gdb: make target_is_non_stop_p return bool
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "gdbsupport/search.h"
51 #include "terminal.h"
52 #include <unordered_map>
53 #include "target-connection.h"
54 #include "valprint.h"
55
56 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
57
58 static void default_terminal_info (struct target_ops *, const char *, int);
59
60 static int default_watchpoint_addr_within_range (struct target_ops *,
61 CORE_ADDR, CORE_ADDR, int);
62
63 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
64 CORE_ADDR, int);
65
66 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
67
68 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
69 long lwp, long tid);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static gdb::unique_xmalloc_ptr<char> dummy_make_corefile_notes
93 (struct target_ops *self, bfd *ignore1, int *ignore2);
94
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* Top of target stack. */
114 /* The target structure we are currently using to talk to a process
115 or file or whatever "inferior" we have. */
116
117 target_ops *
118 current_top_target ()
119 {
120 return current_inferior ()->top_target ();
121 }
122
123 /* Command list for target. */
124
125 static struct cmd_list_element *targetlist = NULL;
126
127 /* True if we should trust readonly sections from the
128 executable when reading memory. */
129
130 static bool trust_readonly = false;
131
132 /* Nonzero if we should show true memory content including
133 memory breakpoint inserted by gdb. */
134
135 static int show_memory_breakpoints = 0;
136
137 /* These globals control whether GDB attempts to perform these
138 operations; they are useful for targets that need to prevent
139 inadvertent disruption, such as in non-stop mode. */
140
141 bool may_write_registers = true;
142
143 bool may_write_memory = true;
144
145 bool may_insert_breakpoints = true;
146
147 bool may_insert_tracepoints = true;
148
149 bool may_insert_fast_tracepoints = true;
150
151 bool may_stop = true;
152
153 /* Non-zero if we want to see trace of target level stuff. */
154
155 static unsigned int targetdebug = 0;
156
157 static void
158 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
159 {
160 if (targetdebug)
161 push_target (the_debug_target);
162 else
163 unpush_target (the_debug_target);
164 }
165
166 static void
167 show_targetdebug (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
171 }
172
173 int
174 target_has_memory ()
175 {
176 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
177 if (t->has_memory ())
178 return 1;
179
180 return 0;
181 }
182
183 int
184 target_has_stack ()
185 {
186 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
187 if (t->has_stack ())
188 return 1;
189
190 return 0;
191 }
192
193 int
194 target_has_registers ()
195 {
196 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
197 if (t->has_registers ())
198 return 1;
199
200 return 0;
201 }
202
203 bool
204 target_has_execution (inferior *inf)
205 {
206 if (inf == nullptr)
207 inf = current_inferior ();
208
209 for (target_ops *t = inf->top_target ();
210 t != nullptr;
211 t = inf->find_target_beneath (t))
212 if (t->has_execution (inf))
213 return true;
214
215 return false;
216 }
217
218 /* This is used to implement the various target commands. */
219
220 static void
221 open_target (const char *args, int from_tty, struct cmd_list_element *command)
222 {
223 auto *ti = static_cast<target_info *> (get_cmd_context (command));
224 target_open_ftype *func = target_factories[ti];
225
226 if (targetdebug)
227 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
228 ti->shortname);
229
230 func (args, from_tty);
231
232 if (targetdebug)
233 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
234 ti->shortname, args, from_tty);
235 }
236
237 /* See target.h. */
238
239 void
240 add_target (const target_info &t, target_open_ftype *func,
241 completer_ftype *completer)
242 {
243 struct cmd_list_element *c;
244
245 auto &func_slot = target_factories[&t];
246 if (func_slot != nullptr)
247 internal_error (__FILE__, __LINE__,
248 _("target already added (\"%s\")."), t.shortname);
249 func_slot = func;
250
251 if (targetlist == NULL)
252 add_basic_prefix_cmd ("target", class_run, _("\
253 Connect to a target machine or process.\n\
254 The first argument is the type or protocol of the target machine.\n\
255 Remaining arguments are interpreted by the target protocol. For more\n\
256 information on the arguments for a particular protocol, type\n\
257 `help target ' followed by the protocol name."),
258 &targetlist, "target ", 0, &cmdlist);
259 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
260 set_cmd_context (c, (void *) &t);
261 set_cmd_sfunc (c, open_target);
262 if (completer != NULL)
263 set_cmd_completer (c, completer);
264 }
265
266 /* See target.h. */
267
268 void
269 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
270 {
271 struct cmd_list_element *c;
272 char *alt;
273
274 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
275 see PR cli/15104. */
276 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
277 set_cmd_sfunc (c, open_target);
278 set_cmd_context (c, (void *) &tinfo);
279 alt = xstrprintf ("target %s", tinfo.shortname);
280 deprecate_cmd (c, alt);
281 }
282
283 /* Stub functions */
284
285 void
286 target_kill (void)
287 {
288 current_top_target ()->kill ();
289 }
290
291 void
292 target_load (const char *arg, int from_tty)
293 {
294 target_dcache_invalidate ();
295 current_top_target ()->load (arg, from_tty);
296 }
297
298 /* Define it. */
299
300 target_terminal_state target_terminal::m_terminal_state
301 = target_terminal_state::is_ours;
302
303 /* See target/target.h. */
304
305 void
306 target_terminal::init (void)
307 {
308 current_top_target ()->terminal_init ();
309
310 m_terminal_state = target_terminal_state::is_ours;
311 }
312
313 /* See target/target.h. */
314
315 void
316 target_terminal::inferior (void)
317 {
318 struct ui *ui = current_ui;
319
320 /* A background resume (``run&'') should leave GDB in control of the
321 terminal. */
322 if (ui->prompt_state != PROMPT_BLOCKED)
323 return;
324
325 /* Since we always run the inferior in the main console (unless "set
326 inferior-tty" is in effect), when some UI other than the main one
327 calls target_terminal::inferior, then we leave the main UI's
328 terminal settings as is. */
329 if (ui != main_ui)
330 return;
331
332 /* If GDB is resuming the inferior in the foreground, install
333 inferior's terminal modes. */
334
335 struct inferior *inf = current_inferior ();
336
337 if (inf->terminal_state != target_terminal_state::is_inferior)
338 {
339 current_top_target ()->terminal_inferior ();
340 inf->terminal_state = target_terminal_state::is_inferior;
341 }
342
343 m_terminal_state = target_terminal_state::is_inferior;
344
345 /* If the user hit C-c before, pretend that it was hit right
346 here. */
347 if (check_quit_flag ())
348 target_pass_ctrlc ();
349 }
350
351 /* See target/target.h. */
352
353 void
354 target_terminal::restore_inferior (void)
355 {
356 struct ui *ui = current_ui;
357
358 /* See target_terminal::inferior(). */
359 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
360 return;
361
362 /* Restore the terminal settings of inferiors that were in the
363 foreground but are now ours_for_output due to a temporary
364 target_target::ours_for_output() call. */
365
366 {
367 scoped_restore_current_inferior restore_inferior;
368
369 for (::inferior *inf : all_inferiors ())
370 {
371 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
372 {
373 set_current_inferior (inf);
374 current_top_target ()->terminal_inferior ();
375 inf->terminal_state = target_terminal_state::is_inferior;
376 }
377 }
378 }
379
380 m_terminal_state = target_terminal_state::is_inferior;
381
382 /* If the user hit C-c before, pretend that it was hit right
383 here. */
384 if (check_quit_flag ())
385 target_pass_ctrlc ();
386 }
387
388 /* Switch terminal state to DESIRED_STATE, either is_ours, or
389 is_ours_for_output. */
390
391 static void
392 target_terminal_is_ours_kind (target_terminal_state desired_state)
393 {
394 scoped_restore_current_inferior restore_inferior;
395
396 /* Must do this in two passes. First, have all inferiors save the
397 current terminal settings. Then, after all inferiors have add a
398 chance to safely save the terminal settings, restore GDB's
399 terminal settings. */
400
401 for (inferior *inf : all_inferiors ())
402 {
403 if (inf->terminal_state == target_terminal_state::is_inferior)
404 {
405 set_current_inferior (inf);
406 current_top_target ()->terminal_save_inferior ();
407 }
408 }
409
410 for (inferior *inf : all_inferiors ())
411 {
412 /* Note we don't check is_inferior here like above because we
413 need to handle 'is_ours_for_output -> is_ours' too. Careful
414 to never transition from 'is_ours' to 'is_ours_for_output',
415 though. */
416 if (inf->terminal_state != target_terminal_state::is_ours
417 && inf->terminal_state != desired_state)
418 {
419 set_current_inferior (inf);
420 if (desired_state == target_terminal_state::is_ours)
421 current_top_target ()->terminal_ours ();
422 else if (desired_state == target_terminal_state::is_ours_for_output)
423 current_top_target ()->terminal_ours_for_output ();
424 else
425 gdb_assert_not_reached ("unhandled desired state");
426 inf->terminal_state = desired_state;
427 }
428 }
429 }
430
431 /* See target/target.h. */
432
433 void
434 target_terminal::ours ()
435 {
436 struct ui *ui = current_ui;
437
438 /* See target_terminal::inferior. */
439 if (ui != main_ui)
440 return;
441
442 if (m_terminal_state == target_terminal_state::is_ours)
443 return;
444
445 target_terminal_is_ours_kind (target_terminal_state::is_ours);
446 m_terminal_state = target_terminal_state::is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::ours_for_output ()
453 {
454 struct ui *ui = current_ui;
455
456 /* See target_terminal::inferior. */
457 if (ui != main_ui)
458 return;
459
460 if (!target_terminal::is_inferior ())
461 return;
462
463 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
464 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
465 }
466
467 /* See target/target.h. */
468
469 void
470 target_terminal::info (const char *arg, int from_tty)
471 {
472 current_top_target ()->terminal_info (arg, from_tty);
473 }
474
475 /* See target.h. */
476
477 bool
478 target_supports_terminal_ours (void)
479 {
480 /* The current top target is the target at the top of the target
481 stack of the current inferior. While normally there's always an
482 inferior, we must check for nullptr here because we can get here
483 very early during startup, before the initial inferior is first
484 created. */
485 inferior *inf = current_inferior ();
486
487 if (inf == nullptr)
488 return false;
489 return inf->top_target ()->supports_terminal_ours ();
490 }
491
492 static void
493 tcomplain (void)
494 {
495 error (_("You can't do that when your target is `%s'"),
496 current_top_target ()->shortname ());
497 }
498
499 void
500 noprocess (void)
501 {
502 error (_("You can't do that without a process to debug."));
503 }
504
505 static void
506 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
507 {
508 printf_unfiltered (_("No saved terminal information.\n"));
509 }
510
511 /* A default implementation for the to_get_ada_task_ptid target method.
512
513 This function builds the PTID by using both LWP and TID as part of
514 the PTID lwp and tid elements. The pid used is the pid of the
515 inferior_ptid. */
516
517 static ptid_t
518 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
519 {
520 return ptid_t (inferior_ptid.pid (), lwp, tid);
521 }
522
523 static enum exec_direction_kind
524 default_execution_direction (struct target_ops *self)
525 {
526 if (!target_can_execute_reverse ())
527 return EXEC_FORWARD;
528 else if (!target_can_async_p ())
529 return EXEC_FORWARD;
530 else
531 gdb_assert_not_reached ("\
532 to_execution_direction must be implemented for reverse async");
533 }
534
535 /* See target.h. */
536
537 void
538 decref_target (target_ops *t)
539 {
540 t->decref ();
541 if (t->refcount () == 0)
542 {
543 if (t->stratum () == process_stratum)
544 connection_list_remove (as_process_stratum_target (t));
545 target_close (t);
546 }
547 }
548
549 /* See target.h. */
550
551 void
552 target_stack::push (target_ops *t)
553 {
554 t->incref ();
555
556 strata stratum = t->stratum ();
557
558 if (stratum == process_stratum)
559 connection_list_add (as_process_stratum_target (t));
560
561 /* If there's already a target at this stratum, remove it. */
562
563 if (m_stack[stratum] != NULL)
564 unpush (m_stack[stratum]);
565
566 /* Now add the new one. */
567 m_stack[stratum] = t;
568
569 if (m_top < stratum)
570 m_top = stratum;
571 }
572
573 /* See target.h. */
574
575 void
576 push_target (struct target_ops *t)
577 {
578 current_inferior ()->push_target (t);
579 }
580
581 /* See target.h. */
582
583 void
584 push_target (target_ops_up &&t)
585 {
586 current_inferior ()->push_target (t.get ());
587 t.release ();
588 }
589
590 /* See target.h. */
591
592 int
593 unpush_target (struct target_ops *t)
594 {
595 return current_inferior ()->unpush_target (t);
596 }
597
598 /* See target.h. */
599
600 bool
601 target_stack::unpush (target_ops *t)
602 {
603 gdb_assert (t != NULL);
604
605 strata stratum = t->stratum ();
606
607 if (stratum == dummy_stratum)
608 internal_error (__FILE__, __LINE__,
609 _("Attempt to unpush the dummy target"));
610
611 /* Look for the specified target. Note that a target can only occur
612 once in the target stack. */
613
614 if (m_stack[stratum] != t)
615 {
616 /* If T wasn't pushed, quit. Only open targets should be
617 closed. */
618 return false;
619 }
620
621 /* Unchain the target. */
622 m_stack[stratum] = NULL;
623
624 if (m_top == stratum)
625 m_top = t->beneath ()->stratum ();
626
627 /* Finally close the target, if there are no inferiors
628 referencing this target still. Note we do this after unchaining,
629 so any target method calls from within the target_close
630 implementation don't end up in T anymore. Do leave the target
631 open if we have are other inferiors referencing this target
632 still. */
633 decref_target (t);
634
635 return true;
636 }
637
638 /* Unpush TARGET and assert that it worked. */
639
640 static void
641 unpush_target_and_assert (struct target_ops *target)
642 {
643 if (!unpush_target (target))
644 {
645 fprintf_unfiltered (gdb_stderr,
646 "pop_all_targets couldn't find target %s\n",
647 target->shortname ());
648 internal_error (__FILE__, __LINE__,
649 _("failed internal consistency check"));
650 }
651 }
652
653 void
654 pop_all_targets_above (enum strata above_stratum)
655 {
656 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
657 unpush_target_and_assert (current_top_target ());
658 }
659
660 /* See target.h. */
661
662 void
663 pop_all_targets_at_and_above (enum strata stratum)
664 {
665 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
666 unpush_target_and_assert (current_top_target ());
667 }
668
669 void
670 pop_all_targets (void)
671 {
672 pop_all_targets_above (dummy_stratum);
673 }
674
675 /* Return true if T is now pushed in the current inferior's target
676 stack. Return false otherwise. */
677
678 bool
679 target_is_pushed (target_ops *t)
680 {
681 return current_inferior ()->target_is_pushed (t);
682 }
683
684 /* Default implementation of to_get_thread_local_address. */
685
686 static void
687 generic_tls_error (void)
688 {
689 throw_error (TLS_GENERIC_ERROR,
690 _("Cannot find thread-local variables on this target"));
691 }
692
693 /* Using the objfile specified in OBJFILE, find the address for the
694 current thread's thread-local storage with offset OFFSET. */
695 CORE_ADDR
696 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
697 {
698 volatile CORE_ADDR addr = 0;
699 struct target_ops *target = current_top_target ();
700 struct gdbarch *gdbarch = target_gdbarch ();
701
702 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
703 {
704 ptid_t ptid = inferior_ptid;
705
706 try
707 {
708 CORE_ADDR lm_addr;
709
710 /* Fetch the load module address for this objfile. */
711 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
712 objfile);
713
714 if (gdbarch_get_thread_local_address_p (gdbarch))
715 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
716 offset);
717 else
718 addr = target->get_thread_local_address (ptid, lm_addr, offset);
719 }
720 /* If an error occurred, print TLS related messages here. Otherwise,
721 throw the error to some higher catcher. */
722 catch (const gdb_exception &ex)
723 {
724 int objfile_is_library = (objfile->flags & OBJF_SHARED);
725
726 switch (ex.error)
727 {
728 case TLS_NO_LIBRARY_SUPPORT_ERROR:
729 error (_("Cannot find thread-local variables "
730 "in this thread library."));
731 break;
732 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
733 if (objfile_is_library)
734 error (_("Cannot find shared library `%s' in dynamic"
735 " linker's load module list"), objfile_name (objfile));
736 else
737 error (_("Cannot find executable file `%s' in dynamic"
738 " linker's load module list"), objfile_name (objfile));
739 break;
740 case TLS_NOT_ALLOCATED_YET_ERROR:
741 if (objfile_is_library)
742 error (_("The inferior has not yet allocated storage for"
743 " thread-local variables in\n"
744 "the shared library `%s'\n"
745 "for %s"),
746 objfile_name (objfile),
747 target_pid_to_str (ptid).c_str ());
748 else
749 error (_("The inferior has not yet allocated storage for"
750 " thread-local variables in\n"
751 "the executable `%s'\n"
752 "for %s"),
753 objfile_name (objfile),
754 target_pid_to_str (ptid).c_str ());
755 break;
756 case TLS_GENERIC_ERROR:
757 if (objfile_is_library)
758 error (_("Cannot find thread-local storage for %s, "
759 "shared library %s:\n%s"),
760 target_pid_to_str (ptid).c_str (),
761 objfile_name (objfile), ex.what ());
762 else
763 error (_("Cannot find thread-local storage for %s, "
764 "executable file %s:\n%s"),
765 target_pid_to_str (ptid).c_str (),
766 objfile_name (objfile), ex.what ());
767 break;
768 default:
769 throw;
770 break;
771 }
772 }
773 }
774 else
775 error (_("Cannot find thread-local variables on this target"));
776
777 return addr;
778 }
779
780 const char *
781 target_xfer_status_to_string (enum target_xfer_status status)
782 {
783 #define CASE(X) case X: return #X
784 switch (status)
785 {
786 CASE(TARGET_XFER_E_IO);
787 CASE(TARGET_XFER_UNAVAILABLE);
788 default:
789 return "<unknown>";
790 }
791 #undef CASE
792 };
793
794
795 /* See target.h. */
796
797 gdb::unique_xmalloc_ptr<char>
798 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
799 {
800 gdb::unique_xmalloc_ptr<gdb_byte> buffer;
801
802 int ignore;
803 if (bytes_read == nullptr)
804 bytes_read = &ignore;
805
806 /* Note that the endian-ness does not matter here. */
807 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
808 &buffer, bytes_read);
809 if (errcode != 0)
810 return {};
811
812 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
813 }
814
815 target_section_table *
816 target_get_section_table (struct target_ops *target)
817 {
818 return target->get_section_table ();
819 }
820
821 /* Find a section containing ADDR. */
822
823 struct target_section *
824 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
825 {
826 target_section_table *table = target_get_section_table (target);
827
828 if (table == NULL)
829 return NULL;
830
831 for (target_section &secp : *table)
832 {
833 if (addr >= secp.addr && addr < secp.endaddr)
834 return &secp;
835 }
836 return NULL;
837 }
838
839
840 /* Helper for the memory xfer routines. Checks the attributes of the
841 memory region of MEMADDR against the read or write being attempted.
842 If the access is permitted returns true, otherwise returns false.
843 REGION_P is an optional output parameter. If not-NULL, it is
844 filled with a pointer to the memory region of MEMADDR. REG_LEN
845 returns LEN trimmed to the end of the region. This is how much the
846 caller can continue requesting, if the access is permitted. A
847 single xfer request must not straddle memory region boundaries. */
848
849 static int
850 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
851 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
852 struct mem_region **region_p)
853 {
854 struct mem_region *region;
855
856 region = lookup_mem_region (memaddr);
857
858 if (region_p != NULL)
859 *region_p = region;
860
861 switch (region->attrib.mode)
862 {
863 case MEM_RO:
864 if (writebuf != NULL)
865 return 0;
866 break;
867
868 case MEM_WO:
869 if (readbuf != NULL)
870 return 0;
871 break;
872
873 case MEM_FLASH:
874 /* We only support writing to flash during "load" for now. */
875 if (writebuf != NULL)
876 error (_("Writing to flash memory forbidden in this context"));
877 break;
878
879 case MEM_NONE:
880 return 0;
881 }
882
883 /* region->hi == 0 means there's no upper bound. */
884 if (memaddr + len < region->hi || region->hi == 0)
885 *reg_len = len;
886 else
887 *reg_len = region->hi - memaddr;
888
889 return 1;
890 }
891
892 /* Read memory from more than one valid target. A core file, for
893 instance, could have some of memory but delegate other bits to
894 the target below it. So, we must manually try all targets. */
895
896 enum target_xfer_status
897 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
898 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
899 ULONGEST *xfered_len)
900 {
901 enum target_xfer_status res;
902
903 do
904 {
905 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
906 readbuf, writebuf, memaddr, len,
907 xfered_len);
908 if (res == TARGET_XFER_OK)
909 break;
910
911 /* Stop if the target reports that the memory is not available. */
912 if (res == TARGET_XFER_UNAVAILABLE)
913 break;
914
915 /* Don't continue past targets which have all the memory.
916 At one time, this code was necessary to read data from
917 executables / shared libraries when data for the requested
918 addresses weren't available in the core file. But now the
919 core target handles this case itself. */
920 if (ops->has_all_memory ())
921 break;
922
923 ops = ops->beneath ();
924 }
925 while (ops != NULL);
926
927 /* The cache works at the raw memory level. Make sure the cache
928 gets updated with raw contents no matter what kind of memory
929 object was originally being written. Note we do write-through
930 first, so that if it fails, we don't write to the cache contents
931 that never made it to the target. */
932 if (writebuf != NULL
933 && inferior_ptid != null_ptid
934 && target_dcache_init_p ()
935 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
936 {
937 DCACHE *dcache = target_dcache_get ();
938
939 /* Note that writing to an area of memory which wasn't present
940 in the cache doesn't cause it to be loaded in. */
941 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
942 }
943
944 return res;
945 }
946
947 /* Perform a partial memory transfer.
948 For docs see target.h, to_xfer_partial. */
949
950 static enum target_xfer_status
951 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
952 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
953 ULONGEST len, ULONGEST *xfered_len)
954 {
955 enum target_xfer_status res;
956 ULONGEST reg_len;
957 struct mem_region *region;
958 struct inferior *inf;
959
960 /* For accesses to unmapped overlay sections, read directly from
961 files. Must do this first, as MEMADDR may need adjustment. */
962 if (readbuf != NULL && overlay_debugging)
963 {
964 struct obj_section *section = find_pc_overlay (memaddr);
965
966 if (pc_in_unmapped_range (memaddr, section))
967 {
968 target_section_table *table = target_get_section_table (ops);
969 const char *section_name = section->the_bfd_section->name;
970
971 memaddr = overlay_mapped_address (memaddr, section);
972
973 auto match_cb = [=] (const struct target_section *s)
974 {
975 return (strcmp (section_name, s->the_bfd_section->name) == 0);
976 };
977
978 return section_table_xfer_memory_partial (readbuf, writebuf,
979 memaddr, len, xfered_len,
980 *table, match_cb);
981 }
982 }
983
984 /* Try the executable files, if "trust-readonly-sections" is set. */
985 if (readbuf != NULL && trust_readonly)
986 {
987 struct target_section *secp;
988
989 secp = target_section_by_addr (ops, memaddr);
990 if (secp != NULL
991 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
992 {
993 target_section_table *table = target_get_section_table (ops);
994 return section_table_xfer_memory_partial (readbuf, writebuf,
995 memaddr, len, xfered_len,
996 *table);
997 }
998 }
999
1000 /* Try GDB's internal data cache. */
1001
1002 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1003 &region))
1004 return TARGET_XFER_E_IO;
1005
1006 if (inferior_ptid != null_ptid)
1007 inf = current_inferior ();
1008 else
1009 inf = NULL;
1010
1011 if (inf != NULL
1012 && readbuf != NULL
1013 /* The dcache reads whole cache lines; that doesn't play well
1014 with reading from a trace buffer, because reading outside of
1015 the collected memory range fails. */
1016 && get_traceframe_number () == -1
1017 && (region->attrib.cache
1018 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1019 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1020 {
1021 DCACHE *dcache = target_dcache_get_or_init ();
1022
1023 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1024 reg_len, xfered_len);
1025 }
1026
1027 /* If none of those methods found the memory we wanted, fall back
1028 to a target partial transfer. Normally a single call to
1029 to_xfer_partial is enough; if it doesn't recognize an object
1030 it will call the to_xfer_partial of the next target down.
1031 But for memory this won't do. Memory is the only target
1032 object which can be read from more than one valid target.
1033 A core file, for instance, could have some of memory but
1034 delegate other bits to the target below it. So, we must
1035 manually try all targets. */
1036
1037 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1038 xfered_len);
1039
1040 /* If we still haven't got anything, return the last error. We
1041 give up. */
1042 return res;
1043 }
1044
1045 /* Perform a partial memory transfer. For docs see target.h,
1046 to_xfer_partial. */
1047
1048 static enum target_xfer_status
1049 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1050 gdb_byte *readbuf, const gdb_byte *writebuf,
1051 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1052 {
1053 enum target_xfer_status res;
1054
1055 /* Zero length requests are ok and require no work. */
1056 if (len == 0)
1057 return TARGET_XFER_EOF;
1058
1059 memaddr = address_significant (target_gdbarch (), memaddr);
1060
1061 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1062 breakpoint insns, thus hiding out from higher layers whether
1063 there are software breakpoints inserted in the code stream. */
1064 if (readbuf != NULL)
1065 {
1066 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1067 xfered_len);
1068
1069 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1070 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1071 }
1072 else
1073 {
1074 /* A large write request is likely to be partially satisfied
1075 by memory_xfer_partial_1. We will continually malloc
1076 and free a copy of the entire write request for breakpoint
1077 shadow handling even though we only end up writing a small
1078 subset of it. Cap writes to a limit specified by the target
1079 to mitigate this. */
1080 len = std::min (ops->get_memory_xfer_limit (), len);
1081
1082 gdb::byte_vector buf (writebuf, writebuf + len);
1083 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1084 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1085 xfered_len);
1086 }
1087
1088 return res;
1089 }
1090
1091 scoped_restore_tmpl<int>
1092 make_scoped_restore_show_memory_breakpoints (int show)
1093 {
1094 return make_scoped_restore (&show_memory_breakpoints, show);
1095 }
1096
1097 /* For docs see target.h, to_xfer_partial. */
1098
1099 enum target_xfer_status
1100 target_xfer_partial (struct target_ops *ops,
1101 enum target_object object, const char *annex,
1102 gdb_byte *readbuf, const gdb_byte *writebuf,
1103 ULONGEST offset, ULONGEST len,
1104 ULONGEST *xfered_len)
1105 {
1106 enum target_xfer_status retval;
1107
1108 /* Transfer is done when LEN is zero. */
1109 if (len == 0)
1110 return TARGET_XFER_EOF;
1111
1112 if (writebuf && !may_write_memory)
1113 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1114 core_addr_to_string_nz (offset), plongest (len));
1115
1116 *xfered_len = 0;
1117
1118 /* If this is a memory transfer, let the memory-specific code
1119 have a look at it instead. Memory transfers are more
1120 complicated. */
1121 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1122 || object == TARGET_OBJECT_CODE_MEMORY)
1123 retval = memory_xfer_partial (ops, object, readbuf,
1124 writebuf, offset, len, xfered_len);
1125 else if (object == TARGET_OBJECT_RAW_MEMORY)
1126 {
1127 /* Skip/avoid accessing the target if the memory region
1128 attributes block the access. Check this here instead of in
1129 raw_memory_xfer_partial as otherwise we'd end up checking
1130 this twice in the case of the memory_xfer_partial path is
1131 taken; once before checking the dcache, and another in the
1132 tail call to raw_memory_xfer_partial. */
1133 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1134 NULL))
1135 return TARGET_XFER_E_IO;
1136
1137 /* Request the normal memory object from other layers. */
1138 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1139 xfered_len);
1140 }
1141 else
1142 retval = ops->xfer_partial (object, annex, readbuf,
1143 writebuf, offset, len, xfered_len);
1144
1145 if (targetdebug)
1146 {
1147 const unsigned char *myaddr = NULL;
1148
1149 fprintf_unfiltered (gdb_stdlog,
1150 "%s:target_xfer_partial "
1151 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1152 ops->shortname (),
1153 (int) object,
1154 (annex ? annex : "(null)"),
1155 host_address_to_string (readbuf),
1156 host_address_to_string (writebuf),
1157 core_addr_to_string_nz (offset),
1158 pulongest (len), retval,
1159 pulongest (*xfered_len));
1160
1161 if (readbuf)
1162 myaddr = readbuf;
1163 if (writebuf)
1164 myaddr = writebuf;
1165 if (retval == TARGET_XFER_OK && myaddr != NULL)
1166 {
1167 int i;
1168
1169 fputs_unfiltered (", bytes =", gdb_stdlog);
1170 for (i = 0; i < *xfered_len; i++)
1171 {
1172 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1173 {
1174 if (targetdebug < 2 && i > 0)
1175 {
1176 fprintf_unfiltered (gdb_stdlog, " ...");
1177 break;
1178 }
1179 fprintf_unfiltered (gdb_stdlog, "\n");
1180 }
1181
1182 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1183 }
1184 }
1185
1186 fputc_unfiltered ('\n', gdb_stdlog);
1187 }
1188
1189 /* Check implementations of to_xfer_partial update *XFERED_LEN
1190 properly. Do assertion after printing debug messages, so that we
1191 can find more clues on assertion failure from debugging messages. */
1192 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1193 gdb_assert (*xfered_len > 0);
1194
1195 return retval;
1196 }
1197
1198 /* Read LEN bytes of target memory at address MEMADDR, placing the
1199 results in GDB's memory at MYADDR. Returns either 0 for success or
1200 -1 if any error occurs.
1201
1202 If an error occurs, no guarantee is made about the contents of the data at
1203 MYADDR. In particular, the caller should not depend upon partial reads
1204 filling the buffer with good data. There is no way for the caller to know
1205 how much good data might have been transfered anyway. Callers that can
1206 deal with partial reads should call target_read (which will retry until
1207 it makes no progress, and then return how much was transferred). */
1208
1209 int
1210 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1211 {
1212 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1213 myaddr, memaddr, len) == len)
1214 return 0;
1215 else
1216 return -1;
1217 }
1218
1219 /* See target/target.h. */
1220
1221 int
1222 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1223 {
1224 gdb_byte buf[4];
1225 int r;
1226
1227 r = target_read_memory (memaddr, buf, sizeof buf);
1228 if (r != 0)
1229 return r;
1230 *result = extract_unsigned_integer (buf, sizeof buf,
1231 gdbarch_byte_order (target_gdbarch ()));
1232 return 0;
1233 }
1234
1235 /* Like target_read_memory, but specify explicitly that this is a read
1236 from the target's raw memory. That is, this read bypasses the
1237 dcache, breakpoint shadowing, etc. */
1238
1239 int
1240 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1241 {
1242 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1243 myaddr, memaddr, len) == len)
1244 return 0;
1245 else
1246 return -1;
1247 }
1248
1249 /* Like target_read_memory, but specify explicitly that this is a read from
1250 the target's stack. This may trigger different cache behavior. */
1251
1252 int
1253 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1254 {
1255 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1256 myaddr, memaddr, len) == len)
1257 return 0;
1258 else
1259 return -1;
1260 }
1261
1262 /* Like target_read_memory, but specify explicitly that this is a read from
1263 the target's code. This may trigger different cache behavior. */
1264
1265 int
1266 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1267 {
1268 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1269 myaddr, memaddr, len) == len)
1270 return 0;
1271 else
1272 return -1;
1273 }
1274
1275 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1276 Returns either 0 for success or -1 if any error occurs. If an
1277 error occurs, no guarantee is made about how much data got written.
1278 Callers that can deal with partial writes should call
1279 target_write. */
1280
1281 int
1282 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1283 {
1284 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1285 myaddr, memaddr, len) == len)
1286 return 0;
1287 else
1288 return -1;
1289 }
1290
1291 /* Write LEN bytes from MYADDR to target raw memory at address
1292 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1293 If an error occurs, no guarantee is made about how much data got
1294 written. Callers that can deal with partial writes should call
1295 target_write. */
1296
1297 int
1298 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1299 {
1300 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1301 myaddr, memaddr, len) == len)
1302 return 0;
1303 else
1304 return -1;
1305 }
1306
1307 /* Fetch the target's memory map. */
1308
1309 std::vector<mem_region>
1310 target_memory_map (void)
1311 {
1312 std::vector<mem_region> result = current_top_target ()->memory_map ();
1313 if (result.empty ())
1314 return result;
1315
1316 std::sort (result.begin (), result.end ());
1317
1318 /* Check that regions do not overlap. Simultaneously assign
1319 a numbering for the "mem" commands to use to refer to
1320 each region. */
1321 mem_region *last_one = NULL;
1322 for (size_t ix = 0; ix < result.size (); ix++)
1323 {
1324 mem_region *this_one = &result[ix];
1325 this_one->number = ix;
1326
1327 if (last_one != NULL && last_one->hi > this_one->lo)
1328 {
1329 warning (_("Overlapping regions in memory map: ignoring"));
1330 return std::vector<mem_region> ();
1331 }
1332
1333 last_one = this_one;
1334 }
1335
1336 return result;
1337 }
1338
1339 void
1340 target_flash_erase (ULONGEST address, LONGEST length)
1341 {
1342 current_top_target ()->flash_erase (address, length);
1343 }
1344
1345 void
1346 target_flash_done (void)
1347 {
1348 current_top_target ()->flash_done ();
1349 }
1350
1351 static void
1352 show_trust_readonly (struct ui_file *file, int from_tty,
1353 struct cmd_list_element *c, const char *value)
1354 {
1355 fprintf_filtered (file,
1356 _("Mode for reading from readonly sections is %s.\n"),
1357 value);
1358 }
1359
1360 /* Target vector read/write partial wrapper functions. */
1361
1362 static enum target_xfer_status
1363 target_read_partial (struct target_ops *ops,
1364 enum target_object object,
1365 const char *annex, gdb_byte *buf,
1366 ULONGEST offset, ULONGEST len,
1367 ULONGEST *xfered_len)
1368 {
1369 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1370 xfered_len);
1371 }
1372
1373 static enum target_xfer_status
1374 target_write_partial (struct target_ops *ops,
1375 enum target_object object,
1376 const char *annex, const gdb_byte *buf,
1377 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1378 {
1379 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1380 xfered_len);
1381 }
1382
1383 /* Wrappers to perform the full transfer. */
1384
1385 /* For docs on target_read see target.h. */
1386
1387 LONGEST
1388 target_read (struct target_ops *ops,
1389 enum target_object object,
1390 const char *annex, gdb_byte *buf,
1391 ULONGEST offset, LONGEST len)
1392 {
1393 LONGEST xfered_total = 0;
1394 int unit_size = 1;
1395
1396 /* If we are reading from a memory object, find the length of an addressable
1397 unit for that architecture. */
1398 if (object == TARGET_OBJECT_MEMORY
1399 || object == TARGET_OBJECT_STACK_MEMORY
1400 || object == TARGET_OBJECT_CODE_MEMORY
1401 || object == TARGET_OBJECT_RAW_MEMORY)
1402 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1403
1404 while (xfered_total < len)
1405 {
1406 ULONGEST xfered_partial;
1407 enum target_xfer_status status;
1408
1409 status = target_read_partial (ops, object, annex,
1410 buf + xfered_total * unit_size,
1411 offset + xfered_total, len - xfered_total,
1412 &xfered_partial);
1413
1414 /* Call an observer, notifying them of the xfer progress? */
1415 if (status == TARGET_XFER_EOF)
1416 return xfered_total;
1417 else if (status == TARGET_XFER_OK)
1418 {
1419 xfered_total += xfered_partial;
1420 QUIT;
1421 }
1422 else
1423 return TARGET_XFER_E_IO;
1424
1425 }
1426 return len;
1427 }
1428
1429 /* Assuming that the entire [begin, end) range of memory cannot be
1430 read, try to read whatever subrange is possible to read.
1431
1432 The function returns, in RESULT, either zero or one memory block.
1433 If there's a readable subrange at the beginning, it is completely
1434 read and returned. Any further readable subrange will not be read.
1435 Otherwise, if there's a readable subrange at the end, it will be
1436 completely read and returned. Any readable subranges before it
1437 (obviously, not starting at the beginning), will be ignored. In
1438 other cases -- either no readable subrange, or readable subrange(s)
1439 that is neither at the beginning, or end, nothing is returned.
1440
1441 The purpose of this function is to handle a read across a boundary
1442 of accessible memory in a case when memory map is not available.
1443 The above restrictions are fine for this case, but will give
1444 incorrect results if the memory is 'patchy'. However, supporting
1445 'patchy' memory would require trying to read every single byte,
1446 and it seems unacceptable solution. Explicit memory map is
1447 recommended for this case -- and target_read_memory_robust will
1448 take care of reading multiple ranges then. */
1449
1450 static void
1451 read_whatever_is_readable (struct target_ops *ops,
1452 const ULONGEST begin, const ULONGEST end,
1453 int unit_size,
1454 std::vector<memory_read_result> *result)
1455 {
1456 ULONGEST current_begin = begin;
1457 ULONGEST current_end = end;
1458 int forward;
1459 ULONGEST xfered_len;
1460
1461 /* If we previously failed to read 1 byte, nothing can be done here. */
1462 if (end - begin <= 1)
1463 return;
1464
1465 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1466
1467 /* Check that either first or the last byte is readable, and give up
1468 if not. This heuristic is meant to permit reading accessible memory
1469 at the boundary of accessible region. */
1470 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1471 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1472 {
1473 forward = 1;
1474 ++current_begin;
1475 }
1476 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1477 buf.get () + (end - begin) - 1, end - 1, 1,
1478 &xfered_len) == TARGET_XFER_OK)
1479 {
1480 forward = 0;
1481 --current_end;
1482 }
1483 else
1484 return;
1485
1486 /* Loop invariant is that the [current_begin, current_end) was previously
1487 found to be not readable as a whole.
1488
1489 Note loop condition -- if the range has 1 byte, we can't divide the range
1490 so there's no point trying further. */
1491 while (current_end - current_begin > 1)
1492 {
1493 ULONGEST first_half_begin, first_half_end;
1494 ULONGEST second_half_begin, second_half_end;
1495 LONGEST xfer;
1496 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1497
1498 if (forward)
1499 {
1500 first_half_begin = current_begin;
1501 first_half_end = middle;
1502 second_half_begin = middle;
1503 second_half_end = current_end;
1504 }
1505 else
1506 {
1507 first_half_begin = middle;
1508 first_half_end = current_end;
1509 second_half_begin = current_begin;
1510 second_half_end = middle;
1511 }
1512
1513 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1514 buf.get () + (first_half_begin - begin) * unit_size,
1515 first_half_begin,
1516 first_half_end - first_half_begin);
1517
1518 if (xfer == first_half_end - first_half_begin)
1519 {
1520 /* This half reads up fine. So, the error must be in the
1521 other half. */
1522 current_begin = second_half_begin;
1523 current_end = second_half_end;
1524 }
1525 else
1526 {
1527 /* This half is not readable. Because we've tried one byte, we
1528 know some part of this half if actually readable. Go to the next
1529 iteration to divide again and try to read.
1530
1531 We don't handle the other half, because this function only tries
1532 to read a single readable subrange. */
1533 current_begin = first_half_begin;
1534 current_end = first_half_end;
1535 }
1536 }
1537
1538 if (forward)
1539 {
1540 /* The [begin, current_begin) range has been read. */
1541 result->emplace_back (begin, current_end, std::move (buf));
1542 }
1543 else
1544 {
1545 /* The [current_end, end) range has been read. */
1546 LONGEST region_len = end - current_end;
1547
1548 gdb::unique_xmalloc_ptr<gdb_byte> data
1549 ((gdb_byte *) xmalloc (region_len * unit_size));
1550 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1551 region_len * unit_size);
1552 result->emplace_back (current_end, end, std::move (data));
1553 }
1554 }
1555
1556 std::vector<memory_read_result>
1557 read_memory_robust (struct target_ops *ops,
1558 const ULONGEST offset, const LONGEST len)
1559 {
1560 std::vector<memory_read_result> result;
1561 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1562
1563 LONGEST xfered_total = 0;
1564 while (xfered_total < len)
1565 {
1566 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1567 LONGEST region_len;
1568
1569 /* If there is no explicit region, a fake one should be created. */
1570 gdb_assert (region);
1571
1572 if (region->hi == 0)
1573 region_len = len - xfered_total;
1574 else
1575 region_len = region->hi - offset;
1576
1577 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1578 {
1579 /* Cannot read this region. Note that we can end up here only
1580 if the region is explicitly marked inaccessible, or
1581 'inaccessible-by-default' is in effect. */
1582 xfered_total += region_len;
1583 }
1584 else
1585 {
1586 LONGEST to_read = std::min (len - xfered_total, region_len);
1587 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1588 ((gdb_byte *) xmalloc (to_read * unit_size));
1589
1590 LONGEST xfered_partial =
1591 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1592 offset + xfered_total, to_read);
1593 /* Call an observer, notifying them of the xfer progress? */
1594 if (xfered_partial <= 0)
1595 {
1596 /* Got an error reading full chunk. See if maybe we can read
1597 some subrange. */
1598 read_whatever_is_readable (ops, offset + xfered_total,
1599 offset + xfered_total + to_read,
1600 unit_size, &result);
1601 xfered_total += to_read;
1602 }
1603 else
1604 {
1605 result.emplace_back (offset + xfered_total,
1606 offset + xfered_total + xfered_partial,
1607 std::move (buffer));
1608 xfered_total += xfered_partial;
1609 }
1610 QUIT;
1611 }
1612 }
1613
1614 return result;
1615 }
1616
1617
1618 /* An alternative to target_write with progress callbacks. */
1619
1620 LONGEST
1621 target_write_with_progress (struct target_ops *ops,
1622 enum target_object object,
1623 const char *annex, const gdb_byte *buf,
1624 ULONGEST offset, LONGEST len,
1625 void (*progress) (ULONGEST, void *), void *baton)
1626 {
1627 LONGEST xfered_total = 0;
1628 int unit_size = 1;
1629
1630 /* If we are writing to a memory object, find the length of an addressable
1631 unit for that architecture. */
1632 if (object == TARGET_OBJECT_MEMORY
1633 || object == TARGET_OBJECT_STACK_MEMORY
1634 || object == TARGET_OBJECT_CODE_MEMORY
1635 || object == TARGET_OBJECT_RAW_MEMORY)
1636 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1637
1638 /* Give the progress callback a chance to set up. */
1639 if (progress)
1640 (*progress) (0, baton);
1641
1642 while (xfered_total < len)
1643 {
1644 ULONGEST xfered_partial;
1645 enum target_xfer_status status;
1646
1647 status = target_write_partial (ops, object, annex,
1648 buf + xfered_total * unit_size,
1649 offset + xfered_total, len - xfered_total,
1650 &xfered_partial);
1651
1652 if (status != TARGET_XFER_OK)
1653 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1654
1655 if (progress)
1656 (*progress) (xfered_partial, baton);
1657
1658 xfered_total += xfered_partial;
1659 QUIT;
1660 }
1661 return len;
1662 }
1663
1664 /* For docs on target_write see target.h. */
1665
1666 LONGEST
1667 target_write (struct target_ops *ops,
1668 enum target_object object,
1669 const char *annex, const gdb_byte *buf,
1670 ULONGEST offset, LONGEST len)
1671 {
1672 return target_write_with_progress (ops, object, annex, buf, offset, len,
1673 NULL, NULL);
1674 }
1675
1676 /* Help for target_read_alloc and target_read_stralloc. See their comments
1677 for details. */
1678
1679 template <typename T>
1680 gdb::optional<gdb::def_vector<T>>
1681 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1682 const char *annex)
1683 {
1684 gdb::def_vector<T> buf;
1685 size_t buf_pos = 0;
1686 const int chunk = 4096;
1687
1688 /* This function does not have a length parameter; it reads the
1689 entire OBJECT). Also, it doesn't support objects fetched partly
1690 from one target and partly from another (in a different stratum,
1691 e.g. a core file and an executable). Both reasons make it
1692 unsuitable for reading memory. */
1693 gdb_assert (object != TARGET_OBJECT_MEMORY);
1694
1695 /* Start by reading up to 4K at a time. The target will throttle
1696 this number down if necessary. */
1697 while (1)
1698 {
1699 ULONGEST xfered_len;
1700 enum target_xfer_status status;
1701
1702 buf.resize (buf_pos + chunk);
1703
1704 status = target_read_partial (ops, object, annex,
1705 (gdb_byte *) &buf[buf_pos],
1706 buf_pos, chunk,
1707 &xfered_len);
1708
1709 if (status == TARGET_XFER_EOF)
1710 {
1711 /* Read all there was. */
1712 buf.resize (buf_pos);
1713 return buf;
1714 }
1715 else if (status != TARGET_XFER_OK)
1716 {
1717 /* An error occurred. */
1718 return {};
1719 }
1720
1721 buf_pos += xfered_len;
1722
1723 QUIT;
1724 }
1725 }
1726
1727 /* See target.h */
1728
1729 gdb::optional<gdb::byte_vector>
1730 target_read_alloc (struct target_ops *ops, enum target_object object,
1731 const char *annex)
1732 {
1733 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1734 }
1735
1736 /* See target.h. */
1737
1738 gdb::optional<gdb::char_vector>
1739 target_read_stralloc (struct target_ops *ops, enum target_object object,
1740 const char *annex)
1741 {
1742 gdb::optional<gdb::char_vector> buf
1743 = target_read_alloc_1<char> (ops, object, annex);
1744
1745 if (!buf)
1746 return {};
1747
1748 if (buf->empty () || buf->back () != '\0')
1749 buf->push_back ('\0');
1750
1751 /* Check for embedded NUL bytes; but allow trailing NULs. */
1752 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1753 it != buf->end (); it++)
1754 if (*it != '\0')
1755 {
1756 warning (_("target object %d, annex %s, "
1757 "contained unexpected null characters"),
1758 (int) object, annex ? annex : "(none)");
1759 break;
1760 }
1761
1762 return buf;
1763 }
1764
1765 /* Memory transfer methods. */
1766
1767 void
1768 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1769 LONGEST len)
1770 {
1771 /* This method is used to read from an alternate, non-current
1772 target. This read must bypass the overlay support (as symbols
1773 don't match this target), and GDB's internal cache (wrong cache
1774 for this target). */
1775 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1776 != len)
1777 memory_error (TARGET_XFER_E_IO, addr);
1778 }
1779
1780 ULONGEST
1781 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1782 int len, enum bfd_endian byte_order)
1783 {
1784 gdb_byte buf[sizeof (ULONGEST)];
1785
1786 gdb_assert (len <= sizeof (buf));
1787 get_target_memory (ops, addr, buf, len);
1788 return extract_unsigned_integer (buf, len, byte_order);
1789 }
1790
1791 /* See target.h. */
1792
1793 int
1794 target_insert_breakpoint (struct gdbarch *gdbarch,
1795 struct bp_target_info *bp_tgt)
1796 {
1797 if (!may_insert_breakpoints)
1798 {
1799 warning (_("May not insert breakpoints"));
1800 return 1;
1801 }
1802
1803 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1804 }
1805
1806 /* See target.h. */
1807
1808 int
1809 target_remove_breakpoint (struct gdbarch *gdbarch,
1810 struct bp_target_info *bp_tgt,
1811 enum remove_bp_reason reason)
1812 {
1813 /* This is kind of a weird case to handle, but the permission might
1814 have been changed after breakpoints were inserted - in which case
1815 we should just take the user literally and assume that any
1816 breakpoints should be left in place. */
1817 if (!may_insert_breakpoints)
1818 {
1819 warning (_("May not remove breakpoints"));
1820 return 1;
1821 }
1822
1823 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1824 }
1825
1826 static void
1827 info_target_command (const char *args, int from_tty)
1828 {
1829 int has_all_mem = 0;
1830
1831 if (current_program_space->symfile_object_file != NULL)
1832 {
1833 objfile *objf = current_program_space->symfile_object_file;
1834 printf_unfiltered (_("Symbols from \"%s\".\n"),
1835 objfile_name (objf));
1836 }
1837
1838 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1839 {
1840 if (!t->has_memory ())
1841 continue;
1842
1843 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1844 continue;
1845 if (has_all_mem)
1846 printf_unfiltered (_("\tWhile running this, "
1847 "GDB does not access memory from...\n"));
1848 printf_unfiltered ("%s:\n", t->longname ());
1849 t->files_info ();
1850 has_all_mem = t->has_all_memory ();
1851 }
1852 }
1853
1854 /* This function is called before any new inferior is created, e.g.
1855 by running a program, attaching, or connecting to a target.
1856 It cleans up any state from previous invocations which might
1857 change between runs. This is a subset of what target_preopen
1858 resets (things which might change between targets). */
1859
1860 void
1861 target_pre_inferior (int from_tty)
1862 {
1863 /* Clear out solib state. Otherwise the solib state of the previous
1864 inferior might have survived and is entirely wrong for the new
1865 target. This has been observed on GNU/Linux using glibc 2.3. How
1866 to reproduce:
1867
1868 bash$ ./foo&
1869 [1] 4711
1870 bash$ ./foo&
1871 [1] 4712
1872 bash$ gdb ./foo
1873 [...]
1874 (gdb) attach 4711
1875 (gdb) detach
1876 (gdb) attach 4712
1877 Cannot access memory at address 0xdeadbeef
1878 */
1879
1880 /* In some OSs, the shared library list is the same/global/shared
1881 across inferiors. If code is shared between processes, so are
1882 memory regions and features. */
1883 if (!gdbarch_has_global_solist (target_gdbarch ()))
1884 {
1885 no_shared_libraries (NULL, from_tty);
1886
1887 invalidate_target_mem_regions ();
1888
1889 target_clear_description ();
1890 }
1891
1892 /* attach_flag may be set if the previous process associated with
1893 the inferior was attached to. */
1894 current_inferior ()->attach_flag = 0;
1895
1896 current_inferior ()->highest_thread_num = 0;
1897
1898 agent_capability_invalidate ();
1899 }
1900
1901 /* This is to be called by the open routine before it does
1902 anything. */
1903
1904 void
1905 target_preopen (int from_tty)
1906 {
1907 dont_repeat ();
1908
1909 if (current_inferior ()->pid != 0)
1910 {
1911 if (!from_tty
1912 || !target_has_execution ()
1913 || query (_("A program is being debugged already. Kill it? ")))
1914 {
1915 /* Core inferiors actually should be detached, not
1916 killed. */
1917 if (target_has_execution ())
1918 target_kill ();
1919 else
1920 target_detach (current_inferior (), 0);
1921 }
1922 else
1923 error (_("Program not killed."));
1924 }
1925
1926 /* Calling target_kill may remove the target from the stack. But if
1927 it doesn't (which seems like a win for UDI), remove it now. */
1928 /* Leave the exec target, though. The user may be switching from a
1929 live process to a core of the same program. */
1930 pop_all_targets_above (file_stratum);
1931
1932 target_pre_inferior (from_tty);
1933 }
1934
1935 /* See target.h. */
1936
1937 void
1938 target_detach (inferior *inf, int from_tty)
1939 {
1940 /* After we have detached, we will clear the register cache for this inferior
1941 by calling registers_changed_ptid. We must save the pid_ptid before
1942 detaching, as the target detach method will clear inf->pid. */
1943 ptid_t save_pid_ptid = ptid_t (inf->pid);
1944
1945 /* As long as some to_detach implementations rely on the current_inferior
1946 (either directly, or indirectly, like through target_gdbarch or by
1947 reading memory), INF needs to be the current inferior. When that
1948 requirement will become no longer true, then we can remove this
1949 assertion. */
1950 gdb_assert (inf == current_inferior ());
1951
1952 prepare_for_detach ();
1953
1954 /* Hold a strong reference because detaching may unpush the
1955 target. */
1956 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1957
1958 current_top_target ()->detach (inf, from_tty);
1959
1960 process_stratum_target *proc_target
1961 = as_process_stratum_target (proc_target_ref.get ());
1962
1963 registers_changed_ptid (proc_target, save_pid_ptid);
1964
1965 /* We have to ensure we have no frame cache left. Normally,
1966 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1967 inferior_ptid matches save_pid_ptid, but in our case, it does not
1968 call it, as inferior_ptid has been reset. */
1969 reinit_frame_cache ();
1970 }
1971
1972 void
1973 target_disconnect (const char *args, int from_tty)
1974 {
1975 /* If we're in breakpoints-always-inserted mode or if breakpoints
1976 are global across processes, we have to remove them before
1977 disconnecting. */
1978 remove_breakpoints ();
1979
1980 current_top_target ()->disconnect (args, from_tty);
1981 }
1982
1983 /* See target/target.h. */
1984
1985 ptid_t
1986 target_wait (ptid_t ptid, struct target_waitstatus *status,
1987 target_wait_flags options)
1988 {
1989 target_ops *target = current_top_target ();
1990
1991 if (!target->can_async_p ())
1992 gdb_assert ((options & TARGET_WNOHANG) == 0);
1993
1994 return target->wait (ptid, status, options);
1995 }
1996
1997 /* See target.h. */
1998
1999 ptid_t
2000 default_target_wait (struct target_ops *ops,
2001 ptid_t ptid, struct target_waitstatus *status,
2002 target_wait_flags options)
2003 {
2004 status->kind = TARGET_WAITKIND_IGNORE;
2005 return minus_one_ptid;
2006 }
2007
2008 std::string
2009 target_pid_to_str (ptid_t ptid)
2010 {
2011 return current_top_target ()->pid_to_str (ptid);
2012 }
2013
2014 const char *
2015 target_thread_name (struct thread_info *info)
2016 {
2017 gdb_assert (info->inf == current_inferior ());
2018
2019 return current_top_target ()->thread_name (info);
2020 }
2021
2022 struct thread_info *
2023 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2024 int handle_len,
2025 struct inferior *inf)
2026 {
2027 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2028 handle_len, inf);
2029 }
2030
2031 /* See target.h. */
2032
2033 gdb::byte_vector
2034 target_thread_info_to_thread_handle (struct thread_info *tip)
2035 {
2036 return current_top_target ()->thread_info_to_thread_handle (tip);
2037 }
2038
2039 void
2040 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2041 {
2042 process_stratum_target *curr_target = current_inferior ()->process_target ();
2043
2044 target_dcache_invalidate ();
2045
2046 current_top_target ()->resume (ptid, step, signal);
2047
2048 registers_changed_ptid (curr_target, ptid);
2049 /* We only set the internal executing state here. The user/frontend
2050 running state is set at a higher level. This also clears the
2051 thread's stop_pc as side effect. */
2052 set_executing (curr_target, ptid, true);
2053 clear_inline_frame_state (curr_target, ptid);
2054 }
2055
2056 /* If true, target_commit_resume is a nop. */
2057 static int defer_target_commit_resume;
2058
2059 /* See target.h. */
2060
2061 void
2062 target_commit_resume (void)
2063 {
2064 if (defer_target_commit_resume)
2065 return;
2066
2067 current_top_target ()->commit_resume ();
2068 }
2069
2070 /* See target.h. */
2071
2072 scoped_restore_tmpl<int>
2073 make_scoped_defer_target_commit_resume ()
2074 {
2075 return make_scoped_restore (&defer_target_commit_resume, 1);
2076 }
2077
2078 void
2079 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2080 {
2081 current_top_target ()->pass_signals (pass_signals);
2082 }
2083
2084 void
2085 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2086 {
2087 current_top_target ()->program_signals (program_signals);
2088 }
2089
2090 static bool
2091 default_follow_fork (struct target_ops *self, bool follow_child,
2092 bool detach_fork)
2093 {
2094 /* Some target returned a fork event, but did not know how to follow it. */
2095 internal_error (__FILE__, __LINE__,
2096 _("could not find a target to follow fork"));
2097 }
2098
2099 /* Look through the list of possible targets for a target that can
2100 follow forks. */
2101
2102 bool
2103 target_follow_fork (bool follow_child, bool detach_fork)
2104 {
2105 return current_top_target ()->follow_fork (follow_child, detach_fork);
2106 }
2107
2108 /* Target wrapper for follow exec hook. */
2109
2110 void
2111 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2112 {
2113 current_top_target ()->follow_exec (inf, execd_pathname);
2114 }
2115
2116 static void
2117 default_mourn_inferior (struct target_ops *self)
2118 {
2119 internal_error (__FILE__, __LINE__,
2120 _("could not find a target to follow mourn inferior"));
2121 }
2122
2123 void
2124 target_mourn_inferior (ptid_t ptid)
2125 {
2126 gdb_assert (ptid == inferior_ptid);
2127 current_top_target ()->mourn_inferior ();
2128
2129 /* We no longer need to keep handles on any of the object files.
2130 Make sure to release them to avoid unnecessarily locking any
2131 of them while we're not actually debugging. */
2132 bfd_cache_close_all ();
2133 }
2134
2135 /* Look for a target which can describe architectural features, starting
2136 from TARGET. If we find one, return its description. */
2137
2138 const struct target_desc *
2139 target_read_description (struct target_ops *target)
2140 {
2141 return target->read_description ();
2142 }
2143
2144
2145 /* Default implementation of memory-searching. */
2146
2147 static int
2148 default_search_memory (struct target_ops *self,
2149 CORE_ADDR start_addr, ULONGEST search_space_len,
2150 const gdb_byte *pattern, ULONGEST pattern_len,
2151 CORE_ADDR *found_addrp)
2152 {
2153 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
2154 {
2155 return target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
2156 result, addr, len) == len;
2157 };
2158
2159 /* Start over from the top of the target stack. */
2160 return simple_search_memory (read_memory, start_addr, search_space_len,
2161 pattern, pattern_len, found_addrp);
2162 }
2163
2164 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2165 sequence of bytes in PATTERN with length PATTERN_LEN.
2166
2167 The result is 1 if found, 0 if not found, and -1 if there was an error
2168 requiring halting of the search (e.g. memory read error).
2169 If the pattern is found the address is recorded in FOUND_ADDRP. */
2170
2171 int
2172 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2173 const gdb_byte *pattern, ULONGEST pattern_len,
2174 CORE_ADDR *found_addrp)
2175 {
2176 return current_top_target ()->search_memory (start_addr, search_space_len,
2177 pattern, pattern_len, found_addrp);
2178 }
2179
2180 /* Look through the currently pushed targets. If none of them will
2181 be able to restart the currently running process, issue an error
2182 message. */
2183
2184 void
2185 target_require_runnable (void)
2186 {
2187 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2188 {
2189 /* If this target knows how to create a new program, then
2190 assume we will still be able to after killing the current
2191 one. Either killing and mourning will not pop T, or else
2192 find_default_run_target will find it again. */
2193 if (t->can_create_inferior ())
2194 return;
2195
2196 /* Do not worry about targets at certain strata that can not
2197 create inferiors. Assume they will be pushed again if
2198 necessary, and continue to the process_stratum. */
2199 if (t->stratum () > process_stratum)
2200 continue;
2201
2202 error (_("The \"%s\" target does not support \"run\". "
2203 "Try \"help target\" or \"continue\"."),
2204 t->shortname ());
2205 }
2206
2207 /* This function is only called if the target is running. In that
2208 case there should have been a process_stratum target and it
2209 should either know how to create inferiors, or not... */
2210 internal_error (__FILE__, __LINE__, _("No targets found"));
2211 }
2212
2213 /* Whether GDB is allowed to fall back to the default run target for
2214 "run", "attach", etc. when no target is connected yet. */
2215 static bool auto_connect_native_target = true;
2216
2217 static void
2218 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2219 struct cmd_list_element *c, const char *value)
2220 {
2221 fprintf_filtered (file,
2222 _("Whether GDB may automatically connect to the "
2223 "native target is %s.\n"),
2224 value);
2225 }
2226
2227 /* A pointer to the target that can respond to "run" or "attach".
2228 Native targets are always singletons and instantiated early at GDB
2229 startup. */
2230 static target_ops *the_native_target;
2231
2232 /* See target.h. */
2233
2234 void
2235 set_native_target (target_ops *target)
2236 {
2237 if (the_native_target != NULL)
2238 internal_error (__FILE__, __LINE__,
2239 _("native target already set (\"%s\")."),
2240 the_native_target->longname ());
2241
2242 the_native_target = target;
2243 }
2244
2245 /* See target.h. */
2246
2247 target_ops *
2248 get_native_target ()
2249 {
2250 return the_native_target;
2251 }
2252
2253 /* Look through the list of possible targets for a target that can
2254 execute a run or attach command without any other data. This is
2255 used to locate the default process stratum.
2256
2257 If DO_MESG is not NULL, the result is always valid (error() is
2258 called for errors); else, return NULL on error. */
2259
2260 static struct target_ops *
2261 find_default_run_target (const char *do_mesg)
2262 {
2263 if (auto_connect_native_target && the_native_target != NULL)
2264 return the_native_target;
2265
2266 if (do_mesg != NULL)
2267 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2268 return NULL;
2269 }
2270
2271 /* See target.h. */
2272
2273 struct target_ops *
2274 find_attach_target (void)
2275 {
2276 /* If a target on the current stack can attach, use it. */
2277 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2278 {
2279 if (t->can_attach ())
2280 return t;
2281 }
2282
2283 /* Otherwise, use the default run target for attaching. */
2284 return find_default_run_target ("attach");
2285 }
2286
2287 /* See target.h. */
2288
2289 struct target_ops *
2290 find_run_target (void)
2291 {
2292 /* If a target on the current stack can run, use it. */
2293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2294 {
2295 if (t->can_create_inferior ())
2296 return t;
2297 }
2298
2299 /* Otherwise, use the default run target. */
2300 return find_default_run_target ("run");
2301 }
2302
2303 bool
2304 target_ops::info_proc (const char *args, enum info_proc_what what)
2305 {
2306 return false;
2307 }
2308
2309 /* Implement the "info proc" command. */
2310
2311 int
2312 target_info_proc (const char *args, enum info_proc_what what)
2313 {
2314 struct target_ops *t;
2315
2316 /* If we're already connected to something that can get us OS
2317 related data, use it. Otherwise, try using the native
2318 target. */
2319 t = find_target_at (process_stratum);
2320 if (t == NULL)
2321 t = find_default_run_target (NULL);
2322
2323 for (; t != NULL; t = t->beneath ())
2324 {
2325 if (t->info_proc (args, what))
2326 {
2327 if (targetdebug)
2328 fprintf_unfiltered (gdb_stdlog,
2329 "target_info_proc (\"%s\", %d)\n", args, what);
2330
2331 return 1;
2332 }
2333 }
2334
2335 return 0;
2336 }
2337
2338 static int
2339 find_default_supports_disable_randomization (struct target_ops *self)
2340 {
2341 struct target_ops *t;
2342
2343 t = find_default_run_target (NULL);
2344 if (t != NULL)
2345 return t->supports_disable_randomization ();
2346 return 0;
2347 }
2348
2349 int
2350 target_supports_disable_randomization (void)
2351 {
2352 return current_top_target ()->supports_disable_randomization ();
2353 }
2354
2355 /* See target/target.h. */
2356
2357 int
2358 target_supports_multi_process (void)
2359 {
2360 return current_top_target ()->supports_multi_process ();
2361 }
2362
2363 /* See target.h. */
2364
2365 gdb::optional<gdb::char_vector>
2366 target_get_osdata (const char *type)
2367 {
2368 struct target_ops *t;
2369
2370 /* If we're already connected to something that can get us OS
2371 related data, use it. Otherwise, try using the native
2372 target. */
2373 t = find_target_at (process_stratum);
2374 if (t == NULL)
2375 t = find_default_run_target ("get OS data");
2376
2377 if (!t)
2378 return {};
2379
2380 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2381 }
2382
2383 /* Determine the current address space of thread PTID. */
2384
2385 struct address_space *
2386 target_thread_address_space (ptid_t ptid)
2387 {
2388 struct address_space *aspace;
2389
2390 aspace = current_top_target ()->thread_address_space (ptid);
2391 gdb_assert (aspace != NULL);
2392
2393 return aspace;
2394 }
2395
2396 /* See target.h. */
2397
2398 target_ops *
2399 target_ops::beneath () const
2400 {
2401 return current_inferior ()->find_target_beneath (this);
2402 }
2403
2404 void
2405 target_ops::close ()
2406 {
2407 }
2408
2409 bool
2410 target_ops::can_attach ()
2411 {
2412 return 0;
2413 }
2414
2415 void
2416 target_ops::attach (const char *, int)
2417 {
2418 gdb_assert_not_reached ("target_ops::attach called");
2419 }
2420
2421 bool
2422 target_ops::can_create_inferior ()
2423 {
2424 return 0;
2425 }
2426
2427 void
2428 target_ops::create_inferior (const char *, const std::string &,
2429 char **, int)
2430 {
2431 gdb_assert_not_reached ("target_ops::create_inferior called");
2432 }
2433
2434 bool
2435 target_ops::can_run ()
2436 {
2437 return false;
2438 }
2439
2440 int
2441 target_can_run ()
2442 {
2443 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2444 {
2445 if (t->can_run ())
2446 return 1;
2447 }
2448
2449 return 0;
2450 }
2451
2452 /* Target file operations. */
2453
2454 static struct target_ops *
2455 default_fileio_target (void)
2456 {
2457 struct target_ops *t;
2458
2459 /* If we're already connected to something that can perform
2460 file I/O, use it. Otherwise, try using the native target. */
2461 t = find_target_at (process_stratum);
2462 if (t != NULL)
2463 return t;
2464 return find_default_run_target ("file I/O");
2465 }
2466
2467 /* File handle for target file operations. */
2468
2469 struct fileio_fh_t
2470 {
2471 /* The target on which this file is open. NULL if the target is
2472 meanwhile closed while the handle is open. */
2473 target_ops *target;
2474
2475 /* The file descriptor on the target. */
2476 int target_fd;
2477
2478 /* Check whether this fileio_fh_t represents a closed file. */
2479 bool is_closed ()
2480 {
2481 return target_fd < 0;
2482 }
2483 };
2484
2485 /* Vector of currently open file handles. The value returned by
2486 target_fileio_open and passed as the FD argument to other
2487 target_fileio_* functions is an index into this vector. This
2488 vector's entries are never freed; instead, files are marked as
2489 closed, and the handle becomes available for reuse. */
2490 static std::vector<fileio_fh_t> fileio_fhandles;
2491
2492 /* Index into fileio_fhandles of the lowest handle that might be
2493 closed. This permits handle reuse without searching the whole
2494 list each time a new file is opened. */
2495 static int lowest_closed_fd;
2496
2497 /* Invalidate the target associated with open handles that were open
2498 on target TARG, since we're about to close (and maybe destroy) the
2499 target. The handles remain open from the client's perspective, but
2500 trying to do anything with them other than closing them will fail
2501 with EIO. */
2502
2503 static void
2504 fileio_handles_invalidate_target (target_ops *targ)
2505 {
2506 for (fileio_fh_t &fh : fileio_fhandles)
2507 if (fh.target == targ)
2508 fh.target = NULL;
2509 }
2510
2511 /* Acquire a target fileio file descriptor. */
2512
2513 static int
2514 acquire_fileio_fd (target_ops *target, int target_fd)
2515 {
2516 /* Search for closed handles to reuse. */
2517 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2518 {
2519 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2520
2521 if (fh.is_closed ())
2522 break;
2523 }
2524
2525 /* Push a new handle if no closed handles were found. */
2526 if (lowest_closed_fd == fileio_fhandles.size ())
2527 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2528 else
2529 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2530
2531 /* Should no longer be marked closed. */
2532 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2533
2534 /* Return its index, and start the next lookup at
2535 the next index. */
2536 return lowest_closed_fd++;
2537 }
2538
2539 /* Release a target fileio file descriptor. */
2540
2541 static void
2542 release_fileio_fd (int fd, fileio_fh_t *fh)
2543 {
2544 fh->target_fd = -1;
2545 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2546 }
2547
2548 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2549
2550 static fileio_fh_t *
2551 fileio_fd_to_fh (int fd)
2552 {
2553 return &fileio_fhandles[fd];
2554 }
2555
2556
2557 /* Default implementations of file i/o methods. We don't want these
2558 to delegate automatically, because we need to know which target
2559 supported the method, in order to call it directly from within
2560 pread/pwrite, etc. */
2561
2562 int
2563 target_ops::fileio_open (struct inferior *inf, const char *filename,
2564 int flags, int mode, int warn_if_slow,
2565 int *target_errno)
2566 {
2567 *target_errno = FILEIO_ENOSYS;
2568 return -1;
2569 }
2570
2571 int
2572 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2573 ULONGEST offset, int *target_errno)
2574 {
2575 *target_errno = FILEIO_ENOSYS;
2576 return -1;
2577 }
2578
2579 int
2580 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2581 ULONGEST offset, int *target_errno)
2582 {
2583 *target_errno = FILEIO_ENOSYS;
2584 return -1;
2585 }
2586
2587 int
2588 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2589 {
2590 *target_errno = FILEIO_ENOSYS;
2591 return -1;
2592 }
2593
2594 int
2595 target_ops::fileio_close (int fd, int *target_errno)
2596 {
2597 *target_errno = FILEIO_ENOSYS;
2598 return -1;
2599 }
2600
2601 int
2602 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2603 int *target_errno)
2604 {
2605 *target_errno = FILEIO_ENOSYS;
2606 return -1;
2607 }
2608
2609 gdb::optional<std::string>
2610 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2611 int *target_errno)
2612 {
2613 *target_errno = FILEIO_ENOSYS;
2614 return {};
2615 }
2616
2617 /* See target.h. */
2618
2619 int
2620 target_fileio_open (struct inferior *inf, const char *filename,
2621 int flags, int mode, bool warn_if_slow, int *target_errno)
2622 {
2623 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2624 {
2625 int fd = t->fileio_open (inf, filename, flags, mode,
2626 warn_if_slow, target_errno);
2627
2628 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2629 continue;
2630
2631 if (fd < 0)
2632 fd = -1;
2633 else
2634 fd = acquire_fileio_fd (t, fd);
2635
2636 if (targetdebug)
2637 fprintf_unfiltered (gdb_stdlog,
2638 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2639 " = %d (%d)\n",
2640 inf == NULL ? 0 : inf->num,
2641 filename, flags, mode,
2642 warn_if_slow, fd,
2643 fd != -1 ? 0 : *target_errno);
2644 return fd;
2645 }
2646
2647 *target_errno = FILEIO_ENOSYS;
2648 return -1;
2649 }
2650
2651 /* See target.h. */
2652
2653 int
2654 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2655 ULONGEST offset, int *target_errno)
2656 {
2657 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2658 int ret = -1;
2659
2660 if (fh->is_closed ())
2661 *target_errno = EBADF;
2662 else if (fh->target == NULL)
2663 *target_errno = EIO;
2664 else
2665 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2666 len, offset, target_errno);
2667
2668 if (targetdebug)
2669 fprintf_unfiltered (gdb_stdlog,
2670 "target_fileio_pwrite (%d,...,%d,%s) "
2671 "= %d (%d)\n",
2672 fd, len, pulongest (offset),
2673 ret, ret != -1 ? 0 : *target_errno);
2674 return ret;
2675 }
2676
2677 /* See target.h. */
2678
2679 int
2680 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2681 ULONGEST offset, int *target_errno)
2682 {
2683 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2684 int ret = -1;
2685
2686 if (fh->is_closed ())
2687 *target_errno = EBADF;
2688 else if (fh->target == NULL)
2689 *target_errno = EIO;
2690 else
2691 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2692 len, offset, target_errno);
2693
2694 if (targetdebug)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "target_fileio_pread (%d,...,%d,%s) "
2697 "= %d (%d)\n",
2698 fd, len, pulongest (offset),
2699 ret, ret != -1 ? 0 : *target_errno);
2700 return ret;
2701 }
2702
2703 /* See target.h. */
2704
2705 int
2706 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2707 {
2708 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2709 int ret = -1;
2710
2711 if (fh->is_closed ())
2712 *target_errno = EBADF;
2713 else if (fh->target == NULL)
2714 *target_errno = EIO;
2715 else
2716 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2717
2718 if (targetdebug)
2719 fprintf_unfiltered (gdb_stdlog,
2720 "target_fileio_fstat (%d) = %d (%d)\n",
2721 fd, ret, ret != -1 ? 0 : *target_errno);
2722 return ret;
2723 }
2724
2725 /* See target.h. */
2726
2727 int
2728 target_fileio_close (int fd, int *target_errno)
2729 {
2730 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2731 int ret = -1;
2732
2733 if (fh->is_closed ())
2734 *target_errno = EBADF;
2735 else
2736 {
2737 if (fh->target != NULL)
2738 ret = fh->target->fileio_close (fh->target_fd,
2739 target_errno);
2740 else
2741 ret = 0;
2742 release_fileio_fd (fd, fh);
2743 }
2744
2745 if (targetdebug)
2746 fprintf_unfiltered (gdb_stdlog,
2747 "target_fileio_close (%d) = %d (%d)\n",
2748 fd, ret, ret != -1 ? 0 : *target_errno);
2749 return ret;
2750 }
2751
2752 /* See target.h. */
2753
2754 int
2755 target_fileio_unlink (struct inferior *inf, const char *filename,
2756 int *target_errno)
2757 {
2758 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2759 {
2760 int ret = t->fileio_unlink (inf, filename, target_errno);
2761
2762 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2763 continue;
2764
2765 if (targetdebug)
2766 fprintf_unfiltered (gdb_stdlog,
2767 "target_fileio_unlink (%d,%s)"
2768 " = %d (%d)\n",
2769 inf == NULL ? 0 : inf->num, filename,
2770 ret, ret != -1 ? 0 : *target_errno);
2771 return ret;
2772 }
2773
2774 *target_errno = FILEIO_ENOSYS;
2775 return -1;
2776 }
2777
2778 /* See target.h. */
2779
2780 gdb::optional<std::string>
2781 target_fileio_readlink (struct inferior *inf, const char *filename,
2782 int *target_errno)
2783 {
2784 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2785 {
2786 gdb::optional<std::string> ret
2787 = t->fileio_readlink (inf, filename, target_errno);
2788
2789 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2790 continue;
2791
2792 if (targetdebug)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "target_fileio_readlink (%d,%s)"
2795 " = %s (%d)\n",
2796 inf == NULL ? 0 : inf->num,
2797 filename, ret ? ret->c_str () : "(nil)",
2798 ret ? 0 : *target_errno);
2799 return ret;
2800 }
2801
2802 *target_errno = FILEIO_ENOSYS;
2803 return {};
2804 }
2805
2806 /* Like scoped_fd, but specific to target fileio. */
2807
2808 class scoped_target_fd
2809 {
2810 public:
2811 explicit scoped_target_fd (int fd) noexcept
2812 : m_fd (fd)
2813 {
2814 }
2815
2816 ~scoped_target_fd ()
2817 {
2818 if (m_fd >= 0)
2819 {
2820 int target_errno;
2821
2822 target_fileio_close (m_fd, &target_errno);
2823 }
2824 }
2825
2826 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2827
2828 int get () const noexcept
2829 {
2830 return m_fd;
2831 }
2832
2833 private:
2834 int m_fd;
2835 };
2836
2837 /* Read target file FILENAME, in the filesystem as seen by INF. If
2838 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2839 remote targets, the remote stub). Store the result in *BUF_P and
2840 return the size of the transferred data. PADDING additional bytes
2841 are available in *BUF_P. This is a helper function for
2842 target_fileio_read_alloc; see the declaration of that function for
2843 more information. */
2844
2845 static LONGEST
2846 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2847 gdb_byte **buf_p, int padding)
2848 {
2849 size_t buf_alloc, buf_pos;
2850 gdb_byte *buf;
2851 LONGEST n;
2852 int target_errno;
2853
2854 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2855 0700, false, &target_errno));
2856 if (fd.get () == -1)
2857 return -1;
2858
2859 /* Start by reading up to 4K at a time. The target will throttle
2860 this number down if necessary. */
2861 buf_alloc = 4096;
2862 buf = (gdb_byte *) xmalloc (buf_alloc);
2863 buf_pos = 0;
2864 while (1)
2865 {
2866 n = target_fileio_pread (fd.get (), &buf[buf_pos],
2867 buf_alloc - buf_pos - padding, buf_pos,
2868 &target_errno);
2869 if (n < 0)
2870 {
2871 /* An error occurred. */
2872 xfree (buf);
2873 return -1;
2874 }
2875 else if (n == 0)
2876 {
2877 /* Read all there was. */
2878 if (buf_pos == 0)
2879 xfree (buf);
2880 else
2881 *buf_p = buf;
2882 return buf_pos;
2883 }
2884
2885 buf_pos += n;
2886
2887 /* If the buffer is filling up, expand it. */
2888 if (buf_alloc < buf_pos * 2)
2889 {
2890 buf_alloc *= 2;
2891 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2892 }
2893
2894 QUIT;
2895 }
2896 }
2897
2898 /* See target.h. */
2899
2900 LONGEST
2901 target_fileio_read_alloc (struct inferior *inf, const char *filename,
2902 gdb_byte **buf_p)
2903 {
2904 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
2905 }
2906
2907 /* See target.h. */
2908
2909 gdb::unique_xmalloc_ptr<char>
2910 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
2911 {
2912 gdb_byte *buffer;
2913 char *bufstr;
2914 LONGEST i, transferred;
2915
2916 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
2917 bufstr = (char *) buffer;
2918
2919 if (transferred < 0)
2920 return gdb::unique_xmalloc_ptr<char> (nullptr);
2921
2922 if (transferred == 0)
2923 return make_unique_xstrdup ("");
2924
2925 bufstr[transferred] = 0;
2926
2927 /* Check for embedded NUL bytes; but allow trailing NULs. */
2928 for (i = strlen (bufstr); i < transferred; i++)
2929 if (bufstr[i] != 0)
2930 {
2931 warning (_("target file %s "
2932 "contained unexpected null characters"),
2933 filename);
2934 break;
2935 }
2936
2937 return gdb::unique_xmalloc_ptr<char> (bufstr);
2938 }
2939
2940
2941 static int
2942 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2943 CORE_ADDR addr, int len)
2944 {
2945 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2946 }
2947
2948 static int
2949 default_watchpoint_addr_within_range (struct target_ops *target,
2950 CORE_ADDR addr,
2951 CORE_ADDR start, int length)
2952 {
2953 return addr >= start && addr < start + length;
2954 }
2955
2956 /* See target.h. */
2957
2958 target_ops *
2959 target_stack::find_beneath (const target_ops *t) const
2960 {
2961 /* Look for a non-empty slot at stratum levels beneath T's. */
2962 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
2963 if (m_stack[stratum] != NULL)
2964 return m_stack[stratum];
2965
2966 return NULL;
2967 }
2968
2969 /* See target.h. */
2970
2971 struct target_ops *
2972 find_target_at (enum strata stratum)
2973 {
2974 return current_inferior ()->target_at (stratum);
2975 }
2976
2977 \f
2978
2979 /* See target.h */
2980
2981 void
2982 target_announce_detach (int from_tty)
2983 {
2984 pid_t pid;
2985 const char *exec_file;
2986
2987 if (!from_tty)
2988 return;
2989
2990 exec_file = get_exec_file (0);
2991 if (exec_file == NULL)
2992 exec_file = "";
2993
2994 pid = inferior_ptid.pid ();
2995 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
2996 target_pid_to_str (ptid_t (pid)).c_str ());
2997 }
2998
2999 /* The inferior process has died. Long live the inferior! */
3000
3001 void
3002 generic_mourn_inferior (void)
3003 {
3004 inferior *inf = current_inferior ();
3005
3006 switch_to_no_thread ();
3007
3008 /* Mark breakpoints uninserted in case something tries to delete a
3009 breakpoint while we delete the inferior's threads (which would
3010 fail, since the inferior is long gone). */
3011 mark_breakpoints_out ();
3012
3013 if (inf->pid != 0)
3014 exit_inferior (inf);
3015
3016 /* Note this wipes step-resume breakpoints, so needs to be done
3017 after exit_inferior, which ends up referencing the step-resume
3018 breakpoints through clear_thread_inferior_resources. */
3019 breakpoint_init_inferior (inf_exited);
3020
3021 registers_changed ();
3022
3023 reopen_exec_file ();
3024 reinit_frame_cache ();
3025
3026 if (deprecated_detach_hook)
3027 deprecated_detach_hook ();
3028 }
3029 \f
3030 /* Convert a normal process ID to a string. Returns the string in a
3031 static buffer. */
3032
3033 std::string
3034 normal_pid_to_str (ptid_t ptid)
3035 {
3036 return string_printf ("process %d", ptid.pid ());
3037 }
3038
3039 static std::string
3040 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3041 {
3042 return normal_pid_to_str (ptid);
3043 }
3044
3045 /* Error-catcher for target_find_memory_regions. */
3046 static int
3047 dummy_find_memory_regions (struct target_ops *self,
3048 find_memory_region_ftype ignore1, void *ignore2)
3049 {
3050 error (_("Command not implemented for this target."));
3051 return 0;
3052 }
3053
3054 /* Error-catcher for target_make_corefile_notes. */
3055 static gdb::unique_xmalloc_ptr<char>
3056 dummy_make_corefile_notes (struct target_ops *self,
3057 bfd *ignore1, int *ignore2)
3058 {
3059 error (_("Command not implemented for this target."));
3060 return NULL;
3061 }
3062
3063 #include "target-delegates.c"
3064
3065 /* The initial current target, so that there is always a semi-valid
3066 current target. */
3067
3068 static dummy_target the_dummy_target;
3069
3070 /* See target.h. */
3071
3072 target_ops *
3073 get_dummy_target ()
3074 {
3075 return &the_dummy_target;
3076 }
3077
3078 static const target_info dummy_target_info = {
3079 "None",
3080 N_("None"),
3081 ""
3082 };
3083
3084 strata
3085 dummy_target::stratum () const
3086 {
3087 return dummy_stratum;
3088 }
3089
3090 strata
3091 debug_target::stratum () const
3092 {
3093 return debug_stratum;
3094 }
3095
3096 const target_info &
3097 dummy_target::info () const
3098 {
3099 return dummy_target_info;
3100 }
3101
3102 const target_info &
3103 debug_target::info () const
3104 {
3105 return beneath ()->info ();
3106 }
3107
3108 \f
3109
3110 void
3111 target_close (struct target_ops *targ)
3112 {
3113 gdb_assert (!target_is_pushed (targ));
3114
3115 fileio_handles_invalidate_target (targ);
3116
3117 targ->close ();
3118
3119 if (targetdebug)
3120 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3121 }
3122
3123 int
3124 target_thread_alive (ptid_t ptid)
3125 {
3126 return current_top_target ()->thread_alive (ptid);
3127 }
3128
3129 void
3130 target_update_thread_list (void)
3131 {
3132 current_top_target ()->update_thread_list ();
3133 }
3134
3135 void
3136 target_stop (ptid_t ptid)
3137 {
3138 if (!may_stop)
3139 {
3140 warning (_("May not interrupt or stop the target, ignoring attempt"));
3141 return;
3142 }
3143
3144 current_top_target ()->stop (ptid);
3145 }
3146
3147 void
3148 target_interrupt ()
3149 {
3150 if (!may_stop)
3151 {
3152 warning (_("May not interrupt or stop the target, ignoring attempt"));
3153 return;
3154 }
3155
3156 current_top_target ()->interrupt ();
3157 }
3158
3159 /* See target.h. */
3160
3161 void
3162 target_pass_ctrlc (void)
3163 {
3164 /* Pass the Ctrl-C to the first target that has a thread
3165 running. */
3166 for (inferior *inf : all_inferiors ())
3167 {
3168 target_ops *proc_target = inf->process_target ();
3169 if (proc_target == NULL)
3170 continue;
3171
3172 for (thread_info *thr : inf->non_exited_threads ())
3173 {
3174 /* A thread can be THREAD_STOPPED and executing, while
3175 running an infcall. */
3176 if (thr->state == THREAD_RUNNING || thr->executing)
3177 {
3178 /* We can get here quite deep in target layers. Avoid
3179 switching thread context or anything that would
3180 communicate with the target (e.g., to fetch
3181 registers), or flushing e.g., the frame cache. We
3182 just switch inferior in order to be able to call
3183 through the target_stack. */
3184 scoped_restore_current_inferior restore_inferior;
3185 set_current_inferior (inf);
3186 current_top_target ()->pass_ctrlc ();
3187 return;
3188 }
3189 }
3190 }
3191 }
3192
3193 /* See target.h. */
3194
3195 void
3196 default_target_pass_ctrlc (struct target_ops *ops)
3197 {
3198 target_interrupt ();
3199 }
3200
3201 /* See target/target.h. */
3202
3203 void
3204 target_stop_and_wait (ptid_t ptid)
3205 {
3206 struct target_waitstatus status;
3207 bool was_non_stop = non_stop;
3208
3209 non_stop = true;
3210 target_stop (ptid);
3211
3212 memset (&status, 0, sizeof (status));
3213 target_wait (ptid, &status, 0);
3214
3215 non_stop = was_non_stop;
3216 }
3217
3218 /* See target/target.h. */
3219
3220 void
3221 target_continue_no_signal (ptid_t ptid)
3222 {
3223 target_resume (ptid, 0, GDB_SIGNAL_0);
3224 }
3225
3226 /* See target/target.h. */
3227
3228 void
3229 target_continue (ptid_t ptid, enum gdb_signal signal)
3230 {
3231 target_resume (ptid, 0, signal);
3232 }
3233
3234 /* Concatenate ELEM to LIST, a comma-separated list. */
3235
3236 static void
3237 str_comma_list_concat_elem (std::string *list, const char *elem)
3238 {
3239 if (!list->empty ())
3240 list->append (", ");
3241
3242 list->append (elem);
3243 }
3244
3245 /* Helper for target_options_to_string. If OPT is present in
3246 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3247 OPT is removed from TARGET_OPTIONS. */
3248
3249 static void
3250 do_option (target_wait_flags *target_options, std::string *ret,
3251 target_wait_flag opt, const char *opt_str)
3252 {
3253 if ((*target_options & opt) != 0)
3254 {
3255 str_comma_list_concat_elem (ret, opt_str);
3256 *target_options &= ~opt;
3257 }
3258 }
3259
3260 /* See target.h. */
3261
3262 std::string
3263 target_options_to_string (target_wait_flags target_options)
3264 {
3265 std::string ret;
3266
3267 #define DO_TARG_OPTION(OPT) \
3268 do_option (&target_options, &ret, OPT, #OPT)
3269
3270 DO_TARG_OPTION (TARGET_WNOHANG);
3271
3272 if (target_options != 0)
3273 str_comma_list_concat_elem (&ret, "unknown???");
3274
3275 return ret;
3276 }
3277
3278 void
3279 target_fetch_registers (struct regcache *regcache, int regno)
3280 {
3281 current_top_target ()->fetch_registers (regcache, regno);
3282 if (targetdebug)
3283 regcache->debug_print_register ("target_fetch_registers", regno);
3284 }
3285
3286 void
3287 target_store_registers (struct regcache *regcache, int regno)
3288 {
3289 if (!may_write_registers)
3290 error (_("Writing to registers is not allowed (regno %d)"), regno);
3291
3292 current_top_target ()->store_registers (regcache, regno);
3293 if (targetdebug)
3294 {
3295 regcache->debug_print_register ("target_store_registers", regno);
3296 }
3297 }
3298
3299 int
3300 target_core_of_thread (ptid_t ptid)
3301 {
3302 return current_top_target ()->core_of_thread (ptid);
3303 }
3304
3305 int
3306 simple_verify_memory (struct target_ops *ops,
3307 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3308 {
3309 LONGEST total_xfered = 0;
3310
3311 while (total_xfered < size)
3312 {
3313 ULONGEST xfered_len;
3314 enum target_xfer_status status;
3315 gdb_byte buf[1024];
3316 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3317
3318 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3319 buf, NULL, lma + total_xfered, howmuch,
3320 &xfered_len);
3321 if (status == TARGET_XFER_OK
3322 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3323 {
3324 total_xfered += xfered_len;
3325 QUIT;
3326 }
3327 else
3328 return 0;
3329 }
3330 return 1;
3331 }
3332
3333 /* Default implementation of memory verification. */
3334
3335 static int
3336 default_verify_memory (struct target_ops *self,
3337 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3338 {
3339 /* Start over from the top of the target stack. */
3340 return simple_verify_memory (current_top_target (),
3341 data, memaddr, size);
3342 }
3343
3344 int
3345 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3346 {
3347 return current_top_target ()->verify_memory (data, memaddr, size);
3348 }
3349
3350 /* The documentation for this function is in its prototype declaration in
3351 target.h. */
3352
3353 int
3354 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3355 enum target_hw_bp_type rw)
3356 {
3357 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3358 }
3359
3360 /* The documentation for this function is in its prototype declaration in
3361 target.h. */
3362
3363 int
3364 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3365 enum target_hw_bp_type rw)
3366 {
3367 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3368 }
3369
3370 /* The documentation for this function is in its prototype declaration
3371 in target.h. */
3372
3373 int
3374 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3375 {
3376 return current_top_target ()->masked_watch_num_registers (addr, mask);
3377 }
3378
3379 /* The documentation for this function is in its prototype declaration
3380 in target.h. */
3381
3382 int
3383 target_ranged_break_num_registers (void)
3384 {
3385 return current_top_target ()->ranged_break_num_registers ();
3386 }
3387
3388 /* See target.h. */
3389
3390 struct btrace_target_info *
3391 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3392 {
3393 return current_top_target ()->enable_btrace (ptid, conf);
3394 }
3395
3396 /* See target.h. */
3397
3398 void
3399 target_disable_btrace (struct btrace_target_info *btinfo)
3400 {
3401 current_top_target ()->disable_btrace (btinfo);
3402 }
3403
3404 /* See target.h. */
3405
3406 void
3407 target_teardown_btrace (struct btrace_target_info *btinfo)
3408 {
3409 current_top_target ()->teardown_btrace (btinfo);
3410 }
3411
3412 /* See target.h. */
3413
3414 enum btrace_error
3415 target_read_btrace (struct btrace_data *btrace,
3416 struct btrace_target_info *btinfo,
3417 enum btrace_read_type type)
3418 {
3419 return current_top_target ()->read_btrace (btrace, btinfo, type);
3420 }
3421
3422 /* See target.h. */
3423
3424 const struct btrace_config *
3425 target_btrace_conf (const struct btrace_target_info *btinfo)
3426 {
3427 return current_top_target ()->btrace_conf (btinfo);
3428 }
3429
3430 /* See target.h. */
3431
3432 void
3433 target_stop_recording (void)
3434 {
3435 current_top_target ()->stop_recording ();
3436 }
3437
3438 /* See target.h. */
3439
3440 void
3441 target_save_record (const char *filename)
3442 {
3443 current_top_target ()->save_record (filename);
3444 }
3445
3446 /* See target.h. */
3447
3448 int
3449 target_supports_delete_record ()
3450 {
3451 return current_top_target ()->supports_delete_record ();
3452 }
3453
3454 /* See target.h. */
3455
3456 void
3457 target_delete_record (void)
3458 {
3459 current_top_target ()->delete_record ();
3460 }
3461
3462 /* See target.h. */
3463
3464 enum record_method
3465 target_record_method (ptid_t ptid)
3466 {
3467 return current_top_target ()->record_method (ptid);
3468 }
3469
3470 /* See target.h. */
3471
3472 int
3473 target_record_is_replaying (ptid_t ptid)
3474 {
3475 return current_top_target ()->record_is_replaying (ptid);
3476 }
3477
3478 /* See target.h. */
3479
3480 int
3481 target_record_will_replay (ptid_t ptid, int dir)
3482 {
3483 return current_top_target ()->record_will_replay (ptid, dir);
3484 }
3485
3486 /* See target.h. */
3487
3488 void
3489 target_record_stop_replaying (void)
3490 {
3491 current_top_target ()->record_stop_replaying ();
3492 }
3493
3494 /* See target.h. */
3495
3496 void
3497 target_goto_record_begin (void)
3498 {
3499 current_top_target ()->goto_record_begin ();
3500 }
3501
3502 /* See target.h. */
3503
3504 void
3505 target_goto_record_end (void)
3506 {
3507 current_top_target ()->goto_record_end ();
3508 }
3509
3510 /* See target.h. */
3511
3512 void
3513 target_goto_record (ULONGEST insn)
3514 {
3515 current_top_target ()->goto_record (insn);
3516 }
3517
3518 /* See target.h. */
3519
3520 void
3521 target_insn_history (int size, gdb_disassembly_flags flags)
3522 {
3523 current_top_target ()->insn_history (size, flags);
3524 }
3525
3526 /* See target.h. */
3527
3528 void
3529 target_insn_history_from (ULONGEST from, int size,
3530 gdb_disassembly_flags flags)
3531 {
3532 current_top_target ()->insn_history_from (from, size, flags);
3533 }
3534
3535 /* See target.h. */
3536
3537 void
3538 target_insn_history_range (ULONGEST begin, ULONGEST end,
3539 gdb_disassembly_flags flags)
3540 {
3541 current_top_target ()->insn_history_range (begin, end, flags);
3542 }
3543
3544 /* See target.h. */
3545
3546 void
3547 target_call_history (int size, record_print_flags flags)
3548 {
3549 current_top_target ()->call_history (size, flags);
3550 }
3551
3552 /* See target.h. */
3553
3554 void
3555 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3556 {
3557 current_top_target ()->call_history_from (begin, size, flags);
3558 }
3559
3560 /* See target.h. */
3561
3562 void
3563 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3564 {
3565 current_top_target ()->call_history_range (begin, end, flags);
3566 }
3567
3568 /* See target.h. */
3569
3570 const struct frame_unwind *
3571 target_get_unwinder (void)
3572 {
3573 return current_top_target ()->get_unwinder ();
3574 }
3575
3576 /* See target.h. */
3577
3578 const struct frame_unwind *
3579 target_get_tailcall_unwinder (void)
3580 {
3581 return current_top_target ()->get_tailcall_unwinder ();
3582 }
3583
3584 /* See target.h. */
3585
3586 void
3587 target_prepare_to_generate_core (void)
3588 {
3589 current_top_target ()->prepare_to_generate_core ();
3590 }
3591
3592 /* See target.h. */
3593
3594 void
3595 target_done_generating_core (void)
3596 {
3597 current_top_target ()->done_generating_core ();
3598 }
3599
3600 \f
3601
3602 static char targ_desc[] =
3603 "Names of targets and files being debugged.\nShows the entire \
3604 stack of targets currently in use (including the exec-file,\n\
3605 core-file, and process, if any), as well as the symbol file name.";
3606
3607 static void
3608 default_rcmd (struct target_ops *self, const char *command,
3609 struct ui_file *output)
3610 {
3611 error (_("\"monitor\" command not supported by this target."));
3612 }
3613
3614 static void
3615 do_monitor_command (const char *cmd, int from_tty)
3616 {
3617 target_rcmd (cmd, gdb_stdtarg);
3618 }
3619
3620 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3621 ignored. */
3622
3623 void
3624 flash_erase_command (const char *cmd, int from_tty)
3625 {
3626 /* Used to communicate termination of flash operations to the target. */
3627 bool found_flash_region = false;
3628 struct gdbarch *gdbarch = target_gdbarch ();
3629
3630 std::vector<mem_region> mem_regions = target_memory_map ();
3631
3632 /* Iterate over all memory regions. */
3633 for (const mem_region &m : mem_regions)
3634 {
3635 /* Is this a flash memory region? */
3636 if (m.attrib.mode == MEM_FLASH)
3637 {
3638 found_flash_region = true;
3639 target_flash_erase (m.lo, m.hi - m.lo);
3640
3641 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3642
3643 current_uiout->message (_("Erasing flash memory region at address "));
3644 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3645 current_uiout->message (", size = ");
3646 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3647 current_uiout->message ("\n");
3648 }
3649 }
3650
3651 /* Did we do any flash operations? If so, we need to finalize them. */
3652 if (found_flash_region)
3653 target_flash_done ();
3654 else
3655 current_uiout->message (_("No flash memory regions found.\n"));
3656 }
3657
3658 /* Print the name of each layers of our target stack. */
3659
3660 static void
3661 maintenance_print_target_stack (const char *cmd, int from_tty)
3662 {
3663 printf_filtered (_("The current target stack is:\n"));
3664
3665 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3666 {
3667 if (t->stratum () == debug_stratum)
3668 continue;
3669 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3670 }
3671 }
3672
3673 /* See target.h. */
3674
3675 void
3676 target_async (int enable)
3677 {
3678 infrun_async (enable);
3679 current_top_target ()->async (enable);
3680 }
3681
3682 /* See target.h. */
3683
3684 void
3685 target_thread_events (int enable)
3686 {
3687 current_top_target ()->thread_events (enable);
3688 }
3689
3690 /* Controls if targets can report that they can/are async. This is
3691 just for maintainers to use when debugging gdb. */
3692 bool target_async_permitted = true;
3693
3694 /* The set command writes to this variable. If the inferior is
3695 executing, target_async_permitted is *not* updated. */
3696 static bool target_async_permitted_1 = true;
3697
3698 static void
3699 maint_set_target_async_command (const char *args, int from_tty,
3700 struct cmd_list_element *c)
3701 {
3702 if (have_live_inferiors ())
3703 {
3704 target_async_permitted_1 = target_async_permitted;
3705 error (_("Cannot change this setting while the inferior is running."));
3706 }
3707
3708 target_async_permitted = target_async_permitted_1;
3709 }
3710
3711 static void
3712 maint_show_target_async_command (struct ui_file *file, int from_tty,
3713 struct cmd_list_element *c,
3714 const char *value)
3715 {
3716 fprintf_filtered (file,
3717 _("Controlling the inferior in "
3718 "asynchronous mode is %s.\n"), value);
3719 }
3720
3721 /* Return true if the target operates in non-stop mode even with "set
3722 non-stop off". */
3723
3724 static int
3725 target_always_non_stop_p (void)
3726 {
3727 return current_top_target ()->always_non_stop_p ();
3728 }
3729
3730 /* See target.h. */
3731
3732 bool
3733 target_is_non_stop_p ()
3734 {
3735 return (non_stop
3736 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3737 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3738 && target_always_non_stop_p ()));
3739 }
3740
3741 /* See target.h. */
3742
3743 bool
3744 exists_non_stop_target ()
3745 {
3746 if (target_is_non_stop_p ())
3747 return true;
3748
3749 scoped_restore_current_thread restore_thread;
3750
3751 for (inferior *inf : all_inferiors ())
3752 {
3753 switch_to_inferior_no_thread (inf);
3754 if (target_is_non_stop_p ())
3755 return true;
3756 }
3757
3758 return false;
3759 }
3760
3761 /* Controls if targets can report that they always run in non-stop
3762 mode. This is just for maintainers to use when debugging gdb. */
3763 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3764
3765 /* The set command writes to this variable. If the inferior is
3766 executing, target_non_stop_enabled is *not* updated. */
3767 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3768
3769 /* Implementation of "maint set target-non-stop". */
3770
3771 static void
3772 maint_set_target_non_stop_command (const char *args, int from_tty,
3773 struct cmd_list_element *c)
3774 {
3775 if (have_live_inferiors ())
3776 {
3777 target_non_stop_enabled_1 = target_non_stop_enabled;
3778 error (_("Cannot change this setting while the inferior is running."));
3779 }
3780
3781 target_non_stop_enabled = target_non_stop_enabled_1;
3782 }
3783
3784 /* Implementation of "maint show target-non-stop". */
3785
3786 static void
3787 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3788 struct cmd_list_element *c,
3789 const char *value)
3790 {
3791 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3792 fprintf_filtered (file,
3793 _("Whether the target is always in non-stop mode "
3794 "is %s (currently %s).\n"), value,
3795 target_always_non_stop_p () ? "on" : "off");
3796 else
3797 fprintf_filtered (file,
3798 _("Whether the target is always in non-stop mode "
3799 "is %s.\n"), value);
3800 }
3801
3802 /* Temporary copies of permission settings. */
3803
3804 static bool may_write_registers_1 = true;
3805 static bool may_write_memory_1 = true;
3806 static bool may_insert_breakpoints_1 = true;
3807 static bool may_insert_tracepoints_1 = true;
3808 static bool may_insert_fast_tracepoints_1 = true;
3809 static bool may_stop_1 = true;
3810
3811 /* Make the user-set values match the real values again. */
3812
3813 void
3814 update_target_permissions (void)
3815 {
3816 may_write_registers_1 = may_write_registers;
3817 may_write_memory_1 = may_write_memory;
3818 may_insert_breakpoints_1 = may_insert_breakpoints;
3819 may_insert_tracepoints_1 = may_insert_tracepoints;
3820 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3821 may_stop_1 = may_stop;
3822 }
3823
3824 /* The one function handles (most of) the permission flags in the same
3825 way. */
3826
3827 static void
3828 set_target_permissions (const char *args, int from_tty,
3829 struct cmd_list_element *c)
3830 {
3831 if (target_has_execution ())
3832 {
3833 update_target_permissions ();
3834 error (_("Cannot change this setting while the inferior is running."));
3835 }
3836
3837 /* Make the real values match the user-changed values. */
3838 may_write_registers = may_write_registers_1;
3839 may_insert_breakpoints = may_insert_breakpoints_1;
3840 may_insert_tracepoints = may_insert_tracepoints_1;
3841 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3842 may_stop = may_stop_1;
3843 update_observer_mode ();
3844 }
3845
3846 /* Set memory write permission independently of observer mode. */
3847
3848 static void
3849 set_write_memory_permission (const char *args, int from_tty,
3850 struct cmd_list_element *c)
3851 {
3852 /* Make the real values match the user-changed values. */
3853 may_write_memory = may_write_memory_1;
3854 update_observer_mode ();
3855 }
3856
3857 void _initialize_target ();
3858
3859 void
3860 _initialize_target ()
3861 {
3862 the_debug_target = new debug_target ();
3863
3864 add_info ("target", info_target_command, targ_desc);
3865 add_info ("files", info_target_command, targ_desc);
3866
3867 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3868 Set target debugging."), _("\
3869 Show target debugging."), _("\
3870 When non-zero, target debugging is enabled. Higher numbers are more\n\
3871 verbose."),
3872 set_targetdebug,
3873 show_targetdebug,
3874 &setdebuglist, &showdebuglist);
3875
3876 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3877 &trust_readonly, _("\
3878 Set mode for reading from readonly sections."), _("\
3879 Show mode for reading from readonly sections."), _("\
3880 When this mode is on, memory reads from readonly sections (such as .text)\n\
3881 will be read from the object file instead of from the target. This will\n\
3882 result in significant performance improvement for remote targets."),
3883 NULL,
3884 show_trust_readonly,
3885 &setlist, &showlist);
3886
3887 add_com ("monitor", class_obscure, do_monitor_command,
3888 _("Send a command to the remote monitor (remote targets only)."));
3889
3890 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3891 _("Print the name of each layer of the internal target stack."),
3892 &maintenanceprintlist);
3893
3894 add_setshow_boolean_cmd ("target-async", no_class,
3895 &target_async_permitted_1, _("\
3896 Set whether gdb controls the inferior in asynchronous mode."), _("\
3897 Show whether gdb controls the inferior in asynchronous mode."), _("\
3898 Tells gdb whether to control the inferior in asynchronous mode."),
3899 maint_set_target_async_command,
3900 maint_show_target_async_command,
3901 &maintenance_set_cmdlist,
3902 &maintenance_show_cmdlist);
3903
3904 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
3905 &target_non_stop_enabled_1, _("\
3906 Set whether gdb always controls the inferior in non-stop mode."), _("\
3907 Show whether gdb always controls the inferior in non-stop mode."), _("\
3908 Tells gdb whether to control the inferior in non-stop mode."),
3909 maint_set_target_non_stop_command,
3910 maint_show_target_non_stop_command,
3911 &maintenance_set_cmdlist,
3912 &maintenance_show_cmdlist);
3913
3914 add_setshow_boolean_cmd ("may-write-registers", class_support,
3915 &may_write_registers_1, _("\
3916 Set permission to write into registers."), _("\
3917 Show permission to write into registers."), _("\
3918 When this permission is on, GDB may write into the target's registers.\n\
3919 Otherwise, any sort of write attempt will result in an error."),
3920 set_target_permissions, NULL,
3921 &setlist, &showlist);
3922
3923 add_setshow_boolean_cmd ("may-write-memory", class_support,
3924 &may_write_memory_1, _("\
3925 Set permission to write into target memory."), _("\
3926 Show permission to write into target memory."), _("\
3927 When this permission is on, GDB may write into the target's memory.\n\
3928 Otherwise, any sort of write attempt will result in an error."),
3929 set_write_memory_permission, NULL,
3930 &setlist, &showlist);
3931
3932 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3933 &may_insert_breakpoints_1, _("\
3934 Set permission to insert breakpoints in the target."), _("\
3935 Show permission to insert breakpoints in the target."), _("\
3936 When this permission is on, GDB may insert breakpoints in the program.\n\
3937 Otherwise, any sort of insertion attempt will result in an error."),
3938 set_target_permissions, NULL,
3939 &setlist, &showlist);
3940
3941 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3942 &may_insert_tracepoints_1, _("\
3943 Set permission to insert tracepoints in the target."), _("\
3944 Show permission to insert tracepoints in the target."), _("\
3945 When this permission is on, GDB may insert tracepoints in the program.\n\
3946 Otherwise, any sort of insertion attempt will result in an error."),
3947 set_target_permissions, NULL,
3948 &setlist, &showlist);
3949
3950 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3951 &may_insert_fast_tracepoints_1, _("\
3952 Set permission to insert fast tracepoints in the target."), _("\
3953 Show permission to insert fast tracepoints in the target."), _("\
3954 When this permission is on, GDB may insert fast tracepoints.\n\
3955 Otherwise, any sort of insertion attempt will result in an error."),
3956 set_target_permissions, NULL,
3957 &setlist, &showlist);
3958
3959 add_setshow_boolean_cmd ("may-interrupt", class_support,
3960 &may_stop_1, _("\
3961 Set permission to interrupt or signal the target."), _("\
3962 Show permission to interrupt or signal the target."), _("\
3963 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3964 Otherwise, any attempt to interrupt or stop will be ignored."),
3965 set_target_permissions, NULL,
3966 &setlist, &showlist);
3967
3968 add_com ("flash-erase", no_class, flash_erase_command,
3969 _("Erase all flash memory regions."));
3970
3971 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3972 &auto_connect_native_target, _("\
3973 Set whether GDB may automatically connect to the native target."), _("\
3974 Show whether GDB may automatically connect to the native target."), _("\
3975 When on, and GDB is not connected to a target yet, GDB\n\
3976 attempts \"run\" and other commands with the native target."),
3977 NULL, show_auto_connect_native_target,
3978 &setlist, &showlist);
3979 }