }
202
203 static void setup_target_debug (void);
204
205 /* The user just typed 'target' without the name of a target. */
206
207 static void
208 target_command (char *arg, int from_tty)
209 {
210 fputs_filtered ("Argument required (target name). Try `help target'\n",
211 gdb_stdout);
212 }
213
214 /* Default target_has_* methods for process_stratum targets. */
215
216 int
217 default_child_has_all_memory (struct target_ops *ops)
218 {
219 /* If no inferior selected, then we can't read memory here. */
220 if (ptid_equal (inferior_ptid, null_ptid))
221 return 0;
222
223 return 1;
224 }
225
226 int
227 default_child_has_memory (struct target_ops *ops)
228 {
229 /* If no inferior selected, then we can't read memory here. */
230 if (ptid_equal (inferior_ptid, null_ptid))
231 return 0;
232
233 return 1;
234 }
235
236 int
237 default_child_has_stack (struct target_ops *ops)
238 {
239 /* If no inferior selected, there's no stack. */
240 if (ptid_equal (inferior_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246 int
247 default_child_has_registers (struct target_ops *ops)
248 {
249 /* Can't read registers from no inferior. */
250 if (ptid_equal (inferior_ptid, null_ptid))
251 return 0;
252
253 return 1;
254 }
255
256 int
257 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
258 {
259 /* If there's no thread selected, then we can't make it run through
260 hoops. */
261 if (ptid_equal (the_ptid, null_ptid))
262 return 0;
263
264 return 1;
265 }
266
267
268 int
269 target_has_all_memory_1 (void)
270 {
271 struct target_ops *t;
272
273 for (t = current_target.beneath; t != NULL; t = t->beneath)
274 if (t->to_has_all_memory (t))
275 return 1;
276
277 return 0;
278 }
279
280 int
281 target_has_memory_1 (void)
282 {
283 struct target_ops *t;
284
285 for (t = current_target.beneath; t != NULL; t = t->beneath)
286 if (t->to_has_memory (t))
287 return 1;
288
289 return 0;
290 }
291
292 int
293 target_has_stack_1 (void)
294 {
295 struct target_ops *t;
296
297 for (t = current_target.beneath; t != NULL; t = t->beneath)
298 if (t->to_has_stack (t))
299 return 1;
300
301 return 0;
302 }
303
304 int
305 target_has_registers_1 (void)
306 {
307 struct target_ops *t;
308
309 for (t = current_target.beneath; t != NULL; t = t->beneath)
310 if (t->to_has_registers (t))
311 return 1;
312
313 return 0;
314 }
315
316 int
317 target_has_execution_1 (ptid_t the_ptid)
318 {
319 struct target_ops *t;
320
321 for (t = current_target.beneath; t != NULL; t = t->beneath)
322 if (t->to_has_execution (t, the_ptid))
323 return 1;
324
325 return 0;
326 }
327
328 int
329 target_has_execution_current (void)
330 {
331 return target_has_execution_1 (inferior_ptid);
332 }
333
334 /* Complete initialization of T. This ensures that various fields in
335 T are set, if needed by the target implementation. */
336
337 void
338 complete_target_initialization (struct target_ops *t)
339 {
340 /* Provide default values for all "must have" methods. */
341 if (t->to_xfer_partial == NULL)
342 t->to_xfer_partial = default_xfer_partial;
343
344 if (t->to_has_all_memory == NULL)
345 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
346
347 if (t->to_has_memory == NULL)
348 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
349
350 if (t->to_has_stack == NULL)
351 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
352
353 if (t->to_has_registers == NULL)
354 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
355
356 if (t->to_has_execution == NULL)
357 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
358 }
359
360 /* Add possible target architecture T to the list and add a new
361 command 'target T->to_shortname'. Set COMPLETER as the command's
362 completer if not NULL. */
363
364 void
365 add_target_with_completer (struct target_ops *t,
366 completer_ftype *completer)
367 {
368 struct cmd_list_element *c;
369
370 complete_target_initialization (t);
371
372 if (!target_structs)
373 {
374 target_struct_allocsize = DEFAULT_ALLOCSIZE;
375 target_structs = (struct target_ops **) xmalloc
376 (target_struct_allocsize * sizeof (*target_structs));
377 }
378 if (target_struct_size >= target_struct_allocsize)
379 {
380 target_struct_allocsize *= 2;
381 target_structs = (struct target_ops **)
382 xrealloc ((char *) target_structs,
383 target_struct_allocsize * sizeof (*target_structs));
384 }
385 target_structs[target_struct_size++] = t;
386
387 if (targetlist == NULL)
388 add_prefix_cmd ("target", class_run, target_command, _("\
389 Connect to a target machine or process.\n\
390 The first argument is the type or protocol of the target machine.\n\
391 Remaining arguments are interpreted by the target protocol. For more\n\
392 information on the arguments for a particular protocol, type\n\
393 `help target ' followed by the protocol name."),
394 &targetlist, "target ", 0, &cmdlist);
395 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
396 &targetlist);
397 if (completer != NULL)
398 set_cmd_completer (c, completer);
399 }
400
401 /* Add a possible target architecture to the list. */
402
403 void
404 add_target (struct target_ops *t)
405 {
406 add_target_with_completer (t, NULL);
407 }
408
409 /* See target.h. */
410
411 void
412 add_deprecated_target_alias (struct target_ops *t, char *alias)
413 {
414 struct cmd_list_element *c;
415 char *alt;
416
417 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
418 see PR cli/15104. */
419 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
420 alt = xstrprintf ("target %s", t->to_shortname);
421 deprecate_cmd (c, alt);
422 }
423
424 /* Stub functions */
425
426 void
427 target_ignore (void)
428 {
429 }
430
431 void
432 target_kill (void)
433 {
434 struct target_ops *t;
435
436 for (t = current_target.beneath; t != NULL; t = t->beneath)
437 if (t->to_kill != NULL)
438 {
439 if (targetdebug)
440 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
441
442 t->to_kill (t);
443 return;
444 }
445
446 noprocess ();
447 }
448
449 void
450 target_load (char *arg, int from_tty)
451 {
452 target_dcache_invalidate ();
453 (*current_target.to_load) (arg, from_tty);
454 }
455
456 void
457 target_create_inferior (char *exec_file, char *args,
458 char **env, int from_tty)
459 {
460 struct target_ops *t;
461
462 for (t = current_target.beneath; t != NULL; t = t->beneath)
463 {
464 if (t->to_create_inferior != NULL)
465 {
466 t->to_create_inferior (t, exec_file, args, env, from_tty);
467 if (targetdebug)
468 fprintf_unfiltered (gdb_stdlog,
469 "target_create_inferior (%s, %s, xxx, %d)\n",
470 exec_file, args, from_tty);
471 return;
472 }
473 }
474
475 internal_error (__FILE__, __LINE__,
476 _("could not find a target to create inferior"));
477 }
478
479 void
480 target_terminal_inferior (void)
481 {
482 /* A background resume (``run&'') should leave GDB in control of the
483 terminal. Use target_can_async_p, not target_is_async_p, since at
484 this point the target is not async yet. However, if sync_execution
485 is not set, we know it will become async prior to resume. */
486 if (target_can_async_p () && !sync_execution)
487 return;
488
489 /* If GDB is resuming the inferior in the foreground, install
490 inferior's terminal modes. */
491 (*current_target.to_terminal_inferior) ();
492 }
493
494 static int
495 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
496 struct target_ops *t)
497 {
498 errno = EIO; /* Can't read/write this location. */
499 return 0; /* No bytes handled. */
500 }
501
502 static void
503 tcomplain (void)
504 {
505 error (_("You can't do that when your target is `%s'"),
506 current_target.to_shortname);
507 }
508
509 void
510 noprocess (void)
511 {
512 error (_("You can't do that without a process to debug."));
513 }
514
515 static void
516 default_terminal_info (const char *args, int from_tty)
517 {
518 printf_unfiltered (_("No saved terminal information.\n"));
519 }
520
521 /* A default implementation for the to_get_ada_task_ptid target method.
522
523 This function builds the PTID by using both LWP and TID as part of
524 the PTID lwp and tid elements. The pid used is the pid of the
525 inferior_ptid. */
526
527 static ptid_t
528 default_get_ada_task_ptid (long lwp, long tid)
529 {
530 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
531 }
532
533 static enum exec_direction_kind
534 default_execution_direction (void)
535 {
536 if (!target_can_execute_reverse)
537 return EXEC_FORWARD;
538 else if (!target_can_async_p ())
539 return EXEC_FORWARD;
540 else
541 gdb_assert_not_reached ("\
542 to_execution_direction must be implemented for reverse async");
543 }
544
545 /* Go through the target stack from top to bottom, copying over zero
546 entries in current_target, then filling in still empty entries. In
547 effect, we are doing class inheritance through the pushed target
548 vectors.
549
550 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
551 is currently implemented, is that it discards any knowledge of
552 which target an inherited method originally belonged to.
553 Consequently, new new target methods should instead explicitly and
554 locally search the target stack for the target that can handle the
555 request. */
556
557 static void
558 update_current_target (void)
559 {
560 struct target_ops *t;
561
562 /* First, reset current's contents. */
563 memset (&current_target, 0, sizeof (current_target));
564
565 #define INHERIT(FIELD, TARGET) \
566 if (!current_target.FIELD) \
567 current_target.FIELD = (TARGET)->FIELD
568
569 for (t = target_stack; t; t = t->beneath)
570 {
571 INHERIT (to_shortname, t);
572 INHERIT (to_longname, t);
573 INHERIT (to_doc, t);
574 /* Do not inherit to_open. */
575 /* Do not inherit to_close. */
576 /* Do not inherit to_attach. */
577 INHERIT (to_post_attach, t);
578 INHERIT (to_attach_no_wait, t);
579 /* Do not inherit to_detach. */
580 /* Do not inherit to_disconnect. */
581 /* Do not inherit to_resume. */
582 /* Do not inherit to_wait. */
583 /* Do not inherit to_fetch_registers. */
584 /* Do not inherit to_store_registers. */
585 INHERIT (to_prepare_to_store, t);
586 INHERIT (deprecated_xfer_memory, t);
587 INHERIT (to_files_info, t);
588 /* Do not inherit to_insert_breakpoint. */
589 /* Do not inherit to_remove_breakpoint. */
590 INHERIT (to_can_use_hw_breakpoint, t);
591 INHERIT (to_insert_hw_breakpoint, t);
592 INHERIT (to_remove_hw_breakpoint, t);
593 /* Do not inherit to_ranged_break_num_registers. */
594 INHERIT (to_insert_watchpoint, t);
595 INHERIT (to_remove_watchpoint, t);
596 /* Do not inherit to_insert_mask_watchpoint. */
597 /* Do not inherit to_remove_mask_watchpoint. */
598 INHERIT (to_stopped_data_address, t);
599 INHERIT (to_have_steppable_watchpoint, t);
600 INHERIT (to_have_continuable_watchpoint, t);
601 INHERIT (to_stopped_by_watchpoint, t);
602 INHERIT (to_watchpoint_addr_within_range, t);
603 INHERIT (to_region_ok_for_hw_watchpoint, t);
604 INHERIT (to_can_accel_watchpoint_condition, t);
605 /* Do not inherit to_masked_watch_num_registers. */
606 INHERIT (to_terminal_init, t);
607 INHERIT (to_terminal_inferior, t);
608 INHERIT (to_terminal_ours_for_output, t);
609 INHERIT (to_terminal_ours, t);
610 INHERIT (to_terminal_save_ours, t);
611 INHERIT (to_terminal_info, t);
612 /* Do not inherit to_kill. */
613 INHERIT (to_load, t);
614 /* Do no inherit to_create_inferior. */
615 INHERIT (to_post_startup_inferior, t);
616 INHERIT (to_insert_fork_catchpoint, t);
617 INHERIT (to_remove_fork_catchpoint, t);
618 INHERIT (to_insert_vfork_catchpoint, t);
619 INHERIT (to_remove_vfork_catchpoint, t);
620 /* Do not inherit to_follow_fork. */
621 INHERIT (to_insert_exec_catchpoint, t);
622 INHERIT (to_remove_exec_catchpoint, t);
623 INHERIT (to_set_syscall_catchpoint, t);
624 INHERIT (to_has_exited, t);
625 /* Do not inherit to_mourn_inferior. */
626 INHERIT (to_can_run, t);
627 /* Do not inherit to_pass_signals. */
628 /* Do not inherit to_program_signals. */
629 /* Do not inherit to_thread_alive. */
630 /* Do not inherit to_find_new_threads. */
631 /* Do not inherit to_pid_to_str. */
632 INHERIT (to_extra_thread_info, t);
633 INHERIT (to_thread_name, t);
634 INHERIT (to_stop, t);
635 /* Do not inherit to_xfer_partial. */
636 INHERIT (to_rcmd, t);
637 INHERIT (to_pid_to_exec_file, t);
638 INHERIT (to_log_command, t);
639 INHERIT (to_stratum, t);
640 /* Do not inherit to_has_all_memory. */
641 /* Do not inherit to_has_memory. */
642 /* Do not inherit to_has_stack. */
643 /* Do not inherit to_has_registers. */
644 /* Do not inherit to_has_execution. */
645 INHERIT (to_has_thread_control, t);
646 INHERIT (to_can_async_p, t);
647 INHERIT (to_is_async_p, t);
648 INHERIT (to_async, t);
649 INHERIT (to_find_memory_regions, t);
650 INHERIT (to_make_corefile_notes, t);
651 INHERIT (to_get_bookmark, t);
652 INHERIT (to_goto_bookmark, t);
653 /* Do not inherit to_get_thread_local_address. */
654 INHERIT (to_can_execute_reverse, t);
655 INHERIT (to_execution_direction, t);
656 INHERIT (to_thread_architecture, t);
657 /* Do not inherit to_read_description. */
658 INHERIT (to_get_ada_task_ptid, t);
659 /* Do not inherit to_search_memory. */
660 INHERIT (to_supports_multi_process, t);
661 INHERIT (to_supports_enable_disable_tracepoint, t);
662 INHERIT (to_supports_string_tracing, t);
663 INHERIT (to_trace_init, t);
664 INHERIT (to_download_tracepoint, t);
665 INHERIT (to_can_download_tracepoint, t);
666 INHERIT (to_download_trace_state_variable, t);
667 INHERIT (to_enable_tracepoint, t);
668 INHERIT (to_disable_tracepoint, t);
669 INHERIT (to_trace_set_readonly_regions, t);
670 INHERIT (to_trace_start, t);
671 INHERIT (to_get_trace_status, t);
672 INHERIT (to_get_tracepoint_status, t);
673 INHERIT (to_trace_stop, t);
674 INHERIT (to_trace_find, t);
675 INHERIT (to_get_trace_state_variable_value, t);
676 INHERIT (to_save_trace_data, t);
677 INHERIT (to_upload_tracepoints, t);
678 INHERIT (to_upload_trace_state_variables, t);
679 INHERIT (to_get_raw_trace_data, t);
680 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
681 INHERIT (to_set_disconnected_tracing, t);
682 INHERIT (to_set_circular_trace_buffer, t);
683 INHERIT (to_set_trace_buffer_size, t);
684 INHERIT (to_set_trace_notes, t);
685 INHERIT (to_get_tib_address, t);
686 INHERIT (to_set_permissions, t);
687 INHERIT (to_static_tracepoint_marker_at, t);
688 INHERIT (to_static_tracepoint_markers_by_strid, t);
689 INHERIT (to_traceframe_info, t);
690 INHERIT (to_use_agent, t);
691 INHERIT (to_can_use_agent, t);
692 INHERIT (to_augmented_libraries_svr4_read, t);
693 INHERIT (to_magic, t);
694 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
695 INHERIT (to_can_run_breakpoint_commands, t);
696 /* Do not inherit to_memory_map. */
697 /* Do not inherit to_flash_erase. */
698 /* Do not inherit to_flash_done. */
699 }
700 #undef INHERIT
701
702 /* Clean up a target struct so it no longer has any zero pointers in
703 it. Some entries are defaulted to a method that print an error,
704 others are hard-wired to a standard recursive default. */
705
706 #define de_fault(field, value) \
707 if (!current_target.field) \
708 current_target.field = value
709
710 de_fault (to_open,
711 (void (*) (char *, int))
712 tcomplain);
713 de_fault (to_close,
714 (void (*) (void))
715 target_ignore);
716 de_fault (to_post_attach,
717 (void (*) (int))
718 target_ignore);
719 de_fault (to_prepare_to_store,
720 (void (*) (struct target_ops *, struct regcache *))
721 noprocess);
722 de_fault (deprecated_xfer_memory,
723 (int (*) (CORE_ADDR, gdb_byte *, int, int,
724 struct mem_attrib *, struct target_ops *))
725 nomemory);
726 de_fault (to_files_info,
727 (void (*) (struct target_ops *))
728 target_ignore);
729 de_fault (to_can_use_hw_breakpoint,
730 (int (*) (int, int, int))
731 return_zero);
732 de_fault (to_insert_hw_breakpoint,
733 (int (*) (struct gdbarch *, struct bp_target_info *))
734 return_minus_one);
735 de_fault (to_remove_hw_breakpoint,
736 (int (*) (struct gdbarch *, struct bp_target_info *))
737 return_minus_one);
738 de_fault (to_insert_watchpoint,
739 (int (*) (CORE_ADDR, int, int, struct expression *))
740 return_minus_one);
741 de_fault (to_remove_watchpoint,
742 (int (*) (CORE_ADDR, int, int, struct expression *))
743 return_minus_one);
744 de_fault (to_stopped_by_watchpoint,
745 (int (*) (void))
746 return_zero);
747 de_fault (to_stopped_data_address,
748 (int (*) (struct target_ops *, CORE_ADDR *))
749 return_zero);
750 de_fault (to_watchpoint_addr_within_range,
751 default_watchpoint_addr_within_range);
752 de_fault (to_region_ok_for_hw_watchpoint,
753 default_region_ok_for_hw_watchpoint);
754 de_fault (to_can_accel_watchpoint_condition,
755 (int (*) (CORE_ADDR, int, int, struct expression *))
756 return_zero);
757 de_fault (to_terminal_init,
758 (void (*) (void))
759 target_ignore);
760 de_fault (to_terminal_inferior,
761 (void (*) (void))
762 target_ignore);
763 de_fault (to_terminal_ours_for_output,
764 (void (*) (void))
765 target_ignore);
766 de_fault (to_terminal_ours,
767 (void (*) (void))
768 target_ignore);
769 de_fault (to_terminal_save_ours,
770 (void (*) (void))
771 target_ignore);
772 de_fault (to_terminal_info,
773 default_terminal_info);
774 de_fault (to_load,
775 (void (*) (char *, int))
776 tcomplain);
777 de_fault (to_post_startup_inferior,
778 (void (*) (ptid_t))
779 target_ignore);
780 de_fault (to_insert_fork_catchpoint,
781 (int (*) (int))
782 return_one);
783 de_fault (to_remove_fork_catchpoint,
784 (int (*) (int))
785 return_one);
786 de_fault (to_insert_vfork_catchpoint,
787 (int (*) (int))
788 return_one);
789 de_fault (to_remove_vfork_catchpoint,
790 (int (*) (int))
791 return_one);
792 de_fault (to_insert_exec_catchpoint,
793 (int (*) (int))
794 return_one);
795 de_fault (to_remove_exec_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_set_syscall_catchpoint,
799 (int (*) (int, int, int, int, int *))
800 return_one);
801 de_fault (to_has_exited,
802 (int (*) (int, int, int *))
803 return_zero);
804 de_fault (to_can_run,
805 return_zero);
806 de_fault (to_extra_thread_info,
807 (char *(*) (struct thread_info *))
808 return_null);
809 de_fault (to_thread_name,
810 (char *(*) (struct thread_info *))
811 return_null);
812 de_fault (to_stop,
813 (void (*) (ptid_t))
814 target_ignore);
815 current_target.to_xfer_partial = current_xfer_partial;
816 de_fault (to_rcmd,
817 (void (*) (char *, struct ui_file *))
818 tcomplain);
819 de_fault (to_pid_to_exec_file,
820 (char *(*) (int))
821 return_null);
822 de_fault (to_async,
823 (void (*) (void (*) (enum inferior_event_type, void*), void*))
824 tcomplain);
825 de_fault (to_thread_architecture,
826 default_thread_architecture);
827 current_target.to_read_description = NULL;
828 de_fault (to_get_ada_task_ptid,
829 (ptid_t (*) (long, long))
830 default_get_ada_task_ptid);
831 de_fault (to_supports_multi_process,
832 (int (*) (void))
833 return_zero);
834 de_fault (to_supports_enable_disable_tracepoint,
835 (int (*) (void))
836 return_zero);
837 de_fault (to_supports_string_tracing,
838 (int (*) (void))
839 return_zero);
840 de_fault (to_trace_init,
841 (void (*) (void))
842 tcomplain);
843 de_fault (to_download_tracepoint,
844 (void (*) (struct bp_location *))
845 tcomplain);
846 de_fault (to_can_download_tracepoint,
847 (int (*) (void))
848 return_zero);
849 de_fault (to_download_trace_state_variable,
850 (void (*) (struct trace_state_variable *))
851 tcomplain);
852 de_fault (to_enable_tracepoint,
853 (void (*) (struct bp_location *))
854 tcomplain);
855 de_fault (to_disable_tracepoint,
856 (void (*) (struct bp_location *))
857 tcomplain);
858 de_fault (to_trace_set_readonly_regions,
859 (void (*) (void))
860 tcomplain);
861 de_fault (to_trace_start,
862 (void (*) (void))
863 tcomplain);
864 de_fault (to_get_trace_status,
865 (int (*) (struct trace_status *))
866 return_minus_one);
867 de_fault (to_get_tracepoint_status,
868 (void (*) (struct breakpoint *, struct uploaded_tp *))
869 tcomplain);
870 de_fault (to_trace_stop,
871 (void (*) (void))
872 tcomplain);
873 de_fault (to_trace_find,
874 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
875 return_minus_one);
876 de_fault (to_get_trace_state_variable_value,
877 (int (*) (int, LONGEST *))
878 return_zero);
879 de_fault (to_save_trace_data,
880 (int (*) (const char *))
881 tcomplain);
882 de_fault (to_upload_tracepoints,
883 (int (*) (struct uploaded_tp **))
884 return_zero);
885 de_fault (to_upload_trace_state_variables,
886 (int (*) (struct uploaded_tsv **))
887 return_zero);
888 de_fault (to_get_raw_trace_data,
889 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
890 tcomplain);
891 de_fault (to_get_min_fast_tracepoint_insn_len,
892 (int (*) (void))
893 return_minus_one);
894 de_fault (to_set_disconnected_tracing,
895 (void (*) (int))
896 target_ignore);
897 de_fault (to_set_circular_trace_buffer,
898 (void (*) (int))
899 target_ignore);
900 de_fault (to_set_trace_buffer_size,
901 (void (*) (LONGEST))
902 target_ignore);
903 de_fault (to_set_trace_notes,
904 (int (*) (const char *, const char *, const char *))
905 return_zero);
906 de_fault (to_get_tib_address,
907 (int (*) (ptid_t, CORE_ADDR *))
908 tcomplain);
909 de_fault (to_set_permissions,
910 (void (*) (void))
911 target_ignore);
912 de_fault (to_static_tracepoint_marker_at,
913 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
914 return_zero);
915 de_fault (to_static_tracepoint_markers_by_strid,
916 (VEC(static_tracepoint_marker_p) * (*) (const char *))
917 tcomplain);
918 de_fault (to_traceframe_info,
919 (struct traceframe_info * (*) (void))
920 return_null);
921 de_fault (to_supports_evaluation_of_breakpoint_conditions,
922 (int (*) (void))
923 return_zero);
924 de_fault (to_can_run_breakpoint_commands,
925 (int (*) (void))
926 return_zero);
927 de_fault (to_use_agent,
928 (int (*) (int))
929 tcomplain);
930 de_fault (to_can_use_agent,
931 (int (*) (void))
932 return_zero);
933 de_fault (to_augmented_libraries_svr4_read,
934 (int (*) (void))
935 return_zero);
936 de_fault (to_execution_direction, default_execution_direction);
937
938 #undef de_fault
939
940 /* Finally, position the target-stack beneath the squashed
941 "current_target". That way code looking for a non-inherited
942 target method can quickly and simply find it. */
943 current_target.beneath = target_stack;
944
945 if (targetdebug)
946 setup_target_debug ();
947 }
948
949 /* Push a new target type into the stack of the existing target accessors,
950 possibly superseding some of the existing accessors.
951
952 Rather than allow an empty stack, we always have the dummy target at
953 the bottom stratum, so we can call the function vectors without
954 checking them. */
955
956 void
957 push_target (struct target_ops *t)
958 {
959 struct target_ops **cur;
960
961 /* Check magic number. If wrong, it probably means someone changed
962 the struct definition, but not all the places that initialize one. */
963 if (t->to_magic != OPS_MAGIC)
964 {
965 fprintf_unfiltered (gdb_stderr,
966 "Magic number of %s target struct wrong\n",
967 t->to_shortname);
968 internal_error (__FILE__, __LINE__,
969 _("failed internal consistency check"));
970 }
971
972 /* Find the proper stratum to install this target in. */
973 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
974 {
975 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
976 break;
977 }
978
979 /* If there's already targets at this stratum, remove them. */
980 /* FIXME: cagney/2003-10-15: I think this should be popping all
981 targets to CUR, and not just those at this stratum level. */
982 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
983 {
984 /* There's already something at this stratum level. Close it,
985 and un-hook it from the stack. */
986 struct target_ops *tmp = (*cur);
987
988 (*cur) = (*cur)->beneath;
989 tmp->beneath = NULL;
990 target_close (tmp);
991 }
992
993 /* We have removed all targets in our stratum, now add the new one. */
994 t->beneath = (*cur);
995 (*cur) = t;
996
997 update_current_target ();
998 }
999
1000 /* Remove a target_ops vector from the stack, wherever it may be.
1001 Return how many times it was removed (0 or 1). */
1002
1003 int
1004 unpush_target (struct target_ops *t)
1005 {
1006 struct target_ops **cur;
1007 struct target_ops *tmp;
1008
1009 if (t->to_stratum == dummy_stratum)
1010 internal_error (__FILE__, __LINE__,
1011 _("Attempt to unpush the dummy target"));
1012
1013 /* Look for the specified target. Note that we assume that a target
1014 can only occur once in the target stack. */
1015
1016 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1017 {
1018 if ((*cur) == t)
1019 break;
1020 }
1021
1022 /* If we don't find target_ops, quit. Only open targets should be
1023 closed. */
1024 if ((*cur) == NULL)
1025 return 0;
1026
1027 /* Unchain the target. */
1028 tmp = (*cur);
1029 (*cur) = (*cur)->beneath;
1030 tmp->beneath = NULL;
1031
1032 update_current_target ();
1033
1034 /* Finally close the target. Note we do this after unchaining, so
1035 any target method calls from within the target_close
1036 implementation don't end up in T anymore. */
1037 target_close (t);
1038
1039 return 1;
1040 }
1041
1042 void
1043 pop_all_targets_above (enum strata above_stratum)
1044 {
1045 while ((int) (current_target.to_stratum) > (int) above_stratum)
1046 {
1047 if (!unpush_target (target_stack))
1048 {
1049 fprintf_unfiltered (gdb_stderr,
1050 "pop_all_targets couldn't find target %s\n",
1051 target_stack->to_shortname);
1052 internal_error (__FILE__, __LINE__,
1053 _("failed internal consistency check"));
1054 break;
1055 }
1056 }
1057 }
1058
1059 void
1060 pop_all_targets (void)
1061 {
1062 pop_all_targets_above (dummy_stratum);
1063 }
1064
1065 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1066
1067 int
1068 target_is_pushed (struct target_ops *t)
1069 {
1070 struct target_ops **cur;
1071
1072 /* Check magic number. If wrong, it probably means someone changed
1073 the struct definition, but not all the places that initialize one. */
1074 if (t->to_magic != OPS_MAGIC)
1075 {
1076 fprintf_unfiltered (gdb_stderr,
1077 "Magic number of %s target struct wrong\n",
1078 t->to_shortname);
1079 internal_error (__FILE__, __LINE__,
1080 _("failed internal consistency check"));
1081 }
1082
1083 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1084 if (*cur == t)
1085 return 1;
1086
1087 return 0;
1088 }
1089
1090 /* Using the objfile specified in OBJFILE, find the address for the
1091 current thread's thread-local storage with offset OFFSET. */
1092 CORE_ADDR
1093 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1094 {
1095 volatile CORE_ADDR addr = 0;
1096 struct target_ops *target;
1097
1098 for (target = current_target.beneath;
1099 target != NULL;
1100 target = target->beneath)
1101 {
1102 if (target->to_get_thread_local_address != NULL)
1103 break;
1104 }
1105
1106 if (target != NULL
1107 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1108 {
1109 ptid_t ptid = inferior_ptid;
1110 volatile struct gdb_exception ex;
1111
1112 TRY_CATCH (ex, RETURN_MASK_ALL)
1113 {
1114 CORE_ADDR lm_addr;
1115
1116 /* Fetch the load module address for this objfile. */
1117 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1118 objfile);
1119 /* If it's 0, throw the appropriate exception. */
1120 if (lm_addr == 0)
1121 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1122 _("TLS load module not found"));
1123
1124 addr = target->to_get_thread_local_address (target, ptid,
1125 lm_addr, offset);
1126 }
1127 /* If an error occurred, print TLS related messages here. Otherwise,
1128 throw the error to some higher catcher. */
1129 if (ex.reason < 0)
1130 {
1131 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1132
1133 switch (ex.error)
1134 {
1135 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1136 error (_("Cannot find thread-local variables "
1137 "in this thread library."));
1138 break;
1139 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1140 if (objfile_is_library)
1141 error (_("Cannot find shared library `%s' in dynamic"
1142 " linker's load module list"), objfile_name (objfile));
1143 else
1144 error (_("Cannot find executable file `%s' in dynamic"
1145 " linker's load module list"), objfile_name (objfile));
1146 break;
1147 case TLS_NOT_ALLOCATED_YET_ERROR:
1148 if (objfile_is_library)
1149 error (_("The inferior has not yet allocated storage for"
1150 " thread-local variables in\n"
1151 "the shared library `%s'\n"
1152 "for %s"),
1153 objfile_name (objfile), target_pid_to_str (ptid));
1154 else
1155 error (_("The inferior has not yet allocated storage for"
1156 " thread-local variables in\n"
1157 "the executable `%s'\n"
1158 "for %s"),
1159 objfile_name (objfile), target_pid_to_str (ptid));
1160 break;
1161 case TLS_GENERIC_ERROR:
1162 if (objfile_is_library)
1163 error (_("Cannot find thread-local storage for %s, "
1164 "shared library %s:\n%s"),
1165 target_pid_to_str (ptid),
1166 objfile_name (objfile), ex.message);
1167 else
1168 error (_("Cannot find thread-local storage for %s, "
1169 "executable file %s:\n%s"),
1170 target_pid_to_str (ptid),
1171 objfile_name (objfile), ex.message);
1172 break;
1173 default:
1174 throw_exception (ex);
1175 break;
1176 }
1177 }
1178 }
1179 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1180 TLS is an ABI-specific thing. But we don't do that yet. */
1181 else
1182 error (_("Cannot find thread-local variables on this target"));
1183
1184 return addr;
1185 }
1186
1187 const char *
1188 target_xfer_error_to_string (enum target_xfer_error err)
1189 {
1190 #define CASE(X) case X: return #X
1191 switch (err)
1192 {
1193 CASE(TARGET_XFER_E_IO);
1194 CASE(TARGET_XFER_E_UNAVAILABLE);
1195 default:
1196 return "<unknown>";
1197 }
1198 #undef CASE
1199 };
1200
1201
1202 #undef MIN
1203 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1204
1205 /* target_read_string -- read a null terminated string, up to LEN bytes,
1206 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1207 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1208 is responsible for freeing it. Return the number of bytes successfully
1209 read. */
1210
1211 int
1212 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1213 {
1214 int tlen, offset, i;
1215 gdb_byte buf[4];
1216 int errcode = 0;
1217 char *buffer;
1218 int buffer_allocated;
1219 char *bufptr;
1220 unsigned int nbytes_read = 0;
1221
1222 gdb_assert (string);
1223
1224 /* Small for testing. */
1225 buffer_allocated = 4;
1226 buffer = xmalloc (buffer_allocated);
1227 bufptr = buffer;
1228
1229 while (len > 0)
1230 {
1231 tlen = MIN (len, 4 - (memaddr & 3));
1232 offset = memaddr & 3;
1233
1234 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1235 if (errcode != 0)
1236 {
1237 /* The transfer request might have crossed the boundary to an
1238 unallocated region of memory. Retry the transfer, requesting
1239 a single byte. */
1240 tlen = 1;
1241 offset = 0;
1242 errcode = target_read_memory (memaddr, buf, 1);
1243 if (errcode != 0)
1244 goto done;
1245 }
1246
1247 if (bufptr - buffer + tlen > buffer_allocated)
1248 {
1249 unsigned int bytes;
1250
1251 bytes = bufptr - buffer;
1252 buffer_allocated *= 2;
1253 buffer = xrealloc (buffer, buffer_allocated);
1254 bufptr = buffer + bytes;
1255 }
1256
1257 for (i = 0; i < tlen; i++)
1258 {
1259 *bufptr++ = buf[i + offset];
1260 if (buf[i + offset] == '\000')
1261 {
1262 nbytes_read += i + 1;
1263 goto done;
1264 }
1265 }
1266
1267 memaddr += tlen;
1268 len -= tlen;
1269 nbytes_read += tlen;
1270 }
1271 done:
1272 *string = buffer;
1273 if (errnop != NULL)
1274 *errnop = errcode;
1275 return nbytes_read;
1276 }
1277
1278 struct target_section_table *
1279 target_get_section_table (struct target_ops *target)
1280 {
1281 struct target_ops *t;
1282
1283 if (targetdebug)
1284 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1285
1286 for (t = target; t != NULL; t = t->beneath)
1287 if (t->to_get_section_table != NULL)
1288 return (*t->to_get_section_table) (t);
1289
1290 return NULL;
1291 }
1292
1293 /* Find a section containing ADDR. */
1294
1295 struct target_section *
1296 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1297 {
1298 struct target_section_table *table = target_get_section_table (target);
1299 struct target_section *secp;
1300
1301 if (table == NULL)
1302 return NULL;
1303
1304 for (secp = table->sections; secp < table->sections_end; secp++)
1305 {
1306 if (addr >= secp->addr && addr < secp->endaddr)
1307 return secp;
1308 }
1309 return NULL;
1310 }
1311
1312 /* Read memory from the live target, even if currently inspecting a
1313 traceframe. The return is the same as that of target_read. */
1314
1315 static LONGEST
1316 target_read_live_memory (enum target_object object,
1317 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len)
1318 {
1319 LONGEST ret;
1320 struct cleanup *cleanup;
1321
1322 /* Switch momentarily out of tfind mode so to access live memory.
1323 Note that this must not clear global state, such as the frame
1324 cache, which must still remain valid for the previous traceframe.
1325 We may be _building_ the frame cache at this point. */
1326 cleanup = make_cleanup_restore_traceframe_number ();
1327 set_traceframe_number (-1);
1328
1329 ret = target_read (current_target.beneath, object, NULL,
1330 myaddr, memaddr, len);
1331
1332 do_cleanups (cleanup);
1333 return ret;
1334 }
1335
1336 /* Using the set of read-only target sections of OPS, read live
1337 read-only memory. Note that the actual reads start from the
1338 top-most target again.
1339
1340 For interface/parameters/return description see target.h,
1341 to_xfer_partial. */
1342
1343 static LONGEST
1344 memory_xfer_live_readonly_partial (struct target_ops *ops,
1345 enum target_object object,
1346 gdb_byte *readbuf, ULONGEST memaddr,
1347 ULONGEST len)
1348 {
1349 struct target_section *secp;
1350 struct target_section_table *table;
1351
1352 secp = target_section_by_addr (ops, memaddr);
1353 if (secp != NULL
1354 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1355 secp->the_bfd_section)
1356 & SEC_READONLY))
1357 {
1358 struct target_section *p;
1359 ULONGEST memend = memaddr + len;
1360
1361 table = target_get_section_table (ops);
1362
1363 for (p = table->sections; p < table->sections_end; p++)
1364 {
1365 if (memaddr >= p->addr)
1366 {
1367 if (memend <= p->endaddr)
1368 {
1369 /* Entire transfer is within this section. */
1370 return target_read_live_memory (object, memaddr,
1371 readbuf, len);
1372 }
1373 else if (memaddr >= p->endaddr)
1374 {
1375 /* This section ends before the transfer starts. */
1376 continue;
1377 }
1378 else
1379 {
1380 /* This section overlaps the transfer. Just do half. */
1381 len = p->endaddr - memaddr;
1382 return target_read_live_memory (object, memaddr,
1383 readbuf, len);
1384 }
1385 }
1386 }
1387 }
1388
1389 return 0;
1390 }
1391
1392 /* Read memory from more than one valid target. A core file, for
1393 instance, could have some of memory but delegate other bits to
1394 the target below it. So, we must manually try all targets. */
1395
1396 static LONGEST
1397 raw_memory_xfer_partial (struct target_ops *ops, void *readbuf,
1398 const void *writebuf, ULONGEST memaddr, LONGEST len)
1399 {
1400 LONGEST res;
1401
1402 do
1403 {
1404 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1405 readbuf, writebuf, memaddr, len);
1406 if (res > 0)
1407 break;
1408
1409 /* We want to continue past core files to executables, but not
1410 past a running target's memory. */
1411 if (ops->to_has_all_memory (ops))
1412 break;
1413
1414 ops = ops->beneath;
1415 }
1416 while (ops != NULL);
1417
1418 return res;
1419 }
1420
1421 /* Perform a partial memory transfer.
1422 For docs see target.h, to_xfer_partial. */
1423
1424 static LONGEST
1425 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1426 void *readbuf, const void *writebuf, ULONGEST memaddr,
1427 ULONGEST len)
1428 {
1429 LONGEST res;
1430 int reg_len;
1431 struct mem_region *region;
1432 struct inferior *inf;
1433
1434 /* For accesses to unmapped overlay sections, read directly from
1435 files. Must do this first, as MEMADDR may need adjustment. */
1436 if (readbuf != NULL && overlay_debugging)
1437 {
1438 struct obj_section *section = find_pc_overlay (memaddr);
1439
1440 if (pc_in_unmapped_range (memaddr, section))
1441 {
1442 struct target_section_table *table
1443 = target_get_section_table (ops);
1444 const char *section_name = section->the_bfd_section->name;
1445
1446 memaddr = overlay_mapped_address (memaddr, section);
1447 return section_table_xfer_memory_partial (readbuf, writebuf,
1448 memaddr, len,
1449 table->sections,
1450 table->sections_end,
1451 section_name);
1452 }
1453 }
1454
1455 /* Try the executable files, if "trust-readonly-sections" is set. */
1456 if (readbuf != NULL && trust_readonly)
1457 {
1458 struct target_section *secp;
1459 struct target_section_table *table;
1460
1461 secp = target_section_by_addr (ops, memaddr);
1462 if (secp != NULL
1463 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1464 secp->the_bfd_section)
1465 & SEC_READONLY))
1466 {
1467 table = target_get_section_table (ops);
1468 return section_table_xfer_memory_partial (readbuf, writebuf,
1469 memaddr, len,
1470 table->sections,
1471 table->sections_end,
1472 NULL);
1473 }
1474 }
1475
1476 /* If reading unavailable memory in the context of traceframes, and
1477 this address falls within a read-only section, fallback to
1478 reading from live memory. */
1479 if (readbuf != NULL && get_traceframe_number () != -1)
1480 {
1481 VEC(mem_range_s) *available;
1482
1483 /* If we fail to get the set of available memory, then the
1484 target does not support querying traceframe info, and so we
1485 attempt reading from the traceframe anyway (assuming the
1486 target implements the old QTro packet then). */
1487 if (traceframe_available_memory (&available, memaddr, len))
1488 {
1489 struct cleanup *old_chain;
1490
1491 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1492
1493 if (VEC_empty (mem_range_s, available)
1494 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1495 {
1496 /* Don't read into the traceframe's available
1497 memory. */
1498 if (!VEC_empty (mem_range_s, available))
1499 {
1500 LONGEST oldlen = len;
1501
1502 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1503 gdb_assert (len <= oldlen);
1504 }
1505
1506 do_cleanups (old_chain);
1507
1508 /* This goes through the topmost target again. */
1509 res = memory_xfer_live_readonly_partial (ops, object,
1510 readbuf, memaddr, len);
1511 if (res > 0)
1512 return res;
1513
1514 /* No use trying further, we know some memory starting
1515 at MEMADDR isn't available. */
1516 return TARGET_XFER_E_UNAVAILABLE;
1517 }
1518
1519 /* Don't try to read more than how much is available, in
1520 case the target implements the deprecated QTro packet to
1521 cater for older GDBs (the target's knowledge of read-only
1522 sections may be outdated by now). */
1523 len = VEC_index (mem_range_s, available, 0)->length;
1524
1525 do_cleanups (old_chain);
1526 }
1527 }
1528
1529 /* Try GDB's internal data cache. */
1530 region = lookup_mem_region (memaddr);
1531 /* region->hi == 0 means there's no upper bound. */
1532 if (memaddr + len < region->hi || region->hi == 0)
1533 reg_len = len;
1534 else
1535 reg_len = region->hi - memaddr;
1536
1537 switch (region->attrib.mode)
1538 {
1539 case MEM_RO:
1540 if (writebuf != NULL)
1541 return -1;
1542 break;
1543
1544 case MEM_WO:
1545 if (readbuf != NULL)
1546 return -1;
1547 break;
1548
1549 case MEM_FLASH:
1550 /* We only support writing to flash during "load" for now. */
1551 if (writebuf != NULL)
1552 error (_("Writing to flash memory forbidden in this context"));
1553 break;
1554
1555 case MEM_NONE:
1556 return -1;
1557 }
1558
1559 if (!ptid_equal (inferior_ptid, null_ptid))
1560 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1561 else
1562 inf = NULL;
1563
1564 if (inf != NULL
1565 /* The dcache reads whole cache lines; that doesn't play well
1566 with reading from a trace buffer, because reading outside of
1567 the collected memory range fails. */
1568 && get_traceframe_number () == -1
1569 && (region->attrib.cache
1570 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1571 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1572 {
1573 DCACHE *dcache = target_dcache_get_or_init ();
1574
1575 if (readbuf != NULL)
1576 res = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1577 else
1578 /* FIXME drow/2006-08-09: If we're going to preserve const
1579 correctness dcache_xfer_memory should take readbuf and
1580 writebuf. */
1581 res = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1582 reg_len, 1);
1583 if (res <= 0)
1584 return -1;
1585 else
1586 return res;
1587 }
1588
1589 /* If none of those methods found the memory we wanted, fall back
1590 to a target partial transfer. Normally a single call to
1591 to_xfer_partial is enough; if it doesn't recognize an object
1592 it will call the to_xfer_partial of the next target down.
1593 But for memory this won't do. Memory is the only target
1594 object which can be read from more than one valid target. */
1595 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len);
1596
1597 /* Make sure the cache gets updated no matter what - if we are writing
1598 to the stack. Even if this write is not tagged as such, we still need
1599 to update the cache. */
1600
1601 if (res > 0
1602 && inf != NULL
1603 && writebuf != NULL
1604 && target_dcache_init_p ()
1605 && !region->attrib.cache
1606 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1607 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1608 {
1609 DCACHE *dcache = target_dcache_get ();
1610
1611 dcache_update (dcache, memaddr, (void *) writebuf, res);
1612 }
1613
1614 /* If we still haven't got anything, return the last error. We
1615 give up. */
1616 return res;
1617 }
1618
1619 /* Perform a partial memory transfer. For docs see target.h,
1620 to_xfer_partial. */
1621
1622 static LONGEST
1623 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1624 void *readbuf, const void *writebuf, ULONGEST memaddr,
1625 ULONGEST len)
1626 {
1627 int res;
1628
1629 /* Zero length requests are ok and require no work. */
1630 if (len == 0)
1631 return 0;
1632
1633 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1634 breakpoint insns, thus hiding out from higher layers whether
1635 there are software breakpoints inserted in the code stream. */
1636 if (readbuf != NULL)
1637 {
1638 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1639
1640 if (res > 0 && !show_memory_breakpoints)
1641 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1642 }
1643 else
1644 {
1645 void *buf;
1646 struct cleanup *old_chain;
1647
1648 /* A large write request is likely to be partially satisfied
1649 by memory_xfer_partial_1. We will continually malloc
1650 and free a copy of the entire write request for breakpoint
1651 shadow handling even though we only end up writing a small
1652 subset of it. Cap writes to 4KB to mitigate this. */
1653 len = min (4096, len);
1654
1655 buf = xmalloc (len);
1656 old_chain = make_cleanup (xfree, buf);
1657 memcpy (buf, writebuf, len);
1658
1659 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1660 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1661
1662 do_cleanups (old_chain);
1663 }
1664
1665 return res;
1666 }
1667
1668 static void
1669 restore_show_memory_breakpoints (void *arg)
1670 {
1671 show_memory_breakpoints = (uintptr_t) arg;
1672 }
1673
1674 struct cleanup *
1675 make_show_memory_breakpoints_cleanup (int show)
1676 {
1677 int current = show_memory_breakpoints;
1678
1679 show_memory_breakpoints = show;
1680 return make_cleanup (restore_show_memory_breakpoints,
1681 (void *) (uintptr_t) current);
1682 }
1683
1684 /* For docs see target.h, to_xfer_partial. */
1685
1686 LONGEST
1687 target_xfer_partial (struct target_ops *ops,
1688 enum target_object object, const char *annex,
1689 gdb_byte *readbuf, const gdb_byte *writebuf,
1690 ULONGEST offset, ULONGEST len)
1691 {
1692 LONGEST retval;
1693
1694 gdb_assert (ops->to_xfer_partial != NULL);
1695
1696 if (writebuf && !may_write_memory)
1697 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1698 core_addr_to_string_nz (offset), plongest (len));
1699
1700 /* If this is a memory transfer, let the memory-specific code
1701 have a look at it instead. Memory transfers are more
1702 complicated. */
1703 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1704 || object == TARGET_OBJECT_CODE_MEMORY)
1705 retval = memory_xfer_partial (ops, object, readbuf,
1706 writebuf, offset, len);
1707 else if (object == TARGET_OBJECT_RAW_MEMORY)
1708 {
1709 /* Request the normal memory object from other layers. */
1710 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1711 }
1712 else
1713 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1714 writebuf, offset, len);
1715
1716 if (targetdebug)
1717 {
1718 const unsigned char *myaddr = NULL;
1719
1720 fprintf_unfiltered (gdb_stdlog,
1721 "%s:target_xfer_partial "
1722 "(%d, %s, %s, %s, %s, %s) = %s",
1723 ops->to_shortname,
1724 (int) object,
1725 (annex ? annex : "(null)"),
1726 host_address_to_string (readbuf),
1727 host_address_to_string (writebuf),
1728 core_addr_to_string_nz (offset),
1729 pulongest (len), plongest (retval));
1730
1731 if (readbuf)
1732 myaddr = readbuf;
1733 if (writebuf)
1734 myaddr = writebuf;
1735 if (retval > 0 && myaddr != NULL)
1736 {
1737 int i;
1738
1739 fputs_unfiltered (", bytes =", gdb_stdlog);
1740 for (i = 0; i < retval; i++)
1741 {
1742 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1743 {
1744 if (targetdebug < 2 && i > 0)
1745 {
1746 fprintf_unfiltered (gdb_stdlog, " ...");
1747 break;
1748 }
1749 fprintf_unfiltered (gdb_stdlog, "\n");
1750 }
1751
1752 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1753 }
1754 }
1755
1756 fputc_unfiltered ('\n', gdb_stdlog);
1757 }
1758 return retval;
1759 }
1760
1761 /* Read LEN bytes of target memory at address MEMADDR, placing the
1762 results in GDB's memory at MYADDR. Returns either 0 for success or
1763 a target_xfer_error value if any error occurs.
1764
1765 If an error occurs, no guarantee is made about the contents of the data at
1766 MYADDR. In particular, the caller should not depend upon partial reads
1767 filling the buffer with good data. There is no way for the caller to know
1768 how much good data might have been transfered anyway. Callers that can
1769 deal with partial reads should call target_read (which will retry until
1770 it makes no progress, and then return how much was transferred). */
1771
1772 int
1773 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1774 {
1775 /* Dispatch to the topmost target, not the flattened current_target.
1776 Memory accesses check target->to_has_(all_)memory, and the
1777 flattened target doesn't inherit those. */
1778 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1779 myaddr, memaddr, len) == len)
1780 return 0;
1781 else
1782 return TARGET_XFER_E_IO;
1783 }
1784
1785 /* Like target_read_memory, but specify explicitly that this is a read
1786 from the target's raw memory. That is, this read bypasses the
1787 dcache, breakpoint shadowing, etc. */
1788
1789 int
1790 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1791 {
1792 /* See comment in target_read_memory about why the request starts at
1793 current_target.beneath. */
1794 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1795 myaddr, memaddr, len) == len)
1796 return 0;
1797 else
1798 return TARGET_XFER_E_IO;
1799 }
1800
1801 /* Like target_read_memory, but specify explicitly that this is a read from
1802 the target's stack. This may trigger different cache behavior. */
1803
1804 int
1805 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1806 {
1807 /* See comment in target_read_memory about why the request starts at
1808 current_target.beneath. */
1809 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1810 myaddr, memaddr, len) == len)
1811 return 0;
1812 else
1813 return TARGET_XFER_E_IO;
1814 }
1815
1816 /* Like target_read_memory, but specify explicitly that this is a read from
1817 the target's code. This may trigger different cache behavior. */
1818
1819 int
1820 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1821 {
1822 /* See comment in target_read_memory about why the request starts at
1823 current_target.beneath. */
1824 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1825 myaddr, memaddr, len) == len)
1826 return 0;
1827 else
1828 return TARGET_XFER_E_IO;
1829 }
1830
1831 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1832 Returns either 0 for success or a target_xfer_error value if any
1833 error occurs. If an error occurs, no guarantee is made about how
1834 much data got written. Callers that can deal with partial writes
1835 should call target_write. */
1836
1837 int
1838 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1839 {
1840 /* See comment in target_read_memory about why the request starts at
1841 current_target.beneath. */
1842 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1843 myaddr, memaddr, len) == len)
1844 return 0;
1845 else
1846 return TARGET_XFER_E_IO;
1847 }
1848
1849 /* Write LEN bytes from MYADDR to target raw memory at address
1850 MEMADDR. Returns either 0 for success or a target_xfer_error value
1851 if any error occurs. If an error occurs, no guarantee is made
1852 about how much data got written. Callers that can deal with
1853 partial writes should call target_write. */
1854
1855 int
1856 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1857 {
1858 /* See comment in target_read_memory about why the request starts at
1859 current_target.beneath. */
1860 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1861 myaddr, memaddr, len) == len)
1862 return 0;
1863 else
1864 return TARGET_XFER_E_IO;
1865 }
1866
1867 /* Fetch the target's memory map. */
1868
1869 VEC(mem_region_s) *
1870 target_memory_map (void)
1871 {
1872 VEC(mem_region_s) *result;
1873 struct mem_region *last_one, *this_one;
1874 int ix;
1875 struct target_ops *t;
1876
1877 if (targetdebug)
1878 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1879
1880 for (t = current_target.beneath; t != NULL; t = t->beneath)
1881 if (t->to_memory_map != NULL)
1882 break;
1883
1884 if (t == NULL)
1885 return NULL;
1886
1887 result = t->to_memory_map (t);
1888 if (result == NULL)
1889 return NULL;
1890
1891 qsort (VEC_address (mem_region_s, result),
1892 VEC_length (mem_region_s, result),
1893 sizeof (struct mem_region), mem_region_cmp);
1894
1895 /* Check that regions do not overlap. Simultaneously assign
1896 a numbering for the "mem" commands to use to refer to
1897 each region. */
1898 last_one = NULL;
1899 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1900 {
1901 this_one->number = ix;
1902
1903 if (last_one && last_one->hi > this_one->lo)
1904 {
1905 warning (_("Overlapping regions in memory map: ignoring"));
1906 VEC_free (mem_region_s, result);
1907 return NULL;
1908 }
1909 last_one = this_one;
1910 }
1911
1912 return result;
1913 }
1914
1915 void
1916 target_flash_erase (ULONGEST address, LONGEST length)
1917 {
1918 struct target_ops *t;
1919
1920 for (t = current_target.beneath; t != NULL; t = t->beneath)
1921 if (t->to_flash_erase != NULL)
1922 {
1923 if (targetdebug)
1924 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1925 hex_string (address), phex (length, 0));
1926 t->to_flash_erase (t, address, length);
1927 return;
1928 }
1929
1930 tcomplain ();
1931 }
1932
1933 void
1934 target_flash_done (void)
1935 {
1936 struct target_ops *t;
1937
1938 for (t = current_target.beneath; t != NULL; t = t->beneath)
1939 if (t->to_flash_done != NULL)
1940 {
1941 if (targetdebug)
1942 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1943 t->to_flash_done (t);
1944 return;
1945 }
1946
1947 tcomplain ();
1948 }
1949
1950 static void
1951 show_trust_readonly (struct ui_file *file, int from_tty,
1952 struct cmd_list_element *c, const char *value)
1953 {
1954 fprintf_filtered (file,
1955 _("Mode for reading from readonly sections is %s.\n"),
1956 value);
1957 }
1958
1959 /* More generic transfers. */
1960
1961 static LONGEST
1962 default_xfer_partial (struct target_ops *ops, enum target_object object,
1963 const char *annex, gdb_byte *readbuf,
1964 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len)
1965 {
1966 if (object == TARGET_OBJECT_MEMORY
1967 && ops->deprecated_xfer_memory != NULL)
1968 /* If available, fall back to the target's
1969 "deprecated_xfer_memory" method. */
1970 {
1971 int xfered = -1;
1972
1973 errno = 0;
1974 if (writebuf != NULL)
1975 {
1976 void *buffer = xmalloc (len);
1977 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1978
1979 memcpy (buffer, writebuf, len);
1980 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1981 1/*write*/, NULL, ops);
1982 do_cleanups (cleanup);
1983 }
1984 if (readbuf != NULL)
1985 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1986 0/*read*/, NULL, ops);
1987 if (xfered > 0)
1988 return xfered;
1989 else if (xfered == 0 && errno == 0)
1990 /* "deprecated_xfer_memory" uses 0, cross checked against
1991 ERRNO as one indication of an error. */
1992 return 0;
1993 else
1994 return -1;
1995 }
1996 else if (ops->beneath != NULL)
1997 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1998 readbuf, writebuf, offset, len);
1999 else
2000 return -1;
2001 }
2002
2003 /* The xfer_partial handler for the topmost target. Unlike the default,
2004 it does not need to handle memory specially; it just passes all
2005 requests down the stack. */
2006
2007 static LONGEST
2008 current_xfer_partial (struct target_ops *ops, enum target_object object,
2009 const char *annex, gdb_byte *readbuf,
2010 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len)
2011 {
2012 if (ops->beneath != NULL)
2013 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2014 readbuf, writebuf, offset, len);
2015 else
2016 return -1;
2017 }
2018
2019 /* Target vector read/write partial wrapper functions. */
2020
2021 static LONGEST
2022 target_read_partial (struct target_ops *ops,
2023 enum target_object object,
2024 const char *annex, gdb_byte *buf,
2025 ULONGEST offset, LONGEST len)
2026 {
2027 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2028 }
2029
2030 static LONGEST
2031 target_write_partial (struct target_ops *ops,
2032 enum target_object object,
2033 const char *annex, const gdb_byte *buf,
2034 ULONGEST offset, LONGEST len)
2035 {
2036 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2037 }
2038
2039 /* Wrappers to perform the full transfer. */
2040
2041 /* For docs on target_read see target.h. */
2042
2043 LONGEST
2044 target_read (struct target_ops *ops,
2045 enum target_object object,
2046 const char *annex, gdb_byte *buf,
2047 ULONGEST offset, LONGEST len)
2048 {
2049 LONGEST xfered = 0;
2050
2051 while (xfered < len)
2052 {
2053 LONGEST xfer = target_read_partial (ops, object, annex,
2054 (gdb_byte *) buf + xfered,
2055 offset + xfered, len - xfered);
2056
2057 /* Call an observer, notifying them of the xfer progress? */
2058 if (xfer == 0)
2059 return xfered;
2060 if (xfer < 0)
2061 return -1;
2062 xfered += xfer;
2063 QUIT;
2064 }
2065 return len;
2066 }
2067
2068 /* Assuming that the entire [begin, end) range of memory cannot be
2069 read, try to read whatever subrange is possible to read.
2070
2071 The function returns, in RESULT, either zero or one memory block.
2072 If there's a readable subrange at the beginning, it is completely
2073 read and returned. Any further readable subrange will not be read.
2074 Otherwise, if there's a readable subrange at the end, it will be
2075 completely read and returned. Any readable subranges before it
2076 (obviously, not starting at the beginning), will be ignored. In
2077 other cases -- either no readable subrange, or readable subrange(s)
2078 that is neither at the beginning, or end, nothing is returned.
2079
2080 The purpose of this function is to handle a read across a boundary
2081 of accessible memory in a case when memory map is not available.
2082 The above restrictions are fine for this case, but will give
2083 incorrect results if the memory is 'patchy'. However, supporting
2084 'patchy' memory would require trying to read every single byte,
2085 and it seems unacceptable solution. Explicit memory map is
2086 recommended for this case -- and target_read_memory_robust will
2087 take care of reading multiple ranges then. */
2088
2089 static void
2090 read_whatever_is_readable (struct target_ops *ops,
2091 ULONGEST begin, ULONGEST end,
2092 VEC(memory_read_result_s) **result)
2093 {
2094 gdb_byte *buf = xmalloc (end - begin);
2095 ULONGEST current_begin = begin;
2096 ULONGEST current_end = end;
2097 int forward;
2098 memory_read_result_s r;
2099
2100 /* If we previously failed to read 1 byte, nothing can be done here. */
2101 if (end - begin <= 1)
2102 {
2103 xfree (buf);
2104 return;
2105 }
2106
2107 /* Check that either first or the last byte is readable, and give up
2108 if not. This heuristic is meant to permit reading accessible memory
2109 at the boundary of accessible region. */
2110 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2111 buf, begin, 1) == 1)
2112 {
2113 forward = 1;
2114 ++current_begin;
2115 }
2116 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2117 buf + (end-begin) - 1, end - 1, 1) == 1)
2118 {
2119 forward = 0;
2120 --current_end;
2121 }
2122 else
2123 {
2124 xfree (buf);
2125 return;
2126 }
2127
2128 /* Loop invariant is that the [current_begin, current_end) was previously
2129 found to be not readable as a whole.
2130
2131 Note loop condition -- if the range has 1 byte, we can't divide the range
2132 so there's no point trying further. */
2133 while (current_end - current_begin > 1)
2134 {
2135 ULONGEST first_half_begin, first_half_end;
2136 ULONGEST second_half_begin, second_half_end;
2137 LONGEST xfer;
2138 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2139
2140 if (forward)
2141 {
2142 first_half_begin = current_begin;
2143 first_half_end = middle;
2144 second_half_begin = middle;
2145 second_half_end = current_end;
2146 }
2147 else
2148 {
2149 first_half_begin = middle;
2150 first_half_end = current_end;
2151 second_half_begin = current_begin;
2152 second_half_end = middle;
2153 }
2154
2155 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2156 buf + (first_half_begin - begin),
2157 first_half_begin,
2158 first_half_end - first_half_begin);
2159
2160 if (xfer == first_half_end - first_half_begin)
2161 {
2162 /* This half reads up fine. So, the error must be in the
2163 other half. */
2164 current_begin = second_half_begin;
2165 current_end = second_half_end;
2166 }
2167 else
2168 {
2169 /* This half is not readable. Because we've tried one byte, we
2170 know some part of this half if actually redable. Go to the next
2171 iteration to divide again and try to read.
2172
2173 We don't handle the other half, because this function only tries
2174 to read a single readable subrange. */
2175 current_begin = first_half_begin;
2176 current_end = first_half_end;
2177 }
2178 }
2179
2180 if (forward)
2181 {
2182 /* The [begin, current_begin) range has been read. */
2183 r.begin = begin;
2184 r.end = current_begin;
2185 r.data = buf;
2186 }
2187 else
2188 {
2189 /* The [current_end, end) range has been read. */
2190 LONGEST rlen = end - current_end;
2191
2192 r.data = xmalloc (rlen);
2193 memcpy (r.data, buf + current_end - begin, rlen);
2194 r.begin = current_end;
2195 r.end = end;
2196 xfree (buf);
2197 }
2198 VEC_safe_push(memory_read_result_s, (*result), &r);
2199 }
2200
2201 void
2202 free_memory_read_result_vector (void *x)
2203 {
2204 VEC(memory_read_result_s) *v = x;
2205 memory_read_result_s *current;
2206 int ix;
2207
2208 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2209 {
2210 xfree (current->data);
2211 }
2212 VEC_free (memory_read_result_s, v);
2213 }
2214
2215 VEC(memory_read_result_s) *
2216 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2217 {
2218 VEC(memory_read_result_s) *result = 0;
2219
2220 LONGEST xfered = 0;
2221 while (xfered < len)
2222 {
2223 struct mem_region *region = lookup_mem_region (offset + xfered);
2224 LONGEST rlen;
2225
2226 /* If there is no explicit region, a fake one should be created. */
2227 gdb_assert (region);
2228
2229 if (region->hi == 0)
2230 rlen = len - xfered;
2231 else
2232 rlen = region->hi - offset;
2233
2234 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2235 {
2236 /* Cannot read this region. Note that we can end up here only
2237 if the region is explicitly marked inaccessible, or
2238 'inaccessible-by-default' is in effect. */
2239 xfered += rlen;
2240 }
2241 else
2242 {
2243 LONGEST to_read = min (len - xfered, rlen);
2244 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2245
2246 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2247 (gdb_byte *) buffer,
2248 offset + xfered, to_read);
2249 /* Call an observer, notifying them of the xfer progress? */
2250 if (xfer <= 0)
2251 {
2252 /* Got an error reading full chunk. See if maybe we can read
2253 some subrange. */
2254 xfree (buffer);
2255 read_whatever_is_readable (ops, offset + xfered,
2256 offset + xfered + to_read, &result);
2257 xfered += to_read;
2258 }
2259 else
2260 {
2261 struct memory_read_result r;
2262 r.data = buffer;
2263 r.begin = offset + xfered;
2264 r.end = r.begin + xfer;
2265 VEC_safe_push (memory_read_result_s, result, &r);
2266 xfered += xfer;
2267 }
2268 QUIT;
2269 }
2270 }
2271 return result;
2272 }
2273
2274
2275 /* An alternative to target_write with progress callbacks. */
2276
2277 LONGEST
2278 target_write_with_progress (struct target_ops *ops,
2279 enum target_object object,
2280 const char *annex, const gdb_byte *buf,
2281 ULONGEST offset, LONGEST len,
2282 void (*progress) (ULONGEST, void *), void *baton)
2283 {
2284 LONGEST xfered = 0;
2285
2286 /* Give the progress callback a chance to set up. */
2287 if (progress)
2288 (*progress) (0, baton);
2289
2290 while (xfered < len)
2291 {
2292 LONGEST xfer = target_write_partial (ops, object, annex,
2293 (gdb_byte *) buf + xfered,
2294 offset + xfered, len - xfered);
2295
2296 if (xfer == 0)
2297 return xfered;
2298 if (xfer < 0)
2299 return -1;
2300
2301 if (progress)
2302 (*progress) (xfer, baton);
2303
2304 xfered += xfer;
2305 QUIT;
2306 }
2307 return len;
2308 }
2309
2310 /* For docs on target_write see target.h. */
2311
2312 LONGEST
2313 target_write (struct target_ops *ops,
2314 enum target_object object,
2315 const char *annex, const gdb_byte *buf,
2316 ULONGEST offset, LONGEST len)
2317 {
2318 return target_write_with_progress (ops, object, annex, buf, offset, len,
2319 NULL, NULL);
2320 }
2321
2322 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2323 the size of the transferred data. PADDING additional bytes are
2324 available in *BUF_P. This is a helper function for
2325 target_read_alloc; see the declaration of that function for more
2326 information. */
2327
2328 static LONGEST
2329 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2330 const char *annex, gdb_byte **buf_p, int padding)
2331 {
2332 size_t buf_alloc, buf_pos;
2333 gdb_byte *buf;
2334 LONGEST n;
2335
2336 /* This function does not have a length parameter; it reads the
2337 entire OBJECT). Also, it doesn't support objects fetched partly
2338 from one target and partly from another (in a different stratum,
2339 e.g. a core file and an executable). Both reasons make it
2340 unsuitable for reading memory. */
2341 gdb_assert (object != TARGET_OBJECT_MEMORY);
2342
2343 /* Start by reading up to 4K at a time. The target will throttle
2344 this number down if necessary. */
2345 buf_alloc = 4096;
2346 buf = xmalloc (buf_alloc);
2347 buf_pos = 0;
2348 while (1)
2349 {
2350 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2351 buf_pos, buf_alloc - buf_pos - padding);
2352 if (n < 0)
2353 {
2354 /* An error occurred. */
2355 xfree (buf);
2356 return -1;
2357 }
2358 else if (n == 0)
2359 {
2360 /* Read all there was. */
2361 if (buf_pos == 0)
2362 xfree (buf);
2363 else
2364 *buf_p = buf;
2365 return buf_pos;
2366 }
2367
2368 buf_pos += n;
2369
2370 /* If the buffer is filling up, expand it. */
2371 if (buf_alloc < buf_pos * 2)
2372 {
2373 buf_alloc *= 2;
2374 buf = xrealloc (buf, buf_alloc);
2375 }
2376
2377 QUIT;
2378 }
2379 }
2380
2381 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2382 the size of the transferred data. See the declaration in "target.h"
2383 function for more information about the return value. */
2384
2385 LONGEST
2386 target_read_alloc (struct target_ops *ops, enum target_object object,
2387 const char *annex, gdb_byte **buf_p)
2388 {
2389 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2390 }
2391
2392 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2393 returned as a string, allocated using xmalloc. If an error occurs
2394 or the transfer is unsupported, NULL is returned. Empty objects
2395 are returned as allocated but empty strings. A warning is issued
2396 if the result contains any embedded NUL bytes. */
2397
2398 char *
2399 target_read_stralloc (struct target_ops *ops, enum target_object object,
2400 const char *annex)
2401 {
2402 gdb_byte *buffer;
2403 char *bufstr;
2404 LONGEST i, transferred;
2405
2406 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2407 bufstr = (char *) buffer;
2408
2409 if (transferred < 0)
2410 return NULL;
2411
2412 if (transferred == 0)
2413 return xstrdup ("");
2414
2415 bufstr[transferred] = 0;
2416
2417 /* Check for embedded NUL bytes; but allow trailing NULs. */
2418 for (i = strlen (bufstr); i < transferred; i++)
2419 if (bufstr[i] != 0)
2420 {
2421 warning (_("target object %d, annex %s, "
2422 "contained unexpected null characters"),
2423 (int) object, annex ? annex : "(none)");
2424 break;
2425 }
2426
2427 return bufstr;
2428 }
2429
2430 /* Memory transfer methods. */
2431
2432 void
2433 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2434 LONGEST len)
2435 {
2436 /* This method is used to read from an alternate, non-current
2437 target. This read must bypass the overlay support (as symbols
2438 don't match this target), and GDB's internal cache (wrong cache
2439 for this target). */
2440 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2441 != len)
2442 memory_error (TARGET_XFER_E_IO, addr);
2443 }
2444
2445 ULONGEST
2446 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2447 int len, enum bfd_endian byte_order)
2448 {
2449 gdb_byte buf[sizeof (ULONGEST)];
2450
2451 gdb_assert (len <= sizeof (buf));
2452 get_target_memory (ops, addr, buf, len);
2453 return extract_unsigned_integer (buf, len, byte_order);
2454 }
2455
2456 /* See target.h. */
2457
2458 int
2459 forward_target_insert_breakpoint (struct target_ops *ops,
2460 struct gdbarch *gdbarch,
2461 struct bp_target_info *bp_tgt)
2462 {
2463 for (; ops != NULL; ops = ops->beneath)
2464 if (ops->to_insert_breakpoint != NULL)
2465 return ops->to_insert_breakpoint (ops, gdbarch, bp_tgt);
2466
2467 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
2468 }
2469
2470 /* See target.h. */
2471
2472 int
2473 target_insert_breakpoint (struct gdbarch *gdbarch,
2474 struct bp_target_info *bp_tgt)
2475 {
2476 if (!may_insert_breakpoints)
2477 {
2478 warning (_("May not insert breakpoints"));
2479 return 1;
2480 }
2481
2482 return forward_target_insert_breakpoint (&current_target, gdbarch, bp_tgt);
2483 }
2484
2485 /* See target.h. */
2486
2487 int
2488 forward_target_remove_breakpoint (struct target_ops *ops,
2489 struct gdbarch *gdbarch,
2490 struct bp_target_info *bp_tgt)
2491 {
2492 /* This is kind of a weird case to handle, but the permission might
2493 have been changed after breakpoints were inserted - in which case
2494 we should just take the user literally and assume that any
2495 breakpoints should be left in place. */
2496 if (!may_insert_breakpoints)
2497 {
2498 warning (_("May not remove breakpoints"));
2499 return 1;
2500 }
2501
2502 for (; ops != NULL; ops = ops->beneath)
2503 if (ops->to_remove_breakpoint != NULL)
2504 return ops->to_remove_breakpoint (ops, gdbarch, bp_tgt);
2505
2506 return memory_remove_breakpoint (ops, gdbarch, bp_tgt);
2507 }
2508
2509 /* See target.h. */
2510
2511 int
2512 target_remove_breakpoint (struct gdbarch *gdbarch,
2513 struct bp_target_info *bp_tgt)
2514 {
2515 return forward_target_remove_breakpoint (&current_target, gdbarch, bp_tgt);
2516 }
2517
2518 static void
2519 target_info (char *args, int from_tty)
2520 {
2521 struct target_ops *t;
2522 int has_all_mem = 0;
2523
2524 if (symfile_objfile != NULL)
2525 printf_unfiltered (_("Symbols from \"%s\".\n"),
2526 objfile_name (symfile_objfile));
2527
2528 for (t = target_stack; t != NULL; t = t->beneath)
2529 {
2530 if (!(*t->to_has_memory) (t))
2531 continue;
2532
2533 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2534 continue;
2535 if (has_all_mem)
2536 printf_unfiltered (_("\tWhile running this, "
2537 "GDB does not access memory from...\n"));
2538 printf_unfiltered ("%s:\n", t->to_longname);
2539 (t->to_files_info) (t);
2540 has_all_mem = (*t->to_has_all_memory) (t);
2541 }
2542 }
2543
2544 /* This function is called before any new inferior is created, e.g.
2545 by running a program, attaching, or connecting to a target.
2546 It cleans up any state from previous invocations which might
2547 change between runs. This is a subset of what target_preopen
2548 resets (things which might change between targets). */
2549
2550 void
2551 target_pre_inferior (int from_tty)
2552 {
2553 /* Clear out solib state. Otherwise the solib state of the previous
2554 inferior might have survived and is entirely wrong for the new
2555 target. This has been observed on GNU/Linux using glibc 2.3. How
2556 to reproduce:
2557
2558 bash$ ./foo&
2559 [1] 4711
2560 bash$ ./foo&
2561 [1] 4712
2562 bash$ gdb ./foo
2563 [...]
2564 (gdb) attach 4711
2565 (gdb) detach
2566 (gdb) attach 4712
2567 Cannot access memory at address 0xdeadbeef
2568 */
2569
2570 /* In some OSs, the shared library list is the same/global/shared
2571 across inferiors. If code is shared between processes, so are
2572 memory regions and features. */
2573 if (!gdbarch_has_global_solist (target_gdbarch ()))
2574 {
2575 no_shared_libraries (NULL, from_tty);
2576
2577 invalidate_target_mem_regions ();
2578
2579 target_clear_description ();
2580 }
2581
2582 agent_capability_invalidate ();
2583 }
2584
2585 /* Callback for iterate_over_inferiors. Gets rid of the given
2586 inferior. */
2587
2588 static int
2589 dispose_inferior (struct inferior *inf, void *args)
2590 {
2591 struct thread_info *thread;
2592
2593 thread = any_thread_of_process (inf->pid);
2594 if (thread)
2595 {
2596 switch_to_thread (thread->ptid);
2597
2598 /* Core inferiors actually should be detached, not killed. */
2599 if (target_has_execution)
2600 target_kill ();
2601 else
2602 target_detach (NULL, 0);
2603 }
2604
2605 return 0;
2606 }
2607
2608 /* This is to be called by the open routine before it does
2609 anything. */
2610
2611 void
2612 target_preopen (int from_tty)
2613 {
2614 dont_repeat ();
2615
2616 if (have_inferiors ())
2617 {
2618 if (!from_tty
2619 || !have_live_inferiors ()
2620 || query (_("A program is being debugged already. Kill it? ")))
2621 iterate_over_inferiors (dispose_inferior, NULL);
2622 else
2623 error (_("Program not killed."));
2624 }
2625
2626 /* Calling target_kill may remove the target from the stack. But if
2627 it doesn't (which seems like a win for UDI), remove it now. */
2628 /* Leave the exec target, though. The user may be switching from a
2629 live process to a core of the same program. */
2630 pop_all_targets_above (file_stratum);
2631
2632 target_pre_inferior (from_tty);
2633 }
2634
2635 /* Detach a target after doing deferred register stores. */
2636
2637 void
2638 target_detach (const char *args, int from_tty)
2639 {
2640 struct target_ops* t;
2641
2642 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2643 /* Don't remove global breakpoints here. They're removed on
2644 disconnection from the target. */
2645 ;
2646 else
2647 /* If we're in breakpoints-always-inserted mode, have to remove
2648 them before detaching. */
2649 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2650
2651 prepare_for_detach ();
2652
2653 for (t = current_target.beneath; t != NULL; t = t->beneath)
2654 {
2655 if (t->to_detach != NULL)
2656 {
2657 t->to_detach (t, args, from_tty);
2658 if (targetdebug)
2659 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2660 args, from_tty);
2661 return;
2662 }
2663 }
2664
2665 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2666 }
2667
2668 void
2669 target_disconnect (char *args, int from_tty)
2670 {
2671 struct target_ops *t;
2672
2673 /* If we're in breakpoints-always-inserted mode or if breakpoints
2674 are global across processes, we have to remove them before
2675 disconnecting. */
2676 remove_breakpoints ();
2677
2678 for (t = current_target.beneath; t != NULL; t = t->beneath)
2679 if (t->to_disconnect != NULL)
2680 {
2681 if (targetdebug)
2682 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2683 args, from_tty);
2684 t->to_disconnect (t, args, from_tty);
2685 return;
2686 }
2687
2688 tcomplain ();
2689 }
2690
2691 ptid_t
2692 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2693 {
2694 struct target_ops *t;
2695
2696 for (t = current_target.beneath; t != NULL; t = t->beneath)
2697 {
2698 if (t->to_wait != NULL)
2699 {
2700 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2701
2702 if (targetdebug)
2703 {
2704 char *status_string;
2705 char *options_string;
2706
2707 status_string = target_waitstatus_to_string (status);
2708 options_string = target_options_to_string (options);
2709 fprintf_unfiltered (gdb_stdlog,
2710 "target_wait (%d, status, options={%s})"
2711 " = %d, %s\n",
2712 ptid_get_pid (ptid), options_string,
2713 ptid_get_pid (retval), status_string);
2714 xfree (status_string);
2715 xfree (options_string);
2716 }
2717
2718 return retval;
2719 }
2720 }
2721
2722 noprocess ();
2723 }
2724
2725 char *
2726 target_pid_to_str (ptid_t ptid)
2727 {
2728 struct target_ops *t;
2729
2730 for (t = current_target.beneath; t != NULL; t = t->beneath)
2731 {
2732 if (t->to_pid_to_str != NULL)
2733 return (*t->to_pid_to_str) (t, ptid);
2734 }
2735
2736 return normal_pid_to_str (ptid);
2737 }
2738
2739 char *
2740 target_thread_name (struct thread_info *info)
2741 {
2742 struct target_ops *t;
2743
2744 for (t = current_target.beneath; t != NULL; t = t->beneath)
2745 {
2746 if (t->to_thread_name != NULL)
2747 return (*t->to_thread_name) (info);
2748 }
2749
2750 return NULL;
2751 }
2752
2753 void
2754 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2755 {
2756 struct target_ops *t;
2757
2758 target_dcache_invalidate ();
2759
2760 for (t = current_target.beneath; t != NULL; t = t->beneath)
2761 {
2762 if (t->to_resume != NULL)
2763 {
2764 t->to_resume (t, ptid, step, signal);
2765 if (targetdebug)
2766 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2767 ptid_get_pid (ptid),
2768 step ? "step" : "continue",
2769 gdb_signal_to_name (signal));
2770
2771 registers_changed_ptid (ptid);
2772 set_executing (ptid, 1);
2773 set_running (ptid, 1);
2774 clear_inline_frame_state (ptid);
2775 return;
2776 }
2777 }
2778
2779 noprocess ();
2780 }
2781
2782 void
2783 target_pass_signals (int numsigs, unsigned char *pass_signals)
2784 {
2785 struct target_ops *t;
2786
2787 for (t = current_target.beneath; t != NULL; t = t->beneath)
2788 {
2789 if (t->to_pass_signals != NULL)
2790 {
2791 if (targetdebug)
2792 {
2793 int i;
2794
2795 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2796 numsigs);
2797
2798 for (i = 0; i < numsigs; i++)
2799 if (pass_signals[i])
2800 fprintf_unfiltered (gdb_stdlog, " %s",
2801 gdb_signal_to_name (i));
2802
2803 fprintf_unfiltered (gdb_stdlog, " })\n");
2804 }
2805
2806 (*t->to_pass_signals) (numsigs, pass_signals);
2807 return;
2808 }
2809 }
2810 }
2811
2812 void
2813 target_program_signals (int numsigs, unsigned char *program_signals)
2814 {
2815 struct target_ops *t;
2816
2817 for (t = current_target.beneath; t != NULL; t = t->beneath)
2818 {
2819 if (t->to_program_signals != NULL)
2820 {
2821 if (targetdebug)
2822 {
2823 int i;
2824
2825 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2826 numsigs);
2827
2828 for (i = 0; i < numsigs; i++)
2829 if (program_signals[i])
2830 fprintf_unfiltered (gdb_stdlog, " %s",
2831 gdb_signal_to_name (i));
2832
2833 fprintf_unfiltered (gdb_stdlog, " })\n");
2834 }
2835
2836 (*t->to_program_signals) (numsigs, program_signals);
2837 return;
2838 }
2839 }
2840 }
2841
2842 /* Look through the list of possible targets for a target that can
2843 follow forks. */
2844
2845 int
2846 target_follow_fork (int follow_child, int detach_fork)
2847 {
2848 struct target_ops *t;
2849
2850 for (t = current_target.beneath; t != NULL; t = t->beneath)
2851 {
2852 if (t->to_follow_fork != NULL)
2853 {
2854 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2855
2856 if (targetdebug)
2857 fprintf_unfiltered (gdb_stdlog,
2858 "target_follow_fork (%d, %d) = %d\n",
2859 follow_child, detach_fork, retval);
2860 return retval;
2861 }
2862 }
2863
2864 /* Some target returned a fork event, but did not know how to follow it. */
2865 internal_error (__FILE__, __LINE__,
2866 _("could not find a target to follow fork"));
2867 }
2868
2869 void
2870 target_mourn_inferior (void)
2871 {
2872 struct target_ops *t;
2873
2874 for (t = current_target.beneath; t != NULL; t = t->beneath)
2875 {
2876 if (t->to_mourn_inferior != NULL)
2877 {
2878 t->to_mourn_inferior (t);
2879 if (targetdebug)
2880 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2881
2882 /* We no longer need to keep handles on any of the object files.
2883 Make sure to release them to avoid unnecessarily locking any
2884 of them while we're not actually debugging. */
2885 bfd_cache_close_all ();
2886
2887 return;
2888 }
2889 }
2890
2891 internal_error (__FILE__, __LINE__,
2892 _("could not find a target to follow mourn inferior"));
2893 }
2894
2895 /* Look for a target which can describe architectural features, starting
2896 from TARGET. If we find one, return its description. */
2897
2898 const struct target_desc *
2899 target_read_description (struct target_ops *target)
2900 {
2901 struct target_ops *t;
2902
2903 for (t = target; t != NULL; t = t->beneath)
2904 if (t->to_read_description != NULL)
2905 {
2906 const struct target_desc *tdesc;
2907
2908 tdesc = t->to_read_description (t);
2909 if (tdesc)
2910 return tdesc;
2911 }
2912
2913 return NULL;
2914 }
2915
2916 /* The default implementation of to_search_memory.
2917 This implements a basic search of memory, reading target memory and
2918 performing the search here (as opposed to performing the search in on the
2919 target side with, for example, gdbserver). */
2920
2921 int
2922 simple_search_memory (struct target_ops *ops,
2923 CORE_ADDR start_addr, ULONGEST search_space_len,
2924 const gdb_byte *pattern, ULONGEST pattern_len,
2925 CORE_ADDR *found_addrp)
2926 {
2927 /* NOTE: also defined in find.c testcase. */
2928 #define SEARCH_CHUNK_SIZE 16000
2929 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2930 /* Buffer to hold memory contents for searching. */
2931 gdb_byte *search_buf;
2932 unsigned search_buf_size;
2933 struct cleanup *old_cleanups;
2934
2935 search_buf_size = chunk_size + pattern_len - 1;
2936
2937 /* No point in trying to allocate a buffer larger than the search space. */
2938 if (search_space_len < search_buf_size)
2939 search_buf_size = search_space_len;
2940
2941 search_buf = malloc (search_buf_size);
2942 if (search_buf == NULL)
2943 error (_("Unable to allocate memory to perform the search."));
2944 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2945
2946 /* Prime the search buffer. */
2947
2948 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2949 search_buf, start_addr, search_buf_size) != search_buf_size)
2950 {
2951 warning (_("Unable to access %s bytes of target "
2952 "memory at %s, halting search."),
2953 pulongest (search_buf_size), hex_string (start_addr));
2954 do_cleanups (old_cleanups);
2955 return -1;
2956 }
2957
2958 /* Perform the search.
2959
2960 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2961 When we've scanned N bytes we copy the trailing bytes to the start and
2962 read in another N bytes. */
2963
2964 while (search_space_len >= pattern_len)
2965 {
2966 gdb_byte *found_ptr;
2967 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2968
2969 found_ptr = memmem (search_buf, nr_search_bytes,
2970 pattern, pattern_len);
2971
2972 if (found_ptr != NULL)
2973 {
2974 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2975
2976 *found_addrp = found_addr;
2977 do_cleanups (old_cleanups);
2978 return 1;
2979 }
2980
2981 /* Not found in this chunk, skip to next chunk. */
2982
2983 /* Don't let search_space_len wrap here, it's unsigned. */
2984 if (search_space_len >= chunk_size)
2985 search_space_len -= chunk_size;
2986 else
2987 search_space_len = 0;
2988
2989 if (search_space_len >= pattern_len)
2990 {
2991 unsigned keep_len = search_buf_size - chunk_size;
2992 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2993 int nr_to_read;
2994
2995 /* Copy the trailing part of the previous iteration to the front
2996 of the buffer for the next iteration. */
2997 gdb_assert (keep_len == pattern_len - 1);
2998 memcpy (search_buf, search_buf + chunk_size, keep_len);
2999
3000 nr_to_read = min (search_space_len - keep_len, chunk_size);
3001
3002 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
3003 search_buf + keep_len, read_addr,
3004 nr_to_read) != nr_to_read)
3005 {
3006 warning (_("Unable to access %s bytes of target "
3007 "memory at %s, halting search."),
3008 plongest (nr_to_read),
3009 hex_string (read_addr));
3010 do_cleanups (old_cleanups);
3011 return -1;
3012 }
3013
3014 start_addr += chunk_size;
3015 }
3016 }
3017
3018 /* Not found. */
3019
3020 do_cleanups (old_cleanups);
3021 return 0;
3022 }
3023
3024 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
3025 sequence of bytes in PATTERN with length PATTERN_LEN.
3026
3027 The result is 1 if found, 0 if not found, and -1 if there was an error
3028 requiring halting of the search (e.g. memory read error).
3029 If the pattern is found the address is recorded in FOUND_ADDRP. */
3030
3031 int
3032 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
3033 const gdb_byte *pattern, ULONGEST pattern_len,
3034 CORE_ADDR *found_addrp)
3035 {
3036 struct target_ops *t;
3037 int found;
3038
3039 /* We don't use INHERIT to set current_target.to_search_memory,
3040 so we have to scan the target stack and handle targetdebug
3041 ourselves. */
3042
3043 if (targetdebug)
3044 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
3045 hex_string (start_addr));
3046
3047 for (t = current_target.beneath; t != NULL; t = t->beneath)
3048 if (t->to_search_memory != NULL)
3049 break;
3050
3051 if (t != NULL)
3052 {
3053 found = t->to_search_memory (t, start_addr, search_space_len,
3054 pattern, pattern_len, found_addrp);
3055 }
3056 else
3057 {
3058 /* If a special version of to_search_memory isn't available, use the
3059 simple version. */
3060 found = simple_search_memory (current_target.beneath,
3061 start_addr, search_space_len,
3062 pattern, pattern_len, found_addrp);
3063 }
3064
3065 if (targetdebug)
3066 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3067
3068 return found;
3069 }
3070
3071 /* Look through the currently pushed targets. If none of them will
3072 be able to restart the currently running process, issue an error
3073 message. */
3074
3075 void
3076 target_require_runnable (void)
3077 {
3078 struct target_ops *t;
3079
3080 for (t = target_stack; t != NULL; t = t->beneath)
3081 {
3082 /* If this target knows how to create a new program, then
3083 assume we will still be able to after killing the current
3084 one. Either killing and mourning will not pop T, or else
3085 find_default_run_target will find it again. */
3086 if (t->to_create_inferior != NULL)
3087 return;
3088
3089 /* Do not worry about thread_stratum targets that can not
3090 create inferiors. Assume they will be pushed again if
3091 necessary, and continue to the process_stratum. */
3092 if (t->to_stratum == thread_stratum
3093 || t->to_stratum == arch_stratum)
3094 continue;
3095
3096 error (_("The \"%s\" target does not support \"run\". "
3097 "Try \"help target\" or \"continue\"."),
3098 t->to_shortname);
3099 }
3100
3101 /* This function is only called if the target is running. In that
3102 case there should have been a process_stratum target and it
3103 should either know how to create inferiors, or not... */
3104 internal_error (__FILE__, __LINE__, _("No targets found"));
3105 }
3106
3107 /* Look through the list of possible targets for a target that can
3108 execute a run or attach command without any other data. This is
3109 used to locate the default process stratum.
3110
3111 If DO_MESG is not NULL, the result is always valid (error() is
3112 called for errors); else, return NULL on error. */
3113
3114 static struct target_ops *
3115 find_default_run_target (char *do_mesg)
3116 {
3117 struct target_ops **t;
3118 struct target_ops *runable = NULL;
3119 int count;
3120
3121 count = 0;
3122
3123 for (t = target_structs; t < target_structs + target_struct_size;
3124 ++t)
3125 {
3126 if ((*t)->to_can_run && target_can_run (*t))
3127 {
3128 runable = *t;
3129 ++count;
3130 }
3131 }
3132
3133 if (count != 1)
3134 {
3135 if (do_mesg)
3136 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3137 else
3138 return NULL;
3139 }
3140
3141 return runable;
3142 }
3143
3144 void
3145 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3146 {
3147 struct target_ops *t;
3148
3149 t = find_default_run_target ("attach");
3150 (t->to_attach) (t, args, from_tty);
3151 return;
3152 }
3153
3154 void
3155 find_default_create_inferior (struct target_ops *ops,
3156 char *exec_file, char *allargs, char **env,
3157 int from_tty)
3158 {
3159 struct target_ops *t;
3160
3161 t = find_default_run_target ("run");
3162 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3163 return;
3164 }
3165
3166 static int
3167 find_default_can_async_p (void)
3168 {
3169 struct target_ops *t;
3170
3171 /* This may be called before the target is pushed on the stack;
3172 look for the default process stratum. If there's none, gdb isn't
3173 configured with a native debugger, and target remote isn't
3174 connected yet. */
3175 t = find_default_run_target (NULL);
3176 if (t && t->to_can_async_p)
3177 return (t->to_can_async_p) ();
3178 return 0;
3179 }
3180
3181 static int
3182 find_default_is_async_p (void)
3183 {
3184 struct target_ops *t;
3185
3186 /* This may be called before the target is pushed on the stack;
3187 look for the default process stratum. If there's none, gdb isn't
3188 configured with a native debugger, and target remote isn't
3189 connected yet. */
3190 t = find_default_run_target (NULL);
3191 if (t && t->to_is_async_p)
3192 return (t->to_is_async_p) ();
3193 return 0;
3194 }
3195
3196 static int
3197 find_default_supports_non_stop (void)
3198 {
3199 struct target_ops *t;
3200
3201 t = find_default_run_target (NULL);
3202 if (t && t->to_supports_non_stop)
3203 return (t->to_supports_non_stop) ();
3204 return 0;
3205 }
3206
3207 int
3208 target_supports_non_stop (void)
3209 {
3210 struct target_ops *t;
3211
3212 for (t = &current_target; t != NULL; t = t->beneath)
3213 if (t->to_supports_non_stop)
3214 return t->to_supports_non_stop ();
3215
3216 return 0;
3217 }
3218
3219 /* Implement the "info proc" command. */
3220
3221 int
3222 target_info_proc (char *args, enum info_proc_what what)
3223 {
3224 struct target_ops *t;
3225
3226 /* If we're already connected to something that can get us OS
3227 related data, use it. Otherwise, try using the native
3228 target. */
3229 if (current_target.to_stratum >= process_stratum)
3230 t = current_target.beneath;
3231 else
3232 t = find_default_run_target (NULL);
3233
3234 for (; t != NULL; t = t->beneath)
3235 {
3236 if (t->to_info_proc != NULL)
3237 {
3238 t->to_info_proc (t, args, what);
3239
3240 if (targetdebug)
3241 fprintf_unfiltered (gdb_stdlog,
3242 "target_info_proc (\"%s\", %d)\n", args, what);
3243
3244 return 1;
3245 }
3246 }
3247
3248 return 0;
3249 }
3250
3251 static int
3252 find_default_supports_disable_randomization (void)
3253 {
3254 struct target_ops *t;
3255
3256 t = find_default_run_target (NULL);
3257 if (t && t->to_supports_disable_randomization)
3258 return (t->to_supports_disable_randomization) ();
3259 return 0;
3260 }
3261
3262 int
3263 target_supports_disable_randomization (void)
3264 {
3265 struct target_ops *t;
3266
3267 for (t = &current_target; t != NULL; t = t->beneath)
3268 if (t->to_supports_disable_randomization)
3269 return t->to_supports_disable_randomization ();
3270
3271 return 0;
3272 }
3273
3274 char *
3275 target_get_osdata (const char *type)
3276 {
3277 struct target_ops *t;
3278
3279 /* If we're already connected to something that can get us OS
3280 related data, use it. Otherwise, try using the native
3281 target. */
3282 if (current_target.to_stratum >= process_stratum)
3283 t = current_target.beneath;
3284 else
3285 t = find_default_run_target ("get OS data");
3286
3287 if (!t)
3288 return NULL;
3289
3290 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3291 }
3292
3293 /* Determine the current address space of thread PTID. */
3294
3295 struct address_space *
3296 target_thread_address_space (ptid_t ptid)
3297 {
3298 struct address_space *aspace;
3299 struct inferior *inf;
3300 struct target_ops *t;
3301
3302 for (t = current_target.beneath; t != NULL; t = t->beneath)
3303 {
3304 if (t->to_thread_address_space != NULL)
3305 {
3306 aspace = t->to_thread_address_space (t, ptid);
3307 gdb_assert (aspace);
3308
3309 if (targetdebug)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "target_thread_address_space (%s) = %d\n",
3312 target_pid_to_str (ptid),
3313 address_space_num (aspace));
3314 return aspace;
3315 }
3316 }
3317
3318 /* Fall-back to the "main" address space of the inferior. */
3319 inf = find_inferior_pid (ptid_get_pid (ptid));
3320
3321 if (inf == NULL || inf->aspace == NULL)
3322 internal_error (__FILE__, __LINE__,
3323 _("Can't determine the current "
3324 "address space of thread %s\n"),
3325 target_pid_to_str (ptid));
3326
3327 return inf->aspace;
3328 }
3329
3330
3331 /* Target file operations. */
3332
3333 static struct target_ops *
3334 default_fileio_target (void)
3335 {
3336 /* If we're already connected to something that can perform
3337 file I/O, use it. Otherwise, try using the native target. */
3338 if (current_target.to_stratum >= process_stratum)
3339 return current_target.beneath;
3340 else
3341 return find_default_run_target ("file I/O");
3342 }
3343
3344 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3345 target file descriptor, or -1 if an error occurs (and set
3346 *TARGET_ERRNO). */
3347 int
3348 target_fileio_open (const char *filename, int flags, int mode,
3349 int *target_errno)
3350 {
3351 struct target_ops *t;
3352
3353 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3354 {
3355 if (t->to_fileio_open != NULL)
3356 {
3357 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3358
3359 if (targetdebug)
3360 fprintf_unfiltered (gdb_stdlog,
3361 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3362 filename, flags, mode,
3363 fd, fd != -1 ? 0 : *target_errno);
3364 return fd;
3365 }
3366 }
3367
3368 *target_errno = FILEIO_ENOSYS;
3369 return -1;
3370 }
3371
3372 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3373 Return the number of bytes written, or -1 if an error occurs
3374 (and set *TARGET_ERRNO). */
3375 int
3376 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3377 ULONGEST offset, int *target_errno)
3378 {
3379 struct target_ops *t;
3380
3381 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3382 {
3383 if (t->to_fileio_pwrite != NULL)
3384 {
3385 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3386 target_errno);
3387
3388 if (targetdebug)
3389 fprintf_unfiltered (gdb_stdlog,
3390 "target_fileio_pwrite (%d,...,%d,%s) "
3391 "= %d (%d)\n",
3392 fd, len, pulongest (offset),
3393 ret, ret != -1 ? 0 : *target_errno);
3394 return ret;
3395 }
3396 }
3397
3398 *target_errno = FILEIO_ENOSYS;
3399 return -1;
3400 }
3401
3402 /* Read up to LEN bytes FD on the target into READ_BUF.
3403 Return the number of bytes read, or -1 if an error occurs
3404 (and set *TARGET_ERRNO). */
3405 int
3406 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3407 ULONGEST offset, int *target_errno)
3408 {
3409 struct target_ops *t;
3410
3411 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3412 {
3413 if (t->to_fileio_pread != NULL)
3414 {
3415 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3416 target_errno);
3417
3418 if (targetdebug)
3419 fprintf_unfiltered (gdb_stdlog,
3420 "target_fileio_pread (%d,...,%d,%s) "
3421 "= %d (%d)\n",
3422 fd, len, pulongest (offset),
3423 ret, ret != -1 ? 0 : *target_errno);
3424 return ret;
3425 }
3426 }
3427
3428 *target_errno = FILEIO_ENOSYS;
3429 return -1;
3430 }
3431
3432 /* Close FD on the target. Return 0, or -1 if an error occurs
3433 (and set *TARGET_ERRNO). */
3434 int
3435 target_fileio_close (int fd, int *target_errno)
3436 {
3437 struct target_ops *t;
3438
3439 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3440 {
3441 if (t->to_fileio_close != NULL)
3442 {
3443 int ret = t->to_fileio_close (fd, target_errno);
3444
3445 if (targetdebug)
3446 fprintf_unfiltered (gdb_stdlog,
3447 "target_fileio_close (%d) = %d (%d)\n",
3448 fd, ret, ret != -1 ? 0 : *target_errno);
3449 return ret;
3450 }
3451 }
3452
3453 *target_errno = FILEIO_ENOSYS;
3454 return -1;
3455 }
3456
3457 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3458 occurs (and set *TARGET_ERRNO). */
3459 int
3460 target_fileio_unlink (const char *filename, int *target_errno)
3461 {
3462 struct target_ops *t;
3463
3464 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3465 {
3466 if (t->to_fileio_unlink != NULL)
3467 {
3468 int ret = t->to_fileio_unlink (filename, target_errno);
3469
3470 if (targetdebug)
3471 fprintf_unfiltered (gdb_stdlog,
3472 "target_fileio_unlink (%s) = %d (%d)\n",
3473 filename, ret, ret != -1 ? 0 : *target_errno);
3474 return ret;
3475 }
3476 }
3477
3478 *target_errno = FILEIO_ENOSYS;
3479 return -1;
3480 }
3481
3482 /* Read value of symbolic link FILENAME on the target. Return a
3483 null-terminated string allocated via xmalloc, or NULL if an error
3484 occurs (and set *TARGET_ERRNO). */
3485 char *
3486 target_fileio_readlink (const char *filename, int *target_errno)
3487 {
3488 struct target_ops *t;
3489
3490 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3491 {
3492 if (t->to_fileio_readlink != NULL)
3493 {
3494 char *ret = t->to_fileio_readlink (filename, target_errno);
3495
3496 if (targetdebug)
3497 fprintf_unfiltered (gdb_stdlog,
3498 "target_fileio_readlink (%s) = %s (%d)\n",
3499 filename, ret? ret : "(nil)",
3500 ret? 0 : *target_errno);
3501 return ret;
3502 }
3503 }
3504
3505 *target_errno = FILEIO_ENOSYS;
3506 return NULL;
3507 }
3508
3509 static void
3510 target_fileio_close_cleanup (void *opaque)
3511 {
3512 int fd = *(int *) opaque;
3513 int target_errno;
3514
3515 target_fileio_close (fd, &target_errno);
3516 }
3517
3518 /* Read target file FILENAME. Store the result in *BUF_P and
3519 return the size of the transferred data. PADDING additional bytes are
3520 available in *BUF_P. This is a helper function for
3521 target_fileio_read_alloc; see the declaration of that function for more
3522 information. */
3523
3524 static LONGEST
3525 target_fileio_read_alloc_1 (const char *filename,
3526 gdb_byte **buf_p, int padding)
3527 {
3528 struct cleanup *close_cleanup;
3529 size_t buf_alloc, buf_pos;
3530 gdb_byte *buf;
3531 LONGEST n;
3532 int fd;
3533 int target_errno;
3534
3535 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3536 if (fd == -1)
3537 return -1;
3538
3539 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3540
3541 /* Start by reading up to 4K at a time. The target will throttle
3542 this number down if necessary. */
3543 buf_alloc = 4096;
3544 buf = xmalloc (buf_alloc);
3545 buf_pos = 0;
3546 while (1)
3547 {
3548 n = target_fileio_pread (fd, &buf[buf_pos],
3549 buf_alloc - buf_pos - padding, buf_pos,
3550 &target_errno);
3551 if (n < 0)
3552 {
3553 /* An error occurred. */
3554 do_cleanups (close_cleanup);
3555 xfree (buf);
3556 return -1;
3557 }
3558 else if (n == 0)
3559 {
3560 /* Read all there was. */
3561 do_cleanups (close_cleanup);
3562 if (buf_pos == 0)
3563 xfree (buf);
3564 else
3565 *buf_p = buf;
3566 return buf_pos;
3567 }
3568
3569 buf_pos += n;
3570
3571 /* If the buffer is filling up, expand it. */
3572 if (buf_alloc < buf_pos * 2)
3573 {
3574 buf_alloc *= 2;
3575 buf = xrealloc (buf, buf_alloc);
3576 }
3577
3578 QUIT;
3579 }
3580 }
3581
3582 /* Read target file FILENAME. Store the result in *BUF_P and return
3583 the size of the transferred data. See the declaration in "target.h"
3584 function for more information about the return value. */
3585
3586 LONGEST
3587 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3588 {
3589 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3590 }
3591
3592 /* Read target file FILENAME. The result is NUL-terminated and
3593 returned as a string, allocated using xmalloc. If an error occurs
3594 or the transfer is unsupported, NULL is returned. Empty objects
3595 are returned as allocated but empty strings. A warning is issued
3596 if the result contains any embedded NUL bytes. */
3597
3598 char *
3599 target_fileio_read_stralloc (const char *filename)
3600 {
3601 gdb_byte *buffer;
3602 char *bufstr;
3603 LONGEST i, transferred;
3604
3605 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3606 bufstr = (char *) buffer;
3607
3608 if (transferred < 0)
3609 return NULL;
3610
3611 if (transferred == 0)
3612 return xstrdup ("");
3613
3614 bufstr[transferred] = 0;
3615
3616 /* Check for embedded NUL bytes; but allow trailing NULs. */
3617 for (i = strlen (bufstr); i < transferred; i++)
3618 if (bufstr[i] != 0)
3619 {
3620 warning (_("target file %s "
3621 "contained unexpected null characters"),
3622 filename);
3623 break;
3624 }
3625
3626 return bufstr;
3627 }
3628
3629
3630 static int
3631 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3632 {
3633 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3634 }
3635
3636 static int
3637 default_watchpoint_addr_within_range (struct target_ops *target,
3638 CORE_ADDR addr,
3639 CORE_ADDR start, int length)
3640 {
3641 return addr >= start && addr < start + length;
3642 }
3643
3644 static struct gdbarch *
3645 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3646 {
3647 return target_gdbarch ();
3648 }
3649
3650 static int
3651 return_zero (void)
3652 {
3653 return 0;
3654 }
3655
3656 static int
3657 return_one (void)
3658 {
3659 return 1;
3660 }
3661
3662 static int
3663 return_minus_one (void)
3664 {
3665 return -1;
3666 }
3667
3668 static void *
3669 return_null (void)
3670 {
3671 return 0;
3672 }
3673
3674 /*
3675 * Find the next target down the stack from the specified target.
3676 */
3677
3678 struct target_ops *
3679 find_target_beneath (struct target_ops *t)
3680 {
3681 return t->beneath;
3682 }
3683
3684 \f
3685 /* The inferior process has died. Long live the inferior! */
3686
3687 void
3688 generic_mourn_inferior (void)
3689 {
3690 ptid_t ptid;
3691
3692 ptid = inferior_ptid;
3693 inferior_ptid = null_ptid;
3694
3695 /* Mark breakpoints uninserted in case something tries to delete a
3696 breakpoint while we delete the inferior's threads (which would
3697 fail, since the inferior is long gone). */
3698 mark_breakpoints_out ();
3699
3700 if (!ptid_equal (ptid, null_ptid))
3701 {
3702 int pid = ptid_get_pid (ptid);
3703 exit_inferior (pid);
3704 }
3705
3706 /* Note this wipes step-resume breakpoints, so needs to be done
3707 after exit_inferior, which ends up referencing the step-resume
3708 breakpoints through clear_thread_inferior_resources. */
3709 breakpoint_init_inferior (inf_exited);
3710
3711 registers_changed ();
3712
3713 reopen_exec_file ();
3714 reinit_frame_cache ();
3715
3716 if (deprecated_detach_hook)
3717 deprecated_detach_hook ();
3718 }
3719 \f
3720 /* Convert a normal process ID to a string. Returns the string in a
3721 static buffer. */
3722
3723 char *
3724 normal_pid_to_str (ptid_t ptid)
3725 {
3726 static char buf[32];
3727
3728 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3729 return buf;
3730 }
3731
3732 static char *
3733 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3734 {
3735 return normal_pid_to_str (ptid);
3736 }
3737
3738 /* Error-catcher for target_find_memory_regions. */
3739 static int
3740 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3741 {
3742 error (_("Command not implemented for this target."));
3743 return 0;
3744 }
3745
3746 /* Error-catcher for target_make_corefile_notes. */
3747 static char *
3748 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3749 {
3750 error (_("Command not implemented for this target."));
3751 return NULL;
3752 }
3753
3754 /* Error-catcher for target_get_bookmark. */
3755 static gdb_byte *
3756 dummy_get_bookmark (char *ignore1, int ignore2)
3757 {
3758 tcomplain ();
3759 return NULL;
3760 }
3761
3762 /* Error-catcher for target_goto_bookmark. */
3763 static void
3764 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3765 {
3766 tcomplain ();
3767 }
3768
3769 /* Set up the handful of non-empty slots needed by the dummy target
3770 vector. */
3771
3772 static void
3773 init_dummy_target (void)
3774 {
3775 dummy_target.to_shortname = "None";
3776 dummy_target.to_longname = "None";
3777 dummy_target.to_doc = "";
3778 dummy_target.to_attach = find_default_attach;
3779 dummy_target.to_detach =
3780 (void (*)(struct target_ops *, const char *, int))target_ignore;
3781 dummy_target.to_create_inferior = find_default_create_inferior;
3782 dummy_target.to_can_async_p = find_default_can_async_p;
3783 dummy_target.to_is_async_p = find_default_is_async_p;
3784 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3785 dummy_target.to_supports_disable_randomization
3786 = find_default_supports_disable_randomization;
3787 dummy_target.to_pid_to_str = dummy_pid_to_str;
3788 dummy_target.to_stratum = dummy_stratum;
3789 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3790 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3791 dummy_target.to_get_bookmark = dummy_get_bookmark;
3792 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3793 dummy_target.to_xfer_partial = default_xfer_partial;
3794 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3795 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3796 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3797 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3798 dummy_target.to_has_execution
3799 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3800 dummy_target.to_stopped_by_watchpoint = return_zero;
3801 dummy_target.to_stopped_data_address =
3802 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3803 dummy_target.to_magic = OPS_MAGIC;
3804 }
3805 \f
3806 static void
3807 debug_to_open (char *args, int from_tty)
3808 {
3809 debug_target.to_open (args, from_tty);
3810
3811 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3812 }
3813
3814 void
3815 target_close (struct target_ops *targ)
3816 {
3817 gdb_assert (!target_is_pushed (targ));
3818
3819 if (targ->to_xclose != NULL)
3820 targ->to_xclose (targ);
3821 else if (targ->to_close != NULL)
3822 targ->to_close ();
3823
3824 if (targetdebug)
3825 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3826 }
3827
3828 void
3829 target_attach (char *args, int from_tty)
3830 {
3831 struct target_ops *t;
3832
3833 for (t = current_target.beneath; t != NULL; t = t->beneath)
3834 {
3835 if (t->to_attach != NULL)
3836 {
3837 t->to_attach (t, args, from_tty);
3838 if (targetdebug)
3839 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3840 args, from_tty);
3841 return;
3842 }
3843 }
3844
3845 internal_error (__FILE__, __LINE__,
3846 _("could not find a target to attach"));
3847 }
3848
3849 int
3850 target_thread_alive (ptid_t ptid)
3851 {
3852 struct target_ops *t;
3853
3854 for (t = current_target.beneath; t != NULL; t = t->beneath)
3855 {
3856 if (t->to_thread_alive != NULL)
3857 {
3858 int retval;
3859
3860 retval = t->to_thread_alive (t, ptid);
3861 if (targetdebug)
3862 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3863 ptid_get_pid (ptid), retval);
3864
3865 return retval;
3866 }
3867 }
3868
3869 return 0;
3870 }
3871
3872 void
3873 target_find_new_threads (void)
3874 {
3875 struct target_ops *t;
3876
3877 for (t = current_target.beneath; t != NULL; t = t->beneath)
3878 {
3879 if (t->to_find_new_threads != NULL)
3880 {
3881 t->to_find_new_threads (t);
3882 if (targetdebug)
3883 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3884
3885 return;
3886 }
3887 }
3888 }
3889
3890 void
3891 target_stop (ptid_t ptid)
3892 {
3893 if (!may_stop)
3894 {
3895 warning (_("May not interrupt or stop the target, ignoring attempt"));
3896 return;
3897 }
3898
3899 (*current_target.to_stop) (ptid);
3900 }
3901
3902 static void
3903 debug_to_post_attach (int pid)
3904 {
3905 debug_target.to_post_attach (pid);
3906
3907 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3908 }
3909
3910 /* Concatenate ELEM to LIST, a comma separate list, and return the
3911 result. The LIST incoming argument is released. */
3912
3913 static char *
3914 str_comma_list_concat_elem (char *list, const char *elem)
3915 {
3916 if (list == NULL)
3917 return xstrdup (elem);
3918 else
3919 return reconcat (list, list, ", ", elem, (char *) NULL);
3920 }
3921
3922 /* Helper for target_options_to_string. If OPT is present in
3923 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3924 Returns the new resulting string. OPT is removed from
3925 TARGET_OPTIONS. */
3926
3927 static char *
3928 do_option (int *target_options, char *ret,
3929 int opt, char *opt_str)
3930 {
3931 if ((*target_options & opt) != 0)
3932 {
3933 ret = str_comma_list_concat_elem (ret, opt_str);
3934 *target_options &= ~opt;
3935 }
3936
3937 return ret;
3938 }
3939
3940 char *
3941 target_options_to_string (int target_options)
3942 {
3943 char *ret = NULL;
3944
3945 #define DO_TARG_OPTION(OPT) \
3946 ret = do_option (&target_options, ret, OPT, #OPT)
3947
3948 DO_TARG_OPTION (TARGET_WNOHANG);
3949
3950 if (target_options != 0)
3951 ret = str_comma_list_concat_elem (ret, "unknown???");
3952
3953 if (ret == NULL)
3954 ret = xstrdup ("");
3955 return ret;
3956 }
3957
3958 static void
3959 debug_print_register (const char * func,
3960 struct regcache *regcache, int regno)
3961 {
3962 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3963
3964 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3965 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3966 && gdbarch_register_name (gdbarch, regno) != NULL
3967 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3968 fprintf_unfiltered (gdb_stdlog, "(%s)",
3969 gdbarch_register_name (gdbarch, regno));
3970 else
3971 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3972 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3973 {
3974 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3975 int i, size = register_size (gdbarch, regno);
3976 gdb_byte buf[MAX_REGISTER_SIZE];
3977
3978 regcache_raw_collect (regcache, regno, buf);
3979 fprintf_unfiltered (gdb_stdlog, " = ");
3980 for (i = 0; i < size; i++)
3981 {
3982 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3983 }
3984 if (size <= sizeof (LONGEST))
3985 {
3986 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3987
3988 fprintf_unfiltered (gdb_stdlog, " %s %s",
3989 core_addr_to_string_nz (val), plongest (val));
3990 }
3991 }
3992 fprintf_unfiltered (gdb_stdlog, "\n");
3993 }
3994
3995 void
3996 target_fetch_registers (struct regcache *regcache, int regno)
3997 {
3998 struct target_ops *t;
3999
4000 for (t = current_target.beneath; t != NULL; t = t->beneath)
4001 {
4002 if (t->to_fetch_registers != NULL)
4003 {
4004 t->to_fetch_registers (t, regcache, regno);
4005 if (targetdebug)
4006 debug_print_register ("target_fetch_registers", regcache, regno);
4007 return;
4008 }
4009 }
4010 }
4011
4012 void
4013 target_store_registers (struct regcache *regcache, int regno)
4014 {
4015 struct target_ops *t;
4016
4017 if (!may_write_registers)
4018 error (_("Writing to registers is not allowed (regno %d)"), regno);
4019
4020 for (t = current_target.beneath; t != NULL; t = t->beneath)
4021 {
4022 if (t->to_store_registers != NULL)
4023 {
4024 t->to_store_registers (t, regcache, regno);
4025 if (targetdebug)
4026 {
4027 debug_print_register ("target_store_registers", regcache, regno);
4028 }
4029 return;
4030 }
4031 }
4032
4033 noprocess ();
4034 }
4035
4036 int
4037 target_core_of_thread (ptid_t ptid)
4038 {
4039 struct target_ops *t;
4040
4041 for (t = current_target.beneath; t != NULL; t = t->beneath)
4042 {
4043 if (t->to_core_of_thread != NULL)
4044 {
4045 int retval = t->to_core_of_thread (t, ptid);
4046
4047 if (targetdebug)
4048 fprintf_unfiltered (gdb_stdlog,
4049 "target_core_of_thread (%d) = %d\n",
4050 ptid_get_pid (ptid), retval);
4051 return retval;
4052 }
4053 }
4054
4055 return -1;
4056 }
4057
4058 int
4059 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4060 {
4061 struct target_ops *t;
4062
4063 for (t = current_target.beneath; t != NULL; t = t->beneath)
4064 {
4065 if (t->to_verify_memory != NULL)
4066 {
4067 int retval = t->to_verify_memory (t, data, memaddr, size);
4068
4069 if (targetdebug)
4070 fprintf_unfiltered (gdb_stdlog,
4071 "target_verify_memory (%s, %s) = %d\n",
4072 paddress (target_gdbarch (), memaddr),
4073 pulongest (size),
4074 retval);
4075 return retval;
4076 }
4077 }
4078
4079 tcomplain ();
4080 }
4081
4082 /* The documentation for this function is in its prototype declaration in
4083 target.h. */
4084
4085 int
4086 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4087 {
4088 struct target_ops *t;
4089
4090 for (t = current_target.beneath; t != NULL; t = t->beneath)
4091 if (t->to_insert_mask_watchpoint != NULL)
4092 {
4093 int ret;
4094
4095 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4096
4097 if (targetdebug)
4098 fprintf_unfiltered (gdb_stdlog, "\
4099 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4100 core_addr_to_string (addr),
4101 core_addr_to_string (mask), rw, ret);
4102
4103 return ret;
4104 }
4105
4106 return 1;
4107 }
4108
4109 /* The documentation for this function is in its prototype declaration in
4110 target.h. */
4111
4112 int
4113 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4114 {
4115 struct target_ops *t;
4116
4117 for (t = current_target.beneath; t != NULL; t = t->beneath)
4118 if (t->to_remove_mask_watchpoint != NULL)
4119 {
4120 int ret;
4121
4122 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4123
4124 if (targetdebug)
4125 fprintf_unfiltered (gdb_stdlog, "\
4126 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4127 core_addr_to_string (addr),
4128 core_addr_to_string (mask), rw, ret);
4129
4130 return ret;
4131 }
4132
4133 return 1;
4134 }
4135
4136 /* The documentation for this function is in its prototype declaration
4137 in target.h. */
4138
4139 int
4140 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4141 {
4142 struct target_ops *t;
4143
4144 for (t = current_target.beneath; t != NULL; t = t->beneath)
4145 if (t->to_masked_watch_num_registers != NULL)
4146 return t->to_masked_watch_num_registers (t, addr, mask);
4147
4148 return -1;
4149 }
4150
4151 /* The documentation for this function is in its prototype declaration
4152 in target.h. */
4153
4154 int
4155 target_ranged_break_num_registers (void)
4156 {
4157 struct target_ops *t;
4158
4159 for (t = current_target.beneath; t != NULL; t = t->beneath)
4160 if (t->to_ranged_break_num_registers != NULL)
4161 return t->to_ranged_break_num_registers (t);
4162
4163 return -1;
4164 }
4165
4166 /* See target.h. */
4167
4168 int
4169 target_supports_btrace (void)
4170 {
4171 struct target_ops *t;
4172
4173 for (t = current_target.beneath; t != NULL; t = t->beneath)
4174 if (t->to_supports_btrace != NULL)
4175 return t->to_supports_btrace ();
4176
4177 return 0;
4178 }
4179
4180 /* See target.h. */
4181
4182 struct btrace_target_info *
4183 target_enable_btrace (ptid_t ptid)
4184 {
4185 struct target_ops *t;
4186
4187 for (t = current_target.beneath; t != NULL; t = t->beneath)
4188 if (t->to_enable_btrace != NULL)
4189 return t->to_enable_btrace (ptid);
4190
4191 tcomplain ();
4192 return NULL;
4193 }
4194
4195 /* See target.h. */
4196
4197 void
4198 target_disable_btrace (struct btrace_target_info *btinfo)
4199 {
4200 struct target_ops *t;
4201
4202 for (t = current_target.beneath; t != NULL; t = t->beneath)
4203 if (t->to_disable_btrace != NULL)
4204 {
4205 t->to_disable_btrace (btinfo);
4206 return;
4207 }
4208
4209 tcomplain ();
4210 }
4211
4212 /* See target.h. */
4213
4214 void
4215 target_teardown_btrace (struct btrace_target_info *btinfo)
4216 {
4217 struct target_ops *t;
4218
4219 for (t = current_target.beneath; t != NULL; t = t->beneath)
4220 if (t->to_teardown_btrace != NULL)
4221 {
4222 t->to_teardown_btrace (btinfo);
4223 return;
4224 }
4225
4226 tcomplain ();
4227 }
4228
4229 /* See target.h. */
4230
4231 VEC (btrace_block_s) *
4232 target_read_btrace (struct btrace_target_info *btinfo,
4233 enum btrace_read_type type)
4234 {
4235 struct target_ops *t;
4236
4237 for (t = current_target.beneath; t != NULL; t = t->beneath)
4238 if (t->to_read_btrace != NULL)
4239 return t->to_read_btrace (btinfo, type);
4240
4241 tcomplain ();
4242 return NULL;
4243 }
4244
4245 /* See target.h. */
4246
4247 void
4248 target_stop_recording (void)
4249 {
4250 struct target_ops *t;
4251
4252 for (t = current_target.beneath; t != NULL; t = t->beneath)
4253 if (t->to_stop_recording != NULL)
4254 {
4255 t->to_stop_recording ();
4256 return;
4257 }
4258
4259 /* This is optional. */
4260 }
4261
4262 /* See target.h. */
4263
4264 void
4265 target_info_record (void)
4266 {
4267 struct target_ops *t;
4268
4269 for (t = current_target.beneath; t != NULL; t = t->beneath)
4270 if (t->to_info_record != NULL)
4271 {
4272 t->to_info_record ();
4273 return;
4274 }
4275
4276 tcomplain ();
4277 }
4278
4279 /* See target.h. */
4280
4281 void
4282 target_save_record (const char *filename)
4283 {
4284 struct target_ops *t;
4285
4286 for (t = current_target.beneath; t != NULL; t = t->beneath)
4287 if (t->to_save_record != NULL)
4288 {
4289 t->to_save_record (filename);
4290 return;
4291 }
4292
4293 tcomplain ();
4294 }
4295
4296 /* See target.h. */
4297
4298 int
4299 target_supports_delete_record (void)
4300 {
4301 struct target_ops *t;
4302
4303 for (t = current_target.beneath; t != NULL; t = t->beneath)
4304 if (t->to_delete_record != NULL)
4305 return 1;
4306
4307 return 0;
4308 }
4309
4310 /* See target.h. */
4311
4312 void
4313 target_delete_record (void)
4314 {
4315 struct target_ops *t;
4316
4317 for (t = current_target.beneath; t != NULL; t = t->beneath)
4318 if (t->to_delete_record != NULL)
4319 {
4320 t->to_delete_record ();
4321 return;
4322 }
4323
4324 tcomplain ();
4325 }
4326
4327 /* See target.h. */
4328
4329 int
4330 target_record_is_replaying (void)
4331 {
4332 struct target_ops *t;
4333
4334 for (t = current_target.beneath; t != NULL; t = t->beneath)
4335 if (t->to_record_is_replaying != NULL)
4336 return t->to_record_is_replaying ();
4337
4338 return 0;
4339 }
4340
4341 /* See target.h. */
4342
4343 void
4344 target_goto_record_begin (void)
4345 {
4346 struct target_ops *t;
4347
4348 for (t = current_target.beneath; t != NULL; t = t->beneath)
4349 if (t->to_goto_record_begin != NULL)
4350 {
4351 t->to_goto_record_begin ();
4352 return;
4353 }
4354
4355 tcomplain ();
4356 }
4357
4358 /* See target.h. */
4359
4360 void
4361 target_goto_record_end (void)
4362 {
4363 struct target_ops *t;
4364
4365 for (t = current_target.beneath; t != NULL; t = t->beneath)
4366 if (t->to_goto_record_end != NULL)
4367 {
4368 t->to_goto_record_end ();
4369 return;
4370 }
4371
4372 tcomplain ();
4373 }
4374
4375 /* See target.h. */
4376
4377 void
4378 target_goto_record (ULONGEST insn)
4379 {
4380 struct target_ops *t;
4381
4382 for (t = current_target.beneath; t != NULL; t = t->beneath)
4383 if (t->to_goto_record != NULL)
4384 {
4385 t->to_goto_record (insn);
4386 return;
4387 }
4388
4389 tcomplain ();
4390 }
4391
4392 /* See target.h. */
4393
4394 void
4395 target_insn_history (int size, int flags)
4396 {
4397 struct target_ops *t;
4398
4399 for (t = current_target.beneath; t != NULL; t = t->beneath)
4400 if (t->to_insn_history != NULL)
4401 {
4402 t->to_insn_history (size, flags);
4403 return;
4404 }
4405
4406 tcomplain ();
4407 }
4408
4409 /* See target.h. */
4410
4411 void
4412 target_insn_history_from (ULONGEST from, int size, int flags)
4413 {
4414 struct target_ops *t;
4415
4416 for (t = current_target.beneath; t != NULL; t = t->beneath)
4417 if (t->to_insn_history_from != NULL)
4418 {
4419 t->to_insn_history_from (from, size, flags);
4420 return;
4421 }
4422
4423 tcomplain ();
4424 }
4425
4426 /* See target.h. */
4427
4428 void
4429 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4430 {
4431 struct target_ops *t;
4432
4433 for (t = current_target.beneath; t != NULL; t = t->beneath)
4434 if (t->to_insn_history_range != NULL)
4435 {
4436 t->to_insn_history_range (begin, end, flags);
4437 return;
4438 }
4439
4440 tcomplain ();
4441 }
4442
4443 /* See target.h. */
4444
4445 void
4446 target_call_history (int size, int flags)
4447 {
4448 struct target_ops *t;
4449
4450 for (t = current_target.beneath; t != NULL; t = t->beneath)
4451 if (t->to_call_history != NULL)
4452 {
4453 t->to_call_history (size, flags);
4454 return;
4455 }
4456
4457 tcomplain ();
4458 }
4459
4460 /* See target.h. */
4461
4462 void
4463 target_call_history_from (ULONGEST begin, int size, int flags)
4464 {
4465 struct target_ops *t;
4466
4467 for (t = current_target.beneath; t != NULL; t = t->beneath)
4468 if (t->to_call_history_from != NULL)
4469 {
4470 t->to_call_history_from (begin, size, flags);
4471 return;
4472 }
4473
4474 tcomplain ();
4475 }
4476
4477 /* See target.h. */
4478
4479 void
4480 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4481 {
4482 struct target_ops *t;
4483
4484 for (t = current_target.beneath; t != NULL; t = t->beneath)
4485 if (t->to_call_history_range != NULL)
4486 {
4487 t->to_call_history_range (begin, end, flags);
4488 return;
4489 }
4490
4491 tcomplain ();
4492 }
4493
4494 static void
4495 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4496 {
4497 debug_target.to_prepare_to_store (&debug_target, regcache);
4498
4499 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4500 }
4501
4502 /* See target.h. */
4503
4504 const struct frame_unwind *
4505 target_get_unwinder (void)
4506 {
4507 struct target_ops *t;
4508
4509 for (t = current_target.beneath; t != NULL; t = t->beneath)
4510 if (t->to_get_unwinder != NULL)
4511 return t->to_get_unwinder;
4512
4513 return NULL;
4514 }
4515
4516 /* See target.h. */
4517
4518 const struct frame_unwind *
4519 target_get_tailcall_unwinder (void)
4520 {
4521 struct target_ops *t;
4522
4523 for (t = current_target.beneath; t != NULL; t = t->beneath)
4524 if (t->to_get_tailcall_unwinder != NULL)
4525 return t->to_get_tailcall_unwinder;
4526
4527 return NULL;
4528 }
4529
4530 static int
4531 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4532 int write, struct mem_attrib *attrib,
4533 struct target_ops *target)
4534 {
4535 int retval;
4536
4537 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4538 attrib, target);
4539
4540 fprintf_unfiltered (gdb_stdlog,
4541 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4542 paddress (target_gdbarch (), memaddr), len,
4543 write ? "write" : "read", retval);
4544
4545 if (retval > 0)
4546 {
4547 int i;
4548
4549 fputs_unfiltered (", bytes =", gdb_stdlog);
4550 for (i = 0; i < retval; i++)
4551 {
4552 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4553 {
4554 if (targetdebug < 2 && i > 0)
4555 {
4556 fprintf_unfiltered (gdb_stdlog, " ...");
4557 break;
4558 }
4559 fprintf_unfiltered (gdb_stdlog, "\n");
4560 }
4561
4562 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4563 }
4564 }
4565
4566 fputc_unfiltered ('\n', gdb_stdlog);
4567
4568 return retval;
4569 }
4570
4571 static void
4572 debug_to_files_info (struct target_ops *target)
4573 {
4574 debug_target.to_files_info (target);
4575
4576 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4577 }
4578
4579 static int
4580 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4581 struct bp_target_info *bp_tgt)
4582 {
4583 int retval;
4584
4585 retval = forward_target_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4586
4587 fprintf_unfiltered (gdb_stdlog,
4588 "target_insert_breakpoint (%s, xxx) = %ld\n",
4589 core_addr_to_string (bp_tgt->placed_address),
4590 (unsigned long) retval);
4591 return retval;
4592 }
4593
4594 static int
4595 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4596 struct bp_target_info *bp_tgt)
4597 {
4598 int retval;
4599
4600 retval = forward_target_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4601
4602 fprintf_unfiltered (gdb_stdlog,
4603 "target_remove_breakpoint (%s, xxx) = %ld\n",
4604 core_addr_to_string (bp_tgt->placed_address),
4605 (unsigned long) retval);
4606 return retval;
4607 }
4608
4609 static int
4610 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4611 {
4612 int retval;
4613
4614 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4615
4616 fprintf_unfiltered (gdb_stdlog,
4617 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4618 (unsigned long) type,
4619 (unsigned long) cnt,
4620 (unsigned long) from_tty,
4621 (unsigned long) retval);
4622 return retval;
4623 }
4624
4625 static int
4626 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4627 {
4628 CORE_ADDR retval;
4629
4630 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4631
4632 fprintf_unfiltered (gdb_stdlog,
4633 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4634 core_addr_to_string (addr), (unsigned long) len,
4635 core_addr_to_string (retval));
4636 return retval;
4637 }
4638
4639 static int
4640 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4641 struct expression *cond)
4642 {
4643 int retval;
4644
4645 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4646 rw, cond);
4647
4648 fprintf_unfiltered (gdb_stdlog,
4649 "target_can_accel_watchpoint_condition "
4650 "(%s, %d, %d, %s) = %ld\n",
4651 core_addr_to_string (addr), len, rw,
4652 host_address_to_string (cond), (unsigned long) retval);
4653 return retval;
4654 }
4655
4656 static int
4657 debug_to_stopped_by_watchpoint (void)
4658 {
4659 int retval;
4660
4661 retval = debug_target.to_stopped_by_watchpoint ();
4662
4663 fprintf_unfiltered (gdb_stdlog,
4664 "target_stopped_by_watchpoint () = %ld\n",
4665 (unsigned long) retval);
4666 return retval;
4667 }
4668
4669 static int
4670 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4671 {
4672 int retval;
4673
4674 retval = debug_target.to_stopped_data_address (target, addr);
4675
4676 fprintf_unfiltered (gdb_stdlog,
4677 "target_stopped_data_address ([%s]) = %ld\n",
4678 core_addr_to_string (*addr),
4679 (unsigned long)retval);
4680 return retval;
4681 }
4682
4683 static int
4684 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4685 CORE_ADDR addr,
4686 CORE_ADDR start, int length)
4687 {
4688 int retval;
4689
4690 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4691 start, length);
4692
4693 fprintf_filtered (gdb_stdlog,
4694 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4695 core_addr_to_string (addr), core_addr_to_string (start),
4696 length, retval);
4697 return retval;
4698 }
4699
4700 static int
4701 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4702 struct bp_target_info *bp_tgt)
4703 {
4704 int retval;
4705
4706 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4707
4708 fprintf_unfiltered (gdb_stdlog,
4709 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4710 core_addr_to_string (bp_tgt->placed_address),
4711 (unsigned long) retval);
4712 return retval;
4713 }
4714
4715 static int
4716 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4717 struct bp_target_info *bp_tgt)
4718 {
4719 int retval;
4720
4721 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4722
4723 fprintf_unfiltered (gdb_stdlog,
4724 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4725 core_addr_to_string (bp_tgt->placed_address),
4726 (unsigned long) retval);
4727 return retval;
4728 }
4729
4730 static int
4731 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4732 struct expression *cond)
4733 {
4734 int retval;
4735
4736 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4737
4738 fprintf_unfiltered (gdb_stdlog,
4739 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4740 core_addr_to_string (addr), len, type,
4741 host_address_to_string (cond), (unsigned long) retval);
4742 return retval;
4743 }
4744
4745 static int
4746 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4747 struct expression *cond)
4748 {
4749 int retval;
4750
4751 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4752
4753 fprintf_unfiltered (gdb_stdlog,
4754 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4755 core_addr_to_string (addr), len, type,
4756 host_address_to_string (cond), (unsigned long) retval);
4757 return retval;
4758 }
4759
4760 static void
4761 debug_to_terminal_init (void)
4762 {
4763 debug_target.to_terminal_init ();
4764
4765 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4766 }
4767
4768 static void
4769 debug_to_terminal_inferior (void)
4770 {
4771 debug_target.to_terminal_inferior ();
4772
4773 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4774 }
4775
4776 static void
4777 debug_to_terminal_ours_for_output (void)
4778 {
4779 debug_target.to_terminal_ours_for_output ();
4780
4781 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4782 }
4783
4784 static void
4785 debug_to_terminal_ours (void)
4786 {
4787 debug_target.to_terminal_ours ();
4788
4789 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4790 }
4791
4792 static void
4793 debug_to_terminal_save_ours (void)
4794 {
4795 debug_target.to_terminal_save_ours ();
4796
4797 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4798 }
4799
4800 static void
4801 debug_to_terminal_info (const char *arg, int from_tty)
4802 {
4803 debug_target.to_terminal_info (arg, from_tty);
4804
4805 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4806 from_tty);
4807 }
4808
4809 static void
4810 debug_to_load (char *args, int from_tty)
4811 {
4812 debug_target.to_load (args, from_tty);
4813
4814 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4815 }
4816
4817 static void
4818 debug_to_post_startup_inferior (ptid_t ptid)
4819 {
4820 debug_target.to_post_startup_inferior (ptid);
4821
4822 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4823 ptid_get_pid (ptid));
4824 }
4825
4826 static int
4827 debug_to_insert_fork_catchpoint (int pid)
4828 {
4829 int retval;
4830
4831 retval = debug_target.to_insert_fork_catchpoint (pid);
4832
4833 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4834 pid, retval);
4835
4836 return retval;
4837 }
4838
4839 static int
4840 debug_to_remove_fork_catchpoint (int pid)
4841 {
4842 int retval;
4843
4844 retval = debug_target.to_remove_fork_catchpoint (pid);
4845
4846 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4847 pid, retval);
4848
4849 return retval;
4850 }
4851
4852 static int
4853 debug_to_insert_vfork_catchpoint (int pid)
4854 {
4855 int retval;
4856
4857 retval = debug_target.to_insert_vfork_catchpoint (pid);
4858
4859 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4860 pid, retval);
4861
4862 return retval;
4863 }
4864
4865 static int
4866 debug_to_remove_vfork_catchpoint (int pid)
4867 {
4868 int retval;
4869
4870 retval = debug_target.to_remove_vfork_catchpoint (pid);
4871
4872 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4873 pid, retval);
4874
4875 return retval;
4876 }
4877
4878 static int
4879 debug_to_insert_exec_catchpoint (int pid)
4880 {
4881 int retval;
4882
4883 retval = debug_target.to_insert_exec_catchpoint (pid);
4884
4885 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4886 pid, retval);
4887
4888 return retval;
4889 }
4890
4891 static int
4892 debug_to_remove_exec_catchpoint (int pid)
4893 {
4894 int retval;
4895
4896 retval = debug_target.to_remove_exec_catchpoint (pid);
4897
4898 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4899 pid, retval);
4900
4901 return retval;
4902 }
4903
4904 static int
4905 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4906 {
4907 int has_exited;
4908
4909 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4910
4911 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4912 pid, wait_status, *exit_status, has_exited);
4913
4914 return has_exited;
4915 }
4916
4917 static int
4918 debug_to_can_run (void)
4919 {
4920 int retval;
4921
4922 retval = debug_target.to_can_run ();
4923
4924 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4925
4926 return retval;
4927 }
4928
4929 static struct gdbarch *
4930 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4931 {
4932 struct gdbarch *retval;
4933
4934 retval = debug_target.to_thread_architecture (ops, ptid);
4935
4936 fprintf_unfiltered (gdb_stdlog,
4937 "target_thread_architecture (%s) = %s [%s]\n",
4938 target_pid_to_str (ptid),
4939 host_address_to_string (retval),
4940 gdbarch_bfd_arch_info (retval)->printable_name);
4941 return retval;
4942 }
4943
4944 static void
4945 debug_to_stop (ptid_t ptid)
4946 {
4947 debug_target.to_stop (ptid);
4948
4949 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4950 target_pid_to_str (ptid));
4951 }
4952
4953 static void
4954 debug_to_rcmd (char *command,
4955 struct ui_file *outbuf)
4956 {
4957 debug_target.to_rcmd (command, outbuf);
4958 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4959 }
4960
4961 static char *
4962 debug_to_pid_to_exec_file (int pid)
4963 {
4964 char *exec_file;
4965
4966 exec_file = debug_target.to_pid_to_exec_file (pid);
4967
4968 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4969 pid, exec_file);
4970
4971 return exec_file;
4972 }
4973
4974 static void
4975 setup_target_debug (void)
4976 {
4977 memcpy (&debug_target, &current_target, sizeof debug_target);
4978
4979 current_target.to_open = debug_to_open;
4980 current_target.to_post_attach = debug_to_post_attach;
4981 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4982 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4983 current_target.to_files_info = debug_to_files_info;
4984 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4985 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4986 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4987 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4988 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4989 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4990 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4991 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4992 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4993 current_target.to_watchpoint_addr_within_range
4994 = debug_to_watchpoint_addr_within_range;
4995 current_target.to_region_ok_for_hw_watchpoint
4996 = debug_to_region_ok_for_hw_watchpoint;
4997 current_target.to_can_accel_watchpoint_condition
4998 = debug_to_can_accel_watchpoint_condition;
4999 current_target.to_terminal_init = debug_to_terminal_init;
5000 current_target.to_terminal_inferior = debug_to_terminal_inferior;
5001 current_target.to_terminal_ours_for_output
5002 = debug_to_terminal_ours_for_output;
5003 current_target.to_terminal_ours = debug_to_terminal_ours;
5004 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
5005 current_target.to_terminal_info = debug_to_terminal_info;
5006 current_target.to_load = debug_to_load;
5007 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
5008 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
5009 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
5010 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
5011 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
5012 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
5013 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
5014 current_target.to_has_exited = debug_to_has_exited;
5015 current_target.to_can_run = debug_to_can_run;
5016 current_target.to_stop = debug_to_stop;
5017 current_target.to_rcmd = debug_to_rcmd;
5018 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
5019 current_target.to_thread_architecture = debug_to_thread_architecture;
5020 }
5021 \f
5022
5023 static char targ_desc[] =
5024 "Names of targets and files being debugged.\nShows the entire \
5025 stack of targets currently in use (including the exec-file,\n\
5026 core-file, and process, if any), as well as the symbol file name.";
5027
5028 static void
5029 do_monitor_command (char *cmd,
5030 int from_tty)
5031 {
5032 if ((current_target.to_rcmd
5033 == (void (*) (char *, struct ui_file *)) tcomplain)
5034 || (current_target.to_rcmd == debug_to_rcmd
5035 && (debug_target.to_rcmd
5036 == (void (*) (char *, struct ui_file *)) tcomplain)))
5037 error (_("\"monitor\" command not supported by this target."));
5038 target_rcmd (cmd, gdb_stdtarg);
5039 }
5040
5041 /* Print the name of each layers of our target stack. */
5042
5043 static void
5044 maintenance_print_target_stack (char *cmd, int from_tty)
5045 {
5046 struct target_ops *t;
5047
5048 printf_filtered (_("The current target stack is:\n"));
5049
5050 for (t = target_stack; t != NULL; t = t->beneath)
5051 {
5052 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
5053 }
5054 }
5055
5056 /* Controls if async mode is permitted. */
5057 int target_async_permitted = 0;
5058
5059 /* The set command writes to this variable. If the inferior is
5060 executing, target_async_permitted is *not* updated. */
5061 static int target_async_permitted_1 = 0;
5062
5063 static void
5064 set_target_async_command (char *args, int from_tty,
5065 struct cmd_list_element *c)
5066 {
5067 if (have_live_inferiors ())
5068 {
5069 target_async_permitted_1 = target_async_permitted;
5070 error (_("Cannot change this setting while the inferior is running."));
5071 }
5072
5073 target_async_permitted = target_async_permitted_1;
5074 }
5075
5076 static void
5077 show_target_async_command (struct ui_file *file, int from_tty,
5078 struct cmd_list_element *c,
5079 const char *value)
5080 {
5081 fprintf_filtered (file,
5082 _("Controlling the inferior in "
5083 "asynchronous mode is %s.\n"), value);
5084 }
5085
5086 /* Temporary copies of permission settings. */
5087
5088 static int may_write_registers_1 = 1;
5089 static int may_write_memory_1 = 1;
5090 static int may_insert_breakpoints_1 = 1;
5091 static int may_insert_tracepoints_1 = 1;
5092 static int may_insert_fast_tracepoints_1 = 1;
5093 static int may_stop_1 = 1;
5094
5095 /* Make the user-set values match the real values again. */
5096
5097 void
5098 update_target_permissions (void)
5099 {
5100 may_write_registers_1 = may_write_registers;
5101 may_write_memory_1 = may_write_memory;
5102 may_insert_breakpoints_1 = may_insert_breakpoints;
5103 may_insert_tracepoints_1 = may_insert_tracepoints;
5104 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5105 may_stop_1 = may_stop;
5106 }
5107
5108 /* The one function handles (most of) the permission flags in the same
5109 way. */
5110
5111 static void
5112 set_target_permissions (char *args, int from_tty,
5113 struct cmd_list_element *c)
5114 {
5115 if (target_has_execution)
5116 {
5117 update_target_permissions ();
5118 error (_("Cannot change this setting while the inferior is running."));
5119 }
5120
5121 /* Make the real values match the user-changed values. */
5122 may_write_registers = may_write_registers_1;
5123 may_insert_breakpoints = may_insert_breakpoints_1;
5124 may_insert_tracepoints = may_insert_tracepoints_1;
5125 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5126 may_stop = may_stop_1;
5127 update_observer_mode ();
5128 }
5129
5130 /* Set memory write permission independently of observer mode. */
5131
5132 static void
5133 set_write_memory_permission (char *args, int from_tty,
5134 struct cmd_list_element *c)
5135 {
5136 /* Make the real values match the user-changed values. */
5137 may_write_memory = may_write_memory_1;
5138 update_observer_mode ();
5139 }
5140
5141
5142 void
5143 initialize_targets (void)
5144 {
5145 init_dummy_target ();
5146 push_target (&dummy_target);
5147
5148 add_info ("target", target_info, targ_desc);
5149 add_info ("files", target_info, targ_desc);
5150
5151 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5152 Set target debugging."), _("\
5153 Show target debugging."), _("\
5154 When non-zero, target debugging is enabled. Higher numbers are more\n\
5155 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5156 command."),
5157 NULL,
5158 show_targetdebug,
5159 &setdebuglist, &showdebuglist);
5160
5161 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5162 &trust_readonly, _("\
5163 Set mode for reading from readonly sections."), _("\
5164 Show mode for reading from readonly sections."), _("\
5165 When this mode is on, memory reads from readonly sections (such as .text)\n\
5166 will be read from the object file instead of from the target. This will\n\
5167 result in significant performance improvement for remote targets."),
5168 NULL,
5169 show_trust_readonly,
5170 &setlist, &showlist);
5171
5172 add_com ("monitor", class_obscure, do_monitor_command,
5173 _("Send a command to the remote monitor (remote targets only)."));
5174
5175 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5176 _("Print the name of each layer of the internal target stack."),
5177 &maintenanceprintlist);
5178
5179 add_setshow_boolean_cmd ("target-async", no_class,
5180 &target_async_permitted_1, _("\
5181 Set whether gdb controls the inferior in asynchronous mode."), _("\
5182 Show whether gdb controls the inferior in asynchronous mode."), _("\
5183 Tells gdb whether to control the inferior in asynchronous mode."),
5184 set_target_async_command,
5185 show_target_async_command,
5186 &setlist,
5187 &showlist);
5188
5189 add_setshow_boolean_cmd ("may-write-registers", class_support,
5190 &may_write_registers_1, _("\
5191 Set permission to write into registers."), _("\
5192 Show permission to write into registers."), _("\
5193 When this permission is on, GDB may write into the target's registers.\n\
5194 Otherwise, any sort of write attempt will result in an error."),
5195 set_target_permissions, NULL,
5196 &setlist, &showlist);
5197
5198 add_setshow_boolean_cmd ("may-write-memory", class_support,
5199 &may_write_memory_1, _("\
5200 Set permission to write into target memory."), _("\
5201 Show permission to write into target memory."), _("\
5202 When this permission is on, GDB may write into the target's memory.\n\
5203 Otherwise, any sort of write attempt will result in an error."),
5204 set_write_memory_permission, NULL,
5205 &setlist, &showlist);
5206
5207 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5208 &may_insert_breakpoints_1, _("\
5209 Set permission to insert breakpoints in the target."), _("\
5210 Show permission to insert breakpoints in the target."), _("\
5211 When this permission is on, GDB may insert breakpoints in the program.\n\
5212 Otherwise, any sort of insertion attempt will result in an error."),
5213 set_target_permissions, NULL,
5214 &setlist, &showlist);
5215
5216 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5217 &may_insert_tracepoints_1, _("\
5218 Set permission to insert tracepoints in the target."), _("\
5219 Show permission to insert tracepoints in the target."), _("\
5220 When this permission is on, GDB may insert tracepoints in the program.\n\
5221 Otherwise, any sort of insertion attempt will result in an error."),
5222 set_target_permissions, NULL,
5223 &setlist, &showlist);
5224
5225 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5226 &may_insert_fast_tracepoints_1, _("\
5227 Set permission to insert fast tracepoints in the target."), _("\
5228 Show permission to insert fast tracepoints in the target."), _("\
5229 When this permission is on, GDB may insert fast tracepoints.\n\
5230 Otherwise, any sort of insertion attempt will result in an error."),
5231 set_target_permissions, NULL,
5232 &setlist, &showlist);
5233
5234 add_setshow_boolean_cmd ("may-interrupt", class_support,
5235 &may_stop_1, _("\
5236 Set permission to interrupt or signal the target."), _("\
5237 Show permission to interrupt or signal the target."), _("\
5238 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5239 Otherwise, any attempt to interrupt or stop will be ignored."),
5240 set_target_permissions, NULL,
5241 &setlist, &showlist);
5242 }