Include string.h in common-defs.h
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "target.h"
25 #include "target-dcache.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46 #include "auxv.h"
47 #include "target-debug.h"
48
49 static void target_info (char *, int);
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static void target_command (char *, int);
92
93 static struct target_ops *find_default_run_target (char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
111 struct gdbarch *gdbarch);
112
113 static struct target_ops debug_target;
114
115 #include "target-delegates.c"
116
117 static void init_dummy_target (void);
118
119 static void update_current_target (void);
120
121 /* Pointer to array of target architecture structures; the size of the
122 array; the current index into the array; the allocated size of the
123 array. */
124 struct target_ops **target_structs;
125 unsigned target_struct_size;
126 unsigned target_struct_allocsize;
127 #define DEFAULT_ALLOCSIZE 10
128
129 /* The initial current target, so that there is always a semi-valid
130 current target. */
131
132 static struct target_ops dummy_target;
133
134 /* Top of target stack. */
135
136 static struct target_ops *target_stack;
137
138 /* The target structure we are currently using to talk to a process
139 or file or whatever "inferior" we have. */
140
141 struct target_ops current_target;
142
143 /* Command list for target. */
144
145 static struct cmd_list_element *targetlist = NULL;
146
147 /* Nonzero if we should trust readonly sections from the
148 executable when reading memory. */
149
150 static int trust_readonly = 0;
151
152 /* Nonzero if we should show true memory content including
153 memory breakpoint inserted by gdb. */
154
155 static int show_memory_breakpoints = 0;
156
157 /* These globals control whether GDB attempts to perform these
158 operations; they are useful for targets that need to prevent
159 inadvertant disruption, such as in non-stop mode. */
160
161 int may_write_registers = 1;
162
163 int may_write_memory = 1;
164
165 int may_insert_breakpoints = 1;
166
167 int may_insert_tracepoints = 1;
168
169 int may_insert_fast_tracepoints = 1;
170
171 int may_stop = 1;
172
173 /* Non-zero if we want to see trace of target level stuff. */
174
175 static unsigned int targetdebug = 0;
176
177 static void
178 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
179 {
180 update_current_target ();
181 }
182
183 static void
184 show_targetdebug (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186 {
187 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
188 }
189
190 static void setup_target_debug (void);
191
192 /* The user just typed 'target' without the name of a target. */
193
194 static void
195 target_command (char *arg, int from_tty)
196 {
197 fputs_filtered ("Argument required (target name). Try `help target'\n",
198 gdb_stdout);
199 }
200
201 /* Default target_has_* methods for process_stratum targets. */
202
203 int
204 default_child_has_all_memory (struct target_ops *ops)
205 {
206 /* If no inferior selected, then we can't read memory here. */
207 if (ptid_equal (inferior_ptid, null_ptid))
208 return 0;
209
210 return 1;
211 }
212
213 int
214 default_child_has_memory (struct target_ops *ops)
215 {
216 /* If no inferior selected, then we can't read memory here. */
217 if (ptid_equal (inferior_ptid, null_ptid))
218 return 0;
219
220 return 1;
221 }
222
223 int
224 default_child_has_stack (struct target_ops *ops)
225 {
226 /* If no inferior selected, there's no stack. */
227 if (ptid_equal (inferior_ptid, null_ptid))
228 return 0;
229
230 return 1;
231 }
232
233 int
234 default_child_has_registers (struct target_ops *ops)
235 {
236 /* Can't read registers from no inferior. */
237 if (ptid_equal (inferior_ptid, null_ptid))
238 return 0;
239
240 return 1;
241 }
242
243 int
244 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
245 {
246 /* If there's no thread selected, then we can't make it run through
247 hoops. */
248 if (ptid_equal (the_ptid, null_ptid))
249 return 0;
250
251 return 1;
252 }
253
254
255 int
256 target_has_all_memory_1 (void)
257 {
258 struct target_ops *t;
259
260 for (t = current_target.beneath; t != NULL; t = t->beneath)
261 if (t->to_has_all_memory (t))
262 return 1;
263
264 return 0;
265 }
266
267 int
268 target_has_memory_1 (void)
269 {
270 struct target_ops *t;
271
272 for (t = current_target.beneath; t != NULL; t = t->beneath)
273 if (t->to_has_memory (t))
274 return 1;
275
276 return 0;
277 }
278
279 int
280 target_has_stack_1 (void)
281 {
282 struct target_ops *t;
283
284 for (t = current_target.beneath; t != NULL; t = t->beneath)
285 if (t->to_has_stack (t))
286 return 1;
287
288 return 0;
289 }
290
291 int
292 target_has_registers_1 (void)
293 {
294 struct target_ops *t;
295
296 for (t = current_target.beneath; t != NULL; t = t->beneath)
297 if (t->to_has_registers (t))
298 return 1;
299
300 return 0;
301 }
302
303 int
304 target_has_execution_1 (ptid_t the_ptid)
305 {
306 struct target_ops *t;
307
308 for (t = current_target.beneath; t != NULL; t = t->beneath)
309 if (t->to_has_execution (t, the_ptid))
310 return 1;
311
312 return 0;
313 }
314
315 int
316 target_has_execution_current (void)
317 {
318 return target_has_execution_1 (inferior_ptid);
319 }
320
321 /* Complete initialization of T. This ensures that various fields in
322 T are set, if needed by the target implementation. */
323
324 void
325 complete_target_initialization (struct target_ops *t)
326 {
327 /* Provide default values for all "must have" methods. */
328
329 if (t->to_has_all_memory == NULL)
330 t->to_has_all_memory = return_zero;
331
332 if (t->to_has_memory == NULL)
333 t->to_has_memory = return_zero;
334
335 if (t->to_has_stack == NULL)
336 t->to_has_stack = return_zero;
337
338 if (t->to_has_registers == NULL)
339 t->to_has_registers = return_zero;
340
341 if (t->to_has_execution == NULL)
342 t->to_has_execution = return_zero_has_execution;
343
344 /* These methods can be called on an unpushed target and so require
345 a default implementation if the target might plausibly be the
346 default run target. */
347 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
348 && t->to_supports_non_stop != NULL));
349
350 install_delegators (t);
351 }
352
353 /* This is used to implement the various target commands. */
354
355 static void
356 open_target (char *args, int from_tty, struct cmd_list_element *command)
357 {
358 struct target_ops *ops = get_cmd_context (command);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
362 ops->to_shortname);
363
364 ops->to_open (args, from_tty);
365
366 if (targetdebug)
367 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
368 ops->to_shortname, args, from_tty);
369 }
370
371 /* Add possible target architecture T to the list and add a new
372 command 'target T->to_shortname'. Set COMPLETER as the command's
373 completer if not NULL. */
374
375 void
376 add_target_with_completer (struct target_ops *t,
377 completer_ftype *completer)
378 {
379 struct cmd_list_element *c;
380
381 complete_target_initialization (t);
382
383 if (!target_structs)
384 {
385 target_struct_allocsize = DEFAULT_ALLOCSIZE;
386 target_structs = (struct target_ops **) xmalloc
387 (target_struct_allocsize * sizeof (*target_structs));
388 }
389 if (target_struct_size >= target_struct_allocsize)
390 {
391 target_struct_allocsize *= 2;
392 target_structs = (struct target_ops **)
393 xrealloc ((char *) target_structs,
394 target_struct_allocsize * sizeof (*target_structs));
395 }
396 target_structs[target_struct_size++] = t;
397
398 if (targetlist == NULL)
399 add_prefix_cmd ("target", class_run, target_command, _("\
400 Connect to a target machine or process.\n\
401 The first argument is the type or protocol of the target machine.\n\
402 Remaining arguments are interpreted by the target protocol. For more\n\
403 information on the arguments for a particular protocol, type\n\
404 `help target ' followed by the protocol name."),
405 &targetlist, "target ", 0, &cmdlist);
406 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
407 set_cmd_sfunc (c, open_target);
408 set_cmd_context (c, t);
409 if (completer != NULL)
410 set_cmd_completer (c, completer);
411 }
412
413 /* Add a possible target architecture to the list. */
414
415 void
416 add_target (struct target_ops *t)
417 {
418 add_target_with_completer (t, NULL);
419 }
420
421 /* See target.h. */
422
423 void
424 add_deprecated_target_alias (struct target_ops *t, char *alias)
425 {
426 struct cmd_list_element *c;
427 char *alt;
428
429 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
430 see PR cli/15104. */
431 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
432 set_cmd_sfunc (c, open_target);
433 set_cmd_context (c, t);
434 alt = xstrprintf ("target %s", t->to_shortname);
435 deprecate_cmd (c, alt);
436 }
437
438 /* Stub functions */
439
440 void
441 target_kill (void)
442 {
443 current_target.to_kill (&current_target);
444 }
445
446 void
447 target_load (const char *arg, int from_tty)
448 {
449 target_dcache_invalidate ();
450 (*current_target.to_load) (&current_target, arg, from_tty);
451 }
452
453 void
454 target_terminal_inferior (void)
455 {
456 /* A background resume (``run&'') should leave GDB in control of the
457 terminal. Use target_can_async_p, not target_is_async_p, since at
458 this point the target is not async yet. However, if sync_execution
459 is not set, we know it will become async prior to resume. */
460 if (target_can_async_p () && !sync_execution)
461 return;
462
463 /* If GDB is resuming the inferior in the foreground, install
464 inferior's terminal modes. */
465 (*current_target.to_terminal_inferior) (&current_target);
466 }
467
468 /* See target.h. */
469
470 int
471 target_supports_terminal_ours (void)
472 {
473 struct target_ops *t;
474
475 for (t = current_target.beneath; t != NULL; t = t->beneath)
476 {
477 if (t->to_terminal_ours != delegate_terminal_ours
478 && t->to_terminal_ours != tdefault_terminal_ours)
479 return 1;
480 }
481
482 return 0;
483 }
484
485 static void
486 tcomplain (void)
487 {
488 error (_("You can't do that when your target is `%s'"),
489 current_target.to_shortname);
490 }
491
492 void
493 noprocess (void)
494 {
495 error (_("You can't do that without a process to debug."));
496 }
497
498 static void
499 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
500 {
501 printf_unfiltered (_("No saved terminal information.\n"));
502 }
503
504 /* A default implementation for the to_get_ada_task_ptid target method.
505
506 This function builds the PTID by using both LWP and TID as part of
507 the PTID lwp and tid elements. The pid used is the pid of the
508 inferior_ptid. */
509
510 static ptid_t
511 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
512 {
513 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
514 }
515
516 static enum exec_direction_kind
517 default_execution_direction (struct target_ops *self)
518 {
519 if (!target_can_execute_reverse)
520 return EXEC_FORWARD;
521 else if (!target_can_async_p ())
522 return EXEC_FORWARD;
523 else
524 gdb_assert_not_reached ("\
525 to_execution_direction must be implemented for reverse async");
526 }
527
528 /* Go through the target stack from top to bottom, copying over zero
529 entries in current_target, then filling in still empty entries. In
530 effect, we are doing class inheritance through the pushed target
531 vectors.
532
533 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
534 is currently implemented, is that it discards any knowledge of
535 which target an inherited method originally belonged to.
536 Consequently, new new target methods should instead explicitly and
537 locally search the target stack for the target that can handle the
538 request. */
539
540 static void
541 update_current_target (void)
542 {
543 struct target_ops *t;
544
545 /* First, reset current's contents. */
546 memset (&current_target, 0, sizeof (current_target));
547
548 /* Install the delegators. */
549 install_delegators (&current_target);
550
551 current_target.to_stratum = target_stack->to_stratum;
552
553 #define INHERIT(FIELD, TARGET) \
554 if (!current_target.FIELD) \
555 current_target.FIELD = (TARGET)->FIELD
556
557 /* Do not add any new INHERITs here. Instead, use the delegation
558 mechanism provided by make-target-delegates. */
559 for (t = target_stack; t; t = t->beneath)
560 {
561 INHERIT (to_shortname, t);
562 INHERIT (to_longname, t);
563 INHERIT (to_attach_no_wait, t);
564 INHERIT (to_have_steppable_watchpoint, t);
565 INHERIT (to_have_continuable_watchpoint, t);
566 INHERIT (to_has_thread_control, t);
567 }
568 #undef INHERIT
569
570 /* Finally, position the target-stack beneath the squashed
571 "current_target". That way code looking for a non-inherited
572 target method can quickly and simply find it. */
573 current_target.beneath = target_stack;
574
575 if (targetdebug)
576 setup_target_debug ();
577 }
578
579 /* Push a new target type into the stack of the existing target accessors,
580 possibly superseding some of the existing accessors.
581
582 Rather than allow an empty stack, we always have the dummy target at
583 the bottom stratum, so we can call the function vectors without
584 checking them. */
585
586 void
587 push_target (struct target_ops *t)
588 {
589 struct target_ops **cur;
590
591 /* Check magic number. If wrong, it probably means someone changed
592 the struct definition, but not all the places that initialize one. */
593 if (t->to_magic != OPS_MAGIC)
594 {
595 fprintf_unfiltered (gdb_stderr,
596 "Magic number of %s target struct wrong\n",
597 t->to_shortname);
598 internal_error (__FILE__, __LINE__,
599 _("failed internal consistency check"));
600 }
601
602 /* Find the proper stratum to install this target in. */
603 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
604 {
605 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
606 break;
607 }
608
609 /* If there's already targets at this stratum, remove them. */
610 /* FIXME: cagney/2003-10-15: I think this should be popping all
611 targets to CUR, and not just those at this stratum level. */
612 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
613 {
614 /* There's already something at this stratum level. Close it,
615 and un-hook it from the stack. */
616 struct target_ops *tmp = (*cur);
617
618 (*cur) = (*cur)->beneath;
619 tmp->beneath = NULL;
620 target_close (tmp);
621 }
622
623 /* We have removed all targets in our stratum, now add the new one. */
624 t->beneath = (*cur);
625 (*cur) = t;
626
627 update_current_target ();
628 }
629
630 /* Remove a target_ops vector from the stack, wherever it may be.
631 Return how many times it was removed (0 or 1). */
632
633 int
634 unpush_target (struct target_ops *t)
635 {
636 struct target_ops **cur;
637 struct target_ops *tmp;
638
639 if (t->to_stratum == dummy_stratum)
640 internal_error (__FILE__, __LINE__,
641 _("Attempt to unpush the dummy target"));
642
643 /* Look for the specified target. Note that we assume that a target
644 can only occur once in the target stack. */
645
646 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
647 {
648 if ((*cur) == t)
649 break;
650 }
651
652 /* If we don't find target_ops, quit. Only open targets should be
653 closed. */
654 if ((*cur) == NULL)
655 return 0;
656
657 /* Unchain the target. */
658 tmp = (*cur);
659 (*cur) = (*cur)->beneath;
660 tmp->beneath = NULL;
661
662 update_current_target ();
663
664 /* Finally close the target. Note we do this after unchaining, so
665 any target method calls from within the target_close
666 implementation don't end up in T anymore. */
667 target_close (t);
668
669 return 1;
670 }
671
672 void
673 pop_all_targets_above (enum strata above_stratum)
674 {
675 while ((int) (current_target.to_stratum) > (int) above_stratum)
676 {
677 if (!unpush_target (target_stack))
678 {
679 fprintf_unfiltered (gdb_stderr,
680 "pop_all_targets couldn't find target %s\n",
681 target_stack->to_shortname);
682 internal_error (__FILE__, __LINE__,
683 _("failed internal consistency check"));
684 break;
685 }
686 }
687 }
688
689 void
690 pop_all_targets (void)
691 {
692 pop_all_targets_above (dummy_stratum);
693 }
694
695 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
696
697 int
698 target_is_pushed (struct target_ops *t)
699 {
700 struct target_ops *cur;
701
702 /* Check magic number. If wrong, it probably means someone changed
703 the struct definition, but not all the places that initialize one. */
704 if (t->to_magic != OPS_MAGIC)
705 {
706 fprintf_unfiltered (gdb_stderr,
707 "Magic number of %s target struct wrong\n",
708 t->to_shortname);
709 internal_error (__FILE__, __LINE__,
710 _("failed internal consistency check"));
711 }
712
713 for (cur = target_stack; cur != NULL; cur = cur->beneath)
714 if (cur == t)
715 return 1;
716
717 return 0;
718 }
719
720 /* Default implementation of to_get_thread_local_address. */
721
722 static void
723 generic_tls_error (void)
724 {
725 throw_error (TLS_GENERIC_ERROR,
726 _("Cannot find thread-local variables on this target"));
727 }
728
729 /* Using the objfile specified in OBJFILE, find the address for the
730 current thread's thread-local storage with offset OFFSET. */
731 CORE_ADDR
732 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
733 {
734 volatile CORE_ADDR addr = 0;
735 struct target_ops *target = &current_target;
736
737 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
738 {
739 ptid_t ptid = inferior_ptid;
740 volatile struct gdb_exception ex;
741
742 TRY_CATCH (ex, RETURN_MASK_ALL)
743 {
744 CORE_ADDR lm_addr;
745
746 /* Fetch the load module address for this objfile. */
747 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
748 objfile);
749
750 addr = target->to_get_thread_local_address (target, ptid,
751 lm_addr, offset);
752 }
753 /* If an error occurred, print TLS related messages here. Otherwise,
754 throw the error to some higher catcher. */
755 if (ex.reason < 0)
756 {
757 int objfile_is_library = (objfile->flags & OBJF_SHARED);
758
759 switch (ex.error)
760 {
761 case TLS_NO_LIBRARY_SUPPORT_ERROR:
762 error (_("Cannot find thread-local variables "
763 "in this thread library."));
764 break;
765 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
766 if (objfile_is_library)
767 error (_("Cannot find shared library `%s' in dynamic"
768 " linker's load module list"), objfile_name (objfile));
769 else
770 error (_("Cannot find executable file `%s' in dynamic"
771 " linker's load module list"), objfile_name (objfile));
772 break;
773 case TLS_NOT_ALLOCATED_YET_ERROR:
774 if (objfile_is_library)
775 error (_("The inferior has not yet allocated storage for"
776 " thread-local variables in\n"
777 "the shared library `%s'\n"
778 "for %s"),
779 objfile_name (objfile), target_pid_to_str (ptid));
780 else
781 error (_("The inferior has not yet allocated storage for"
782 " thread-local variables in\n"
783 "the executable `%s'\n"
784 "for %s"),
785 objfile_name (objfile), target_pid_to_str (ptid));
786 break;
787 case TLS_GENERIC_ERROR:
788 if (objfile_is_library)
789 error (_("Cannot find thread-local storage for %s, "
790 "shared library %s:\n%s"),
791 target_pid_to_str (ptid),
792 objfile_name (objfile), ex.message);
793 else
794 error (_("Cannot find thread-local storage for %s, "
795 "executable file %s:\n%s"),
796 target_pid_to_str (ptid),
797 objfile_name (objfile), ex.message);
798 break;
799 default:
800 throw_exception (ex);
801 break;
802 }
803 }
804 }
805 /* It wouldn't be wrong here to try a gdbarch method, too; finding
806 TLS is an ABI-specific thing. But we don't do that yet. */
807 else
808 error (_("Cannot find thread-local variables on this target"));
809
810 return addr;
811 }
812
813 const char *
814 target_xfer_status_to_string (enum target_xfer_status status)
815 {
816 #define CASE(X) case X: return #X
817 switch (status)
818 {
819 CASE(TARGET_XFER_E_IO);
820 CASE(TARGET_XFER_UNAVAILABLE);
821 default:
822 return "<unknown>";
823 }
824 #undef CASE
825 };
826
827
828 #undef MIN
829 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
830
831 /* target_read_string -- read a null terminated string, up to LEN bytes,
832 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
833 Set *STRING to a pointer to malloc'd memory containing the data; the caller
834 is responsible for freeing it. Return the number of bytes successfully
835 read. */
836
837 int
838 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
839 {
840 int tlen, offset, i;
841 gdb_byte buf[4];
842 int errcode = 0;
843 char *buffer;
844 int buffer_allocated;
845 char *bufptr;
846 unsigned int nbytes_read = 0;
847
848 gdb_assert (string);
849
850 /* Small for testing. */
851 buffer_allocated = 4;
852 buffer = xmalloc (buffer_allocated);
853 bufptr = buffer;
854
855 while (len > 0)
856 {
857 tlen = MIN (len, 4 - (memaddr & 3));
858 offset = memaddr & 3;
859
860 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
861 if (errcode != 0)
862 {
863 /* The transfer request might have crossed the boundary to an
864 unallocated region of memory. Retry the transfer, requesting
865 a single byte. */
866 tlen = 1;
867 offset = 0;
868 errcode = target_read_memory (memaddr, buf, 1);
869 if (errcode != 0)
870 goto done;
871 }
872
873 if (bufptr - buffer + tlen > buffer_allocated)
874 {
875 unsigned int bytes;
876
877 bytes = bufptr - buffer;
878 buffer_allocated *= 2;
879 buffer = xrealloc (buffer, buffer_allocated);
880 bufptr = buffer + bytes;
881 }
882
883 for (i = 0; i < tlen; i++)
884 {
885 *bufptr++ = buf[i + offset];
886 if (buf[i + offset] == '\000')
887 {
888 nbytes_read += i + 1;
889 goto done;
890 }
891 }
892
893 memaddr += tlen;
894 len -= tlen;
895 nbytes_read += tlen;
896 }
897 done:
898 *string = buffer;
899 if (errnop != NULL)
900 *errnop = errcode;
901 return nbytes_read;
902 }
903
904 struct target_section_table *
905 target_get_section_table (struct target_ops *target)
906 {
907 return (*target->to_get_section_table) (target);
908 }
909
910 /* Find a section containing ADDR. */
911
912 struct target_section *
913 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
914 {
915 struct target_section_table *table = target_get_section_table (target);
916 struct target_section *secp;
917
918 if (table == NULL)
919 return NULL;
920
921 for (secp = table->sections; secp < table->sections_end; secp++)
922 {
923 if (addr >= secp->addr && addr < secp->endaddr)
924 return secp;
925 }
926 return NULL;
927 }
928
929 /* Read memory from more than one valid target. A core file, for
930 instance, could have some of memory but delegate other bits to
931 the target below it. So, we must manually try all targets. */
932
933 static enum target_xfer_status
934 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
935 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
936 ULONGEST *xfered_len)
937 {
938 enum target_xfer_status res;
939
940 do
941 {
942 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
943 readbuf, writebuf, memaddr, len,
944 xfered_len);
945 if (res == TARGET_XFER_OK)
946 break;
947
948 /* Stop if the target reports that the memory is not available. */
949 if (res == TARGET_XFER_UNAVAILABLE)
950 break;
951
952 /* We want to continue past core files to executables, but not
953 past a running target's memory. */
954 if (ops->to_has_all_memory (ops))
955 break;
956
957 ops = ops->beneath;
958 }
959 while (ops != NULL);
960
961 /* The cache works at the raw memory level. Make sure the cache
962 gets updated with raw contents no matter what kind of memory
963 object was originally being written. Note we do write-through
964 first, so that if it fails, we don't write to the cache contents
965 that never made it to the target. */
966 if (writebuf != NULL
967 && !ptid_equal (inferior_ptid, null_ptid)
968 && target_dcache_init_p ()
969 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
970 {
971 DCACHE *dcache = target_dcache_get ();
972
973 /* Note that writing to an area of memory which wasn't present
974 in the cache doesn't cause it to be loaded in. */
975 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
976 }
977
978 return res;
979 }
980
981 /* Perform a partial memory transfer.
982 For docs see target.h, to_xfer_partial. */
983
984 static enum target_xfer_status
985 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
986 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
987 ULONGEST len, ULONGEST *xfered_len)
988 {
989 enum target_xfer_status res;
990 int reg_len;
991 struct mem_region *region;
992 struct inferior *inf;
993
994 /* For accesses to unmapped overlay sections, read directly from
995 files. Must do this first, as MEMADDR may need adjustment. */
996 if (readbuf != NULL && overlay_debugging)
997 {
998 struct obj_section *section = find_pc_overlay (memaddr);
999
1000 if (pc_in_unmapped_range (memaddr, section))
1001 {
1002 struct target_section_table *table
1003 = target_get_section_table (ops);
1004 const char *section_name = section->the_bfd_section->name;
1005
1006 memaddr = overlay_mapped_address (memaddr, section);
1007 return section_table_xfer_memory_partial (readbuf, writebuf,
1008 memaddr, len, xfered_len,
1009 table->sections,
1010 table->sections_end,
1011 section_name);
1012 }
1013 }
1014
1015 /* Try the executable files, if "trust-readonly-sections" is set. */
1016 if (readbuf != NULL && trust_readonly)
1017 {
1018 struct target_section *secp;
1019 struct target_section_table *table;
1020
1021 secp = target_section_by_addr (ops, memaddr);
1022 if (secp != NULL
1023 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1024 secp->the_bfd_section)
1025 & SEC_READONLY))
1026 {
1027 table = target_get_section_table (ops);
1028 return section_table_xfer_memory_partial (readbuf, writebuf,
1029 memaddr, len, xfered_len,
1030 table->sections,
1031 table->sections_end,
1032 NULL);
1033 }
1034 }
1035
1036 /* Try GDB's internal data cache. */
1037 region = lookup_mem_region (memaddr);
1038 /* region->hi == 0 means there's no upper bound. */
1039 if (memaddr + len < region->hi || region->hi == 0)
1040 reg_len = len;
1041 else
1042 reg_len = region->hi - memaddr;
1043
1044 switch (region->attrib.mode)
1045 {
1046 case MEM_RO:
1047 if (writebuf != NULL)
1048 return TARGET_XFER_E_IO;
1049 break;
1050
1051 case MEM_WO:
1052 if (readbuf != NULL)
1053 return TARGET_XFER_E_IO;
1054 break;
1055
1056 case MEM_FLASH:
1057 /* We only support writing to flash during "load" for now. */
1058 if (writebuf != NULL)
1059 error (_("Writing to flash memory forbidden in this context"));
1060 break;
1061
1062 case MEM_NONE:
1063 return TARGET_XFER_E_IO;
1064 }
1065
1066 if (!ptid_equal (inferior_ptid, null_ptid))
1067 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1068 else
1069 inf = NULL;
1070
1071 if (inf != NULL
1072 && readbuf != NULL
1073 /* The dcache reads whole cache lines; that doesn't play well
1074 with reading from a trace buffer, because reading outside of
1075 the collected memory range fails. */
1076 && get_traceframe_number () == -1
1077 && (region->attrib.cache
1078 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1079 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1080 {
1081 DCACHE *dcache = target_dcache_get_or_init ();
1082
1083 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1084 reg_len, xfered_len);
1085 }
1086
1087 /* If none of those methods found the memory we wanted, fall back
1088 to a target partial transfer. Normally a single call to
1089 to_xfer_partial is enough; if it doesn't recognize an object
1090 it will call the to_xfer_partial of the next target down.
1091 But for memory this won't do. Memory is the only target
1092 object which can be read from more than one valid target.
1093 A core file, for instance, could have some of memory but
1094 delegate other bits to the target below it. So, we must
1095 manually try all targets. */
1096
1097 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1098 xfered_len);
1099
1100 /* If we still haven't got anything, return the last error. We
1101 give up. */
1102 return res;
1103 }
1104
1105 /* Perform a partial memory transfer. For docs see target.h,
1106 to_xfer_partial. */
1107
1108 static enum target_xfer_status
1109 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1110 gdb_byte *readbuf, const gdb_byte *writebuf,
1111 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1112 {
1113 enum target_xfer_status res;
1114
1115 /* Zero length requests are ok and require no work. */
1116 if (len == 0)
1117 return TARGET_XFER_EOF;
1118
1119 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1120 breakpoint insns, thus hiding out from higher layers whether
1121 there are software breakpoints inserted in the code stream. */
1122 if (readbuf != NULL)
1123 {
1124 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1125 xfered_len);
1126
1127 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1128 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1129 }
1130 else
1131 {
1132 void *buf;
1133 struct cleanup *old_chain;
1134
1135 /* A large write request is likely to be partially satisfied
1136 by memory_xfer_partial_1. We will continually malloc
1137 and free a copy of the entire write request for breakpoint
1138 shadow handling even though we only end up writing a small
1139 subset of it. Cap writes to 4KB to mitigate this. */
1140 len = min (4096, len);
1141
1142 buf = xmalloc (len);
1143 old_chain = make_cleanup (xfree, buf);
1144 memcpy (buf, writebuf, len);
1145
1146 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1147 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1148 xfered_len);
1149
1150 do_cleanups (old_chain);
1151 }
1152
1153 return res;
1154 }
1155
1156 static void
1157 restore_show_memory_breakpoints (void *arg)
1158 {
1159 show_memory_breakpoints = (uintptr_t) arg;
1160 }
1161
1162 struct cleanup *
1163 make_show_memory_breakpoints_cleanup (int show)
1164 {
1165 int current = show_memory_breakpoints;
1166
1167 show_memory_breakpoints = show;
1168 return make_cleanup (restore_show_memory_breakpoints,
1169 (void *) (uintptr_t) current);
1170 }
1171
1172 /* For docs see target.h, to_xfer_partial. */
1173
1174 enum target_xfer_status
1175 target_xfer_partial (struct target_ops *ops,
1176 enum target_object object, const char *annex,
1177 gdb_byte *readbuf, const gdb_byte *writebuf,
1178 ULONGEST offset, ULONGEST len,
1179 ULONGEST *xfered_len)
1180 {
1181 enum target_xfer_status retval;
1182
1183 gdb_assert (ops->to_xfer_partial != NULL);
1184
1185 /* Transfer is done when LEN is zero. */
1186 if (len == 0)
1187 return TARGET_XFER_EOF;
1188
1189 if (writebuf && !may_write_memory)
1190 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1191 core_addr_to_string_nz (offset), plongest (len));
1192
1193 *xfered_len = 0;
1194
1195 /* If this is a memory transfer, let the memory-specific code
1196 have a look at it instead. Memory transfers are more
1197 complicated. */
1198 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1199 || object == TARGET_OBJECT_CODE_MEMORY)
1200 retval = memory_xfer_partial (ops, object, readbuf,
1201 writebuf, offset, len, xfered_len);
1202 else if (object == TARGET_OBJECT_RAW_MEMORY)
1203 {
1204 /* Request the normal memory object from other layers. */
1205 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1206 xfered_len);
1207 }
1208 else
1209 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1210 writebuf, offset, len, xfered_len);
1211
1212 if (targetdebug)
1213 {
1214 const unsigned char *myaddr = NULL;
1215
1216 fprintf_unfiltered (gdb_stdlog,
1217 "%s:target_xfer_partial "
1218 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1219 ops->to_shortname,
1220 (int) object,
1221 (annex ? annex : "(null)"),
1222 host_address_to_string (readbuf),
1223 host_address_to_string (writebuf),
1224 core_addr_to_string_nz (offset),
1225 pulongest (len), retval,
1226 pulongest (*xfered_len));
1227
1228 if (readbuf)
1229 myaddr = readbuf;
1230 if (writebuf)
1231 myaddr = writebuf;
1232 if (retval == TARGET_XFER_OK && myaddr != NULL)
1233 {
1234 int i;
1235
1236 fputs_unfiltered (", bytes =", gdb_stdlog);
1237 for (i = 0; i < *xfered_len; i++)
1238 {
1239 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1240 {
1241 if (targetdebug < 2 && i > 0)
1242 {
1243 fprintf_unfiltered (gdb_stdlog, " ...");
1244 break;
1245 }
1246 fprintf_unfiltered (gdb_stdlog, "\n");
1247 }
1248
1249 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1250 }
1251 }
1252
1253 fputc_unfiltered ('\n', gdb_stdlog);
1254 }
1255
1256 /* Check implementations of to_xfer_partial update *XFERED_LEN
1257 properly. Do assertion after printing debug messages, so that we
1258 can find more clues on assertion failure from debugging messages. */
1259 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1260 gdb_assert (*xfered_len > 0);
1261
1262 return retval;
1263 }
1264
1265 /* Read LEN bytes of target memory at address MEMADDR, placing the
1266 results in GDB's memory at MYADDR. Returns either 0 for success or
1267 TARGET_XFER_E_IO if any error occurs.
1268
1269 If an error occurs, no guarantee is made about the contents of the data at
1270 MYADDR. In particular, the caller should not depend upon partial reads
1271 filling the buffer with good data. There is no way for the caller to know
1272 how much good data might have been transfered anyway. Callers that can
1273 deal with partial reads should call target_read (which will retry until
1274 it makes no progress, and then return how much was transferred). */
1275
1276 int
1277 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1278 {
1279 /* Dispatch to the topmost target, not the flattened current_target.
1280 Memory accesses check target->to_has_(all_)memory, and the
1281 flattened target doesn't inherit those. */
1282 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1283 myaddr, memaddr, len) == len)
1284 return 0;
1285 else
1286 return TARGET_XFER_E_IO;
1287 }
1288
1289 /* Like target_read_memory, but specify explicitly that this is a read
1290 from the target's raw memory. That is, this read bypasses the
1291 dcache, breakpoint shadowing, etc. */
1292
1293 int
1294 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1295 {
1296 /* See comment in target_read_memory about why the request starts at
1297 current_target.beneath. */
1298 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1299 myaddr, memaddr, len) == len)
1300 return 0;
1301 else
1302 return TARGET_XFER_E_IO;
1303 }
1304
1305 /* Like target_read_memory, but specify explicitly that this is a read from
1306 the target's stack. This may trigger different cache behavior. */
1307
1308 int
1309 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1310 {
1311 /* See comment in target_read_memory about why the request starts at
1312 current_target.beneath. */
1313 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1314 myaddr, memaddr, len) == len)
1315 return 0;
1316 else
1317 return TARGET_XFER_E_IO;
1318 }
1319
1320 /* Like target_read_memory, but specify explicitly that this is a read from
1321 the target's code. This may trigger different cache behavior. */
1322
1323 int
1324 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1325 {
1326 /* See comment in target_read_memory about why the request starts at
1327 current_target.beneath. */
1328 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1329 myaddr, memaddr, len) == len)
1330 return 0;
1331 else
1332 return TARGET_XFER_E_IO;
1333 }
1334
1335 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1336 Returns either 0 for success or TARGET_XFER_E_IO if any
1337 error occurs. If an error occurs, no guarantee is made about how
1338 much data got written. Callers that can deal with partial writes
1339 should call target_write. */
1340
1341 int
1342 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1343 {
1344 /* See comment in target_read_memory about why the request starts at
1345 current_target.beneath. */
1346 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1347 myaddr, memaddr, len) == len)
1348 return 0;
1349 else
1350 return TARGET_XFER_E_IO;
1351 }
1352
1353 /* Write LEN bytes from MYADDR to target raw memory at address
1354 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1355 if any error occurs. If an error occurs, no guarantee is made
1356 about how much data got written. Callers that can deal with
1357 partial writes should call target_write. */
1358
1359 int
1360 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1361 {
1362 /* See comment in target_read_memory about why the request starts at
1363 current_target.beneath. */
1364 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1365 myaddr, memaddr, len) == len)
1366 return 0;
1367 else
1368 return TARGET_XFER_E_IO;
1369 }
1370
1371 /* Fetch the target's memory map. */
1372
1373 VEC(mem_region_s) *
1374 target_memory_map (void)
1375 {
1376 VEC(mem_region_s) *result;
1377 struct mem_region *last_one, *this_one;
1378 int ix;
1379 struct target_ops *t;
1380
1381 result = current_target.to_memory_map (&current_target);
1382 if (result == NULL)
1383 return NULL;
1384
1385 qsort (VEC_address (mem_region_s, result),
1386 VEC_length (mem_region_s, result),
1387 sizeof (struct mem_region), mem_region_cmp);
1388
1389 /* Check that regions do not overlap. Simultaneously assign
1390 a numbering for the "mem" commands to use to refer to
1391 each region. */
1392 last_one = NULL;
1393 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1394 {
1395 this_one->number = ix;
1396
1397 if (last_one && last_one->hi > this_one->lo)
1398 {
1399 warning (_("Overlapping regions in memory map: ignoring"));
1400 VEC_free (mem_region_s, result);
1401 return NULL;
1402 }
1403 last_one = this_one;
1404 }
1405
1406 return result;
1407 }
1408
1409 void
1410 target_flash_erase (ULONGEST address, LONGEST length)
1411 {
1412 current_target.to_flash_erase (&current_target, address, length);
1413 }
1414
1415 void
1416 target_flash_done (void)
1417 {
1418 current_target.to_flash_done (&current_target);
1419 }
1420
1421 static void
1422 show_trust_readonly (struct ui_file *file, int from_tty,
1423 struct cmd_list_element *c, const char *value)
1424 {
1425 fprintf_filtered (file,
1426 _("Mode for reading from readonly sections is %s.\n"),
1427 value);
1428 }
1429
1430 /* Target vector read/write partial wrapper functions. */
1431
1432 static enum target_xfer_status
1433 target_read_partial (struct target_ops *ops,
1434 enum target_object object,
1435 const char *annex, gdb_byte *buf,
1436 ULONGEST offset, ULONGEST len,
1437 ULONGEST *xfered_len)
1438 {
1439 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1440 xfered_len);
1441 }
1442
1443 static enum target_xfer_status
1444 target_write_partial (struct target_ops *ops,
1445 enum target_object object,
1446 const char *annex, const gdb_byte *buf,
1447 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1448 {
1449 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1450 xfered_len);
1451 }
1452
1453 /* Wrappers to perform the full transfer. */
1454
1455 /* For docs on target_read see target.h. */
1456
1457 LONGEST
1458 target_read (struct target_ops *ops,
1459 enum target_object object,
1460 const char *annex, gdb_byte *buf,
1461 ULONGEST offset, LONGEST len)
1462 {
1463 LONGEST xfered = 0;
1464
1465 while (xfered < len)
1466 {
1467 ULONGEST xfered_len;
1468 enum target_xfer_status status;
1469
1470 status = target_read_partial (ops, object, annex,
1471 (gdb_byte *) buf + xfered,
1472 offset + xfered, len - xfered,
1473 &xfered_len);
1474
1475 /* Call an observer, notifying them of the xfer progress? */
1476 if (status == TARGET_XFER_EOF)
1477 return xfered;
1478 else if (status == TARGET_XFER_OK)
1479 {
1480 xfered += xfered_len;
1481 QUIT;
1482 }
1483 else
1484 return -1;
1485
1486 }
1487 return len;
1488 }
1489
1490 /* Assuming that the entire [begin, end) range of memory cannot be
1491 read, try to read whatever subrange is possible to read.
1492
1493 The function returns, in RESULT, either zero or one memory block.
1494 If there's a readable subrange at the beginning, it is completely
1495 read and returned. Any further readable subrange will not be read.
1496 Otherwise, if there's a readable subrange at the end, it will be
1497 completely read and returned. Any readable subranges before it
1498 (obviously, not starting at the beginning), will be ignored. In
1499 other cases -- either no readable subrange, or readable subrange(s)
1500 that is neither at the beginning, or end, nothing is returned.
1501
1502 The purpose of this function is to handle a read across a boundary
1503 of accessible memory in a case when memory map is not available.
1504 The above restrictions are fine for this case, but will give
1505 incorrect results if the memory is 'patchy'. However, supporting
1506 'patchy' memory would require trying to read every single byte,
1507 and it seems unacceptable solution. Explicit memory map is
1508 recommended for this case -- and target_read_memory_robust will
1509 take care of reading multiple ranges then. */
1510
1511 static void
1512 read_whatever_is_readable (struct target_ops *ops,
1513 ULONGEST begin, ULONGEST end,
1514 VEC(memory_read_result_s) **result)
1515 {
1516 gdb_byte *buf = xmalloc (end - begin);
1517 ULONGEST current_begin = begin;
1518 ULONGEST current_end = end;
1519 int forward;
1520 memory_read_result_s r;
1521 ULONGEST xfered_len;
1522
1523 /* If we previously failed to read 1 byte, nothing can be done here. */
1524 if (end - begin <= 1)
1525 {
1526 xfree (buf);
1527 return;
1528 }
1529
1530 /* Check that either first or the last byte is readable, and give up
1531 if not. This heuristic is meant to permit reading accessible memory
1532 at the boundary of accessible region. */
1533 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1534 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1535 {
1536 forward = 1;
1537 ++current_begin;
1538 }
1539 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1540 buf + (end-begin) - 1, end - 1, 1,
1541 &xfered_len) == TARGET_XFER_OK)
1542 {
1543 forward = 0;
1544 --current_end;
1545 }
1546 else
1547 {
1548 xfree (buf);
1549 return;
1550 }
1551
1552 /* Loop invariant is that the [current_begin, current_end) was previously
1553 found to be not readable as a whole.
1554
1555 Note loop condition -- if the range has 1 byte, we can't divide the range
1556 so there's no point trying further. */
1557 while (current_end - current_begin > 1)
1558 {
1559 ULONGEST first_half_begin, first_half_end;
1560 ULONGEST second_half_begin, second_half_end;
1561 LONGEST xfer;
1562 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1563
1564 if (forward)
1565 {
1566 first_half_begin = current_begin;
1567 first_half_end = middle;
1568 second_half_begin = middle;
1569 second_half_end = current_end;
1570 }
1571 else
1572 {
1573 first_half_begin = middle;
1574 first_half_end = current_end;
1575 second_half_begin = current_begin;
1576 second_half_end = middle;
1577 }
1578
1579 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1580 buf + (first_half_begin - begin),
1581 first_half_begin,
1582 first_half_end - first_half_begin);
1583
1584 if (xfer == first_half_end - first_half_begin)
1585 {
1586 /* This half reads up fine. So, the error must be in the
1587 other half. */
1588 current_begin = second_half_begin;
1589 current_end = second_half_end;
1590 }
1591 else
1592 {
1593 /* This half is not readable. Because we've tried one byte, we
1594 know some part of this half if actually redable. Go to the next
1595 iteration to divide again and try to read.
1596
1597 We don't handle the other half, because this function only tries
1598 to read a single readable subrange. */
1599 current_begin = first_half_begin;
1600 current_end = first_half_end;
1601 }
1602 }
1603
1604 if (forward)
1605 {
1606 /* The [begin, current_begin) range has been read. */
1607 r.begin = begin;
1608 r.end = current_begin;
1609 r.data = buf;
1610 }
1611 else
1612 {
1613 /* The [current_end, end) range has been read. */
1614 LONGEST rlen = end - current_end;
1615
1616 r.data = xmalloc (rlen);
1617 memcpy (r.data, buf + current_end - begin, rlen);
1618 r.begin = current_end;
1619 r.end = end;
1620 xfree (buf);
1621 }
1622 VEC_safe_push(memory_read_result_s, (*result), &r);
1623 }
1624
1625 void
1626 free_memory_read_result_vector (void *x)
1627 {
1628 VEC(memory_read_result_s) *v = x;
1629 memory_read_result_s *current;
1630 int ix;
1631
1632 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1633 {
1634 xfree (current->data);
1635 }
1636 VEC_free (memory_read_result_s, v);
1637 }
1638
1639 VEC(memory_read_result_s) *
1640 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1641 {
1642 VEC(memory_read_result_s) *result = 0;
1643
1644 LONGEST xfered = 0;
1645 while (xfered < len)
1646 {
1647 struct mem_region *region = lookup_mem_region (offset + xfered);
1648 LONGEST rlen;
1649
1650 /* If there is no explicit region, a fake one should be created. */
1651 gdb_assert (region);
1652
1653 if (region->hi == 0)
1654 rlen = len - xfered;
1655 else
1656 rlen = region->hi - offset;
1657
1658 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1659 {
1660 /* Cannot read this region. Note that we can end up here only
1661 if the region is explicitly marked inaccessible, or
1662 'inaccessible-by-default' is in effect. */
1663 xfered += rlen;
1664 }
1665 else
1666 {
1667 LONGEST to_read = min (len - xfered, rlen);
1668 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1669
1670 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1671 (gdb_byte *) buffer,
1672 offset + xfered, to_read);
1673 /* Call an observer, notifying them of the xfer progress? */
1674 if (xfer <= 0)
1675 {
1676 /* Got an error reading full chunk. See if maybe we can read
1677 some subrange. */
1678 xfree (buffer);
1679 read_whatever_is_readable (ops, offset + xfered,
1680 offset + xfered + to_read, &result);
1681 xfered += to_read;
1682 }
1683 else
1684 {
1685 struct memory_read_result r;
1686 r.data = buffer;
1687 r.begin = offset + xfered;
1688 r.end = r.begin + xfer;
1689 VEC_safe_push (memory_read_result_s, result, &r);
1690 xfered += xfer;
1691 }
1692 QUIT;
1693 }
1694 }
1695 return result;
1696 }
1697
1698
1699 /* An alternative to target_write with progress callbacks. */
1700
1701 LONGEST
1702 target_write_with_progress (struct target_ops *ops,
1703 enum target_object object,
1704 const char *annex, const gdb_byte *buf,
1705 ULONGEST offset, LONGEST len,
1706 void (*progress) (ULONGEST, void *), void *baton)
1707 {
1708 LONGEST xfered = 0;
1709
1710 /* Give the progress callback a chance to set up. */
1711 if (progress)
1712 (*progress) (0, baton);
1713
1714 while (xfered < len)
1715 {
1716 ULONGEST xfered_len;
1717 enum target_xfer_status status;
1718
1719 status = target_write_partial (ops, object, annex,
1720 (gdb_byte *) buf + xfered,
1721 offset + xfered, len - xfered,
1722 &xfered_len);
1723
1724 if (status != TARGET_XFER_OK)
1725 return status == TARGET_XFER_EOF ? xfered : -1;
1726
1727 if (progress)
1728 (*progress) (xfered_len, baton);
1729
1730 xfered += xfered_len;
1731 QUIT;
1732 }
1733 return len;
1734 }
1735
1736 /* For docs on target_write see target.h. */
1737
1738 LONGEST
1739 target_write (struct target_ops *ops,
1740 enum target_object object,
1741 const char *annex, const gdb_byte *buf,
1742 ULONGEST offset, LONGEST len)
1743 {
1744 return target_write_with_progress (ops, object, annex, buf, offset, len,
1745 NULL, NULL);
1746 }
1747
1748 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1749 the size of the transferred data. PADDING additional bytes are
1750 available in *BUF_P. This is a helper function for
1751 target_read_alloc; see the declaration of that function for more
1752 information. */
1753
1754 static LONGEST
1755 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1756 const char *annex, gdb_byte **buf_p, int padding)
1757 {
1758 size_t buf_alloc, buf_pos;
1759 gdb_byte *buf;
1760
1761 /* This function does not have a length parameter; it reads the
1762 entire OBJECT). Also, it doesn't support objects fetched partly
1763 from one target and partly from another (in a different stratum,
1764 e.g. a core file and an executable). Both reasons make it
1765 unsuitable for reading memory. */
1766 gdb_assert (object != TARGET_OBJECT_MEMORY);
1767
1768 /* Start by reading up to 4K at a time. The target will throttle
1769 this number down if necessary. */
1770 buf_alloc = 4096;
1771 buf = xmalloc (buf_alloc);
1772 buf_pos = 0;
1773 while (1)
1774 {
1775 ULONGEST xfered_len;
1776 enum target_xfer_status status;
1777
1778 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1779 buf_pos, buf_alloc - buf_pos - padding,
1780 &xfered_len);
1781
1782 if (status == TARGET_XFER_EOF)
1783 {
1784 /* Read all there was. */
1785 if (buf_pos == 0)
1786 xfree (buf);
1787 else
1788 *buf_p = buf;
1789 return buf_pos;
1790 }
1791 else if (status != TARGET_XFER_OK)
1792 {
1793 /* An error occurred. */
1794 xfree (buf);
1795 return TARGET_XFER_E_IO;
1796 }
1797
1798 buf_pos += xfered_len;
1799
1800 /* If the buffer is filling up, expand it. */
1801 if (buf_alloc < buf_pos * 2)
1802 {
1803 buf_alloc *= 2;
1804 buf = xrealloc (buf, buf_alloc);
1805 }
1806
1807 QUIT;
1808 }
1809 }
1810
1811 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1812 the size of the transferred data. See the declaration in "target.h"
1813 function for more information about the return value. */
1814
1815 LONGEST
1816 target_read_alloc (struct target_ops *ops, enum target_object object,
1817 const char *annex, gdb_byte **buf_p)
1818 {
1819 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1820 }
1821
1822 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1823 returned as a string, allocated using xmalloc. If an error occurs
1824 or the transfer is unsupported, NULL is returned. Empty objects
1825 are returned as allocated but empty strings. A warning is issued
1826 if the result contains any embedded NUL bytes. */
1827
1828 char *
1829 target_read_stralloc (struct target_ops *ops, enum target_object object,
1830 const char *annex)
1831 {
1832 gdb_byte *buffer;
1833 char *bufstr;
1834 LONGEST i, transferred;
1835
1836 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1837 bufstr = (char *) buffer;
1838
1839 if (transferred < 0)
1840 return NULL;
1841
1842 if (transferred == 0)
1843 return xstrdup ("");
1844
1845 bufstr[transferred] = 0;
1846
1847 /* Check for embedded NUL bytes; but allow trailing NULs. */
1848 for (i = strlen (bufstr); i < transferred; i++)
1849 if (bufstr[i] != 0)
1850 {
1851 warning (_("target object %d, annex %s, "
1852 "contained unexpected null characters"),
1853 (int) object, annex ? annex : "(none)");
1854 break;
1855 }
1856
1857 return bufstr;
1858 }
1859
1860 /* Memory transfer methods. */
1861
1862 void
1863 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1864 LONGEST len)
1865 {
1866 /* This method is used to read from an alternate, non-current
1867 target. This read must bypass the overlay support (as symbols
1868 don't match this target), and GDB's internal cache (wrong cache
1869 for this target). */
1870 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1871 != len)
1872 memory_error (TARGET_XFER_E_IO, addr);
1873 }
1874
1875 ULONGEST
1876 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1877 int len, enum bfd_endian byte_order)
1878 {
1879 gdb_byte buf[sizeof (ULONGEST)];
1880
1881 gdb_assert (len <= sizeof (buf));
1882 get_target_memory (ops, addr, buf, len);
1883 return extract_unsigned_integer (buf, len, byte_order);
1884 }
1885
1886 /* See target.h. */
1887
1888 int
1889 target_insert_breakpoint (struct gdbarch *gdbarch,
1890 struct bp_target_info *bp_tgt)
1891 {
1892 if (!may_insert_breakpoints)
1893 {
1894 warning (_("May not insert breakpoints"));
1895 return 1;
1896 }
1897
1898 return current_target.to_insert_breakpoint (&current_target,
1899 gdbarch, bp_tgt);
1900 }
1901
1902 /* See target.h. */
1903
1904 int
1905 target_remove_breakpoint (struct gdbarch *gdbarch,
1906 struct bp_target_info *bp_tgt)
1907 {
1908 /* This is kind of a weird case to handle, but the permission might
1909 have been changed after breakpoints were inserted - in which case
1910 we should just take the user literally and assume that any
1911 breakpoints should be left in place. */
1912 if (!may_insert_breakpoints)
1913 {
1914 warning (_("May not remove breakpoints"));
1915 return 1;
1916 }
1917
1918 return current_target.to_remove_breakpoint (&current_target,
1919 gdbarch, bp_tgt);
1920 }
1921
1922 static void
1923 target_info (char *args, int from_tty)
1924 {
1925 struct target_ops *t;
1926 int has_all_mem = 0;
1927
1928 if (symfile_objfile != NULL)
1929 printf_unfiltered (_("Symbols from \"%s\".\n"),
1930 objfile_name (symfile_objfile));
1931
1932 for (t = target_stack; t != NULL; t = t->beneath)
1933 {
1934 if (!(*t->to_has_memory) (t))
1935 continue;
1936
1937 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1938 continue;
1939 if (has_all_mem)
1940 printf_unfiltered (_("\tWhile running this, "
1941 "GDB does not access memory from...\n"));
1942 printf_unfiltered ("%s:\n", t->to_longname);
1943 (t->to_files_info) (t);
1944 has_all_mem = (*t->to_has_all_memory) (t);
1945 }
1946 }
1947
1948 /* This function is called before any new inferior is created, e.g.
1949 by running a program, attaching, or connecting to a target.
1950 It cleans up any state from previous invocations which might
1951 change between runs. This is a subset of what target_preopen
1952 resets (things which might change between targets). */
1953
1954 void
1955 target_pre_inferior (int from_tty)
1956 {
1957 /* Clear out solib state. Otherwise the solib state of the previous
1958 inferior might have survived and is entirely wrong for the new
1959 target. This has been observed on GNU/Linux using glibc 2.3. How
1960 to reproduce:
1961
1962 bash$ ./foo&
1963 [1] 4711
1964 bash$ ./foo&
1965 [1] 4712
1966 bash$ gdb ./foo
1967 [...]
1968 (gdb) attach 4711
1969 (gdb) detach
1970 (gdb) attach 4712
1971 Cannot access memory at address 0xdeadbeef
1972 */
1973
1974 /* In some OSs, the shared library list is the same/global/shared
1975 across inferiors. If code is shared between processes, so are
1976 memory regions and features. */
1977 if (!gdbarch_has_global_solist (target_gdbarch ()))
1978 {
1979 no_shared_libraries (NULL, from_tty);
1980
1981 invalidate_target_mem_regions ();
1982
1983 target_clear_description ();
1984 }
1985
1986 agent_capability_invalidate ();
1987 }
1988
1989 /* Callback for iterate_over_inferiors. Gets rid of the given
1990 inferior. */
1991
1992 static int
1993 dispose_inferior (struct inferior *inf, void *args)
1994 {
1995 struct thread_info *thread;
1996
1997 thread = any_thread_of_process (inf->pid);
1998 if (thread)
1999 {
2000 switch_to_thread (thread->ptid);
2001
2002 /* Core inferiors actually should be detached, not killed. */
2003 if (target_has_execution)
2004 target_kill ();
2005 else
2006 target_detach (NULL, 0);
2007 }
2008
2009 return 0;
2010 }
2011
2012 /* This is to be called by the open routine before it does
2013 anything. */
2014
2015 void
2016 target_preopen (int from_tty)
2017 {
2018 dont_repeat ();
2019
2020 if (have_inferiors ())
2021 {
2022 if (!from_tty
2023 || !have_live_inferiors ()
2024 || query (_("A program is being debugged already. Kill it? ")))
2025 iterate_over_inferiors (dispose_inferior, NULL);
2026 else
2027 error (_("Program not killed."));
2028 }
2029
2030 /* Calling target_kill may remove the target from the stack. But if
2031 it doesn't (which seems like a win for UDI), remove it now. */
2032 /* Leave the exec target, though. The user may be switching from a
2033 live process to a core of the same program. */
2034 pop_all_targets_above (file_stratum);
2035
2036 target_pre_inferior (from_tty);
2037 }
2038
2039 /* Detach a target after doing deferred register stores. */
2040
2041 void
2042 target_detach (const char *args, int from_tty)
2043 {
2044 struct target_ops* t;
2045
2046 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2047 /* Don't remove global breakpoints here. They're removed on
2048 disconnection from the target. */
2049 ;
2050 else
2051 /* If we're in breakpoints-always-inserted mode, have to remove
2052 them before detaching. */
2053 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2054
2055 prepare_for_detach ();
2056
2057 current_target.to_detach (&current_target, args, from_tty);
2058 }
2059
2060 void
2061 target_disconnect (const char *args, int from_tty)
2062 {
2063 /* If we're in breakpoints-always-inserted mode or if breakpoints
2064 are global across processes, we have to remove them before
2065 disconnecting. */
2066 remove_breakpoints ();
2067
2068 current_target.to_disconnect (&current_target, args, from_tty);
2069 }
2070
2071 ptid_t
2072 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2073 {
2074 return (current_target.to_wait) (&current_target, ptid, status, options);
2075 }
2076
2077 char *
2078 target_pid_to_str (ptid_t ptid)
2079 {
2080 return (*current_target.to_pid_to_str) (&current_target, ptid);
2081 }
2082
2083 char *
2084 target_thread_name (struct thread_info *info)
2085 {
2086 return current_target.to_thread_name (&current_target, info);
2087 }
2088
2089 void
2090 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2091 {
2092 struct target_ops *t;
2093
2094 target_dcache_invalidate ();
2095
2096 current_target.to_resume (&current_target, ptid, step, signal);
2097
2098 registers_changed_ptid (ptid);
2099 /* We only set the internal executing state here. The user/frontend
2100 running state is set at a higher level. */
2101 set_executing (ptid, 1);
2102 clear_inline_frame_state (ptid);
2103 }
2104
2105 void
2106 target_pass_signals (int numsigs, unsigned char *pass_signals)
2107 {
2108 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2109 }
2110
2111 void
2112 target_program_signals (int numsigs, unsigned char *program_signals)
2113 {
2114 (*current_target.to_program_signals) (&current_target,
2115 numsigs, program_signals);
2116 }
2117
2118 static int
2119 default_follow_fork (struct target_ops *self, int follow_child,
2120 int detach_fork)
2121 {
2122 /* Some target returned a fork event, but did not know how to follow it. */
2123 internal_error (__FILE__, __LINE__,
2124 _("could not find a target to follow fork"));
2125 }
2126
2127 /* Look through the list of possible targets for a target that can
2128 follow forks. */
2129
2130 int
2131 target_follow_fork (int follow_child, int detach_fork)
2132 {
2133 return current_target.to_follow_fork (&current_target,
2134 follow_child, detach_fork);
2135 }
2136
2137 static void
2138 default_mourn_inferior (struct target_ops *self)
2139 {
2140 internal_error (__FILE__, __LINE__,
2141 _("could not find a target to follow mourn inferior"));
2142 }
2143
2144 void
2145 target_mourn_inferior (void)
2146 {
2147 current_target.to_mourn_inferior (&current_target);
2148
2149 /* We no longer need to keep handles on any of the object files.
2150 Make sure to release them to avoid unnecessarily locking any
2151 of them while we're not actually debugging. */
2152 bfd_cache_close_all ();
2153 }
2154
2155 /* Look for a target which can describe architectural features, starting
2156 from TARGET. If we find one, return its description. */
2157
2158 const struct target_desc *
2159 target_read_description (struct target_ops *target)
2160 {
2161 return target->to_read_description (target);
2162 }
2163
2164 /* This implements a basic search of memory, reading target memory and
2165 performing the search here (as opposed to performing the search in on the
2166 target side with, for example, gdbserver). */
2167
2168 int
2169 simple_search_memory (struct target_ops *ops,
2170 CORE_ADDR start_addr, ULONGEST search_space_len,
2171 const gdb_byte *pattern, ULONGEST pattern_len,
2172 CORE_ADDR *found_addrp)
2173 {
2174 /* NOTE: also defined in find.c testcase. */
2175 #define SEARCH_CHUNK_SIZE 16000
2176 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2177 /* Buffer to hold memory contents for searching. */
2178 gdb_byte *search_buf;
2179 unsigned search_buf_size;
2180 struct cleanup *old_cleanups;
2181
2182 search_buf_size = chunk_size + pattern_len - 1;
2183
2184 /* No point in trying to allocate a buffer larger than the search space. */
2185 if (search_space_len < search_buf_size)
2186 search_buf_size = search_space_len;
2187
2188 search_buf = malloc (search_buf_size);
2189 if (search_buf == NULL)
2190 error (_("Unable to allocate memory to perform the search."));
2191 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2192
2193 /* Prime the search buffer. */
2194
2195 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2196 search_buf, start_addr, search_buf_size) != search_buf_size)
2197 {
2198 warning (_("Unable to access %s bytes of target "
2199 "memory at %s, halting search."),
2200 pulongest (search_buf_size), hex_string (start_addr));
2201 do_cleanups (old_cleanups);
2202 return -1;
2203 }
2204
2205 /* Perform the search.
2206
2207 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2208 When we've scanned N bytes we copy the trailing bytes to the start and
2209 read in another N bytes. */
2210
2211 while (search_space_len >= pattern_len)
2212 {
2213 gdb_byte *found_ptr;
2214 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2215
2216 found_ptr = memmem (search_buf, nr_search_bytes,
2217 pattern, pattern_len);
2218
2219 if (found_ptr != NULL)
2220 {
2221 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2222
2223 *found_addrp = found_addr;
2224 do_cleanups (old_cleanups);
2225 return 1;
2226 }
2227
2228 /* Not found in this chunk, skip to next chunk. */
2229
2230 /* Don't let search_space_len wrap here, it's unsigned. */
2231 if (search_space_len >= chunk_size)
2232 search_space_len -= chunk_size;
2233 else
2234 search_space_len = 0;
2235
2236 if (search_space_len >= pattern_len)
2237 {
2238 unsigned keep_len = search_buf_size - chunk_size;
2239 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2240 int nr_to_read;
2241
2242 /* Copy the trailing part of the previous iteration to the front
2243 of the buffer for the next iteration. */
2244 gdb_assert (keep_len == pattern_len - 1);
2245 memcpy (search_buf, search_buf + chunk_size, keep_len);
2246
2247 nr_to_read = min (search_space_len - keep_len, chunk_size);
2248
2249 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2250 search_buf + keep_len, read_addr,
2251 nr_to_read) != nr_to_read)
2252 {
2253 warning (_("Unable to access %s bytes of target "
2254 "memory at %s, halting search."),
2255 plongest (nr_to_read),
2256 hex_string (read_addr));
2257 do_cleanups (old_cleanups);
2258 return -1;
2259 }
2260
2261 start_addr += chunk_size;
2262 }
2263 }
2264
2265 /* Not found. */
2266
2267 do_cleanups (old_cleanups);
2268 return 0;
2269 }
2270
2271 /* Default implementation of memory-searching. */
2272
2273 static int
2274 default_search_memory (struct target_ops *self,
2275 CORE_ADDR start_addr, ULONGEST search_space_len,
2276 const gdb_byte *pattern, ULONGEST pattern_len,
2277 CORE_ADDR *found_addrp)
2278 {
2279 /* Start over from the top of the target stack. */
2280 return simple_search_memory (current_target.beneath,
2281 start_addr, search_space_len,
2282 pattern, pattern_len, found_addrp);
2283 }
2284
2285 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2286 sequence of bytes in PATTERN with length PATTERN_LEN.
2287
2288 The result is 1 if found, 0 if not found, and -1 if there was an error
2289 requiring halting of the search (e.g. memory read error).
2290 If the pattern is found the address is recorded in FOUND_ADDRP. */
2291
2292 int
2293 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2294 const gdb_byte *pattern, ULONGEST pattern_len,
2295 CORE_ADDR *found_addrp)
2296 {
2297 return current_target.to_search_memory (&current_target, start_addr,
2298 search_space_len,
2299 pattern, pattern_len, found_addrp);
2300 }
2301
2302 /* Look through the currently pushed targets. If none of them will
2303 be able to restart the currently running process, issue an error
2304 message. */
2305
2306 void
2307 target_require_runnable (void)
2308 {
2309 struct target_ops *t;
2310
2311 for (t = target_stack; t != NULL; t = t->beneath)
2312 {
2313 /* If this target knows how to create a new program, then
2314 assume we will still be able to after killing the current
2315 one. Either killing and mourning will not pop T, or else
2316 find_default_run_target will find it again. */
2317 if (t->to_create_inferior != NULL)
2318 return;
2319
2320 /* Do not worry about targets at certain strata that can not
2321 create inferiors. Assume they will be pushed again if
2322 necessary, and continue to the process_stratum. */
2323 if (t->to_stratum == thread_stratum
2324 || t->to_stratum == record_stratum
2325 || t->to_stratum == arch_stratum)
2326 continue;
2327
2328 error (_("The \"%s\" target does not support \"run\". "
2329 "Try \"help target\" or \"continue\"."),
2330 t->to_shortname);
2331 }
2332
2333 /* This function is only called if the target is running. In that
2334 case there should have been a process_stratum target and it
2335 should either know how to create inferiors, or not... */
2336 internal_error (__FILE__, __LINE__, _("No targets found"));
2337 }
2338
2339 /* Whether GDB is allowed to fall back to the default run target for
2340 "run", "attach", etc. when no target is connected yet. */
2341 static int auto_connect_native_target = 1;
2342
2343 static void
2344 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2345 struct cmd_list_element *c, const char *value)
2346 {
2347 fprintf_filtered (file,
2348 _("Whether GDB may automatically connect to the "
2349 "native target is %s.\n"),
2350 value);
2351 }
2352
2353 /* Look through the list of possible targets for a target that can
2354 execute a run or attach command without any other data. This is
2355 used to locate the default process stratum.
2356
2357 If DO_MESG is not NULL, the result is always valid (error() is
2358 called for errors); else, return NULL on error. */
2359
2360 static struct target_ops *
2361 find_default_run_target (char *do_mesg)
2362 {
2363 struct target_ops *runable = NULL;
2364
2365 if (auto_connect_native_target)
2366 {
2367 struct target_ops **t;
2368 int count = 0;
2369
2370 for (t = target_structs; t < target_structs + target_struct_size;
2371 ++t)
2372 {
2373 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2374 {
2375 runable = *t;
2376 ++count;
2377 }
2378 }
2379
2380 if (count != 1)
2381 runable = NULL;
2382 }
2383
2384 if (runable == NULL)
2385 {
2386 if (do_mesg)
2387 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2388 else
2389 return NULL;
2390 }
2391
2392 return runable;
2393 }
2394
2395 /* See target.h. */
2396
2397 struct target_ops *
2398 find_attach_target (void)
2399 {
2400 struct target_ops *t;
2401
2402 /* If a target on the current stack can attach, use it. */
2403 for (t = current_target.beneath; t != NULL; t = t->beneath)
2404 {
2405 if (t->to_attach != NULL)
2406 break;
2407 }
2408
2409 /* Otherwise, use the default run target for attaching. */
2410 if (t == NULL)
2411 t = find_default_run_target ("attach");
2412
2413 return t;
2414 }
2415
2416 /* See target.h. */
2417
2418 struct target_ops *
2419 find_run_target (void)
2420 {
2421 struct target_ops *t;
2422
2423 /* If a target on the current stack can attach, use it. */
2424 for (t = current_target.beneath; t != NULL; t = t->beneath)
2425 {
2426 if (t->to_create_inferior != NULL)
2427 break;
2428 }
2429
2430 /* Otherwise, use the default run target. */
2431 if (t == NULL)
2432 t = find_default_run_target ("run");
2433
2434 return t;
2435 }
2436
2437 /* Implement the "info proc" command. */
2438
2439 int
2440 target_info_proc (const char *args, enum info_proc_what what)
2441 {
2442 struct target_ops *t;
2443
2444 /* If we're already connected to something that can get us OS
2445 related data, use it. Otherwise, try using the native
2446 target. */
2447 if (current_target.to_stratum >= process_stratum)
2448 t = current_target.beneath;
2449 else
2450 t = find_default_run_target (NULL);
2451
2452 for (; t != NULL; t = t->beneath)
2453 {
2454 if (t->to_info_proc != NULL)
2455 {
2456 t->to_info_proc (t, args, what);
2457
2458 if (targetdebug)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "target_info_proc (\"%s\", %d)\n", args, what);
2461
2462 return 1;
2463 }
2464 }
2465
2466 return 0;
2467 }
2468
2469 static int
2470 find_default_supports_disable_randomization (struct target_ops *self)
2471 {
2472 struct target_ops *t;
2473
2474 t = find_default_run_target (NULL);
2475 if (t && t->to_supports_disable_randomization)
2476 return (t->to_supports_disable_randomization) (t);
2477 return 0;
2478 }
2479
2480 int
2481 target_supports_disable_randomization (void)
2482 {
2483 struct target_ops *t;
2484
2485 for (t = &current_target; t != NULL; t = t->beneath)
2486 if (t->to_supports_disable_randomization)
2487 return t->to_supports_disable_randomization (t);
2488
2489 return 0;
2490 }
2491
2492 char *
2493 target_get_osdata (const char *type)
2494 {
2495 struct target_ops *t;
2496
2497 /* If we're already connected to something that can get us OS
2498 related data, use it. Otherwise, try using the native
2499 target. */
2500 if (current_target.to_stratum >= process_stratum)
2501 t = current_target.beneath;
2502 else
2503 t = find_default_run_target ("get OS data");
2504
2505 if (!t)
2506 return NULL;
2507
2508 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2509 }
2510
2511 static struct address_space *
2512 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2513 {
2514 struct inferior *inf;
2515
2516 /* Fall-back to the "main" address space of the inferior. */
2517 inf = find_inferior_pid (ptid_get_pid (ptid));
2518
2519 if (inf == NULL || inf->aspace == NULL)
2520 internal_error (__FILE__, __LINE__,
2521 _("Can't determine the current "
2522 "address space of thread %s\n"),
2523 target_pid_to_str (ptid));
2524
2525 return inf->aspace;
2526 }
2527
2528 /* Determine the current address space of thread PTID. */
2529
2530 struct address_space *
2531 target_thread_address_space (ptid_t ptid)
2532 {
2533 struct address_space *aspace;
2534
2535 aspace = current_target.to_thread_address_space (&current_target, ptid);
2536 gdb_assert (aspace != NULL);
2537
2538 return aspace;
2539 }
2540
2541
2542 /* Target file operations. */
2543
2544 static struct target_ops *
2545 default_fileio_target (void)
2546 {
2547 /* If we're already connected to something that can perform
2548 file I/O, use it. Otherwise, try using the native target. */
2549 if (current_target.to_stratum >= process_stratum)
2550 return current_target.beneath;
2551 else
2552 return find_default_run_target ("file I/O");
2553 }
2554
2555 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2556 target file descriptor, or -1 if an error occurs (and set
2557 *TARGET_ERRNO). */
2558 int
2559 target_fileio_open (const char *filename, int flags, int mode,
2560 int *target_errno)
2561 {
2562 struct target_ops *t;
2563
2564 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2565 {
2566 if (t->to_fileio_open != NULL)
2567 {
2568 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2569
2570 if (targetdebug)
2571 fprintf_unfiltered (gdb_stdlog,
2572 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2573 filename, flags, mode,
2574 fd, fd != -1 ? 0 : *target_errno);
2575 return fd;
2576 }
2577 }
2578
2579 *target_errno = FILEIO_ENOSYS;
2580 return -1;
2581 }
2582
2583 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2584 Return the number of bytes written, or -1 if an error occurs
2585 (and set *TARGET_ERRNO). */
2586 int
2587 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2588 ULONGEST offset, int *target_errno)
2589 {
2590 struct target_ops *t;
2591
2592 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2593 {
2594 if (t->to_fileio_pwrite != NULL)
2595 {
2596 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2597 target_errno);
2598
2599 if (targetdebug)
2600 fprintf_unfiltered (gdb_stdlog,
2601 "target_fileio_pwrite (%d,...,%d,%s) "
2602 "= %d (%d)\n",
2603 fd, len, pulongest (offset),
2604 ret, ret != -1 ? 0 : *target_errno);
2605 return ret;
2606 }
2607 }
2608
2609 *target_errno = FILEIO_ENOSYS;
2610 return -1;
2611 }
2612
2613 /* Read up to LEN bytes FD on the target into READ_BUF.
2614 Return the number of bytes read, or -1 if an error occurs
2615 (and set *TARGET_ERRNO). */
2616 int
2617 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2618 ULONGEST offset, int *target_errno)
2619 {
2620 struct target_ops *t;
2621
2622 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2623 {
2624 if (t->to_fileio_pread != NULL)
2625 {
2626 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2627 target_errno);
2628
2629 if (targetdebug)
2630 fprintf_unfiltered (gdb_stdlog,
2631 "target_fileio_pread (%d,...,%d,%s) "
2632 "= %d (%d)\n",
2633 fd, len, pulongest (offset),
2634 ret, ret != -1 ? 0 : *target_errno);
2635 return ret;
2636 }
2637 }
2638
2639 *target_errno = FILEIO_ENOSYS;
2640 return -1;
2641 }
2642
2643 /* Close FD on the target. Return 0, or -1 if an error occurs
2644 (and set *TARGET_ERRNO). */
2645 int
2646 target_fileio_close (int fd, int *target_errno)
2647 {
2648 struct target_ops *t;
2649
2650 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2651 {
2652 if (t->to_fileio_close != NULL)
2653 {
2654 int ret = t->to_fileio_close (t, fd, target_errno);
2655
2656 if (targetdebug)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "target_fileio_close (%d) = %d (%d)\n",
2659 fd, ret, ret != -1 ? 0 : *target_errno);
2660 return ret;
2661 }
2662 }
2663
2664 *target_errno = FILEIO_ENOSYS;
2665 return -1;
2666 }
2667
2668 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2669 occurs (and set *TARGET_ERRNO). */
2670 int
2671 target_fileio_unlink (const char *filename, int *target_errno)
2672 {
2673 struct target_ops *t;
2674
2675 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2676 {
2677 if (t->to_fileio_unlink != NULL)
2678 {
2679 int ret = t->to_fileio_unlink (t, filename, target_errno);
2680
2681 if (targetdebug)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "target_fileio_unlink (%s) = %d (%d)\n",
2684 filename, ret, ret != -1 ? 0 : *target_errno);
2685 return ret;
2686 }
2687 }
2688
2689 *target_errno = FILEIO_ENOSYS;
2690 return -1;
2691 }
2692
2693 /* Read value of symbolic link FILENAME on the target. Return a
2694 null-terminated string allocated via xmalloc, or NULL if an error
2695 occurs (and set *TARGET_ERRNO). */
2696 char *
2697 target_fileio_readlink (const char *filename, int *target_errno)
2698 {
2699 struct target_ops *t;
2700
2701 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2702 {
2703 if (t->to_fileio_readlink != NULL)
2704 {
2705 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2706
2707 if (targetdebug)
2708 fprintf_unfiltered (gdb_stdlog,
2709 "target_fileio_readlink (%s) = %s (%d)\n",
2710 filename, ret? ret : "(nil)",
2711 ret? 0 : *target_errno);
2712 return ret;
2713 }
2714 }
2715
2716 *target_errno = FILEIO_ENOSYS;
2717 return NULL;
2718 }
2719
2720 static void
2721 target_fileio_close_cleanup (void *opaque)
2722 {
2723 int fd = *(int *) opaque;
2724 int target_errno;
2725
2726 target_fileio_close (fd, &target_errno);
2727 }
2728
2729 /* Read target file FILENAME. Store the result in *BUF_P and
2730 return the size of the transferred data. PADDING additional bytes are
2731 available in *BUF_P. This is a helper function for
2732 target_fileio_read_alloc; see the declaration of that function for more
2733 information. */
2734
2735 static LONGEST
2736 target_fileio_read_alloc_1 (const char *filename,
2737 gdb_byte **buf_p, int padding)
2738 {
2739 struct cleanup *close_cleanup;
2740 size_t buf_alloc, buf_pos;
2741 gdb_byte *buf;
2742 LONGEST n;
2743 int fd;
2744 int target_errno;
2745
2746 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2747 if (fd == -1)
2748 return -1;
2749
2750 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2751
2752 /* Start by reading up to 4K at a time. The target will throttle
2753 this number down if necessary. */
2754 buf_alloc = 4096;
2755 buf = xmalloc (buf_alloc);
2756 buf_pos = 0;
2757 while (1)
2758 {
2759 n = target_fileio_pread (fd, &buf[buf_pos],
2760 buf_alloc - buf_pos - padding, buf_pos,
2761 &target_errno);
2762 if (n < 0)
2763 {
2764 /* An error occurred. */
2765 do_cleanups (close_cleanup);
2766 xfree (buf);
2767 return -1;
2768 }
2769 else if (n == 0)
2770 {
2771 /* Read all there was. */
2772 do_cleanups (close_cleanup);
2773 if (buf_pos == 0)
2774 xfree (buf);
2775 else
2776 *buf_p = buf;
2777 return buf_pos;
2778 }
2779
2780 buf_pos += n;
2781
2782 /* If the buffer is filling up, expand it. */
2783 if (buf_alloc < buf_pos * 2)
2784 {
2785 buf_alloc *= 2;
2786 buf = xrealloc (buf, buf_alloc);
2787 }
2788
2789 QUIT;
2790 }
2791 }
2792
2793 /* Read target file FILENAME. Store the result in *BUF_P and return
2794 the size of the transferred data. See the declaration in "target.h"
2795 function for more information about the return value. */
2796
2797 LONGEST
2798 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2799 {
2800 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2801 }
2802
2803 /* Read target file FILENAME. The result is NUL-terminated and
2804 returned as a string, allocated using xmalloc. If an error occurs
2805 or the transfer is unsupported, NULL is returned. Empty objects
2806 are returned as allocated but empty strings. A warning is issued
2807 if the result contains any embedded NUL bytes. */
2808
2809 char *
2810 target_fileio_read_stralloc (const char *filename)
2811 {
2812 gdb_byte *buffer;
2813 char *bufstr;
2814 LONGEST i, transferred;
2815
2816 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2817 bufstr = (char *) buffer;
2818
2819 if (transferred < 0)
2820 return NULL;
2821
2822 if (transferred == 0)
2823 return xstrdup ("");
2824
2825 bufstr[transferred] = 0;
2826
2827 /* Check for embedded NUL bytes; but allow trailing NULs. */
2828 for (i = strlen (bufstr); i < transferred; i++)
2829 if (bufstr[i] != 0)
2830 {
2831 warning (_("target file %s "
2832 "contained unexpected null characters"),
2833 filename);
2834 break;
2835 }
2836
2837 return bufstr;
2838 }
2839
2840
2841 static int
2842 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2843 CORE_ADDR addr, int len)
2844 {
2845 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2846 }
2847
2848 static int
2849 default_watchpoint_addr_within_range (struct target_ops *target,
2850 CORE_ADDR addr,
2851 CORE_ADDR start, int length)
2852 {
2853 return addr >= start && addr < start + length;
2854 }
2855
2856 static struct gdbarch *
2857 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2858 {
2859 return target_gdbarch ();
2860 }
2861
2862 static int
2863 return_zero (struct target_ops *ignore)
2864 {
2865 return 0;
2866 }
2867
2868 static int
2869 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2870 {
2871 return 0;
2872 }
2873
2874 /*
2875 * Find the next target down the stack from the specified target.
2876 */
2877
2878 struct target_ops *
2879 find_target_beneath (struct target_ops *t)
2880 {
2881 return t->beneath;
2882 }
2883
2884 /* See target.h. */
2885
2886 struct target_ops *
2887 find_target_at (enum strata stratum)
2888 {
2889 struct target_ops *t;
2890
2891 for (t = current_target.beneath; t != NULL; t = t->beneath)
2892 if (t->to_stratum == stratum)
2893 return t;
2894
2895 return NULL;
2896 }
2897
2898 \f
2899 /* The inferior process has died. Long live the inferior! */
2900
2901 void
2902 generic_mourn_inferior (void)
2903 {
2904 ptid_t ptid;
2905
2906 ptid = inferior_ptid;
2907 inferior_ptid = null_ptid;
2908
2909 /* Mark breakpoints uninserted in case something tries to delete a
2910 breakpoint while we delete the inferior's threads (which would
2911 fail, since the inferior is long gone). */
2912 mark_breakpoints_out ();
2913
2914 if (!ptid_equal (ptid, null_ptid))
2915 {
2916 int pid = ptid_get_pid (ptid);
2917 exit_inferior (pid);
2918 }
2919
2920 /* Note this wipes step-resume breakpoints, so needs to be done
2921 after exit_inferior, which ends up referencing the step-resume
2922 breakpoints through clear_thread_inferior_resources. */
2923 breakpoint_init_inferior (inf_exited);
2924
2925 registers_changed ();
2926
2927 reopen_exec_file ();
2928 reinit_frame_cache ();
2929
2930 if (deprecated_detach_hook)
2931 deprecated_detach_hook ();
2932 }
2933 \f
2934 /* Convert a normal process ID to a string. Returns the string in a
2935 static buffer. */
2936
2937 char *
2938 normal_pid_to_str (ptid_t ptid)
2939 {
2940 static char buf[32];
2941
2942 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2943 return buf;
2944 }
2945
2946 static char *
2947 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
2948 {
2949 return normal_pid_to_str (ptid);
2950 }
2951
2952 /* Error-catcher for target_find_memory_regions. */
2953 static int
2954 dummy_find_memory_regions (struct target_ops *self,
2955 find_memory_region_ftype ignore1, void *ignore2)
2956 {
2957 error (_("Command not implemented for this target."));
2958 return 0;
2959 }
2960
2961 /* Error-catcher for target_make_corefile_notes. */
2962 static char *
2963 dummy_make_corefile_notes (struct target_ops *self,
2964 bfd *ignore1, int *ignore2)
2965 {
2966 error (_("Command not implemented for this target."));
2967 return NULL;
2968 }
2969
2970 /* Set up the handful of non-empty slots needed by the dummy target
2971 vector. */
2972
2973 static void
2974 init_dummy_target (void)
2975 {
2976 dummy_target.to_shortname = "None";
2977 dummy_target.to_longname = "None";
2978 dummy_target.to_doc = "";
2979 dummy_target.to_supports_disable_randomization
2980 = find_default_supports_disable_randomization;
2981 dummy_target.to_stratum = dummy_stratum;
2982 dummy_target.to_has_all_memory = return_zero;
2983 dummy_target.to_has_memory = return_zero;
2984 dummy_target.to_has_stack = return_zero;
2985 dummy_target.to_has_registers = return_zero;
2986 dummy_target.to_has_execution = return_zero_has_execution;
2987 dummy_target.to_magic = OPS_MAGIC;
2988
2989 install_dummy_methods (&dummy_target);
2990 }
2991 \f
2992
2993 void
2994 target_close (struct target_ops *targ)
2995 {
2996 gdb_assert (!target_is_pushed (targ));
2997
2998 if (targ->to_xclose != NULL)
2999 targ->to_xclose (targ);
3000 else if (targ->to_close != NULL)
3001 targ->to_close (targ);
3002
3003 if (targetdebug)
3004 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3005 }
3006
3007 int
3008 target_thread_alive (ptid_t ptid)
3009 {
3010 return current_target.to_thread_alive (&current_target, ptid);
3011 }
3012
3013 void
3014 target_find_new_threads (void)
3015 {
3016 current_target.to_find_new_threads (&current_target);
3017 }
3018
3019 void
3020 target_stop (ptid_t ptid)
3021 {
3022 if (!may_stop)
3023 {
3024 warning (_("May not interrupt or stop the target, ignoring attempt"));
3025 return;
3026 }
3027
3028 (*current_target.to_stop) (&current_target, ptid);
3029 }
3030
3031 /* Concatenate ELEM to LIST, a comma separate list, and return the
3032 result. The LIST incoming argument is released. */
3033
3034 static char *
3035 str_comma_list_concat_elem (char *list, const char *elem)
3036 {
3037 if (list == NULL)
3038 return xstrdup (elem);
3039 else
3040 return reconcat (list, list, ", ", elem, (char *) NULL);
3041 }
3042
3043 /* Helper for target_options_to_string. If OPT is present in
3044 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3045 Returns the new resulting string. OPT is removed from
3046 TARGET_OPTIONS. */
3047
3048 static char *
3049 do_option (int *target_options, char *ret,
3050 int opt, char *opt_str)
3051 {
3052 if ((*target_options & opt) != 0)
3053 {
3054 ret = str_comma_list_concat_elem (ret, opt_str);
3055 *target_options &= ~opt;
3056 }
3057
3058 return ret;
3059 }
3060
3061 char *
3062 target_options_to_string (int target_options)
3063 {
3064 char *ret = NULL;
3065
3066 #define DO_TARG_OPTION(OPT) \
3067 ret = do_option (&target_options, ret, OPT, #OPT)
3068
3069 DO_TARG_OPTION (TARGET_WNOHANG);
3070
3071 if (target_options != 0)
3072 ret = str_comma_list_concat_elem (ret, "unknown???");
3073
3074 if (ret == NULL)
3075 ret = xstrdup ("");
3076 return ret;
3077 }
3078
3079 static void
3080 debug_print_register (const char * func,
3081 struct regcache *regcache, int regno)
3082 {
3083 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3084
3085 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3086 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3087 && gdbarch_register_name (gdbarch, regno) != NULL
3088 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3089 fprintf_unfiltered (gdb_stdlog, "(%s)",
3090 gdbarch_register_name (gdbarch, regno));
3091 else
3092 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3093 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3094 {
3095 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3096 int i, size = register_size (gdbarch, regno);
3097 gdb_byte buf[MAX_REGISTER_SIZE];
3098
3099 regcache_raw_collect (regcache, regno, buf);
3100 fprintf_unfiltered (gdb_stdlog, " = ");
3101 for (i = 0; i < size; i++)
3102 {
3103 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3104 }
3105 if (size <= sizeof (LONGEST))
3106 {
3107 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3108
3109 fprintf_unfiltered (gdb_stdlog, " %s %s",
3110 core_addr_to_string_nz (val), plongest (val));
3111 }
3112 }
3113 fprintf_unfiltered (gdb_stdlog, "\n");
3114 }
3115
3116 void
3117 target_fetch_registers (struct regcache *regcache, int regno)
3118 {
3119 current_target.to_fetch_registers (&current_target, regcache, regno);
3120 if (targetdebug)
3121 debug_print_register ("target_fetch_registers", regcache, regno);
3122 }
3123
3124 void
3125 target_store_registers (struct regcache *regcache, int regno)
3126 {
3127 struct target_ops *t;
3128
3129 if (!may_write_registers)
3130 error (_("Writing to registers is not allowed (regno %d)"), regno);
3131
3132 current_target.to_store_registers (&current_target, regcache, regno);
3133 if (targetdebug)
3134 {
3135 debug_print_register ("target_store_registers", regcache, regno);
3136 }
3137 }
3138
3139 int
3140 target_core_of_thread (ptid_t ptid)
3141 {
3142 return current_target.to_core_of_thread (&current_target, ptid);
3143 }
3144
3145 int
3146 simple_verify_memory (struct target_ops *ops,
3147 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3148 {
3149 LONGEST total_xfered = 0;
3150
3151 while (total_xfered < size)
3152 {
3153 ULONGEST xfered_len;
3154 enum target_xfer_status status;
3155 gdb_byte buf[1024];
3156 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3157
3158 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3159 buf, NULL, lma + total_xfered, howmuch,
3160 &xfered_len);
3161 if (status == TARGET_XFER_OK
3162 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3163 {
3164 total_xfered += xfered_len;
3165 QUIT;
3166 }
3167 else
3168 return 0;
3169 }
3170 return 1;
3171 }
3172
3173 /* Default implementation of memory verification. */
3174
3175 static int
3176 default_verify_memory (struct target_ops *self,
3177 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3178 {
3179 /* Start over from the top of the target stack. */
3180 return simple_verify_memory (current_target.beneath,
3181 data, memaddr, size);
3182 }
3183
3184 int
3185 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3186 {
3187 return current_target.to_verify_memory (&current_target,
3188 data, memaddr, size);
3189 }
3190
3191 /* The documentation for this function is in its prototype declaration in
3192 target.h. */
3193
3194 int
3195 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3196 {
3197 return current_target.to_insert_mask_watchpoint (&current_target,
3198 addr, mask, rw);
3199 }
3200
3201 /* The documentation for this function is in its prototype declaration in
3202 target.h. */
3203
3204 int
3205 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3206 {
3207 return current_target.to_remove_mask_watchpoint (&current_target,
3208 addr, mask, rw);
3209 }
3210
3211 /* The documentation for this function is in its prototype declaration
3212 in target.h. */
3213
3214 int
3215 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3216 {
3217 return current_target.to_masked_watch_num_registers (&current_target,
3218 addr, mask);
3219 }
3220
3221 /* The documentation for this function is in its prototype declaration
3222 in target.h. */
3223
3224 int
3225 target_ranged_break_num_registers (void)
3226 {
3227 return current_target.to_ranged_break_num_registers (&current_target);
3228 }
3229
3230 /* See target.h. */
3231
3232 struct btrace_target_info *
3233 target_enable_btrace (ptid_t ptid)
3234 {
3235 return current_target.to_enable_btrace (&current_target, ptid);
3236 }
3237
3238 /* See target.h. */
3239
3240 void
3241 target_disable_btrace (struct btrace_target_info *btinfo)
3242 {
3243 current_target.to_disable_btrace (&current_target, btinfo);
3244 }
3245
3246 /* See target.h. */
3247
3248 void
3249 target_teardown_btrace (struct btrace_target_info *btinfo)
3250 {
3251 current_target.to_teardown_btrace (&current_target, btinfo);
3252 }
3253
3254 /* See target.h. */
3255
3256 enum btrace_error
3257 target_read_btrace (VEC (btrace_block_s) **btrace,
3258 struct btrace_target_info *btinfo,
3259 enum btrace_read_type type)
3260 {
3261 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3262 }
3263
3264 /* See target.h. */
3265
3266 void
3267 target_stop_recording (void)
3268 {
3269 current_target.to_stop_recording (&current_target);
3270 }
3271
3272 /* See target.h. */
3273
3274 void
3275 target_save_record (const char *filename)
3276 {
3277 current_target.to_save_record (&current_target, filename);
3278 }
3279
3280 /* See target.h. */
3281
3282 int
3283 target_supports_delete_record (void)
3284 {
3285 struct target_ops *t;
3286
3287 for (t = current_target.beneath; t != NULL; t = t->beneath)
3288 if (t->to_delete_record != delegate_delete_record
3289 && t->to_delete_record != tdefault_delete_record)
3290 return 1;
3291
3292 return 0;
3293 }
3294
3295 /* See target.h. */
3296
3297 void
3298 target_delete_record (void)
3299 {
3300 current_target.to_delete_record (&current_target);
3301 }
3302
3303 /* See target.h. */
3304
3305 int
3306 target_record_is_replaying (void)
3307 {
3308 return current_target.to_record_is_replaying (&current_target);
3309 }
3310
3311 /* See target.h. */
3312
3313 void
3314 target_goto_record_begin (void)
3315 {
3316 current_target.to_goto_record_begin (&current_target);
3317 }
3318
3319 /* See target.h. */
3320
3321 void
3322 target_goto_record_end (void)
3323 {
3324 current_target.to_goto_record_end (&current_target);
3325 }
3326
3327 /* See target.h. */
3328
3329 void
3330 target_goto_record (ULONGEST insn)
3331 {
3332 current_target.to_goto_record (&current_target, insn);
3333 }
3334
3335 /* See target.h. */
3336
3337 void
3338 target_insn_history (int size, int flags)
3339 {
3340 current_target.to_insn_history (&current_target, size, flags);
3341 }
3342
3343 /* See target.h. */
3344
3345 void
3346 target_insn_history_from (ULONGEST from, int size, int flags)
3347 {
3348 current_target.to_insn_history_from (&current_target, from, size, flags);
3349 }
3350
3351 /* See target.h. */
3352
3353 void
3354 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3355 {
3356 current_target.to_insn_history_range (&current_target, begin, end, flags);
3357 }
3358
3359 /* See target.h. */
3360
3361 void
3362 target_call_history (int size, int flags)
3363 {
3364 current_target.to_call_history (&current_target, size, flags);
3365 }
3366
3367 /* See target.h. */
3368
3369 void
3370 target_call_history_from (ULONGEST begin, int size, int flags)
3371 {
3372 current_target.to_call_history_from (&current_target, begin, size, flags);
3373 }
3374
3375 /* See target.h. */
3376
3377 void
3378 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3379 {
3380 current_target.to_call_history_range (&current_target, begin, end, flags);
3381 }
3382
3383 /* See target.h. */
3384
3385 const struct frame_unwind *
3386 target_get_unwinder (void)
3387 {
3388 return current_target.to_get_unwinder (&current_target);
3389 }
3390
3391 /* See target.h. */
3392
3393 const struct frame_unwind *
3394 target_get_tailcall_unwinder (void)
3395 {
3396 return current_target.to_get_tailcall_unwinder (&current_target);
3397 }
3398
3399 /* Default implementation of to_decr_pc_after_break. */
3400
3401 static CORE_ADDR
3402 default_target_decr_pc_after_break (struct target_ops *ops,
3403 struct gdbarch *gdbarch)
3404 {
3405 return gdbarch_decr_pc_after_break (gdbarch);
3406 }
3407
3408 /* See target.h. */
3409
3410 CORE_ADDR
3411 target_decr_pc_after_break (struct gdbarch *gdbarch)
3412 {
3413 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3414 }
3415
3416 /* See target.h. */
3417
3418 void
3419 target_prepare_to_generate_core (void)
3420 {
3421 current_target.to_prepare_to_generate_core (&current_target);
3422 }
3423
3424 /* See target.h. */
3425
3426 void
3427 target_done_generating_core (void)
3428 {
3429 current_target.to_done_generating_core (&current_target);
3430 }
3431
3432 static void
3433 setup_target_debug (void)
3434 {
3435 memcpy (&debug_target, &current_target, sizeof debug_target);
3436
3437 init_debug_target (&current_target);
3438 }
3439 \f
3440
3441 static char targ_desc[] =
3442 "Names of targets and files being debugged.\nShows the entire \
3443 stack of targets currently in use (including the exec-file,\n\
3444 core-file, and process, if any), as well as the symbol file name.";
3445
3446 static void
3447 default_rcmd (struct target_ops *self, const char *command,
3448 struct ui_file *output)
3449 {
3450 error (_("\"monitor\" command not supported by this target."));
3451 }
3452
3453 static void
3454 do_monitor_command (char *cmd,
3455 int from_tty)
3456 {
3457 target_rcmd (cmd, gdb_stdtarg);
3458 }
3459
3460 /* Print the name of each layers of our target stack. */
3461
3462 static void
3463 maintenance_print_target_stack (char *cmd, int from_tty)
3464 {
3465 struct target_ops *t;
3466
3467 printf_filtered (_("The current target stack is:\n"));
3468
3469 for (t = target_stack; t != NULL; t = t->beneath)
3470 {
3471 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3472 }
3473 }
3474
3475 /* Controls if targets can report that they can/are async. This is
3476 just for maintainers to use when debugging gdb. */
3477 int target_async_permitted = 1;
3478
3479 /* The set command writes to this variable. If the inferior is
3480 executing, target_async_permitted is *not* updated. */
3481 static int target_async_permitted_1 = 1;
3482
3483 static void
3484 maint_set_target_async_command (char *args, int from_tty,
3485 struct cmd_list_element *c)
3486 {
3487 if (have_live_inferiors ())
3488 {
3489 target_async_permitted_1 = target_async_permitted;
3490 error (_("Cannot change this setting while the inferior is running."));
3491 }
3492
3493 target_async_permitted = target_async_permitted_1;
3494 }
3495
3496 static void
3497 maint_show_target_async_command (struct ui_file *file, int from_tty,
3498 struct cmd_list_element *c,
3499 const char *value)
3500 {
3501 fprintf_filtered (file,
3502 _("Controlling the inferior in "
3503 "asynchronous mode is %s.\n"), value);
3504 }
3505
3506 /* Temporary copies of permission settings. */
3507
3508 static int may_write_registers_1 = 1;
3509 static int may_write_memory_1 = 1;
3510 static int may_insert_breakpoints_1 = 1;
3511 static int may_insert_tracepoints_1 = 1;
3512 static int may_insert_fast_tracepoints_1 = 1;
3513 static int may_stop_1 = 1;
3514
3515 /* Make the user-set values match the real values again. */
3516
3517 void
3518 update_target_permissions (void)
3519 {
3520 may_write_registers_1 = may_write_registers;
3521 may_write_memory_1 = may_write_memory;
3522 may_insert_breakpoints_1 = may_insert_breakpoints;
3523 may_insert_tracepoints_1 = may_insert_tracepoints;
3524 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3525 may_stop_1 = may_stop;
3526 }
3527
3528 /* The one function handles (most of) the permission flags in the same
3529 way. */
3530
3531 static void
3532 set_target_permissions (char *args, int from_tty,
3533 struct cmd_list_element *c)
3534 {
3535 if (target_has_execution)
3536 {
3537 update_target_permissions ();
3538 error (_("Cannot change this setting while the inferior is running."));
3539 }
3540
3541 /* Make the real values match the user-changed values. */
3542 may_write_registers = may_write_registers_1;
3543 may_insert_breakpoints = may_insert_breakpoints_1;
3544 may_insert_tracepoints = may_insert_tracepoints_1;
3545 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3546 may_stop = may_stop_1;
3547 update_observer_mode ();
3548 }
3549
3550 /* Set memory write permission independently of observer mode. */
3551
3552 static void
3553 set_write_memory_permission (char *args, int from_tty,
3554 struct cmd_list_element *c)
3555 {
3556 /* Make the real values match the user-changed values. */
3557 may_write_memory = may_write_memory_1;
3558 update_observer_mode ();
3559 }
3560
3561
3562 void
3563 initialize_targets (void)
3564 {
3565 init_dummy_target ();
3566 push_target (&dummy_target);
3567
3568 add_info ("target", target_info, targ_desc);
3569 add_info ("files", target_info, targ_desc);
3570
3571 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3572 Set target debugging."), _("\
3573 Show target debugging."), _("\
3574 When non-zero, target debugging is enabled. Higher numbers are more\n\
3575 verbose."),
3576 set_targetdebug,
3577 show_targetdebug,
3578 &setdebuglist, &showdebuglist);
3579
3580 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3581 &trust_readonly, _("\
3582 Set mode for reading from readonly sections."), _("\
3583 Show mode for reading from readonly sections."), _("\
3584 When this mode is on, memory reads from readonly sections (such as .text)\n\
3585 will be read from the object file instead of from the target. This will\n\
3586 result in significant performance improvement for remote targets."),
3587 NULL,
3588 show_trust_readonly,
3589 &setlist, &showlist);
3590
3591 add_com ("monitor", class_obscure, do_monitor_command,
3592 _("Send a command to the remote monitor (remote targets only)."));
3593
3594 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3595 _("Print the name of each layer of the internal target stack."),
3596 &maintenanceprintlist);
3597
3598 add_setshow_boolean_cmd ("target-async", no_class,
3599 &target_async_permitted_1, _("\
3600 Set whether gdb controls the inferior in asynchronous mode."), _("\
3601 Show whether gdb controls the inferior in asynchronous mode."), _("\
3602 Tells gdb whether to control the inferior in asynchronous mode."),
3603 maint_set_target_async_command,
3604 maint_show_target_async_command,
3605 &maintenance_set_cmdlist,
3606 &maintenance_show_cmdlist);
3607
3608 add_setshow_boolean_cmd ("may-write-registers", class_support,
3609 &may_write_registers_1, _("\
3610 Set permission to write into registers."), _("\
3611 Show permission to write into registers."), _("\
3612 When this permission is on, GDB may write into the target's registers.\n\
3613 Otherwise, any sort of write attempt will result in an error."),
3614 set_target_permissions, NULL,
3615 &setlist, &showlist);
3616
3617 add_setshow_boolean_cmd ("may-write-memory", class_support,
3618 &may_write_memory_1, _("\
3619 Set permission to write into target memory."), _("\
3620 Show permission to write into target memory."), _("\
3621 When this permission is on, GDB may write into the target's memory.\n\
3622 Otherwise, any sort of write attempt will result in an error."),
3623 set_write_memory_permission, NULL,
3624 &setlist, &showlist);
3625
3626 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3627 &may_insert_breakpoints_1, _("\
3628 Set permission to insert breakpoints in the target."), _("\
3629 Show permission to insert breakpoints in the target."), _("\
3630 When this permission is on, GDB may insert breakpoints in the program.\n\
3631 Otherwise, any sort of insertion attempt will result in an error."),
3632 set_target_permissions, NULL,
3633 &setlist, &showlist);
3634
3635 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3636 &may_insert_tracepoints_1, _("\
3637 Set permission to insert tracepoints in the target."), _("\
3638 Show permission to insert tracepoints in the target."), _("\
3639 When this permission is on, GDB may insert tracepoints in the program.\n\
3640 Otherwise, any sort of insertion attempt will result in an error."),
3641 set_target_permissions, NULL,
3642 &setlist, &showlist);
3643
3644 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3645 &may_insert_fast_tracepoints_1, _("\
3646 Set permission to insert fast tracepoints in the target."), _("\
3647 Show permission to insert fast tracepoints in the target."), _("\
3648 When this permission is on, GDB may insert fast tracepoints.\n\
3649 Otherwise, any sort of insertion attempt will result in an error."),
3650 set_target_permissions, NULL,
3651 &setlist, &showlist);
3652
3653 add_setshow_boolean_cmd ("may-interrupt", class_support,
3654 &may_stop_1, _("\
3655 Set permission to interrupt or signal the target."), _("\
3656 Show permission to interrupt or signal the target."), _("\
3657 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3658 Otherwise, any attempt to interrupt or stop will be ignored."),
3659 set_target_permissions, NULL,
3660 &setlist, &showlist);
3661
3662 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3663 &auto_connect_native_target, _("\
3664 Set whether GDB may automatically connect to the native target."), _("\
3665 Show whether GDB may automatically connect to the native target."), _("\
3666 When on, and GDB is not connected to a target yet, GDB\n\
3667 attempts \"run\" and other commands with the native target."),
3668 NULL, show_auto_connect_native_target,
3669 &setlist, &showlist);
3670 }