convert to_get_trace_status
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static void tcomplain (void) ATTRIBUTE_NORETURN;
64
65 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
66
67 static int return_zero (void);
68
69 static int return_minus_one (void);
70
71 static void *return_null (void);
72
73 void target_ignore (void);
74
75 static void target_command (char *, int);
76
77 static struct target_ops *find_default_run_target (char *);
78
79 static target_xfer_partial_ftype default_xfer_partial;
80
81 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
82 ptid_t ptid);
83
84 static int dummy_find_memory_regions (struct target_ops *self,
85 find_memory_region_ftype ignore1,
86 void *ignore2);
87
88 static char *dummy_make_corefile_notes (struct target_ops *self,
89 bfd *ignore1, int *ignore2);
90
91 static int find_default_can_async_p (struct target_ops *ignore);
92
93 static int find_default_is_async_p (struct target_ops *ignore);
94
95 static enum exec_direction_kind default_execution_direction
96 (struct target_ops *self);
97
98 #include "target-delegates.c"
99
100 static void init_dummy_target (void);
101
102 static struct target_ops debug_target;
103
104 static void debug_to_open (char *, int);
105
106 static void debug_to_prepare_to_store (struct target_ops *self,
107 struct regcache *);
108
109 static void debug_to_files_info (struct target_ops *);
110
111 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
118 int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
121 struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
125 struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (struct target_ops *self,
129 CORE_ADDR, int, int,
130 struct expression *);
131
132 static int debug_to_remove_watchpoint (struct target_ops *self,
133 CORE_ADDR, int, int,
134 struct expression *);
135
136 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
137
138 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
139 CORE_ADDR, CORE_ADDR, int);
140
141 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
142 CORE_ADDR, int);
143
144 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
145 CORE_ADDR, int, int,
146 struct expression *);
147
148 static void debug_to_terminal_init (struct target_ops *self);
149
150 static void debug_to_terminal_inferior (struct target_ops *self);
151
152 static void debug_to_terminal_ours_for_output (struct target_ops *self);
153
154 static void debug_to_terminal_save_ours (struct target_ops *self);
155
156 static void debug_to_terminal_ours (struct target_ops *self);
157
158 static void debug_to_load (struct target_ops *self, char *, int);
159
160 static int debug_to_can_run (struct target_ops *self);
161
162 static void debug_to_stop (struct target_ops *self, ptid_t);
163
164 /* Pointer to array of target architecture structures; the size of the
165 array; the current index into the array; the allocated size of the
166 array. */
167 struct target_ops **target_structs;
168 unsigned target_struct_size;
169 unsigned target_struct_allocsize;
170 #define DEFAULT_ALLOCSIZE 10
171
172 /* The initial current target, so that there is always a semi-valid
173 current target. */
174
175 static struct target_ops dummy_target;
176
177 /* Top of target stack. */
178
179 static struct target_ops *target_stack;
180
181 /* The target structure we are currently using to talk to a process
182 or file or whatever "inferior" we have. */
183
184 struct target_ops current_target;
185
186 /* Command list for target. */
187
188 static struct cmd_list_element *targetlist = NULL;
189
190 /* Nonzero if we should trust readonly sections from the
191 executable when reading memory. */
192
193 static int trust_readonly = 0;
194
195 /* Nonzero if we should show true memory content including
196 memory breakpoint inserted by gdb. */
197
198 static int show_memory_breakpoints = 0;
199
200 /* These globals control whether GDB attempts to perform these
201 operations; they are useful for targets that need to prevent
202 inadvertant disruption, such as in non-stop mode. */
203
204 int may_write_registers = 1;
205
206 int may_write_memory = 1;
207
208 int may_insert_breakpoints = 1;
209
210 int may_insert_tracepoints = 1;
211
212 int may_insert_fast_tracepoints = 1;
213
214 int may_stop = 1;
215
216 /* Non-zero if we want to see trace of target level stuff. */
217
218 static unsigned int targetdebug = 0;
219 static void
220 show_targetdebug (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
224 }
225
226 static void setup_target_debug (void);
227
228 /* The user just typed 'target' without the name of a target. */
229
230 static void
231 target_command (char *arg, int from_tty)
232 {
233 fputs_filtered ("Argument required (target name). Try `help target'\n",
234 gdb_stdout);
235 }
236
237 /* Default target_has_* methods for process_stratum targets. */
238
239 int
240 default_child_has_all_memory (struct target_ops *ops)
241 {
242 /* If no inferior selected, then we can't read memory here. */
243 if (ptid_equal (inferior_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249 int
250 default_child_has_memory (struct target_ops *ops)
251 {
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257 }
258
259 int
260 default_child_has_stack (struct target_ops *ops)
261 {
262 /* If no inferior selected, there's no stack. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269 int
270 default_child_has_registers (struct target_ops *ops)
271 {
272 /* Can't read registers from no inferior. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
281 {
282 /* If there's no thread selected, then we can't make it run through
283 hoops. */
284 if (ptid_equal (the_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290
291 int
292 target_has_all_memory_1 (void)
293 {
294 struct target_ops *t;
295
296 for (t = current_target.beneath; t != NULL; t = t->beneath)
297 if (t->to_has_all_memory (t))
298 return 1;
299
300 return 0;
301 }
302
303 int
304 target_has_memory_1 (void)
305 {
306 struct target_ops *t;
307
308 for (t = current_target.beneath; t != NULL; t = t->beneath)
309 if (t->to_has_memory (t))
310 return 1;
311
312 return 0;
313 }
314
315 int
316 target_has_stack_1 (void)
317 {
318 struct target_ops *t;
319
320 for (t = current_target.beneath; t != NULL; t = t->beneath)
321 if (t->to_has_stack (t))
322 return 1;
323
324 return 0;
325 }
326
327 int
328 target_has_registers_1 (void)
329 {
330 struct target_ops *t;
331
332 for (t = current_target.beneath; t != NULL; t = t->beneath)
333 if (t->to_has_registers (t))
334 return 1;
335
336 return 0;
337 }
338
339 int
340 target_has_execution_1 (ptid_t the_ptid)
341 {
342 struct target_ops *t;
343
344 for (t = current_target.beneath; t != NULL; t = t->beneath)
345 if (t->to_has_execution (t, the_ptid))
346 return 1;
347
348 return 0;
349 }
350
351 int
352 target_has_execution_current (void)
353 {
354 return target_has_execution_1 (inferior_ptid);
355 }
356
357 /* Complete initialization of T. This ensures that various fields in
358 T are set, if needed by the target implementation. */
359
360 void
361 complete_target_initialization (struct target_ops *t)
362 {
363 /* Provide default values for all "must have" methods. */
364 if (t->to_xfer_partial == NULL)
365 t->to_xfer_partial = default_xfer_partial;
366
367 if (t->to_has_all_memory == NULL)
368 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
369
370 if (t->to_has_memory == NULL)
371 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_stack == NULL)
374 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_registers == NULL)
377 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_execution == NULL)
380 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
381
382 install_delegators (t);
383 }
384
385 /* Add possible target architecture T to the list and add a new
386 command 'target T->to_shortname'. Set COMPLETER as the command's
387 completer if not NULL. */
388
389 void
390 add_target_with_completer (struct target_ops *t,
391 completer_ftype *completer)
392 {
393 struct cmd_list_element *c;
394
395 complete_target_initialization (t);
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
421 &targetlist);
422 if (completer != NULL)
423 set_cmd_completer (c, completer);
424 }
425
426 /* Add a possible target architecture to the list. */
427
428 void
429 add_target (struct target_ops *t)
430 {
431 add_target_with_completer (t, NULL);
432 }
433
434 /* See target.h. */
435
436 void
437 add_deprecated_target_alias (struct target_ops *t, char *alias)
438 {
439 struct cmd_list_element *c;
440 char *alt;
441
442 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
443 see PR cli/15104. */
444 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
445 alt = xstrprintf ("target %s", t->to_shortname);
446 deprecate_cmd (c, alt);
447 }
448
449 /* Stub functions */
450
451 void
452 target_ignore (void)
453 {
454 }
455
456 void
457 target_kill (void)
458 {
459 struct target_ops *t;
460
461 for (t = current_target.beneath; t != NULL; t = t->beneath)
462 if (t->to_kill != NULL)
463 {
464 if (targetdebug)
465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
466
467 t->to_kill (t);
468 return;
469 }
470
471 noprocess ();
472 }
473
474 void
475 target_load (char *arg, int from_tty)
476 {
477 target_dcache_invalidate ();
478 (*current_target.to_load) (&current_target, arg, from_tty);
479 }
480
481 void
482 target_create_inferior (char *exec_file, char *args,
483 char **env, int from_tty)
484 {
485 struct target_ops *t;
486
487 for (t = current_target.beneath; t != NULL; t = t->beneath)
488 {
489 if (t->to_create_inferior != NULL)
490 {
491 t->to_create_inferior (t, exec_file, args, env, from_tty);
492 if (targetdebug)
493 fprintf_unfiltered (gdb_stdlog,
494 "target_create_inferior (%s, %s, xxx, %d)\n",
495 exec_file, args, from_tty);
496 return;
497 }
498 }
499
500 internal_error (__FILE__, __LINE__,
501 _("could not find a target to create inferior"));
502 }
503
504 void
505 target_terminal_inferior (void)
506 {
507 /* A background resume (``run&'') should leave GDB in control of the
508 terminal. Use target_can_async_p, not target_is_async_p, since at
509 this point the target is not async yet. However, if sync_execution
510 is not set, we know it will become async prior to resume. */
511 if (target_can_async_p () && !sync_execution)
512 return;
513
514 /* If GDB is resuming the inferior in the foreground, install
515 inferior's terminal modes. */
516 (*current_target.to_terminal_inferior) (&current_target);
517 }
518
519 static int
520 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
521 struct target_ops *t)
522 {
523 errno = EIO; /* Can't read/write this location. */
524 return 0; /* No bytes handled. */
525 }
526
527 static void
528 tcomplain (void)
529 {
530 error (_("You can't do that when your target is `%s'"),
531 current_target.to_shortname);
532 }
533
534 void
535 noprocess (void)
536 {
537 error (_("You can't do that without a process to debug."));
538 }
539
540 static void
541 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
542 {
543 printf_unfiltered (_("No saved terminal information.\n"));
544 }
545
546 /* A default implementation for the to_get_ada_task_ptid target method.
547
548 This function builds the PTID by using both LWP and TID as part of
549 the PTID lwp and tid elements. The pid used is the pid of the
550 inferior_ptid. */
551
552 static ptid_t
553 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
554 {
555 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
556 }
557
558 static enum exec_direction_kind
559 default_execution_direction (struct target_ops *self)
560 {
561 if (!target_can_execute_reverse)
562 return EXEC_FORWARD;
563 else if (!target_can_async_p ())
564 return EXEC_FORWARD;
565 else
566 gdb_assert_not_reached ("\
567 to_execution_direction must be implemented for reverse async");
568 }
569
570 /* Go through the target stack from top to bottom, copying over zero
571 entries in current_target, then filling in still empty entries. In
572 effect, we are doing class inheritance through the pushed target
573 vectors.
574
575 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
576 is currently implemented, is that it discards any knowledge of
577 which target an inherited method originally belonged to.
578 Consequently, new new target methods should instead explicitly and
579 locally search the target stack for the target that can handle the
580 request. */
581
582 static void
583 update_current_target (void)
584 {
585 struct target_ops *t;
586
587 /* First, reset current's contents. */
588 memset (&current_target, 0, sizeof (current_target));
589
590 /* Install the delegators. */
591 install_delegators (&current_target);
592
593 #define INHERIT(FIELD, TARGET) \
594 if (!current_target.FIELD) \
595 current_target.FIELD = (TARGET)->FIELD
596
597 for (t = target_stack; t; t = t->beneath)
598 {
599 INHERIT (to_shortname, t);
600 INHERIT (to_longname, t);
601 INHERIT (to_doc, t);
602 /* Do not inherit to_open. */
603 /* Do not inherit to_close. */
604 /* Do not inherit to_attach. */
605 /* Do not inherit to_post_attach. */
606 INHERIT (to_attach_no_wait, t);
607 /* Do not inherit to_detach. */
608 /* Do not inherit to_disconnect. */
609 /* Do not inherit to_resume. */
610 /* Do not inherit to_wait. */
611 /* Do not inherit to_fetch_registers. */
612 /* Do not inherit to_store_registers. */
613 /* Do not inherit to_prepare_to_store. */
614 INHERIT (deprecated_xfer_memory, t);
615 /* Do not inherit to_files_info. */
616 /* Do not inherit to_insert_breakpoint. */
617 /* Do not inherit to_remove_breakpoint. */
618 /* Do not inherit to_can_use_hw_breakpoint. */
619 /* Do not inherit to_insert_hw_breakpoint. */
620 /* Do not inherit to_remove_hw_breakpoint. */
621 /* Do not inherit to_ranged_break_num_registers. */
622 /* Do not inherit to_insert_watchpoint. */
623 /* Do not inherit to_remove_watchpoint. */
624 /* Do not inherit to_insert_mask_watchpoint. */
625 /* Do not inherit to_remove_mask_watchpoint. */
626 /* Do not inherit to_stopped_data_address. */
627 INHERIT (to_have_steppable_watchpoint, t);
628 INHERIT (to_have_continuable_watchpoint, t);
629 /* Do not inherit to_stopped_by_watchpoint. */
630 /* Do not inherit to_watchpoint_addr_within_range. */
631 /* Do not inherit to_region_ok_for_hw_watchpoint. */
632 /* Do not inherit to_can_accel_watchpoint_condition. */
633 /* Do not inherit to_masked_watch_num_registers. */
634 /* Do not inherit to_terminal_init. */
635 /* Do not inherit to_terminal_inferior. */
636 /* Do not inherit to_terminal_ours_for_output. */
637 /* Do not inherit to_terminal_ours. */
638 /* Do not inherit to_terminal_save_ours. */
639 /* Do not inherit to_terminal_info. */
640 /* Do not inherit to_kill. */
641 /* Do not inherit to_load. */
642 /* Do no inherit to_create_inferior. */
643 /* Do not inherit to_post_startup_inferior. */
644 /* Do not inherit to_insert_fork_catchpoint. */
645 /* Do not inherit to_remove_fork_catchpoint. */
646 /* Do not inherit to_insert_vfork_catchpoint. */
647 /* Do not inherit to_remove_vfork_catchpoint. */
648 /* Do not inherit to_follow_fork. */
649 /* Do not inherit to_insert_exec_catchpoint. */
650 /* Do not inherit to_remove_exec_catchpoint. */
651 /* Do not inherit to_set_syscall_catchpoint. */
652 /* Do not inherit to_has_exited. */
653 /* Do not inherit to_mourn_inferior. */
654 INHERIT (to_can_run, t);
655 /* Do not inherit to_pass_signals. */
656 /* Do not inherit to_program_signals. */
657 /* Do not inherit to_thread_alive. */
658 /* Do not inherit to_find_new_threads. */
659 /* Do not inherit to_pid_to_str. */
660 /* Do not inherit to_extra_thread_info. */
661 /* Do not inherit to_thread_name. */
662 INHERIT (to_stop, t);
663 /* Do not inherit to_xfer_partial. */
664 /* Do not inherit to_rcmd. */
665 /* Do not inherit to_pid_to_exec_file. */
666 /* Do not inherit to_log_command. */
667 INHERIT (to_stratum, t);
668 /* Do not inherit to_has_all_memory. */
669 /* Do not inherit to_has_memory. */
670 /* Do not inherit to_has_stack. */
671 /* Do not inherit to_has_registers. */
672 /* Do not inherit to_has_execution. */
673 INHERIT (to_has_thread_control, t);
674 /* Do not inherit to_can_async_p. */
675 /* Do not inherit to_is_async_p. */
676 /* Do not inherit to_async. */
677 /* Do not inherit to_find_memory_regions. */
678 /* Do not inherit to_make_corefile_notes. */
679 /* Do not inherit to_get_bookmark. */
680 /* Do not inherit to_goto_bookmark. */
681 /* Do not inherit to_get_thread_local_address. */
682 /* Do not inherit to_can_execute_reverse. */
683 /* Do not inherit to_execution_direction. */
684 /* Do not inherit to_thread_architecture. */
685 /* Do not inherit to_read_description. */
686 /* Do not inherit to_get_ada_task_ptid. */
687 /* Do not inherit to_search_memory. */
688 /* Do not inherit to_supports_multi_process. */
689 /* Do not inherit to_supports_enable_disable_tracepoint. */
690 /* Do not inherit to_supports_string_tracing. */
691 /* Do not inherit to_trace_init. */
692 /* Do not inherit to_download_tracepoint. */
693 /* Do not inherit to_can_download_tracepoint. */
694 /* Do not inherit to_download_trace_state_variable. */
695 /* Do not inherit to_enable_tracepoint. */
696 /* Do not inherit to_disable_tracepoint. */
697 /* Do not inherit to_trace_set_readonly_regions. */
698 /* Do not inherit to_trace_start. */
699 /* Do not inherit to_get_trace_status. */
700 INHERIT (to_get_tracepoint_status, t);
701 INHERIT (to_trace_stop, t);
702 INHERIT (to_trace_find, t);
703 INHERIT (to_get_trace_state_variable_value, t);
704 INHERIT (to_save_trace_data, t);
705 INHERIT (to_upload_tracepoints, t);
706 INHERIT (to_upload_trace_state_variables, t);
707 INHERIT (to_get_raw_trace_data, t);
708 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
709 INHERIT (to_set_disconnected_tracing, t);
710 INHERIT (to_set_circular_trace_buffer, t);
711 INHERIT (to_set_trace_buffer_size, t);
712 INHERIT (to_set_trace_notes, t);
713 INHERIT (to_get_tib_address, t);
714 INHERIT (to_set_permissions, t);
715 INHERIT (to_static_tracepoint_marker_at, t);
716 INHERIT (to_static_tracepoint_markers_by_strid, t);
717 INHERIT (to_traceframe_info, t);
718 INHERIT (to_use_agent, t);
719 INHERIT (to_can_use_agent, t);
720 INHERIT (to_augmented_libraries_svr4_read, t);
721 INHERIT (to_magic, t);
722 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
723 INHERIT (to_can_run_breakpoint_commands, t);
724 /* Do not inherit to_memory_map. */
725 /* Do not inherit to_flash_erase. */
726 /* Do not inherit to_flash_done. */
727 }
728 #undef INHERIT
729
730 /* Clean up a target struct so it no longer has any zero pointers in
731 it. Some entries are defaulted to a method that print an error,
732 others are hard-wired to a standard recursive default. */
733
734 #define de_fault(field, value) \
735 if (!current_target.field) \
736 current_target.field = value
737
738 de_fault (to_open,
739 (void (*) (char *, int))
740 tcomplain);
741 de_fault (to_close,
742 (void (*) (struct target_ops *))
743 target_ignore);
744 de_fault (deprecated_xfer_memory,
745 (int (*) (CORE_ADDR, gdb_byte *, int, int,
746 struct mem_attrib *, struct target_ops *))
747 nomemory);
748 de_fault (to_can_run,
749 (int (*) (struct target_ops *))
750 return_zero);
751 de_fault (to_stop,
752 (void (*) (struct target_ops *, ptid_t))
753 target_ignore);
754 current_target.to_read_description = NULL;
755 de_fault (to_get_tracepoint_status,
756 (void (*) (struct target_ops *, struct breakpoint *,
757 struct uploaded_tp *))
758 tcomplain);
759 de_fault (to_trace_stop,
760 (void (*) (struct target_ops *))
761 tcomplain);
762 de_fault (to_trace_find,
763 (int (*) (struct target_ops *,
764 enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
765 return_minus_one);
766 de_fault (to_get_trace_state_variable_value,
767 (int (*) (struct target_ops *, int, LONGEST *))
768 return_zero);
769 de_fault (to_save_trace_data,
770 (int (*) (struct target_ops *, const char *))
771 tcomplain);
772 de_fault (to_upload_tracepoints,
773 (int (*) (struct target_ops *, struct uploaded_tp **))
774 return_zero);
775 de_fault (to_upload_trace_state_variables,
776 (int (*) (struct target_ops *, struct uploaded_tsv **))
777 return_zero);
778 de_fault (to_get_raw_trace_data,
779 (LONGEST (*) (struct target_ops *, gdb_byte *, ULONGEST, LONGEST))
780 tcomplain);
781 de_fault (to_get_min_fast_tracepoint_insn_len,
782 (int (*) (struct target_ops *))
783 return_minus_one);
784 de_fault (to_set_disconnected_tracing,
785 (void (*) (struct target_ops *, int))
786 target_ignore);
787 de_fault (to_set_circular_trace_buffer,
788 (void (*) (struct target_ops *, int))
789 target_ignore);
790 de_fault (to_set_trace_buffer_size,
791 (void (*) (struct target_ops *, LONGEST))
792 target_ignore);
793 de_fault (to_set_trace_notes,
794 (int (*) (struct target_ops *,
795 const char *, const char *, const char *))
796 return_zero);
797 de_fault (to_get_tib_address,
798 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
799 tcomplain);
800 de_fault (to_set_permissions,
801 (void (*) (struct target_ops *))
802 target_ignore);
803 de_fault (to_static_tracepoint_marker_at,
804 (int (*) (struct target_ops *,
805 CORE_ADDR, struct static_tracepoint_marker *))
806 return_zero);
807 de_fault (to_static_tracepoint_markers_by_strid,
808 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
809 const char *))
810 tcomplain);
811 de_fault (to_traceframe_info,
812 (struct traceframe_info * (*) (struct target_ops *))
813 return_null);
814 de_fault (to_supports_evaluation_of_breakpoint_conditions,
815 (int (*) (struct target_ops *))
816 return_zero);
817 de_fault (to_can_run_breakpoint_commands,
818 (int (*) (struct target_ops *))
819 return_zero);
820 de_fault (to_use_agent,
821 (int (*) (struct target_ops *, int))
822 tcomplain);
823 de_fault (to_can_use_agent,
824 (int (*) (struct target_ops *))
825 return_zero);
826 de_fault (to_augmented_libraries_svr4_read,
827 (int (*) (struct target_ops *))
828 return_zero);
829
830 #undef de_fault
831
832 /* Finally, position the target-stack beneath the squashed
833 "current_target". That way code looking for a non-inherited
834 target method can quickly and simply find it. */
835 current_target.beneath = target_stack;
836
837 if (targetdebug)
838 setup_target_debug ();
839 }
840
841 /* Push a new target type into the stack of the existing target accessors,
842 possibly superseding some of the existing accessors.
843
844 Rather than allow an empty stack, we always have the dummy target at
845 the bottom stratum, so we can call the function vectors without
846 checking them. */
847
848 void
849 push_target (struct target_ops *t)
850 {
851 struct target_ops **cur;
852
853 /* Check magic number. If wrong, it probably means someone changed
854 the struct definition, but not all the places that initialize one. */
855 if (t->to_magic != OPS_MAGIC)
856 {
857 fprintf_unfiltered (gdb_stderr,
858 "Magic number of %s target struct wrong\n",
859 t->to_shortname);
860 internal_error (__FILE__, __LINE__,
861 _("failed internal consistency check"));
862 }
863
864 /* Find the proper stratum to install this target in. */
865 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
866 {
867 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
868 break;
869 }
870
871 /* If there's already targets at this stratum, remove them. */
872 /* FIXME: cagney/2003-10-15: I think this should be popping all
873 targets to CUR, and not just those at this stratum level. */
874 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
875 {
876 /* There's already something at this stratum level. Close it,
877 and un-hook it from the stack. */
878 struct target_ops *tmp = (*cur);
879
880 (*cur) = (*cur)->beneath;
881 tmp->beneath = NULL;
882 target_close (tmp);
883 }
884
885 /* We have removed all targets in our stratum, now add the new one. */
886 t->beneath = (*cur);
887 (*cur) = t;
888
889 update_current_target ();
890 }
891
892 /* Remove a target_ops vector from the stack, wherever it may be.
893 Return how many times it was removed (0 or 1). */
894
895 int
896 unpush_target (struct target_ops *t)
897 {
898 struct target_ops **cur;
899 struct target_ops *tmp;
900
901 if (t->to_stratum == dummy_stratum)
902 internal_error (__FILE__, __LINE__,
903 _("Attempt to unpush the dummy target"));
904
905 /* Look for the specified target. Note that we assume that a target
906 can only occur once in the target stack. */
907
908 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
909 {
910 if ((*cur) == t)
911 break;
912 }
913
914 /* If we don't find target_ops, quit. Only open targets should be
915 closed. */
916 if ((*cur) == NULL)
917 return 0;
918
919 /* Unchain the target. */
920 tmp = (*cur);
921 (*cur) = (*cur)->beneath;
922 tmp->beneath = NULL;
923
924 update_current_target ();
925
926 /* Finally close the target. Note we do this after unchaining, so
927 any target method calls from within the target_close
928 implementation don't end up in T anymore. */
929 target_close (t);
930
931 return 1;
932 }
933
934 void
935 pop_all_targets_above (enum strata above_stratum)
936 {
937 while ((int) (current_target.to_stratum) > (int) above_stratum)
938 {
939 if (!unpush_target (target_stack))
940 {
941 fprintf_unfiltered (gdb_stderr,
942 "pop_all_targets couldn't find target %s\n",
943 target_stack->to_shortname);
944 internal_error (__FILE__, __LINE__,
945 _("failed internal consistency check"));
946 break;
947 }
948 }
949 }
950
951 void
952 pop_all_targets (void)
953 {
954 pop_all_targets_above (dummy_stratum);
955 }
956
957 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
958
959 int
960 target_is_pushed (struct target_ops *t)
961 {
962 struct target_ops **cur;
963
964 /* Check magic number. If wrong, it probably means someone changed
965 the struct definition, but not all the places that initialize one. */
966 if (t->to_magic != OPS_MAGIC)
967 {
968 fprintf_unfiltered (gdb_stderr,
969 "Magic number of %s target struct wrong\n",
970 t->to_shortname);
971 internal_error (__FILE__, __LINE__,
972 _("failed internal consistency check"));
973 }
974
975 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
976 if (*cur == t)
977 return 1;
978
979 return 0;
980 }
981
982 /* Using the objfile specified in OBJFILE, find the address for the
983 current thread's thread-local storage with offset OFFSET. */
984 CORE_ADDR
985 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
986 {
987 volatile CORE_ADDR addr = 0;
988 struct target_ops *target;
989
990 for (target = current_target.beneath;
991 target != NULL;
992 target = target->beneath)
993 {
994 if (target->to_get_thread_local_address != NULL)
995 break;
996 }
997
998 if (target != NULL
999 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1000 {
1001 ptid_t ptid = inferior_ptid;
1002 volatile struct gdb_exception ex;
1003
1004 TRY_CATCH (ex, RETURN_MASK_ALL)
1005 {
1006 CORE_ADDR lm_addr;
1007
1008 /* Fetch the load module address for this objfile. */
1009 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1010 objfile);
1011 /* If it's 0, throw the appropriate exception. */
1012 if (lm_addr == 0)
1013 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1014 _("TLS load module not found"));
1015
1016 addr = target->to_get_thread_local_address (target, ptid,
1017 lm_addr, offset);
1018 }
1019 /* If an error occurred, print TLS related messages here. Otherwise,
1020 throw the error to some higher catcher. */
1021 if (ex.reason < 0)
1022 {
1023 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1024
1025 switch (ex.error)
1026 {
1027 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1028 error (_("Cannot find thread-local variables "
1029 "in this thread library."));
1030 break;
1031 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1032 if (objfile_is_library)
1033 error (_("Cannot find shared library `%s' in dynamic"
1034 " linker's load module list"), objfile_name (objfile));
1035 else
1036 error (_("Cannot find executable file `%s' in dynamic"
1037 " linker's load module list"), objfile_name (objfile));
1038 break;
1039 case TLS_NOT_ALLOCATED_YET_ERROR:
1040 if (objfile_is_library)
1041 error (_("The inferior has not yet allocated storage for"
1042 " thread-local variables in\n"
1043 "the shared library `%s'\n"
1044 "for %s"),
1045 objfile_name (objfile), target_pid_to_str (ptid));
1046 else
1047 error (_("The inferior has not yet allocated storage for"
1048 " thread-local variables in\n"
1049 "the executable `%s'\n"
1050 "for %s"),
1051 objfile_name (objfile), target_pid_to_str (ptid));
1052 break;
1053 case TLS_GENERIC_ERROR:
1054 if (objfile_is_library)
1055 error (_("Cannot find thread-local storage for %s, "
1056 "shared library %s:\n%s"),
1057 target_pid_to_str (ptid),
1058 objfile_name (objfile), ex.message);
1059 else
1060 error (_("Cannot find thread-local storage for %s, "
1061 "executable file %s:\n%s"),
1062 target_pid_to_str (ptid),
1063 objfile_name (objfile), ex.message);
1064 break;
1065 default:
1066 throw_exception (ex);
1067 break;
1068 }
1069 }
1070 }
1071 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1072 TLS is an ABI-specific thing. But we don't do that yet. */
1073 else
1074 error (_("Cannot find thread-local variables on this target"));
1075
1076 return addr;
1077 }
1078
1079 const char *
1080 target_xfer_status_to_string (enum target_xfer_status err)
1081 {
1082 #define CASE(X) case X: return #X
1083 switch (err)
1084 {
1085 CASE(TARGET_XFER_E_IO);
1086 CASE(TARGET_XFER_E_UNAVAILABLE);
1087 default:
1088 return "<unknown>";
1089 }
1090 #undef CASE
1091 };
1092
1093
1094 #undef MIN
1095 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1096
1097 /* target_read_string -- read a null terminated string, up to LEN bytes,
1098 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1099 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1100 is responsible for freeing it. Return the number of bytes successfully
1101 read. */
1102
1103 int
1104 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1105 {
1106 int tlen, offset, i;
1107 gdb_byte buf[4];
1108 int errcode = 0;
1109 char *buffer;
1110 int buffer_allocated;
1111 char *bufptr;
1112 unsigned int nbytes_read = 0;
1113
1114 gdb_assert (string);
1115
1116 /* Small for testing. */
1117 buffer_allocated = 4;
1118 buffer = xmalloc (buffer_allocated);
1119 bufptr = buffer;
1120
1121 while (len > 0)
1122 {
1123 tlen = MIN (len, 4 - (memaddr & 3));
1124 offset = memaddr & 3;
1125
1126 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1127 if (errcode != 0)
1128 {
1129 /* The transfer request might have crossed the boundary to an
1130 unallocated region of memory. Retry the transfer, requesting
1131 a single byte. */
1132 tlen = 1;
1133 offset = 0;
1134 errcode = target_read_memory (memaddr, buf, 1);
1135 if (errcode != 0)
1136 goto done;
1137 }
1138
1139 if (bufptr - buffer + tlen > buffer_allocated)
1140 {
1141 unsigned int bytes;
1142
1143 bytes = bufptr - buffer;
1144 buffer_allocated *= 2;
1145 buffer = xrealloc (buffer, buffer_allocated);
1146 bufptr = buffer + bytes;
1147 }
1148
1149 for (i = 0; i < tlen; i++)
1150 {
1151 *bufptr++ = buf[i + offset];
1152 if (buf[i + offset] == '\000')
1153 {
1154 nbytes_read += i + 1;
1155 goto done;
1156 }
1157 }
1158
1159 memaddr += tlen;
1160 len -= tlen;
1161 nbytes_read += tlen;
1162 }
1163 done:
1164 *string = buffer;
1165 if (errnop != NULL)
1166 *errnop = errcode;
1167 return nbytes_read;
1168 }
1169
1170 struct target_section_table *
1171 target_get_section_table (struct target_ops *target)
1172 {
1173 struct target_ops *t;
1174
1175 if (targetdebug)
1176 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1177
1178 for (t = target; t != NULL; t = t->beneath)
1179 if (t->to_get_section_table != NULL)
1180 return (*t->to_get_section_table) (t);
1181
1182 return NULL;
1183 }
1184
1185 /* Find a section containing ADDR. */
1186
1187 struct target_section *
1188 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1189 {
1190 struct target_section_table *table = target_get_section_table (target);
1191 struct target_section *secp;
1192
1193 if (table == NULL)
1194 return NULL;
1195
1196 for (secp = table->sections; secp < table->sections_end; secp++)
1197 {
1198 if (addr >= secp->addr && addr < secp->endaddr)
1199 return secp;
1200 }
1201 return NULL;
1202 }
1203
1204 /* Read memory from the live target, even if currently inspecting a
1205 traceframe. The return is the same as that of target_read. */
1206
1207 static enum target_xfer_status
1208 target_read_live_memory (enum target_object object,
1209 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1210 ULONGEST *xfered_len)
1211 {
1212 enum target_xfer_status ret;
1213 struct cleanup *cleanup;
1214
1215 /* Switch momentarily out of tfind mode so to access live memory.
1216 Note that this must not clear global state, such as the frame
1217 cache, which must still remain valid for the previous traceframe.
1218 We may be _building_ the frame cache at this point. */
1219 cleanup = make_cleanup_restore_traceframe_number ();
1220 set_traceframe_number (-1);
1221
1222 ret = target_xfer_partial (current_target.beneath, object, NULL,
1223 myaddr, NULL, memaddr, len, xfered_len);
1224
1225 do_cleanups (cleanup);
1226 return ret;
1227 }
1228
1229 /* Using the set of read-only target sections of OPS, read live
1230 read-only memory. Note that the actual reads start from the
1231 top-most target again.
1232
1233 For interface/parameters/return description see target.h,
1234 to_xfer_partial. */
1235
1236 static enum target_xfer_status
1237 memory_xfer_live_readonly_partial (struct target_ops *ops,
1238 enum target_object object,
1239 gdb_byte *readbuf, ULONGEST memaddr,
1240 ULONGEST len, ULONGEST *xfered_len)
1241 {
1242 struct target_section *secp;
1243 struct target_section_table *table;
1244
1245 secp = target_section_by_addr (ops, memaddr);
1246 if (secp != NULL
1247 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1248 secp->the_bfd_section)
1249 & SEC_READONLY))
1250 {
1251 struct target_section *p;
1252 ULONGEST memend = memaddr + len;
1253
1254 table = target_get_section_table (ops);
1255
1256 for (p = table->sections; p < table->sections_end; p++)
1257 {
1258 if (memaddr >= p->addr)
1259 {
1260 if (memend <= p->endaddr)
1261 {
1262 /* Entire transfer is within this section. */
1263 return target_read_live_memory (object, memaddr,
1264 readbuf, len, xfered_len);
1265 }
1266 else if (memaddr >= p->endaddr)
1267 {
1268 /* This section ends before the transfer starts. */
1269 continue;
1270 }
1271 else
1272 {
1273 /* This section overlaps the transfer. Just do half. */
1274 len = p->endaddr - memaddr;
1275 return target_read_live_memory (object, memaddr,
1276 readbuf, len, xfered_len);
1277 }
1278 }
1279 }
1280 }
1281
1282 return TARGET_XFER_EOF;
1283 }
1284
1285 /* Read memory from more than one valid target. A core file, for
1286 instance, could have some of memory but delegate other bits to
1287 the target below it. So, we must manually try all targets. */
1288
1289 static enum target_xfer_status
1290 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1291 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1292 ULONGEST *xfered_len)
1293 {
1294 enum target_xfer_status res;
1295
1296 do
1297 {
1298 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1299 readbuf, writebuf, memaddr, len,
1300 xfered_len);
1301 if (res == TARGET_XFER_OK)
1302 break;
1303
1304 /* Stop if the target reports that the memory is not available. */
1305 if (res == TARGET_XFER_E_UNAVAILABLE)
1306 break;
1307
1308 /* We want to continue past core files to executables, but not
1309 past a running target's memory. */
1310 if (ops->to_has_all_memory (ops))
1311 break;
1312
1313 ops = ops->beneath;
1314 }
1315 while (ops != NULL);
1316
1317 return res;
1318 }
1319
1320 /* Perform a partial memory transfer.
1321 For docs see target.h, to_xfer_partial. */
1322
1323 static enum target_xfer_status
1324 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1325 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1326 ULONGEST len, ULONGEST *xfered_len)
1327 {
1328 enum target_xfer_status res;
1329 int reg_len;
1330 struct mem_region *region;
1331 struct inferior *inf;
1332
1333 /* For accesses to unmapped overlay sections, read directly from
1334 files. Must do this first, as MEMADDR may need adjustment. */
1335 if (readbuf != NULL && overlay_debugging)
1336 {
1337 struct obj_section *section = find_pc_overlay (memaddr);
1338
1339 if (pc_in_unmapped_range (memaddr, section))
1340 {
1341 struct target_section_table *table
1342 = target_get_section_table (ops);
1343 const char *section_name = section->the_bfd_section->name;
1344
1345 memaddr = overlay_mapped_address (memaddr, section);
1346 return section_table_xfer_memory_partial (readbuf, writebuf,
1347 memaddr, len, xfered_len,
1348 table->sections,
1349 table->sections_end,
1350 section_name);
1351 }
1352 }
1353
1354 /* Try the executable files, if "trust-readonly-sections" is set. */
1355 if (readbuf != NULL && trust_readonly)
1356 {
1357 struct target_section *secp;
1358 struct target_section_table *table;
1359
1360 secp = target_section_by_addr (ops, memaddr);
1361 if (secp != NULL
1362 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1363 secp->the_bfd_section)
1364 & SEC_READONLY))
1365 {
1366 table = target_get_section_table (ops);
1367 return section_table_xfer_memory_partial (readbuf, writebuf,
1368 memaddr, len, xfered_len,
1369 table->sections,
1370 table->sections_end,
1371 NULL);
1372 }
1373 }
1374
1375 /* If reading unavailable memory in the context of traceframes, and
1376 this address falls within a read-only section, fallback to
1377 reading from live memory. */
1378 if (readbuf != NULL && get_traceframe_number () != -1)
1379 {
1380 VEC(mem_range_s) *available;
1381
1382 /* If we fail to get the set of available memory, then the
1383 target does not support querying traceframe info, and so we
1384 attempt reading from the traceframe anyway (assuming the
1385 target implements the old QTro packet then). */
1386 if (traceframe_available_memory (&available, memaddr, len))
1387 {
1388 struct cleanup *old_chain;
1389
1390 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1391
1392 if (VEC_empty (mem_range_s, available)
1393 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1394 {
1395 /* Don't read into the traceframe's available
1396 memory. */
1397 if (!VEC_empty (mem_range_s, available))
1398 {
1399 LONGEST oldlen = len;
1400
1401 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1402 gdb_assert (len <= oldlen);
1403 }
1404
1405 do_cleanups (old_chain);
1406
1407 /* This goes through the topmost target again. */
1408 res = memory_xfer_live_readonly_partial (ops, object,
1409 readbuf, memaddr,
1410 len, xfered_len);
1411 if (res == TARGET_XFER_OK)
1412 return TARGET_XFER_OK;
1413 else
1414 {
1415 /* No use trying further, we know some memory starting
1416 at MEMADDR isn't available. */
1417 *xfered_len = len;
1418 return TARGET_XFER_E_UNAVAILABLE;
1419 }
1420 }
1421
1422 /* Don't try to read more than how much is available, in
1423 case the target implements the deprecated QTro packet to
1424 cater for older GDBs (the target's knowledge of read-only
1425 sections may be outdated by now). */
1426 len = VEC_index (mem_range_s, available, 0)->length;
1427
1428 do_cleanups (old_chain);
1429 }
1430 }
1431
1432 /* Try GDB's internal data cache. */
1433 region = lookup_mem_region (memaddr);
1434 /* region->hi == 0 means there's no upper bound. */
1435 if (memaddr + len < region->hi || region->hi == 0)
1436 reg_len = len;
1437 else
1438 reg_len = region->hi - memaddr;
1439
1440 switch (region->attrib.mode)
1441 {
1442 case MEM_RO:
1443 if (writebuf != NULL)
1444 return TARGET_XFER_E_IO;
1445 break;
1446
1447 case MEM_WO:
1448 if (readbuf != NULL)
1449 return TARGET_XFER_E_IO;
1450 break;
1451
1452 case MEM_FLASH:
1453 /* We only support writing to flash during "load" for now. */
1454 if (writebuf != NULL)
1455 error (_("Writing to flash memory forbidden in this context"));
1456 break;
1457
1458 case MEM_NONE:
1459 return TARGET_XFER_E_IO;
1460 }
1461
1462 if (!ptid_equal (inferior_ptid, null_ptid))
1463 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1464 else
1465 inf = NULL;
1466
1467 if (inf != NULL
1468 /* The dcache reads whole cache lines; that doesn't play well
1469 with reading from a trace buffer, because reading outside of
1470 the collected memory range fails. */
1471 && get_traceframe_number () == -1
1472 && (region->attrib.cache
1473 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1474 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1475 {
1476 DCACHE *dcache = target_dcache_get_or_init ();
1477 int l;
1478
1479 if (readbuf != NULL)
1480 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1481 else
1482 /* FIXME drow/2006-08-09: If we're going to preserve const
1483 correctness dcache_xfer_memory should take readbuf and
1484 writebuf. */
1485 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1486 reg_len, 1);
1487 if (l <= 0)
1488 return TARGET_XFER_E_IO;
1489 else
1490 {
1491 *xfered_len = (ULONGEST) l;
1492 return TARGET_XFER_OK;
1493 }
1494 }
1495
1496 /* If none of those methods found the memory we wanted, fall back
1497 to a target partial transfer. Normally a single call to
1498 to_xfer_partial is enough; if it doesn't recognize an object
1499 it will call the to_xfer_partial of the next target down.
1500 But for memory this won't do. Memory is the only target
1501 object which can be read from more than one valid target.
1502 A core file, for instance, could have some of memory but
1503 delegate other bits to the target below it. So, we must
1504 manually try all targets. */
1505
1506 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1507 xfered_len);
1508
1509 /* Make sure the cache gets updated no matter what - if we are writing
1510 to the stack. Even if this write is not tagged as such, we still need
1511 to update the cache. */
1512
1513 if (res == TARGET_XFER_OK
1514 && inf != NULL
1515 && writebuf != NULL
1516 && target_dcache_init_p ()
1517 && !region->attrib.cache
1518 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1519 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1520 {
1521 DCACHE *dcache = target_dcache_get ();
1522
1523 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1524 }
1525
1526 /* If we still haven't got anything, return the last error. We
1527 give up. */
1528 return res;
1529 }
1530
1531 /* Perform a partial memory transfer. For docs see target.h,
1532 to_xfer_partial. */
1533
1534 static enum target_xfer_status
1535 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1536 gdb_byte *readbuf, const gdb_byte *writebuf,
1537 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1538 {
1539 enum target_xfer_status res;
1540
1541 /* Zero length requests are ok and require no work. */
1542 if (len == 0)
1543 return TARGET_XFER_EOF;
1544
1545 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1546 breakpoint insns, thus hiding out from higher layers whether
1547 there are software breakpoints inserted in the code stream. */
1548 if (readbuf != NULL)
1549 {
1550 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1551 xfered_len);
1552
1553 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1554 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1555 }
1556 else
1557 {
1558 void *buf;
1559 struct cleanup *old_chain;
1560
1561 /* A large write request is likely to be partially satisfied
1562 by memory_xfer_partial_1. We will continually malloc
1563 and free a copy of the entire write request for breakpoint
1564 shadow handling even though we only end up writing a small
1565 subset of it. Cap writes to 4KB to mitigate this. */
1566 len = min (4096, len);
1567
1568 buf = xmalloc (len);
1569 old_chain = make_cleanup (xfree, buf);
1570 memcpy (buf, writebuf, len);
1571
1572 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1573 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1574 xfered_len);
1575
1576 do_cleanups (old_chain);
1577 }
1578
1579 return res;
1580 }
1581
1582 static void
1583 restore_show_memory_breakpoints (void *arg)
1584 {
1585 show_memory_breakpoints = (uintptr_t) arg;
1586 }
1587
1588 struct cleanup *
1589 make_show_memory_breakpoints_cleanup (int show)
1590 {
1591 int current = show_memory_breakpoints;
1592
1593 show_memory_breakpoints = show;
1594 return make_cleanup (restore_show_memory_breakpoints,
1595 (void *) (uintptr_t) current);
1596 }
1597
1598 /* For docs see target.h, to_xfer_partial. */
1599
1600 enum target_xfer_status
1601 target_xfer_partial (struct target_ops *ops,
1602 enum target_object object, const char *annex,
1603 gdb_byte *readbuf, const gdb_byte *writebuf,
1604 ULONGEST offset, ULONGEST len,
1605 ULONGEST *xfered_len)
1606 {
1607 enum target_xfer_status retval;
1608
1609 gdb_assert (ops->to_xfer_partial != NULL);
1610
1611 /* Transfer is done when LEN is zero. */
1612 if (len == 0)
1613 return TARGET_XFER_EOF;
1614
1615 if (writebuf && !may_write_memory)
1616 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1617 core_addr_to_string_nz (offset), plongest (len));
1618
1619 *xfered_len = 0;
1620
1621 /* If this is a memory transfer, let the memory-specific code
1622 have a look at it instead. Memory transfers are more
1623 complicated. */
1624 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1625 || object == TARGET_OBJECT_CODE_MEMORY)
1626 retval = memory_xfer_partial (ops, object, readbuf,
1627 writebuf, offset, len, xfered_len);
1628 else if (object == TARGET_OBJECT_RAW_MEMORY)
1629 {
1630 /* Request the normal memory object from other layers. */
1631 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1632 xfered_len);
1633 }
1634 else
1635 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1636 writebuf, offset, len, xfered_len);
1637
1638 if (targetdebug)
1639 {
1640 const unsigned char *myaddr = NULL;
1641
1642 fprintf_unfiltered (gdb_stdlog,
1643 "%s:target_xfer_partial "
1644 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1645 ops->to_shortname,
1646 (int) object,
1647 (annex ? annex : "(null)"),
1648 host_address_to_string (readbuf),
1649 host_address_to_string (writebuf),
1650 core_addr_to_string_nz (offset),
1651 pulongest (len), retval,
1652 pulongest (*xfered_len));
1653
1654 if (readbuf)
1655 myaddr = readbuf;
1656 if (writebuf)
1657 myaddr = writebuf;
1658 if (retval == TARGET_XFER_OK && myaddr != NULL)
1659 {
1660 int i;
1661
1662 fputs_unfiltered (", bytes =", gdb_stdlog);
1663 for (i = 0; i < *xfered_len; i++)
1664 {
1665 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1666 {
1667 if (targetdebug < 2 && i > 0)
1668 {
1669 fprintf_unfiltered (gdb_stdlog, " ...");
1670 break;
1671 }
1672 fprintf_unfiltered (gdb_stdlog, "\n");
1673 }
1674
1675 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1676 }
1677 }
1678
1679 fputc_unfiltered ('\n', gdb_stdlog);
1680 }
1681
1682 /* Check implementations of to_xfer_partial update *XFERED_LEN
1683 properly. Do assertion after printing debug messages, so that we
1684 can find more clues on assertion failure from debugging messages. */
1685 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1686 gdb_assert (*xfered_len > 0);
1687
1688 return retval;
1689 }
1690
1691 /* Read LEN bytes of target memory at address MEMADDR, placing the
1692 results in GDB's memory at MYADDR. Returns either 0 for success or
1693 TARGET_XFER_E_IO if any error occurs.
1694
1695 If an error occurs, no guarantee is made about the contents of the data at
1696 MYADDR. In particular, the caller should not depend upon partial reads
1697 filling the buffer with good data. There is no way for the caller to know
1698 how much good data might have been transfered anyway. Callers that can
1699 deal with partial reads should call target_read (which will retry until
1700 it makes no progress, and then return how much was transferred). */
1701
1702 int
1703 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1704 {
1705 /* Dispatch to the topmost target, not the flattened current_target.
1706 Memory accesses check target->to_has_(all_)memory, and the
1707 flattened target doesn't inherit those. */
1708 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1709 myaddr, memaddr, len) == len)
1710 return 0;
1711 else
1712 return TARGET_XFER_E_IO;
1713 }
1714
1715 /* Like target_read_memory, but specify explicitly that this is a read
1716 from the target's raw memory. That is, this read bypasses the
1717 dcache, breakpoint shadowing, etc. */
1718
1719 int
1720 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1721 {
1722 /* See comment in target_read_memory about why the request starts at
1723 current_target.beneath. */
1724 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1725 myaddr, memaddr, len) == len)
1726 return 0;
1727 else
1728 return TARGET_XFER_E_IO;
1729 }
1730
1731 /* Like target_read_memory, but specify explicitly that this is a read from
1732 the target's stack. This may trigger different cache behavior. */
1733
1734 int
1735 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1736 {
1737 /* See comment in target_read_memory about why the request starts at
1738 current_target.beneath. */
1739 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1740 myaddr, memaddr, len) == len)
1741 return 0;
1742 else
1743 return TARGET_XFER_E_IO;
1744 }
1745
1746 /* Like target_read_memory, but specify explicitly that this is a read from
1747 the target's code. This may trigger different cache behavior. */
1748
1749 int
1750 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1751 {
1752 /* See comment in target_read_memory about why the request starts at
1753 current_target.beneath. */
1754 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1755 myaddr, memaddr, len) == len)
1756 return 0;
1757 else
1758 return TARGET_XFER_E_IO;
1759 }
1760
1761 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1762 Returns either 0 for success or TARGET_XFER_E_IO if any
1763 error occurs. If an error occurs, no guarantee is made about how
1764 much data got written. Callers that can deal with partial writes
1765 should call target_write. */
1766
1767 int
1768 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1769 {
1770 /* See comment in target_read_memory about why the request starts at
1771 current_target.beneath. */
1772 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1773 myaddr, memaddr, len) == len)
1774 return 0;
1775 else
1776 return TARGET_XFER_E_IO;
1777 }
1778
1779 /* Write LEN bytes from MYADDR to target raw memory at address
1780 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1781 if any error occurs. If an error occurs, no guarantee is made
1782 about how much data got written. Callers that can deal with
1783 partial writes should call target_write. */
1784
1785 int
1786 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1787 {
1788 /* See comment in target_read_memory about why the request starts at
1789 current_target.beneath. */
1790 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1791 myaddr, memaddr, len) == len)
1792 return 0;
1793 else
1794 return TARGET_XFER_E_IO;
1795 }
1796
1797 /* Fetch the target's memory map. */
1798
1799 VEC(mem_region_s) *
1800 target_memory_map (void)
1801 {
1802 VEC(mem_region_s) *result;
1803 struct mem_region *last_one, *this_one;
1804 int ix;
1805 struct target_ops *t;
1806
1807 if (targetdebug)
1808 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1809
1810 for (t = current_target.beneath; t != NULL; t = t->beneath)
1811 if (t->to_memory_map != NULL)
1812 break;
1813
1814 if (t == NULL)
1815 return NULL;
1816
1817 result = t->to_memory_map (t);
1818 if (result == NULL)
1819 return NULL;
1820
1821 qsort (VEC_address (mem_region_s, result),
1822 VEC_length (mem_region_s, result),
1823 sizeof (struct mem_region), mem_region_cmp);
1824
1825 /* Check that regions do not overlap. Simultaneously assign
1826 a numbering for the "mem" commands to use to refer to
1827 each region. */
1828 last_one = NULL;
1829 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1830 {
1831 this_one->number = ix;
1832
1833 if (last_one && last_one->hi > this_one->lo)
1834 {
1835 warning (_("Overlapping regions in memory map: ignoring"));
1836 VEC_free (mem_region_s, result);
1837 return NULL;
1838 }
1839 last_one = this_one;
1840 }
1841
1842 return result;
1843 }
1844
1845 void
1846 target_flash_erase (ULONGEST address, LONGEST length)
1847 {
1848 struct target_ops *t;
1849
1850 for (t = current_target.beneath; t != NULL; t = t->beneath)
1851 if (t->to_flash_erase != NULL)
1852 {
1853 if (targetdebug)
1854 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1855 hex_string (address), phex (length, 0));
1856 t->to_flash_erase (t, address, length);
1857 return;
1858 }
1859
1860 tcomplain ();
1861 }
1862
1863 void
1864 target_flash_done (void)
1865 {
1866 struct target_ops *t;
1867
1868 for (t = current_target.beneath; t != NULL; t = t->beneath)
1869 if (t->to_flash_done != NULL)
1870 {
1871 if (targetdebug)
1872 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1873 t->to_flash_done (t);
1874 return;
1875 }
1876
1877 tcomplain ();
1878 }
1879
1880 static void
1881 show_trust_readonly (struct ui_file *file, int from_tty,
1882 struct cmd_list_element *c, const char *value)
1883 {
1884 fprintf_filtered (file,
1885 _("Mode for reading from readonly sections is %s.\n"),
1886 value);
1887 }
1888
1889 /* More generic transfers. */
1890
1891 static enum target_xfer_status
1892 default_xfer_partial (struct target_ops *ops, enum target_object object,
1893 const char *annex, gdb_byte *readbuf,
1894 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1895 ULONGEST *xfered_len)
1896 {
1897 if (object == TARGET_OBJECT_MEMORY
1898 && ops->deprecated_xfer_memory != NULL)
1899 /* If available, fall back to the target's
1900 "deprecated_xfer_memory" method. */
1901 {
1902 int xfered = -1;
1903
1904 errno = 0;
1905 if (writebuf != NULL)
1906 {
1907 void *buffer = xmalloc (len);
1908 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1909
1910 memcpy (buffer, writebuf, len);
1911 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1912 1/*write*/, NULL, ops);
1913 do_cleanups (cleanup);
1914 }
1915 if (readbuf != NULL)
1916 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1917 0/*read*/, NULL, ops);
1918 if (xfered > 0)
1919 {
1920 *xfered_len = (ULONGEST) xfered;
1921 return TARGET_XFER_E_IO;
1922 }
1923 else if (xfered == 0 && errno == 0)
1924 /* "deprecated_xfer_memory" uses 0, cross checked against
1925 ERRNO as one indication of an error. */
1926 return TARGET_XFER_EOF;
1927 else
1928 return TARGET_XFER_E_IO;
1929 }
1930 else
1931 {
1932 gdb_assert (ops->beneath != NULL);
1933 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1934 readbuf, writebuf, offset, len,
1935 xfered_len);
1936 }
1937 }
1938
1939 /* Target vector read/write partial wrapper functions. */
1940
1941 static enum target_xfer_status
1942 target_read_partial (struct target_ops *ops,
1943 enum target_object object,
1944 const char *annex, gdb_byte *buf,
1945 ULONGEST offset, ULONGEST len,
1946 ULONGEST *xfered_len)
1947 {
1948 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1949 xfered_len);
1950 }
1951
1952 static enum target_xfer_status
1953 target_write_partial (struct target_ops *ops,
1954 enum target_object object,
1955 const char *annex, const gdb_byte *buf,
1956 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1957 {
1958 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1959 xfered_len);
1960 }
1961
1962 /* Wrappers to perform the full transfer. */
1963
1964 /* For docs on target_read see target.h. */
1965
1966 LONGEST
1967 target_read (struct target_ops *ops,
1968 enum target_object object,
1969 const char *annex, gdb_byte *buf,
1970 ULONGEST offset, LONGEST len)
1971 {
1972 LONGEST xfered = 0;
1973
1974 while (xfered < len)
1975 {
1976 ULONGEST xfered_len;
1977 enum target_xfer_status status;
1978
1979 status = target_read_partial (ops, object, annex,
1980 (gdb_byte *) buf + xfered,
1981 offset + xfered, len - xfered,
1982 &xfered_len);
1983
1984 /* Call an observer, notifying them of the xfer progress? */
1985 if (status == TARGET_XFER_EOF)
1986 return xfered;
1987 else if (status == TARGET_XFER_OK)
1988 {
1989 xfered += xfered_len;
1990 QUIT;
1991 }
1992 else
1993 return -1;
1994
1995 }
1996 return len;
1997 }
1998
1999 /* Assuming that the entire [begin, end) range of memory cannot be
2000 read, try to read whatever subrange is possible to read.
2001
2002 The function returns, in RESULT, either zero or one memory block.
2003 If there's a readable subrange at the beginning, it is completely
2004 read and returned. Any further readable subrange will not be read.
2005 Otherwise, if there's a readable subrange at the end, it will be
2006 completely read and returned. Any readable subranges before it
2007 (obviously, not starting at the beginning), will be ignored. In
2008 other cases -- either no readable subrange, or readable subrange(s)
2009 that is neither at the beginning, or end, nothing is returned.
2010
2011 The purpose of this function is to handle a read across a boundary
2012 of accessible memory in a case when memory map is not available.
2013 The above restrictions are fine for this case, but will give
2014 incorrect results if the memory is 'patchy'. However, supporting
2015 'patchy' memory would require trying to read every single byte,
2016 and it seems unacceptable solution. Explicit memory map is
2017 recommended for this case -- and target_read_memory_robust will
2018 take care of reading multiple ranges then. */
2019
2020 static void
2021 read_whatever_is_readable (struct target_ops *ops,
2022 ULONGEST begin, ULONGEST end,
2023 VEC(memory_read_result_s) **result)
2024 {
2025 gdb_byte *buf = xmalloc (end - begin);
2026 ULONGEST current_begin = begin;
2027 ULONGEST current_end = end;
2028 int forward;
2029 memory_read_result_s r;
2030 ULONGEST xfered_len;
2031
2032 /* If we previously failed to read 1 byte, nothing can be done here. */
2033 if (end - begin <= 1)
2034 {
2035 xfree (buf);
2036 return;
2037 }
2038
2039 /* Check that either first or the last byte is readable, and give up
2040 if not. This heuristic is meant to permit reading accessible memory
2041 at the boundary of accessible region. */
2042 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2043 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2044 {
2045 forward = 1;
2046 ++current_begin;
2047 }
2048 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2049 buf + (end-begin) - 1, end - 1, 1,
2050 &xfered_len) == TARGET_XFER_OK)
2051 {
2052 forward = 0;
2053 --current_end;
2054 }
2055 else
2056 {
2057 xfree (buf);
2058 return;
2059 }
2060
2061 /* Loop invariant is that the [current_begin, current_end) was previously
2062 found to be not readable as a whole.
2063
2064 Note loop condition -- if the range has 1 byte, we can't divide the range
2065 so there's no point trying further. */
2066 while (current_end - current_begin > 1)
2067 {
2068 ULONGEST first_half_begin, first_half_end;
2069 ULONGEST second_half_begin, second_half_end;
2070 LONGEST xfer;
2071 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2072
2073 if (forward)
2074 {
2075 first_half_begin = current_begin;
2076 first_half_end = middle;
2077 second_half_begin = middle;
2078 second_half_end = current_end;
2079 }
2080 else
2081 {
2082 first_half_begin = middle;
2083 first_half_end = current_end;
2084 second_half_begin = current_begin;
2085 second_half_end = middle;
2086 }
2087
2088 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2089 buf + (first_half_begin - begin),
2090 first_half_begin,
2091 first_half_end - first_half_begin);
2092
2093 if (xfer == first_half_end - first_half_begin)
2094 {
2095 /* This half reads up fine. So, the error must be in the
2096 other half. */
2097 current_begin = second_half_begin;
2098 current_end = second_half_end;
2099 }
2100 else
2101 {
2102 /* This half is not readable. Because we've tried one byte, we
2103 know some part of this half if actually redable. Go to the next
2104 iteration to divide again and try to read.
2105
2106 We don't handle the other half, because this function only tries
2107 to read a single readable subrange. */
2108 current_begin = first_half_begin;
2109 current_end = first_half_end;
2110 }
2111 }
2112
2113 if (forward)
2114 {
2115 /* The [begin, current_begin) range has been read. */
2116 r.begin = begin;
2117 r.end = current_begin;
2118 r.data = buf;
2119 }
2120 else
2121 {
2122 /* The [current_end, end) range has been read. */
2123 LONGEST rlen = end - current_end;
2124
2125 r.data = xmalloc (rlen);
2126 memcpy (r.data, buf + current_end - begin, rlen);
2127 r.begin = current_end;
2128 r.end = end;
2129 xfree (buf);
2130 }
2131 VEC_safe_push(memory_read_result_s, (*result), &r);
2132 }
2133
2134 void
2135 free_memory_read_result_vector (void *x)
2136 {
2137 VEC(memory_read_result_s) *v = x;
2138 memory_read_result_s *current;
2139 int ix;
2140
2141 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2142 {
2143 xfree (current->data);
2144 }
2145 VEC_free (memory_read_result_s, v);
2146 }
2147
2148 VEC(memory_read_result_s) *
2149 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2150 {
2151 VEC(memory_read_result_s) *result = 0;
2152
2153 LONGEST xfered = 0;
2154 while (xfered < len)
2155 {
2156 struct mem_region *region = lookup_mem_region (offset + xfered);
2157 LONGEST rlen;
2158
2159 /* If there is no explicit region, a fake one should be created. */
2160 gdb_assert (region);
2161
2162 if (region->hi == 0)
2163 rlen = len - xfered;
2164 else
2165 rlen = region->hi - offset;
2166
2167 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2168 {
2169 /* Cannot read this region. Note that we can end up here only
2170 if the region is explicitly marked inaccessible, or
2171 'inaccessible-by-default' is in effect. */
2172 xfered += rlen;
2173 }
2174 else
2175 {
2176 LONGEST to_read = min (len - xfered, rlen);
2177 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2178
2179 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2180 (gdb_byte *) buffer,
2181 offset + xfered, to_read);
2182 /* Call an observer, notifying them of the xfer progress? */
2183 if (xfer <= 0)
2184 {
2185 /* Got an error reading full chunk. See if maybe we can read
2186 some subrange. */
2187 xfree (buffer);
2188 read_whatever_is_readable (ops, offset + xfered,
2189 offset + xfered + to_read, &result);
2190 xfered += to_read;
2191 }
2192 else
2193 {
2194 struct memory_read_result r;
2195 r.data = buffer;
2196 r.begin = offset + xfered;
2197 r.end = r.begin + xfer;
2198 VEC_safe_push (memory_read_result_s, result, &r);
2199 xfered += xfer;
2200 }
2201 QUIT;
2202 }
2203 }
2204 return result;
2205 }
2206
2207
2208 /* An alternative to target_write with progress callbacks. */
2209
2210 LONGEST
2211 target_write_with_progress (struct target_ops *ops,
2212 enum target_object object,
2213 const char *annex, const gdb_byte *buf,
2214 ULONGEST offset, LONGEST len,
2215 void (*progress) (ULONGEST, void *), void *baton)
2216 {
2217 LONGEST xfered = 0;
2218
2219 /* Give the progress callback a chance to set up. */
2220 if (progress)
2221 (*progress) (0, baton);
2222
2223 while (xfered < len)
2224 {
2225 ULONGEST xfered_len;
2226 enum target_xfer_status status;
2227
2228 status = target_write_partial (ops, object, annex,
2229 (gdb_byte *) buf + xfered,
2230 offset + xfered, len - xfered,
2231 &xfered_len);
2232
2233 if (status == TARGET_XFER_EOF)
2234 return xfered;
2235 if (TARGET_XFER_STATUS_ERROR_P (status))
2236 return -1;
2237
2238 gdb_assert (status == TARGET_XFER_OK);
2239 if (progress)
2240 (*progress) (xfered_len, baton);
2241
2242 xfered += xfered_len;
2243 QUIT;
2244 }
2245 return len;
2246 }
2247
2248 /* For docs on target_write see target.h. */
2249
2250 LONGEST
2251 target_write (struct target_ops *ops,
2252 enum target_object object,
2253 const char *annex, const gdb_byte *buf,
2254 ULONGEST offset, LONGEST len)
2255 {
2256 return target_write_with_progress (ops, object, annex, buf, offset, len,
2257 NULL, NULL);
2258 }
2259
2260 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2261 the size of the transferred data. PADDING additional bytes are
2262 available in *BUF_P. This is a helper function for
2263 target_read_alloc; see the declaration of that function for more
2264 information. */
2265
2266 static LONGEST
2267 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2268 const char *annex, gdb_byte **buf_p, int padding)
2269 {
2270 size_t buf_alloc, buf_pos;
2271 gdb_byte *buf;
2272
2273 /* This function does not have a length parameter; it reads the
2274 entire OBJECT). Also, it doesn't support objects fetched partly
2275 from one target and partly from another (in a different stratum,
2276 e.g. a core file and an executable). Both reasons make it
2277 unsuitable for reading memory. */
2278 gdb_assert (object != TARGET_OBJECT_MEMORY);
2279
2280 /* Start by reading up to 4K at a time. The target will throttle
2281 this number down if necessary. */
2282 buf_alloc = 4096;
2283 buf = xmalloc (buf_alloc);
2284 buf_pos = 0;
2285 while (1)
2286 {
2287 ULONGEST xfered_len;
2288 enum target_xfer_status status;
2289
2290 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2291 buf_pos, buf_alloc - buf_pos - padding,
2292 &xfered_len);
2293
2294 if (status == TARGET_XFER_EOF)
2295 {
2296 /* Read all there was. */
2297 if (buf_pos == 0)
2298 xfree (buf);
2299 else
2300 *buf_p = buf;
2301 return buf_pos;
2302 }
2303 else if (status != TARGET_XFER_OK)
2304 {
2305 /* An error occurred. */
2306 xfree (buf);
2307 return TARGET_XFER_E_IO;
2308 }
2309
2310 buf_pos += xfered_len;
2311
2312 /* If the buffer is filling up, expand it. */
2313 if (buf_alloc < buf_pos * 2)
2314 {
2315 buf_alloc *= 2;
2316 buf = xrealloc (buf, buf_alloc);
2317 }
2318
2319 QUIT;
2320 }
2321 }
2322
2323 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2324 the size of the transferred data. See the declaration in "target.h"
2325 function for more information about the return value. */
2326
2327 LONGEST
2328 target_read_alloc (struct target_ops *ops, enum target_object object,
2329 const char *annex, gdb_byte **buf_p)
2330 {
2331 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2332 }
2333
2334 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2335 returned as a string, allocated using xmalloc. If an error occurs
2336 or the transfer is unsupported, NULL is returned. Empty objects
2337 are returned as allocated but empty strings. A warning is issued
2338 if the result contains any embedded NUL bytes. */
2339
2340 char *
2341 target_read_stralloc (struct target_ops *ops, enum target_object object,
2342 const char *annex)
2343 {
2344 gdb_byte *buffer;
2345 char *bufstr;
2346 LONGEST i, transferred;
2347
2348 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2349 bufstr = (char *) buffer;
2350
2351 if (transferred < 0)
2352 return NULL;
2353
2354 if (transferred == 0)
2355 return xstrdup ("");
2356
2357 bufstr[transferred] = 0;
2358
2359 /* Check for embedded NUL bytes; but allow trailing NULs. */
2360 for (i = strlen (bufstr); i < transferred; i++)
2361 if (bufstr[i] != 0)
2362 {
2363 warning (_("target object %d, annex %s, "
2364 "contained unexpected null characters"),
2365 (int) object, annex ? annex : "(none)");
2366 break;
2367 }
2368
2369 return bufstr;
2370 }
2371
2372 /* Memory transfer methods. */
2373
2374 void
2375 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2376 LONGEST len)
2377 {
2378 /* This method is used to read from an alternate, non-current
2379 target. This read must bypass the overlay support (as symbols
2380 don't match this target), and GDB's internal cache (wrong cache
2381 for this target). */
2382 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2383 != len)
2384 memory_error (TARGET_XFER_E_IO, addr);
2385 }
2386
2387 ULONGEST
2388 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2389 int len, enum bfd_endian byte_order)
2390 {
2391 gdb_byte buf[sizeof (ULONGEST)];
2392
2393 gdb_assert (len <= sizeof (buf));
2394 get_target_memory (ops, addr, buf, len);
2395 return extract_unsigned_integer (buf, len, byte_order);
2396 }
2397
2398 /* See target.h. */
2399
2400 int
2401 target_insert_breakpoint (struct gdbarch *gdbarch,
2402 struct bp_target_info *bp_tgt)
2403 {
2404 if (!may_insert_breakpoints)
2405 {
2406 warning (_("May not insert breakpoints"));
2407 return 1;
2408 }
2409
2410 return current_target.to_insert_breakpoint (&current_target,
2411 gdbarch, bp_tgt);
2412 }
2413
2414 /* See target.h. */
2415
2416 int
2417 target_remove_breakpoint (struct gdbarch *gdbarch,
2418 struct bp_target_info *bp_tgt)
2419 {
2420 /* This is kind of a weird case to handle, but the permission might
2421 have been changed after breakpoints were inserted - in which case
2422 we should just take the user literally and assume that any
2423 breakpoints should be left in place. */
2424 if (!may_insert_breakpoints)
2425 {
2426 warning (_("May not remove breakpoints"));
2427 return 1;
2428 }
2429
2430 return current_target.to_remove_breakpoint (&current_target,
2431 gdbarch, bp_tgt);
2432 }
2433
2434 static void
2435 target_info (char *args, int from_tty)
2436 {
2437 struct target_ops *t;
2438 int has_all_mem = 0;
2439
2440 if (symfile_objfile != NULL)
2441 printf_unfiltered (_("Symbols from \"%s\".\n"),
2442 objfile_name (symfile_objfile));
2443
2444 for (t = target_stack; t != NULL; t = t->beneath)
2445 {
2446 if (!(*t->to_has_memory) (t))
2447 continue;
2448
2449 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2450 continue;
2451 if (has_all_mem)
2452 printf_unfiltered (_("\tWhile running this, "
2453 "GDB does not access memory from...\n"));
2454 printf_unfiltered ("%s:\n", t->to_longname);
2455 (t->to_files_info) (t);
2456 has_all_mem = (*t->to_has_all_memory) (t);
2457 }
2458 }
2459
2460 /* This function is called before any new inferior is created, e.g.
2461 by running a program, attaching, or connecting to a target.
2462 It cleans up any state from previous invocations which might
2463 change between runs. This is a subset of what target_preopen
2464 resets (things which might change between targets). */
2465
2466 void
2467 target_pre_inferior (int from_tty)
2468 {
2469 /* Clear out solib state. Otherwise the solib state of the previous
2470 inferior might have survived and is entirely wrong for the new
2471 target. This has been observed on GNU/Linux using glibc 2.3. How
2472 to reproduce:
2473
2474 bash$ ./foo&
2475 [1] 4711
2476 bash$ ./foo&
2477 [1] 4712
2478 bash$ gdb ./foo
2479 [...]
2480 (gdb) attach 4711
2481 (gdb) detach
2482 (gdb) attach 4712
2483 Cannot access memory at address 0xdeadbeef
2484 */
2485
2486 /* In some OSs, the shared library list is the same/global/shared
2487 across inferiors. If code is shared between processes, so are
2488 memory regions and features. */
2489 if (!gdbarch_has_global_solist (target_gdbarch ()))
2490 {
2491 no_shared_libraries (NULL, from_tty);
2492
2493 invalidate_target_mem_regions ();
2494
2495 target_clear_description ();
2496 }
2497
2498 agent_capability_invalidate ();
2499 }
2500
2501 /* Callback for iterate_over_inferiors. Gets rid of the given
2502 inferior. */
2503
2504 static int
2505 dispose_inferior (struct inferior *inf, void *args)
2506 {
2507 struct thread_info *thread;
2508
2509 thread = any_thread_of_process (inf->pid);
2510 if (thread)
2511 {
2512 switch_to_thread (thread->ptid);
2513
2514 /* Core inferiors actually should be detached, not killed. */
2515 if (target_has_execution)
2516 target_kill ();
2517 else
2518 target_detach (NULL, 0);
2519 }
2520
2521 return 0;
2522 }
2523
2524 /* This is to be called by the open routine before it does
2525 anything. */
2526
2527 void
2528 target_preopen (int from_tty)
2529 {
2530 dont_repeat ();
2531
2532 if (have_inferiors ())
2533 {
2534 if (!from_tty
2535 || !have_live_inferiors ()
2536 || query (_("A program is being debugged already. Kill it? ")))
2537 iterate_over_inferiors (dispose_inferior, NULL);
2538 else
2539 error (_("Program not killed."));
2540 }
2541
2542 /* Calling target_kill may remove the target from the stack. But if
2543 it doesn't (which seems like a win for UDI), remove it now. */
2544 /* Leave the exec target, though. The user may be switching from a
2545 live process to a core of the same program. */
2546 pop_all_targets_above (file_stratum);
2547
2548 target_pre_inferior (from_tty);
2549 }
2550
2551 /* Detach a target after doing deferred register stores. */
2552
2553 void
2554 target_detach (const char *args, int from_tty)
2555 {
2556 struct target_ops* t;
2557
2558 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2559 /* Don't remove global breakpoints here. They're removed on
2560 disconnection from the target. */
2561 ;
2562 else
2563 /* If we're in breakpoints-always-inserted mode, have to remove
2564 them before detaching. */
2565 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2566
2567 prepare_for_detach ();
2568
2569 current_target.to_detach (&current_target, args, from_tty);
2570 if (targetdebug)
2571 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2572 args, from_tty);
2573 }
2574
2575 void
2576 target_disconnect (char *args, int from_tty)
2577 {
2578 struct target_ops *t;
2579
2580 /* If we're in breakpoints-always-inserted mode or if breakpoints
2581 are global across processes, we have to remove them before
2582 disconnecting. */
2583 remove_breakpoints ();
2584
2585 for (t = current_target.beneath; t != NULL; t = t->beneath)
2586 if (t->to_disconnect != NULL)
2587 {
2588 if (targetdebug)
2589 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2590 args, from_tty);
2591 t->to_disconnect (t, args, from_tty);
2592 return;
2593 }
2594
2595 tcomplain ();
2596 }
2597
2598 ptid_t
2599 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2600 {
2601 struct target_ops *t;
2602 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2603 status, options);
2604
2605 if (targetdebug)
2606 {
2607 char *status_string;
2608 char *options_string;
2609
2610 status_string = target_waitstatus_to_string (status);
2611 options_string = target_options_to_string (options);
2612 fprintf_unfiltered (gdb_stdlog,
2613 "target_wait (%d, status, options={%s})"
2614 " = %d, %s\n",
2615 ptid_get_pid (ptid), options_string,
2616 ptid_get_pid (retval), status_string);
2617 xfree (status_string);
2618 xfree (options_string);
2619 }
2620
2621 return retval;
2622 }
2623
2624 char *
2625 target_pid_to_str (ptid_t ptid)
2626 {
2627 struct target_ops *t;
2628
2629 for (t = current_target.beneath; t != NULL; t = t->beneath)
2630 {
2631 if (t->to_pid_to_str != NULL)
2632 return (*t->to_pid_to_str) (t, ptid);
2633 }
2634
2635 return normal_pid_to_str (ptid);
2636 }
2637
2638 char *
2639 target_thread_name (struct thread_info *info)
2640 {
2641 return current_target.to_thread_name (&current_target, info);
2642 }
2643
2644 void
2645 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2646 {
2647 struct target_ops *t;
2648
2649 target_dcache_invalidate ();
2650
2651 current_target.to_resume (&current_target, ptid, step, signal);
2652 if (targetdebug)
2653 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2654 ptid_get_pid (ptid),
2655 step ? "step" : "continue",
2656 gdb_signal_to_name (signal));
2657
2658 registers_changed_ptid (ptid);
2659 set_executing (ptid, 1);
2660 set_running (ptid, 1);
2661 clear_inline_frame_state (ptid);
2662 }
2663
2664 void
2665 target_pass_signals (int numsigs, unsigned char *pass_signals)
2666 {
2667 struct target_ops *t;
2668
2669 for (t = current_target.beneath; t != NULL; t = t->beneath)
2670 {
2671 if (t->to_pass_signals != NULL)
2672 {
2673 if (targetdebug)
2674 {
2675 int i;
2676
2677 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2678 numsigs);
2679
2680 for (i = 0; i < numsigs; i++)
2681 if (pass_signals[i])
2682 fprintf_unfiltered (gdb_stdlog, " %s",
2683 gdb_signal_to_name (i));
2684
2685 fprintf_unfiltered (gdb_stdlog, " })\n");
2686 }
2687
2688 (*t->to_pass_signals) (t, numsigs, pass_signals);
2689 return;
2690 }
2691 }
2692 }
2693
2694 void
2695 target_program_signals (int numsigs, unsigned char *program_signals)
2696 {
2697 struct target_ops *t;
2698
2699 for (t = current_target.beneath; t != NULL; t = t->beneath)
2700 {
2701 if (t->to_program_signals != NULL)
2702 {
2703 if (targetdebug)
2704 {
2705 int i;
2706
2707 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2708 numsigs);
2709
2710 for (i = 0; i < numsigs; i++)
2711 if (program_signals[i])
2712 fprintf_unfiltered (gdb_stdlog, " %s",
2713 gdb_signal_to_name (i));
2714
2715 fprintf_unfiltered (gdb_stdlog, " })\n");
2716 }
2717
2718 (*t->to_program_signals) (t, numsigs, program_signals);
2719 return;
2720 }
2721 }
2722 }
2723
2724 /* Look through the list of possible targets for a target that can
2725 follow forks. */
2726
2727 int
2728 target_follow_fork (int follow_child, int detach_fork)
2729 {
2730 struct target_ops *t;
2731
2732 for (t = current_target.beneath; t != NULL; t = t->beneath)
2733 {
2734 if (t->to_follow_fork != NULL)
2735 {
2736 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2737
2738 if (targetdebug)
2739 fprintf_unfiltered (gdb_stdlog,
2740 "target_follow_fork (%d, %d) = %d\n",
2741 follow_child, detach_fork, retval);
2742 return retval;
2743 }
2744 }
2745
2746 /* Some target returned a fork event, but did not know how to follow it. */
2747 internal_error (__FILE__, __LINE__,
2748 _("could not find a target to follow fork"));
2749 }
2750
2751 void
2752 target_mourn_inferior (void)
2753 {
2754 struct target_ops *t;
2755
2756 for (t = current_target.beneath; t != NULL; t = t->beneath)
2757 {
2758 if (t->to_mourn_inferior != NULL)
2759 {
2760 t->to_mourn_inferior (t);
2761 if (targetdebug)
2762 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2763
2764 /* We no longer need to keep handles on any of the object files.
2765 Make sure to release them to avoid unnecessarily locking any
2766 of them while we're not actually debugging. */
2767 bfd_cache_close_all ();
2768
2769 return;
2770 }
2771 }
2772
2773 internal_error (__FILE__, __LINE__,
2774 _("could not find a target to follow mourn inferior"));
2775 }
2776
2777 /* Look for a target which can describe architectural features, starting
2778 from TARGET. If we find one, return its description. */
2779
2780 const struct target_desc *
2781 target_read_description (struct target_ops *target)
2782 {
2783 struct target_ops *t;
2784
2785 for (t = target; t != NULL; t = t->beneath)
2786 if (t->to_read_description != NULL)
2787 {
2788 const struct target_desc *tdesc;
2789
2790 tdesc = t->to_read_description (t);
2791 if (tdesc)
2792 return tdesc;
2793 }
2794
2795 return NULL;
2796 }
2797
2798 /* The default implementation of to_search_memory.
2799 This implements a basic search of memory, reading target memory and
2800 performing the search here (as opposed to performing the search in on the
2801 target side with, for example, gdbserver). */
2802
2803 int
2804 simple_search_memory (struct target_ops *ops,
2805 CORE_ADDR start_addr, ULONGEST search_space_len,
2806 const gdb_byte *pattern, ULONGEST pattern_len,
2807 CORE_ADDR *found_addrp)
2808 {
2809 /* NOTE: also defined in find.c testcase. */
2810 #define SEARCH_CHUNK_SIZE 16000
2811 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2812 /* Buffer to hold memory contents for searching. */
2813 gdb_byte *search_buf;
2814 unsigned search_buf_size;
2815 struct cleanup *old_cleanups;
2816
2817 search_buf_size = chunk_size + pattern_len - 1;
2818
2819 /* No point in trying to allocate a buffer larger than the search space. */
2820 if (search_space_len < search_buf_size)
2821 search_buf_size = search_space_len;
2822
2823 search_buf = malloc (search_buf_size);
2824 if (search_buf == NULL)
2825 error (_("Unable to allocate memory to perform the search."));
2826 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2827
2828 /* Prime the search buffer. */
2829
2830 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2831 search_buf, start_addr, search_buf_size) != search_buf_size)
2832 {
2833 warning (_("Unable to access %s bytes of target "
2834 "memory at %s, halting search."),
2835 pulongest (search_buf_size), hex_string (start_addr));
2836 do_cleanups (old_cleanups);
2837 return -1;
2838 }
2839
2840 /* Perform the search.
2841
2842 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2843 When we've scanned N bytes we copy the trailing bytes to the start and
2844 read in another N bytes. */
2845
2846 while (search_space_len >= pattern_len)
2847 {
2848 gdb_byte *found_ptr;
2849 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2850
2851 found_ptr = memmem (search_buf, nr_search_bytes,
2852 pattern, pattern_len);
2853
2854 if (found_ptr != NULL)
2855 {
2856 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2857
2858 *found_addrp = found_addr;
2859 do_cleanups (old_cleanups);
2860 return 1;
2861 }
2862
2863 /* Not found in this chunk, skip to next chunk. */
2864
2865 /* Don't let search_space_len wrap here, it's unsigned. */
2866 if (search_space_len >= chunk_size)
2867 search_space_len -= chunk_size;
2868 else
2869 search_space_len = 0;
2870
2871 if (search_space_len >= pattern_len)
2872 {
2873 unsigned keep_len = search_buf_size - chunk_size;
2874 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2875 int nr_to_read;
2876
2877 /* Copy the trailing part of the previous iteration to the front
2878 of the buffer for the next iteration. */
2879 gdb_assert (keep_len == pattern_len - 1);
2880 memcpy (search_buf, search_buf + chunk_size, keep_len);
2881
2882 nr_to_read = min (search_space_len - keep_len, chunk_size);
2883
2884 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2885 search_buf + keep_len, read_addr,
2886 nr_to_read) != nr_to_read)
2887 {
2888 warning (_("Unable to access %s bytes of target "
2889 "memory at %s, halting search."),
2890 plongest (nr_to_read),
2891 hex_string (read_addr));
2892 do_cleanups (old_cleanups);
2893 return -1;
2894 }
2895
2896 start_addr += chunk_size;
2897 }
2898 }
2899
2900 /* Not found. */
2901
2902 do_cleanups (old_cleanups);
2903 return 0;
2904 }
2905
2906 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2907 sequence of bytes in PATTERN with length PATTERN_LEN.
2908
2909 The result is 1 if found, 0 if not found, and -1 if there was an error
2910 requiring halting of the search (e.g. memory read error).
2911 If the pattern is found the address is recorded in FOUND_ADDRP. */
2912
2913 int
2914 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2915 const gdb_byte *pattern, ULONGEST pattern_len,
2916 CORE_ADDR *found_addrp)
2917 {
2918 struct target_ops *t;
2919 int found;
2920
2921 /* We don't use INHERIT to set current_target.to_search_memory,
2922 so we have to scan the target stack and handle targetdebug
2923 ourselves. */
2924
2925 if (targetdebug)
2926 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2927 hex_string (start_addr));
2928
2929 for (t = current_target.beneath; t != NULL; t = t->beneath)
2930 if (t->to_search_memory != NULL)
2931 break;
2932
2933 if (t != NULL)
2934 {
2935 found = t->to_search_memory (t, start_addr, search_space_len,
2936 pattern, pattern_len, found_addrp);
2937 }
2938 else
2939 {
2940 /* If a special version of to_search_memory isn't available, use the
2941 simple version. */
2942 found = simple_search_memory (current_target.beneath,
2943 start_addr, search_space_len,
2944 pattern, pattern_len, found_addrp);
2945 }
2946
2947 if (targetdebug)
2948 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2949
2950 return found;
2951 }
2952
2953 /* Look through the currently pushed targets. If none of them will
2954 be able to restart the currently running process, issue an error
2955 message. */
2956
2957 void
2958 target_require_runnable (void)
2959 {
2960 struct target_ops *t;
2961
2962 for (t = target_stack; t != NULL; t = t->beneath)
2963 {
2964 /* If this target knows how to create a new program, then
2965 assume we will still be able to after killing the current
2966 one. Either killing and mourning will not pop T, or else
2967 find_default_run_target will find it again. */
2968 if (t->to_create_inferior != NULL)
2969 return;
2970
2971 /* Do not worry about thread_stratum targets that can not
2972 create inferiors. Assume they will be pushed again if
2973 necessary, and continue to the process_stratum. */
2974 if (t->to_stratum == thread_stratum
2975 || t->to_stratum == arch_stratum)
2976 continue;
2977
2978 error (_("The \"%s\" target does not support \"run\". "
2979 "Try \"help target\" or \"continue\"."),
2980 t->to_shortname);
2981 }
2982
2983 /* This function is only called if the target is running. In that
2984 case there should have been a process_stratum target and it
2985 should either know how to create inferiors, or not... */
2986 internal_error (__FILE__, __LINE__, _("No targets found"));
2987 }
2988
2989 /* Look through the list of possible targets for a target that can
2990 execute a run or attach command without any other data. This is
2991 used to locate the default process stratum.
2992
2993 If DO_MESG is not NULL, the result is always valid (error() is
2994 called for errors); else, return NULL on error. */
2995
2996 static struct target_ops *
2997 find_default_run_target (char *do_mesg)
2998 {
2999 struct target_ops **t;
3000 struct target_ops *runable = NULL;
3001 int count;
3002
3003 count = 0;
3004
3005 for (t = target_structs; t < target_structs + target_struct_size;
3006 ++t)
3007 {
3008 if ((*t)->to_can_run && target_can_run (*t))
3009 {
3010 runable = *t;
3011 ++count;
3012 }
3013 }
3014
3015 if (count != 1)
3016 {
3017 if (do_mesg)
3018 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3019 else
3020 return NULL;
3021 }
3022
3023 return runable;
3024 }
3025
3026 void
3027 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3028 {
3029 struct target_ops *t;
3030
3031 t = find_default_run_target ("attach");
3032 (t->to_attach) (t, args, from_tty);
3033 return;
3034 }
3035
3036 void
3037 find_default_create_inferior (struct target_ops *ops,
3038 char *exec_file, char *allargs, char **env,
3039 int from_tty)
3040 {
3041 struct target_ops *t;
3042
3043 t = find_default_run_target ("run");
3044 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3045 return;
3046 }
3047
3048 static int
3049 find_default_can_async_p (struct target_ops *ignore)
3050 {
3051 struct target_ops *t;
3052
3053 /* This may be called before the target is pushed on the stack;
3054 look for the default process stratum. If there's none, gdb isn't
3055 configured with a native debugger, and target remote isn't
3056 connected yet. */
3057 t = find_default_run_target (NULL);
3058 if (t && t->to_can_async_p != delegate_can_async_p)
3059 return (t->to_can_async_p) (t);
3060 return 0;
3061 }
3062
3063 static int
3064 find_default_is_async_p (struct target_ops *ignore)
3065 {
3066 struct target_ops *t;
3067
3068 /* This may be called before the target is pushed on the stack;
3069 look for the default process stratum. If there's none, gdb isn't
3070 configured with a native debugger, and target remote isn't
3071 connected yet. */
3072 t = find_default_run_target (NULL);
3073 if (t && t->to_is_async_p != delegate_is_async_p)
3074 return (t->to_is_async_p) (t);
3075 return 0;
3076 }
3077
3078 static int
3079 find_default_supports_non_stop (struct target_ops *self)
3080 {
3081 struct target_ops *t;
3082
3083 t = find_default_run_target (NULL);
3084 if (t && t->to_supports_non_stop)
3085 return (t->to_supports_non_stop) (t);
3086 return 0;
3087 }
3088
3089 int
3090 target_supports_non_stop (void)
3091 {
3092 struct target_ops *t;
3093
3094 for (t = &current_target; t != NULL; t = t->beneath)
3095 if (t->to_supports_non_stop)
3096 return t->to_supports_non_stop (t);
3097
3098 return 0;
3099 }
3100
3101 /* Implement the "info proc" command. */
3102
3103 int
3104 target_info_proc (char *args, enum info_proc_what what)
3105 {
3106 struct target_ops *t;
3107
3108 /* If we're already connected to something that can get us OS
3109 related data, use it. Otherwise, try using the native
3110 target. */
3111 if (current_target.to_stratum >= process_stratum)
3112 t = current_target.beneath;
3113 else
3114 t = find_default_run_target (NULL);
3115
3116 for (; t != NULL; t = t->beneath)
3117 {
3118 if (t->to_info_proc != NULL)
3119 {
3120 t->to_info_proc (t, args, what);
3121
3122 if (targetdebug)
3123 fprintf_unfiltered (gdb_stdlog,
3124 "target_info_proc (\"%s\", %d)\n", args, what);
3125
3126 return 1;
3127 }
3128 }
3129
3130 return 0;
3131 }
3132
3133 static int
3134 find_default_supports_disable_randomization (struct target_ops *self)
3135 {
3136 struct target_ops *t;
3137
3138 t = find_default_run_target (NULL);
3139 if (t && t->to_supports_disable_randomization)
3140 return (t->to_supports_disable_randomization) (t);
3141 return 0;
3142 }
3143
3144 int
3145 target_supports_disable_randomization (void)
3146 {
3147 struct target_ops *t;
3148
3149 for (t = &current_target; t != NULL; t = t->beneath)
3150 if (t->to_supports_disable_randomization)
3151 return t->to_supports_disable_randomization (t);
3152
3153 return 0;
3154 }
3155
3156 char *
3157 target_get_osdata (const char *type)
3158 {
3159 struct target_ops *t;
3160
3161 /* If we're already connected to something that can get us OS
3162 related data, use it. Otherwise, try using the native
3163 target. */
3164 if (current_target.to_stratum >= process_stratum)
3165 t = current_target.beneath;
3166 else
3167 t = find_default_run_target ("get OS data");
3168
3169 if (!t)
3170 return NULL;
3171
3172 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3173 }
3174
3175 /* Determine the current address space of thread PTID. */
3176
3177 struct address_space *
3178 target_thread_address_space (ptid_t ptid)
3179 {
3180 struct address_space *aspace;
3181 struct inferior *inf;
3182 struct target_ops *t;
3183
3184 for (t = current_target.beneath; t != NULL; t = t->beneath)
3185 {
3186 if (t->to_thread_address_space != NULL)
3187 {
3188 aspace = t->to_thread_address_space (t, ptid);
3189 gdb_assert (aspace);
3190
3191 if (targetdebug)
3192 fprintf_unfiltered (gdb_stdlog,
3193 "target_thread_address_space (%s) = %d\n",
3194 target_pid_to_str (ptid),
3195 address_space_num (aspace));
3196 return aspace;
3197 }
3198 }
3199
3200 /* Fall-back to the "main" address space of the inferior. */
3201 inf = find_inferior_pid (ptid_get_pid (ptid));
3202
3203 if (inf == NULL || inf->aspace == NULL)
3204 internal_error (__FILE__, __LINE__,
3205 _("Can't determine the current "
3206 "address space of thread %s\n"),
3207 target_pid_to_str (ptid));
3208
3209 return inf->aspace;
3210 }
3211
3212
3213 /* Target file operations. */
3214
3215 static struct target_ops *
3216 default_fileio_target (void)
3217 {
3218 /* If we're already connected to something that can perform
3219 file I/O, use it. Otherwise, try using the native target. */
3220 if (current_target.to_stratum >= process_stratum)
3221 return current_target.beneath;
3222 else
3223 return find_default_run_target ("file I/O");
3224 }
3225
3226 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3227 target file descriptor, or -1 if an error occurs (and set
3228 *TARGET_ERRNO). */
3229 int
3230 target_fileio_open (const char *filename, int flags, int mode,
3231 int *target_errno)
3232 {
3233 struct target_ops *t;
3234
3235 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3236 {
3237 if (t->to_fileio_open != NULL)
3238 {
3239 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3240
3241 if (targetdebug)
3242 fprintf_unfiltered (gdb_stdlog,
3243 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3244 filename, flags, mode,
3245 fd, fd != -1 ? 0 : *target_errno);
3246 return fd;
3247 }
3248 }
3249
3250 *target_errno = FILEIO_ENOSYS;
3251 return -1;
3252 }
3253
3254 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3255 Return the number of bytes written, or -1 if an error occurs
3256 (and set *TARGET_ERRNO). */
3257 int
3258 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3259 ULONGEST offset, int *target_errno)
3260 {
3261 struct target_ops *t;
3262
3263 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3264 {
3265 if (t->to_fileio_pwrite != NULL)
3266 {
3267 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3268 target_errno);
3269
3270 if (targetdebug)
3271 fprintf_unfiltered (gdb_stdlog,
3272 "target_fileio_pwrite (%d,...,%d,%s) "
3273 "= %d (%d)\n",
3274 fd, len, pulongest (offset),
3275 ret, ret != -1 ? 0 : *target_errno);
3276 return ret;
3277 }
3278 }
3279
3280 *target_errno = FILEIO_ENOSYS;
3281 return -1;
3282 }
3283
3284 /* Read up to LEN bytes FD on the target into READ_BUF.
3285 Return the number of bytes read, or -1 if an error occurs
3286 (and set *TARGET_ERRNO). */
3287 int
3288 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3289 ULONGEST offset, int *target_errno)
3290 {
3291 struct target_ops *t;
3292
3293 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3294 {
3295 if (t->to_fileio_pread != NULL)
3296 {
3297 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3298 target_errno);
3299
3300 if (targetdebug)
3301 fprintf_unfiltered (gdb_stdlog,
3302 "target_fileio_pread (%d,...,%d,%s) "
3303 "= %d (%d)\n",
3304 fd, len, pulongest (offset),
3305 ret, ret != -1 ? 0 : *target_errno);
3306 return ret;
3307 }
3308 }
3309
3310 *target_errno = FILEIO_ENOSYS;
3311 return -1;
3312 }
3313
3314 /* Close FD on the target. Return 0, or -1 if an error occurs
3315 (and set *TARGET_ERRNO). */
3316 int
3317 target_fileio_close (int fd, int *target_errno)
3318 {
3319 struct target_ops *t;
3320
3321 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3322 {
3323 if (t->to_fileio_close != NULL)
3324 {
3325 int ret = t->to_fileio_close (t, fd, target_errno);
3326
3327 if (targetdebug)
3328 fprintf_unfiltered (gdb_stdlog,
3329 "target_fileio_close (%d) = %d (%d)\n",
3330 fd, ret, ret != -1 ? 0 : *target_errno);
3331 return ret;
3332 }
3333 }
3334
3335 *target_errno = FILEIO_ENOSYS;
3336 return -1;
3337 }
3338
3339 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3340 occurs (and set *TARGET_ERRNO). */
3341 int
3342 target_fileio_unlink (const char *filename, int *target_errno)
3343 {
3344 struct target_ops *t;
3345
3346 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3347 {
3348 if (t->to_fileio_unlink != NULL)
3349 {
3350 int ret = t->to_fileio_unlink (t, filename, target_errno);
3351
3352 if (targetdebug)
3353 fprintf_unfiltered (gdb_stdlog,
3354 "target_fileio_unlink (%s) = %d (%d)\n",
3355 filename, ret, ret != -1 ? 0 : *target_errno);
3356 return ret;
3357 }
3358 }
3359
3360 *target_errno = FILEIO_ENOSYS;
3361 return -1;
3362 }
3363
3364 /* Read value of symbolic link FILENAME on the target. Return a
3365 null-terminated string allocated via xmalloc, or NULL if an error
3366 occurs (and set *TARGET_ERRNO). */
3367 char *
3368 target_fileio_readlink (const char *filename, int *target_errno)
3369 {
3370 struct target_ops *t;
3371
3372 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3373 {
3374 if (t->to_fileio_readlink != NULL)
3375 {
3376 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3377
3378 if (targetdebug)
3379 fprintf_unfiltered (gdb_stdlog,
3380 "target_fileio_readlink (%s) = %s (%d)\n",
3381 filename, ret? ret : "(nil)",
3382 ret? 0 : *target_errno);
3383 return ret;
3384 }
3385 }
3386
3387 *target_errno = FILEIO_ENOSYS;
3388 return NULL;
3389 }
3390
3391 static void
3392 target_fileio_close_cleanup (void *opaque)
3393 {
3394 int fd = *(int *) opaque;
3395 int target_errno;
3396
3397 target_fileio_close (fd, &target_errno);
3398 }
3399
3400 /* Read target file FILENAME. Store the result in *BUF_P and
3401 return the size of the transferred data. PADDING additional bytes are
3402 available in *BUF_P. This is a helper function for
3403 target_fileio_read_alloc; see the declaration of that function for more
3404 information. */
3405
3406 static LONGEST
3407 target_fileio_read_alloc_1 (const char *filename,
3408 gdb_byte **buf_p, int padding)
3409 {
3410 struct cleanup *close_cleanup;
3411 size_t buf_alloc, buf_pos;
3412 gdb_byte *buf;
3413 LONGEST n;
3414 int fd;
3415 int target_errno;
3416
3417 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3418 if (fd == -1)
3419 return -1;
3420
3421 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3422
3423 /* Start by reading up to 4K at a time. The target will throttle
3424 this number down if necessary. */
3425 buf_alloc = 4096;
3426 buf = xmalloc (buf_alloc);
3427 buf_pos = 0;
3428 while (1)
3429 {
3430 n = target_fileio_pread (fd, &buf[buf_pos],
3431 buf_alloc - buf_pos - padding, buf_pos,
3432 &target_errno);
3433 if (n < 0)
3434 {
3435 /* An error occurred. */
3436 do_cleanups (close_cleanup);
3437 xfree (buf);
3438 return -1;
3439 }
3440 else if (n == 0)
3441 {
3442 /* Read all there was. */
3443 do_cleanups (close_cleanup);
3444 if (buf_pos == 0)
3445 xfree (buf);
3446 else
3447 *buf_p = buf;
3448 return buf_pos;
3449 }
3450
3451 buf_pos += n;
3452
3453 /* If the buffer is filling up, expand it. */
3454 if (buf_alloc < buf_pos * 2)
3455 {
3456 buf_alloc *= 2;
3457 buf = xrealloc (buf, buf_alloc);
3458 }
3459
3460 QUIT;
3461 }
3462 }
3463
3464 /* Read target file FILENAME. Store the result in *BUF_P and return
3465 the size of the transferred data. See the declaration in "target.h"
3466 function for more information about the return value. */
3467
3468 LONGEST
3469 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3470 {
3471 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3472 }
3473
3474 /* Read target file FILENAME. The result is NUL-terminated and
3475 returned as a string, allocated using xmalloc. If an error occurs
3476 or the transfer is unsupported, NULL is returned. Empty objects
3477 are returned as allocated but empty strings. A warning is issued
3478 if the result contains any embedded NUL bytes. */
3479
3480 char *
3481 target_fileio_read_stralloc (const char *filename)
3482 {
3483 gdb_byte *buffer;
3484 char *bufstr;
3485 LONGEST i, transferred;
3486
3487 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3488 bufstr = (char *) buffer;
3489
3490 if (transferred < 0)
3491 return NULL;
3492
3493 if (transferred == 0)
3494 return xstrdup ("");
3495
3496 bufstr[transferred] = 0;
3497
3498 /* Check for embedded NUL bytes; but allow trailing NULs. */
3499 for (i = strlen (bufstr); i < transferred; i++)
3500 if (bufstr[i] != 0)
3501 {
3502 warning (_("target file %s "
3503 "contained unexpected null characters"),
3504 filename);
3505 break;
3506 }
3507
3508 return bufstr;
3509 }
3510
3511
3512 static int
3513 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3514 CORE_ADDR addr, int len)
3515 {
3516 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3517 }
3518
3519 static int
3520 default_watchpoint_addr_within_range (struct target_ops *target,
3521 CORE_ADDR addr,
3522 CORE_ADDR start, int length)
3523 {
3524 return addr >= start && addr < start + length;
3525 }
3526
3527 static struct gdbarch *
3528 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3529 {
3530 return target_gdbarch ();
3531 }
3532
3533 static int
3534 return_zero (void)
3535 {
3536 return 0;
3537 }
3538
3539 static int
3540 return_minus_one (void)
3541 {
3542 return -1;
3543 }
3544
3545 static void *
3546 return_null (void)
3547 {
3548 return 0;
3549 }
3550
3551 /*
3552 * Find the next target down the stack from the specified target.
3553 */
3554
3555 struct target_ops *
3556 find_target_beneath (struct target_ops *t)
3557 {
3558 return t->beneath;
3559 }
3560
3561 /* See target.h. */
3562
3563 struct target_ops *
3564 find_target_at (enum strata stratum)
3565 {
3566 struct target_ops *t;
3567
3568 for (t = current_target.beneath; t != NULL; t = t->beneath)
3569 if (t->to_stratum == stratum)
3570 return t;
3571
3572 return NULL;
3573 }
3574
3575 \f
3576 /* The inferior process has died. Long live the inferior! */
3577
3578 void
3579 generic_mourn_inferior (void)
3580 {
3581 ptid_t ptid;
3582
3583 ptid = inferior_ptid;
3584 inferior_ptid = null_ptid;
3585
3586 /* Mark breakpoints uninserted in case something tries to delete a
3587 breakpoint while we delete the inferior's threads (which would
3588 fail, since the inferior is long gone). */
3589 mark_breakpoints_out ();
3590
3591 if (!ptid_equal (ptid, null_ptid))
3592 {
3593 int pid = ptid_get_pid (ptid);
3594 exit_inferior (pid);
3595 }
3596
3597 /* Note this wipes step-resume breakpoints, so needs to be done
3598 after exit_inferior, which ends up referencing the step-resume
3599 breakpoints through clear_thread_inferior_resources. */
3600 breakpoint_init_inferior (inf_exited);
3601
3602 registers_changed ();
3603
3604 reopen_exec_file ();
3605 reinit_frame_cache ();
3606
3607 if (deprecated_detach_hook)
3608 deprecated_detach_hook ();
3609 }
3610 \f
3611 /* Convert a normal process ID to a string. Returns the string in a
3612 static buffer. */
3613
3614 char *
3615 normal_pid_to_str (ptid_t ptid)
3616 {
3617 static char buf[32];
3618
3619 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3620 return buf;
3621 }
3622
3623 static char *
3624 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3625 {
3626 return normal_pid_to_str (ptid);
3627 }
3628
3629 /* Error-catcher for target_find_memory_regions. */
3630 static int
3631 dummy_find_memory_regions (struct target_ops *self,
3632 find_memory_region_ftype ignore1, void *ignore2)
3633 {
3634 error (_("Command not implemented for this target."));
3635 return 0;
3636 }
3637
3638 /* Error-catcher for target_make_corefile_notes. */
3639 static char *
3640 dummy_make_corefile_notes (struct target_ops *self,
3641 bfd *ignore1, int *ignore2)
3642 {
3643 error (_("Command not implemented for this target."));
3644 return NULL;
3645 }
3646
3647 /* Set up the handful of non-empty slots needed by the dummy target
3648 vector. */
3649
3650 static void
3651 init_dummy_target (void)
3652 {
3653 dummy_target.to_shortname = "None";
3654 dummy_target.to_longname = "None";
3655 dummy_target.to_doc = "";
3656 dummy_target.to_create_inferior = find_default_create_inferior;
3657 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3658 dummy_target.to_supports_disable_randomization
3659 = find_default_supports_disable_randomization;
3660 dummy_target.to_pid_to_str = dummy_pid_to_str;
3661 dummy_target.to_stratum = dummy_stratum;
3662 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3663 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3664 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3665 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3666 dummy_target.to_has_execution
3667 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3668 dummy_target.to_magic = OPS_MAGIC;
3669
3670 install_dummy_methods (&dummy_target);
3671 }
3672 \f
3673 static void
3674 debug_to_open (char *args, int from_tty)
3675 {
3676 debug_target.to_open (args, from_tty);
3677
3678 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3679 }
3680
3681 void
3682 target_close (struct target_ops *targ)
3683 {
3684 gdb_assert (!target_is_pushed (targ));
3685
3686 if (targ->to_xclose != NULL)
3687 targ->to_xclose (targ);
3688 else if (targ->to_close != NULL)
3689 targ->to_close (targ);
3690
3691 if (targetdebug)
3692 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3693 }
3694
3695 void
3696 target_attach (char *args, int from_tty)
3697 {
3698 current_target.to_attach (&current_target, args, from_tty);
3699 if (targetdebug)
3700 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3701 args, from_tty);
3702 }
3703
3704 int
3705 target_thread_alive (ptid_t ptid)
3706 {
3707 struct target_ops *t;
3708
3709 for (t = current_target.beneath; t != NULL; t = t->beneath)
3710 {
3711 if (t->to_thread_alive != NULL)
3712 {
3713 int retval;
3714
3715 retval = t->to_thread_alive (t, ptid);
3716 if (targetdebug)
3717 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3718 ptid_get_pid (ptid), retval);
3719
3720 return retval;
3721 }
3722 }
3723
3724 return 0;
3725 }
3726
3727 void
3728 target_find_new_threads (void)
3729 {
3730 struct target_ops *t;
3731
3732 for (t = current_target.beneath; t != NULL; t = t->beneath)
3733 {
3734 if (t->to_find_new_threads != NULL)
3735 {
3736 t->to_find_new_threads (t);
3737 if (targetdebug)
3738 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3739
3740 return;
3741 }
3742 }
3743 }
3744
3745 void
3746 target_stop (ptid_t ptid)
3747 {
3748 if (!may_stop)
3749 {
3750 warning (_("May not interrupt or stop the target, ignoring attempt"));
3751 return;
3752 }
3753
3754 (*current_target.to_stop) (&current_target, ptid);
3755 }
3756
3757 static void
3758 debug_to_post_attach (struct target_ops *self, int pid)
3759 {
3760 debug_target.to_post_attach (&debug_target, pid);
3761
3762 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3763 }
3764
3765 /* Concatenate ELEM to LIST, a comma separate list, and return the
3766 result. The LIST incoming argument is released. */
3767
3768 static char *
3769 str_comma_list_concat_elem (char *list, const char *elem)
3770 {
3771 if (list == NULL)
3772 return xstrdup (elem);
3773 else
3774 return reconcat (list, list, ", ", elem, (char *) NULL);
3775 }
3776
3777 /* Helper for target_options_to_string. If OPT is present in
3778 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3779 Returns the new resulting string. OPT is removed from
3780 TARGET_OPTIONS. */
3781
3782 static char *
3783 do_option (int *target_options, char *ret,
3784 int opt, char *opt_str)
3785 {
3786 if ((*target_options & opt) != 0)
3787 {
3788 ret = str_comma_list_concat_elem (ret, opt_str);
3789 *target_options &= ~opt;
3790 }
3791
3792 return ret;
3793 }
3794
3795 char *
3796 target_options_to_string (int target_options)
3797 {
3798 char *ret = NULL;
3799
3800 #define DO_TARG_OPTION(OPT) \
3801 ret = do_option (&target_options, ret, OPT, #OPT)
3802
3803 DO_TARG_OPTION (TARGET_WNOHANG);
3804
3805 if (target_options != 0)
3806 ret = str_comma_list_concat_elem (ret, "unknown???");
3807
3808 if (ret == NULL)
3809 ret = xstrdup ("");
3810 return ret;
3811 }
3812
3813 static void
3814 debug_print_register (const char * func,
3815 struct regcache *regcache, int regno)
3816 {
3817 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3818
3819 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3820 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3821 && gdbarch_register_name (gdbarch, regno) != NULL
3822 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3823 fprintf_unfiltered (gdb_stdlog, "(%s)",
3824 gdbarch_register_name (gdbarch, regno));
3825 else
3826 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3827 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3828 {
3829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3830 int i, size = register_size (gdbarch, regno);
3831 gdb_byte buf[MAX_REGISTER_SIZE];
3832
3833 regcache_raw_collect (regcache, regno, buf);
3834 fprintf_unfiltered (gdb_stdlog, " = ");
3835 for (i = 0; i < size; i++)
3836 {
3837 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3838 }
3839 if (size <= sizeof (LONGEST))
3840 {
3841 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3842
3843 fprintf_unfiltered (gdb_stdlog, " %s %s",
3844 core_addr_to_string_nz (val), plongest (val));
3845 }
3846 }
3847 fprintf_unfiltered (gdb_stdlog, "\n");
3848 }
3849
3850 void
3851 target_fetch_registers (struct regcache *regcache, int regno)
3852 {
3853 struct target_ops *t;
3854
3855 for (t = current_target.beneath; t != NULL; t = t->beneath)
3856 {
3857 if (t->to_fetch_registers != NULL)
3858 {
3859 t->to_fetch_registers (t, regcache, regno);
3860 if (targetdebug)
3861 debug_print_register ("target_fetch_registers", regcache, regno);
3862 return;
3863 }
3864 }
3865 }
3866
3867 void
3868 target_store_registers (struct regcache *regcache, int regno)
3869 {
3870 struct target_ops *t;
3871
3872 if (!may_write_registers)
3873 error (_("Writing to registers is not allowed (regno %d)"), regno);
3874
3875 current_target.to_store_registers (&current_target, regcache, regno);
3876 if (targetdebug)
3877 {
3878 debug_print_register ("target_store_registers", regcache, regno);
3879 }
3880 }
3881
3882 int
3883 target_core_of_thread (ptid_t ptid)
3884 {
3885 struct target_ops *t;
3886
3887 for (t = current_target.beneath; t != NULL; t = t->beneath)
3888 {
3889 if (t->to_core_of_thread != NULL)
3890 {
3891 int retval = t->to_core_of_thread (t, ptid);
3892
3893 if (targetdebug)
3894 fprintf_unfiltered (gdb_stdlog,
3895 "target_core_of_thread (%d) = %d\n",
3896 ptid_get_pid (ptid), retval);
3897 return retval;
3898 }
3899 }
3900
3901 return -1;
3902 }
3903
3904 int
3905 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3906 {
3907 struct target_ops *t;
3908
3909 for (t = current_target.beneath; t != NULL; t = t->beneath)
3910 {
3911 if (t->to_verify_memory != NULL)
3912 {
3913 int retval = t->to_verify_memory (t, data, memaddr, size);
3914
3915 if (targetdebug)
3916 fprintf_unfiltered (gdb_stdlog,
3917 "target_verify_memory (%s, %s) = %d\n",
3918 paddress (target_gdbarch (), memaddr),
3919 pulongest (size),
3920 retval);
3921 return retval;
3922 }
3923 }
3924
3925 tcomplain ();
3926 }
3927
3928 /* The documentation for this function is in its prototype declaration in
3929 target.h. */
3930
3931 int
3932 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3933 {
3934 struct target_ops *t;
3935
3936 for (t = current_target.beneath; t != NULL; t = t->beneath)
3937 if (t->to_insert_mask_watchpoint != NULL)
3938 {
3939 int ret;
3940
3941 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3942
3943 if (targetdebug)
3944 fprintf_unfiltered (gdb_stdlog, "\
3945 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3946 core_addr_to_string (addr),
3947 core_addr_to_string (mask), rw, ret);
3948
3949 return ret;
3950 }
3951
3952 return 1;
3953 }
3954
3955 /* The documentation for this function is in its prototype declaration in
3956 target.h. */
3957
3958 int
3959 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3960 {
3961 struct target_ops *t;
3962
3963 for (t = current_target.beneath; t != NULL; t = t->beneath)
3964 if (t->to_remove_mask_watchpoint != NULL)
3965 {
3966 int ret;
3967
3968 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3969
3970 if (targetdebug)
3971 fprintf_unfiltered (gdb_stdlog, "\
3972 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3973 core_addr_to_string (addr),
3974 core_addr_to_string (mask), rw, ret);
3975
3976 return ret;
3977 }
3978
3979 return 1;
3980 }
3981
3982 /* The documentation for this function is in its prototype declaration
3983 in target.h. */
3984
3985 int
3986 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3987 {
3988 struct target_ops *t;
3989
3990 for (t = current_target.beneath; t != NULL; t = t->beneath)
3991 if (t->to_masked_watch_num_registers != NULL)
3992 return t->to_masked_watch_num_registers (t, addr, mask);
3993
3994 return -1;
3995 }
3996
3997 /* The documentation for this function is in its prototype declaration
3998 in target.h. */
3999
4000 int
4001 target_ranged_break_num_registers (void)
4002 {
4003 struct target_ops *t;
4004
4005 for (t = current_target.beneath; t != NULL; t = t->beneath)
4006 if (t->to_ranged_break_num_registers != NULL)
4007 return t->to_ranged_break_num_registers (t);
4008
4009 return -1;
4010 }
4011
4012 /* See target.h. */
4013
4014 struct btrace_target_info *
4015 target_enable_btrace (ptid_t ptid)
4016 {
4017 struct target_ops *t;
4018
4019 for (t = current_target.beneath; t != NULL; t = t->beneath)
4020 if (t->to_enable_btrace != NULL)
4021 return t->to_enable_btrace (t, ptid);
4022
4023 tcomplain ();
4024 return NULL;
4025 }
4026
4027 /* See target.h. */
4028
4029 void
4030 target_disable_btrace (struct btrace_target_info *btinfo)
4031 {
4032 struct target_ops *t;
4033
4034 for (t = current_target.beneath; t != NULL; t = t->beneath)
4035 if (t->to_disable_btrace != NULL)
4036 {
4037 t->to_disable_btrace (t, btinfo);
4038 return;
4039 }
4040
4041 tcomplain ();
4042 }
4043
4044 /* See target.h. */
4045
4046 void
4047 target_teardown_btrace (struct btrace_target_info *btinfo)
4048 {
4049 struct target_ops *t;
4050
4051 for (t = current_target.beneath; t != NULL; t = t->beneath)
4052 if (t->to_teardown_btrace != NULL)
4053 {
4054 t->to_teardown_btrace (t, btinfo);
4055 return;
4056 }
4057
4058 tcomplain ();
4059 }
4060
4061 /* See target.h. */
4062
4063 enum btrace_error
4064 target_read_btrace (VEC (btrace_block_s) **btrace,
4065 struct btrace_target_info *btinfo,
4066 enum btrace_read_type type)
4067 {
4068 struct target_ops *t;
4069
4070 for (t = current_target.beneath; t != NULL; t = t->beneath)
4071 if (t->to_read_btrace != NULL)
4072 return t->to_read_btrace (t, btrace, btinfo, type);
4073
4074 tcomplain ();
4075 return BTRACE_ERR_NOT_SUPPORTED;
4076 }
4077
4078 /* See target.h. */
4079
4080 void
4081 target_stop_recording (void)
4082 {
4083 struct target_ops *t;
4084
4085 for (t = current_target.beneath; t != NULL; t = t->beneath)
4086 if (t->to_stop_recording != NULL)
4087 {
4088 t->to_stop_recording (t);
4089 return;
4090 }
4091
4092 /* This is optional. */
4093 }
4094
4095 /* See target.h. */
4096
4097 void
4098 target_info_record (void)
4099 {
4100 struct target_ops *t;
4101
4102 for (t = current_target.beneath; t != NULL; t = t->beneath)
4103 if (t->to_info_record != NULL)
4104 {
4105 t->to_info_record (t);
4106 return;
4107 }
4108
4109 tcomplain ();
4110 }
4111
4112 /* See target.h. */
4113
4114 void
4115 target_save_record (const char *filename)
4116 {
4117 struct target_ops *t;
4118
4119 for (t = current_target.beneath; t != NULL; t = t->beneath)
4120 if (t->to_save_record != NULL)
4121 {
4122 t->to_save_record (t, filename);
4123 return;
4124 }
4125
4126 tcomplain ();
4127 }
4128
4129 /* See target.h. */
4130
4131 int
4132 target_supports_delete_record (void)
4133 {
4134 struct target_ops *t;
4135
4136 for (t = current_target.beneath; t != NULL; t = t->beneath)
4137 if (t->to_delete_record != NULL)
4138 return 1;
4139
4140 return 0;
4141 }
4142
4143 /* See target.h. */
4144
4145 void
4146 target_delete_record (void)
4147 {
4148 struct target_ops *t;
4149
4150 for (t = current_target.beneath; t != NULL; t = t->beneath)
4151 if (t->to_delete_record != NULL)
4152 {
4153 t->to_delete_record (t);
4154 return;
4155 }
4156
4157 tcomplain ();
4158 }
4159
4160 /* See target.h. */
4161
4162 int
4163 target_record_is_replaying (void)
4164 {
4165 struct target_ops *t;
4166
4167 for (t = current_target.beneath; t != NULL; t = t->beneath)
4168 if (t->to_record_is_replaying != NULL)
4169 return t->to_record_is_replaying (t);
4170
4171 return 0;
4172 }
4173
4174 /* See target.h. */
4175
4176 void
4177 target_goto_record_begin (void)
4178 {
4179 struct target_ops *t;
4180
4181 for (t = current_target.beneath; t != NULL; t = t->beneath)
4182 if (t->to_goto_record_begin != NULL)
4183 {
4184 t->to_goto_record_begin (t);
4185 return;
4186 }
4187
4188 tcomplain ();
4189 }
4190
4191 /* See target.h. */
4192
4193 void
4194 target_goto_record_end (void)
4195 {
4196 struct target_ops *t;
4197
4198 for (t = current_target.beneath; t != NULL; t = t->beneath)
4199 if (t->to_goto_record_end != NULL)
4200 {
4201 t->to_goto_record_end (t);
4202 return;
4203 }
4204
4205 tcomplain ();
4206 }
4207
4208 /* See target.h. */
4209
4210 void
4211 target_goto_record (ULONGEST insn)
4212 {
4213 struct target_ops *t;
4214
4215 for (t = current_target.beneath; t != NULL; t = t->beneath)
4216 if (t->to_goto_record != NULL)
4217 {
4218 t->to_goto_record (t, insn);
4219 return;
4220 }
4221
4222 tcomplain ();
4223 }
4224
4225 /* See target.h. */
4226
4227 void
4228 target_insn_history (int size, int flags)
4229 {
4230 struct target_ops *t;
4231
4232 for (t = current_target.beneath; t != NULL; t = t->beneath)
4233 if (t->to_insn_history != NULL)
4234 {
4235 t->to_insn_history (t, size, flags);
4236 return;
4237 }
4238
4239 tcomplain ();
4240 }
4241
4242 /* See target.h. */
4243
4244 void
4245 target_insn_history_from (ULONGEST from, int size, int flags)
4246 {
4247 struct target_ops *t;
4248
4249 for (t = current_target.beneath; t != NULL; t = t->beneath)
4250 if (t->to_insn_history_from != NULL)
4251 {
4252 t->to_insn_history_from (t, from, size, flags);
4253 return;
4254 }
4255
4256 tcomplain ();
4257 }
4258
4259 /* See target.h. */
4260
4261 void
4262 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4263 {
4264 struct target_ops *t;
4265
4266 for (t = current_target.beneath; t != NULL; t = t->beneath)
4267 if (t->to_insn_history_range != NULL)
4268 {
4269 t->to_insn_history_range (t, begin, end, flags);
4270 return;
4271 }
4272
4273 tcomplain ();
4274 }
4275
4276 /* See target.h. */
4277
4278 void
4279 target_call_history (int size, int flags)
4280 {
4281 struct target_ops *t;
4282
4283 for (t = current_target.beneath; t != NULL; t = t->beneath)
4284 if (t->to_call_history != NULL)
4285 {
4286 t->to_call_history (t, size, flags);
4287 return;
4288 }
4289
4290 tcomplain ();
4291 }
4292
4293 /* See target.h. */
4294
4295 void
4296 target_call_history_from (ULONGEST begin, int size, int flags)
4297 {
4298 struct target_ops *t;
4299
4300 for (t = current_target.beneath; t != NULL; t = t->beneath)
4301 if (t->to_call_history_from != NULL)
4302 {
4303 t->to_call_history_from (t, begin, size, flags);
4304 return;
4305 }
4306
4307 tcomplain ();
4308 }
4309
4310 /* See target.h. */
4311
4312 void
4313 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4314 {
4315 struct target_ops *t;
4316
4317 for (t = current_target.beneath; t != NULL; t = t->beneath)
4318 if (t->to_call_history_range != NULL)
4319 {
4320 t->to_call_history_range (t, begin, end, flags);
4321 return;
4322 }
4323
4324 tcomplain ();
4325 }
4326
4327 static void
4328 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4329 {
4330 debug_target.to_prepare_to_store (&debug_target, regcache);
4331
4332 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4333 }
4334
4335 /* See target.h. */
4336
4337 const struct frame_unwind *
4338 target_get_unwinder (void)
4339 {
4340 struct target_ops *t;
4341
4342 for (t = current_target.beneath; t != NULL; t = t->beneath)
4343 if (t->to_get_unwinder != NULL)
4344 return t->to_get_unwinder;
4345
4346 return NULL;
4347 }
4348
4349 /* See target.h. */
4350
4351 const struct frame_unwind *
4352 target_get_tailcall_unwinder (void)
4353 {
4354 struct target_ops *t;
4355
4356 for (t = current_target.beneath; t != NULL; t = t->beneath)
4357 if (t->to_get_tailcall_unwinder != NULL)
4358 return t->to_get_tailcall_unwinder;
4359
4360 return NULL;
4361 }
4362
4363 /* See target.h. */
4364
4365 CORE_ADDR
4366 forward_target_decr_pc_after_break (struct target_ops *ops,
4367 struct gdbarch *gdbarch)
4368 {
4369 for (; ops != NULL; ops = ops->beneath)
4370 if (ops->to_decr_pc_after_break != NULL)
4371 return ops->to_decr_pc_after_break (ops, gdbarch);
4372
4373 return gdbarch_decr_pc_after_break (gdbarch);
4374 }
4375
4376 /* See target.h. */
4377
4378 CORE_ADDR
4379 target_decr_pc_after_break (struct gdbarch *gdbarch)
4380 {
4381 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4382 }
4383
4384 static int
4385 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4386 int write, struct mem_attrib *attrib,
4387 struct target_ops *target)
4388 {
4389 int retval;
4390
4391 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4392 attrib, target);
4393
4394 fprintf_unfiltered (gdb_stdlog,
4395 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4396 paddress (target_gdbarch (), memaddr), len,
4397 write ? "write" : "read", retval);
4398
4399 if (retval > 0)
4400 {
4401 int i;
4402
4403 fputs_unfiltered (", bytes =", gdb_stdlog);
4404 for (i = 0; i < retval; i++)
4405 {
4406 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4407 {
4408 if (targetdebug < 2 && i > 0)
4409 {
4410 fprintf_unfiltered (gdb_stdlog, " ...");
4411 break;
4412 }
4413 fprintf_unfiltered (gdb_stdlog, "\n");
4414 }
4415
4416 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4417 }
4418 }
4419
4420 fputc_unfiltered ('\n', gdb_stdlog);
4421
4422 return retval;
4423 }
4424
4425 static void
4426 debug_to_files_info (struct target_ops *target)
4427 {
4428 debug_target.to_files_info (target);
4429
4430 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4431 }
4432
4433 static int
4434 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4435 struct bp_target_info *bp_tgt)
4436 {
4437 int retval;
4438
4439 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4440
4441 fprintf_unfiltered (gdb_stdlog,
4442 "target_insert_breakpoint (%s, xxx) = %ld\n",
4443 core_addr_to_string (bp_tgt->placed_address),
4444 (unsigned long) retval);
4445 return retval;
4446 }
4447
4448 static int
4449 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4450 struct bp_target_info *bp_tgt)
4451 {
4452 int retval;
4453
4454 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4455
4456 fprintf_unfiltered (gdb_stdlog,
4457 "target_remove_breakpoint (%s, xxx) = %ld\n",
4458 core_addr_to_string (bp_tgt->placed_address),
4459 (unsigned long) retval);
4460 return retval;
4461 }
4462
4463 static int
4464 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4465 int type, int cnt, int from_tty)
4466 {
4467 int retval;
4468
4469 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4470 type, cnt, from_tty);
4471
4472 fprintf_unfiltered (gdb_stdlog,
4473 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4474 (unsigned long) type,
4475 (unsigned long) cnt,
4476 (unsigned long) from_tty,
4477 (unsigned long) retval);
4478 return retval;
4479 }
4480
4481 static int
4482 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4483 CORE_ADDR addr, int len)
4484 {
4485 CORE_ADDR retval;
4486
4487 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4488 addr, len);
4489
4490 fprintf_unfiltered (gdb_stdlog,
4491 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4492 core_addr_to_string (addr), (unsigned long) len,
4493 core_addr_to_string (retval));
4494 return retval;
4495 }
4496
4497 static int
4498 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4499 CORE_ADDR addr, int len, int rw,
4500 struct expression *cond)
4501 {
4502 int retval;
4503
4504 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4505 addr, len,
4506 rw, cond);
4507
4508 fprintf_unfiltered (gdb_stdlog,
4509 "target_can_accel_watchpoint_condition "
4510 "(%s, %d, %d, %s) = %ld\n",
4511 core_addr_to_string (addr), len, rw,
4512 host_address_to_string (cond), (unsigned long) retval);
4513 return retval;
4514 }
4515
4516 static int
4517 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4518 {
4519 int retval;
4520
4521 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4522
4523 fprintf_unfiltered (gdb_stdlog,
4524 "target_stopped_by_watchpoint () = %ld\n",
4525 (unsigned long) retval);
4526 return retval;
4527 }
4528
4529 static int
4530 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4531 {
4532 int retval;
4533
4534 retval = debug_target.to_stopped_data_address (target, addr);
4535
4536 fprintf_unfiltered (gdb_stdlog,
4537 "target_stopped_data_address ([%s]) = %ld\n",
4538 core_addr_to_string (*addr),
4539 (unsigned long)retval);
4540 return retval;
4541 }
4542
4543 static int
4544 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4545 CORE_ADDR addr,
4546 CORE_ADDR start, int length)
4547 {
4548 int retval;
4549
4550 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4551 start, length);
4552
4553 fprintf_filtered (gdb_stdlog,
4554 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4555 core_addr_to_string (addr), core_addr_to_string (start),
4556 length, retval);
4557 return retval;
4558 }
4559
4560 static int
4561 debug_to_insert_hw_breakpoint (struct target_ops *self,
4562 struct gdbarch *gdbarch,
4563 struct bp_target_info *bp_tgt)
4564 {
4565 int retval;
4566
4567 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4568 gdbarch, bp_tgt);
4569
4570 fprintf_unfiltered (gdb_stdlog,
4571 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4572 core_addr_to_string (bp_tgt->placed_address),
4573 (unsigned long) retval);
4574 return retval;
4575 }
4576
4577 static int
4578 debug_to_remove_hw_breakpoint (struct target_ops *self,
4579 struct gdbarch *gdbarch,
4580 struct bp_target_info *bp_tgt)
4581 {
4582 int retval;
4583
4584 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4585 gdbarch, bp_tgt);
4586
4587 fprintf_unfiltered (gdb_stdlog,
4588 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4589 core_addr_to_string (bp_tgt->placed_address),
4590 (unsigned long) retval);
4591 return retval;
4592 }
4593
4594 static int
4595 debug_to_insert_watchpoint (struct target_ops *self,
4596 CORE_ADDR addr, int len, int type,
4597 struct expression *cond)
4598 {
4599 int retval;
4600
4601 retval = debug_target.to_insert_watchpoint (&debug_target,
4602 addr, len, type, cond);
4603
4604 fprintf_unfiltered (gdb_stdlog,
4605 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4606 core_addr_to_string (addr), len, type,
4607 host_address_to_string (cond), (unsigned long) retval);
4608 return retval;
4609 }
4610
4611 static int
4612 debug_to_remove_watchpoint (struct target_ops *self,
4613 CORE_ADDR addr, int len, int type,
4614 struct expression *cond)
4615 {
4616 int retval;
4617
4618 retval = debug_target.to_remove_watchpoint (&debug_target,
4619 addr, len, type, cond);
4620
4621 fprintf_unfiltered (gdb_stdlog,
4622 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4623 core_addr_to_string (addr), len, type,
4624 host_address_to_string (cond), (unsigned long) retval);
4625 return retval;
4626 }
4627
4628 static void
4629 debug_to_terminal_init (struct target_ops *self)
4630 {
4631 debug_target.to_terminal_init (&debug_target);
4632
4633 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4634 }
4635
4636 static void
4637 debug_to_terminal_inferior (struct target_ops *self)
4638 {
4639 debug_target.to_terminal_inferior (&debug_target);
4640
4641 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4642 }
4643
4644 static void
4645 debug_to_terminal_ours_for_output (struct target_ops *self)
4646 {
4647 debug_target.to_terminal_ours_for_output (&debug_target);
4648
4649 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4650 }
4651
4652 static void
4653 debug_to_terminal_ours (struct target_ops *self)
4654 {
4655 debug_target.to_terminal_ours (&debug_target);
4656
4657 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4658 }
4659
4660 static void
4661 debug_to_terminal_save_ours (struct target_ops *self)
4662 {
4663 debug_target.to_terminal_save_ours (&debug_target);
4664
4665 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4666 }
4667
4668 static void
4669 debug_to_terminal_info (struct target_ops *self,
4670 const char *arg, int from_tty)
4671 {
4672 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4673
4674 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4675 from_tty);
4676 }
4677
4678 static void
4679 debug_to_load (struct target_ops *self, char *args, int from_tty)
4680 {
4681 debug_target.to_load (&debug_target, args, from_tty);
4682
4683 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4684 }
4685
4686 static void
4687 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4688 {
4689 debug_target.to_post_startup_inferior (&debug_target, ptid);
4690
4691 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4692 ptid_get_pid (ptid));
4693 }
4694
4695 static int
4696 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4697 {
4698 int retval;
4699
4700 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4701
4702 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4703 pid, retval);
4704
4705 return retval;
4706 }
4707
4708 static int
4709 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4710 {
4711 int retval;
4712
4713 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4714
4715 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4716 pid, retval);
4717
4718 return retval;
4719 }
4720
4721 static int
4722 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4723 {
4724 int retval;
4725
4726 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4727
4728 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4729 pid, retval);
4730
4731 return retval;
4732 }
4733
4734 static int
4735 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4736 {
4737 int retval;
4738
4739 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4740
4741 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4742 pid, retval);
4743
4744 return retval;
4745 }
4746
4747 static int
4748 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4749 {
4750 int retval;
4751
4752 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4753
4754 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4755 pid, retval);
4756
4757 return retval;
4758 }
4759
4760 static int
4761 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4762 {
4763 int retval;
4764
4765 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4766
4767 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4768 pid, retval);
4769
4770 return retval;
4771 }
4772
4773 static int
4774 debug_to_has_exited (struct target_ops *self,
4775 int pid, int wait_status, int *exit_status)
4776 {
4777 int has_exited;
4778
4779 has_exited = debug_target.to_has_exited (&debug_target,
4780 pid, wait_status, exit_status);
4781
4782 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4783 pid, wait_status, *exit_status, has_exited);
4784
4785 return has_exited;
4786 }
4787
4788 static int
4789 debug_to_can_run (struct target_ops *self)
4790 {
4791 int retval;
4792
4793 retval = debug_target.to_can_run (&debug_target);
4794
4795 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4796
4797 return retval;
4798 }
4799
4800 static struct gdbarch *
4801 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4802 {
4803 struct gdbarch *retval;
4804
4805 retval = debug_target.to_thread_architecture (ops, ptid);
4806
4807 fprintf_unfiltered (gdb_stdlog,
4808 "target_thread_architecture (%s) = %s [%s]\n",
4809 target_pid_to_str (ptid),
4810 host_address_to_string (retval),
4811 gdbarch_bfd_arch_info (retval)->printable_name);
4812 return retval;
4813 }
4814
4815 static void
4816 debug_to_stop (struct target_ops *self, ptid_t ptid)
4817 {
4818 debug_target.to_stop (&debug_target, ptid);
4819
4820 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4821 target_pid_to_str (ptid));
4822 }
4823
4824 static void
4825 debug_to_rcmd (struct target_ops *self, char *command,
4826 struct ui_file *outbuf)
4827 {
4828 debug_target.to_rcmd (&debug_target, command, outbuf);
4829 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4830 }
4831
4832 static char *
4833 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4834 {
4835 char *exec_file;
4836
4837 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4838
4839 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4840 pid, exec_file);
4841
4842 return exec_file;
4843 }
4844
4845 static void
4846 setup_target_debug (void)
4847 {
4848 memcpy (&debug_target, &current_target, sizeof debug_target);
4849
4850 current_target.to_open = debug_to_open;
4851 current_target.to_post_attach = debug_to_post_attach;
4852 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4853 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4854 current_target.to_files_info = debug_to_files_info;
4855 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4856 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4857 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4858 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4859 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4860 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4861 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4862 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4863 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4864 current_target.to_watchpoint_addr_within_range
4865 = debug_to_watchpoint_addr_within_range;
4866 current_target.to_region_ok_for_hw_watchpoint
4867 = debug_to_region_ok_for_hw_watchpoint;
4868 current_target.to_can_accel_watchpoint_condition
4869 = debug_to_can_accel_watchpoint_condition;
4870 current_target.to_terminal_init = debug_to_terminal_init;
4871 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4872 current_target.to_terminal_ours_for_output
4873 = debug_to_terminal_ours_for_output;
4874 current_target.to_terminal_ours = debug_to_terminal_ours;
4875 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4876 current_target.to_terminal_info = debug_to_terminal_info;
4877 current_target.to_load = debug_to_load;
4878 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4879 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4880 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4881 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4882 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4883 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4884 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4885 current_target.to_has_exited = debug_to_has_exited;
4886 current_target.to_can_run = debug_to_can_run;
4887 current_target.to_stop = debug_to_stop;
4888 current_target.to_rcmd = debug_to_rcmd;
4889 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4890 current_target.to_thread_architecture = debug_to_thread_architecture;
4891 }
4892 \f
4893
4894 static char targ_desc[] =
4895 "Names of targets and files being debugged.\nShows the entire \
4896 stack of targets currently in use (including the exec-file,\n\
4897 core-file, and process, if any), as well as the symbol file name.";
4898
4899 static void
4900 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4901 {
4902 error (_("\"monitor\" command not supported by this target."));
4903 }
4904
4905 static void
4906 do_monitor_command (char *cmd,
4907 int from_tty)
4908 {
4909 target_rcmd (cmd, gdb_stdtarg);
4910 }
4911
4912 /* Print the name of each layers of our target stack. */
4913
4914 static void
4915 maintenance_print_target_stack (char *cmd, int from_tty)
4916 {
4917 struct target_ops *t;
4918
4919 printf_filtered (_("The current target stack is:\n"));
4920
4921 for (t = target_stack; t != NULL; t = t->beneath)
4922 {
4923 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4924 }
4925 }
4926
4927 /* Controls if async mode is permitted. */
4928 int target_async_permitted = 0;
4929
4930 /* The set command writes to this variable. If the inferior is
4931 executing, target_async_permitted is *not* updated. */
4932 static int target_async_permitted_1 = 0;
4933
4934 static void
4935 set_target_async_command (char *args, int from_tty,
4936 struct cmd_list_element *c)
4937 {
4938 if (have_live_inferiors ())
4939 {
4940 target_async_permitted_1 = target_async_permitted;
4941 error (_("Cannot change this setting while the inferior is running."));
4942 }
4943
4944 target_async_permitted = target_async_permitted_1;
4945 }
4946
4947 static void
4948 show_target_async_command (struct ui_file *file, int from_tty,
4949 struct cmd_list_element *c,
4950 const char *value)
4951 {
4952 fprintf_filtered (file,
4953 _("Controlling the inferior in "
4954 "asynchronous mode is %s.\n"), value);
4955 }
4956
4957 /* Temporary copies of permission settings. */
4958
4959 static int may_write_registers_1 = 1;
4960 static int may_write_memory_1 = 1;
4961 static int may_insert_breakpoints_1 = 1;
4962 static int may_insert_tracepoints_1 = 1;
4963 static int may_insert_fast_tracepoints_1 = 1;
4964 static int may_stop_1 = 1;
4965
4966 /* Make the user-set values match the real values again. */
4967
4968 void
4969 update_target_permissions (void)
4970 {
4971 may_write_registers_1 = may_write_registers;
4972 may_write_memory_1 = may_write_memory;
4973 may_insert_breakpoints_1 = may_insert_breakpoints;
4974 may_insert_tracepoints_1 = may_insert_tracepoints;
4975 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4976 may_stop_1 = may_stop;
4977 }
4978
4979 /* The one function handles (most of) the permission flags in the same
4980 way. */
4981
4982 static void
4983 set_target_permissions (char *args, int from_tty,
4984 struct cmd_list_element *c)
4985 {
4986 if (target_has_execution)
4987 {
4988 update_target_permissions ();
4989 error (_("Cannot change this setting while the inferior is running."));
4990 }
4991
4992 /* Make the real values match the user-changed values. */
4993 may_write_registers = may_write_registers_1;
4994 may_insert_breakpoints = may_insert_breakpoints_1;
4995 may_insert_tracepoints = may_insert_tracepoints_1;
4996 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4997 may_stop = may_stop_1;
4998 update_observer_mode ();
4999 }
5000
5001 /* Set memory write permission independently of observer mode. */
5002
5003 static void
5004 set_write_memory_permission (char *args, int from_tty,
5005 struct cmd_list_element *c)
5006 {
5007 /* Make the real values match the user-changed values. */
5008 may_write_memory = may_write_memory_1;
5009 update_observer_mode ();
5010 }
5011
5012
5013 void
5014 initialize_targets (void)
5015 {
5016 init_dummy_target ();
5017 push_target (&dummy_target);
5018
5019 add_info ("target", target_info, targ_desc);
5020 add_info ("files", target_info, targ_desc);
5021
5022 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5023 Set target debugging."), _("\
5024 Show target debugging."), _("\
5025 When non-zero, target debugging is enabled. Higher numbers are more\n\
5026 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5027 command."),
5028 NULL,
5029 show_targetdebug,
5030 &setdebuglist, &showdebuglist);
5031
5032 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5033 &trust_readonly, _("\
5034 Set mode for reading from readonly sections."), _("\
5035 Show mode for reading from readonly sections."), _("\
5036 When this mode is on, memory reads from readonly sections (such as .text)\n\
5037 will be read from the object file instead of from the target. This will\n\
5038 result in significant performance improvement for remote targets."),
5039 NULL,
5040 show_trust_readonly,
5041 &setlist, &showlist);
5042
5043 add_com ("monitor", class_obscure, do_monitor_command,
5044 _("Send a command to the remote monitor (remote targets only)."));
5045
5046 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5047 _("Print the name of each layer of the internal target stack."),
5048 &maintenanceprintlist);
5049
5050 add_setshow_boolean_cmd ("target-async", no_class,
5051 &target_async_permitted_1, _("\
5052 Set whether gdb controls the inferior in asynchronous mode."), _("\
5053 Show whether gdb controls the inferior in asynchronous mode."), _("\
5054 Tells gdb whether to control the inferior in asynchronous mode."),
5055 set_target_async_command,
5056 show_target_async_command,
5057 &setlist,
5058 &showlist);
5059
5060 add_setshow_boolean_cmd ("may-write-registers", class_support,
5061 &may_write_registers_1, _("\
5062 Set permission to write into registers."), _("\
5063 Show permission to write into registers."), _("\
5064 When this permission is on, GDB may write into the target's registers.\n\
5065 Otherwise, any sort of write attempt will result in an error."),
5066 set_target_permissions, NULL,
5067 &setlist, &showlist);
5068
5069 add_setshow_boolean_cmd ("may-write-memory", class_support,
5070 &may_write_memory_1, _("\
5071 Set permission to write into target memory."), _("\
5072 Show permission to write into target memory."), _("\
5073 When this permission is on, GDB may write into the target's memory.\n\
5074 Otherwise, any sort of write attempt will result in an error."),
5075 set_write_memory_permission, NULL,
5076 &setlist, &showlist);
5077
5078 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5079 &may_insert_breakpoints_1, _("\
5080 Set permission to insert breakpoints in the target."), _("\
5081 Show permission to insert breakpoints in the target."), _("\
5082 When this permission is on, GDB may insert breakpoints in the program.\n\
5083 Otherwise, any sort of insertion attempt will result in an error."),
5084 set_target_permissions, NULL,
5085 &setlist, &showlist);
5086
5087 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5088 &may_insert_tracepoints_1, _("\
5089 Set permission to insert tracepoints in the target."), _("\
5090 Show permission to insert tracepoints in the target."), _("\
5091 When this permission is on, GDB may insert tracepoints in the program.\n\
5092 Otherwise, any sort of insertion attempt will result in an error."),
5093 set_target_permissions, NULL,
5094 &setlist, &showlist);
5095
5096 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5097 &may_insert_fast_tracepoints_1, _("\
5098 Set permission to insert fast tracepoints in the target."), _("\
5099 Show permission to insert fast tracepoints in the target."), _("\
5100 When this permission is on, GDB may insert fast tracepoints.\n\
5101 Otherwise, any sort of insertion attempt will result in an error."),
5102 set_target_permissions, NULL,
5103 &setlist, &showlist);
5104
5105 add_setshow_boolean_cmd ("may-interrupt", class_support,
5106 &may_stop_1, _("\
5107 Set permission to interrupt or signal the target."), _("\
5108 Show permission to interrupt or signal the target."), _("\
5109 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5110 Otherwise, any attempt to interrupt or stop will be ignored."),
5111 set_target_permissions, NULL,
5112 &setlist, &showlist);
5113 }