Fix TLS access for -static -pthread
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47 #include "auxv.h"
48
49 static void target_info (char *, int);
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static void tcomplain (void) ATTRIBUTE_NORETURN;
81
82 static int return_zero (struct target_ops *);
83
84 static int return_zero_has_execution (struct target_ops *, ptid_t);
85
86 static void target_command (char *, int);
87
88 static struct target_ops *find_default_run_target (char *);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static int dummy_find_memory_regions (struct target_ops *self,
94 find_memory_region_ftype ignore1,
95 void *ignore2);
96
97 static char *dummy_make_corefile_notes (struct target_ops *self,
98 bfd *ignore1, int *ignore2);
99
100 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
101
102 static enum exec_direction_kind default_execution_direction
103 (struct target_ops *self);
104
105 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
106 struct gdbarch *gdbarch);
107
108 #include "target-delegates.c"
109
110 static void init_dummy_target (void);
111
112 static struct target_ops debug_target;
113
114 static void debug_to_open (char *, int);
115
116 static void debug_to_prepare_to_store (struct target_ops *self,
117 struct regcache *);
118
119 static void debug_to_files_info (struct target_ops *);
120
121 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
125 struct bp_target_info *);
126
127 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
128 int, int, int);
129
130 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
131 struct gdbarch *,
132 struct bp_target_info *);
133
134 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
135 struct gdbarch *,
136 struct bp_target_info *);
137
138 static int debug_to_insert_watchpoint (struct target_ops *self,
139 CORE_ADDR, int, int,
140 struct expression *);
141
142 static int debug_to_remove_watchpoint (struct target_ops *self,
143 CORE_ADDR, int, int,
144 struct expression *);
145
146 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
147
148 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
149 CORE_ADDR, CORE_ADDR, int);
150
151 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
152 CORE_ADDR, int);
153
154 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
155 CORE_ADDR, int, int,
156 struct expression *);
157
158 static void debug_to_terminal_init (struct target_ops *self);
159
160 static void debug_to_terminal_inferior (struct target_ops *self);
161
162 static void debug_to_terminal_ours_for_output (struct target_ops *self);
163
164 static void debug_to_terminal_save_ours (struct target_ops *self);
165
166 static void debug_to_terminal_ours (struct target_ops *self);
167
168 static void debug_to_load (struct target_ops *self, char *, int);
169
170 static int debug_to_can_run (struct target_ops *self);
171
172 static void debug_to_stop (struct target_ops *self, ptid_t);
173
174 /* Pointer to array of target architecture structures; the size of the
175 array; the current index into the array; the allocated size of the
176 array. */
177 struct target_ops **target_structs;
178 unsigned target_struct_size;
179 unsigned target_struct_allocsize;
180 #define DEFAULT_ALLOCSIZE 10
181
182 /* The initial current target, so that there is always a semi-valid
183 current target. */
184
185 static struct target_ops dummy_target;
186
187 /* Top of target stack. */
188
189 static struct target_ops *target_stack;
190
191 /* The target structure we are currently using to talk to a process
192 or file or whatever "inferior" we have. */
193
194 struct target_ops current_target;
195
196 /* Command list for target. */
197
198 static struct cmd_list_element *targetlist = NULL;
199
200 /* Nonzero if we should trust readonly sections from the
201 executable when reading memory. */
202
203 static int trust_readonly = 0;
204
205 /* Nonzero if we should show true memory content including
206 memory breakpoint inserted by gdb. */
207
208 static int show_memory_breakpoints = 0;
209
210 /* These globals control whether GDB attempts to perform these
211 operations; they are useful for targets that need to prevent
212 inadvertant disruption, such as in non-stop mode. */
213
214 int may_write_registers = 1;
215
216 int may_write_memory = 1;
217
218 int may_insert_breakpoints = 1;
219
220 int may_insert_tracepoints = 1;
221
222 int may_insert_fast_tracepoints = 1;
223
224 int may_stop = 1;
225
226 /* Non-zero if we want to see trace of target level stuff. */
227
228 static unsigned int targetdebug = 0;
229 static void
230 show_targetdebug (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
234 }
235
236 static void setup_target_debug (void);
237
238 /* The user just typed 'target' without the name of a target. */
239
240 static void
241 target_command (char *arg, int from_tty)
242 {
243 fputs_filtered ("Argument required (target name). Try `help target'\n",
244 gdb_stdout);
245 }
246
247 /* Default target_has_* methods for process_stratum targets. */
248
249 int
250 default_child_has_all_memory (struct target_ops *ops)
251 {
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257 }
258
259 int
260 default_child_has_memory (struct target_ops *ops)
261 {
262 /* If no inferior selected, then we can't read memory here. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269 int
270 default_child_has_stack (struct target_ops *ops)
271 {
272 /* If no inferior selected, there's no stack. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_registers (struct target_ops *ops)
281 {
282 /* Can't read registers from no inferior. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287 }
288
289 int
290 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
291 {
292 /* If there's no thread selected, then we can't make it run through
293 hoops. */
294 if (ptid_equal (the_ptid, null_ptid))
295 return 0;
296
297 return 1;
298 }
299
300
301 int
302 target_has_all_memory_1 (void)
303 {
304 struct target_ops *t;
305
306 for (t = current_target.beneath; t != NULL; t = t->beneath)
307 if (t->to_has_all_memory (t))
308 return 1;
309
310 return 0;
311 }
312
313 int
314 target_has_memory_1 (void)
315 {
316 struct target_ops *t;
317
318 for (t = current_target.beneath; t != NULL; t = t->beneath)
319 if (t->to_has_memory (t))
320 return 1;
321
322 return 0;
323 }
324
325 int
326 target_has_stack_1 (void)
327 {
328 struct target_ops *t;
329
330 for (t = current_target.beneath; t != NULL; t = t->beneath)
331 if (t->to_has_stack (t))
332 return 1;
333
334 return 0;
335 }
336
337 int
338 target_has_registers_1 (void)
339 {
340 struct target_ops *t;
341
342 for (t = current_target.beneath; t != NULL; t = t->beneath)
343 if (t->to_has_registers (t))
344 return 1;
345
346 return 0;
347 }
348
349 int
350 target_has_execution_1 (ptid_t the_ptid)
351 {
352 struct target_ops *t;
353
354 for (t = current_target.beneath; t != NULL; t = t->beneath)
355 if (t->to_has_execution (t, the_ptid))
356 return 1;
357
358 return 0;
359 }
360
361 int
362 target_has_execution_current (void)
363 {
364 return target_has_execution_1 (inferior_ptid);
365 }
366
367 /* Complete initialization of T. This ensures that various fields in
368 T are set, if needed by the target implementation. */
369
370 void
371 complete_target_initialization (struct target_ops *t)
372 {
373 /* Provide default values for all "must have" methods. */
374
375 if (t->to_has_all_memory == NULL)
376 t->to_has_all_memory = return_zero;
377
378 if (t->to_has_memory == NULL)
379 t->to_has_memory = return_zero;
380
381 if (t->to_has_stack == NULL)
382 t->to_has_stack = return_zero;
383
384 if (t->to_has_registers == NULL)
385 t->to_has_registers = return_zero;
386
387 if (t->to_has_execution == NULL)
388 t->to_has_execution = return_zero_has_execution;
389
390 /* These methods can be called on an unpushed target and so require
391 a default implementation if the target might plausibly be the
392 default run target. */
393 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
394 && t->to_supports_non_stop != NULL));
395
396 install_delegators (t);
397 }
398
399 /* Add possible target architecture T to the list and add a new
400 command 'target T->to_shortname'. Set COMPLETER as the command's
401 completer if not NULL. */
402
403 void
404 add_target_with_completer (struct target_ops *t,
405 completer_ftype *completer)
406 {
407 struct cmd_list_element *c;
408
409 complete_target_initialization (t);
410
411 if (!target_structs)
412 {
413 target_struct_allocsize = DEFAULT_ALLOCSIZE;
414 target_structs = (struct target_ops **) xmalloc
415 (target_struct_allocsize * sizeof (*target_structs));
416 }
417 if (target_struct_size >= target_struct_allocsize)
418 {
419 target_struct_allocsize *= 2;
420 target_structs = (struct target_ops **)
421 xrealloc ((char *) target_structs,
422 target_struct_allocsize * sizeof (*target_structs));
423 }
424 target_structs[target_struct_size++] = t;
425
426 if (targetlist == NULL)
427 add_prefix_cmd ("target", class_run, target_command, _("\
428 Connect to a target machine or process.\n\
429 The first argument is the type or protocol of the target machine.\n\
430 Remaining arguments are interpreted by the target protocol. For more\n\
431 information on the arguments for a particular protocol, type\n\
432 `help target ' followed by the protocol name."),
433 &targetlist, "target ", 0, &cmdlist);
434 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
435 &targetlist);
436 if (completer != NULL)
437 set_cmd_completer (c, completer);
438 }
439
440 /* Add a possible target architecture to the list. */
441
442 void
443 add_target (struct target_ops *t)
444 {
445 add_target_with_completer (t, NULL);
446 }
447
448 /* See target.h. */
449
450 void
451 add_deprecated_target_alias (struct target_ops *t, char *alias)
452 {
453 struct cmd_list_element *c;
454 char *alt;
455
456 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
457 see PR cli/15104. */
458 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
459 alt = xstrprintf ("target %s", t->to_shortname);
460 deprecate_cmd (c, alt);
461 }
462
463 /* Stub functions */
464
465 void
466 target_kill (void)
467 {
468 if (targetdebug)
469 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
470
471 current_target.to_kill (&current_target);
472 }
473
474 void
475 target_load (char *arg, int from_tty)
476 {
477 target_dcache_invalidate ();
478 (*current_target.to_load) (&current_target, arg, from_tty);
479 }
480
481 void
482 target_terminal_inferior (void)
483 {
484 /* A background resume (``run&'') should leave GDB in control of the
485 terminal. Use target_can_async_p, not target_is_async_p, since at
486 this point the target is not async yet. However, if sync_execution
487 is not set, we know it will become async prior to resume. */
488 if (target_can_async_p () && !sync_execution)
489 return;
490
491 /* If GDB is resuming the inferior in the foreground, install
492 inferior's terminal modes. */
493 (*current_target.to_terminal_inferior) (&current_target);
494 }
495
496 static void
497 tcomplain (void)
498 {
499 error (_("You can't do that when your target is `%s'"),
500 current_target.to_shortname);
501 }
502
503 void
504 noprocess (void)
505 {
506 error (_("You can't do that without a process to debug."));
507 }
508
509 static void
510 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
511 {
512 printf_unfiltered (_("No saved terminal information.\n"));
513 }
514
515 /* A default implementation for the to_get_ada_task_ptid target method.
516
517 This function builds the PTID by using both LWP and TID as part of
518 the PTID lwp and tid elements. The pid used is the pid of the
519 inferior_ptid. */
520
521 static ptid_t
522 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
523 {
524 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
525 }
526
527 static enum exec_direction_kind
528 default_execution_direction (struct target_ops *self)
529 {
530 if (!target_can_execute_reverse)
531 return EXEC_FORWARD;
532 else if (!target_can_async_p ())
533 return EXEC_FORWARD;
534 else
535 gdb_assert_not_reached ("\
536 to_execution_direction must be implemented for reverse async");
537 }
538
539 /* Go through the target stack from top to bottom, copying over zero
540 entries in current_target, then filling in still empty entries. In
541 effect, we are doing class inheritance through the pushed target
542 vectors.
543
544 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
545 is currently implemented, is that it discards any knowledge of
546 which target an inherited method originally belonged to.
547 Consequently, new new target methods should instead explicitly and
548 locally search the target stack for the target that can handle the
549 request. */
550
551 static void
552 update_current_target (void)
553 {
554 struct target_ops *t;
555
556 /* First, reset current's contents. */
557 memset (&current_target, 0, sizeof (current_target));
558
559 /* Install the delegators. */
560 install_delegators (&current_target);
561
562 current_target.to_stratum = target_stack->to_stratum;
563
564 #define INHERIT(FIELD, TARGET) \
565 if (!current_target.FIELD) \
566 current_target.FIELD = (TARGET)->FIELD
567
568 /* Do not add any new INHERITs here. Instead, use the delegation
569 mechanism provided by make-target-delegates. */
570 for (t = target_stack; t; t = t->beneath)
571 {
572 INHERIT (to_shortname, t);
573 INHERIT (to_longname, t);
574 INHERIT (to_attach_no_wait, t);
575 INHERIT (to_have_steppable_watchpoint, t);
576 INHERIT (to_have_continuable_watchpoint, t);
577 INHERIT (to_has_thread_control, t);
578 }
579 #undef INHERIT
580
581 /* Finally, position the target-stack beneath the squashed
582 "current_target". That way code looking for a non-inherited
583 target method can quickly and simply find it. */
584 current_target.beneath = target_stack;
585
586 if (targetdebug)
587 setup_target_debug ();
588 }
589
590 /* Push a new target type into the stack of the existing target accessors,
591 possibly superseding some of the existing accessors.
592
593 Rather than allow an empty stack, we always have the dummy target at
594 the bottom stratum, so we can call the function vectors without
595 checking them. */
596
597 void
598 push_target (struct target_ops *t)
599 {
600 struct target_ops **cur;
601
602 /* Check magic number. If wrong, it probably means someone changed
603 the struct definition, but not all the places that initialize one. */
604 if (t->to_magic != OPS_MAGIC)
605 {
606 fprintf_unfiltered (gdb_stderr,
607 "Magic number of %s target struct wrong\n",
608 t->to_shortname);
609 internal_error (__FILE__, __LINE__,
610 _("failed internal consistency check"));
611 }
612
613 /* Find the proper stratum to install this target in. */
614 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
615 {
616 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
617 break;
618 }
619
620 /* If there's already targets at this stratum, remove them. */
621 /* FIXME: cagney/2003-10-15: I think this should be popping all
622 targets to CUR, and not just those at this stratum level. */
623 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
624 {
625 /* There's already something at this stratum level. Close it,
626 and un-hook it from the stack. */
627 struct target_ops *tmp = (*cur);
628
629 (*cur) = (*cur)->beneath;
630 tmp->beneath = NULL;
631 target_close (tmp);
632 }
633
634 /* We have removed all targets in our stratum, now add the new one. */
635 t->beneath = (*cur);
636 (*cur) = t;
637
638 update_current_target ();
639 }
640
641 /* Remove a target_ops vector from the stack, wherever it may be.
642 Return how many times it was removed (0 or 1). */
643
644 int
645 unpush_target (struct target_ops *t)
646 {
647 struct target_ops **cur;
648 struct target_ops *tmp;
649
650 if (t->to_stratum == dummy_stratum)
651 internal_error (__FILE__, __LINE__,
652 _("Attempt to unpush the dummy target"));
653
654 /* Look for the specified target. Note that we assume that a target
655 can only occur once in the target stack. */
656
657 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
658 {
659 if ((*cur) == t)
660 break;
661 }
662
663 /* If we don't find target_ops, quit. Only open targets should be
664 closed. */
665 if ((*cur) == NULL)
666 return 0;
667
668 /* Unchain the target. */
669 tmp = (*cur);
670 (*cur) = (*cur)->beneath;
671 tmp->beneath = NULL;
672
673 update_current_target ();
674
675 /* Finally close the target. Note we do this after unchaining, so
676 any target method calls from within the target_close
677 implementation don't end up in T anymore. */
678 target_close (t);
679
680 return 1;
681 }
682
683 void
684 pop_all_targets_above (enum strata above_stratum)
685 {
686 while ((int) (current_target.to_stratum) > (int) above_stratum)
687 {
688 if (!unpush_target (target_stack))
689 {
690 fprintf_unfiltered (gdb_stderr,
691 "pop_all_targets couldn't find target %s\n",
692 target_stack->to_shortname);
693 internal_error (__FILE__, __LINE__,
694 _("failed internal consistency check"));
695 break;
696 }
697 }
698 }
699
700 void
701 pop_all_targets (void)
702 {
703 pop_all_targets_above (dummy_stratum);
704 }
705
706 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
707
708 int
709 target_is_pushed (struct target_ops *t)
710 {
711 struct target_ops **cur;
712
713 /* Check magic number. If wrong, it probably means someone changed
714 the struct definition, but not all the places that initialize one. */
715 if (t->to_magic != OPS_MAGIC)
716 {
717 fprintf_unfiltered (gdb_stderr,
718 "Magic number of %s target struct wrong\n",
719 t->to_shortname);
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
722 }
723
724 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
725 if (*cur == t)
726 return 1;
727
728 return 0;
729 }
730
731 /* Using the objfile specified in OBJFILE, find the address for the
732 current thread's thread-local storage with offset OFFSET. */
733 CORE_ADDR
734 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
735 {
736 volatile CORE_ADDR addr = 0;
737 struct target_ops *target;
738
739 for (target = current_target.beneath;
740 target != NULL;
741 target = target->beneath)
742 {
743 if (target->to_get_thread_local_address != NULL)
744 break;
745 }
746
747 if (target != NULL
748 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
749 {
750 ptid_t ptid = inferior_ptid;
751 volatile struct gdb_exception ex;
752
753 TRY_CATCH (ex, RETURN_MASK_ALL)
754 {
755 CORE_ADDR lm_addr;
756
757 /* Fetch the load module address for this objfile. */
758 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
759 objfile);
760
761 addr = target->to_get_thread_local_address (target, ptid,
762 lm_addr, offset);
763 }
764 /* If an error occurred, print TLS related messages here. Otherwise,
765 throw the error to some higher catcher. */
766 if (ex.reason < 0)
767 {
768 int objfile_is_library = (objfile->flags & OBJF_SHARED);
769
770 switch (ex.error)
771 {
772 case TLS_NO_LIBRARY_SUPPORT_ERROR:
773 error (_("Cannot find thread-local variables "
774 "in this thread library."));
775 break;
776 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
777 if (objfile_is_library)
778 error (_("Cannot find shared library `%s' in dynamic"
779 " linker's load module list"), objfile_name (objfile));
780 else
781 error (_("Cannot find executable file `%s' in dynamic"
782 " linker's load module list"), objfile_name (objfile));
783 break;
784 case TLS_NOT_ALLOCATED_YET_ERROR:
785 if (objfile_is_library)
786 error (_("The inferior has not yet allocated storage for"
787 " thread-local variables in\n"
788 "the shared library `%s'\n"
789 "for %s"),
790 objfile_name (objfile), target_pid_to_str (ptid));
791 else
792 error (_("The inferior has not yet allocated storage for"
793 " thread-local variables in\n"
794 "the executable `%s'\n"
795 "for %s"),
796 objfile_name (objfile), target_pid_to_str (ptid));
797 break;
798 case TLS_GENERIC_ERROR:
799 if (objfile_is_library)
800 error (_("Cannot find thread-local storage for %s, "
801 "shared library %s:\n%s"),
802 target_pid_to_str (ptid),
803 objfile_name (objfile), ex.message);
804 else
805 error (_("Cannot find thread-local storage for %s, "
806 "executable file %s:\n%s"),
807 target_pid_to_str (ptid),
808 objfile_name (objfile), ex.message);
809 break;
810 default:
811 throw_exception (ex);
812 break;
813 }
814 }
815 }
816 /* It wouldn't be wrong here to try a gdbarch method, too; finding
817 TLS is an ABI-specific thing. But we don't do that yet. */
818 else
819 error (_("Cannot find thread-local variables on this target"));
820
821 return addr;
822 }
823
824 const char *
825 target_xfer_status_to_string (enum target_xfer_status status)
826 {
827 #define CASE(X) case X: return #X
828 switch (status)
829 {
830 CASE(TARGET_XFER_E_IO);
831 CASE(TARGET_XFER_UNAVAILABLE);
832 default:
833 return "<unknown>";
834 }
835 #undef CASE
836 };
837
838
839 #undef MIN
840 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
841
842 /* target_read_string -- read a null terminated string, up to LEN bytes,
843 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
844 Set *STRING to a pointer to malloc'd memory containing the data; the caller
845 is responsible for freeing it. Return the number of bytes successfully
846 read. */
847
848 int
849 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
850 {
851 int tlen, offset, i;
852 gdb_byte buf[4];
853 int errcode = 0;
854 char *buffer;
855 int buffer_allocated;
856 char *bufptr;
857 unsigned int nbytes_read = 0;
858
859 gdb_assert (string);
860
861 /* Small for testing. */
862 buffer_allocated = 4;
863 buffer = xmalloc (buffer_allocated);
864 bufptr = buffer;
865
866 while (len > 0)
867 {
868 tlen = MIN (len, 4 - (memaddr & 3));
869 offset = memaddr & 3;
870
871 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
872 if (errcode != 0)
873 {
874 /* The transfer request might have crossed the boundary to an
875 unallocated region of memory. Retry the transfer, requesting
876 a single byte. */
877 tlen = 1;
878 offset = 0;
879 errcode = target_read_memory (memaddr, buf, 1);
880 if (errcode != 0)
881 goto done;
882 }
883
884 if (bufptr - buffer + tlen > buffer_allocated)
885 {
886 unsigned int bytes;
887
888 bytes = bufptr - buffer;
889 buffer_allocated *= 2;
890 buffer = xrealloc (buffer, buffer_allocated);
891 bufptr = buffer + bytes;
892 }
893
894 for (i = 0; i < tlen; i++)
895 {
896 *bufptr++ = buf[i + offset];
897 if (buf[i + offset] == '\000')
898 {
899 nbytes_read += i + 1;
900 goto done;
901 }
902 }
903
904 memaddr += tlen;
905 len -= tlen;
906 nbytes_read += tlen;
907 }
908 done:
909 *string = buffer;
910 if (errnop != NULL)
911 *errnop = errcode;
912 return nbytes_read;
913 }
914
915 struct target_section_table *
916 target_get_section_table (struct target_ops *target)
917 {
918 if (targetdebug)
919 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
920
921 return (*target->to_get_section_table) (target);
922 }
923
924 /* Find a section containing ADDR. */
925
926 struct target_section *
927 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
928 {
929 struct target_section_table *table = target_get_section_table (target);
930 struct target_section *secp;
931
932 if (table == NULL)
933 return NULL;
934
935 for (secp = table->sections; secp < table->sections_end; secp++)
936 {
937 if (addr >= secp->addr && addr < secp->endaddr)
938 return secp;
939 }
940 return NULL;
941 }
942
943 /* Read memory from more than one valid target. A core file, for
944 instance, could have some of memory but delegate other bits to
945 the target below it. So, we must manually try all targets. */
946
947 static enum target_xfer_status
948 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
949 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
950 ULONGEST *xfered_len)
951 {
952 enum target_xfer_status res;
953
954 do
955 {
956 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
957 readbuf, writebuf, memaddr, len,
958 xfered_len);
959 if (res == TARGET_XFER_OK)
960 break;
961
962 /* Stop if the target reports that the memory is not available. */
963 if (res == TARGET_XFER_UNAVAILABLE)
964 break;
965
966 /* We want to continue past core files to executables, but not
967 past a running target's memory. */
968 if (ops->to_has_all_memory (ops))
969 break;
970
971 ops = ops->beneath;
972 }
973 while (ops != NULL);
974
975 /* The cache works at the raw memory level. Make sure the cache
976 gets updated with raw contents no matter what kind of memory
977 object was originally being written. Note we do write-through
978 first, so that if it fails, we don't write to the cache contents
979 that never made it to the target. */
980 if (writebuf != NULL
981 && !ptid_equal (inferior_ptid, null_ptid)
982 && target_dcache_init_p ()
983 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
984 {
985 DCACHE *dcache = target_dcache_get ();
986
987 /* Note that writing to an area of memory which wasn't present
988 in the cache doesn't cause it to be loaded in. */
989 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
990 }
991
992 return res;
993 }
994
995 /* Perform a partial memory transfer.
996 For docs see target.h, to_xfer_partial. */
997
998 static enum target_xfer_status
999 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1000 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1001 ULONGEST len, ULONGEST *xfered_len)
1002 {
1003 enum target_xfer_status res;
1004 int reg_len;
1005 struct mem_region *region;
1006 struct inferior *inf;
1007
1008 /* For accesses to unmapped overlay sections, read directly from
1009 files. Must do this first, as MEMADDR may need adjustment. */
1010 if (readbuf != NULL && overlay_debugging)
1011 {
1012 struct obj_section *section = find_pc_overlay (memaddr);
1013
1014 if (pc_in_unmapped_range (memaddr, section))
1015 {
1016 struct target_section_table *table
1017 = target_get_section_table (ops);
1018 const char *section_name = section->the_bfd_section->name;
1019
1020 memaddr = overlay_mapped_address (memaddr, section);
1021 return section_table_xfer_memory_partial (readbuf, writebuf,
1022 memaddr, len, xfered_len,
1023 table->sections,
1024 table->sections_end,
1025 section_name);
1026 }
1027 }
1028
1029 /* Try the executable files, if "trust-readonly-sections" is set. */
1030 if (readbuf != NULL && trust_readonly)
1031 {
1032 struct target_section *secp;
1033 struct target_section_table *table;
1034
1035 secp = target_section_by_addr (ops, memaddr);
1036 if (secp != NULL
1037 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1038 secp->the_bfd_section)
1039 & SEC_READONLY))
1040 {
1041 table = target_get_section_table (ops);
1042 return section_table_xfer_memory_partial (readbuf, writebuf,
1043 memaddr, len, xfered_len,
1044 table->sections,
1045 table->sections_end,
1046 NULL);
1047 }
1048 }
1049
1050 /* Try GDB's internal data cache. */
1051 region = lookup_mem_region (memaddr);
1052 /* region->hi == 0 means there's no upper bound. */
1053 if (memaddr + len < region->hi || region->hi == 0)
1054 reg_len = len;
1055 else
1056 reg_len = region->hi - memaddr;
1057
1058 switch (region->attrib.mode)
1059 {
1060 case MEM_RO:
1061 if (writebuf != NULL)
1062 return TARGET_XFER_E_IO;
1063 break;
1064
1065 case MEM_WO:
1066 if (readbuf != NULL)
1067 return TARGET_XFER_E_IO;
1068 break;
1069
1070 case MEM_FLASH:
1071 /* We only support writing to flash during "load" for now. */
1072 if (writebuf != NULL)
1073 error (_("Writing to flash memory forbidden in this context"));
1074 break;
1075
1076 case MEM_NONE:
1077 return TARGET_XFER_E_IO;
1078 }
1079
1080 if (!ptid_equal (inferior_ptid, null_ptid))
1081 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1082 else
1083 inf = NULL;
1084
1085 if (inf != NULL
1086 && readbuf != NULL
1087 /* The dcache reads whole cache lines; that doesn't play well
1088 with reading from a trace buffer, because reading outside of
1089 the collected memory range fails. */
1090 && get_traceframe_number () == -1
1091 && (region->attrib.cache
1092 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1093 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1094 {
1095 DCACHE *dcache = target_dcache_get_or_init ();
1096
1097 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1098 reg_len, xfered_len);
1099 }
1100
1101 /* If none of those methods found the memory we wanted, fall back
1102 to a target partial transfer. Normally a single call to
1103 to_xfer_partial is enough; if it doesn't recognize an object
1104 it will call the to_xfer_partial of the next target down.
1105 But for memory this won't do. Memory is the only target
1106 object which can be read from more than one valid target.
1107 A core file, for instance, could have some of memory but
1108 delegate other bits to the target below it. So, we must
1109 manually try all targets. */
1110
1111 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1112 xfered_len);
1113
1114 /* If we still haven't got anything, return the last error. We
1115 give up. */
1116 return res;
1117 }
1118
1119 /* Perform a partial memory transfer. For docs see target.h,
1120 to_xfer_partial. */
1121
1122 static enum target_xfer_status
1123 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1124 gdb_byte *readbuf, const gdb_byte *writebuf,
1125 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1126 {
1127 enum target_xfer_status res;
1128
1129 /* Zero length requests are ok and require no work. */
1130 if (len == 0)
1131 return TARGET_XFER_EOF;
1132
1133 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1134 breakpoint insns, thus hiding out from higher layers whether
1135 there are software breakpoints inserted in the code stream. */
1136 if (readbuf != NULL)
1137 {
1138 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1139 xfered_len);
1140
1141 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1142 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1143 }
1144 else
1145 {
1146 void *buf;
1147 struct cleanup *old_chain;
1148
1149 /* A large write request is likely to be partially satisfied
1150 by memory_xfer_partial_1. We will continually malloc
1151 and free a copy of the entire write request for breakpoint
1152 shadow handling even though we only end up writing a small
1153 subset of it. Cap writes to 4KB to mitigate this. */
1154 len = min (4096, len);
1155
1156 buf = xmalloc (len);
1157 old_chain = make_cleanup (xfree, buf);
1158 memcpy (buf, writebuf, len);
1159
1160 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1161 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1162 xfered_len);
1163
1164 do_cleanups (old_chain);
1165 }
1166
1167 return res;
1168 }
1169
1170 static void
1171 restore_show_memory_breakpoints (void *arg)
1172 {
1173 show_memory_breakpoints = (uintptr_t) arg;
1174 }
1175
1176 struct cleanup *
1177 make_show_memory_breakpoints_cleanup (int show)
1178 {
1179 int current = show_memory_breakpoints;
1180
1181 show_memory_breakpoints = show;
1182 return make_cleanup (restore_show_memory_breakpoints,
1183 (void *) (uintptr_t) current);
1184 }
1185
1186 /* For docs see target.h, to_xfer_partial. */
1187
1188 enum target_xfer_status
1189 target_xfer_partial (struct target_ops *ops,
1190 enum target_object object, const char *annex,
1191 gdb_byte *readbuf, const gdb_byte *writebuf,
1192 ULONGEST offset, ULONGEST len,
1193 ULONGEST *xfered_len)
1194 {
1195 enum target_xfer_status retval;
1196
1197 gdb_assert (ops->to_xfer_partial != NULL);
1198
1199 /* Transfer is done when LEN is zero. */
1200 if (len == 0)
1201 return TARGET_XFER_EOF;
1202
1203 if (writebuf && !may_write_memory)
1204 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1205 core_addr_to_string_nz (offset), plongest (len));
1206
1207 *xfered_len = 0;
1208
1209 /* If this is a memory transfer, let the memory-specific code
1210 have a look at it instead. Memory transfers are more
1211 complicated. */
1212 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1213 || object == TARGET_OBJECT_CODE_MEMORY)
1214 retval = memory_xfer_partial (ops, object, readbuf,
1215 writebuf, offset, len, xfered_len);
1216 else if (object == TARGET_OBJECT_RAW_MEMORY)
1217 {
1218 /* Request the normal memory object from other layers. */
1219 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1220 xfered_len);
1221 }
1222 else
1223 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1224 writebuf, offset, len, xfered_len);
1225
1226 if (targetdebug)
1227 {
1228 const unsigned char *myaddr = NULL;
1229
1230 fprintf_unfiltered (gdb_stdlog,
1231 "%s:target_xfer_partial "
1232 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1233 ops->to_shortname,
1234 (int) object,
1235 (annex ? annex : "(null)"),
1236 host_address_to_string (readbuf),
1237 host_address_to_string (writebuf),
1238 core_addr_to_string_nz (offset),
1239 pulongest (len), retval,
1240 pulongest (*xfered_len));
1241
1242 if (readbuf)
1243 myaddr = readbuf;
1244 if (writebuf)
1245 myaddr = writebuf;
1246 if (retval == TARGET_XFER_OK && myaddr != NULL)
1247 {
1248 int i;
1249
1250 fputs_unfiltered (", bytes =", gdb_stdlog);
1251 for (i = 0; i < *xfered_len; i++)
1252 {
1253 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1254 {
1255 if (targetdebug < 2 && i > 0)
1256 {
1257 fprintf_unfiltered (gdb_stdlog, " ...");
1258 break;
1259 }
1260 fprintf_unfiltered (gdb_stdlog, "\n");
1261 }
1262
1263 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1264 }
1265 }
1266
1267 fputc_unfiltered ('\n', gdb_stdlog);
1268 }
1269
1270 /* Check implementations of to_xfer_partial update *XFERED_LEN
1271 properly. Do assertion after printing debug messages, so that we
1272 can find more clues on assertion failure from debugging messages. */
1273 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1274 gdb_assert (*xfered_len > 0);
1275
1276 return retval;
1277 }
1278
1279 /* Read LEN bytes of target memory at address MEMADDR, placing the
1280 results in GDB's memory at MYADDR. Returns either 0 for success or
1281 TARGET_XFER_E_IO if any error occurs.
1282
1283 If an error occurs, no guarantee is made about the contents of the data at
1284 MYADDR. In particular, the caller should not depend upon partial reads
1285 filling the buffer with good data. There is no way for the caller to know
1286 how much good data might have been transfered anyway. Callers that can
1287 deal with partial reads should call target_read (which will retry until
1288 it makes no progress, and then return how much was transferred). */
1289
1290 int
1291 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1292 {
1293 /* Dispatch to the topmost target, not the flattened current_target.
1294 Memory accesses check target->to_has_(all_)memory, and the
1295 flattened target doesn't inherit those. */
1296 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1297 myaddr, memaddr, len) == len)
1298 return 0;
1299 else
1300 return TARGET_XFER_E_IO;
1301 }
1302
1303 /* Like target_read_memory, but specify explicitly that this is a read
1304 from the target's raw memory. That is, this read bypasses the
1305 dcache, breakpoint shadowing, etc. */
1306
1307 int
1308 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1309 {
1310 /* See comment in target_read_memory about why the request starts at
1311 current_target.beneath. */
1312 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1313 myaddr, memaddr, len) == len)
1314 return 0;
1315 else
1316 return TARGET_XFER_E_IO;
1317 }
1318
1319 /* Like target_read_memory, but specify explicitly that this is a read from
1320 the target's stack. This may trigger different cache behavior. */
1321
1322 int
1323 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1324 {
1325 /* See comment in target_read_memory about why the request starts at
1326 current_target.beneath. */
1327 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1328 myaddr, memaddr, len) == len)
1329 return 0;
1330 else
1331 return TARGET_XFER_E_IO;
1332 }
1333
1334 /* Like target_read_memory, but specify explicitly that this is a read from
1335 the target's code. This may trigger different cache behavior. */
1336
1337 int
1338 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1339 {
1340 /* See comment in target_read_memory about why the request starts at
1341 current_target.beneath. */
1342 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1343 myaddr, memaddr, len) == len)
1344 return 0;
1345 else
1346 return TARGET_XFER_E_IO;
1347 }
1348
1349 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1350 Returns either 0 for success or TARGET_XFER_E_IO if any
1351 error occurs. If an error occurs, no guarantee is made about how
1352 much data got written. Callers that can deal with partial writes
1353 should call target_write. */
1354
1355 int
1356 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1357 {
1358 /* See comment in target_read_memory about why the request starts at
1359 current_target.beneath. */
1360 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1361 myaddr, memaddr, len) == len)
1362 return 0;
1363 else
1364 return TARGET_XFER_E_IO;
1365 }
1366
1367 /* Write LEN bytes from MYADDR to target raw memory at address
1368 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1369 if any error occurs. If an error occurs, no guarantee is made
1370 about how much data got written. Callers that can deal with
1371 partial writes should call target_write. */
1372
1373 int
1374 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1375 {
1376 /* See comment in target_read_memory about why the request starts at
1377 current_target.beneath. */
1378 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1379 myaddr, memaddr, len) == len)
1380 return 0;
1381 else
1382 return TARGET_XFER_E_IO;
1383 }
1384
1385 /* Fetch the target's memory map. */
1386
1387 VEC(mem_region_s) *
1388 target_memory_map (void)
1389 {
1390 VEC(mem_region_s) *result;
1391 struct mem_region *last_one, *this_one;
1392 int ix;
1393 struct target_ops *t;
1394
1395 if (targetdebug)
1396 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1397
1398 result = current_target.to_memory_map (&current_target);
1399 if (result == NULL)
1400 return NULL;
1401
1402 qsort (VEC_address (mem_region_s, result),
1403 VEC_length (mem_region_s, result),
1404 sizeof (struct mem_region), mem_region_cmp);
1405
1406 /* Check that regions do not overlap. Simultaneously assign
1407 a numbering for the "mem" commands to use to refer to
1408 each region. */
1409 last_one = NULL;
1410 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1411 {
1412 this_one->number = ix;
1413
1414 if (last_one && last_one->hi > this_one->lo)
1415 {
1416 warning (_("Overlapping regions in memory map: ignoring"));
1417 VEC_free (mem_region_s, result);
1418 return NULL;
1419 }
1420 last_one = this_one;
1421 }
1422
1423 return result;
1424 }
1425
1426 void
1427 target_flash_erase (ULONGEST address, LONGEST length)
1428 {
1429 if (targetdebug)
1430 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1431 hex_string (address), phex (length, 0));
1432 current_target.to_flash_erase (&current_target, address, length);
1433 }
1434
1435 void
1436 target_flash_done (void)
1437 {
1438 if (targetdebug)
1439 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1440 current_target.to_flash_done (&current_target);
1441 }
1442
1443 static void
1444 show_trust_readonly (struct ui_file *file, int from_tty,
1445 struct cmd_list_element *c, const char *value)
1446 {
1447 fprintf_filtered (file,
1448 _("Mode for reading from readonly sections is %s.\n"),
1449 value);
1450 }
1451
1452 /* Target vector read/write partial wrapper functions. */
1453
1454 static enum target_xfer_status
1455 target_read_partial (struct target_ops *ops,
1456 enum target_object object,
1457 const char *annex, gdb_byte *buf,
1458 ULONGEST offset, ULONGEST len,
1459 ULONGEST *xfered_len)
1460 {
1461 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1462 xfered_len);
1463 }
1464
1465 static enum target_xfer_status
1466 target_write_partial (struct target_ops *ops,
1467 enum target_object object,
1468 const char *annex, const gdb_byte *buf,
1469 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1470 {
1471 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1472 xfered_len);
1473 }
1474
1475 /* Wrappers to perform the full transfer. */
1476
1477 /* For docs on target_read see target.h. */
1478
1479 LONGEST
1480 target_read (struct target_ops *ops,
1481 enum target_object object,
1482 const char *annex, gdb_byte *buf,
1483 ULONGEST offset, LONGEST len)
1484 {
1485 LONGEST xfered = 0;
1486
1487 while (xfered < len)
1488 {
1489 ULONGEST xfered_len;
1490 enum target_xfer_status status;
1491
1492 status = target_read_partial (ops, object, annex,
1493 (gdb_byte *) buf + xfered,
1494 offset + xfered, len - xfered,
1495 &xfered_len);
1496
1497 /* Call an observer, notifying them of the xfer progress? */
1498 if (status == TARGET_XFER_EOF)
1499 return xfered;
1500 else if (status == TARGET_XFER_OK)
1501 {
1502 xfered += xfered_len;
1503 QUIT;
1504 }
1505 else
1506 return -1;
1507
1508 }
1509 return len;
1510 }
1511
1512 /* Assuming that the entire [begin, end) range of memory cannot be
1513 read, try to read whatever subrange is possible to read.
1514
1515 The function returns, in RESULT, either zero or one memory block.
1516 If there's a readable subrange at the beginning, it is completely
1517 read and returned. Any further readable subrange will not be read.
1518 Otherwise, if there's a readable subrange at the end, it will be
1519 completely read and returned. Any readable subranges before it
1520 (obviously, not starting at the beginning), will be ignored. In
1521 other cases -- either no readable subrange, or readable subrange(s)
1522 that is neither at the beginning, or end, nothing is returned.
1523
1524 The purpose of this function is to handle a read across a boundary
1525 of accessible memory in a case when memory map is not available.
1526 The above restrictions are fine for this case, but will give
1527 incorrect results if the memory is 'patchy'. However, supporting
1528 'patchy' memory would require trying to read every single byte,
1529 and it seems unacceptable solution. Explicit memory map is
1530 recommended for this case -- and target_read_memory_robust will
1531 take care of reading multiple ranges then. */
1532
1533 static void
1534 read_whatever_is_readable (struct target_ops *ops,
1535 ULONGEST begin, ULONGEST end,
1536 VEC(memory_read_result_s) **result)
1537 {
1538 gdb_byte *buf = xmalloc (end - begin);
1539 ULONGEST current_begin = begin;
1540 ULONGEST current_end = end;
1541 int forward;
1542 memory_read_result_s r;
1543 ULONGEST xfered_len;
1544
1545 /* If we previously failed to read 1 byte, nothing can be done here. */
1546 if (end - begin <= 1)
1547 {
1548 xfree (buf);
1549 return;
1550 }
1551
1552 /* Check that either first or the last byte is readable, and give up
1553 if not. This heuristic is meant to permit reading accessible memory
1554 at the boundary of accessible region. */
1555 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1556 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1557 {
1558 forward = 1;
1559 ++current_begin;
1560 }
1561 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1562 buf + (end-begin) - 1, end - 1, 1,
1563 &xfered_len) == TARGET_XFER_OK)
1564 {
1565 forward = 0;
1566 --current_end;
1567 }
1568 else
1569 {
1570 xfree (buf);
1571 return;
1572 }
1573
1574 /* Loop invariant is that the [current_begin, current_end) was previously
1575 found to be not readable as a whole.
1576
1577 Note loop condition -- if the range has 1 byte, we can't divide the range
1578 so there's no point trying further. */
1579 while (current_end - current_begin > 1)
1580 {
1581 ULONGEST first_half_begin, first_half_end;
1582 ULONGEST second_half_begin, second_half_end;
1583 LONGEST xfer;
1584 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1585
1586 if (forward)
1587 {
1588 first_half_begin = current_begin;
1589 first_half_end = middle;
1590 second_half_begin = middle;
1591 second_half_end = current_end;
1592 }
1593 else
1594 {
1595 first_half_begin = middle;
1596 first_half_end = current_end;
1597 second_half_begin = current_begin;
1598 second_half_end = middle;
1599 }
1600
1601 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1602 buf + (first_half_begin - begin),
1603 first_half_begin,
1604 first_half_end - first_half_begin);
1605
1606 if (xfer == first_half_end - first_half_begin)
1607 {
1608 /* This half reads up fine. So, the error must be in the
1609 other half. */
1610 current_begin = second_half_begin;
1611 current_end = second_half_end;
1612 }
1613 else
1614 {
1615 /* This half is not readable. Because we've tried one byte, we
1616 know some part of this half if actually redable. Go to the next
1617 iteration to divide again and try to read.
1618
1619 We don't handle the other half, because this function only tries
1620 to read a single readable subrange. */
1621 current_begin = first_half_begin;
1622 current_end = first_half_end;
1623 }
1624 }
1625
1626 if (forward)
1627 {
1628 /* The [begin, current_begin) range has been read. */
1629 r.begin = begin;
1630 r.end = current_begin;
1631 r.data = buf;
1632 }
1633 else
1634 {
1635 /* The [current_end, end) range has been read. */
1636 LONGEST rlen = end - current_end;
1637
1638 r.data = xmalloc (rlen);
1639 memcpy (r.data, buf + current_end - begin, rlen);
1640 r.begin = current_end;
1641 r.end = end;
1642 xfree (buf);
1643 }
1644 VEC_safe_push(memory_read_result_s, (*result), &r);
1645 }
1646
1647 void
1648 free_memory_read_result_vector (void *x)
1649 {
1650 VEC(memory_read_result_s) *v = x;
1651 memory_read_result_s *current;
1652 int ix;
1653
1654 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1655 {
1656 xfree (current->data);
1657 }
1658 VEC_free (memory_read_result_s, v);
1659 }
1660
1661 VEC(memory_read_result_s) *
1662 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1663 {
1664 VEC(memory_read_result_s) *result = 0;
1665
1666 LONGEST xfered = 0;
1667 while (xfered < len)
1668 {
1669 struct mem_region *region = lookup_mem_region (offset + xfered);
1670 LONGEST rlen;
1671
1672 /* If there is no explicit region, a fake one should be created. */
1673 gdb_assert (region);
1674
1675 if (region->hi == 0)
1676 rlen = len - xfered;
1677 else
1678 rlen = region->hi - offset;
1679
1680 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1681 {
1682 /* Cannot read this region. Note that we can end up here only
1683 if the region is explicitly marked inaccessible, or
1684 'inaccessible-by-default' is in effect. */
1685 xfered += rlen;
1686 }
1687 else
1688 {
1689 LONGEST to_read = min (len - xfered, rlen);
1690 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1691
1692 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1693 (gdb_byte *) buffer,
1694 offset + xfered, to_read);
1695 /* Call an observer, notifying them of the xfer progress? */
1696 if (xfer <= 0)
1697 {
1698 /* Got an error reading full chunk. See if maybe we can read
1699 some subrange. */
1700 xfree (buffer);
1701 read_whatever_is_readable (ops, offset + xfered,
1702 offset + xfered + to_read, &result);
1703 xfered += to_read;
1704 }
1705 else
1706 {
1707 struct memory_read_result r;
1708 r.data = buffer;
1709 r.begin = offset + xfered;
1710 r.end = r.begin + xfer;
1711 VEC_safe_push (memory_read_result_s, result, &r);
1712 xfered += xfer;
1713 }
1714 QUIT;
1715 }
1716 }
1717 return result;
1718 }
1719
1720
1721 /* An alternative to target_write with progress callbacks. */
1722
1723 LONGEST
1724 target_write_with_progress (struct target_ops *ops,
1725 enum target_object object,
1726 const char *annex, const gdb_byte *buf,
1727 ULONGEST offset, LONGEST len,
1728 void (*progress) (ULONGEST, void *), void *baton)
1729 {
1730 LONGEST xfered = 0;
1731
1732 /* Give the progress callback a chance to set up. */
1733 if (progress)
1734 (*progress) (0, baton);
1735
1736 while (xfered < len)
1737 {
1738 ULONGEST xfered_len;
1739 enum target_xfer_status status;
1740
1741 status = target_write_partial (ops, object, annex,
1742 (gdb_byte *) buf + xfered,
1743 offset + xfered, len - xfered,
1744 &xfered_len);
1745
1746 if (status != TARGET_XFER_OK)
1747 return status == TARGET_XFER_EOF ? xfered : -1;
1748
1749 if (progress)
1750 (*progress) (xfered_len, baton);
1751
1752 xfered += xfered_len;
1753 QUIT;
1754 }
1755 return len;
1756 }
1757
1758 /* For docs on target_write see target.h. */
1759
1760 LONGEST
1761 target_write (struct target_ops *ops,
1762 enum target_object object,
1763 const char *annex, const gdb_byte *buf,
1764 ULONGEST offset, LONGEST len)
1765 {
1766 return target_write_with_progress (ops, object, annex, buf, offset, len,
1767 NULL, NULL);
1768 }
1769
1770 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1771 the size of the transferred data. PADDING additional bytes are
1772 available in *BUF_P. This is a helper function for
1773 target_read_alloc; see the declaration of that function for more
1774 information. */
1775
1776 static LONGEST
1777 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1778 const char *annex, gdb_byte **buf_p, int padding)
1779 {
1780 size_t buf_alloc, buf_pos;
1781 gdb_byte *buf;
1782
1783 /* This function does not have a length parameter; it reads the
1784 entire OBJECT). Also, it doesn't support objects fetched partly
1785 from one target and partly from another (in a different stratum,
1786 e.g. a core file and an executable). Both reasons make it
1787 unsuitable for reading memory. */
1788 gdb_assert (object != TARGET_OBJECT_MEMORY);
1789
1790 /* Start by reading up to 4K at a time. The target will throttle
1791 this number down if necessary. */
1792 buf_alloc = 4096;
1793 buf = xmalloc (buf_alloc);
1794 buf_pos = 0;
1795 while (1)
1796 {
1797 ULONGEST xfered_len;
1798 enum target_xfer_status status;
1799
1800 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1801 buf_pos, buf_alloc - buf_pos - padding,
1802 &xfered_len);
1803
1804 if (status == TARGET_XFER_EOF)
1805 {
1806 /* Read all there was. */
1807 if (buf_pos == 0)
1808 xfree (buf);
1809 else
1810 *buf_p = buf;
1811 return buf_pos;
1812 }
1813 else if (status != TARGET_XFER_OK)
1814 {
1815 /* An error occurred. */
1816 xfree (buf);
1817 return TARGET_XFER_E_IO;
1818 }
1819
1820 buf_pos += xfered_len;
1821
1822 /* If the buffer is filling up, expand it. */
1823 if (buf_alloc < buf_pos * 2)
1824 {
1825 buf_alloc *= 2;
1826 buf = xrealloc (buf, buf_alloc);
1827 }
1828
1829 QUIT;
1830 }
1831 }
1832
1833 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1834 the size of the transferred data. See the declaration in "target.h"
1835 function for more information about the return value. */
1836
1837 LONGEST
1838 target_read_alloc (struct target_ops *ops, enum target_object object,
1839 const char *annex, gdb_byte **buf_p)
1840 {
1841 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1842 }
1843
1844 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1845 returned as a string, allocated using xmalloc. If an error occurs
1846 or the transfer is unsupported, NULL is returned. Empty objects
1847 are returned as allocated but empty strings. A warning is issued
1848 if the result contains any embedded NUL bytes. */
1849
1850 char *
1851 target_read_stralloc (struct target_ops *ops, enum target_object object,
1852 const char *annex)
1853 {
1854 gdb_byte *buffer;
1855 char *bufstr;
1856 LONGEST i, transferred;
1857
1858 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1859 bufstr = (char *) buffer;
1860
1861 if (transferred < 0)
1862 return NULL;
1863
1864 if (transferred == 0)
1865 return xstrdup ("");
1866
1867 bufstr[transferred] = 0;
1868
1869 /* Check for embedded NUL bytes; but allow trailing NULs. */
1870 for (i = strlen (bufstr); i < transferred; i++)
1871 if (bufstr[i] != 0)
1872 {
1873 warning (_("target object %d, annex %s, "
1874 "contained unexpected null characters"),
1875 (int) object, annex ? annex : "(none)");
1876 break;
1877 }
1878
1879 return bufstr;
1880 }
1881
1882 /* Memory transfer methods. */
1883
1884 void
1885 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1886 LONGEST len)
1887 {
1888 /* This method is used to read from an alternate, non-current
1889 target. This read must bypass the overlay support (as symbols
1890 don't match this target), and GDB's internal cache (wrong cache
1891 for this target). */
1892 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1893 != len)
1894 memory_error (TARGET_XFER_E_IO, addr);
1895 }
1896
1897 ULONGEST
1898 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1899 int len, enum bfd_endian byte_order)
1900 {
1901 gdb_byte buf[sizeof (ULONGEST)];
1902
1903 gdb_assert (len <= sizeof (buf));
1904 get_target_memory (ops, addr, buf, len);
1905 return extract_unsigned_integer (buf, len, byte_order);
1906 }
1907
1908 /* See target.h. */
1909
1910 int
1911 target_insert_breakpoint (struct gdbarch *gdbarch,
1912 struct bp_target_info *bp_tgt)
1913 {
1914 if (!may_insert_breakpoints)
1915 {
1916 warning (_("May not insert breakpoints"));
1917 return 1;
1918 }
1919
1920 return current_target.to_insert_breakpoint (&current_target,
1921 gdbarch, bp_tgt);
1922 }
1923
1924 /* See target.h. */
1925
1926 int
1927 target_remove_breakpoint (struct gdbarch *gdbarch,
1928 struct bp_target_info *bp_tgt)
1929 {
1930 /* This is kind of a weird case to handle, but the permission might
1931 have been changed after breakpoints were inserted - in which case
1932 we should just take the user literally and assume that any
1933 breakpoints should be left in place. */
1934 if (!may_insert_breakpoints)
1935 {
1936 warning (_("May not remove breakpoints"));
1937 return 1;
1938 }
1939
1940 return current_target.to_remove_breakpoint (&current_target,
1941 gdbarch, bp_tgt);
1942 }
1943
1944 static void
1945 target_info (char *args, int from_tty)
1946 {
1947 struct target_ops *t;
1948 int has_all_mem = 0;
1949
1950 if (symfile_objfile != NULL)
1951 printf_unfiltered (_("Symbols from \"%s\".\n"),
1952 objfile_name (symfile_objfile));
1953
1954 for (t = target_stack; t != NULL; t = t->beneath)
1955 {
1956 if (!(*t->to_has_memory) (t))
1957 continue;
1958
1959 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1960 continue;
1961 if (has_all_mem)
1962 printf_unfiltered (_("\tWhile running this, "
1963 "GDB does not access memory from...\n"));
1964 printf_unfiltered ("%s:\n", t->to_longname);
1965 (t->to_files_info) (t);
1966 has_all_mem = (*t->to_has_all_memory) (t);
1967 }
1968 }
1969
1970 /* This function is called before any new inferior is created, e.g.
1971 by running a program, attaching, or connecting to a target.
1972 It cleans up any state from previous invocations which might
1973 change between runs. This is a subset of what target_preopen
1974 resets (things which might change between targets). */
1975
1976 void
1977 target_pre_inferior (int from_tty)
1978 {
1979 /* Clear out solib state. Otherwise the solib state of the previous
1980 inferior might have survived and is entirely wrong for the new
1981 target. This has been observed on GNU/Linux using glibc 2.3. How
1982 to reproduce:
1983
1984 bash$ ./foo&
1985 [1] 4711
1986 bash$ ./foo&
1987 [1] 4712
1988 bash$ gdb ./foo
1989 [...]
1990 (gdb) attach 4711
1991 (gdb) detach
1992 (gdb) attach 4712
1993 Cannot access memory at address 0xdeadbeef
1994 */
1995
1996 /* In some OSs, the shared library list is the same/global/shared
1997 across inferiors. If code is shared between processes, so are
1998 memory regions and features. */
1999 if (!gdbarch_has_global_solist (target_gdbarch ()))
2000 {
2001 no_shared_libraries (NULL, from_tty);
2002
2003 invalidate_target_mem_regions ();
2004
2005 target_clear_description ();
2006 }
2007
2008 agent_capability_invalidate ();
2009 }
2010
2011 /* Callback for iterate_over_inferiors. Gets rid of the given
2012 inferior. */
2013
2014 static int
2015 dispose_inferior (struct inferior *inf, void *args)
2016 {
2017 struct thread_info *thread;
2018
2019 thread = any_thread_of_process (inf->pid);
2020 if (thread)
2021 {
2022 switch_to_thread (thread->ptid);
2023
2024 /* Core inferiors actually should be detached, not killed. */
2025 if (target_has_execution)
2026 target_kill ();
2027 else
2028 target_detach (NULL, 0);
2029 }
2030
2031 return 0;
2032 }
2033
2034 /* This is to be called by the open routine before it does
2035 anything. */
2036
2037 void
2038 target_preopen (int from_tty)
2039 {
2040 dont_repeat ();
2041
2042 if (have_inferiors ())
2043 {
2044 if (!from_tty
2045 || !have_live_inferiors ()
2046 || query (_("A program is being debugged already. Kill it? ")))
2047 iterate_over_inferiors (dispose_inferior, NULL);
2048 else
2049 error (_("Program not killed."));
2050 }
2051
2052 /* Calling target_kill may remove the target from the stack. But if
2053 it doesn't (which seems like a win for UDI), remove it now. */
2054 /* Leave the exec target, though. The user may be switching from a
2055 live process to a core of the same program. */
2056 pop_all_targets_above (file_stratum);
2057
2058 target_pre_inferior (from_tty);
2059 }
2060
2061 /* Detach a target after doing deferred register stores. */
2062
2063 void
2064 target_detach (const char *args, int from_tty)
2065 {
2066 struct target_ops* t;
2067
2068 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2069 /* Don't remove global breakpoints here. They're removed on
2070 disconnection from the target. */
2071 ;
2072 else
2073 /* If we're in breakpoints-always-inserted mode, have to remove
2074 them before detaching. */
2075 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2076
2077 prepare_for_detach ();
2078
2079 current_target.to_detach (&current_target, args, from_tty);
2080 if (targetdebug)
2081 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2082 args, from_tty);
2083 }
2084
2085 void
2086 target_disconnect (char *args, int from_tty)
2087 {
2088 /* If we're in breakpoints-always-inserted mode or if breakpoints
2089 are global across processes, we have to remove them before
2090 disconnecting. */
2091 remove_breakpoints ();
2092
2093 if (targetdebug)
2094 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2095 args, from_tty);
2096 current_target.to_disconnect (&current_target, args, from_tty);
2097 }
2098
2099 ptid_t
2100 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2101 {
2102 struct target_ops *t;
2103 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2104 status, options);
2105
2106 if (targetdebug)
2107 {
2108 char *status_string;
2109 char *options_string;
2110
2111 status_string = target_waitstatus_to_string (status);
2112 options_string = target_options_to_string (options);
2113 fprintf_unfiltered (gdb_stdlog,
2114 "target_wait (%d, status, options={%s})"
2115 " = %d, %s\n",
2116 ptid_get_pid (ptid), options_string,
2117 ptid_get_pid (retval), status_string);
2118 xfree (status_string);
2119 xfree (options_string);
2120 }
2121
2122 return retval;
2123 }
2124
2125 char *
2126 target_pid_to_str (ptid_t ptid)
2127 {
2128 return (*current_target.to_pid_to_str) (&current_target, ptid);
2129 }
2130
2131 char *
2132 target_thread_name (struct thread_info *info)
2133 {
2134 return current_target.to_thread_name (&current_target, info);
2135 }
2136
2137 void
2138 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2139 {
2140 struct target_ops *t;
2141
2142 target_dcache_invalidate ();
2143
2144 current_target.to_resume (&current_target, ptid, step, signal);
2145 if (targetdebug)
2146 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2147 ptid_get_pid (ptid),
2148 step ? "step" : "continue",
2149 gdb_signal_to_name (signal));
2150
2151 registers_changed_ptid (ptid);
2152 set_executing (ptid, 1);
2153 set_running (ptid, 1);
2154 clear_inline_frame_state (ptid);
2155 }
2156
2157 void
2158 target_pass_signals (int numsigs, unsigned char *pass_signals)
2159 {
2160 if (targetdebug)
2161 {
2162 int i;
2163
2164 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2165 numsigs);
2166
2167 for (i = 0; i < numsigs; i++)
2168 if (pass_signals[i])
2169 fprintf_unfiltered (gdb_stdlog, " %s",
2170 gdb_signal_to_name (i));
2171
2172 fprintf_unfiltered (gdb_stdlog, " })\n");
2173 }
2174
2175 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2176 }
2177
2178 void
2179 target_program_signals (int numsigs, unsigned char *program_signals)
2180 {
2181 if (targetdebug)
2182 {
2183 int i;
2184
2185 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2186 numsigs);
2187
2188 for (i = 0; i < numsigs; i++)
2189 if (program_signals[i])
2190 fprintf_unfiltered (gdb_stdlog, " %s",
2191 gdb_signal_to_name (i));
2192
2193 fprintf_unfiltered (gdb_stdlog, " })\n");
2194 }
2195
2196 (*current_target.to_program_signals) (&current_target,
2197 numsigs, program_signals);
2198 }
2199
2200 static int
2201 default_follow_fork (struct target_ops *self, int follow_child,
2202 int detach_fork)
2203 {
2204 /* Some target returned a fork event, but did not know how to follow it. */
2205 internal_error (__FILE__, __LINE__,
2206 _("could not find a target to follow fork"));
2207 }
2208
2209 /* Look through the list of possible targets for a target that can
2210 follow forks. */
2211
2212 int
2213 target_follow_fork (int follow_child, int detach_fork)
2214 {
2215 int retval = current_target.to_follow_fork (&current_target,
2216 follow_child, detach_fork);
2217
2218 if (targetdebug)
2219 fprintf_unfiltered (gdb_stdlog,
2220 "target_follow_fork (%d, %d) = %d\n",
2221 follow_child, detach_fork, retval);
2222 return retval;
2223 }
2224
2225 static void
2226 default_mourn_inferior (struct target_ops *self)
2227 {
2228 internal_error (__FILE__, __LINE__,
2229 _("could not find a target to follow mourn inferior"));
2230 }
2231
2232 void
2233 target_mourn_inferior (void)
2234 {
2235 current_target.to_mourn_inferior (&current_target);
2236 if (targetdebug)
2237 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2238
2239 /* We no longer need to keep handles on any of the object files.
2240 Make sure to release them to avoid unnecessarily locking any
2241 of them while we're not actually debugging. */
2242 bfd_cache_close_all ();
2243 }
2244
2245 /* Look for a target which can describe architectural features, starting
2246 from TARGET. If we find one, return its description. */
2247
2248 const struct target_desc *
2249 target_read_description (struct target_ops *target)
2250 {
2251 return target->to_read_description (target);
2252 }
2253
2254 /* This implements a basic search of memory, reading target memory and
2255 performing the search here (as opposed to performing the search in on the
2256 target side with, for example, gdbserver). */
2257
2258 int
2259 simple_search_memory (struct target_ops *ops,
2260 CORE_ADDR start_addr, ULONGEST search_space_len,
2261 const gdb_byte *pattern, ULONGEST pattern_len,
2262 CORE_ADDR *found_addrp)
2263 {
2264 /* NOTE: also defined in find.c testcase. */
2265 #define SEARCH_CHUNK_SIZE 16000
2266 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2267 /* Buffer to hold memory contents for searching. */
2268 gdb_byte *search_buf;
2269 unsigned search_buf_size;
2270 struct cleanup *old_cleanups;
2271
2272 search_buf_size = chunk_size + pattern_len - 1;
2273
2274 /* No point in trying to allocate a buffer larger than the search space. */
2275 if (search_space_len < search_buf_size)
2276 search_buf_size = search_space_len;
2277
2278 search_buf = malloc (search_buf_size);
2279 if (search_buf == NULL)
2280 error (_("Unable to allocate memory to perform the search."));
2281 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2282
2283 /* Prime the search buffer. */
2284
2285 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2286 search_buf, start_addr, search_buf_size) != search_buf_size)
2287 {
2288 warning (_("Unable to access %s bytes of target "
2289 "memory at %s, halting search."),
2290 pulongest (search_buf_size), hex_string (start_addr));
2291 do_cleanups (old_cleanups);
2292 return -1;
2293 }
2294
2295 /* Perform the search.
2296
2297 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2298 When we've scanned N bytes we copy the trailing bytes to the start and
2299 read in another N bytes. */
2300
2301 while (search_space_len >= pattern_len)
2302 {
2303 gdb_byte *found_ptr;
2304 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2305
2306 found_ptr = memmem (search_buf, nr_search_bytes,
2307 pattern, pattern_len);
2308
2309 if (found_ptr != NULL)
2310 {
2311 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2312
2313 *found_addrp = found_addr;
2314 do_cleanups (old_cleanups);
2315 return 1;
2316 }
2317
2318 /* Not found in this chunk, skip to next chunk. */
2319
2320 /* Don't let search_space_len wrap here, it's unsigned. */
2321 if (search_space_len >= chunk_size)
2322 search_space_len -= chunk_size;
2323 else
2324 search_space_len = 0;
2325
2326 if (search_space_len >= pattern_len)
2327 {
2328 unsigned keep_len = search_buf_size - chunk_size;
2329 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2330 int nr_to_read;
2331
2332 /* Copy the trailing part of the previous iteration to the front
2333 of the buffer for the next iteration. */
2334 gdb_assert (keep_len == pattern_len - 1);
2335 memcpy (search_buf, search_buf + chunk_size, keep_len);
2336
2337 nr_to_read = min (search_space_len - keep_len, chunk_size);
2338
2339 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2340 search_buf + keep_len, read_addr,
2341 nr_to_read) != nr_to_read)
2342 {
2343 warning (_("Unable to access %s bytes of target "
2344 "memory at %s, halting search."),
2345 plongest (nr_to_read),
2346 hex_string (read_addr));
2347 do_cleanups (old_cleanups);
2348 return -1;
2349 }
2350
2351 start_addr += chunk_size;
2352 }
2353 }
2354
2355 /* Not found. */
2356
2357 do_cleanups (old_cleanups);
2358 return 0;
2359 }
2360
2361 /* Default implementation of memory-searching. */
2362
2363 static int
2364 default_search_memory (struct target_ops *self,
2365 CORE_ADDR start_addr, ULONGEST search_space_len,
2366 const gdb_byte *pattern, ULONGEST pattern_len,
2367 CORE_ADDR *found_addrp)
2368 {
2369 /* Start over from the top of the target stack. */
2370 return simple_search_memory (current_target.beneath,
2371 start_addr, search_space_len,
2372 pattern, pattern_len, found_addrp);
2373 }
2374
2375 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2376 sequence of bytes in PATTERN with length PATTERN_LEN.
2377
2378 The result is 1 if found, 0 if not found, and -1 if there was an error
2379 requiring halting of the search (e.g. memory read error).
2380 If the pattern is found the address is recorded in FOUND_ADDRP. */
2381
2382 int
2383 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2384 const gdb_byte *pattern, ULONGEST pattern_len,
2385 CORE_ADDR *found_addrp)
2386 {
2387 int found;
2388
2389 if (targetdebug)
2390 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2391 hex_string (start_addr));
2392
2393 found = current_target.to_search_memory (&current_target, start_addr,
2394 search_space_len,
2395 pattern, pattern_len, found_addrp);
2396
2397 if (targetdebug)
2398 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2399
2400 return found;
2401 }
2402
2403 /* Look through the currently pushed targets. If none of them will
2404 be able to restart the currently running process, issue an error
2405 message. */
2406
2407 void
2408 target_require_runnable (void)
2409 {
2410 struct target_ops *t;
2411
2412 for (t = target_stack; t != NULL; t = t->beneath)
2413 {
2414 /* If this target knows how to create a new program, then
2415 assume we will still be able to after killing the current
2416 one. Either killing and mourning will not pop T, or else
2417 find_default_run_target will find it again. */
2418 if (t->to_create_inferior != NULL)
2419 return;
2420
2421 /* Do not worry about thread_stratum targets that can not
2422 create inferiors. Assume they will be pushed again if
2423 necessary, and continue to the process_stratum. */
2424 if (t->to_stratum == thread_stratum
2425 || t->to_stratum == arch_stratum)
2426 continue;
2427
2428 error (_("The \"%s\" target does not support \"run\". "
2429 "Try \"help target\" or \"continue\"."),
2430 t->to_shortname);
2431 }
2432
2433 /* This function is only called if the target is running. In that
2434 case there should have been a process_stratum target and it
2435 should either know how to create inferiors, or not... */
2436 internal_error (__FILE__, __LINE__, _("No targets found"));
2437 }
2438
2439 /* Look through the list of possible targets for a target that can
2440 execute a run or attach command without any other data. This is
2441 used to locate the default process stratum.
2442
2443 If DO_MESG is not NULL, the result is always valid (error() is
2444 called for errors); else, return NULL on error. */
2445
2446 static struct target_ops *
2447 find_default_run_target (char *do_mesg)
2448 {
2449 struct target_ops **t;
2450 struct target_ops *runable = NULL;
2451 int count;
2452
2453 count = 0;
2454
2455 for (t = target_structs; t < target_structs + target_struct_size;
2456 ++t)
2457 {
2458 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2459 {
2460 runable = *t;
2461 ++count;
2462 }
2463 }
2464
2465 if (count != 1)
2466 {
2467 if (do_mesg)
2468 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2469 else
2470 return NULL;
2471 }
2472
2473 return runable;
2474 }
2475
2476 /* See target.h. */
2477
2478 struct target_ops *
2479 find_attach_target (void)
2480 {
2481 struct target_ops *t;
2482
2483 /* If a target on the current stack can attach, use it. */
2484 for (t = current_target.beneath; t != NULL; t = t->beneath)
2485 {
2486 if (t->to_attach != NULL)
2487 break;
2488 }
2489
2490 /* Otherwise, use the default run target for attaching. */
2491 if (t == NULL)
2492 t = find_default_run_target ("attach");
2493
2494 return t;
2495 }
2496
2497 /* See target.h. */
2498
2499 struct target_ops *
2500 find_run_target (void)
2501 {
2502 struct target_ops *t;
2503
2504 /* If a target on the current stack can attach, use it. */
2505 for (t = current_target.beneath; t != NULL; t = t->beneath)
2506 {
2507 if (t->to_create_inferior != NULL)
2508 break;
2509 }
2510
2511 /* Otherwise, use the default run target. */
2512 if (t == NULL)
2513 t = find_default_run_target ("run");
2514
2515 return t;
2516 }
2517
2518 /* Implement the "info proc" command. */
2519
2520 int
2521 target_info_proc (char *args, enum info_proc_what what)
2522 {
2523 struct target_ops *t;
2524
2525 /* If we're already connected to something that can get us OS
2526 related data, use it. Otherwise, try using the native
2527 target. */
2528 if (current_target.to_stratum >= process_stratum)
2529 t = current_target.beneath;
2530 else
2531 t = find_default_run_target (NULL);
2532
2533 for (; t != NULL; t = t->beneath)
2534 {
2535 if (t->to_info_proc != NULL)
2536 {
2537 t->to_info_proc (t, args, what);
2538
2539 if (targetdebug)
2540 fprintf_unfiltered (gdb_stdlog,
2541 "target_info_proc (\"%s\", %d)\n", args, what);
2542
2543 return 1;
2544 }
2545 }
2546
2547 return 0;
2548 }
2549
2550 static int
2551 find_default_supports_disable_randomization (struct target_ops *self)
2552 {
2553 struct target_ops *t;
2554
2555 t = find_default_run_target (NULL);
2556 if (t && t->to_supports_disable_randomization)
2557 return (t->to_supports_disable_randomization) (t);
2558 return 0;
2559 }
2560
2561 int
2562 target_supports_disable_randomization (void)
2563 {
2564 struct target_ops *t;
2565
2566 for (t = &current_target; t != NULL; t = t->beneath)
2567 if (t->to_supports_disable_randomization)
2568 return t->to_supports_disable_randomization (t);
2569
2570 return 0;
2571 }
2572
2573 char *
2574 target_get_osdata (const char *type)
2575 {
2576 struct target_ops *t;
2577
2578 /* If we're already connected to something that can get us OS
2579 related data, use it. Otherwise, try using the native
2580 target. */
2581 if (current_target.to_stratum >= process_stratum)
2582 t = current_target.beneath;
2583 else
2584 t = find_default_run_target ("get OS data");
2585
2586 if (!t)
2587 return NULL;
2588
2589 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2590 }
2591
2592 /* Determine the current address space of thread PTID. */
2593
2594 struct address_space *
2595 target_thread_address_space (ptid_t ptid)
2596 {
2597 struct address_space *aspace;
2598 struct inferior *inf;
2599 struct target_ops *t;
2600
2601 for (t = current_target.beneath; t != NULL; t = t->beneath)
2602 {
2603 if (t->to_thread_address_space != NULL)
2604 {
2605 aspace = t->to_thread_address_space (t, ptid);
2606 gdb_assert (aspace);
2607
2608 if (targetdebug)
2609 fprintf_unfiltered (gdb_stdlog,
2610 "target_thread_address_space (%s) = %d\n",
2611 target_pid_to_str (ptid),
2612 address_space_num (aspace));
2613 return aspace;
2614 }
2615 }
2616
2617 /* Fall-back to the "main" address space of the inferior. */
2618 inf = find_inferior_pid (ptid_get_pid (ptid));
2619
2620 if (inf == NULL || inf->aspace == NULL)
2621 internal_error (__FILE__, __LINE__,
2622 _("Can't determine the current "
2623 "address space of thread %s\n"),
2624 target_pid_to_str (ptid));
2625
2626 return inf->aspace;
2627 }
2628
2629
2630 /* Target file operations. */
2631
2632 static struct target_ops *
2633 default_fileio_target (void)
2634 {
2635 /* If we're already connected to something that can perform
2636 file I/O, use it. Otherwise, try using the native target. */
2637 if (current_target.to_stratum >= process_stratum)
2638 return current_target.beneath;
2639 else
2640 return find_default_run_target ("file I/O");
2641 }
2642
2643 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2644 target file descriptor, or -1 if an error occurs (and set
2645 *TARGET_ERRNO). */
2646 int
2647 target_fileio_open (const char *filename, int flags, int mode,
2648 int *target_errno)
2649 {
2650 struct target_ops *t;
2651
2652 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2653 {
2654 if (t->to_fileio_open != NULL)
2655 {
2656 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2657
2658 if (targetdebug)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2661 filename, flags, mode,
2662 fd, fd != -1 ? 0 : *target_errno);
2663 return fd;
2664 }
2665 }
2666
2667 *target_errno = FILEIO_ENOSYS;
2668 return -1;
2669 }
2670
2671 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2672 Return the number of bytes written, or -1 if an error occurs
2673 (and set *TARGET_ERRNO). */
2674 int
2675 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2676 ULONGEST offset, int *target_errno)
2677 {
2678 struct target_ops *t;
2679
2680 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2681 {
2682 if (t->to_fileio_pwrite != NULL)
2683 {
2684 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2685 target_errno);
2686
2687 if (targetdebug)
2688 fprintf_unfiltered (gdb_stdlog,
2689 "target_fileio_pwrite (%d,...,%d,%s) "
2690 "= %d (%d)\n",
2691 fd, len, pulongest (offset),
2692 ret, ret != -1 ? 0 : *target_errno);
2693 return ret;
2694 }
2695 }
2696
2697 *target_errno = FILEIO_ENOSYS;
2698 return -1;
2699 }
2700
2701 /* Read up to LEN bytes FD on the target into READ_BUF.
2702 Return the number of bytes read, or -1 if an error occurs
2703 (and set *TARGET_ERRNO). */
2704 int
2705 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2706 ULONGEST offset, int *target_errno)
2707 {
2708 struct target_ops *t;
2709
2710 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2711 {
2712 if (t->to_fileio_pread != NULL)
2713 {
2714 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2715 target_errno);
2716
2717 if (targetdebug)
2718 fprintf_unfiltered (gdb_stdlog,
2719 "target_fileio_pread (%d,...,%d,%s) "
2720 "= %d (%d)\n",
2721 fd, len, pulongest (offset),
2722 ret, ret != -1 ? 0 : *target_errno);
2723 return ret;
2724 }
2725 }
2726
2727 *target_errno = FILEIO_ENOSYS;
2728 return -1;
2729 }
2730
2731 /* Close FD on the target. Return 0, or -1 if an error occurs
2732 (and set *TARGET_ERRNO). */
2733 int
2734 target_fileio_close (int fd, int *target_errno)
2735 {
2736 struct target_ops *t;
2737
2738 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2739 {
2740 if (t->to_fileio_close != NULL)
2741 {
2742 int ret = t->to_fileio_close (t, fd, target_errno);
2743
2744 if (targetdebug)
2745 fprintf_unfiltered (gdb_stdlog,
2746 "target_fileio_close (%d) = %d (%d)\n",
2747 fd, ret, ret != -1 ? 0 : *target_errno);
2748 return ret;
2749 }
2750 }
2751
2752 *target_errno = FILEIO_ENOSYS;
2753 return -1;
2754 }
2755
2756 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2757 occurs (and set *TARGET_ERRNO). */
2758 int
2759 target_fileio_unlink (const char *filename, int *target_errno)
2760 {
2761 struct target_ops *t;
2762
2763 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2764 {
2765 if (t->to_fileio_unlink != NULL)
2766 {
2767 int ret = t->to_fileio_unlink (t, filename, target_errno);
2768
2769 if (targetdebug)
2770 fprintf_unfiltered (gdb_stdlog,
2771 "target_fileio_unlink (%s) = %d (%d)\n",
2772 filename, ret, ret != -1 ? 0 : *target_errno);
2773 return ret;
2774 }
2775 }
2776
2777 *target_errno = FILEIO_ENOSYS;
2778 return -1;
2779 }
2780
2781 /* Read value of symbolic link FILENAME on the target. Return a
2782 null-terminated string allocated via xmalloc, or NULL if an error
2783 occurs (and set *TARGET_ERRNO). */
2784 char *
2785 target_fileio_readlink (const char *filename, int *target_errno)
2786 {
2787 struct target_ops *t;
2788
2789 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2790 {
2791 if (t->to_fileio_readlink != NULL)
2792 {
2793 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2794
2795 if (targetdebug)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "target_fileio_readlink (%s) = %s (%d)\n",
2798 filename, ret? ret : "(nil)",
2799 ret? 0 : *target_errno);
2800 return ret;
2801 }
2802 }
2803
2804 *target_errno = FILEIO_ENOSYS;
2805 return NULL;
2806 }
2807
2808 static void
2809 target_fileio_close_cleanup (void *opaque)
2810 {
2811 int fd = *(int *) opaque;
2812 int target_errno;
2813
2814 target_fileio_close (fd, &target_errno);
2815 }
2816
2817 /* Read target file FILENAME. Store the result in *BUF_P and
2818 return the size of the transferred data. PADDING additional bytes are
2819 available in *BUF_P. This is a helper function for
2820 target_fileio_read_alloc; see the declaration of that function for more
2821 information. */
2822
2823 static LONGEST
2824 target_fileio_read_alloc_1 (const char *filename,
2825 gdb_byte **buf_p, int padding)
2826 {
2827 struct cleanup *close_cleanup;
2828 size_t buf_alloc, buf_pos;
2829 gdb_byte *buf;
2830 LONGEST n;
2831 int fd;
2832 int target_errno;
2833
2834 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2835 if (fd == -1)
2836 return -1;
2837
2838 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2839
2840 /* Start by reading up to 4K at a time. The target will throttle
2841 this number down if necessary. */
2842 buf_alloc = 4096;
2843 buf = xmalloc (buf_alloc);
2844 buf_pos = 0;
2845 while (1)
2846 {
2847 n = target_fileio_pread (fd, &buf[buf_pos],
2848 buf_alloc - buf_pos - padding, buf_pos,
2849 &target_errno);
2850 if (n < 0)
2851 {
2852 /* An error occurred. */
2853 do_cleanups (close_cleanup);
2854 xfree (buf);
2855 return -1;
2856 }
2857 else if (n == 0)
2858 {
2859 /* Read all there was. */
2860 do_cleanups (close_cleanup);
2861 if (buf_pos == 0)
2862 xfree (buf);
2863 else
2864 *buf_p = buf;
2865 return buf_pos;
2866 }
2867
2868 buf_pos += n;
2869
2870 /* If the buffer is filling up, expand it. */
2871 if (buf_alloc < buf_pos * 2)
2872 {
2873 buf_alloc *= 2;
2874 buf = xrealloc (buf, buf_alloc);
2875 }
2876
2877 QUIT;
2878 }
2879 }
2880
2881 /* Read target file FILENAME. Store the result in *BUF_P and return
2882 the size of the transferred data. See the declaration in "target.h"
2883 function for more information about the return value. */
2884
2885 LONGEST
2886 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2887 {
2888 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2889 }
2890
2891 /* Read target file FILENAME. The result is NUL-terminated and
2892 returned as a string, allocated using xmalloc. If an error occurs
2893 or the transfer is unsupported, NULL is returned. Empty objects
2894 are returned as allocated but empty strings. A warning is issued
2895 if the result contains any embedded NUL bytes. */
2896
2897 char *
2898 target_fileio_read_stralloc (const char *filename)
2899 {
2900 gdb_byte *buffer;
2901 char *bufstr;
2902 LONGEST i, transferred;
2903
2904 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2905 bufstr = (char *) buffer;
2906
2907 if (transferred < 0)
2908 return NULL;
2909
2910 if (transferred == 0)
2911 return xstrdup ("");
2912
2913 bufstr[transferred] = 0;
2914
2915 /* Check for embedded NUL bytes; but allow trailing NULs. */
2916 for (i = strlen (bufstr); i < transferred; i++)
2917 if (bufstr[i] != 0)
2918 {
2919 warning (_("target file %s "
2920 "contained unexpected null characters"),
2921 filename);
2922 break;
2923 }
2924
2925 return bufstr;
2926 }
2927
2928
2929 static int
2930 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2931 CORE_ADDR addr, int len)
2932 {
2933 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2934 }
2935
2936 static int
2937 default_watchpoint_addr_within_range (struct target_ops *target,
2938 CORE_ADDR addr,
2939 CORE_ADDR start, int length)
2940 {
2941 return addr >= start && addr < start + length;
2942 }
2943
2944 static struct gdbarch *
2945 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2946 {
2947 return target_gdbarch ();
2948 }
2949
2950 static int
2951 return_zero (struct target_ops *ignore)
2952 {
2953 return 0;
2954 }
2955
2956 static int
2957 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2958 {
2959 return 0;
2960 }
2961
2962 /*
2963 * Find the next target down the stack from the specified target.
2964 */
2965
2966 struct target_ops *
2967 find_target_beneath (struct target_ops *t)
2968 {
2969 return t->beneath;
2970 }
2971
2972 /* See target.h. */
2973
2974 struct target_ops *
2975 find_target_at (enum strata stratum)
2976 {
2977 struct target_ops *t;
2978
2979 for (t = current_target.beneath; t != NULL; t = t->beneath)
2980 if (t->to_stratum == stratum)
2981 return t;
2982
2983 return NULL;
2984 }
2985
2986 \f
2987 /* The inferior process has died. Long live the inferior! */
2988
2989 void
2990 generic_mourn_inferior (void)
2991 {
2992 ptid_t ptid;
2993
2994 ptid = inferior_ptid;
2995 inferior_ptid = null_ptid;
2996
2997 /* Mark breakpoints uninserted in case something tries to delete a
2998 breakpoint while we delete the inferior's threads (which would
2999 fail, since the inferior is long gone). */
3000 mark_breakpoints_out ();
3001
3002 if (!ptid_equal (ptid, null_ptid))
3003 {
3004 int pid = ptid_get_pid (ptid);
3005 exit_inferior (pid);
3006 }
3007
3008 /* Note this wipes step-resume breakpoints, so needs to be done
3009 after exit_inferior, which ends up referencing the step-resume
3010 breakpoints through clear_thread_inferior_resources. */
3011 breakpoint_init_inferior (inf_exited);
3012
3013 registers_changed ();
3014
3015 reopen_exec_file ();
3016 reinit_frame_cache ();
3017
3018 if (deprecated_detach_hook)
3019 deprecated_detach_hook ();
3020 }
3021 \f
3022 /* Convert a normal process ID to a string. Returns the string in a
3023 static buffer. */
3024
3025 char *
3026 normal_pid_to_str (ptid_t ptid)
3027 {
3028 static char buf[32];
3029
3030 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3031 return buf;
3032 }
3033
3034 static char *
3035 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3036 {
3037 return normal_pid_to_str (ptid);
3038 }
3039
3040 /* Error-catcher for target_find_memory_regions. */
3041 static int
3042 dummy_find_memory_regions (struct target_ops *self,
3043 find_memory_region_ftype ignore1, void *ignore2)
3044 {
3045 error (_("Command not implemented for this target."));
3046 return 0;
3047 }
3048
3049 /* Error-catcher for target_make_corefile_notes. */
3050 static char *
3051 dummy_make_corefile_notes (struct target_ops *self,
3052 bfd *ignore1, int *ignore2)
3053 {
3054 error (_("Command not implemented for this target."));
3055 return NULL;
3056 }
3057
3058 /* Set up the handful of non-empty slots needed by the dummy target
3059 vector. */
3060
3061 static void
3062 init_dummy_target (void)
3063 {
3064 dummy_target.to_shortname = "None";
3065 dummy_target.to_longname = "None";
3066 dummy_target.to_doc = "";
3067 dummy_target.to_supports_disable_randomization
3068 = find_default_supports_disable_randomization;
3069 dummy_target.to_stratum = dummy_stratum;
3070 dummy_target.to_has_all_memory = return_zero;
3071 dummy_target.to_has_memory = return_zero;
3072 dummy_target.to_has_stack = return_zero;
3073 dummy_target.to_has_registers = return_zero;
3074 dummy_target.to_has_execution = return_zero_has_execution;
3075 dummy_target.to_magic = OPS_MAGIC;
3076
3077 install_dummy_methods (&dummy_target);
3078 }
3079 \f
3080 static void
3081 debug_to_open (char *args, int from_tty)
3082 {
3083 debug_target.to_open (args, from_tty);
3084
3085 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3086 }
3087
3088 void
3089 target_close (struct target_ops *targ)
3090 {
3091 gdb_assert (!target_is_pushed (targ));
3092
3093 if (targ->to_xclose != NULL)
3094 targ->to_xclose (targ);
3095 else if (targ->to_close != NULL)
3096 targ->to_close (targ);
3097
3098 if (targetdebug)
3099 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3100 }
3101
3102 int
3103 target_thread_alive (ptid_t ptid)
3104 {
3105 int retval;
3106
3107 retval = current_target.to_thread_alive (&current_target, ptid);
3108 if (targetdebug)
3109 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3110 ptid_get_pid (ptid), retval);
3111
3112 return retval;
3113 }
3114
3115 void
3116 target_find_new_threads (void)
3117 {
3118 current_target.to_find_new_threads (&current_target);
3119 if (targetdebug)
3120 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3121 }
3122
3123 void
3124 target_stop (ptid_t ptid)
3125 {
3126 if (!may_stop)
3127 {
3128 warning (_("May not interrupt or stop the target, ignoring attempt"));
3129 return;
3130 }
3131
3132 (*current_target.to_stop) (&current_target, ptid);
3133 }
3134
3135 static void
3136 debug_to_post_attach (struct target_ops *self, int pid)
3137 {
3138 debug_target.to_post_attach (&debug_target, pid);
3139
3140 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3141 }
3142
3143 /* Concatenate ELEM to LIST, a comma separate list, and return the
3144 result. The LIST incoming argument is released. */
3145
3146 static char *
3147 str_comma_list_concat_elem (char *list, const char *elem)
3148 {
3149 if (list == NULL)
3150 return xstrdup (elem);
3151 else
3152 return reconcat (list, list, ", ", elem, (char *) NULL);
3153 }
3154
3155 /* Helper for target_options_to_string. If OPT is present in
3156 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3157 Returns the new resulting string. OPT is removed from
3158 TARGET_OPTIONS. */
3159
3160 static char *
3161 do_option (int *target_options, char *ret,
3162 int opt, char *opt_str)
3163 {
3164 if ((*target_options & opt) != 0)
3165 {
3166 ret = str_comma_list_concat_elem (ret, opt_str);
3167 *target_options &= ~opt;
3168 }
3169
3170 return ret;
3171 }
3172
3173 char *
3174 target_options_to_string (int target_options)
3175 {
3176 char *ret = NULL;
3177
3178 #define DO_TARG_OPTION(OPT) \
3179 ret = do_option (&target_options, ret, OPT, #OPT)
3180
3181 DO_TARG_OPTION (TARGET_WNOHANG);
3182
3183 if (target_options != 0)
3184 ret = str_comma_list_concat_elem (ret, "unknown???");
3185
3186 if (ret == NULL)
3187 ret = xstrdup ("");
3188 return ret;
3189 }
3190
3191 static void
3192 debug_print_register (const char * func,
3193 struct regcache *regcache, int regno)
3194 {
3195 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3196
3197 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3198 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3199 && gdbarch_register_name (gdbarch, regno) != NULL
3200 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3201 fprintf_unfiltered (gdb_stdlog, "(%s)",
3202 gdbarch_register_name (gdbarch, regno));
3203 else
3204 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3205 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3206 {
3207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3208 int i, size = register_size (gdbarch, regno);
3209 gdb_byte buf[MAX_REGISTER_SIZE];
3210
3211 regcache_raw_collect (regcache, regno, buf);
3212 fprintf_unfiltered (gdb_stdlog, " = ");
3213 for (i = 0; i < size; i++)
3214 {
3215 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3216 }
3217 if (size <= sizeof (LONGEST))
3218 {
3219 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3220
3221 fprintf_unfiltered (gdb_stdlog, " %s %s",
3222 core_addr_to_string_nz (val), plongest (val));
3223 }
3224 }
3225 fprintf_unfiltered (gdb_stdlog, "\n");
3226 }
3227
3228 void
3229 target_fetch_registers (struct regcache *regcache, int regno)
3230 {
3231 current_target.to_fetch_registers (&current_target, regcache, regno);
3232 if (targetdebug)
3233 debug_print_register ("target_fetch_registers", regcache, regno);
3234 }
3235
3236 void
3237 target_store_registers (struct regcache *regcache, int regno)
3238 {
3239 struct target_ops *t;
3240
3241 if (!may_write_registers)
3242 error (_("Writing to registers is not allowed (regno %d)"), regno);
3243
3244 current_target.to_store_registers (&current_target, regcache, regno);
3245 if (targetdebug)
3246 {
3247 debug_print_register ("target_store_registers", regcache, regno);
3248 }
3249 }
3250
3251 int
3252 target_core_of_thread (ptid_t ptid)
3253 {
3254 int retval = current_target.to_core_of_thread (&current_target, ptid);
3255
3256 if (targetdebug)
3257 fprintf_unfiltered (gdb_stdlog,
3258 "target_core_of_thread (%d) = %d\n",
3259 ptid_get_pid (ptid), retval);
3260 return retval;
3261 }
3262
3263 int
3264 simple_verify_memory (struct target_ops *ops,
3265 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3266 {
3267 LONGEST total_xfered = 0;
3268
3269 while (total_xfered < size)
3270 {
3271 ULONGEST xfered_len;
3272 enum target_xfer_status status;
3273 gdb_byte buf[1024];
3274 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3275
3276 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3277 buf, NULL, lma + total_xfered, howmuch,
3278 &xfered_len);
3279 if (status == TARGET_XFER_OK
3280 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3281 {
3282 total_xfered += xfered_len;
3283 QUIT;
3284 }
3285 else
3286 return 0;
3287 }
3288 return 1;
3289 }
3290
3291 /* Default implementation of memory verification. */
3292
3293 static int
3294 default_verify_memory (struct target_ops *self,
3295 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3296 {
3297 /* Start over from the top of the target stack. */
3298 return simple_verify_memory (current_target.beneath,
3299 data, memaddr, size);
3300 }
3301
3302 int
3303 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3304 {
3305 int retval = current_target.to_verify_memory (&current_target,
3306 data, memaddr, size);
3307
3308 if (targetdebug)
3309 fprintf_unfiltered (gdb_stdlog,
3310 "target_verify_memory (%s, %s) = %d\n",
3311 paddress (target_gdbarch (), memaddr),
3312 pulongest (size),
3313 retval);
3314 return retval;
3315 }
3316
3317 /* The documentation for this function is in its prototype declaration in
3318 target.h. */
3319
3320 int
3321 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3322 {
3323 int ret;
3324
3325 ret = current_target.to_insert_mask_watchpoint (&current_target,
3326 addr, mask, rw);
3327
3328 if (targetdebug)
3329 fprintf_unfiltered (gdb_stdlog, "\
3330 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3331 core_addr_to_string (addr),
3332 core_addr_to_string (mask), rw, ret);
3333
3334 return ret;
3335 }
3336
3337 /* The documentation for this function is in its prototype declaration in
3338 target.h. */
3339
3340 int
3341 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3342 {
3343 int ret;
3344
3345 ret = current_target.to_remove_mask_watchpoint (&current_target,
3346 addr, mask, rw);
3347
3348 if (targetdebug)
3349 fprintf_unfiltered (gdb_stdlog, "\
3350 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3351 core_addr_to_string (addr),
3352 core_addr_to_string (mask), rw, ret);
3353
3354 return ret;
3355 }
3356
3357 /* The documentation for this function is in its prototype declaration
3358 in target.h. */
3359
3360 int
3361 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3362 {
3363 return current_target.to_masked_watch_num_registers (&current_target,
3364 addr, mask);
3365 }
3366
3367 /* The documentation for this function is in its prototype declaration
3368 in target.h. */
3369
3370 int
3371 target_ranged_break_num_registers (void)
3372 {
3373 return current_target.to_ranged_break_num_registers (&current_target);
3374 }
3375
3376 /* See target.h. */
3377
3378 struct btrace_target_info *
3379 target_enable_btrace (ptid_t ptid)
3380 {
3381 return current_target.to_enable_btrace (&current_target, ptid);
3382 }
3383
3384 /* See target.h. */
3385
3386 void
3387 target_disable_btrace (struct btrace_target_info *btinfo)
3388 {
3389 current_target.to_disable_btrace (&current_target, btinfo);
3390 }
3391
3392 /* See target.h. */
3393
3394 void
3395 target_teardown_btrace (struct btrace_target_info *btinfo)
3396 {
3397 current_target.to_teardown_btrace (&current_target, btinfo);
3398 }
3399
3400 /* See target.h. */
3401
3402 enum btrace_error
3403 target_read_btrace (VEC (btrace_block_s) **btrace,
3404 struct btrace_target_info *btinfo,
3405 enum btrace_read_type type)
3406 {
3407 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3408 }
3409
3410 /* See target.h. */
3411
3412 void
3413 target_stop_recording (void)
3414 {
3415 current_target.to_stop_recording (&current_target);
3416 }
3417
3418 /* See target.h. */
3419
3420 void
3421 target_info_record (void)
3422 {
3423 struct target_ops *t;
3424
3425 for (t = current_target.beneath; t != NULL; t = t->beneath)
3426 if (t->to_info_record != NULL)
3427 {
3428 t->to_info_record (t);
3429 return;
3430 }
3431
3432 tcomplain ();
3433 }
3434
3435 /* See target.h. */
3436
3437 void
3438 target_save_record (const char *filename)
3439 {
3440 current_target.to_save_record (&current_target, filename);
3441 }
3442
3443 /* See target.h. */
3444
3445 int
3446 target_supports_delete_record (void)
3447 {
3448 struct target_ops *t;
3449
3450 for (t = current_target.beneath; t != NULL; t = t->beneath)
3451 if (t->to_delete_record != NULL)
3452 return 1;
3453
3454 return 0;
3455 }
3456
3457 /* See target.h. */
3458
3459 void
3460 target_delete_record (void)
3461 {
3462 current_target.to_delete_record (&current_target);
3463 }
3464
3465 /* See target.h. */
3466
3467 int
3468 target_record_is_replaying (void)
3469 {
3470 return current_target.to_record_is_replaying (&current_target);
3471 }
3472
3473 /* See target.h. */
3474
3475 void
3476 target_goto_record_begin (void)
3477 {
3478 current_target.to_goto_record_begin (&current_target);
3479 }
3480
3481 /* See target.h. */
3482
3483 void
3484 target_goto_record_end (void)
3485 {
3486 current_target.to_goto_record_end (&current_target);
3487 }
3488
3489 /* See target.h. */
3490
3491 void
3492 target_goto_record (ULONGEST insn)
3493 {
3494 current_target.to_goto_record (&current_target, insn);
3495 }
3496
3497 /* See target.h. */
3498
3499 void
3500 target_insn_history (int size, int flags)
3501 {
3502 current_target.to_insn_history (&current_target, size, flags);
3503 }
3504
3505 /* See target.h. */
3506
3507 void
3508 target_insn_history_from (ULONGEST from, int size, int flags)
3509 {
3510 current_target.to_insn_history_from (&current_target, from, size, flags);
3511 }
3512
3513 /* See target.h. */
3514
3515 void
3516 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3517 {
3518 current_target.to_insn_history_range (&current_target, begin, end, flags);
3519 }
3520
3521 /* See target.h. */
3522
3523 void
3524 target_call_history (int size, int flags)
3525 {
3526 current_target.to_call_history (&current_target, size, flags);
3527 }
3528
3529 /* See target.h. */
3530
3531 void
3532 target_call_history_from (ULONGEST begin, int size, int flags)
3533 {
3534 current_target.to_call_history_from (&current_target, begin, size, flags);
3535 }
3536
3537 /* See target.h. */
3538
3539 void
3540 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3541 {
3542 current_target.to_call_history_range (&current_target, begin, end, flags);
3543 }
3544
3545 static void
3546 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
3547 {
3548 debug_target.to_prepare_to_store (&debug_target, regcache);
3549
3550 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3551 }
3552
3553 /* See target.h. */
3554
3555 const struct frame_unwind *
3556 target_get_unwinder (void)
3557 {
3558 return current_target.to_get_unwinder (&current_target);
3559 }
3560
3561 /* See target.h. */
3562
3563 const struct frame_unwind *
3564 target_get_tailcall_unwinder (void)
3565 {
3566 return current_target.to_get_tailcall_unwinder (&current_target);
3567 }
3568
3569 /* Default implementation of to_decr_pc_after_break. */
3570
3571 static CORE_ADDR
3572 default_target_decr_pc_after_break (struct target_ops *ops,
3573 struct gdbarch *gdbarch)
3574 {
3575 return gdbarch_decr_pc_after_break (gdbarch);
3576 }
3577
3578 /* See target.h. */
3579
3580 CORE_ADDR
3581 target_decr_pc_after_break (struct gdbarch *gdbarch)
3582 {
3583 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3584 }
3585
3586 static void
3587 debug_to_files_info (struct target_ops *target)
3588 {
3589 debug_target.to_files_info (target);
3590
3591 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3592 }
3593
3594 static int
3595 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3596 struct bp_target_info *bp_tgt)
3597 {
3598 int retval;
3599
3600 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
3601
3602 fprintf_unfiltered (gdb_stdlog,
3603 "target_insert_breakpoint (%s, xxx) = %ld\n",
3604 core_addr_to_string (bp_tgt->placed_address),
3605 (unsigned long) retval);
3606 return retval;
3607 }
3608
3609 static int
3610 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3611 struct bp_target_info *bp_tgt)
3612 {
3613 int retval;
3614
3615 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
3616
3617 fprintf_unfiltered (gdb_stdlog,
3618 "target_remove_breakpoint (%s, xxx) = %ld\n",
3619 core_addr_to_string (bp_tgt->placed_address),
3620 (unsigned long) retval);
3621 return retval;
3622 }
3623
3624 static int
3625 debug_to_can_use_hw_breakpoint (struct target_ops *self,
3626 int type, int cnt, int from_tty)
3627 {
3628 int retval;
3629
3630 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
3631 type, cnt, from_tty);
3632
3633 fprintf_unfiltered (gdb_stdlog,
3634 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3635 (unsigned long) type,
3636 (unsigned long) cnt,
3637 (unsigned long) from_tty,
3638 (unsigned long) retval);
3639 return retval;
3640 }
3641
3642 static int
3643 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
3644 CORE_ADDR addr, int len)
3645 {
3646 CORE_ADDR retval;
3647
3648 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
3649 addr, len);
3650
3651 fprintf_unfiltered (gdb_stdlog,
3652 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3653 core_addr_to_string (addr), (unsigned long) len,
3654 core_addr_to_string (retval));
3655 return retval;
3656 }
3657
3658 static int
3659 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
3660 CORE_ADDR addr, int len, int rw,
3661 struct expression *cond)
3662 {
3663 int retval;
3664
3665 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
3666 addr, len,
3667 rw, cond);
3668
3669 fprintf_unfiltered (gdb_stdlog,
3670 "target_can_accel_watchpoint_condition "
3671 "(%s, %d, %d, %s) = %ld\n",
3672 core_addr_to_string (addr), len, rw,
3673 host_address_to_string (cond), (unsigned long) retval);
3674 return retval;
3675 }
3676
3677 static int
3678 debug_to_stopped_by_watchpoint (struct target_ops *ops)
3679 {
3680 int retval;
3681
3682 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
3683
3684 fprintf_unfiltered (gdb_stdlog,
3685 "target_stopped_by_watchpoint () = %ld\n",
3686 (unsigned long) retval);
3687 return retval;
3688 }
3689
3690 static int
3691 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3692 {
3693 int retval;
3694
3695 retval = debug_target.to_stopped_data_address (target, addr);
3696
3697 fprintf_unfiltered (gdb_stdlog,
3698 "target_stopped_data_address ([%s]) = %ld\n",
3699 core_addr_to_string (*addr),
3700 (unsigned long)retval);
3701 return retval;
3702 }
3703
3704 static int
3705 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3706 CORE_ADDR addr,
3707 CORE_ADDR start, int length)
3708 {
3709 int retval;
3710
3711 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3712 start, length);
3713
3714 fprintf_filtered (gdb_stdlog,
3715 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3716 core_addr_to_string (addr), core_addr_to_string (start),
3717 length, retval);
3718 return retval;
3719 }
3720
3721 static int
3722 debug_to_insert_hw_breakpoint (struct target_ops *self,
3723 struct gdbarch *gdbarch,
3724 struct bp_target_info *bp_tgt)
3725 {
3726 int retval;
3727
3728 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
3729 gdbarch, bp_tgt);
3730
3731 fprintf_unfiltered (gdb_stdlog,
3732 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3733 core_addr_to_string (bp_tgt->placed_address),
3734 (unsigned long) retval);
3735 return retval;
3736 }
3737
3738 static int
3739 debug_to_remove_hw_breakpoint (struct target_ops *self,
3740 struct gdbarch *gdbarch,
3741 struct bp_target_info *bp_tgt)
3742 {
3743 int retval;
3744
3745 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
3746 gdbarch, bp_tgt);
3747
3748 fprintf_unfiltered (gdb_stdlog,
3749 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3750 core_addr_to_string (bp_tgt->placed_address),
3751 (unsigned long) retval);
3752 return retval;
3753 }
3754
3755 static int
3756 debug_to_insert_watchpoint (struct target_ops *self,
3757 CORE_ADDR addr, int len, int type,
3758 struct expression *cond)
3759 {
3760 int retval;
3761
3762 retval = debug_target.to_insert_watchpoint (&debug_target,
3763 addr, len, type, cond);
3764
3765 fprintf_unfiltered (gdb_stdlog,
3766 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3767 core_addr_to_string (addr), len, type,
3768 host_address_to_string (cond), (unsigned long) retval);
3769 return retval;
3770 }
3771
3772 static int
3773 debug_to_remove_watchpoint (struct target_ops *self,
3774 CORE_ADDR addr, int len, int type,
3775 struct expression *cond)
3776 {
3777 int retval;
3778
3779 retval = debug_target.to_remove_watchpoint (&debug_target,
3780 addr, len, type, cond);
3781
3782 fprintf_unfiltered (gdb_stdlog,
3783 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3784 core_addr_to_string (addr), len, type,
3785 host_address_to_string (cond), (unsigned long) retval);
3786 return retval;
3787 }
3788
3789 static void
3790 debug_to_terminal_init (struct target_ops *self)
3791 {
3792 debug_target.to_terminal_init (&debug_target);
3793
3794 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3795 }
3796
3797 static void
3798 debug_to_terminal_inferior (struct target_ops *self)
3799 {
3800 debug_target.to_terminal_inferior (&debug_target);
3801
3802 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3803 }
3804
3805 static void
3806 debug_to_terminal_ours_for_output (struct target_ops *self)
3807 {
3808 debug_target.to_terminal_ours_for_output (&debug_target);
3809
3810 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3811 }
3812
3813 static void
3814 debug_to_terminal_ours (struct target_ops *self)
3815 {
3816 debug_target.to_terminal_ours (&debug_target);
3817
3818 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3819 }
3820
3821 static void
3822 debug_to_terminal_save_ours (struct target_ops *self)
3823 {
3824 debug_target.to_terminal_save_ours (&debug_target);
3825
3826 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3827 }
3828
3829 static void
3830 debug_to_terminal_info (struct target_ops *self,
3831 const char *arg, int from_tty)
3832 {
3833 debug_target.to_terminal_info (&debug_target, arg, from_tty);
3834
3835 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3836 from_tty);
3837 }
3838
3839 static void
3840 debug_to_load (struct target_ops *self, char *args, int from_tty)
3841 {
3842 debug_target.to_load (&debug_target, args, from_tty);
3843
3844 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3845 }
3846
3847 static void
3848 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
3849 {
3850 debug_target.to_post_startup_inferior (&debug_target, ptid);
3851
3852 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3853 ptid_get_pid (ptid));
3854 }
3855
3856 static int
3857 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
3858 {
3859 int retval;
3860
3861 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
3862
3863 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3864 pid, retval);
3865
3866 return retval;
3867 }
3868
3869 static int
3870 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
3871 {
3872 int retval;
3873
3874 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
3875
3876 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3877 pid, retval);
3878
3879 return retval;
3880 }
3881
3882 static int
3883 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
3884 {
3885 int retval;
3886
3887 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
3888
3889 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3890 pid, retval);
3891
3892 return retval;
3893 }
3894
3895 static int
3896 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
3897 {
3898 int retval;
3899
3900 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
3901
3902 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3903 pid, retval);
3904
3905 return retval;
3906 }
3907
3908 static int
3909 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
3910 {
3911 int retval;
3912
3913 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
3914
3915 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3916 pid, retval);
3917
3918 return retval;
3919 }
3920
3921 static int
3922 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
3923 {
3924 int retval;
3925
3926 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
3927
3928 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3929 pid, retval);
3930
3931 return retval;
3932 }
3933
3934 static int
3935 debug_to_has_exited (struct target_ops *self,
3936 int pid, int wait_status, int *exit_status)
3937 {
3938 int has_exited;
3939
3940 has_exited = debug_target.to_has_exited (&debug_target,
3941 pid, wait_status, exit_status);
3942
3943 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3944 pid, wait_status, *exit_status, has_exited);
3945
3946 return has_exited;
3947 }
3948
3949 static int
3950 debug_to_can_run (struct target_ops *self)
3951 {
3952 int retval;
3953
3954 retval = debug_target.to_can_run (&debug_target);
3955
3956 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3957
3958 return retval;
3959 }
3960
3961 static struct gdbarch *
3962 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3963 {
3964 struct gdbarch *retval;
3965
3966 retval = debug_target.to_thread_architecture (ops, ptid);
3967
3968 fprintf_unfiltered (gdb_stdlog,
3969 "target_thread_architecture (%s) = %s [%s]\n",
3970 target_pid_to_str (ptid),
3971 host_address_to_string (retval),
3972 gdbarch_bfd_arch_info (retval)->printable_name);
3973 return retval;
3974 }
3975
3976 static void
3977 debug_to_stop (struct target_ops *self, ptid_t ptid)
3978 {
3979 debug_target.to_stop (&debug_target, ptid);
3980
3981 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3982 target_pid_to_str (ptid));
3983 }
3984
3985 static void
3986 debug_to_rcmd (struct target_ops *self, char *command,
3987 struct ui_file *outbuf)
3988 {
3989 debug_target.to_rcmd (&debug_target, command, outbuf);
3990 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3991 }
3992
3993 static char *
3994 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
3995 {
3996 char *exec_file;
3997
3998 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
3999
4000 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4001 pid, exec_file);
4002
4003 return exec_file;
4004 }
4005
4006 static void
4007 setup_target_debug (void)
4008 {
4009 memcpy (&debug_target, &current_target, sizeof debug_target);
4010
4011 current_target.to_open = debug_to_open;
4012 current_target.to_post_attach = debug_to_post_attach;
4013 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4014 current_target.to_files_info = debug_to_files_info;
4015 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4016 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4017 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4018 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4019 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4020 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4021 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4022 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4023 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4024 current_target.to_watchpoint_addr_within_range
4025 = debug_to_watchpoint_addr_within_range;
4026 current_target.to_region_ok_for_hw_watchpoint
4027 = debug_to_region_ok_for_hw_watchpoint;
4028 current_target.to_can_accel_watchpoint_condition
4029 = debug_to_can_accel_watchpoint_condition;
4030 current_target.to_terminal_init = debug_to_terminal_init;
4031 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4032 current_target.to_terminal_ours_for_output
4033 = debug_to_terminal_ours_for_output;
4034 current_target.to_terminal_ours = debug_to_terminal_ours;
4035 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4036 current_target.to_terminal_info = debug_to_terminal_info;
4037 current_target.to_load = debug_to_load;
4038 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4039 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4040 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4041 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4042 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4043 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4044 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4045 current_target.to_has_exited = debug_to_has_exited;
4046 current_target.to_can_run = debug_to_can_run;
4047 current_target.to_stop = debug_to_stop;
4048 current_target.to_rcmd = debug_to_rcmd;
4049 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4050 current_target.to_thread_architecture = debug_to_thread_architecture;
4051 }
4052 \f
4053
4054 static char targ_desc[] =
4055 "Names of targets and files being debugged.\nShows the entire \
4056 stack of targets currently in use (including the exec-file,\n\
4057 core-file, and process, if any), as well as the symbol file name.";
4058
4059 static void
4060 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4061 {
4062 error (_("\"monitor\" command not supported by this target."));
4063 }
4064
4065 static void
4066 do_monitor_command (char *cmd,
4067 int from_tty)
4068 {
4069 target_rcmd (cmd, gdb_stdtarg);
4070 }
4071
4072 /* Print the name of each layers of our target stack. */
4073
4074 static void
4075 maintenance_print_target_stack (char *cmd, int from_tty)
4076 {
4077 struct target_ops *t;
4078
4079 printf_filtered (_("The current target stack is:\n"));
4080
4081 for (t = target_stack; t != NULL; t = t->beneath)
4082 {
4083 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4084 }
4085 }
4086
4087 /* Controls if async mode is permitted. */
4088 int target_async_permitted = 0;
4089
4090 /* The set command writes to this variable. If the inferior is
4091 executing, target_async_permitted is *not* updated. */
4092 static int target_async_permitted_1 = 0;
4093
4094 static void
4095 set_target_async_command (char *args, int from_tty,
4096 struct cmd_list_element *c)
4097 {
4098 if (have_live_inferiors ())
4099 {
4100 target_async_permitted_1 = target_async_permitted;
4101 error (_("Cannot change this setting while the inferior is running."));
4102 }
4103
4104 target_async_permitted = target_async_permitted_1;
4105 }
4106
4107 static void
4108 show_target_async_command (struct ui_file *file, int from_tty,
4109 struct cmd_list_element *c,
4110 const char *value)
4111 {
4112 fprintf_filtered (file,
4113 _("Controlling the inferior in "
4114 "asynchronous mode is %s.\n"), value);
4115 }
4116
4117 /* Temporary copies of permission settings. */
4118
4119 static int may_write_registers_1 = 1;
4120 static int may_write_memory_1 = 1;
4121 static int may_insert_breakpoints_1 = 1;
4122 static int may_insert_tracepoints_1 = 1;
4123 static int may_insert_fast_tracepoints_1 = 1;
4124 static int may_stop_1 = 1;
4125
4126 /* Make the user-set values match the real values again. */
4127
4128 void
4129 update_target_permissions (void)
4130 {
4131 may_write_registers_1 = may_write_registers;
4132 may_write_memory_1 = may_write_memory;
4133 may_insert_breakpoints_1 = may_insert_breakpoints;
4134 may_insert_tracepoints_1 = may_insert_tracepoints;
4135 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4136 may_stop_1 = may_stop;
4137 }
4138
4139 /* The one function handles (most of) the permission flags in the same
4140 way. */
4141
4142 static void
4143 set_target_permissions (char *args, int from_tty,
4144 struct cmd_list_element *c)
4145 {
4146 if (target_has_execution)
4147 {
4148 update_target_permissions ();
4149 error (_("Cannot change this setting while the inferior is running."));
4150 }
4151
4152 /* Make the real values match the user-changed values. */
4153 may_write_registers = may_write_registers_1;
4154 may_insert_breakpoints = may_insert_breakpoints_1;
4155 may_insert_tracepoints = may_insert_tracepoints_1;
4156 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4157 may_stop = may_stop_1;
4158 update_observer_mode ();
4159 }
4160
4161 /* Set memory write permission independently of observer mode. */
4162
4163 static void
4164 set_write_memory_permission (char *args, int from_tty,
4165 struct cmd_list_element *c)
4166 {
4167 /* Make the real values match the user-changed values. */
4168 may_write_memory = may_write_memory_1;
4169 update_observer_mode ();
4170 }
4171
4172
4173 void
4174 initialize_targets (void)
4175 {
4176 init_dummy_target ();
4177 push_target (&dummy_target);
4178
4179 add_info ("target", target_info, targ_desc);
4180 add_info ("files", target_info, targ_desc);
4181
4182 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4183 Set target debugging."), _("\
4184 Show target debugging."), _("\
4185 When non-zero, target debugging is enabled. Higher numbers are more\n\
4186 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4187 command."),
4188 NULL,
4189 show_targetdebug,
4190 &setdebuglist, &showdebuglist);
4191
4192 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4193 &trust_readonly, _("\
4194 Set mode for reading from readonly sections."), _("\
4195 Show mode for reading from readonly sections."), _("\
4196 When this mode is on, memory reads from readonly sections (such as .text)\n\
4197 will be read from the object file instead of from the target. This will\n\
4198 result in significant performance improvement for remote targets."),
4199 NULL,
4200 show_trust_readonly,
4201 &setlist, &showlist);
4202
4203 add_com ("monitor", class_obscure, do_monitor_command,
4204 _("Send a command to the remote monitor (remote targets only)."));
4205
4206 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4207 _("Print the name of each layer of the internal target stack."),
4208 &maintenanceprintlist);
4209
4210 add_setshow_boolean_cmd ("target-async", no_class,
4211 &target_async_permitted_1, _("\
4212 Set whether gdb controls the inferior in asynchronous mode."), _("\
4213 Show whether gdb controls the inferior in asynchronous mode."), _("\
4214 Tells gdb whether to control the inferior in asynchronous mode."),
4215 set_target_async_command,
4216 show_target_async_command,
4217 &setlist,
4218 &showlist);
4219
4220 add_setshow_boolean_cmd ("may-write-registers", class_support,
4221 &may_write_registers_1, _("\
4222 Set permission to write into registers."), _("\
4223 Show permission to write into registers."), _("\
4224 When this permission is on, GDB may write into the target's registers.\n\
4225 Otherwise, any sort of write attempt will result in an error."),
4226 set_target_permissions, NULL,
4227 &setlist, &showlist);
4228
4229 add_setshow_boolean_cmd ("may-write-memory", class_support,
4230 &may_write_memory_1, _("\
4231 Set permission to write into target memory."), _("\
4232 Show permission to write into target memory."), _("\
4233 When this permission is on, GDB may write into the target's memory.\n\
4234 Otherwise, any sort of write attempt will result in an error."),
4235 set_write_memory_permission, NULL,
4236 &setlist, &showlist);
4237
4238 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4239 &may_insert_breakpoints_1, _("\
4240 Set permission to insert breakpoints in the target."), _("\
4241 Show permission to insert breakpoints in the target."), _("\
4242 When this permission is on, GDB may insert breakpoints in the program.\n\
4243 Otherwise, any sort of insertion attempt will result in an error."),
4244 set_target_permissions, NULL,
4245 &setlist, &showlist);
4246
4247 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4248 &may_insert_tracepoints_1, _("\
4249 Set permission to insert tracepoints in the target."), _("\
4250 Show permission to insert tracepoints in the target."), _("\
4251 When this permission is on, GDB may insert tracepoints in the program.\n\
4252 Otherwise, any sort of insertion attempt will result in an error."),
4253 set_target_permissions, NULL,
4254 &setlist, &showlist);
4255
4256 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4257 &may_insert_fast_tracepoints_1, _("\
4258 Set permission to insert fast tracepoints in the target."), _("\
4259 Show permission to insert fast tracepoints in the target."), _("\
4260 When this permission is on, GDB may insert fast tracepoints.\n\
4261 Otherwise, any sort of insertion attempt will result in an error."),
4262 set_target_permissions, NULL,
4263 &setlist, &showlist);
4264
4265 add_setshow_boolean_cmd ("may-interrupt", class_support,
4266 &may_stop_1, _("\
4267 Set permission to interrupt or signal the target."), _("\
4268 Show permission to interrupt or signal the target."), _("\
4269 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4270 Otherwise, any attempt to interrupt or stop will be ignored."),
4271 set_target_permissions, NULL,
4272 &setlist, &showlist);
4273 }