convert to_memory_map
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static int default_follow_fork (struct target_ops *self, int follow_child,
64 int detach_fork);
65
66 static void default_mourn_inferior (struct target_ops *self);
67
68 static void tcomplain (void) ATTRIBUTE_NORETURN;
69
70 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
71
72 static int return_zero (void);
73
74 void target_ignore (void);
75
76 static void target_command (char *, int);
77
78 static struct target_ops *find_default_run_target (char *);
79
80 static target_xfer_partial_ftype default_xfer_partial;
81
82 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
83 ptid_t ptid);
84
85 static int dummy_find_memory_regions (struct target_ops *self,
86 find_memory_region_ftype ignore1,
87 void *ignore2);
88
89 static char *dummy_make_corefile_notes (struct target_ops *self,
90 bfd *ignore1, int *ignore2);
91
92 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
93
94 static int find_default_can_async_p (struct target_ops *ignore);
95
96 static int find_default_is_async_p (struct target_ops *ignore);
97
98 static enum exec_direction_kind default_execution_direction
99 (struct target_ops *self);
100
101 #include "target-delegates.c"
102
103 static void init_dummy_target (void);
104
105 static struct target_ops debug_target;
106
107 static void debug_to_open (char *, int);
108
109 static void debug_to_prepare_to_store (struct target_ops *self,
110 struct regcache *);
111
112 static void debug_to_files_info (struct target_ops *);
113
114 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
121 int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
124 struct gdbarch *,
125 struct bp_target_info *);
126
127 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
128 struct gdbarch *,
129 struct bp_target_info *);
130
131 static int debug_to_insert_watchpoint (struct target_ops *self,
132 CORE_ADDR, int, int,
133 struct expression *);
134
135 static int debug_to_remove_watchpoint (struct target_ops *self,
136 CORE_ADDR, int, int,
137 struct expression *);
138
139 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
140
141 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
142 CORE_ADDR, CORE_ADDR, int);
143
144 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
145 CORE_ADDR, int);
146
147 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
148 CORE_ADDR, int, int,
149 struct expression *);
150
151 static void debug_to_terminal_init (struct target_ops *self);
152
153 static void debug_to_terminal_inferior (struct target_ops *self);
154
155 static void debug_to_terminal_ours_for_output (struct target_ops *self);
156
157 static void debug_to_terminal_save_ours (struct target_ops *self);
158
159 static void debug_to_terminal_ours (struct target_ops *self);
160
161 static void debug_to_load (struct target_ops *self, char *, int);
162
163 static int debug_to_can_run (struct target_ops *self);
164
165 static void debug_to_stop (struct target_ops *self, ptid_t);
166
167 /* Pointer to array of target architecture structures; the size of the
168 array; the current index into the array; the allocated size of the
169 array. */
170 struct target_ops **target_structs;
171 unsigned target_struct_size;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
174
175 /* The initial current target, so that there is always a semi-valid
176 current target. */
177
178 static struct target_ops dummy_target;
179
180 /* Top of target stack. */
181
182 static struct target_ops *target_stack;
183
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
186
187 struct target_ops current_target;
188
189 /* Command list for target. */
190
191 static struct cmd_list_element *targetlist = NULL;
192
193 /* Nonzero if we should trust readonly sections from the
194 executable when reading memory. */
195
196 static int trust_readonly = 0;
197
198 /* Nonzero if we should show true memory content including
199 memory breakpoint inserted by gdb. */
200
201 static int show_memory_breakpoints = 0;
202
203 /* These globals control whether GDB attempts to perform these
204 operations; they are useful for targets that need to prevent
205 inadvertant disruption, such as in non-stop mode. */
206
207 int may_write_registers = 1;
208
209 int may_write_memory = 1;
210
211 int may_insert_breakpoints = 1;
212
213 int may_insert_tracepoints = 1;
214
215 int may_insert_fast_tracepoints = 1;
216
217 int may_stop = 1;
218
219 /* Non-zero if we want to see trace of target level stuff. */
220
221 static unsigned int targetdebug = 0;
222 static void
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
227 }
228
229 static void setup_target_debug (void);
230
231 /* The user just typed 'target' without the name of a target. */
232
233 static void
234 target_command (char *arg, int from_tty)
235 {
236 fputs_filtered ("Argument required (target name). Try `help target'\n",
237 gdb_stdout);
238 }
239
240 /* Default target_has_* methods for process_stratum targets. */
241
242 int
243 default_child_has_all_memory (struct target_ops *ops)
244 {
245 /* If no inferior selected, then we can't read memory here. */
246 if (ptid_equal (inferior_ptid, null_ptid))
247 return 0;
248
249 return 1;
250 }
251
252 int
253 default_child_has_memory (struct target_ops *ops)
254 {
255 /* If no inferior selected, then we can't read memory here. */
256 if (ptid_equal (inferior_ptid, null_ptid))
257 return 0;
258
259 return 1;
260 }
261
262 int
263 default_child_has_stack (struct target_ops *ops)
264 {
265 /* If no inferior selected, there's no stack. */
266 if (ptid_equal (inferior_ptid, null_ptid))
267 return 0;
268
269 return 1;
270 }
271
272 int
273 default_child_has_registers (struct target_ops *ops)
274 {
275 /* Can't read registers from no inferior. */
276 if (ptid_equal (inferior_ptid, null_ptid))
277 return 0;
278
279 return 1;
280 }
281
282 int
283 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
284 {
285 /* If there's no thread selected, then we can't make it run through
286 hoops. */
287 if (ptid_equal (the_ptid, null_ptid))
288 return 0;
289
290 return 1;
291 }
292
293
294 int
295 target_has_all_memory_1 (void)
296 {
297 struct target_ops *t;
298
299 for (t = current_target.beneath; t != NULL; t = t->beneath)
300 if (t->to_has_all_memory (t))
301 return 1;
302
303 return 0;
304 }
305
306 int
307 target_has_memory_1 (void)
308 {
309 struct target_ops *t;
310
311 for (t = current_target.beneath; t != NULL; t = t->beneath)
312 if (t->to_has_memory (t))
313 return 1;
314
315 return 0;
316 }
317
318 int
319 target_has_stack_1 (void)
320 {
321 struct target_ops *t;
322
323 for (t = current_target.beneath; t != NULL; t = t->beneath)
324 if (t->to_has_stack (t))
325 return 1;
326
327 return 0;
328 }
329
330 int
331 target_has_registers_1 (void)
332 {
333 struct target_ops *t;
334
335 for (t = current_target.beneath; t != NULL; t = t->beneath)
336 if (t->to_has_registers (t))
337 return 1;
338
339 return 0;
340 }
341
342 int
343 target_has_execution_1 (ptid_t the_ptid)
344 {
345 struct target_ops *t;
346
347 for (t = current_target.beneath; t != NULL; t = t->beneath)
348 if (t->to_has_execution (t, the_ptid))
349 return 1;
350
351 return 0;
352 }
353
354 int
355 target_has_execution_current (void)
356 {
357 return target_has_execution_1 (inferior_ptid);
358 }
359
360 /* Complete initialization of T. This ensures that various fields in
361 T are set, if needed by the target implementation. */
362
363 void
364 complete_target_initialization (struct target_ops *t)
365 {
366 /* Provide default values for all "must have" methods. */
367 if (t->to_xfer_partial == NULL)
368 t->to_xfer_partial = default_xfer_partial;
369
370 if (t->to_has_all_memory == NULL)
371 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_memory == NULL)
374 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_stack == NULL)
377 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_registers == NULL)
380 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
381
382 if (t->to_has_execution == NULL)
383 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
384
385 install_delegators (t);
386 }
387
388 /* Add possible target architecture T to the list and add a new
389 command 'target T->to_shortname'. Set COMPLETER as the command's
390 completer if not NULL. */
391
392 void
393 add_target_with_completer (struct target_ops *t,
394 completer_ftype *completer)
395 {
396 struct cmd_list_element *c;
397
398 complete_target_initialization (t);
399
400 if (!target_structs)
401 {
402 target_struct_allocsize = DEFAULT_ALLOCSIZE;
403 target_structs = (struct target_ops **) xmalloc
404 (target_struct_allocsize * sizeof (*target_structs));
405 }
406 if (target_struct_size >= target_struct_allocsize)
407 {
408 target_struct_allocsize *= 2;
409 target_structs = (struct target_ops **)
410 xrealloc ((char *) target_structs,
411 target_struct_allocsize * sizeof (*target_structs));
412 }
413 target_structs[target_struct_size++] = t;
414
415 if (targetlist == NULL)
416 add_prefix_cmd ("target", class_run, target_command, _("\
417 Connect to a target machine or process.\n\
418 The first argument is the type or protocol of the target machine.\n\
419 Remaining arguments are interpreted by the target protocol. For more\n\
420 information on the arguments for a particular protocol, type\n\
421 `help target ' followed by the protocol name."),
422 &targetlist, "target ", 0, &cmdlist);
423 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
424 &targetlist);
425 if (completer != NULL)
426 set_cmd_completer (c, completer);
427 }
428
429 /* Add a possible target architecture to the list. */
430
431 void
432 add_target (struct target_ops *t)
433 {
434 add_target_with_completer (t, NULL);
435 }
436
437 /* See target.h. */
438
439 void
440 add_deprecated_target_alias (struct target_ops *t, char *alias)
441 {
442 struct cmd_list_element *c;
443 char *alt;
444
445 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
446 see PR cli/15104. */
447 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
448 alt = xstrprintf ("target %s", t->to_shortname);
449 deprecate_cmd (c, alt);
450 }
451
452 /* Stub functions */
453
454 void
455 target_ignore (void)
456 {
457 }
458
459 void
460 target_kill (void)
461 {
462 if (targetdebug)
463 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
464
465 current_target.to_kill (&current_target);
466 }
467
468 void
469 target_load (char *arg, int from_tty)
470 {
471 target_dcache_invalidate ();
472 (*current_target.to_load) (&current_target, arg, from_tty);
473 }
474
475 void
476 target_create_inferior (char *exec_file, char *args,
477 char **env, int from_tty)
478 {
479 struct target_ops *t;
480
481 for (t = current_target.beneath; t != NULL; t = t->beneath)
482 {
483 if (t->to_create_inferior != NULL)
484 {
485 t->to_create_inferior (t, exec_file, args, env, from_tty);
486 if (targetdebug)
487 fprintf_unfiltered (gdb_stdlog,
488 "target_create_inferior (%s, %s, xxx, %d)\n",
489 exec_file, args, from_tty);
490 return;
491 }
492 }
493
494 internal_error (__FILE__, __LINE__,
495 _("could not find a target to create inferior"));
496 }
497
498 void
499 target_terminal_inferior (void)
500 {
501 /* A background resume (``run&'') should leave GDB in control of the
502 terminal. Use target_can_async_p, not target_is_async_p, since at
503 this point the target is not async yet. However, if sync_execution
504 is not set, we know it will become async prior to resume. */
505 if (target_can_async_p () && !sync_execution)
506 return;
507
508 /* If GDB is resuming the inferior in the foreground, install
509 inferior's terminal modes. */
510 (*current_target.to_terminal_inferior) (&current_target);
511 }
512
513 static int
514 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
515 struct target_ops *t)
516 {
517 errno = EIO; /* Can't read/write this location. */
518 return 0; /* No bytes handled. */
519 }
520
521 static void
522 tcomplain (void)
523 {
524 error (_("You can't do that when your target is `%s'"),
525 current_target.to_shortname);
526 }
527
528 void
529 noprocess (void)
530 {
531 error (_("You can't do that without a process to debug."));
532 }
533
534 static void
535 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
536 {
537 printf_unfiltered (_("No saved terminal information.\n"));
538 }
539
540 /* A default implementation for the to_get_ada_task_ptid target method.
541
542 This function builds the PTID by using both LWP and TID as part of
543 the PTID lwp and tid elements. The pid used is the pid of the
544 inferior_ptid. */
545
546 static ptid_t
547 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
548 {
549 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
550 }
551
552 static enum exec_direction_kind
553 default_execution_direction (struct target_ops *self)
554 {
555 if (!target_can_execute_reverse)
556 return EXEC_FORWARD;
557 else if (!target_can_async_p ())
558 return EXEC_FORWARD;
559 else
560 gdb_assert_not_reached ("\
561 to_execution_direction must be implemented for reverse async");
562 }
563
564 /* Go through the target stack from top to bottom, copying over zero
565 entries in current_target, then filling in still empty entries. In
566 effect, we are doing class inheritance through the pushed target
567 vectors.
568
569 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
570 is currently implemented, is that it discards any knowledge of
571 which target an inherited method originally belonged to.
572 Consequently, new new target methods should instead explicitly and
573 locally search the target stack for the target that can handle the
574 request. */
575
576 static void
577 update_current_target (void)
578 {
579 struct target_ops *t;
580
581 /* First, reset current's contents. */
582 memset (&current_target, 0, sizeof (current_target));
583
584 /* Install the delegators. */
585 install_delegators (&current_target);
586
587 #define INHERIT(FIELD, TARGET) \
588 if (!current_target.FIELD) \
589 current_target.FIELD = (TARGET)->FIELD
590
591 for (t = target_stack; t; t = t->beneath)
592 {
593 INHERIT (to_shortname, t);
594 INHERIT (to_longname, t);
595 INHERIT (to_doc, t);
596 /* Do not inherit to_open. */
597 /* Do not inherit to_close. */
598 /* Do not inherit to_attach. */
599 /* Do not inherit to_post_attach. */
600 INHERIT (to_attach_no_wait, t);
601 /* Do not inherit to_detach. */
602 /* Do not inherit to_disconnect. */
603 /* Do not inherit to_resume. */
604 /* Do not inherit to_wait. */
605 /* Do not inherit to_fetch_registers. */
606 /* Do not inherit to_store_registers. */
607 /* Do not inherit to_prepare_to_store. */
608 INHERIT (deprecated_xfer_memory, t);
609 /* Do not inherit to_files_info. */
610 /* Do not inherit to_insert_breakpoint. */
611 /* Do not inherit to_remove_breakpoint. */
612 /* Do not inherit to_can_use_hw_breakpoint. */
613 /* Do not inherit to_insert_hw_breakpoint. */
614 /* Do not inherit to_remove_hw_breakpoint. */
615 /* Do not inherit to_ranged_break_num_registers. */
616 /* Do not inherit to_insert_watchpoint. */
617 /* Do not inherit to_remove_watchpoint. */
618 /* Do not inherit to_insert_mask_watchpoint. */
619 /* Do not inherit to_remove_mask_watchpoint. */
620 /* Do not inherit to_stopped_data_address. */
621 INHERIT (to_have_steppable_watchpoint, t);
622 INHERIT (to_have_continuable_watchpoint, t);
623 /* Do not inherit to_stopped_by_watchpoint. */
624 /* Do not inherit to_watchpoint_addr_within_range. */
625 /* Do not inherit to_region_ok_for_hw_watchpoint. */
626 /* Do not inherit to_can_accel_watchpoint_condition. */
627 /* Do not inherit to_masked_watch_num_registers. */
628 /* Do not inherit to_terminal_init. */
629 /* Do not inherit to_terminal_inferior. */
630 /* Do not inherit to_terminal_ours_for_output. */
631 /* Do not inherit to_terminal_ours. */
632 /* Do not inherit to_terminal_save_ours. */
633 /* Do not inherit to_terminal_info. */
634 /* Do not inherit to_kill. */
635 /* Do not inherit to_load. */
636 /* Do no inherit to_create_inferior. */
637 /* Do not inherit to_post_startup_inferior. */
638 /* Do not inherit to_insert_fork_catchpoint. */
639 /* Do not inherit to_remove_fork_catchpoint. */
640 /* Do not inherit to_insert_vfork_catchpoint. */
641 /* Do not inherit to_remove_vfork_catchpoint. */
642 /* Do not inherit to_follow_fork. */
643 /* Do not inherit to_insert_exec_catchpoint. */
644 /* Do not inherit to_remove_exec_catchpoint. */
645 /* Do not inherit to_set_syscall_catchpoint. */
646 /* Do not inherit to_has_exited. */
647 /* Do not inherit to_mourn_inferior. */
648 INHERIT (to_can_run, t);
649 /* Do not inherit to_pass_signals. */
650 /* Do not inherit to_program_signals. */
651 /* Do not inherit to_thread_alive. */
652 /* Do not inherit to_find_new_threads. */
653 /* Do not inherit to_pid_to_str. */
654 /* Do not inherit to_extra_thread_info. */
655 /* Do not inherit to_thread_name. */
656 /* Do not inherit to_stop. */
657 /* Do not inherit to_xfer_partial. */
658 /* Do not inherit to_rcmd. */
659 /* Do not inherit to_pid_to_exec_file. */
660 /* Do not inherit to_log_command. */
661 INHERIT (to_stratum, t);
662 /* Do not inherit to_has_all_memory. */
663 /* Do not inherit to_has_memory. */
664 /* Do not inherit to_has_stack. */
665 /* Do not inherit to_has_registers. */
666 /* Do not inherit to_has_execution. */
667 INHERIT (to_has_thread_control, t);
668 /* Do not inherit to_can_async_p. */
669 /* Do not inherit to_is_async_p. */
670 /* Do not inherit to_async. */
671 /* Do not inherit to_find_memory_regions. */
672 /* Do not inherit to_make_corefile_notes. */
673 /* Do not inherit to_get_bookmark. */
674 /* Do not inherit to_goto_bookmark. */
675 /* Do not inherit to_get_thread_local_address. */
676 /* Do not inherit to_can_execute_reverse. */
677 /* Do not inherit to_execution_direction. */
678 /* Do not inherit to_thread_architecture. */
679 /* Do not inherit to_read_description. */
680 /* Do not inherit to_get_ada_task_ptid. */
681 /* Do not inherit to_search_memory. */
682 /* Do not inherit to_supports_multi_process. */
683 /* Do not inherit to_supports_enable_disable_tracepoint. */
684 /* Do not inherit to_supports_string_tracing. */
685 /* Do not inherit to_trace_init. */
686 /* Do not inherit to_download_tracepoint. */
687 /* Do not inherit to_can_download_tracepoint. */
688 /* Do not inherit to_download_trace_state_variable. */
689 /* Do not inherit to_enable_tracepoint. */
690 /* Do not inherit to_disable_tracepoint. */
691 /* Do not inherit to_trace_set_readonly_regions. */
692 /* Do not inherit to_trace_start. */
693 /* Do not inherit to_get_trace_status. */
694 /* Do not inherit to_get_tracepoint_status. */
695 /* Do not inherit to_trace_stop. */
696 /* Do not inherit to_trace_find. */
697 /* Do not inherit to_get_trace_state_variable_value. */
698 /* Do not inherit to_save_trace_data. */
699 /* Do not inherit to_upload_tracepoints. */
700 /* Do not inherit to_upload_trace_state_variables. */
701 /* Do not inherit to_get_raw_trace_data. */
702 /* Do not inherit to_get_min_fast_tracepoint_insn_len. */
703 /* Do not inherit to_set_disconnected_tracing. */
704 /* Do not inherit to_set_circular_trace_buffer. */
705 /* Do not inherit to_set_trace_buffer_size. */
706 /* Do not inherit to_set_trace_notes. */
707 /* Do not inherit to_get_tib_address. */
708 /* Do not inherit to_set_permissions. */
709 /* Do not inherit to_static_tracepoint_marker_at. */
710 /* Do not inherit to_static_tracepoint_markers_by_strid. */
711 /* Do not inherit to_traceframe_info. */
712 /* Do not inherit to_use_agent. */
713 /* Do not inherit to_can_use_agent. */
714 /* Do not inherit to_augmented_libraries_svr4_read. */
715 INHERIT (to_magic, t);
716 /* Do not inherit
717 to_supports_evaluation_of_breakpoint_conditions. */
718 /* Do not inherit to_can_run_breakpoint_commands. */
719 /* Do not inherit to_memory_map. */
720 /* Do not inherit to_flash_erase. */
721 /* Do not inherit to_flash_done. */
722 }
723 #undef INHERIT
724
725 /* Clean up a target struct so it no longer has any zero pointers in
726 it. Some entries are defaulted to a method that print an error,
727 others are hard-wired to a standard recursive default. */
728
729 #define de_fault(field, value) \
730 if (!current_target.field) \
731 current_target.field = value
732
733 de_fault (to_open,
734 (void (*) (char *, int))
735 tcomplain);
736 de_fault (to_close,
737 (void (*) (struct target_ops *))
738 target_ignore);
739 de_fault (deprecated_xfer_memory,
740 (int (*) (CORE_ADDR, gdb_byte *, int, int,
741 struct mem_attrib *, struct target_ops *))
742 nomemory);
743 de_fault (to_can_run,
744 (int (*) (struct target_ops *))
745 return_zero);
746 current_target.to_read_description = NULL;
747
748 #undef de_fault
749
750 /* Finally, position the target-stack beneath the squashed
751 "current_target". That way code looking for a non-inherited
752 target method can quickly and simply find it. */
753 current_target.beneath = target_stack;
754
755 if (targetdebug)
756 setup_target_debug ();
757 }
758
759 /* Push a new target type into the stack of the existing target accessors,
760 possibly superseding some of the existing accessors.
761
762 Rather than allow an empty stack, we always have the dummy target at
763 the bottom stratum, so we can call the function vectors without
764 checking them. */
765
766 void
767 push_target (struct target_ops *t)
768 {
769 struct target_ops **cur;
770
771 /* Check magic number. If wrong, it probably means someone changed
772 the struct definition, but not all the places that initialize one. */
773 if (t->to_magic != OPS_MAGIC)
774 {
775 fprintf_unfiltered (gdb_stderr,
776 "Magic number of %s target struct wrong\n",
777 t->to_shortname);
778 internal_error (__FILE__, __LINE__,
779 _("failed internal consistency check"));
780 }
781
782 /* Find the proper stratum to install this target in. */
783 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
784 {
785 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
786 break;
787 }
788
789 /* If there's already targets at this stratum, remove them. */
790 /* FIXME: cagney/2003-10-15: I think this should be popping all
791 targets to CUR, and not just those at this stratum level. */
792 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
793 {
794 /* There's already something at this stratum level. Close it,
795 and un-hook it from the stack. */
796 struct target_ops *tmp = (*cur);
797
798 (*cur) = (*cur)->beneath;
799 tmp->beneath = NULL;
800 target_close (tmp);
801 }
802
803 /* We have removed all targets in our stratum, now add the new one. */
804 t->beneath = (*cur);
805 (*cur) = t;
806
807 update_current_target ();
808 }
809
810 /* Remove a target_ops vector from the stack, wherever it may be.
811 Return how many times it was removed (0 or 1). */
812
813 int
814 unpush_target (struct target_ops *t)
815 {
816 struct target_ops **cur;
817 struct target_ops *tmp;
818
819 if (t->to_stratum == dummy_stratum)
820 internal_error (__FILE__, __LINE__,
821 _("Attempt to unpush the dummy target"));
822
823 /* Look for the specified target. Note that we assume that a target
824 can only occur once in the target stack. */
825
826 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
827 {
828 if ((*cur) == t)
829 break;
830 }
831
832 /* If we don't find target_ops, quit. Only open targets should be
833 closed. */
834 if ((*cur) == NULL)
835 return 0;
836
837 /* Unchain the target. */
838 tmp = (*cur);
839 (*cur) = (*cur)->beneath;
840 tmp->beneath = NULL;
841
842 update_current_target ();
843
844 /* Finally close the target. Note we do this after unchaining, so
845 any target method calls from within the target_close
846 implementation don't end up in T anymore. */
847 target_close (t);
848
849 return 1;
850 }
851
852 void
853 pop_all_targets_above (enum strata above_stratum)
854 {
855 while ((int) (current_target.to_stratum) > (int) above_stratum)
856 {
857 if (!unpush_target (target_stack))
858 {
859 fprintf_unfiltered (gdb_stderr,
860 "pop_all_targets couldn't find target %s\n",
861 target_stack->to_shortname);
862 internal_error (__FILE__, __LINE__,
863 _("failed internal consistency check"));
864 break;
865 }
866 }
867 }
868
869 void
870 pop_all_targets (void)
871 {
872 pop_all_targets_above (dummy_stratum);
873 }
874
875 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
876
877 int
878 target_is_pushed (struct target_ops *t)
879 {
880 struct target_ops **cur;
881
882 /* Check magic number. If wrong, it probably means someone changed
883 the struct definition, but not all the places that initialize one. */
884 if (t->to_magic != OPS_MAGIC)
885 {
886 fprintf_unfiltered (gdb_stderr,
887 "Magic number of %s target struct wrong\n",
888 t->to_shortname);
889 internal_error (__FILE__, __LINE__,
890 _("failed internal consistency check"));
891 }
892
893 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
894 if (*cur == t)
895 return 1;
896
897 return 0;
898 }
899
900 /* Using the objfile specified in OBJFILE, find the address for the
901 current thread's thread-local storage with offset OFFSET. */
902 CORE_ADDR
903 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
904 {
905 volatile CORE_ADDR addr = 0;
906 struct target_ops *target;
907
908 for (target = current_target.beneath;
909 target != NULL;
910 target = target->beneath)
911 {
912 if (target->to_get_thread_local_address != NULL)
913 break;
914 }
915
916 if (target != NULL
917 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
918 {
919 ptid_t ptid = inferior_ptid;
920 volatile struct gdb_exception ex;
921
922 TRY_CATCH (ex, RETURN_MASK_ALL)
923 {
924 CORE_ADDR lm_addr;
925
926 /* Fetch the load module address for this objfile. */
927 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
928 objfile);
929 /* If it's 0, throw the appropriate exception. */
930 if (lm_addr == 0)
931 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
932 _("TLS load module not found"));
933
934 addr = target->to_get_thread_local_address (target, ptid,
935 lm_addr, offset);
936 }
937 /* If an error occurred, print TLS related messages here. Otherwise,
938 throw the error to some higher catcher. */
939 if (ex.reason < 0)
940 {
941 int objfile_is_library = (objfile->flags & OBJF_SHARED);
942
943 switch (ex.error)
944 {
945 case TLS_NO_LIBRARY_SUPPORT_ERROR:
946 error (_("Cannot find thread-local variables "
947 "in this thread library."));
948 break;
949 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
950 if (objfile_is_library)
951 error (_("Cannot find shared library `%s' in dynamic"
952 " linker's load module list"), objfile_name (objfile));
953 else
954 error (_("Cannot find executable file `%s' in dynamic"
955 " linker's load module list"), objfile_name (objfile));
956 break;
957 case TLS_NOT_ALLOCATED_YET_ERROR:
958 if (objfile_is_library)
959 error (_("The inferior has not yet allocated storage for"
960 " thread-local variables in\n"
961 "the shared library `%s'\n"
962 "for %s"),
963 objfile_name (objfile), target_pid_to_str (ptid));
964 else
965 error (_("The inferior has not yet allocated storage for"
966 " thread-local variables in\n"
967 "the executable `%s'\n"
968 "for %s"),
969 objfile_name (objfile), target_pid_to_str (ptid));
970 break;
971 case TLS_GENERIC_ERROR:
972 if (objfile_is_library)
973 error (_("Cannot find thread-local storage for %s, "
974 "shared library %s:\n%s"),
975 target_pid_to_str (ptid),
976 objfile_name (objfile), ex.message);
977 else
978 error (_("Cannot find thread-local storage for %s, "
979 "executable file %s:\n%s"),
980 target_pid_to_str (ptid),
981 objfile_name (objfile), ex.message);
982 break;
983 default:
984 throw_exception (ex);
985 break;
986 }
987 }
988 }
989 /* It wouldn't be wrong here to try a gdbarch method, too; finding
990 TLS is an ABI-specific thing. But we don't do that yet. */
991 else
992 error (_("Cannot find thread-local variables on this target"));
993
994 return addr;
995 }
996
997 const char *
998 target_xfer_status_to_string (enum target_xfer_status err)
999 {
1000 #define CASE(X) case X: return #X
1001 switch (err)
1002 {
1003 CASE(TARGET_XFER_E_IO);
1004 CASE(TARGET_XFER_E_UNAVAILABLE);
1005 default:
1006 return "<unknown>";
1007 }
1008 #undef CASE
1009 };
1010
1011
1012 #undef MIN
1013 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1014
1015 /* target_read_string -- read a null terminated string, up to LEN bytes,
1016 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1017 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1018 is responsible for freeing it. Return the number of bytes successfully
1019 read. */
1020
1021 int
1022 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1023 {
1024 int tlen, offset, i;
1025 gdb_byte buf[4];
1026 int errcode = 0;
1027 char *buffer;
1028 int buffer_allocated;
1029 char *bufptr;
1030 unsigned int nbytes_read = 0;
1031
1032 gdb_assert (string);
1033
1034 /* Small for testing. */
1035 buffer_allocated = 4;
1036 buffer = xmalloc (buffer_allocated);
1037 bufptr = buffer;
1038
1039 while (len > 0)
1040 {
1041 tlen = MIN (len, 4 - (memaddr & 3));
1042 offset = memaddr & 3;
1043
1044 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1045 if (errcode != 0)
1046 {
1047 /* The transfer request might have crossed the boundary to an
1048 unallocated region of memory. Retry the transfer, requesting
1049 a single byte. */
1050 tlen = 1;
1051 offset = 0;
1052 errcode = target_read_memory (memaddr, buf, 1);
1053 if (errcode != 0)
1054 goto done;
1055 }
1056
1057 if (bufptr - buffer + tlen > buffer_allocated)
1058 {
1059 unsigned int bytes;
1060
1061 bytes = bufptr - buffer;
1062 buffer_allocated *= 2;
1063 buffer = xrealloc (buffer, buffer_allocated);
1064 bufptr = buffer + bytes;
1065 }
1066
1067 for (i = 0; i < tlen; i++)
1068 {
1069 *bufptr++ = buf[i + offset];
1070 if (buf[i + offset] == '\000')
1071 {
1072 nbytes_read += i + 1;
1073 goto done;
1074 }
1075 }
1076
1077 memaddr += tlen;
1078 len -= tlen;
1079 nbytes_read += tlen;
1080 }
1081 done:
1082 *string = buffer;
1083 if (errnop != NULL)
1084 *errnop = errcode;
1085 return nbytes_read;
1086 }
1087
1088 struct target_section_table *
1089 target_get_section_table (struct target_ops *target)
1090 {
1091 if (targetdebug)
1092 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1093
1094 return (*target->to_get_section_table) (target);
1095 }
1096
1097 /* Find a section containing ADDR. */
1098
1099 struct target_section *
1100 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1101 {
1102 struct target_section_table *table = target_get_section_table (target);
1103 struct target_section *secp;
1104
1105 if (table == NULL)
1106 return NULL;
1107
1108 for (secp = table->sections; secp < table->sections_end; secp++)
1109 {
1110 if (addr >= secp->addr && addr < secp->endaddr)
1111 return secp;
1112 }
1113 return NULL;
1114 }
1115
1116 /* Read memory from the live target, even if currently inspecting a
1117 traceframe. The return is the same as that of target_read. */
1118
1119 static enum target_xfer_status
1120 target_read_live_memory (enum target_object object,
1121 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1122 ULONGEST *xfered_len)
1123 {
1124 enum target_xfer_status ret;
1125 struct cleanup *cleanup;
1126
1127 /* Switch momentarily out of tfind mode so to access live memory.
1128 Note that this must not clear global state, such as the frame
1129 cache, which must still remain valid for the previous traceframe.
1130 We may be _building_ the frame cache at this point. */
1131 cleanup = make_cleanup_restore_traceframe_number ();
1132 set_traceframe_number (-1);
1133
1134 ret = target_xfer_partial (current_target.beneath, object, NULL,
1135 myaddr, NULL, memaddr, len, xfered_len);
1136
1137 do_cleanups (cleanup);
1138 return ret;
1139 }
1140
1141 /* Using the set of read-only target sections of OPS, read live
1142 read-only memory. Note that the actual reads start from the
1143 top-most target again.
1144
1145 For interface/parameters/return description see target.h,
1146 to_xfer_partial. */
1147
1148 static enum target_xfer_status
1149 memory_xfer_live_readonly_partial (struct target_ops *ops,
1150 enum target_object object,
1151 gdb_byte *readbuf, ULONGEST memaddr,
1152 ULONGEST len, ULONGEST *xfered_len)
1153 {
1154 struct target_section *secp;
1155 struct target_section_table *table;
1156
1157 secp = target_section_by_addr (ops, memaddr);
1158 if (secp != NULL
1159 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1160 secp->the_bfd_section)
1161 & SEC_READONLY))
1162 {
1163 struct target_section *p;
1164 ULONGEST memend = memaddr + len;
1165
1166 table = target_get_section_table (ops);
1167
1168 for (p = table->sections; p < table->sections_end; p++)
1169 {
1170 if (memaddr >= p->addr)
1171 {
1172 if (memend <= p->endaddr)
1173 {
1174 /* Entire transfer is within this section. */
1175 return target_read_live_memory (object, memaddr,
1176 readbuf, len, xfered_len);
1177 }
1178 else if (memaddr >= p->endaddr)
1179 {
1180 /* This section ends before the transfer starts. */
1181 continue;
1182 }
1183 else
1184 {
1185 /* This section overlaps the transfer. Just do half. */
1186 len = p->endaddr - memaddr;
1187 return target_read_live_memory (object, memaddr,
1188 readbuf, len, xfered_len);
1189 }
1190 }
1191 }
1192 }
1193
1194 return TARGET_XFER_EOF;
1195 }
1196
1197 /* Read memory from more than one valid target. A core file, for
1198 instance, could have some of memory but delegate other bits to
1199 the target below it. So, we must manually try all targets. */
1200
1201 static enum target_xfer_status
1202 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1203 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1204 ULONGEST *xfered_len)
1205 {
1206 enum target_xfer_status res;
1207
1208 do
1209 {
1210 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1211 readbuf, writebuf, memaddr, len,
1212 xfered_len);
1213 if (res == TARGET_XFER_OK)
1214 break;
1215
1216 /* Stop if the target reports that the memory is not available. */
1217 if (res == TARGET_XFER_E_UNAVAILABLE)
1218 break;
1219
1220 /* We want to continue past core files to executables, but not
1221 past a running target's memory. */
1222 if (ops->to_has_all_memory (ops))
1223 break;
1224
1225 ops = ops->beneath;
1226 }
1227 while (ops != NULL);
1228
1229 return res;
1230 }
1231
1232 /* Perform a partial memory transfer.
1233 For docs see target.h, to_xfer_partial. */
1234
1235 static enum target_xfer_status
1236 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1237 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1238 ULONGEST len, ULONGEST *xfered_len)
1239 {
1240 enum target_xfer_status res;
1241 int reg_len;
1242 struct mem_region *region;
1243 struct inferior *inf;
1244
1245 /* For accesses to unmapped overlay sections, read directly from
1246 files. Must do this first, as MEMADDR may need adjustment. */
1247 if (readbuf != NULL && overlay_debugging)
1248 {
1249 struct obj_section *section = find_pc_overlay (memaddr);
1250
1251 if (pc_in_unmapped_range (memaddr, section))
1252 {
1253 struct target_section_table *table
1254 = target_get_section_table (ops);
1255 const char *section_name = section->the_bfd_section->name;
1256
1257 memaddr = overlay_mapped_address (memaddr, section);
1258 return section_table_xfer_memory_partial (readbuf, writebuf,
1259 memaddr, len, xfered_len,
1260 table->sections,
1261 table->sections_end,
1262 section_name);
1263 }
1264 }
1265
1266 /* Try the executable files, if "trust-readonly-sections" is set. */
1267 if (readbuf != NULL && trust_readonly)
1268 {
1269 struct target_section *secp;
1270 struct target_section_table *table;
1271
1272 secp = target_section_by_addr (ops, memaddr);
1273 if (secp != NULL
1274 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1275 secp->the_bfd_section)
1276 & SEC_READONLY))
1277 {
1278 table = target_get_section_table (ops);
1279 return section_table_xfer_memory_partial (readbuf, writebuf,
1280 memaddr, len, xfered_len,
1281 table->sections,
1282 table->sections_end,
1283 NULL);
1284 }
1285 }
1286
1287 /* If reading unavailable memory in the context of traceframes, and
1288 this address falls within a read-only section, fallback to
1289 reading from live memory. */
1290 if (readbuf != NULL && get_traceframe_number () != -1)
1291 {
1292 VEC(mem_range_s) *available;
1293
1294 /* If we fail to get the set of available memory, then the
1295 target does not support querying traceframe info, and so we
1296 attempt reading from the traceframe anyway (assuming the
1297 target implements the old QTro packet then). */
1298 if (traceframe_available_memory (&available, memaddr, len))
1299 {
1300 struct cleanup *old_chain;
1301
1302 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1303
1304 if (VEC_empty (mem_range_s, available)
1305 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1306 {
1307 /* Don't read into the traceframe's available
1308 memory. */
1309 if (!VEC_empty (mem_range_s, available))
1310 {
1311 LONGEST oldlen = len;
1312
1313 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1314 gdb_assert (len <= oldlen);
1315 }
1316
1317 do_cleanups (old_chain);
1318
1319 /* This goes through the topmost target again. */
1320 res = memory_xfer_live_readonly_partial (ops, object,
1321 readbuf, memaddr,
1322 len, xfered_len);
1323 if (res == TARGET_XFER_OK)
1324 return TARGET_XFER_OK;
1325 else
1326 {
1327 /* No use trying further, we know some memory starting
1328 at MEMADDR isn't available. */
1329 *xfered_len = len;
1330 return TARGET_XFER_E_UNAVAILABLE;
1331 }
1332 }
1333
1334 /* Don't try to read more than how much is available, in
1335 case the target implements the deprecated QTro packet to
1336 cater for older GDBs (the target's knowledge of read-only
1337 sections may be outdated by now). */
1338 len = VEC_index (mem_range_s, available, 0)->length;
1339
1340 do_cleanups (old_chain);
1341 }
1342 }
1343
1344 /* Try GDB's internal data cache. */
1345 region = lookup_mem_region (memaddr);
1346 /* region->hi == 0 means there's no upper bound. */
1347 if (memaddr + len < region->hi || region->hi == 0)
1348 reg_len = len;
1349 else
1350 reg_len = region->hi - memaddr;
1351
1352 switch (region->attrib.mode)
1353 {
1354 case MEM_RO:
1355 if (writebuf != NULL)
1356 return TARGET_XFER_E_IO;
1357 break;
1358
1359 case MEM_WO:
1360 if (readbuf != NULL)
1361 return TARGET_XFER_E_IO;
1362 break;
1363
1364 case MEM_FLASH:
1365 /* We only support writing to flash during "load" for now. */
1366 if (writebuf != NULL)
1367 error (_("Writing to flash memory forbidden in this context"));
1368 break;
1369
1370 case MEM_NONE:
1371 return TARGET_XFER_E_IO;
1372 }
1373
1374 if (!ptid_equal (inferior_ptid, null_ptid))
1375 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1376 else
1377 inf = NULL;
1378
1379 if (inf != NULL
1380 /* The dcache reads whole cache lines; that doesn't play well
1381 with reading from a trace buffer, because reading outside of
1382 the collected memory range fails. */
1383 && get_traceframe_number () == -1
1384 && (region->attrib.cache
1385 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1386 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1387 {
1388 DCACHE *dcache = target_dcache_get_or_init ();
1389 int l;
1390
1391 if (readbuf != NULL)
1392 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1393 else
1394 /* FIXME drow/2006-08-09: If we're going to preserve const
1395 correctness dcache_xfer_memory should take readbuf and
1396 writebuf. */
1397 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1398 reg_len, 1);
1399 if (l <= 0)
1400 return TARGET_XFER_E_IO;
1401 else
1402 {
1403 *xfered_len = (ULONGEST) l;
1404 return TARGET_XFER_OK;
1405 }
1406 }
1407
1408 /* If none of those methods found the memory we wanted, fall back
1409 to a target partial transfer. Normally a single call to
1410 to_xfer_partial is enough; if it doesn't recognize an object
1411 it will call the to_xfer_partial of the next target down.
1412 But for memory this won't do. Memory is the only target
1413 object which can be read from more than one valid target.
1414 A core file, for instance, could have some of memory but
1415 delegate other bits to the target below it. So, we must
1416 manually try all targets. */
1417
1418 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1419 xfered_len);
1420
1421 /* Make sure the cache gets updated no matter what - if we are writing
1422 to the stack. Even if this write is not tagged as such, we still need
1423 to update the cache. */
1424
1425 if (res == TARGET_XFER_OK
1426 && inf != NULL
1427 && writebuf != NULL
1428 && target_dcache_init_p ()
1429 && !region->attrib.cache
1430 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1431 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1432 {
1433 DCACHE *dcache = target_dcache_get ();
1434
1435 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1436 }
1437
1438 /* If we still haven't got anything, return the last error. We
1439 give up. */
1440 return res;
1441 }
1442
1443 /* Perform a partial memory transfer. For docs see target.h,
1444 to_xfer_partial. */
1445
1446 static enum target_xfer_status
1447 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1448 gdb_byte *readbuf, const gdb_byte *writebuf,
1449 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1450 {
1451 enum target_xfer_status res;
1452
1453 /* Zero length requests are ok and require no work. */
1454 if (len == 0)
1455 return TARGET_XFER_EOF;
1456
1457 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1458 breakpoint insns, thus hiding out from higher layers whether
1459 there are software breakpoints inserted in the code stream. */
1460 if (readbuf != NULL)
1461 {
1462 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1463 xfered_len);
1464
1465 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1466 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1467 }
1468 else
1469 {
1470 void *buf;
1471 struct cleanup *old_chain;
1472
1473 /* A large write request is likely to be partially satisfied
1474 by memory_xfer_partial_1. We will continually malloc
1475 and free a copy of the entire write request for breakpoint
1476 shadow handling even though we only end up writing a small
1477 subset of it. Cap writes to 4KB to mitigate this. */
1478 len = min (4096, len);
1479
1480 buf = xmalloc (len);
1481 old_chain = make_cleanup (xfree, buf);
1482 memcpy (buf, writebuf, len);
1483
1484 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1485 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1486 xfered_len);
1487
1488 do_cleanups (old_chain);
1489 }
1490
1491 return res;
1492 }
1493
1494 static void
1495 restore_show_memory_breakpoints (void *arg)
1496 {
1497 show_memory_breakpoints = (uintptr_t) arg;
1498 }
1499
1500 struct cleanup *
1501 make_show_memory_breakpoints_cleanup (int show)
1502 {
1503 int current = show_memory_breakpoints;
1504
1505 show_memory_breakpoints = show;
1506 return make_cleanup (restore_show_memory_breakpoints,
1507 (void *) (uintptr_t) current);
1508 }
1509
1510 /* For docs see target.h, to_xfer_partial. */
1511
1512 enum target_xfer_status
1513 target_xfer_partial (struct target_ops *ops,
1514 enum target_object object, const char *annex,
1515 gdb_byte *readbuf, const gdb_byte *writebuf,
1516 ULONGEST offset, ULONGEST len,
1517 ULONGEST *xfered_len)
1518 {
1519 enum target_xfer_status retval;
1520
1521 gdb_assert (ops->to_xfer_partial != NULL);
1522
1523 /* Transfer is done when LEN is zero. */
1524 if (len == 0)
1525 return TARGET_XFER_EOF;
1526
1527 if (writebuf && !may_write_memory)
1528 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1529 core_addr_to_string_nz (offset), plongest (len));
1530
1531 *xfered_len = 0;
1532
1533 /* If this is a memory transfer, let the memory-specific code
1534 have a look at it instead. Memory transfers are more
1535 complicated. */
1536 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1537 || object == TARGET_OBJECT_CODE_MEMORY)
1538 retval = memory_xfer_partial (ops, object, readbuf,
1539 writebuf, offset, len, xfered_len);
1540 else if (object == TARGET_OBJECT_RAW_MEMORY)
1541 {
1542 /* Request the normal memory object from other layers. */
1543 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1544 xfered_len);
1545 }
1546 else
1547 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1548 writebuf, offset, len, xfered_len);
1549
1550 if (targetdebug)
1551 {
1552 const unsigned char *myaddr = NULL;
1553
1554 fprintf_unfiltered (gdb_stdlog,
1555 "%s:target_xfer_partial "
1556 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1557 ops->to_shortname,
1558 (int) object,
1559 (annex ? annex : "(null)"),
1560 host_address_to_string (readbuf),
1561 host_address_to_string (writebuf),
1562 core_addr_to_string_nz (offset),
1563 pulongest (len), retval,
1564 pulongest (*xfered_len));
1565
1566 if (readbuf)
1567 myaddr = readbuf;
1568 if (writebuf)
1569 myaddr = writebuf;
1570 if (retval == TARGET_XFER_OK && myaddr != NULL)
1571 {
1572 int i;
1573
1574 fputs_unfiltered (", bytes =", gdb_stdlog);
1575 for (i = 0; i < *xfered_len; i++)
1576 {
1577 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1578 {
1579 if (targetdebug < 2 && i > 0)
1580 {
1581 fprintf_unfiltered (gdb_stdlog, " ...");
1582 break;
1583 }
1584 fprintf_unfiltered (gdb_stdlog, "\n");
1585 }
1586
1587 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1588 }
1589 }
1590
1591 fputc_unfiltered ('\n', gdb_stdlog);
1592 }
1593
1594 /* Check implementations of to_xfer_partial update *XFERED_LEN
1595 properly. Do assertion after printing debug messages, so that we
1596 can find more clues on assertion failure from debugging messages. */
1597 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1598 gdb_assert (*xfered_len > 0);
1599
1600 return retval;
1601 }
1602
1603 /* Read LEN bytes of target memory at address MEMADDR, placing the
1604 results in GDB's memory at MYADDR. Returns either 0 for success or
1605 TARGET_XFER_E_IO if any error occurs.
1606
1607 If an error occurs, no guarantee is made about the contents of the data at
1608 MYADDR. In particular, the caller should not depend upon partial reads
1609 filling the buffer with good data. There is no way for the caller to know
1610 how much good data might have been transfered anyway. Callers that can
1611 deal with partial reads should call target_read (which will retry until
1612 it makes no progress, and then return how much was transferred). */
1613
1614 int
1615 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1616 {
1617 /* Dispatch to the topmost target, not the flattened current_target.
1618 Memory accesses check target->to_has_(all_)memory, and the
1619 flattened target doesn't inherit those. */
1620 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1621 myaddr, memaddr, len) == len)
1622 return 0;
1623 else
1624 return TARGET_XFER_E_IO;
1625 }
1626
1627 /* Like target_read_memory, but specify explicitly that this is a read
1628 from the target's raw memory. That is, this read bypasses the
1629 dcache, breakpoint shadowing, etc. */
1630
1631 int
1632 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1633 {
1634 /* See comment in target_read_memory about why the request starts at
1635 current_target.beneath. */
1636 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1637 myaddr, memaddr, len) == len)
1638 return 0;
1639 else
1640 return TARGET_XFER_E_IO;
1641 }
1642
1643 /* Like target_read_memory, but specify explicitly that this is a read from
1644 the target's stack. This may trigger different cache behavior. */
1645
1646 int
1647 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1648 {
1649 /* See comment in target_read_memory about why the request starts at
1650 current_target.beneath. */
1651 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1652 myaddr, memaddr, len) == len)
1653 return 0;
1654 else
1655 return TARGET_XFER_E_IO;
1656 }
1657
1658 /* Like target_read_memory, but specify explicitly that this is a read from
1659 the target's code. This may trigger different cache behavior. */
1660
1661 int
1662 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1663 {
1664 /* See comment in target_read_memory about why the request starts at
1665 current_target.beneath. */
1666 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1667 myaddr, memaddr, len) == len)
1668 return 0;
1669 else
1670 return TARGET_XFER_E_IO;
1671 }
1672
1673 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1674 Returns either 0 for success or TARGET_XFER_E_IO if any
1675 error occurs. If an error occurs, no guarantee is made about how
1676 much data got written. Callers that can deal with partial writes
1677 should call target_write. */
1678
1679 int
1680 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1681 {
1682 /* See comment in target_read_memory about why the request starts at
1683 current_target.beneath. */
1684 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1685 myaddr, memaddr, len) == len)
1686 return 0;
1687 else
1688 return TARGET_XFER_E_IO;
1689 }
1690
1691 /* Write LEN bytes from MYADDR to target raw memory at address
1692 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1693 if any error occurs. If an error occurs, no guarantee is made
1694 about how much data got written. Callers that can deal with
1695 partial writes should call target_write. */
1696
1697 int
1698 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1699 {
1700 /* See comment in target_read_memory about why the request starts at
1701 current_target.beneath. */
1702 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1703 myaddr, memaddr, len) == len)
1704 return 0;
1705 else
1706 return TARGET_XFER_E_IO;
1707 }
1708
1709 /* Fetch the target's memory map. */
1710
1711 VEC(mem_region_s) *
1712 target_memory_map (void)
1713 {
1714 VEC(mem_region_s) *result;
1715 struct mem_region *last_one, *this_one;
1716 int ix;
1717 struct target_ops *t;
1718
1719 if (targetdebug)
1720 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1721
1722 result = current_target.to_memory_map (&current_target);
1723 if (result == NULL)
1724 return NULL;
1725
1726 qsort (VEC_address (mem_region_s, result),
1727 VEC_length (mem_region_s, result),
1728 sizeof (struct mem_region), mem_region_cmp);
1729
1730 /* Check that regions do not overlap. Simultaneously assign
1731 a numbering for the "mem" commands to use to refer to
1732 each region. */
1733 last_one = NULL;
1734 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1735 {
1736 this_one->number = ix;
1737
1738 if (last_one && last_one->hi > this_one->lo)
1739 {
1740 warning (_("Overlapping regions in memory map: ignoring"));
1741 VEC_free (mem_region_s, result);
1742 return NULL;
1743 }
1744 last_one = this_one;
1745 }
1746
1747 return result;
1748 }
1749
1750 void
1751 target_flash_erase (ULONGEST address, LONGEST length)
1752 {
1753 if (targetdebug)
1754 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1755 hex_string (address), phex (length, 0));
1756 current_target.to_flash_erase (&current_target, address, length);
1757 }
1758
1759 void
1760 target_flash_done (void)
1761 {
1762 if (targetdebug)
1763 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1764 current_target.to_flash_done (&current_target);
1765 }
1766
1767 static void
1768 show_trust_readonly (struct ui_file *file, int from_tty,
1769 struct cmd_list_element *c, const char *value)
1770 {
1771 fprintf_filtered (file,
1772 _("Mode for reading from readonly sections is %s.\n"),
1773 value);
1774 }
1775
1776 /* More generic transfers. */
1777
1778 static enum target_xfer_status
1779 default_xfer_partial (struct target_ops *ops, enum target_object object,
1780 const char *annex, gdb_byte *readbuf,
1781 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1782 ULONGEST *xfered_len)
1783 {
1784 if (object == TARGET_OBJECT_MEMORY
1785 && ops->deprecated_xfer_memory != NULL)
1786 /* If available, fall back to the target's
1787 "deprecated_xfer_memory" method. */
1788 {
1789 int xfered = -1;
1790
1791 errno = 0;
1792 if (writebuf != NULL)
1793 {
1794 void *buffer = xmalloc (len);
1795 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1796
1797 memcpy (buffer, writebuf, len);
1798 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1799 1/*write*/, NULL, ops);
1800 do_cleanups (cleanup);
1801 }
1802 if (readbuf != NULL)
1803 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1804 0/*read*/, NULL, ops);
1805 if (xfered > 0)
1806 {
1807 *xfered_len = (ULONGEST) xfered;
1808 return TARGET_XFER_E_IO;
1809 }
1810 else if (xfered == 0 && errno == 0)
1811 /* "deprecated_xfer_memory" uses 0, cross checked against
1812 ERRNO as one indication of an error. */
1813 return TARGET_XFER_EOF;
1814 else
1815 return TARGET_XFER_E_IO;
1816 }
1817 else
1818 {
1819 gdb_assert (ops->beneath != NULL);
1820 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1821 readbuf, writebuf, offset, len,
1822 xfered_len);
1823 }
1824 }
1825
1826 /* Target vector read/write partial wrapper functions. */
1827
1828 static enum target_xfer_status
1829 target_read_partial (struct target_ops *ops,
1830 enum target_object object,
1831 const char *annex, gdb_byte *buf,
1832 ULONGEST offset, ULONGEST len,
1833 ULONGEST *xfered_len)
1834 {
1835 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1836 xfered_len);
1837 }
1838
1839 static enum target_xfer_status
1840 target_write_partial (struct target_ops *ops,
1841 enum target_object object,
1842 const char *annex, const gdb_byte *buf,
1843 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1844 {
1845 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1846 xfered_len);
1847 }
1848
1849 /* Wrappers to perform the full transfer. */
1850
1851 /* For docs on target_read see target.h. */
1852
1853 LONGEST
1854 target_read (struct target_ops *ops,
1855 enum target_object object,
1856 const char *annex, gdb_byte *buf,
1857 ULONGEST offset, LONGEST len)
1858 {
1859 LONGEST xfered = 0;
1860
1861 while (xfered < len)
1862 {
1863 ULONGEST xfered_len;
1864 enum target_xfer_status status;
1865
1866 status = target_read_partial (ops, object, annex,
1867 (gdb_byte *) buf + xfered,
1868 offset + xfered, len - xfered,
1869 &xfered_len);
1870
1871 /* Call an observer, notifying them of the xfer progress? */
1872 if (status == TARGET_XFER_EOF)
1873 return xfered;
1874 else if (status == TARGET_XFER_OK)
1875 {
1876 xfered += xfered_len;
1877 QUIT;
1878 }
1879 else
1880 return -1;
1881
1882 }
1883 return len;
1884 }
1885
1886 /* Assuming that the entire [begin, end) range of memory cannot be
1887 read, try to read whatever subrange is possible to read.
1888
1889 The function returns, in RESULT, either zero or one memory block.
1890 If there's a readable subrange at the beginning, it is completely
1891 read and returned. Any further readable subrange will not be read.
1892 Otherwise, if there's a readable subrange at the end, it will be
1893 completely read and returned. Any readable subranges before it
1894 (obviously, not starting at the beginning), will be ignored. In
1895 other cases -- either no readable subrange, or readable subrange(s)
1896 that is neither at the beginning, or end, nothing is returned.
1897
1898 The purpose of this function is to handle a read across a boundary
1899 of accessible memory in a case when memory map is not available.
1900 The above restrictions are fine for this case, but will give
1901 incorrect results if the memory is 'patchy'. However, supporting
1902 'patchy' memory would require trying to read every single byte,
1903 and it seems unacceptable solution. Explicit memory map is
1904 recommended for this case -- and target_read_memory_robust will
1905 take care of reading multiple ranges then. */
1906
1907 static void
1908 read_whatever_is_readable (struct target_ops *ops,
1909 ULONGEST begin, ULONGEST end,
1910 VEC(memory_read_result_s) **result)
1911 {
1912 gdb_byte *buf = xmalloc (end - begin);
1913 ULONGEST current_begin = begin;
1914 ULONGEST current_end = end;
1915 int forward;
1916 memory_read_result_s r;
1917 ULONGEST xfered_len;
1918
1919 /* If we previously failed to read 1 byte, nothing can be done here. */
1920 if (end - begin <= 1)
1921 {
1922 xfree (buf);
1923 return;
1924 }
1925
1926 /* Check that either first or the last byte is readable, and give up
1927 if not. This heuristic is meant to permit reading accessible memory
1928 at the boundary of accessible region. */
1929 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1930 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1931 {
1932 forward = 1;
1933 ++current_begin;
1934 }
1935 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1936 buf + (end-begin) - 1, end - 1, 1,
1937 &xfered_len) == TARGET_XFER_OK)
1938 {
1939 forward = 0;
1940 --current_end;
1941 }
1942 else
1943 {
1944 xfree (buf);
1945 return;
1946 }
1947
1948 /* Loop invariant is that the [current_begin, current_end) was previously
1949 found to be not readable as a whole.
1950
1951 Note loop condition -- if the range has 1 byte, we can't divide the range
1952 so there's no point trying further. */
1953 while (current_end - current_begin > 1)
1954 {
1955 ULONGEST first_half_begin, first_half_end;
1956 ULONGEST second_half_begin, second_half_end;
1957 LONGEST xfer;
1958 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1959
1960 if (forward)
1961 {
1962 first_half_begin = current_begin;
1963 first_half_end = middle;
1964 second_half_begin = middle;
1965 second_half_end = current_end;
1966 }
1967 else
1968 {
1969 first_half_begin = middle;
1970 first_half_end = current_end;
1971 second_half_begin = current_begin;
1972 second_half_end = middle;
1973 }
1974
1975 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1976 buf + (first_half_begin - begin),
1977 first_half_begin,
1978 first_half_end - first_half_begin);
1979
1980 if (xfer == first_half_end - first_half_begin)
1981 {
1982 /* This half reads up fine. So, the error must be in the
1983 other half. */
1984 current_begin = second_half_begin;
1985 current_end = second_half_end;
1986 }
1987 else
1988 {
1989 /* This half is not readable. Because we've tried one byte, we
1990 know some part of this half if actually redable. Go to the next
1991 iteration to divide again and try to read.
1992
1993 We don't handle the other half, because this function only tries
1994 to read a single readable subrange. */
1995 current_begin = first_half_begin;
1996 current_end = first_half_end;
1997 }
1998 }
1999
2000 if (forward)
2001 {
2002 /* The [begin, current_begin) range has been read. */
2003 r.begin = begin;
2004 r.end = current_begin;
2005 r.data = buf;
2006 }
2007 else
2008 {
2009 /* The [current_end, end) range has been read. */
2010 LONGEST rlen = end - current_end;
2011
2012 r.data = xmalloc (rlen);
2013 memcpy (r.data, buf + current_end - begin, rlen);
2014 r.begin = current_end;
2015 r.end = end;
2016 xfree (buf);
2017 }
2018 VEC_safe_push(memory_read_result_s, (*result), &r);
2019 }
2020
2021 void
2022 free_memory_read_result_vector (void *x)
2023 {
2024 VEC(memory_read_result_s) *v = x;
2025 memory_read_result_s *current;
2026 int ix;
2027
2028 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2029 {
2030 xfree (current->data);
2031 }
2032 VEC_free (memory_read_result_s, v);
2033 }
2034
2035 VEC(memory_read_result_s) *
2036 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2037 {
2038 VEC(memory_read_result_s) *result = 0;
2039
2040 LONGEST xfered = 0;
2041 while (xfered < len)
2042 {
2043 struct mem_region *region = lookup_mem_region (offset + xfered);
2044 LONGEST rlen;
2045
2046 /* If there is no explicit region, a fake one should be created. */
2047 gdb_assert (region);
2048
2049 if (region->hi == 0)
2050 rlen = len - xfered;
2051 else
2052 rlen = region->hi - offset;
2053
2054 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2055 {
2056 /* Cannot read this region. Note that we can end up here only
2057 if the region is explicitly marked inaccessible, or
2058 'inaccessible-by-default' is in effect. */
2059 xfered += rlen;
2060 }
2061 else
2062 {
2063 LONGEST to_read = min (len - xfered, rlen);
2064 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2065
2066 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2067 (gdb_byte *) buffer,
2068 offset + xfered, to_read);
2069 /* Call an observer, notifying them of the xfer progress? */
2070 if (xfer <= 0)
2071 {
2072 /* Got an error reading full chunk. See if maybe we can read
2073 some subrange. */
2074 xfree (buffer);
2075 read_whatever_is_readable (ops, offset + xfered,
2076 offset + xfered + to_read, &result);
2077 xfered += to_read;
2078 }
2079 else
2080 {
2081 struct memory_read_result r;
2082 r.data = buffer;
2083 r.begin = offset + xfered;
2084 r.end = r.begin + xfer;
2085 VEC_safe_push (memory_read_result_s, result, &r);
2086 xfered += xfer;
2087 }
2088 QUIT;
2089 }
2090 }
2091 return result;
2092 }
2093
2094
2095 /* An alternative to target_write with progress callbacks. */
2096
2097 LONGEST
2098 target_write_with_progress (struct target_ops *ops,
2099 enum target_object object,
2100 const char *annex, const gdb_byte *buf,
2101 ULONGEST offset, LONGEST len,
2102 void (*progress) (ULONGEST, void *), void *baton)
2103 {
2104 LONGEST xfered = 0;
2105
2106 /* Give the progress callback a chance to set up. */
2107 if (progress)
2108 (*progress) (0, baton);
2109
2110 while (xfered < len)
2111 {
2112 ULONGEST xfered_len;
2113 enum target_xfer_status status;
2114
2115 status = target_write_partial (ops, object, annex,
2116 (gdb_byte *) buf + xfered,
2117 offset + xfered, len - xfered,
2118 &xfered_len);
2119
2120 if (status == TARGET_XFER_EOF)
2121 return xfered;
2122 if (TARGET_XFER_STATUS_ERROR_P (status))
2123 return -1;
2124
2125 gdb_assert (status == TARGET_XFER_OK);
2126 if (progress)
2127 (*progress) (xfered_len, baton);
2128
2129 xfered += xfered_len;
2130 QUIT;
2131 }
2132 return len;
2133 }
2134
2135 /* For docs on target_write see target.h. */
2136
2137 LONGEST
2138 target_write (struct target_ops *ops,
2139 enum target_object object,
2140 const char *annex, const gdb_byte *buf,
2141 ULONGEST offset, LONGEST len)
2142 {
2143 return target_write_with_progress (ops, object, annex, buf, offset, len,
2144 NULL, NULL);
2145 }
2146
2147 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2148 the size of the transferred data. PADDING additional bytes are
2149 available in *BUF_P. This is a helper function for
2150 target_read_alloc; see the declaration of that function for more
2151 information. */
2152
2153 static LONGEST
2154 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2155 const char *annex, gdb_byte **buf_p, int padding)
2156 {
2157 size_t buf_alloc, buf_pos;
2158 gdb_byte *buf;
2159
2160 /* This function does not have a length parameter; it reads the
2161 entire OBJECT). Also, it doesn't support objects fetched partly
2162 from one target and partly from another (in a different stratum,
2163 e.g. a core file and an executable). Both reasons make it
2164 unsuitable for reading memory. */
2165 gdb_assert (object != TARGET_OBJECT_MEMORY);
2166
2167 /* Start by reading up to 4K at a time. The target will throttle
2168 this number down if necessary. */
2169 buf_alloc = 4096;
2170 buf = xmalloc (buf_alloc);
2171 buf_pos = 0;
2172 while (1)
2173 {
2174 ULONGEST xfered_len;
2175 enum target_xfer_status status;
2176
2177 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2178 buf_pos, buf_alloc - buf_pos - padding,
2179 &xfered_len);
2180
2181 if (status == TARGET_XFER_EOF)
2182 {
2183 /* Read all there was. */
2184 if (buf_pos == 0)
2185 xfree (buf);
2186 else
2187 *buf_p = buf;
2188 return buf_pos;
2189 }
2190 else if (status != TARGET_XFER_OK)
2191 {
2192 /* An error occurred. */
2193 xfree (buf);
2194 return TARGET_XFER_E_IO;
2195 }
2196
2197 buf_pos += xfered_len;
2198
2199 /* If the buffer is filling up, expand it. */
2200 if (buf_alloc < buf_pos * 2)
2201 {
2202 buf_alloc *= 2;
2203 buf = xrealloc (buf, buf_alloc);
2204 }
2205
2206 QUIT;
2207 }
2208 }
2209
2210 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2211 the size of the transferred data. See the declaration in "target.h"
2212 function for more information about the return value. */
2213
2214 LONGEST
2215 target_read_alloc (struct target_ops *ops, enum target_object object,
2216 const char *annex, gdb_byte **buf_p)
2217 {
2218 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2219 }
2220
2221 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2222 returned as a string, allocated using xmalloc. If an error occurs
2223 or the transfer is unsupported, NULL is returned. Empty objects
2224 are returned as allocated but empty strings. A warning is issued
2225 if the result contains any embedded NUL bytes. */
2226
2227 char *
2228 target_read_stralloc (struct target_ops *ops, enum target_object object,
2229 const char *annex)
2230 {
2231 gdb_byte *buffer;
2232 char *bufstr;
2233 LONGEST i, transferred;
2234
2235 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2236 bufstr = (char *) buffer;
2237
2238 if (transferred < 0)
2239 return NULL;
2240
2241 if (transferred == 0)
2242 return xstrdup ("");
2243
2244 bufstr[transferred] = 0;
2245
2246 /* Check for embedded NUL bytes; but allow trailing NULs. */
2247 for (i = strlen (bufstr); i < transferred; i++)
2248 if (bufstr[i] != 0)
2249 {
2250 warning (_("target object %d, annex %s, "
2251 "contained unexpected null characters"),
2252 (int) object, annex ? annex : "(none)");
2253 break;
2254 }
2255
2256 return bufstr;
2257 }
2258
2259 /* Memory transfer methods. */
2260
2261 void
2262 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2263 LONGEST len)
2264 {
2265 /* This method is used to read from an alternate, non-current
2266 target. This read must bypass the overlay support (as symbols
2267 don't match this target), and GDB's internal cache (wrong cache
2268 for this target). */
2269 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2270 != len)
2271 memory_error (TARGET_XFER_E_IO, addr);
2272 }
2273
2274 ULONGEST
2275 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2276 int len, enum bfd_endian byte_order)
2277 {
2278 gdb_byte buf[sizeof (ULONGEST)];
2279
2280 gdb_assert (len <= sizeof (buf));
2281 get_target_memory (ops, addr, buf, len);
2282 return extract_unsigned_integer (buf, len, byte_order);
2283 }
2284
2285 /* See target.h. */
2286
2287 int
2288 target_insert_breakpoint (struct gdbarch *gdbarch,
2289 struct bp_target_info *bp_tgt)
2290 {
2291 if (!may_insert_breakpoints)
2292 {
2293 warning (_("May not insert breakpoints"));
2294 return 1;
2295 }
2296
2297 return current_target.to_insert_breakpoint (&current_target,
2298 gdbarch, bp_tgt);
2299 }
2300
2301 /* See target.h. */
2302
2303 int
2304 target_remove_breakpoint (struct gdbarch *gdbarch,
2305 struct bp_target_info *bp_tgt)
2306 {
2307 /* This is kind of a weird case to handle, but the permission might
2308 have been changed after breakpoints were inserted - in which case
2309 we should just take the user literally and assume that any
2310 breakpoints should be left in place. */
2311 if (!may_insert_breakpoints)
2312 {
2313 warning (_("May not remove breakpoints"));
2314 return 1;
2315 }
2316
2317 return current_target.to_remove_breakpoint (&current_target,
2318 gdbarch, bp_tgt);
2319 }
2320
2321 static void
2322 target_info (char *args, int from_tty)
2323 {
2324 struct target_ops *t;
2325 int has_all_mem = 0;
2326
2327 if (symfile_objfile != NULL)
2328 printf_unfiltered (_("Symbols from \"%s\".\n"),
2329 objfile_name (symfile_objfile));
2330
2331 for (t = target_stack; t != NULL; t = t->beneath)
2332 {
2333 if (!(*t->to_has_memory) (t))
2334 continue;
2335
2336 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2337 continue;
2338 if (has_all_mem)
2339 printf_unfiltered (_("\tWhile running this, "
2340 "GDB does not access memory from...\n"));
2341 printf_unfiltered ("%s:\n", t->to_longname);
2342 (t->to_files_info) (t);
2343 has_all_mem = (*t->to_has_all_memory) (t);
2344 }
2345 }
2346
2347 /* This function is called before any new inferior is created, e.g.
2348 by running a program, attaching, or connecting to a target.
2349 It cleans up any state from previous invocations which might
2350 change between runs. This is a subset of what target_preopen
2351 resets (things which might change between targets). */
2352
2353 void
2354 target_pre_inferior (int from_tty)
2355 {
2356 /* Clear out solib state. Otherwise the solib state of the previous
2357 inferior might have survived and is entirely wrong for the new
2358 target. This has been observed on GNU/Linux using glibc 2.3. How
2359 to reproduce:
2360
2361 bash$ ./foo&
2362 [1] 4711
2363 bash$ ./foo&
2364 [1] 4712
2365 bash$ gdb ./foo
2366 [...]
2367 (gdb) attach 4711
2368 (gdb) detach
2369 (gdb) attach 4712
2370 Cannot access memory at address 0xdeadbeef
2371 */
2372
2373 /* In some OSs, the shared library list is the same/global/shared
2374 across inferiors. If code is shared between processes, so are
2375 memory regions and features. */
2376 if (!gdbarch_has_global_solist (target_gdbarch ()))
2377 {
2378 no_shared_libraries (NULL, from_tty);
2379
2380 invalidate_target_mem_regions ();
2381
2382 target_clear_description ();
2383 }
2384
2385 agent_capability_invalidate ();
2386 }
2387
2388 /* Callback for iterate_over_inferiors. Gets rid of the given
2389 inferior. */
2390
2391 static int
2392 dispose_inferior (struct inferior *inf, void *args)
2393 {
2394 struct thread_info *thread;
2395
2396 thread = any_thread_of_process (inf->pid);
2397 if (thread)
2398 {
2399 switch_to_thread (thread->ptid);
2400
2401 /* Core inferiors actually should be detached, not killed. */
2402 if (target_has_execution)
2403 target_kill ();
2404 else
2405 target_detach (NULL, 0);
2406 }
2407
2408 return 0;
2409 }
2410
2411 /* This is to be called by the open routine before it does
2412 anything. */
2413
2414 void
2415 target_preopen (int from_tty)
2416 {
2417 dont_repeat ();
2418
2419 if (have_inferiors ())
2420 {
2421 if (!from_tty
2422 || !have_live_inferiors ()
2423 || query (_("A program is being debugged already. Kill it? ")))
2424 iterate_over_inferiors (dispose_inferior, NULL);
2425 else
2426 error (_("Program not killed."));
2427 }
2428
2429 /* Calling target_kill may remove the target from the stack. But if
2430 it doesn't (which seems like a win for UDI), remove it now. */
2431 /* Leave the exec target, though. The user may be switching from a
2432 live process to a core of the same program. */
2433 pop_all_targets_above (file_stratum);
2434
2435 target_pre_inferior (from_tty);
2436 }
2437
2438 /* Detach a target after doing deferred register stores. */
2439
2440 void
2441 target_detach (const char *args, int from_tty)
2442 {
2443 struct target_ops* t;
2444
2445 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2446 /* Don't remove global breakpoints here. They're removed on
2447 disconnection from the target. */
2448 ;
2449 else
2450 /* If we're in breakpoints-always-inserted mode, have to remove
2451 them before detaching. */
2452 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2453
2454 prepare_for_detach ();
2455
2456 current_target.to_detach (&current_target, args, from_tty);
2457 if (targetdebug)
2458 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2459 args, from_tty);
2460 }
2461
2462 void
2463 target_disconnect (char *args, int from_tty)
2464 {
2465 struct target_ops *t;
2466
2467 /* If we're in breakpoints-always-inserted mode or if breakpoints
2468 are global across processes, we have to remove them before
2469 disconnecting. */
2470 remove_breakpoints ();
2471
2472 for (t = current_target.beneath; t != NULL; t = t->beneath)
2473 if (t->to_disconnect != NULL)
2474 {
2475 if (targetdebug)
2476 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2477 args, from_tty);
2478 t->to_disconnect (t, args, from_tty);
2479 return;
2480 }
2481
2482 tcomplain ();
2483 }
2484
2485 ptid_t
2486 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2487 {
2488 struct target_ops *t;
2489 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2490 status, options);
2491
2492 if (targetdebug)
2493 {
2494 char *status_string;
2495 char *options_string;
2496
2497 status_string = target_waitstatus_to_string (status);
2498 options_string = target_options_to_string (options);
2499 fprintf_unfiltered (gdb_stdlog,
2500 "target_wait (%d, status, options={%s})"
2501 " = %d, %s\n",
2502 ptid_get_pid (ptid), options_string,
2503 ptid_get_pid (retval), status_string);
2504 xfree (status_string);
2505 xfree (options_string);
2506 }
2507
2508 return retval;
2509 }
2510
2511 char *
2512 target_pid_to_str (ptid_t ptid)
2513 {
2514 return (*current_target.to_pid_to_str) (&current_target, ptid);
2515 }
2516
2517 char *
2518 target_thread_name (struct thread_info *info)
2519 {
2520 return current_target.to_thread_name (&current_target, info);
2521 }
2522
2523 void
2524 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2525 {
2526 struct target_ops *t;
2527
2528 target_dcache_invalidate ();
2529
2530 current_target.to_resume (&current_target, ptid, step, signal);
2531 if (targetdebug)
2532 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2533 ptid_get_pid (ptid),
2534 step ? "step" : "continue",
2535 gdb_signal_to_name (signal));
2536
2537 registers_changed_ptid (ptid);
2538 set_executing (ptid, 1);
2539 set_running (ptid, 1);
2540 clear_inline_frame_state (ptid);
2541 }
2542
2543 void
2544 target_pass_signals (int numsigs, unsigned char *pass_signals)
2545 {
2546 if (targetdebug)
2547 {
2548 int i;
2549
2550 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2551 numsigs);
2552
2553 for (i = 0; i < numsigs; i++)
2554 if (pass_signals[i])
2555 fprintf_unfiltered (gdb_stdlog, " %s",
2556 gdb_signal_to_name (i));
2557
2558 fprintf_unfiltered (gdb_stdlog, " })\n");
2559 }
2560
2561 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2562 }
2563
2564 void
2565 target_program_signals (int numsigs, unsigned char *program_signals)
2566 {
2567 if (targetdebug)
2568 {
2569 int i;
2570
2571 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2572 numsigs);
2573
2574 for (i = 0; i < numsigs; i++)
2575 if (program_signals[i])
2576 fprintf_unfiltered (gdb_stdlog, " %s",
2577 gdb_signal_to_name (i));
2578
2579 fprintf_unfiltered (gdb_stdlog, " })\n");
2580 }
2581
2582 (*current_target.to_program_signals) (&current_target,
2583 numsigs, program_signals);
2584 }
2585
2586 static int
2587 default_follow_fork (struct target_ops *self, int follow_child,
2588 int detach_fork)
2589 {
2590 /* Some target returned a fork event, but did not know how to follow it. */
2591 internal_error (__FILE__, __LINE__,
2592 _("could not find a target to follow fork"));
2593 }
2594
2595 /* Look through the list of possible targets for a target that can
2596 follow forks. */
2597
2598 int
2599 target_follow_fork (int follow_child, int detach_fork)
2600 {
2601 int retval = current_target.to_follow_fork (&current_target,
2602 follow_child, detach_fork);
2603
2604 if (targetdebug)
2605 fprintf_unfiltered (gdb_stdlog,
2606 "target_follow_fork (%d, %d) = %d\n",
2607 follow_child, detach_fork, retval);
2608 return retval;
2609 }
2610
2611 static void
2612 default_mourn_inferior (struct target_ops *self)
2613 {
2614 internal_error (__FILE__, __LINE__,
2615 _("could not find a target to follow mourn inferior"));
2616 }
2617
2618 void
2619 target_mourn_inferior (void)
2620 {
2621 current_target.to_mourn_inferior (&current_target);
2622 if (targetdebug)
2623 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2624
2625 /* We no longer need to keep handles on any of the object files.
2626 Make sure to release them to avoid unnecessarily locking any
2627 of them while we're not actually debugging. */
2628 bfd_cache_close_all ();
2629 }
2630
2631 /* Look for a target which can describe architectural features, starting
2632 from TARGET. If we find one, return its description. */
2633
2634 const struct target_desc *
2635 target_read_description (struct target_ops *target)
2636 {
2637 struct target_ops *t;
2638
2639 for (t = target; t != NULL; t = t->beneath)
2640 if (t->to_read_description != NULL)
2641 {
2642 const struct target_desc *tdesc;
2643
2644 tdesc = t->to_read_description (t);
2645 if (tdesc)
2646 return tdesc;
2647 }
2648
2649 return NULL;
2650 }
2651
2652 /* The default implementation of to_search_memory.
2653 This implements a basic search of memory, reading target memory and
2654 performing the search here (as opposed to performing the search in on the
2655 target side with, for example, gdbserver). */
2656
2657 int
2658 simple_search_memory (struct target_ops *ops,
2659 CORE_ADDR start_addr, ULONGEST search_space_len,
2660 const gdb_byte *pattern, ULONGEST pattern_len,
2661 CORE_ADDR *found_addrp)
2662 {
2663 /* NOTE: also defined in find.c testcase. */
2664 #define SEARCH_CHUNK_SIZE 16000
2665 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2666 /* Buffer to hold memory contents for searching. */
2667 gdb_byte *search_buf;
2668 unsigned search_buf_size;
2669 struct cleanup *old_cleanups;
2670
2671 search_buf_size = chunk_size + pattern_len - 1;
2672
2673 /* No point in trying to allocate a buffer larger than the search space. */
2674 if (search_space_len < search_buf_size)
2675 search_buf_size = search_space_len;
2676
2677 search_buf = malloc (search_buf_size);
2678 if (search_buf == NULL)
2679 error (_("Unable to allocate memory to perform the search."));
2680 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2681
2682 /* Prime the search buffer. */
2683
2684 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2685 search_buf, start_addr, search_buf_size) != search_buf_size)
2686 {
2687 warning (_("Unable to access %s bytes of target "
2688 "memory at %s, halting search."),
2689 pulongest (search_buf_size), hex_string (start_addr));
2690 do_cleanups (old_cleanups);
2691 return -1;
2692 }
2693
2694 /* Perform the search.
2695
2696 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2697 When we've scanned N bytes we copy the trailing bytes to the start and
2698 read in another N bytes. */
2699
2700 while (search_space_len >= pattern_len)
2701 {
2702 gdb_byte *found_ptr;
2703 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2704
2705 found_ptr = memmem (search_buf, nr_search_bytes,
2706 pattern, pattern_len);
2707
2708 if (found_ptr != NULL)
2709 {
2710 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2711
2712 *found_addrp = found_addr;
2713 do_cleanups (old_cleanups);
2714 return 1;
2715 }
2716
2717 /* Not found in this chunk, skip to next chunk. */
2718
2719 /* Don't let search_space_len wrap here, it's unsigned. */
2720 if (search_space_len >= chunk_size)
2721 search_space_len -= chunk_size;
2722 else
2723 search_space_len = 0;
2724
2725 if (search_space_len >= pattern_len)
2726 {
2727 unsigned keep_len = search_buf_size - chunk_size;
2728 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2729 int nr_to_read;
2730
2731 /* Copy the trailing part of the previous iteration to the front
2732 of the buffer for the next iteration. */
2733 gdb_assert (keep_len == pattern_len - 1);
2734 memcpy (search_buf, search_buf + chunk_size, keep_len);
2735
2736 nr_to_read = min (search_space_len - keep_len, chunk_size);
2737
2738 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2739 search_buf + keep_len, read_addr,
2740 nr_to_read) != nr_to_read)
2741 {
2742 warning (_("Unable to access %s bytes of target "
2743 "memory at %s, halting search."),
2744 plongest (nr_to_read),
2745 hex_string (read_addr));
2746 do_cleanups (old_cleanups);
2747 return -1;
2748 }
2749
2750 start_addr += chunk_size;
2751 }
2752 }
2753
2754 /* Not found. */
2755
2756 do_cleanups (old_cleanups);
2757 return 0;
2758 }
2759
2760 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2761 sequence of bytes in PATTERN with length PATTERN_LEN.
2762
2763 The result is 1 if found, 0 if not found, and -1 if there was an error
2764 requiring halting of the search (e.g. memory read error).
2765 If the pattern is found the address is recorded in FOUND_ADDRP. */
2766
2767 int
2768 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2769 const gdb_byte *pattern, ULONGEST pattern_len,
2770 CORE_ADDR *found_addrp)
2771 {
2772 struct target_ops *t;
2773 int found;
2774
2775 /* We don't use INHERIT to set current_target.to_search_memory,
2776 so we have to scan the target stack and handle targetdebug
2777 ourselves. */
2778
2779 if (targetdebug)
2780 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2781 hex_string (start_addr));
2782
2783 for (t = current_target.beneath; t != NULL; t = t->beneath)
2784 if (t->to_search_memory != NULL)
2785 break;
2786
2787 if (t != NULL)
2788 {
2789 found = t->to_search_memory (t, start_addr, search_space_len,
2790 pattern, pattern_len, found_addrp);
2791 }
2792 else
2793 {
2794 /* If a special version of to_search_memory isn't available, use the
2795 simple version. */
2796 found = simple_search_memory (current_target.beneath,
2797 start_addr, search_space_len,
2798 pattern, pattern_len, found_addrp);
2799 }
2800
2801 if (targetdebug)
2802 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2803
2804 return found;
2805 }
2806
2807 /* Look through the currently pushed targets. If none of them will
2808 be able to restart the currently running process, issue an error
2809 message. */
2810
2811 void
2812 target_require_runnable (void)
2813 {
2814 struct target_ops *t;
2815
2816 for (t = target_stack; t != NULL; t = t->beneath)
2817 {
2818 /* If this target knows how to create a new program, then
2819 assume we will still be able to after killing the current
2820 one. Either killing and mourning will not pop T, or else
2821 find_default_run_target will find it again. */
2822 if (t->to_create_inferior != NULL)
2823 return;
2824
2825 /* Do not worry about thread_stratum targets that can not
2826 create inferiors. Assume they will be pushed again if
2827 necessary, and continue to the process_stratum. */
2828 if (t->to_stratum == thread_stratum
2829 || t->to_stratum == arch_stratum)
2830 continue;
2831
2832 error (_("The \"%s\" target does not support \"run\". "
2833 "Try \"help target\" or \"continue\"."),
2834 t->to_shortname);
2835 }
2836
2837 /* This function is only called if the target is running. In that
2838 case there should have been a process_stratum target and it
2839 should either know how to create inferiors, or not... */
2840 internal_error (__FILE__, __LINE__, _("No targets found"));
2841 }
2842
2843 /* Look through the list of possible targets for a target that can
2844 execute a run or attach command without any other data. This is
2845 used to locate the default process stratum.
2846
2847 If DO_MESG is not NULL, the result is always valid (error() is
2848 called for errors); else, return NULL on error. */
2849
2850 static struct target_ops *
2851 find_default_run_target (char *do_mesg)
2852 {
2853 struct target_ops **t;
2854 struct target_ops *runable = NULL;
2855 int count;
2856
2857 count = 0;
2858
2859 for (t = target_structs; t < target_structs + target_struct_size;
2860 ++t)
2861 {
2862 if ((*t)->to_can_run && target_can_run (*t))
2863 {
2864 runable = *t;
2865 ++count;
2866 }
2867 }
2868
2869 if (count != 1)
2870 {
2871 if (do_mesg)
2872 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2873 else
2874 return NULL;
2875 }
2876
2877 return runable;
2878 }
2879
2880 void
2881 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2882 {
2883 struct target_ops *t;
2884
2885 t = find_default_run_target ("attach");
2886 (t->to_attach) (t, args, from_tty);
2887 return;
2888 }
2889
2890 void
2891 find_default_create_inferior (struct target_ops *ops,
2892 char *exec_file, char *allargs, char **env,
2893 int from_tty)
2894 {
2895 struct target_ops *t;
2896
2897 t = find_default_run_target ("run");
2898 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2899 return;
2900 }
2901
2902 static int
2903 find_default_can_async_p (struct target_ops *ignore)
2904 {
2905 struct target_ops *t;
2906
2907 /* This may be called before the target is pushed on the stack;
2908 look for the default process stratum. If there's none, gdb isn't
2909 configured with a native debugger, and target remote isn't
2910 connected yet. */
2911 t = find_default_run_target (NULL);
2912 if (t && t->to_can_async_p != delegate_can_async_p)
2913 return (t->to_can_async_p) (t);
2914 return 0;
2915 }
2916
2917 static int
2918 find_default_is_async_p (struct target_ops *ignore)
2919 {
2920 struct target_ops *t;
2921
2922 /* This may be called before the target is pushed on the stack;
2923 look for the default process stratum. If there's none, gdb isn't
2924 configured with a native debugger, and target remote isn't
2925 connected yet. */
2926 t = find_default_run_target (NULL);
2927 if (t && t->to_is_async_p != delegate_is_async_p)
2928 return (t->to_is_async_p) (t);
2929 return 0;
2930 }
2931
2932 static int
2933 find_default_supports_non_stop (struct target_ops *self)
2934 {
2935 struct target_ops *t;
2936
2937 t = find_default_run_target (NULL);
2938 if (t && t->to_supports_non_stop)
2939 return (t->to_supports_non_stop) (t);
2940 return 0;
2941 }
2942
2943 int
2944 target_supports_non_stop (void)
2945 {
2946 struct target_ops *t;
2947
2948 for (t = &current_target; t != NULL; t = t->beneath)
2949 if (t->to_supports_non_stop)
2950 return t->to_supports_non_stop (t);
2951
2952 return 0;
2953 }
2954
2955 /* Implement the "info proc" command. */
2956
2957 int
2958 target_info_proc (char *args, enum info_proc_what what)
2959 {
2960 struct target_ops *t;
2961
2962 /* If we're already connected to something that can get us OS
2963 related data, use it. Otherwise, try using the native
2964 target. */
2965 if (current_target.to_stratum >= process_stratum)
2966 t = current_target.beneath;
2967 else
2968 t = find_default_run_target (NULL);
2969
2970 for (; t != NULL; t = t->beneath)
2971 {
2972 if (t->to_info_proc != NULL)
2973 {
2974 t->to_info_proc (t, args, what);
2975
2976 if (targetdebug)
2977 fprintf_unfiltered (gdb_stdlog,
2978 "target_info_proc (\"%s\", %d)\n", args, what);
2979
2980 return 1;
2981 }
2982 }
2983
2984 return 0;
2985 }
2986
2987 static int
2988 find_default_supports_disable_randomization (struct target_ops *self)
2989 {
2990 struct target_ops *t;
2991
2992 t = find_default_run_target (NULL);
2993 if (t && t->to_supports_disable_randomization)
2994 return (t->to_supports_disable_randomization) (t);
2995 return 0;
2996 }
2997
2998 int
2999 target_supports_disable_randomization (void)
3000 {
3001 struct target_ops *t;
3002
3003 for (t = &current_target; t != NULL; t = t->beneath)
3004 if (t->to_supports_disable_randomization)
3005 return t->to_supports_disable_randomization (t);
3006
3007 return 0;
3008 }
3009
3010 char *
3011 target_get_osdata (const char *type)
3012 {
3013 struct target_ops *t;
3014
3015 /* If we're already connected to something that can get us OS
3016 related data, use it. Otherwise, try using the native
3017 target. */
3018 if (current_target.to_stratum >= process_stratum)
3019 t = current_target.beneath;
3020 else
3021 t = find_default_run_target ("get OS data");
3022
3023 if (!t)
3024 return NULL;
3025
3026 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3027 }
3028
3029 /* Determine the current address space of thread PTID. */
3030
3031 struct address_space *
3032 target_thread_address_space (ptid_t ptid)
3033 {
3034 struct address_space *aspace;
3035 struct inferior *inf;
3036 struct target_ops *t;
3037
3038 for (t = current_target.beneath; t != NULL; t = t->beneath)
3039 {
3040 if (t->to_thread_address_space != NULL)
3041 {
3042 aspace = t->to_thread_address_space (t, ptid);
3043 gdb_assert (aspace);
3044
3045 if (targetdebug)
3046 fprintf_unfiltered (gdb_stdlog,
3047 "target_thread_address_space (%s) = %d\n",
3048 target_pid_to_str (ptid),
3049 address_space_num (aspace));
3050 return aspace;
3051 }
3052 }
3053
3054 /* Fall-back to the "main" address space of the inferior. */
3055 inf = find_inferior_pid (ptid_get_pid (ptid));
3056
3057 if (inf == NULL || inf->aspace == NULL)
3058 internal_error (__FILE__, __LINE__,
3059 _("Can't determine the current "
3060 "address space of thread %s\n"),
3061 target_pid_to_str (ptid));
3062
3063 return inf->aspace;
3064 }
3065
3066
3067 /* Target file operations. */
3068
3069 static struct target_ops *
3070 default_fileio_target (void)
3071 {
3072 /* If we're already connected to something that can perform
3073 file I/O, use it. Otherwise, try using the native target. */
3074 if (current_target.to_stratum >= process_stratum)
3075 return current_target.beneath;
3076 else
3077 return find_default_run_target ("file I/O");
3078 }
3079
3080 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3081 target file descriptor, or -1 if an error occurs (and set
3082 *TARGET_ERRNO). */
3083 int
3084 target_fileio_open (const char *filename, int flags, int mode,
3085 int *target_errno)
3086 {
3087 struct target_ops *t;
3088
3089 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3090 {
3091 if (t->to_fileio_open != NULL)
3092 {
3093 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3094
3095 if (targetdebug)
3096 fprintf_unfiltered (gdb_stdlog,
3097 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3098 filename, flags, mode,
3099 fd, fd != -1 ? 0 : *target_errno);
3100 return fd;
3101 }
3102 }
3103
3104 *target_errno = FILEIO_ENOSYS;
3105 return -1;
3106 }
3107
3108 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3109 Return the number of bytes written, or -1 if an error occurs
3110 (and set *TARGET_ERRNO). */
3111 int
3112 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3113 ULONGEST offset, int *target_errno)
3114 {
3115 struct target_ops *t;
3116
3117 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3118 {
3119 if (t->to_fileio_pwrite != NULL)
3120 {
3121 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3122 target_errno);
3123
3124 if (targetdebug)
3125 fprintf_unfiltered (gdb_stdlog,
3126 "target_fileio_pwrite (%d,...,%d,%s) "
3127 "= %d (%d)\n",
3128 fd, len, pulongest (offset),
3129 ret, ret != -1 ? 0 : *target_errno);
3130 return ret;
3131 }
3132 }
3133
3134 *target_errno = FILEIO_ENOSYS;
3135 return -1;
3136 }
3137
3138 /* Read up to LEN bytes FD on the target into READ_BUF.
3139 Return the number of bytes read, or -1 if an error occurs
3140 (and set *TARGET_ERRNO). */
3141 int
3142 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3143 ULONGEST offset, int *target_errno)
3144 {
3145 struct target_ops *t;
3146
3147 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3148 {
3149 if (t->to_fileio_pread != NULL)
3150 {
3151 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3152 target_errno);
3153
3154 if (targetdebug)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "target_fileio_pread (%d,...,%d,%s) "
3157 "= %d (%d)\n",
3158 fd, len, pulongest (offset),
3159 ret, ret != -1 ? 0 : *target_errno);
3160 return ret;
3161 }
3162 }
3163
3164 *target_errno = FILEIO_ENOSYS;
3165 return -1;
3166 }
3167
3168 /* Close FD on the target. Return 0, or -1 if an error occurs
3169 (and set *TARGET_ERRNO). */
3170 int
3171 target_fileio_close (int fd, int *target_errno)
3172 {
3173 struct target_ops *t;
3174
3175 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3176 {
3177 if (t->to_fileio_close != NULL)
3178 {
3179 int ret = t->to_fileio_close (t, fd, target_errno);
3180
3181 if (targetdebug)
3182 fprintf_unfiltered (gdb_stdlog,
3183 "target_fileio_close (%d) = %d (%d)\n",
3184 fd, ret, ret != -1 ? 0 : *target_errno);
3185 return ret;
3186 }
3187 }
3188
3189 *target_errno = FILEIO_ENOSYS;
3190 return -1;
3191 }
3192
3193 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3194 occurs (and set *TARGET_ERRNO). */
3195 int
3196 target_fileio_unlink (const char *filename, int *target_errno)
3197 {
3198 struct target_ops *t;
3199
3200 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3201 {
3202 if (t->to_fileio_unlink != NULL)
3203 {
3204 int ret = t->to_fileio_unlink (t, filename, target_errno);
3205
3206 if (targetdebug)
3207 fprintf_unfiltered (gdb_stdlog,
3208 "target_fileio_unlink (%s) = %d (%d)\n",
3209 filename, ret, ret != -1 ? 0 : *target_errno);
3210 return ret;
3211 }
3212 }
3213
3214 *target_errno = FILEIO_ENOSYS;
3215 return -1;
3216 }
3217
3218 /* Read value of symbolic link FILENAME on the target. Return a
3219 null-terminated string allocated via xmalloc, or NULL if an error
3220 occurs (and set *TARGET_ERRNO). */
3221 char *
3222 target_fileio_readlink (const char *filename, int *target_errno)
3223 {
3224 struct target_ops *t;
3225
3226 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3227 {
3228 if (t->to_fileio_readlink != NULL)
3229 {
3230 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3231
3232 if (targetdebug)
3233 fprintf_unfiltered (gdb_stdlog,
3234 "target_fileio_readlink (%s) = %s (%d)\n",
3235 filename, ret? ret : "(nil)",
3236 ret? 0 : *target_errno);
3237 return ret;
3238 }
3239 }
3240
3241 *target_errno = FILEIO_ENOSYS;
3242 return NULL;
3243 }
3244
3245 static void
3246 target_fileio_close_cleanup (void *opaque)
3247 {
3248 int fd = *(int *) opaque;
3249 int target_errno;
3250
3251 target_fileio_close (fd, &target_errno);
3252 }
3253
3254 /* Read target file FILENAME. Store the result in *BUF_P and
3255 return the size of the transferred data. PADDING additional bytes are
3256 available in *BUF_P. This is a helper function for
3257 target_fileio_read_alloc; see the declaration of that function for more
3258 information. */
3259
3260 static LONGEST
3261 target_fileio_read_alloc_1 (const char *filename,
3262 gdb_byte **buf_p, int padding)
3263 {
3264 struct cleanup *close_cleanup;
3265 size_t buf_alloc, buf_pos;
3266 gdb_byte *buf;
3267 LONGEST n;
3268 int fd;
3269 int target_errno;
3270
3271 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3272 if (fd == -1)
3273 return -1;
3274
3275 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3276
3277 /* Start by reading up to 4K at a time. The target will throttle
3278 this number down if necessary. */
3279 buf_alloc = 4096;
3280 buf = xmalloc (buf_alloc);
3281 buf_pos = 0;
3282 while (1)
3283 {
3284 n = target_fileio_pread (fd, &buf[buf_pos],
3285 buf_alloc - buf_pos - padding, buf_pos,
3286 &target_errno);
3287 if (n < 0)
3288 {
3289 /* An error occurred. */
3290 do_cleanups (close_cleanup);
3291 xfree (buf);
3292 return -1;
3293 }
3294 else if (n == 0)
3295 {
3296 /* Read all there was. */
3297 do_cleanups (close_cleanup);
3298 if (buf_pos == 0)
3299 xfree (buf);
3300 else
3301 *buf_p = buf;
3302 return buf_pos;
3303 }
3304
3305 buf_pos += n;
3306
3307 /* If the buffer is filling up, expand it. */
3308 if (buf_alloc < buf_pos * 2)
3309 {
3310 buf_alloc *= 2;
3311 buf = xrealloc (buf, buf_alloc);
3312 }
3313
3314 QUIT;
3315 }
3316 }
3317
3318 /* Read target file FILENAME. Store the result in *BUF_P and return
3319 the size of the transferred data. See the declaration in "target.h"
3320 function for more information about the return value. */
3321
3322 LONGEST
3323 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3324 {
3325 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3326 }
3327
3328 /* Read target file FILENAME. The result is NUL-terminated and
3329 returned as a string, allocated using xmalloc. If an error occurs
3330 or the transfer is unsupported, NULL is returned. Empty objects
3331 are returned as allocated but empty strings. A warning is issued
3332 if the result contains any embedded NUL bytes. */
3333
3334 char *
3335 target_fileio_read_stralloc (const char *filename)
3336 {
3337 gdb_byte *buffer;
3338 char *bufstr;
3339 LONGEST i, transferred;
3340
3341 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3342 bufstr = (char *) buffer;
3343
3344 if (transferred < 0)
3345 return NULL;
3346
3347 if (transferred == 0)
3348 return xstrdup ("");
3349
3350 bufstr[transferred] = 0;
3351
3352 /* Check for embedded NUL bytes; but allow trailing NULs. */
3353 for (i = strlen (bufstr); i < transferred; i++)
3354 if (bufstr[i] != 0)
3355 {
3356 warning (_("target file %s "
3357 "contained unexpected null characters"),
3358 filename);
3359 break;
3360 }
3361
3362 return bufstr;
3363 }
3364
3365
3366 static int
3367 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3368 CORE_ADDR addr, int len)
3369 {
3370 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3371 }
3372
3373 static int
3374 default_watchpoint_addr_within_range (struct target_ops *target,
3375 CORE_ADDR addr,
3376 CORE_ADDR start, int length)
3377 {
3378 return addr >= start && addr < start + length;
3379 }
3380
3381 static struct gdbarch *
3382 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3383 {
3384 return target_gdbarch ();
3385 }
3386
3387 static int
3388 return_zero (void)
3389 {
3390 return 0;
3391 }
3392
3393 /*
3394 * Find the next target down the stack from the specified target.
3395 */
3396
3397 struct target_ops *
3398 find_target_beneath (struct target_ops *t)
3399 {
3400 return t->beneath;
3401 }
3402
3403 /* See target.h. */
3404
3405 struct target_ops *
3406 find_target_at (enum strata stratum)
3407 {
3408 struct target_ops *t;
3409
3410 for (t = current_target.beneath; t != NULL; t = t->beneath)
3411 if (t->to_stratum == stratum)
3412 return t;
3413
3414 return NULL;
3415 }
3416
3417 \f
3418 /* The inferior process has died. Long live the inferior! */
3419
3420 void
3421 generic_mourn_inferior (void)
3422 {
3423 ptid_t ptid;
3424
3425 ptid = inferior_ptid;
3426 inferior_ptid = null_ptid;
3427
3428 /* Mark breakpoints uninserted in case something tries to delete a
3429 breakpoint while we delete the inferior's threads (which would
3430 fail, since the inferior is long gone). */
3431 mark_breakpoints_out ();
3432
3433 if (!ptid_equal (ptid, null_ptid))
3434 {
3435 int pid = ptid_get_pid (ptid);
3436 exit_inferior (pid);
3437 }
3438
3439 /* Note this wipes step-resume breakpoints, so needs to be done
3440 after exit_inferior, which ends up referencing the step-resume
3441 breakpoints through clear_thread_inferior_resources. */
3442 breakpoint_init_inferior (inf_exited);
3443
3444 registers_changed ();
3445
3446 reopen_exec_file ();
3447 reinit_frame_cache ();
3448
3449 if (deprecated_detach_hook)
3450 deprecated_detach_hook ();
3451 }
3452 \f
3453 /* Convert a normal process ID to a string. Returns the string in a
3454 static buffer. */
3455
3456 char *
3457 normal_pid_to_str (ptid_t ptid)
3458 {
3459 static char buf[32];
3460
3461 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3462 return buf;
3463 }
3464
3465 static char *
3466 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3467 {
3468 return normal_pid_to_str (ptid);
3469 }
3470
3471 /* Error-catcher for target_find_memory_regions. */
3472 static int
3473 dummy_find_memory_regions (struct target_ops *self,
3474 find_memory_region_ftype ignore1, void *ignore2)
3475 {
3476 error (_("Command not implemented for this target."));
3477 return 0;
3478 }
3479
3480 /* Error-catcher for target_make_corefile_notes. */
3481 static char *
3482 dummy_make_corefile_notes (struct target_ops *self,
3483 bfd *ignore1, int *ignore2)
3484 {
3485 error (_("Command not implemented for this target."));
3486 return NULL;
3487 }
3488
3489 /* Set up the handful of non-empty slots needed by the dummy target
3490 vector. */
3491
3492 static void
3493 init_dummy_target (void)
3494 {
3495 dummy_target.to_shortname = "None";
3496 dummy_target.to_longname = "None";
3497 dummy_target.to_doc = "";
3498 dummy_target.to_create_inferior = find_default_create_inferior;
3499 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3500 dummy_target.to_supports_disable_randomization
3501 = find_default_supports_disable_randomization;
3502 dummy_target.to_stratum = dummy_stratum;
3503 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3504 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3505 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3506 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3507 dummy_target.to_has_execution
3508 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3509 dummy_target.to_magic = OPS_MAGIC;
3510
3511 install_dummy_methods (&dummy_target);
3512 }
3513 \f
3514 static void
3515 debug_to_open (char *args, int from_tty)
3516 {
3517 debug_target.to_open (args, from_tty);
3518
3519 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3520 }
3521
3522 void
3523 target_close (struct target_ops *targ)
3524 {
3525 gdb_assert (!target_is_pushed (targ));
3526
3527 if (targ->to_xclose != NULL)
3528 targ->to_xclose (targ);
3529 else if (targ->to_close != NULL)
3530 targ->to_close (targ);
3531
3532 if (targetdebug)
3533 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3534 }
3535
3536 void
3537 target_attach (char *args, int from_tty)
3538 {
3539 current_target.to_attach (&current_target, args, from_tty);
3540 if (targetdebug)
3541 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3542 args, from_tty);
3543 }
3544
3545 int
3546 target_thread_alive (ptid_t ptid)
3547 {
3548 int retval;
3549
3550 retval = current_target.to_thread_alive (&current_target, ptid);
3551 if (targetdebug)
3552 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3553 ptid_get_pid (ptid), retval);
3554
3555 return retval;
3556 }
3557
3558 void
3559 target_find_new_threads (void)
3560 {
3561 current_target.to_find_new_threads (&current_target);
3562 if (targetdebug)
3563 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3564 }
3565
3566 void
3567 target_stop (ptid_t ptid)
3568 {
3569 if (!may_stop)
3570 {
3571 warning (_("May not interrupt or stop the target, ignoring attempt"));
3572 return;
3573 }
3574
3575 (*current_target.to_stop) (&current_target, ptid);
3576 }
3577
3578 static void
3579 debug_to_post_attach (struct target_ops *self, int pid)
3580 {
3581 debug_target.to_post_attach (&debug_target, pid);
3582
3583 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3584 }
3585
3586 /* Concatenate ELEM to LIST, a comma separate list, and return the
3587 result. The LIST incoming argument is released. */
3588
3589 static char *
3590 str_comma_list_concat_elem (char *list, const char *elem)
3591 {
3592 if (list == NULL)
3593 return xstrdup (elem);
3594 else
3595 return reconcat (list, list, ", ", elem, (char *) NULL);
3596 }
3597
3598 /* Helper for target_options_to_string. If OPT is present in
3599 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3600 Returns the new resulting string. OPT is removed from
3601 TARGET_OPTIONS. */
3602
3603 static char *
3604 do_option (int *target_options, char *ret,
3605 int opt, char *opt_str)
3606 {
3607 if ((*target_options & opt) != 0)
3608 {
3609 ret = str_comma_list_concat_elem (ret, opt_str);
3610 *target_options &= ~opt;
3611 }
3612
3613 return ret;
3614 }
3615
3616 char *
3617 target_options_to_string (int target_options)
3618 {
3619 char *ret = NULL;
3620
3621 #define DO_TARG_OPTION(OPT) \
3622 ret = do_option (&target_options, ret, OPT, #OPT)
3623
3624 DO_TARG_OPTION (TARGET_WNOHANG);
3625
3626 if (target_options != 0)
3627 ret = str_comma_list_concat_elem (ret, "unknown???");
3628
3629 if (ret == NULL)
3630 ret = xstrdup ("");
3631 return ret;
3632 }
3633
3634 static void
3635 debug_print_register (const char * func,
3636 struct regcache *regcache, int regno)
3637 {
3638 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3639
3640 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3641 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3642 && gdbarch_register_name (gdbarch, regno) != NULL
3643 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3644 fprintf_unfiltered (gdb_stdlog, "(%s)",
3645 gdbarch_register_name (gdbarch, regno));
3646 else
3647 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3648 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3649 {
3650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3651 int i, size = register_size (gdbarch, regno);
3652 gdb_byte buf[MAX_REGISTER_SIZE];
3653
3654 regcache_raw_collect (regcache, regno, buf);
3655 fprintf_unfiltered (gdb_stdlog, " = ");
3656 for (i = 0; i < size; i++)
3657 {
3658 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3659 }
3660 if (size <= sizeof (LONGEST))
3661 {
3662 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3663
3664 fprintf_unfiltered (gdb_stdlog, " %s %s",
3665 core_addr_to_string_nz (val), plongest (val));
3666 }
3667 }
3668 fprintf_unfiltered (gdb_stdlog, "\n");
3669 }
3670
3671 void
3672 target_fetch_registers (struct regcache *regcache, int regno)
3673 {
3674 current_target.to_fetch_registers (&current_target, regcache, regno);
3675 if (targetdebug)
3676 debug_print_register ("target_fetch_registers", regcache, regno);
3677 }
3678
3679 void
3680 target_store_registers (struct regcache *regcache, int regno)
3681 {
3682 struct target_ops *t;
3683
3684 if (!may_write_registers)
3685 error (_("Writing to registers is not allowed (regno %d)"), regno);
3686
3687 current_target.to_store_registers (&current_target, regcache, regno);
3688 if (targetdebug)
3689 {
3690 debug_print_register ("target_store_registers", regcache, regno);
3691 }
3692 }
3693
3694 int
3695 target_core_of_thread (ptid_t ptid)
3696 {
3697 int retval = current_target.to_core_of_thread (&current_target, ptid);
3698
3699 if (targetdebug)
3700 fprintf_unfiltered (gdb_stdlog,
3701 "target_core_of_thread (%d) = %d\n",
3702 ptid_get_pid (ptid), retval);
3703 return retval;
3704 }
3705
3706 int
3707 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3708 {
3709 int retval = current_target.to_verify_memory (&current_target,
3710 data, memaddr, size);
3711
3712 if (targetdebug)
3713 fprintf_unfiltered (gdb_stdlog,
3714 "target_verify_memory (%s, %s) = %d\n",
3715 paddress (target_gdbarch (), memaddr),
3716 pulongest (size),
3717 retval);
3718 return retval;
3719 }
3720
3721 /* The documentation for this function is in its prototype declaration in
3722 target.h. */
3723
3724 int
3725 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3726 {
3727 int ret;
3728
3729 ret = current_target.to_insert_mask_watchpoint (&current_target,
3730 addr, mask, rw);
3731
3732 if (targetdebug)
3733 fprintf_unfiltered (gdb_stdlog, "\
3734 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3735 core_addr_to_string (addr),
3736 core_addr_to_string (mask), rw, ret);
3737
3738 return ret;
3739 }
3740
3741 /* The documentation for this function is in its prototype declaration in
3742 target.h. */
3743
3744 int
3745 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3746 {
3747 int ret;
3748
3749 ret = current_target.to_remove_mask_watchpoint (&current_target,
3750 addr, mask, rw);
3751
3752 if (targetdebug)
3753 fprintf_unfiltered (gdb_stdlog, "\
3754 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3755 core_addr_to_string (addr),
3756 core_addr_to_string (mask), rw, ret);
3757
3758 return ret;
3759 }
3760
3761 /* The documentation for this function is in its prototype declaration
3762 in target.h. */
3763
3764 int
3765 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3766 {
3767 return current_target.to_masked_watch_num_registers (&current_target,
3768 addr, mask);
3769 }
3770
3771 /* The documentation for this function is in its prototype declaration
3772 in target.h. */
3773
3774 int
3775 target_ranged_break_num_registers (void)
3776 {
3777 return current_target.to_ranged_break_num_registers (&current_target);
3778 }
3779
3780 /* See target.h. */
3781
3782 struct btrace_target_info *
3783 target_enable_btrace (ptid_t ptid)
3784 {
3785 struct target_ops *t;
3786
3787 for (t = current_target.beneath; t != NULL; t = t->beneath)
3788 if (t->to_enable_btrace != NULL)
3789 return t->to_enable_btrace (t, ptid);
3790
3791 tcomplain ();
3792 return NULL;
3793 }
3794
3795 /* See target.h. */
3796
3797 void
3798 target_disable_btrace (struct btrace_target_info *btinfo)
3799 {
3800 struct target_ops *t;
3801
3802 for (t = current_target.beneath; t != NULL; t = t->beneath)
3803 if (t->to_disable_btrace != NULL)
3804 {
3805 t->to_disable_btrace (t, btinfo);
3806 return;
3807 }
3808
3809 tcomplain ();
3810 }
3811
3812 /* See target.h. */
3813
3814 void
3815 target_teardown_btrace (struct btrace_target_info *btinfo)
3816 {
3817 struct target_ops *t;
3818
3819 for (t = current_target.beneath; t != NULL; t = t->beneath)
3820 if (t->to_teardown_btrace != NULL)
3821 {
3822 t->to_teardown_btrace (t, btinfo);
3823 return;
3824 }
3825
3826 tcomplain ();
3827 }
3828
3829 /* See target.h. */
3830
3831 enum btrace_error
3832 target_read_btrace (VEC (btrace_block_s) **btrace,
3833 struct btrace_target_info *btinfo,
3834 enum btrace_read_type type)
3835 {
3836 struct target_ops *t;
3837
3838 for (t = current_target.beneath; t != NULL; t = t->beneath)
3839 if (t->to_read_btrace != NULL)
3840 return t->to_read_btrace (t, btrace, btinfo, type);
3841
3842 tcomplain ();
3843 return BTRACE_ERR_NOT_SUPPORTED;
3844 }
3845
3846 /* See target.h. */
3847
3848 void
3849 target_stop_recording (void)
3850 {
3851 struct target_ops *t;
3852
3853 for (t = current_target.beneath; t != NULL; t = t->beneath)
3854 if (t->to_stop_recording != NULL)
3855 {
3856 t->to_stop_recording (t);
3857 return;
3858 }
3859
3860 /* This is optional. */
3861 }
3862
3863 /* See target.h. */
3864
3865 void
3866 target_info_record (void)
3867 {
3868 struct target_ops *t;
3869
3870 for (t = current_target.beneath; t != NULL; t = t->beneath)
3871 if (t->to_info_record != NULL)
3872 {
3873 t->to_info_record (t);
3874 return;
3875 }
3876
3877 tcomplain ();
3878 }
3879
3880 /* See target.h. */
3881
3882 void
3883 target_save_record (const char *filename)
3884 {
3885 current_target.to_save_record (&current_target, filename);
3886 }
3887
3888 /* See target.h. */
3889
3890 int
3891 target_supports_delete_record (void)
3892 {
3893 struct target_ops *t;
3894
3895 for (t = current_target.beneath; t != NULL; t = t->beneath)
3896 if (t->to_delete_record != NULL)
3897 return 1;
3898
3899 return 0;
3900 }
3901
3902 /* See target.h. */
3903
3904 void
3905 target_delete_record (void)
3906 {
3907 current_target.to_delete_record (&current_target);
3908 }
3909
3910 /* See target.h. */
3911
3912 int
3913 target_record_is_replaying (void)
3914 {
3915 return current_target.to_record_is_replaying (&current_target);
3916 }
3917
3918 /* See target.h. */
3919
3920 void
3921 target_goto_record_begin (void)
3922 {
3923 current_target.to_goto_record_begin (&current_target);
3924 }
3925
3926 /* See target.h. */
3927
3928 void
3929 target_goto_record_end (void)
3930 {
3931 current_target.to_goto_record_end (&current_target);
3932 }
3933
3934 /* See target.h. */
3935
3936 void
3937 target_goto_record (ULONGEST insn)
3938 {
3939 current_target.to_goto_record (&current_target, insn);
3940 }
3941
3942 /* See target.h. */
3943
3944 void
3945 target_insn_history (int size, int flags)
3946 {
3947 current_target.to_insn_history (&current_target, size, flags);
3948 }
3949
3950 /* See target.h. */
3951
3952 void
3953 target_insn_history_from (ULONGEST from, int size, int flags)
3954 {
3955 current_target.to_insn_history_from (&current_target, from, size, flags);
3956 }
3957
3958 /* See target.h. */
3959
3960 void
3961 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3962 {
3963 current_target.to_insn_history_range (&current_target, begin, end, flags);
3964 }
3965
3966 /* See target.h. */
3967
3968 void
3969 target_call_history (int size, int flags)
3970 {
3971 current_target.to_call_history (&current_target, size, flags);
3972 }
3973
3974 /* See target.h. */
3975
3976 void
3977 target_call_history_from (ULONGEST begin, int size, int flags)
3978 {
3979 current_target.to_call_history_from (&current_target, begin, size, flags);
3980 }
3981
3982 /* See target.h. */
3983
3984 void
3985 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3986 {
3987 current_target.to_call_history_range (&current_target, begin, end, flags);
3988 }
3989
3990 static void
3991 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
3992 {
3993 debug_target.to_prepare_to_store (&debug_target, regcache);
3994
3995 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3996 }
3997
3998 /* See target.h. */
3999
4000 const struct frame_unwind *
4001 target_get_unwinder (void)
4002 {
4003 struct target_ops *t;
4004
4005 for (t = current_target.beneath; t != NULL; t = t->beneath)
4006 if (t->to_get_unwinder != NULL)
4007 return t->to_get_unwinder;
4008
4009 return NULL;
4010 }
4011
4012 /* See target.h. */
4013
4014 const struct frame_unwind *
4015 target_get_tailcall_unwinder (void)
4016 {
4017 struct target_ops *t;
4018
4019 for (t = current_target.beneath; t != NULL; t = t->beneath)
4020 if (t->to_get_tailcall_unwinder != NULL)
4021 return t->to_get_tailcall_unwinder;
4022
4023 return NULL;
4024 }
4025
4026 /* See target.h. */
4027
4028 CORE_ADDR
4029 forward_target_decr_pc_after_break (struct target_ops *ops,
4030 struct gdbarch *gdbarch)
4031 {
4032 for (; ops != NULL; ops = ops->beneath)
4033 if (ops->to_decr_pc_after_break != NULL)
4034 return ops->to_decr_pc_after_break (ops, gdbarch);
4035
4036 return gdbarch_decr_pc_after_break (gdbarch);
4037 }
4038
4039 /* See target.h. */
4040
4041 CORE_ADDR
4042 target_decr_pc_after_break (struct gdbarch *gdbarch)
4043 {
4044 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4045 }
4046
4047 static int
4048 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4049 int write, struct mem_attrib *attrib,
4050 struct target_ops *target)
4051 {
4052 int retval;
4053
4054 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4055 attrib, target);
4056
4057 fprintf_unfiltered (gdb_stdlog,
4058 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4059 paddress (target_gdbarch (), memaddr), len,
4060 write ? "write" : "read", retval);
4061
4062 if (retval > 0)
4063 {
4064 int i;
4065
4066 fputs_unfiltered (", bytes =", gdb_stdlog);
4067 for (i = 0; i < retval; i++)
4068 {
4069 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4070 {
4071 if (targetdebug < 2 && i > 0)
4072 {
4073 fprintf_unfiltered (gdb_stdlog, " ...");
4074 break;
4075 }
4076 fprintf_unfiltered (gdb_stdlog, "\n");
4077 }
4078
4079 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4080 }
4081 }
4082
4083 fputc_unfiltered ('\n', gdb_stdlog);
4084
4085 return retval;
4086 }
4087
4088 static void
4089 debug_to_files_info (struct target_ops *target)
4090 {
4091 debug_target.to_files_info (target);
4092
4093 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4094 }
4095
4096 static int
4097 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4098 struct bp_target_info *bp_tgt)
4099 {
4100 int retval;
4101
4102 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4103
4104 fprintf_unfiltered (gdb_stdlog,
4105 "target_insert_breakpoint (%s, xxx) = %ld\n",
4106 core_addr_to_string (bp_tgt->placed_address),
4107 (unsigned long) retval);
4108 return retval;
4109 }
4110
4111 static int
4112 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4113 struct bp_target_info *bp_tgt)
4114 {
4115 int retval;
4116
4117 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4118
4119 fprintf_unfiltered (gdb_stdlog,
4120 "target_remove_breakpoint (%s, xxx) = %ld\n",
4121 core_addr_to_string (bp_tgt->placed_address),
4122 (unsigned long) retval);
4123 return retval;
4124 }
4125
4126 static int
4127 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4128 int type, int cnt, int from_tty)
4129 {
4130 int retval;
4131
4132 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4133 type, cnt, from_tty);
4134
4135 fprintf_unfiltered (gdb_stdlog,
4136 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4137 (unsigned long) type,
4138 (unsigned long) cnt,
4139 (unsigned long) from_tty,
4140 (unsigned long) retval);
4141 return retval;
4142 }
4143
4144 static int
4145 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4146 CORE_ADDR addr, int len)
4147 {
4148 CORE_ADDR retval;
4149
4150 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4151 addr, len);
4152
4153 fprintf_unfiltered (gdb_stdlog,
4154 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4155 core_addr_to_string (addr), (unsigned long) len,
4156 core_addr_to_string (retval));
4157 return retval;
4158 }
4159
4160 static int
4161 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4162 CORE_ADDR addr, int len, int rw,
4163 struct expression *cond)
4164 {
4165 int retval;
4166
4167 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4168 addr, len,
4169 rw, cond);
4170
4171 fprintf_unfiltered (gdb_stdlog,
4172 "target_can_accel_watchpoint_condition "
4173 "(%s, %d, %d, %s) = %ld\n",
4174 core_addr_to_string (addr), len, rw,
4175 host_address_to_string (cond), (unsigned long) retval);
4176 return retval;
4177 }
4178
4179 static int
4180 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4181 {
4182 int retval;
4183
4184 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4185
4186 fprintf_unfiltered (gdb_stdlog,
4187 "target_stopped_by_watchpoint () = %ld\n",
4188 (unsigned long) retval);
4189 return retval;
4190 }
4191
4192 static int
4193 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4194 {
4195 int retval;
4196
4197 retval = debug_target.to_stopped_data_address (target, addr);
4198
4199 fprintf_unfiltered (gdb_stdlog,
4200 "target_stopped_data_address ([%s]) = %ld\n",
4201 core_addr_to_string (*addr),
4202 (unsigned long)retval);
4203 return retval;
4204 }
4205
4206 static int
4207 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4208 CORE_ADDR addr,
4209 CORE_ADDR start, int length)
4210 {
4211 int retval;
4212
4213 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4214 start, length);
4215
4216 fprintf_filtered (gdb_stdlog,
4217 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4218 core_addr_to_string (addr), core_addr_to_string (start),
4219 length, retval);
4220 return retval;
4221 }
4222
4223 static int
4224 debug_to_insert_hw_breakpoint (struct target_ops *self,
4225 struct gdbarch *gdbarch,
4226 struct bp_target_info *bp_tgt)
4227 {
4228 int retval;
4229
4230 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4231 gdbarch, bp_tgt);
4232
4233 fprintf_unfiltered (gdb_stdlog,
4234 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4235 core_addr_to_string (bp_tgt->placed_address),
4236 (unsigned long) retval);
4237 return retval;
4238 }
4239
4240 static int
4241 debug_to_remove_hw_breakpoint (struct target_ops *self,
4242 struct gdbarch *gdbarch,
4243 struct bp_target_info *bp_tgt)
4244 {
4245 int retval;
4246
4247 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4248 gdbarch, bp_tgt);
4249
4250 fprintf_unfiltered (gdb_stdlog,
4251 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4252 core_addr_to_string (bp_tgt->placed_address),
4253 (unsigned long) retval);
4254 return retval;
4255 }
4256
4257 static int
4258 debug_to_insert_watchpoint (struct target_ops *self,
4259 CORE_ADDR addr, int len, int type,
4260 struct expression *cond)
4261 {
4262 int retval;
4263
4264 retval = debug_target.to_insert_watchpoint (&debug_target,
4265 addr, len, type, cond);
4266
4267 fprintf_unfiltered (gdb_stdlog,
4268 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4269 core_addr_to_string (addr), len, type,
4270 host_address_to_string (cond), (unsigned long) retval);
4271 return retval;
4272 }
4273
4274 static int
4275 debug_to_remove_watchpoint (struct target_ops *self,
4276 CORE_ADDR addr, int len, int type,
4277 struct expression *cond)
4278 {
4279 int retval;
4280
4281 retval = debug_target.to_remove_watchpoint (&debug_target,
4282 addr, len, type, cond);
4283
4284 fprintf_unfiltered (gdb_stdlog,
4285 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4286 core_addr_to_string (addr), len, type,
4287 host_address_to_string (cond), (unsigned long) retval);
4288 return retval;
4289 }
4290
4291 static void
4292 debug_to_terminal_init (struct target_ops *self)
4293 {
4294 debug_target.to_terminal_init (&debug_target);
4295
4296 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4297 }
4298
4299 static void
4300 debug_to_terminal_inferior (struct target_ops *self)
4301 {
4302 debug_target.to_terminal_inferior (&debug_target);
4303
4304 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4305 }
4306
4307 static void
4308 debug_to_terminal_ours_for_output (struct target_ops *self)
4309 {
4310 debug_target.to_terminal_ours_for_output (&debug_target);
4311
4312 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4313 }
4314
4315 static void
4316 debug_to_terminal_ours (struct target_ops *self)
4317 {
4318 debug_target.to_terminal_ours (&debug_target);
4319
4320 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4321 }
4322
4323 static void
4324 debug_to_terminal_save_ours (struct target_ops *self)
4325 {
4326 debug_target.to_terminal_save_ours (&debug_target);
4327
4328 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4329 }
4330
4331 static void
4332 debug_to_terminal_info (struct target_ops *self,
4333 const char *arg, int from_tty)
4334 {
4335 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4336
4337 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4338 from_tty);
4339 }
4340
4341 static void
4342 debug_to_load (struct target_ops *self, char *args, int from_tty)
4343 {
4344 debug_target.to_load (&debug_target, args, from_tty);
4345
4346 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4347 }
4348
4349 static void
4350 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4351 {
4352 debug_target.to_post_startup_inferior (&debug_target, ptid);
4353
4354 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4355 ptid_get_pid (ptid));
4356 }
4357
4358 static int
4359 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4360 {
4361 int retval;
4362
4363 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4364
4365 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4366 pid, retval);
4367
4368 return retval;
4369 }
4370
4371 static int
4372 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4373 {
4374 int retval;
4375
4376 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4377
4378 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4379 pid, retval);
4380
4381 return retval;
4382 }
4383
4384 static int
4385 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4386 {
4387 int retval;
4388
4389 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4390
4391 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4392 pid, retval);
4393
4394 return retval;
4395 }
4396
4397 static int
4398 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4399 {
4400 int retval;
4401
4402 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4403
4404 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4405 pid, retval);
4406
4407 return retval;
4408 }
4409
4410 static int
4411 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4412 {
4413 int retval;
4414
4415 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4416
4417 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4418 pid, retval);
4419
4420 return retval;
4421 }
4422
4423 static int
4424 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4425 {
4426 int retval;
4427
4428 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4429
4430 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4431 pid, retval);
4432
4433 return retval;
4434 }
4435
4436 static int
4437 debug_to_has_exited (struct target_ops *self,
4438 int pid, int wait_status, int *exit_status)
4439 {
4440 int has_exited;
4441
4442 has_exited = debug_target.to_has_exited (&debug_target,
4443 pid, wait_status, exit_status);
4444
4445 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4446 pid, wait_status, *exit_status, has_exited);
4447
4448 return has_exited;
4449 }
4450
4451 static int
4452 debug_to_can_run (struct target_ops *self)
4453 {
4454 int retval;
4455
4456 retval = debug_target.to_can_run (&debug_target);
4457
4458 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4459
4460 return retval;
4461 }
4462
4463 static struct gdbarch *
4464 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4465 {
4466 struct gdbarch *retval;
4467
4468 retval = debug_target.to_thread_architecture (ops, ptid);
4469
4470 fprintf_unfiltered (gdb_stdlog,
4471 "target_thread_architecture (%s) = %s [%s]\n",
4472 target_pid_to_str (ptid),
4473 host_address_to_string (retval),
4474 gdbarch_bfd_arch_info (retval)->printable_name);
4475 return retval;
4476 }
4477
4478 static void
4479 debug_to_stop (struct target_ops *self, ptid_t ptid)
4480 {
4481 debug_target.to_stop (&debug_target, ptid);
4482
4483 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4484 target_pid_to_str (ptid));
4485 }
4486
4487 static void
4488 debug_to_rcmd (struct target_ops *self, char *command,
4489 struct ui_file *outbuf)
4490 {
4491 debug_target.to_rcmd (&debug_target, command, outbuf);
4492 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4493 }
4494
4495 static char *
4496 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4497 {
4498 char *exec_file;
4499
4500 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4501
4502 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4503 pid, exec_file);
4504
4505 return exec_file;
4506 }
4507
4508 static void
4509 setup_target_debug (void)
4510 {
4511 memcpy (&debug_target, &current_target, sizeof debug_target);
4512
4513 current_target.to_open = debug_to_open;
4514 current_target.to_post_attach = debug_to_post_attach;
4515 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4516 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4517 current_target.to_files_info = debug_to_files_info;
4518 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4519 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4520 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4521 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4522 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4523 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4524 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4525 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4526 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4527 current_target.to_watchpoint_addr_within_range
4528 = debug_to_watchpoint_addr_within_range;
4529 current_target.to_region_ok_for_hw_watchpoint
4530 = debug_to_region_ok_for_hw_watchpoint;
4531 current_target.to_can_accel_watchpoint_condition
4532 = debug_to_can_accel_watchpoint_condition;
4533 current_target.to_terminal_init = debug_to_terminal_init;
4534 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4535 current_target.to_terminal_ours_for_output
4536 = debug_to_terminal_ours_for_output;
4537 current_target.to_terminal_ours = debug_to_terminal_ours;
4538 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4539 current_target.to_terminal_info = debug_to_terminal_info;
4540 current_target.to_load = debug_to_load;
4541 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4542 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4543 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4544 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4545 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4546 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4547 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4548 current_target.to_has_exited = debug_to_has_exited;
4549 current_target.to_can_run = debug_to_can_run;
4550 current_target.to_stop = debug_to_stop;
4551 current_target.to_rcmd = debug_to_rcmd;
4552 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4553 current_target.to_thread_architecture = debug_to_thread_architecture;
4554 }
4555 \f
4556
4557 static char targ_desc[] =
4558 "Names of targets and files being debugged.\nShows the entire \
4559 stack of targets currently in use (including the exec-file,\n\
4560 core-file, and process, if any), as well as the symbol file name.";
4561
4562 static void
4563 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4564 {
4565 error (_("\"monitor\" command not supported by this target."));
4566 }
4567
4568 static void
4569 do_monitor_command (char *cmd,
4570 int from_tty)
4571 {
4572 target_rcmd (cmd, gdb_stdtarg);
4573 }
4574
4575 /* Print the name of each layers of our target stack. */
4576
4577 static void
4578 maintenance_print_target_stack (char *cmd, int from_tty)
4579 {
4580 struct target_ops *t;
4581
4582 printf_filtered (_("The current target stack is:\n"));
4583
4584 for (t = target_stack; t != NULL; t = t->beneath)
4585 {
4586 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4587 }
4588 }
4589
4590 /* Controls if async mode is permitted. */
4591 int target_async_permitted = 0;
4592
4593 /* The set command writes to this variable. If the inferior is
4594 executing, target_async_permitted is *not* updated. */
4595 static int target_async_permitted_1 = 0;
4596
4597 static void
4598 set_target_async_command (char *args, int from_tty,
4599 struct cmd_list_element *c)
4600 {
4601 if (have_live_inferiors ())
4602 {
4603 target_async_permitted_1 = target_async_permitted;
4604 error (_("Cannot change this setting while the inferior is running."));
4605 }
4606
4607 target_async_permitted = target_async_permitted_1;
4608 }
4609
4610 static void
4611 show_target_async_command (struct ui_file *file, int from_tty,
4612 struct cmd_list_element *c,
4613 const char *value)
4614 {
4615 fprintf_filtered (file,
4616 _("Controlling the inferior in "
4617 "asynchronous mode is %s.\n"), value);
4618 }
4619
4620 /* Temporary copies of permission settings. */
4621
4622 static int may_write_registers_1 = 1;
4623 static int may_write_memory_1 = 1;
4624 static int may_insert_breakpoints_1 = 1;
4625 static int may_insert_tracepoints_1 = 1;
4626 static int may_insert_fast_tracepoints_1 = 1;
4627 static int may_stop_1 = 1;
4628
4629 /* Make the user-set values match the real values again. */
4630
4631 void
4632 update_target_permissions (void)
4633 {
4634 may_write_registers_1 = may_write_registers;
4635 may_write_memory_1 = may_write_memory;
4636 may_insert_breakpoints_1 = may_insert_breakpoints;
4637 may_insert_tracepoints_1 = may_insert_tracepoints;
4638 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4639 may_stop_1 = may_stop;
4640 }
4641
4642 /* The one function handles (most of) the permission flags in the same
4643 way. */
4644
4645 static void
4646 set_target_permissions (char *args, int from_tty,
4647 struct cmd_list_element *c)
4648 {
4649 if (target_has_execution)
4650 {
4651 update_target_permissions ();
4652 error (_("Cannot change this setting while the inferior is running."));
4653 }
4654
4655 /* Make the real values match the user-changed values. */
4656 may_write_registers = may_write_registers_1;
4657 may_insert_breakpoints = may_insert_breakpoints_1;
4658 may_insert_tracepoints = may_insert_tracepoints_1;
4659 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4660 may_stop = may_stop_1;
4661 update_observer_mode ();
4662 }
4663
4664 /* Set memory write permission independently of observer mode. */
4665
4666 static void
4667 set_write_memory_permission (char *args, int from_tty,
4668 struct cmd_list_element *c)
4669 {
4670 /* Make the real values match the user-changed values. */
4671 may_write_memory = may_write_memory_1;
4672 update_observer_mode ();
4673 }
4674
4675
4676 void
4677 initialize_targets (void)
4678 {
4679 init_dummy_target ();
4680 push_target (&dummy_target);
4681
4682 add_info ("target", target_info, targ_desc);
4683 add_info ("files", target_info, targ_desc);
4684
4685 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4686 Set target debugging."), _("\
4687 Show target debugging."), _("\
4688 When non-zero, target debugging is enabled. Higher numbers are more\n\
4689 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4690 command."),
4691 NULL,
4692 show_targetdebug,
4693 &setdebuglist, &showdebuglist);
4694
4695 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4696 &trust_readonly, _("\
4697 Set mode for reading from readonly sections."), _("\
4698 Show mode for reading from readonly sections."), _("\
4699 When this mode is on, memory reads from readonly sections (such as .text)\n\
4700 will be read from the object file instead of from the target. This will\n\
4701 result in significant performance improvement for remote targets."),
4702 NULL,
4703 show_trust_readonly,
4704 &setlist, &showlist);
4705
4706 add_com ("monitor", class_obscure, do_monitor_command,
4707 _("Send a command to the remote monitor (remote targets only)."));
4708
4709 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4710 _("Print the name of each layer of the internal target stack."),
4711 &maintenanceprintlist);
4712
4713 add_setshow_boolean_cmd ("target-async", no_class,
4714 &target_async_permitted_1, _("\
4715 Set whether gdb controls the inferior in asynchronous mode."), _("\
4716 Show whether gdb controls the inferior in asynchronous mode."), _("\
4717 Tells gdb whether to control the inferior in asynchronous mode."),
4718 set_target_async_command,
4719 show_target_async_command,
4720 &setlist,
4721 &showlist);
4722
4723 add_setshow_boolean_cmd ("may-write-registers", class_support,
4724 &may_write_registers_1, _("\
4725 Set permission to write into registers."), _("\
4726 Show permission to write into registers."), _("\
4727 When this permission is on, GDB may write into the target's registers.\n\
4728 Otherwise, any sort of write attempt will result in an error."),
4729 set_target_permissions, NULL,
4730 &setlist, &showlist);
4731
4732 add_setshow_boolean_cmd ("may-write-memory", class_support,
4733 &may_write_memory_1, _("\
4734 Set permission to write into target memory."), _("\
4735 Show permission to write into target memory."), _("\
4736 When this permission is on, GDB may write into the target's memory.\n\
4737 Otherwise, any sort of write attempt will result in an error."),
4738 set_write_memory_permission, NULL,
4739 &setlist, &showlist);
4740
4741 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4742 &may_insert_breakpoints_1, _("\
4743 Set permission to insert breakpoints in the target."), _("\
4744 Show permission to insert breakpoints in the target."), _("\
4745 When this permission is on, GDB may insert breakpoints in the program.\n\
4746 Otherwise, any sort of insertion attempt will result in an error."),
4747 set_target_permissions, NULL,
4748 &setlist, &showlist);
4749
4750 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4751 &may_insert_tracepoints_1, _("\
4752 Set permission to insert tracepoints in the target."), _("\
4753 Show permission to insert tracepoints in the target."), _("\
4754 When this permission is on, GDB may insert tracepoints in the program.\n\
4755 Otherwise, any sort of insertion attempt will result in an error."),
4756 set_target_permissions, NULL,
4757 &setlist, &showlist);
4758
4759 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4760 &may_insert_fast_tracepoints_1, _("\
4761 Set permission to insert fast tracepoints in the target."), _("\
4762 Show permission to insert fast tracepoints in the target."), _("\
4763 When this permission is on, GDB may insert fast tracepoints.\n\
4764 Otherwise, any sort of insertion attempt will result in an error."),
4765 set_target_permissions, NULL,
4766 &setlist, &showlist);
4767
4768 add_setshow_boolean_cmd ("may-interrupt", class_support,
4769 &may_stop_1, _("\
4770 Set permission to interrupt or signal the target."), _("\
4771 Show permission to interrupt or signal the target."), _("\
4772 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4773 Otherwise, any attempt to interrupt or stop will be ignored."),
4774 set_target_permissions, NULL,
4775 &setlist, &showlist);
4776 }