convert to_can_download_tracepoint
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static void tcomplain (void) ATTRIBUTE_NORETURN;
64
65 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
66
67 static int return_zero (void);
68
69 static int return_minus_one (void);
70
71 static void *return_null (void);
72
73 void target_ignore (void);
74
75 static void target_command (char *, int);
76
77 static struct target_ops *find_default_run_target (char *);
78
79 static target_xfer_partial_ftype default_xfer_partial;
80
81 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
82 ptid_t ptid);
83
84 static int dummy_find_memory_regions (struct target_ops *self,
85 find_memory_region_ftype ignore1,
86 void *ignore2);
87
88 static char *dummy_make_corefile_notes (struct target_ops *self,
89 bfd *ignore1, int *ignore2);
90
91 static int find_default_can_async_p (struct target_ops *ignore);
92
93 static int find_default_is_async_p (struct target_ops *ignore);
94
95 static enum exec_direction_kind default_execution_direction
96 (struct target_ops *self);
97
98 #include "target-delegates.c"
99
100 static void init_dummy_target (void);
101
102 static struct target_ops debug_target;
103
104 static void debug_to_open (char *, int);
105
106 static void debug_to_prepare_to_store (struct target_ops *self,
107 struct regcache *);
108
109 static void debug_to_files_info (struct target_ops *);
110
111 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
118 int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
121 struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
125 struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (struct target_ops *self,
129 CORE_ADDR, int, int,
130 struct expression *);
131
132 static int debug_to_remove_watchpoint (struct target_ops *self,
133 CORE_ADDR, int, int,
134 struct expression *);
135
136 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
137
138 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
139 CORE_ADDR, CORE_ADDR, int);
140
141 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
142 CORE_ADDR, int);
143
144 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
145 CORE_ADDR, int, int,
146 struct expression *);
147
148 static void debug_to_terminal_init (struct target_ops *self);
149
150 static void debug_to_terminal_inferior (struct target_ops *self);
151
152 static void debug_to_terminal_ours_for_output (struct target_ops *self);
153
154 static void debug_to_terminal_save_ours (struct target_ops *self);
155
156 static void debug_to_terminal_ours (struct target_ops *self);
157
158 static void debug_to_load (struct target_ops *self, char *, int);
159
160 static int debug_to_can_run (struct target_ops *self);
161
162 static void debug_to_stop (struct target_ops *self, ptid_t);
163
164 /* Pointer to array of target architecture structures; the size of the
165 array; the current index into the array; the allocated size of the
166 array. */
167 struct target_ops **target_structs;
168 unsigned target_struct_size;
169 unsigned target_struct_allocsize;
170 #define DEFAULT_ALLOCSIZE 10
171
172 /* The initial current target, so that there is always a semi-valid
173 current target. */
174
175 static struct target_ops dummy_target;
176
177 /* Top of target stack. */
178
179 static struct target_ops *target_stack;
180
181 /* The target structure we are currently using to talk to a process
182 or file or whatever "inferior" we have. */
183
184 struct target_ops current_target;
185
186 /* Command list for target. */
187
188 static struct cmd_list_element *targetlist = NULL;
189
190 /* Nonzero if we should trust readonly sections from the
191 executable when reading memory. */
192
193 static int trust_readonly = 0;
194
195 /* Nonzero if we should show true memory content including
196 memory breakpoint inserted by gdb. */
197
198 static int show_memory_breakpoints = 0;
199
200 /* These globals control whether GDB attempts to perform these
201 operations; they are useful for targets that need to prevent
202 inadvertant disruption, such as in non-stop mode. */
203
204 int may_write_registers = 1;
205
206 int may_write_memory = 1;
207
208 int may_insert_breakpoints = 1;
209
210 int may_insert_tracepoints = 1;
211
212 int may_insert_fast_tracepoints = 1;
213
214 int may_stop = 1;
215
216 /* Non-zero if we want to see trace of target level stuff. */
217
218 static unsigned int targetdebug = 0;
219 static void
220 show_targetdebug (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
224 }
225
226 static void setup_target_debug (void);
227
228 /* The user just typed 'target' without the name of a target. */
229
230 static void
231 target_command (char *arg, int from_tty)
232 {
233 fputs_filtered ("Argument required (target name). Try `help target'\n",
234 gdb_stdout);
235 }
236
237 /* Default target_has_* methods for process_stratum targets. */
238
239 int
240 default_child_has_all_memory (struct target_ops *ops)
241 {
242 /* If no inferior selected, then we can't read memory here. */
243 if (ptid_equal (inferior_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249 int
250 default_child_has_memory (struct target_ops *ops)
251 {
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257 }
258
259 int
260 default_child_has_stack (struct target_ops *ops)
261 {
262 /* If no inferior selected, there's no stack. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269 int
270 default_child_has_registers (struct target_ops *ops)
271 {
272 /* Can't read registers from no inferior. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
281 {
282 /* If there's no thread selected, then we can't make it run through
283 hoops. */
284 if (ptid_equal (the_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290
291 int
292 target_has_all_memory_1 (void)
293 {
294 struct target_ops *t;
295
296 for (t = current_target.beneath; t != NULL; t = t->beneath)
297 if (t->to_has_all_memory (t))
298 return 1;
299
300 return 0;
301 }
302
303 int
304 target_has_memory_1 (void)
305 {
306 struct target_ops *t;
307
308 for (t = current_target.beneath; t != NULL; t = t->beneath)
309 if (t->to_has_memory (t))
310 return 1;
311
312 return 0;
313 }
314
315 int
316 target_has_stack_1 (void)
317 {
318 struct target_ops *t;
319
320 for (t = current_target.beneath; t != NULL; t = t->beneath)
321 if (t->to_has_stack (t))
322 return 1;
323
324 return 0;
325 }
326
327 int
328 target_has_registers_1 (void)
329 {
330 struct target_ops *t;
331
332 for (t = current_target.beneath; t != NULL; t = t->beneath)
333 if (t->to_has_registers (t))
334 return 1;
335
336 return 0;
337 }
338
339 int
340 target_has_execution_1 (ptid_t the_ptid)
341 {
342 struct target_ops *t;
343
344 for (t = current_target.beneath; t != NULL; t = t->beneath)
345 if (t->to_has_execution (t, the_ptid))
346 return 1;
347
348 return 0;
349 }
350
351 int
352 target_has_execution_current (void)
353 {
354 return target_has_execution_1 (inferior_ptid);
355 }
356
357 /* Complete initialization of T. This ensures that various fields in
358 T are set, if needed by the target implementation. */
359
360 void
361 complete_target_initialization (struct target_ops *t)
362 {
363 /* Provide default values for all "must have" methods. */
364 if (t->to_xfer_partial == NULL)
365 t->to_xfer_partial = default_xfer_partial;
366
367 if (t->to_has_all_memory == NULL)
368 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
369
370 if (t->to_has_memory == NULL)
371 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_stack == NULL)
374 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_registers == NULL)
377 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_execution == NULL)
380 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
381
382 install_delegators (t);
383 }
384
385 /* Add possible target architecture T to the list and add a new
386 command 'target T->to_shortname'. Set COMPLETER as the command's
387 completer if not NULL. */
388
389 void
390 add_target_with_completer (struct target_ops *t,
391 completer_ftype *completer)
392 {
393 struct cmd_list_element *c;
394
395 complete_target_initialization (t);
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
421 &targetlist);
422 if (completer != NULL)
423 set_cmd_completer (c, completer);
424 }
425
426 /* Add a possible target architecture to the list. */
427
428 void
429 add_target (struct target_ops *t)
430 {
431 add_target_with_completer (t, NULL);
432 }
433
434 /* See target.h. */
435
436 void
437 add_deprecated_target_alias (struct target_ops *t, char *alias)
438 {
439 struct cmd_list_element *c;
440 char *alt;
441
442 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
443 see PR cli/15104. */
444 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
445 alt = xstrprintf ("target %s", t->to_shortname);
446 deprecate_cmd (c, alt);
447 }
448
449 /* Stub functions */
450
451 void
452 target_ignore (void)
453 {
454 }
455
456 void
457 target_kill (void)
458 {
459 struct target_ops *t;
460
461 for (t = current_target.beneath; t != NULL; t = t->beneath)
462 if (t->to_kill != NULL)
463 {
464 if (targetdebug)
465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
466
467 t->to_kill (t);
468 return;
469 }
470
471 noprocess ();
472 }
473
474 void
475 target_load (char *arg, int from_tty)
476 {
477 target_dcache_invalidate ();
478 (*current_target.to_load) (&current_target, arg, from_tty);
479 }
480
481 void
482 target_create_inferior (char *exec_file, char *args,
483 char **env, int from_tty)
484 {
485 struct target_ops *t;
486
487 for (t = current_target.beneath; t != NULL; t = t->beneath)
488 {
489 if (t->to_create_inferior != NULL)
490 {
491 t->to_create_inferior (t, exec_file, args, env, from_tty);
492 if (targetdebug)
493 fprintf_unfiltered (gdb_stdlog,
494 "target_create_inferior (%s, %s, xxx, %d)\n",
495 exec_file, args, from_tty);
496 return;
497 }
498 }
499
500 internal_error (__FILE__, __LINE__,
501 _("could not find a target to create inferior"));
502 }
503
504 void
505 target_terminal_inferior (void)
506 {
507 /* A background resume (``run&'') should leave GDB in control of the
508 terminal. Use target_can_async_p, not target_is_async_p, since at
509 this point the target is not async yet. However, if sync_execution
510 is not set, we know it will become async prior to resume. */
511 if (target_can_async_p () && !sync_execution)
512 return;
513
514 /* If GDB is resuming the inferior in the foreground, install
515 inferior's terminal modes. */
516 (*current_target.to_terminal_inferior) (&current_target);
517 }
518
519 static int
520 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
521 struct target_ops *t)
522 {
523 errno = EIO; /* Can't read/write this location. */
524 return 0; /* No bytes handled. */
525 }
526
527 static void
528 tcomplain (void)
529 {
530 error (_("You can't do that when your target is `%s'"),
531 current_target.to_shortname);
532 }
533
534 void
535 noprocess (void)
536 {
537 error (_("You can't do that without a process to debug."));
538 }
539
540 static void
541 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
542 {
543 printf_unfiltered (_("No saved terminal information.\n"));
544 }
545
546 /* A default implementation for the to_get_ada_task_ptid target method.
547
548 This function builds the PTID by using both LWP and TID as part of
549 the PTID lwp and tid elements. The pid used is the pid of the
550 inferior_ptid. */
551
552 static ptid_t
553 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
554 {
555 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
556 }
557
558 static enum exec_direction_kind
559 default_execution_direction (struct target_ops *self)
560 {
561 if (!target_can_execute_reverse)
562 return EXEC_FORWARD;
563 else if (!target_can_async_p ())
564 return EXEC_FORWARD;
565 else
566 gdb_assert_not_reached ("\
567 to_execution_direction must be implemented for reverse async");
568 }
569
570 /* Go through the target stack from top to bottom, copying over zero
571 entries in current_target, then filling in still empty entries. In
572 effect, we are doing class inheritance through the pushed target
573 vectors.
574
575 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
576 is currently implemented, is that it discards any knowledge of
577 which target an inherited method originally belonged to.
578 Consequently, new new target methods should instead explicitly and
579 locally search the target stack for the target that can handle the
580 request. */
581
582 static void
583 update_current_target (void)
584 {
585 struct target_ops *t;
586
587 /* First, reset current's contents. */
588 memset (&current_target, 0, sizeof (current_target));
589
590 /* Install the delegators. */
591 install_delegators (&current_target);
592
593 #define INHERIT(FIELD, TARGET) \
594 if (!current_target.FIELD) \
595 current_target.FIELD = (TARGET)->FIELD
596
597 for (t = target_stack; t; t = t->beneath)
598 {
599 INHERIT (to_shortname, t);
600 INHERIT (to_longname, t);
601 INHERIT (to_doc, t);
602 /* Do not inherit to_open. */
603 /* Do not inherit to_close. */
604 /* Do not inherit to_attach. */
605 /* Do not inherit to_post_attach. */
606 INHERIT (to_attach_no_wait, t);
607 /* Do not inherit to_detach. */
608 /* Do not inherit to_disconnect. */
609 /* Do not inherit to_resume. */
610 /* Do not inherit to_wait. */
611 /* Do not inherit to_fetch_registers. */
612 /* Do not inherit to_store_registers. */
613 /* Do not inherit to_prepare_to_store. */
614 INHERIT (deprecated_xfer_memory, t);
615 /* Do not inherit to_files_info. */
616 /* Do not inherit to_insert_breakpoint. */
617 /* Do not inherit to_remove_breakpoint. */
618 /* Do not inherit to_can_use_hw_breakpoint. */
619 /* Do not inherit to_insert_hw_breakpoint. */
620 /* Do not inherit to_remove_hw_breakpoint. */
621 /* Do not inherit to_ranged_break_num_registers. */
622 /* Do not inherit to_insert_watchpoint. */
623 /* Do not inherit to_remove_watchpoint. */
624 /* Do not inherit to_insert_mask_watchpoint. */
625 /* Do not inherit to_remove_mask_watchpoint. */
626 /* Do not inherit to_stopped_data_address. */
627 INHERIT (to_have_steppable_watchpoint, t);
628 INHERIT (to_have_continuable_watchpoint, t);
629 /* Do not inherit to_stopped_by_watchpoint. */
630 /* Do not inherit to_watchpoint_addr_within_range. */
631 /* Do not inherit to_region_ok_for_hw_watchpoint. */
632 /* Do not inherit to_can_accel_watchpoint_condition. */
633 /* Do not inherit to_masked_watch_num_registers. */
634 /* Do not inherit to_terminal_init. */
635 /* Do not inherit to_terminal_inferior. */
636 /* Do not inherit to_terminal_ours_for_output. */
637 /* Do not inherit to_terminal_ours. */
638 /* Do not inherit to_terminal_save_ours. */
639 /* Do not inherit to_terminal_info. */
640 /* Do not inherit to_kill. */
641 /* Do not inherit to_load. */
642 /* Do no inherit to_create_inferior. */
643 /* Do not inherit to_post_startup_inferior. */
644 /* Do not inherit to_insert_fork_catchpoint. */
645 /* Do not inherit to_remove_fork_catchpoint. */
646 /* Do not inherit to_insert_vfork_catchpoint. */
647 /* Do not inherit to_remove_vfork_catchpoint. */
648 /* Do not inherit to_follow_fork. */
649 /* Do not inherit to_insert_exec_catchpoint. */
650 /* Do not inherit to_remove_exec_catchpoint. */
651 /* Do not inherit to_set_syscall_catchpoint. */
652 /* Do not inherit to_has_exited. */
653 /* Do not inherit to_mourn_inferior. */
654 INHERIT (to_can_run, t);
655 /* Do not inherit to_pass_signals. */
656 /* Do not inherit to_program_signals. */
657 /* Do not inherit to_thread_alive. */
658 /* Do not inherit to_find_new_threads. */
659 /* Do not inherit to_pid_to_str. */
660 /* Do not inherit to_extra_thread_info. */
661 /* Do not inherit to_thread_name. */
662 INHERIT (to_stop, t);
663 /* Do not inherit to_xfer_partial. */
664 /* Do not inherit to_rcmd. */
665 /* Do not inherit to_pid_to_exec_file. */
666 /* Do not inherit to_log_command. */
667 INHERIT (to_stratum, t);
668 /* Do not inherit to_has_all_memory. */
669 /* Do not inherit to_has_memory. */
670 /* Do not inherit to_has_stack. */
671 /* Do not inherit to_has_registers. */
672 /* Do not inherit to_has_execution. */
673 INHERIT (to_has_thread_control, t);
674 /* Do not inherit to_can_async_p. */
675 /* Do not inherit to_is_async_p. */
676 /* Do not inherit to_async. */
677 /* Do not inherit to_find_memory_regions. */
678 /* Do not inherit to_make_corefile_notes. */
679 /* Do not inherit to_get_bookmark. */
680 /* Do not inherit to_goto_bookmark. */
681 /* Do not inherit to_get_thread_local_address. */
682 /* Do not inherit to_can_execute_reverse. */
683 /* Do not inherit to_execution_direction. */
684 /* Do not inherit to_thread_architecture. */
685 /* Do not inherit to_read_description. */
686 /* Do not inherit to_get_ada_task_ptid. */
687 /* Do not inherit to_search_memory. */
688 /* Do not inherit to_supports_multi_process. */
689 /* Do not inherit to_supports_enable_disable_tracepoint. */
690 /* Do not inherit to_supports_string_tracing. */
691 /* Do not inherit to_trace_init. */
692 /* Do not inherit to_download_tracepoint. */
693 /* Do not inherit to_can_download_tracepoint. */
694 INHERIT (to_download_trace_state_variable, t);
695 INHERIT (to_enable_tracepoint, t);
696 INHERIT (to_disable_tracepoint, t);
697 INHERIT (to_trace_set_readonly_regions, t);
698 INHERIT (to_trace_start, t);
699 INHERIT (to_get_trace_status, t);
700 INHERIT (to_get_tracepoint_status, t);
701 INHERIT (to_trace_stop, t);
702 INHERIT (to_trace_find, t);
703 INHERIT (to_get_trace_state_variable_value, t);
704 INHERIT (to_save_trace_data, t);
705 INHERIT (to_upload_tracepoints, t);
706 INHERIT (to_upload_trace_state_variables, t);
707 INHERIT (to_get_raw_trace_data, t);
708 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
709 INHERIT (to_set_disconnected_tracing, t);
710 INHERIT (to_set_circular_trace_buffer, t);
711 INHERIT (to_set_trace_buffer_size, t);
712 INHERIT (to_set_trace_notes, t);
713 INHERIT (to_get_tib_address, t);
714 INHERIT (to_set_permissions, t);
715 INHERIT (to_static_tracepoint_marker_at, t);
716 INHERIT (to_static_tracepoint_markers_by_strid, t);
717 INHERIT (to_traceframe_info, t);
718 INHERIT (to_use_agent, t);
719 INHERIT (to_can_use_agent, t);
720 INHERIT (to_augmented_libraries_svr4_read, t);
721 INHERIT (to_magic, t);
722 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
723 INHERIT (to_can_run_breakpoint_commands, t);
724 /* Do not inherit to_memory_map. */
725 /* Do not inherit to_flash_erase. */
726 /* Do not inherit to_flash_done. */
727 }
728 #undef INHERIT
729
730 /* Clean up a target struct so it no longer has any zero pointers in
731 it. Some entries are defaulted to a method that print an error,
732 others are hard-wired to a standard recursive default. */
733
734 #define de_fault(field, value) \
735 if (!current_target.field) \
736 current_target.field = value
737
738 de_fault (to_open,
739 (void (*) (char *, int))
740 tcomplain);
741 de_fault (to_close,
742 (void (*) (struct target_ops *))
743 target_ignore);
744 de_fault (deprecated_xfer_memory,
745 (int (*) (CORE_ADDR, gdb_byte *, int, int,
746 struct mem_attrib *, struct target_ops *))
747 nomemory);
748 de_fault (to_can_run,
749 (int (*) (struct target_ops *))
750 return_zero);
751 de_fault (to_stop,
752 (void (*) (struct target_ops *, ptid_t))
753 target_ignore);
754 current_target.to_read_description = NULL;
755 de_fault (to_download_trace_state_variable,
756 (void (*) (struct target_ops *, struct trace_state_variable *))
757 tcomplain);
758 de_fault (to_enable_tracepoint,
759 (void (*) (struct target_ops *, struct bp_location *))
760 tcomplain);
761 de_fault (to_disable_tracepoint,
762 (void (*) (struct target_ops *, struct bp_location *))
763 tcomplain);
764 de_fault (to_trace_set_readonly_regions,
765 (void (*) (struct target_ops *))
766 tcomplain);
767 de_fault (to_trace_start,
768 (void (*) (struct target_ops *))
769 tcomplain);
770 de_fault (to_get_trace_status,
771 (int (*) (struct target_ops *, struct trace_status *))
772 return_minus_one);
773 de_fault (to_get_tracepoint_status,
774 (void (*) (struct target_ops *, struct breakpoint *,
775 struct uploaded_tp *))
776 tcomplain);
777 de_fault (to_trace_stop,
778 (void (*) (struct target_ops *))
779 tcomplain);
780 de_fault (to_trace_find,
781 (int (*) (struct target_ops *,
782 enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
783 return_minus_one);
784 de_fault (to_get_trace_state_variable_value,
785 (int (*) (struct target_ops *, int, LONGEST *))
786 return_zero);
787 de_fault (to_save_trace_data,
788 (int (*) (struct target_ops *, const char *))
789 tcomplain);
790 de_fault (to_upload_tracepoints,
791 (int (*) (struct target_ops *, struct uploaded_tp **))
792 return_zero);
793 de_fault (to_upload_trace_state_variables,
794 (int (*) (struct target_ops *, struct uploaded_tsv **))
795 return_zero);
796 de_fault (to_get_raw_trace_data,
797 (LONGEST (*) (struct target_ops *, gdb_byte *, ULONGEST, LONGEST))
798 tcomplain);
799 de_fault (to_get_min_fast_tracepoint_insn_len,
800 (int (*) (struct target_ops *))
801 return_minus_one);
802 de_fault (to_set_disconnected_tracing,
803 (void (*) (struct target_ops *, int))
804 target_ignore);
805 de_fault (to_set_circular_trace_buffer,
806 (void (*) (struct target_ops *, int))
807 target_ignore);
808 de_fault (to_set_trace_buffer_size,
809 (void (*) (struct target_ops *, LONGEST))
810 target_ignore);
811 de_fault (to_set_trace_notes,
812 (int (*) (struct target_ops *,
813 const char *, const char *, const char *))
814 return_zero);
815 de_fault (to_get_tib_address,
816 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
817 tcomplain);
818 de_fault (to_set_permissions,
819 (void (*) (struct target_ops *))
820 target_ignore);
821 de_fault (to_static_tracepoint_marker_at,
822 (int (*) (struct target_ops *,
823 CORE_ADDR, struct static_tracepoint_marker *))
824 return_zero);
825 de_fault (to_static_tracepoint_markers_by_strid,
826 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
827 const char *))
828 tcomplain);
829 de_fault (to_traceframe_info,
830 (struct traceframe_info * (*) (struct target_ops *))
831 return_null);
832 de_fault (to_supports_evaluation_of_breakpoint_conditions,
833 (int (*) (struct target_ops *))
834 return_zero);
835 de_fault (to_can_run_breakpoint_commands,
836 (int (*) (struct target_ops *))
837 return_zero);
838 de_fault (to_use_agent,
839 (int (*) (struct target_ops *, int))
840 tcomplain);
841 de_fault (to_can_use_agent,
842 (int (*) (struct target_ops *))
843 return_zero);
844 de_fault (to_augmented_libraries_svr4_read,
845 (int (*) (struct target_ops *))
846 return_zero);
847
848 #undef de_fault
849
850 /* Finally, position the target-stack beneath the squashed
851 "current_target". That way code looking for a non-inherited
852 target method can quickly and simply find it. */
853 current_target.beneath = target_stack;
854
855 if (targetdebug)
856 setup_target_debug ();
857 }
858
859 /* Push a new target type into the stack of the existing target accessors,
860 possibly superseding some of the existing accessors.
861
862 Rather than allow an empty stack, we always have the dummy target at
863 the bottom stratum, so we can call the function vectors without
864 checking them. */
865
866 void
867 push_target (struct target_ops *t)
868 {
869 struct target_ops **cur;
870
871 /* Check magic number. If wrong, it probably means someone changed
872 the struct definition, but not all the places that initialize one. */
873 if (t->to_magic != OPS_MAGIC)
874 {
875 fprintf_unfiltered (gdb_stderr,
876 "Magic number of %s target struct wrong\n",
877 t->to_shortname);
878 internal_error (__FILE__, __LINE__,
879 _("failed internal consistency check"));
880 }
881
882 /* Find the proper stratum to install this target in. */
883 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
884 {
885 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
886 break;
887 }
888
889 /* If there's already targets at this stratum, remove them. */
890 /* FIXME: cagney/2003-10-15: I think this should be popping all
891 targets to CUR, and not just those at this stratum level. */
892 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
893 {
894 /* There's already something at this stratum level. Close it,
895 and un-hook it from the stack. */
896 struct target_ops *tmp = (*cur);
897
898 (*cur) = (*cur)->beneath;
899 tmp->beneath = NULL;
900 target_close (tmp);
901 }
902
903 /* We have removed all targets in our stratum, now add the new one. */
904 t->beneath = (*cur);
905 (*cur) = t;
906
907 update_current_target ();
908 }
909
910 /* Remove a target_ops vector from the stack, wherever it may be.
911 Return how many times it was removed (0 or 1). */
912
913 int
914 unpush_target (struct target_ops *t)
915 {
916 struct target_ops **cur;
917 struct target_ops *tmp;
918
919 if (t->to_stratum == dummy_stratum)
920 internal_error (__FILE__, __LINE__,
921 _("Attempt to unpush the dummy target"));
922
923 /* Look for the specified target. Note that we assume that a target
924 can only occur once in the target stack. */
925
926 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
927 {
928 if ((*cur) == t)
929 break;
930 }
931
932 /* If we don't find target_ops, quit. Only open targets should be
933 closed. */
934 if ((*cur) == NULL)
935 return 0;
936
937 /* Unchain the target. */
938 tmp = (*cur);
939 (*cur) = (*cur)->beneath;
940 tmp->beneath = NULL;
941
942 update_current_target ();
943
944 /* Finally close the target. Note we do this after unchaining, so
945 any target method calls from within the target_close
946 implementation don't end up in T anymore. */
947 target_close (t);
948
949 return 1;
950 }
951
952 void
953 pop_all_targets_above (enum strata above_stratum)
954 {
955 while ((int) (current_target.to_stratum) > (int) above_stratum)
956 {
957 if (!unpush_target (target_stack))
958 {
959 fprintf_unfiltered (gdb_stderr,
960 "pop_all_targets couldn't find target %s\n",
961 target_stack->to_shortname);
962 internal_error (__FILE__, __LINE__,
963 _("failed internal consistency check"));
964 break;
965 }
966 }
967 }
968
969 void
970 pop_all_targets (void)
971 {
972 pop_all_targets_above (dummy_stratum);
973 }
974
975 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
976
977 int
978 target_is_pushed (struct target_ops *t)
979 {
980 struct target_ops **cur;
981
982 /* Check magic number. If wrong, it probably means someone changed
983 the struct definition, but not all the places that initialize one. */
984 if (t->to_magic != OPS_MAGIC)
985 {
986 fprintf_unfiltered (gdb_stderr,
987 "Magic number of %s target struct wrong\n",
988 t->to_shortname);
989 internal_error (__FILE__, __LINE__,
990 _("failed internal consistency check"));
991 }
992
993 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
994 if (*cur == t)
995 return 1;
996
997 return 0;
998 }
999
1000 /* Using the objfile specified in OBJFILE, find the address for the
1001 current thread's thread-local storage with offset OFFSET. */
1002 CORE_ADDR
1003 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1004 {
1005 volatile CORE_ADDR addr = 0;
1006 struct target_ops *target;
1007
1008 for (target = current_target.beneath;
1009 target != NULL;
1010 target = target->beneath)
1011 {
1012 if (target->to_get_thread_local_address != NULL)
1013 break;
1014 }
1015
1016 if (target != NULL
1017 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1018 {
1019 ptid_t ptid = inferior_ptid;
1020 volatile struct gdb_exception ex;
1021
1022 TRY_CATCH (ex, RETURN_MASK_ALL)
1023 {
1024 CORE_ADDR lm_addr;
1025
1026 /* Fetch the load module address for this objfile. */
1027 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1028 objfile);
1029 /* If it's 0, throw the appropriate exception. */
1030 if (lm_addr == 0)
1031 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1032 _("TLS load module not found"));
1033
1034 addr = target->to_get_thread_local_address (target, ptid,
1035 lm_addr, offset);
1036 }
1037 /* If an error occurred, print TLS related messages here. Otherwise,
1038 throw the error to some higher catcher. */
1039 if (ex.reason < 0)
1040 {
1041 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1042
1043 switch (ex.error)
1044 {
1045 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1046 error (_("Cannot find thread-local variables "
1047 "in this thread library."));
1048 break;
1049 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1050 if (objfile_is_library)
1051 error (_("Cannot find shared library `%s' in dynamic"
1052 " linker's load module list"), objfile_name (objfile));
1053 else
1054 error (_("Cannot find executable file `%s' in dynamic"
1055 " linker's load module list"), objfile_name (objfile));
1056 break;
1057 case TLS_NOT_ALLOCATED_YET_ERROR:
1058 if (objfile_is_library)
1059 error (_("The inferior has not yet allocated storage for"
1060 " thread-local variables in\n"
1061 "the shared library `%s'\n"
1062 "for %s"),
1063 objfile_name (objfile), target_pid_to_str (ptid));
1064 else
1065 error (_("The inferior has not yet allocated storage for"
1066 " thread-local variables in\n"
1067 "the executable `%s'\n"
1068 "for %s"),
1069 objfile_name (objfile), target_pid_to_str (ptid));
1070 break;
1071 case TLS_GENERIC_ERROR:
1072 if (objfile_is_library)
1073 error (_("Cannot find thread-local storage for %s, "
1074 "shared library %s:\n%s"),
1075 target_pid_to_str (ptid),
1076 objfile_name (objfile), ex.message);
1077 else
1078 error (_("Cannot find thread-local storage for %s, "
1079 "executable file %s:\n%s"),
1080 target_pid_to_str (ptid),
1081 objfile_name (objfile), ex.message);
1082 break;
1083 default:
1084 throw_exception (ex);
1085 break;
1086 }
1087 }
1088 }
1089 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1090 TLS is an ABI-specific thing. But we don't do that yet. */
1091 else
1092 error (_("Cannot find thread-local variables on this target"));
1093
1094 return addr;
1095 }
1096
1097 const char *
1098 target_xfer_status_to_string (enum target_xfer_status err)
1099 {
1100 #define CASE(X) case X: return #X
1101 switch (err)
1102 {
1103 CASE(TARGET_XFER_E_IO);
1104 CASE(TARGET_XFER_E_UNAVAILABLE);
1105 default:
1106 return "<unknown>";
1107 }
1108 #undef CASE
1109 };
1110
1111
1112 #undef MIN
1113 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1114
1115 /* target_read_string -- read a null terminated string, up to LEN bytes,
1116 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1117 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1118 is responsible for freeing it. Return the number of bytes successfully
1119 read. */
1120
1121 int
1122 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1123 {
1124 int tlen, offset, i;
1125 gdb_byte buf[4];
1126 int errcode = 0;
1127 char *buffer;
1128 int buffer_allocated;
1129 char *bufptr;
1130 unsigned int nbytes_read = 0;
1131
1132 gdb_assert (string);
1133
1134 /* Small for testing. */
1135 buffer_allocated = 4;
1136 buffer = xmalloc (buffer_allocated);
1137 bufptr = buffer;
1138
1139 while (len > 0)
1140 {
1141 tlen = MIN (len, 4 - (memaddr & 3));
1142 offset = memaddr & 3;
1143
1144 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1145 if (errcode != 0)
1146 {
1147 /* The transfer request might have crossed the boundary to an
1148 unallocated region of memory. Retry the transfer, requesting
1149 a single byte. */
1150 tlen = 1;
1151 offset = 0;
1152 errcode = target_read_memory (memaddr, buf, 1);
1153 if (errcode != 0)
1154 goto done;
1155 }
1156
1157 if (bufptr - buffer + tlen > buffer_allocated)
1158 {
1159 unsigned int bytes;
1160
1161 bytes = bufptr - buffer;
1162 buffer_allocated *= 2;
1163 buffer = xrealloc (buffer, buffer_allocated);
1164 bufptr = buffer + bytes;
1165 }
1166
1167 for (i = 0; i < tlen; i++)
1168 {
1169 *bufptr++ = buf[i + offset];
1170 if (buf[i + offset] == '\000')
1171 {
1172 nbytes_read += i + 1;
1173 goto done;
1174 }
1175 }
1176
1177 memaddr += tlen;
1178 len -= tlen;
1179 nbytes_read += tlen;
1180 }
1181 done:
1182 *string = buffer;
1183 if (errnop != NULL)
1184 *errnop = errcode;
1185 return nbytes_read;
1186 }
1187
1188 struct target_section_table *
1189 target_get_section_table (struct target_ops *target)
1190 {
1191 struct target_ops *t;
1192
1193 if (targetdebug)
1194 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1195
1196 for (t = target; t != NULL; t = t->beneath)
1197 if (t->to_get_section_table != NULL)
1198 return (*t->to_get_section_table) (t);
1199
1200 return NULL;
1201 }
1202
1203 /* Find a section containing ADDR. */
1204
1205 struct target_section *
1206 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1207 {
1208 struct target_section_table *table = target_get_section_table (target);
1209 struct target_section *secp;
1210
1211 if (table == NULL)
1212 return NULL;
1213
1214 for (secp = table->sections; secp < table->sections_end; secp++)
1215 {
1216 if (addr >= secp->addr && addr < secp->endaddr)
1217 return secp;
1218 }
1219 return NULL;
1220 }
1221
1222 /* Read memory from the live target, even if currently inspecting a
1223 traceframe. The return is the same as that of target_read. */
1224
1225 static enum target_xfer_status
1226 target_read_live_memory (enum target_object object,
1227 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1228 ULONGEST *xfered_len)
1229 {
1230 enum target_xfer_status ret;
1231 struct cleanup *cleanup;
1232
1233 /* Switch momentarily out of tfind mode so to access live memory.
1234 Note that this must not clear global state, such as the frame
1235 cache, which must still remain valid for the previous traceframe.
1236 We may be _building_ the frame cache at this point. */
1237 cleanup = make_cleanup_restore_traceframe_number ();
1238 set_traceframe_number (-1);
1239
1240 ret = target_xfer_partial (current_target.beneath, object, NULL,
1241 myaddr, NULL, memaddr, len, xfered_len);
1242
1243 do_cleanups (cleanup);
1244 return ret;
1245 }
1246
1247 /* Using the set of read-only target sections of OPS, read live
1248 read-only memory. Note that the actual reads start from the
1249 top-most target again.
1250
1251 For interface/parameters/return description see target.h,
1252 to_xfer_partial. */
1253
1254 static enum target_xfer_status
1255 memory_xfer_live_readonly_partial (struct target_ops *ops,
1256 enum target_object object,
1257 gdb_byte *readbuf, ULONGEST memaddr,
1258 ULONGEST len, ULONGEST *xfered_len)
1259 {
1260 struct target_section *secp;
1261 struct target_section_table *table;
1262
1263 secp = target_section_by_addr (ops, memaddr);
1264 if (secp != NULL
1265 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1266 secp->the_bfd_section)
1267 & SEC_READONLY))
1268 {
1269 struct target_section *p;
1270 ULONGEST memend = memaddr + len;
1271
1272 table = target_get_section_table (ops);
1273
1274 for (p = table->sections; p < table->sections_end; p++)
1275 {
1276 if (memaddr >= p->addr)
1277 {
1278 if (memend <= p->endaddr)
1279 {
1280 /* Entire transfer is within this section. */
1281 return target_read_live_memory (object, memaddr,
1282 readbuf, len, xfered_len);
1283 }
1284 else if (memaddr >= p->endaddr)
1285 {
1286 /* This section ends before the transfer starts. */
1287 continue;
1288 }
1289 else
1290 {
1291 /* This section overlaps the transfer. Just do half. */
1292 len = p->endaddr - memaddr;
1293 return target_read_live_memory (object, memaddr,
1294 readbuf, len, xfered_len);
1295 }
1296 }
1297 }
1298 }
1299
1300 return TARGET_XFER_EOF;
1301 }
1302
1303 /* Read memory from more than one valid target. A core file, for
1304 instance, could have some of memory but delegate other bits to
1305 the target below it. So, we must manually try all targets. */
1306
1307 static enum target_xfer_status
1308 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1309 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1310 ULONGEST *xfered_len)
1311 {
1312 enum target_xfer_status res;
1313
1314 do
1315 {
1316 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1317 readbuf, writebuf, memaddr, len,
1318 xfered_len);
1319 if (res == TARGET_XFER_OK)
1320 break;
1321
1322 /* Stop if the target reports that the memory is not available. */
1323 if (res == TARGET_XFER_E_UNAVAILABLE)
1324 break;
1325
1326 /* We want to continue past core files to executables, but not
1327 past a running target's memory. */
1328 if (ops->to_has_all_memory (ops))
1329 break;
1330
1331 ops = ops->beneath;
1332 }
1333 while (ops != NULL);
1334
1335 return res;
1336 }
1337
1338 /* Perform a partial memory transfer.
1339 For docs see target.h, to_xfer_partial. */
1340
1341 static enum target_xfer_status
1342 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1343 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1344 ULONGEST len, ULONGEST *xfered_len)
1345 {
1346 enum target_xfer_status res;
1347 int reg_len;
1348 struct mem_region *region;
1349 struct inferior *inf;
1350
1351 /* For accesses to unmapped overlay sections, read directly from
1352 files. Must do this first, as MEMADDR may need adjustment. */
1353 if (readbuf != NULL && overlay_debugging)
1354 {
1355 struct obj_section *section = find_pc_overlay (memaddr);
1356
1357 if (pc_in_unmapped_range (memaddr, section))
1358 {
1359 struct target_section_table *table
1360 = target_get_section_table (ops);
1361 const char *section_name = section->the_bfd_section->name;
1362
1363 memaddr = overlay_mapped_address (memaddr, section);
1364 return section_table_xfer_memory_partial (readbuf, writebuf,
1365 memaddr, len, xfered_len,
1366 table->sections,
1367 table->sections_end,
1368 section_name);
1369 }
1370 }
1371
1372 /* Try the executable files, if "trust-readonly-sections" is set. */
1373 if (readbuf != NULL && trust_readonly)
1374 {
1375 struct target_section *secp;
1376 struct target_section_table *table;
1377
1378 secp = target_section_by_addr (ops, memaddr);
1379 if (secp != NULL
1380 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1381 secp->the_bfd_section)
1382 & SEC_READONLY))
1383 {
1384 table = target_get_section_table (ops);
1385 return section_table_xfer_memory_partial (readbuf, writebuf,
1386 memaddr, len, xfered_len,
1387 table->sections,
1388 table->sections_end,
1389 NULL);
1390 }
1391 }
1392
1393 /* If reading unavailable memory in the context of traceframes, and
1394 this address falls within a read-only section, fallback to
1395 reading from live memory. */
1396 if (readbuf != NULL && get_traceframe_number () != -1)
1397 {
1398 VEC(mem_range_s) *available;
1399
1400 /* If we fail to get the set of available memory, then the
1401 target does not support querying traceframe info, and so we
1402 attempt reading from the traceframe anyway (assuming the
1403 target implements the old QTro packet then). */
1404 if (traceframe_available_memory (&available, memaddr, len))
1405 {
1406 struct cleanup *old_chain;
1407
1408 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1409
1410 if (VEC_empty (mem_range_s, available)
1411 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1412 {
1413 /* Don't read into the traceframe's available
1414 memory. */
1415 if (!VEC_empty (mem_range_s, available))
1416 {
1417 LONGEST oldlen = len;
1418
1419 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1420 gdb_assert (len <= oldlen);
1421 }
1422
1423 do_cleanups (old_chain);
1424
1425 /* This goes through the topmost target again. */
1426 res = memory_xfer_live_readonly_partial (ops, object,
1427 readbuf, memaddr,
1428 len, xfered_len);
1429 if (res == TARGET_XFER_OK)
1430 return TARGET_XFER_OK;
1431 else
1432 {
1433 /* No use trying further, we know some memory starting
1434 at MEMADDR isn't available. */
1435 *xfered_len = len;
1436 return TARGET_XFER_E_UNAVAILABLE;
1437 }
1438 }
1439
1440 /* Don't try to read more than how much is available, in
1441 case the target implements the deprecated QTro packet to
1442 cater for older GDBs (the target's knowledge of read-only
1443 sections may be outdated by now). */
1444 len = VEC_index (mem_range_s, available, 0)->length;
1445
1446 do_cleanups (old_chain);
1447 }
1448 }
1449
1450 /* Try GDB's internal data cache. */
1451 region = lookup_mem_region (memaddr);
1452 /* region->hi == 0 means there's no upper bound. */
1453 if (memaddr + len < region->hi || region->hi == 0)
1454 reg_len = len;
1455 else
1456 reg_len = region->hi - memaddr;
1457
1458 switch (region->attrib.mode)
1459 {
1460 case MEM_RO:
1461 if (writebuf != NULL)
1462 return TARGET_XFER_E_IO;
1463 break;
1464
1465 case MEM_WO:
1466 if (readbuf != NULL)
1467 return TARGET_XFER_E_IO;
1468 break;
1469
1470 case MEM_FLASH:
1471 /* We only support writing to flash during "load" for now. */
1472 if (writebuf != NULL)
1473 error (_("Writing to flash memory forbidden in this context"));
1474 break;
1475
1476 case MEM_NONE:
1477 return TARGET_XFER_E_IO;
1478 }
1479
1480 if (!ptid_equal (inferior_ptid, null_ptid))
1481 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1482 else
1483 inf = NULL;
1484
1485 if (inf != NULL
1486 /* The dcache reads whole cache lines; that doesn't play well
1487 with reading from a trace buffer, because reading outside of
1488 the collected memory range fails. */
1489 && get_traceframe_number () == -1
1490 && (region->attrib.cache
1491 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1492 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1493 {
1494 DCACHE *dcache = target_dcache_get_or_init ();
1495 int l;
1496
1497 if (readbuf != NULL)
1498 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1499 else
1500 /* FIXME drow/2006-08-09: If we're going to preserve const
1501 correctness dcache_xfer_memory should take readbuf and
1502 writebuf. */
1503 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1504 reg_len, 1);
1505 if (l <= 0)
1506 return TARGET_XFER_E_IO;
1507 else
1508 {
1509 *xfered_len = (ULONGEST) l;
1510 return TARGET_XFER_OK;
1511 }
1512 }
1513
1514 /* If none of those methods found the memory we wanted, fall back
1515 to a target partial transfer. Normally a single call to
1516 to_xfer_partial is enough; if it doesn't recognize an object
1517 it will call the to_xfer_partial of the next target down.
1518 But for memory this won't do. Memory is the only target
1519 object which can be read from more than one valid target.
1520 A core file, for instance, could have some of memory but
1521 delegate other bits to the target below it. So, we must
1522 manually try all targets. */
1523
1524 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1525 xfered_len);
1526
1527 /* Make sure the cache gets updated no matter what - if we are writing
1528 to the stack. Even if this write is not tagged as such, we still need
1529 to update the cache. */
1530
1531 if (res == TARGET_XFER_OK
1532 && inf != NULL
1533 && writebuf != NULL
1534 && target_dcache_init_p ()
1535 && !region->attrib.cache
1536 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1537 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1538 {
1539 DCACHE *dcache = target_dcache_get ();
1540
1541 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1542 }
1543
1544 /* If we still haven't got anything, return the last error. We
1545 give up. */
1546 return res;
1547 }
1548
1549 /* Perform a partial memory transfer. For docs see target.h,
1550 to_xfer_partial. */
1551
1552 static enum target_xfer_status
1553 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1554 gdb_byte *readbuf, const gdb_byte *writebuf,
1555 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1556 {
1557 enum target_xfer_status res;
1558
1559 /* Zero length requests are ok and require no work. */
1560 if (len == 0)
1561 return TARGET_XFER_EOF;
1562
1563 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1564 breakpoint insns, thus hiding out from higher layers whether
1565 there are software breakpoints inserted in the code stream. */
1566 if (readbuf != NULL)
1567 {
1568 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1569 xfered_len);
1570
1571 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1572 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1573 }
1574 else
1575 {
1576 void *buf;
1577 struct cleanup *old_chain;
1578
1579 /* A large write request is likely to be partially satisfied
1580 by memory_xfer_partial_1. We will continually malloc
1581 and free a copy of the entire write request for breakpoint
1582 shadow handling even though we only end up writing a small
1583 subset of it. Cap writes to 4KB to mitigate this. */
1584 len = min (4096, len);
1585
1586 buf = xmalloc (len);
1587 old_chain = make_cleanup (xfree, buf);
1588 memcpy (buf, writebuf, len);
1589
1590 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1591 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1592 xfered_len);
1593
1594 do_cleanups (old_chain);
1595 }
1596
1597 return res;
1598 }
1599
1600 static void
1601 restore_show_memory_breakpoints (void *arg)
1602 {
1603 show_memory_breakpoints = (uintptr_t) arg;
1604 }
1605
1606 struct cleanup *
1607 make_show_memory_breakpoints_cleanup (int show)
1608 {
1609 int current = show_memory_breakpoints;
1610
1611 show_memory_breakpoints = show;
1612 return make_cleanup (restore_show_memory_breakpoints,
1613 (void *) (uintptr_t) current);
1614 }
1615
1616 /* For docs see target.h, to_xfer_partial. */
1617
1618 enum target_xfer_status
1619 target_xfer_partial (struct target_ops *ops,
1620 enum target_object object, const char *annex,
1621 gdb_byte *readbuf, const gdb_byte *writebuf,
1622 ULONGEST offset, ULONGEST len,
1623 ULONGEST *xfered_len)
1624 {
1625 enum target_xfer_status retval;
1626
1627 gdb_assert (ops->to_xfer_partial != NULL);
1628
1629 /* Transfer is done when LEN is zero. */
1630 if (len == 0)
1631 return TARGET_XFER_EOF;
1632
1633 if (writebuf && !may_write_memory)
1634 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1635 core_addr_to_string_nz (offset), plongest (len));
1636
1637 *xfered_len = 0;
1638
1639 /* If this is a memory transfer, let the memory-specific code
1640 have a look at it instead. Memory transfers are more
1641 complicated. */
1642 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1643 || object == TARGET_OBJECT_CODE_MEMORY)
1644 retval = memory_xfer_partial (ops, object, readbuf,
1645 writebuf, offset, len, xfered_len);
1646 else if (object == TARGET_OBJECT_RAW_MEMORY)
1647 {
1648 /* Request the normal memory object from other layers. */
1649 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1650 xfered_len);
1651 }
1652 else
1653 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1654 writebuf, offset, len, xfered_len);
1655
1656 if (targetdebug)
1657 {
1658 const unsigned char *myaddr = NULL;
1659
1660 fprintf_unfiltered (gdb_stdlog,
1661 "%s:target_xfer_partial "
1662 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1663 ops->to_shortname,
1664 (int) object,
1665 (annex ? annex : "(null)"),
1666 host_address_to_string (readbuf),
1667 host_address_to_string (writebuf),
1668 core_addr_to_string_nz (offset),
1669 pulongest (len), retval,
1670 pulongest (*xfered_len));
1671
1672 if (readbuf)
1673 myaddr = readbuf;
1674 if (writebuf)
1675 myaddr = writebuf;
1676 if (retval == TARGET_XFER_OK && myaddr != NULL)
1677 {
1678 int i;
1679
1680 fputs_unfiltered (", bytes =", gdb_stdlog);
1681 for (i = 0; i < *xfered_len; i++)
1682 {
1683 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1684 {
1685 if (targetdebug < 2 && i > 0)
1686 {
1687 fprintf_unfiltered (gdb_stdlog, " ...");
1688 break;
1689 }
1690 fprintf_unfiltered (gdb_stdlog, "\n");
1691 }
1692
1693 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1694 }
1695 }
1696
1697 fputc_unfiltered ('\n', gdb_stdlog);
1698 }
1699
1700 /* Check implementations of to_xfer_partial update *XFERED_LEN
1701 properly. Do assertion after printing debug messages, so that we
1702 can find more clues on assertion failure from debugging messages. */
1703 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1704 gdb_assert (*xfered_len > 0);
1705
1706 return retval;
1707 }
1708
1709 /* Read LEN bytes of target memory at address MEMADDR, placing the
1710 results in GDB's memory at MYADDR. Returns either 0 for success or
1711 TARGET_XFER_E_IO if any error occurs.
1712
1713 If an error occurs, no guarantee is made about the contents of the data at
1714 MYADDR. In particular, the caller should not depend upon partial reads
1715 filling the buffer with good data. There is no way for the caller to know
1716 how much good data might have been transfered anyway. Callers that can
1717 deal with partial reads should call target_read (which will retry until
1718 it makes no progress, and then return how much was transferred). */
1719
1720 int
1721 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1722 {
1723 /* Dispatch to the topmost target, not the flattened current_target.
1724 Memory accesses check target->to_has_(all_)memory, and the
1725 flattened target doesn't inherit those. */
1726 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1727 myaddr, memaddr, len) == len)
1728 return 0;
1729 else
1730 return TARGET_XFER_E_IO;
1731 }
1732
1733 /* Like target_read_memory, but specify explicitly that this is a read
1734 from the target's raw memory. That is, this read bypasses the
1735 dcache, breakpoint shadowing, etc. */
1736
1737 int
1738 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1739 {
1740 /* See comment in target_read_memory about why the request starts at
1741 current_target.beneath. */
1742 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1743 myaddr, memaddr, len) == len)
1744 return 0;
1745 else
1746 return TARGET_XFER_E_IO;
1747 }
1748
1749 /* Like target_read_memory, but specify explicitly that this is a read from
1750 the target's stack. This may trigger different cache behavior. */
1751
1752 int
1753 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1754 {
1755 /* See comment in target_read_memory about why the request starts at
1756 current_target.beneath. */
1757 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1758 myaddr, memaddr, len) == len)
1759 return 0;
1760 else
1761 return TARGET_XFER_E_IO;
1762 }
1763
1764 /* Like target_read_memory, but specify explicitly that this is a read from
1765 the target's code. This may trigger different cache behavior. */
1766
1767 int
1768 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1769 {
1770 /* See comment in target_read_memory about why the request starts at
1771 current_target.beneath. */
1772 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1773 myaddr, memaddr, len) == len)
1774 return 0;
1775 else
1776 return TARGET_XFER_E_IO;
1777 }
1778
1779 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1780 Returns either 0 for success or TARGET_XFER_E_IO if any
1781 error occurs. If an error occurs, no guarantee is made about how
1782 much data got written. Callers that can deal with partial writes
1783 should call target_write. */
1784
1785 int
1786 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1787 {
1788 /* See comment in target_read_memory about why the request starts at
1789 current_target.beneath. */
1790 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1791 myaddr, memaddr, len) == len)
1792 return 0;
1793 else
1794 return TARGET_XFER_E_IO;
1795 }
1796
1797 /* Write LEN bytes from MYADDR to target raw memory at address
1798 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1799 if any error occurs. If an error occurs, no guarantee is made
1800 about how much data got written. Callers that can deal with
1801 partial writes should call target_write. */
1802
1803 int
1804 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1805 {
1806 /* See comment in target_read_memory about why the request starts at
1807 current_target.beneath. */
1808 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1809 myaddr, memaddr, len) == len)
1810 return 0;
1811 else
1812 return TARGET_XFER_E_IO;
1813 }
1814
1815 /* Fetch the target's memory map. */
1816
1817 VEC(mem_region_s) *
1818 target_memory_map (void)
1819 {
1820 VEC(mem_region_s) *result;
1821 struct mem_region *last_one, *this_one;
1822 int ix;
1823 struct target_ops *t;
1824
1825 if (targetdebug)
1826 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1827
1828 for (t = current_target.beneath; t != NULL; t = t->beneath)
1829 if (t->to_memory_map != NULL)
1830 break;
1831
1832 if (t == NULL)
1833 return NULL;
1834
1835 result = t->to_memory_map (t);
1836 if (result == NULL)
1837 return NULL;
1838
1839 qsort (VEC_address (mem_region_s, result),
1840 VEC_length (mem_region_s, result),
1841 sizeof (struct mem_region), mem_region_cmp);
1842
1843 /* Check that regions do not overlap. Simultaneously assign
1844 a numbering for the "mem" commands to use to refer to
1845 each region. */
1846 last_one = NULL;
1847 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1848 {
1849 this_one->number = ix;
1850
1851 if (last_one && last_one->hi > this_one->lo)
1852 {
1853 warning (_("Overlapping regions in memory map: ignoring"));
1854 VEC_free (mem_region_s, result);
1855 return NULL;
1856 }
1857 last_one = this_one;
1858 }
1859
1860 return result;
1861 }
1862
1863 void
1864 target_flash_erase (ULONGEST address, LONGEST length)
1865 {
1866 struct target_ops *t;
1867
1868 for (t = current_target.beneath; t != NULL; t = t->beneath)
1869 if (t->to_flash_erase != NULL)
1870 {
1871 if (targetdebug)
1872 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1873 hex_string (address), phex (length, 0));
1874 t->to_flash_erase (t, address, length);
1875 return;
1876 }
1877
1878 tcomplain ();
1879 }
1880
1881 void
1882 target_flash_done (void)
1883 {
1884 struct target_ops *t;
1885
1886 for (t = current_target.beneath; t != NULL; t = t->beneath)
1887 if (t->to_flash_done != NULL)
1888 {
1889 if (targetdebug)
1890 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1891 t->to_flash_done (t);
1892 return;
1893 }
1894
1895 tcomplain ();
1896 }
1897
1898 static void
1899 show_trust_readonly (struct ui_file *file, int from_tty,
1900 struct cmd_list_element *c, const char *value)
1901 {
1902 fprintf_filtered (file,
1903 _("Mode for reading from readonly sections is %s.\n"),
1904 value);
1905 }
1906
1907 /* More generic transfers. */
1908
1909 static enum target_xfer_status
1910 default_xfer_partial (struct target_ops *ops, enum target_object object,
1911 const char *annex, gdb_byte *readbuf,
1912 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1913 ULONGEST *xfered_len)
1914 {
1915 if (object == TARGET_OBJECT_MEMORY
1916 && ops->deprecated_xfer_memory != NULL)
1917 /* If available, fall back to the target's
1918 "deprecated_xfer_memory" method. */
1919 {
1920 int xfered = -1;
1921
1922 errno = 0;
1923 if (writebuf != NULL)
1924 {
1925 void *buffer = xmalloc (len);
1926 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1927
1928 memcpy (buffer, writebuf, len);
1929 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1930 1/*write*/, NULL, ops);
1931 do_cleanups (cleanup);
1932 }
1933 if (readbuf != NULL)
1934 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1935 0/*read*/, NULL, ops);
1936 if (xfered > 0)
1937 {
1938 *xfered_len = (ULONGEST) xfered;
1939 return TARGET_XFER_E_IO;
1940 }
1941 else if (xfered == 0 && errno == 0)
1942 /* "deprecated_xfer_memory" uses 0, cross checked against
1943 ERRNO as one indication of an error. */
1944 return TARGET_XFER_EOF;
1945 else
1946 return TARGET_XFER_E_IO;
1947 }
1948 else
1949 {
1950 gdb_assert (ops->beneath != NULL);
1951 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1952 readbuf, writebuf, offset, len,
1953 xfered_len);
1954 }
1955 }
1956
1957 /* Target vector read/write partial wrapper functions. */
1958
1959 static enum target_xfer_status
1960 target_read_partial (struct target_ops *ops,
1961 enum target_object object,
1962 const char *annex, gdb_byte *buf,
1963 ULONGEST offset, ULONGEST len,
1964 ULONGEST *xfered_len)
1965 {
1966 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1967 xfered_len);
1968 }
1969
1970 static enum target_xfer_status
1971 target_write_partial (struct target_ops *ops,
1972 enum target_object object,
1973 const char *annex, const gdb_byte *buf,
1974 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1975 {
1976 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1977 xfered_len);
1978 }
1979
1980 /* Wrappers to perform the full transfer. */
1981
1982 /* For docs on target_read see target.h. */
1983
1984 LONGEST
1985 target_read (struct target_ops *ops,
1986 enum target_object object,
1987 const char *annex, gdb_byte *buf,
1988 ULONGEST offset, LONGEST len)
1989 {
1990 LONGEST xfered = 0;
1991
1992 while (xfered < len)
1993 {
1994 ULONGEST xfered_len;
1995 enum target_xfer_status status;
1996
1997 status = target_read_partial (ops, object, annex,
1998 (gdb_byte *) buf + xfered,
1999 offset + xfered, len - xfered,
2000 &xfered_len);
2001
2002 /* Call an observer, notifying them of the xfer progress? */
2003 if (status == TARGET_XFER_EOF)
2004 return xfered;
2005 else if (status == TARGET_XFER_OK)
2006 {
2007 xfered += xfered_len;
2008 QUIT;
2009 }
2010 else
2011 return -1;
2012
2013 }
2014 return len;
2015 }
2016
2017 /* Assuming that the entire [begin, end) range of memory cannot be
2018 read, try to read whatever subrange is possible to read.
2019
2020 The function returns, in RESULT, either zero or one memory block.
2021 If there's a readable subrange at the beginning, it is completely
2022 read and returned. Any further readable subrange will not be read.
2023 Otherwise, if there's a readable subrange at the end, it will be
2024 completely read and returned. Any readable subranges before it
2025 (obviously, not starting at the beginning), will be ignored. In
2026 other cases -- either no readable subrange, or readable subrange(s)
2027 that is neither at the beginning, or end, nothing is returned.
2028
2029 The purpose of this function is to handle a read across a boundary
2030 of accessible memory in a case when memory map is not available.
2031 The above restrictions are fine for this case, but will give
2032 incorrect results if the memory is 'patchy'. However, supporting
2033 'patchy' memory would require trying to read every single byte,
2034 and it seems unacceptable solution. Explicit memory map is
2035 recommended for this case -- and target_read_memory_robust will
2036 take care of reading multiple ranges then. */
2037
2038 static void
2039 read_whatever_is_readable (struct target_ops *ops,
2040 ULONGEST begin, ULONGEST end,
2041 VEC(memory_read_result_s) **result)
2042 {
2043 gdb_byte *buf = xmalloc (end - begin);
2044 ULONGEST current_begin = begin;
2045 ULONGEST current_end = end;
2046 int forward;
2047 memory_read_result_s r;
2048 ULONGEST xfered_len;
2049
2050 /* If we previously failed to read 1 byte, nothing can be done here. */
2051 if (end - begin <= 1)
2052 {
2053 xfree (buf);
2054 return;
2055 }
2056
2057 /* Check that either first or the last byte is readable, and give up
2058 if not. This heuristic is meant to permit reading accessible memory
2059 at the boundary of accessible region. */
2060 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2061 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2062 {
2063 forward = 1;
2064 ++current_begin;
2065 }
2066 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2067 buf + (end-begin) - 1, end - 1, 1,
2068 &xfered_len) == TARGET_XFER_OK)
2069 {
2070 forward = 0;
2071 --current_end;
2072 }
2073 else
2074 {
2075 xfree (buf);
2076 return;
2077 }
2078
2079 /* Loop invariant is that the [current_begin, current_end) was previously
2080 found to be not readable as a whole.
2081
2082 Note loop condition -- if the range has 1 byte, we can't divide the range
2083 so there's no point trying further. */
2084 while (current_end - current_begin > 1)
2085 {
2086 ULONGEST first_half_begin, first_half_end;
2087 ULONGEST second_half_begin, second_half_end;
2088 LONGEST xfer;
2089 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2090
2091 if (forward)
2092 {
2093 first_half_begin = current_begin;
2094 first_half_end = middle;
2095 second_half_begin = middle;
2096 second_half_end = current_end;
2097 }
2098 else
2099 {
2100 first_half_begin = middle;
2101 first_half_end = current_end;
2102 second_half_begin = current_begin;
2103 second_half_end = middle;
2104 }
2105
2106 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2107 buf + (first_half_begin - begin),
2108 first_half_begin,
2109 first_half_end - first_half_begin);
2110
2111 if (xfer == first_half_end - first_half_begin)
2112 {
2113 /* This half reads up fine. So, the error must be in the
2114 other half. */
2115 current_begin = second_half_begin;
2116 current_end = second_half_end;
2117 }
2118 else
2119 {
2120 /* This half is not readable. Because we've tried one byte, we
2121 know some part of this half if actually redable. Go to the next
2122 iteration to divide again and try to read.
2123
2124 We don't handle the other half, because this function only tries
2125 to read a single readable subrange. */
2126 current_begin = first_half_begin;
2127 current_end = first_half_end;
2128 }
2129 }
2130
2131 if (forward)
2132 {
2133 /* The [begin, current_begin) range has been read. */
2134 r.begin = begin;
2135 r.end = current_begin;
2136 r.data = buf;
2137 }
2138 else
2139 {
2140 /* The [current_end, end) range has been read. */
2141 LONGEST rlen = end - current_end;
2142
2143 r.data = xmalloc (rlen);
2144 memcpy (r.data, buf + current_end - begin, rlen);
2145 r.begin = current_end;
2146 r.end = end;
2147 xfree (buf);
2148 }
2149 VEC_safe_push(memory_read_result_s, (*result), &r);
2150 }
2151
2152 void
2153 free_memory_read_result_vector (void *x)
2154 {
2155 VEC(memory_read_result_s) *v = x;
2156 memory_read_result_s *current;
2157 int ix;
2158
2159 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2160 {
2161 xfree (current->data);
2162 }
2163 VEC_free (memory_read_result_s, v);
2164 }
2165
2166 VEC(memory_read_result_s) *
2167 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2168 {
2169 VEC(memory_read_result_s) *result = 0;
2170
2171 LONGEST xfered = 0;
2172 while (xfered < len)
2173 {
2174 struct mem_region *region = lookup_mem_region (offset + xfered);
2175 LONGEST rlen;
2176
2177 /* If there is no explicit region, a fake one should be created. */
2178 gdb_assert (region);
2179
2180 if (region->hi == 0)
2181 rlen = len - xfered;
2182 else
2183 rlen = region->hi - offset;
2184
2185 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2186 {
2187 /* Cannot read this region. Note that we can end up here only
2188 if the region is explicitly marked inaccessible, or
2189 'inaccessible-by-default' is in effect. */
2190 xfered += rlen;
2191 }
2192 else
2193 {
2194 LONGEST to_read = min (len - xfered, rlen);
2195 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2196
2197 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2198 (gdb_byte *) buffer,
2199 offset + xfered, to_read);
2200 /* Call an observer, notifying them of the xfer progress? */
2201 if (xfer <= 0)
2202 {
2203 /* Got an error reading full chunk. See if maybe we can read
2204 some subrange. */
2205 xfree (buffer);
2206 read_whatever_is_readable (ops, offset + xfered,
2207 offset + xfered + to_read, &result);
2208 xfered += to_read;
2209 }
2210 else
2211 {
2212 struct memory_read_result r;
2213 r.data = buffer;
2214 r.begin = offset + xfered;
2215 r.end = r.begin + xfer;
2216 VEC_safe_push (memory_read_result_s, result, &r);
2217 xfered += xfer;
2218 }
2219 QUIT;
2220 }
2221 }
2222 return result;
2223 }
2224
2225
2226 /* An alternative to target_write with progress callbacks. */
2227
2228 LONGEST
2229 target_write_with_progress (struct target_ops *ops,
2230 enum target_object object,
2231 const char *annex, const gdb_byte *buf,
2232 ULONGEST offset, LONGEST len,
2233 void (*progress) (ULONGEST, void *), void *baton)
2234 {
2235 LONGEST xfered = 0;
2236
2237 /* Give the progress callback a chance to set up. */
2238 if (progress)
2239 (*progress) (0, baton);
2240
2241 while (xfered < len)
2242 {
2243 ULONGEST xfered_len;
2244 enum target_xfer_status status;
2245
2246 status = target_write_partial (ops, object, annex,
2247 (gdb_byte *) buf + xfered,
2248 offset + xfered, len - xfered,
2249 &xfered_len);
2250
2251 if (status == TARGET_XFER_EOF)
2252 return xfered;
2253 if (TARGET_XFER_STATUS_ERROR_P (status))
2254 return -1;
2255
2256 gdb_assert (status == TARGET_XFER_OK);
2257 if (progress)
2258 (*progress) (xfered_len, baton);
2259
2260 xfered += xfered_len;
2261 QUIT;
2262 }
2263 return len;
2264 }
2265
2266 /* For docs on target_write see target.h. */
2267
2268 LONGEST
2269 target_write (struct target_ops *ops,
2270 enum target_object object,
2271 const char *annex, const gdb_byte *buf,
2272 ULONGEST offset, LONGEST len)
2273 {
2274 return target_write_with_progress (ops, object, annex, buf, offset, len,
2275 NULL, NULL);
2276 }
2277
2278 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2279 the size of the transferred data. PADDING additional bytes are
2280 available in *BUF_P. This is a helper function for
2281 target_read_alloc; see the declaration of that function for more
2282 information. */
2283
2284 static LONGEST
2285 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2286 const char *annex, gdb_byte **buf_p, int padding)
2287 {
2288 size_t buf_alloc, buf_pos;
2289 gdb_byte *buf;
2290
2291 /* This function does not have a length parameter; it reads the
2292 entire OBJECT). Also, it doesn't support objects fetched partly
2293 from one target and partly from another (in a different stratum,
2294 e.g. a core file and an executable). Both reasons make it
2295 unsuitable for reading memory. */
2296 gdb_assert (object != TARGET_OBJECT_MEMORY);
2297
2298 /* Start by reading up to 4K at a time. The target will throttle
2299 this number down if necessary. */
2300 buf_alloc = 4096;
2301 buf = xmalloc (buf_alloc);
2302 buf_pos = 0;
2303 while (1)
2304 {
2305 ULONGEST xfered_len;
2306 enum target_xfer_status status;
2307
2308 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2309 buf_pos, buf_alloc - buf_pos - padding,
2310 &xfered_len);
2311
2312 if (status == TARGET_XFER_EOF)
2313 {
2314 /* Read all there was. */
2315 if (buf_pos == 0)
2316 xfree (buf);
2317 else
2318 *buf_p = buf;
2319 return buf_pos;
2320 }
2321 else if (status != TARGET_XFER_OK)
2322 {
2323 /* An error occurred. */
2324 xfree (buf);
2325 return TARGET_XFER_E_IO;
2326 }
2327
2328 buf_pos += xfered_len;
2329
2330 /* If the buffer is filling up, expand it. */
2331 if (buf_alloc < buf_pos * 2)
2332 {
2333 buf_alloc *= 2;
2334 buf = xrealloc (buf, buf_alloc);
2335 }
2336
2337 QUIT;
2338 }
2339 }
2340
2341 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2342 the size of the transferred data. See the declaration in "target.h"
2343 function for more information about the return value. */
2344
2345 LONGEST
2346 target_read_alloc (struct target_ops *ops, enum target_object object,
2347 const char *annex, gdb_byte **buf_p)
2348 {
2349 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2350 }
2351
2352 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2353 returned as a string, allocated using xmalloc. If an error occurs
2354 or the transfer is unsupported, NULL is returned. Empty objects
2355 are returned as allocated but empty strings. A warning is issued
2356 if the result contains any embedded NUL bytes. */
2357
2358 char *
2359 target_read_stralloc (struct target_ops *ops, enum target_object object,
2360 const char *annex)
2361 {
2362 gdb_byte *buffer;
2363 char *bufstr;
2364 LONGEST i, transferred;
2365
2366 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2367 bufstr = (char *) buffer;
2368
2369 if (transferred < 0)
2370 return NULL;
2371
2372 if (transferred == 0)
2373 return xstrdup ("");
2374
2375 bufstr[transferred] = 0;
2376
2377 /* Check for embedded NUL bytes; but allow trailing NULs. */
2378 for (i = strlen (bufstr); i < transferred; i++)
2379 if (bufstr[i] != 0)
2380 {
2381 warning (_("target object %d, annex %s, "
2382 "contained unexpected null characters"),
2383 (int) object, annex ? annex : "(none)");
2384 break;
2385 }
2386
2387 return bufstr;
2388 }
2389
2390 /* Memory transfer methods. */
2391
2392 void
2393 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2394 LONGEST len)
2395 {
2396 /* This method is used to read from an alternate, non-current
2397 target. This read must bypass the overlay support (as symbols
2398 don't match this target), and GDB's internal cache (wrong cache
2399 for this target). */
2400 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2401 != len)
2402 memory_error (TARGET_XFER_E_IO, addr);
2403 }
2404
2405 ULONGEST
2406 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2407 int len, enum bfd_endian byte_order)
2408 {
2409 gdb_byte buf[sizeof (ULONGEST)];
2410
2411 gdb_assert (len <= sizeof (buf));
2412 get_target_memory (ops, addr, buf, len);
2413 return extract_unsigned_integer (buf, len, byte_order);
2414 }
2415
2416 /* See target.h. */
2417
2418 int
2419 target_insert_breakpoint (struct gdbarch *gdbarch,
2420 struct bp_target_info *bp_tgt)
2421 {
2422 if (!may_insert_breakpoints)
2423 {
2424 warning (_("May not insert breakpoints"));
2425 return 1;
2426 }
2427
2428 return current_target.to_insert_breakpoint (&current_target,
2429 gdbarch, bp_tgt);
2430 }
2431
2432 /* See target.h. */
2433
2434 int
2435 target_remove_breakpoint (struct gdbarch *gdbarch,
2436 struct bp_target_info *bp_tgt)
2437 {
2438 /* This is kind of a weird case to handle, but the permission might
2439 have been changed after breakpoints were inserted - in which case
2440 we should just take the user literally and assume that any
2441 breakpoints should be left in place. */
2442 if (!may_insert_breakpoints)
2443 {
2444 warning (_("May not remove breakpoints"));
2445 return 1;
2446 }
2447
2448 return current_target.to_remove_breakpoint (&current_target,
2449 gdbarch, bp_tgt);
2450 }
2451
2452 static void
2453 target_info (char *args, int from_tty)
2454 {
2455 struct target_ops *t;
2456 int has_all_mem = 0;
2457
2458 if (symfile_objfile != NULL)
2459 printf_unfiltered (_("Symbols from \"%s\".\n"),
2460 objfile_name (symfile_objfile));
2461
2462 for (t = target_stack; t != NULL; t = t->beneath)
2463 {
2464 if (!(*t->to_has_memory) (t))
2465 continue;
2466
2467 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2468 continue;
2469 if (has_all_mem)
2470 printf_unfiltered (_("\tWhile running this, "
2471 "GDB does not access memory from...\n"));
2472 printf_unfiltered ("%s:\n", t->to_longname);
2473 (t->to_files_info) (t);
2474 has_all_mem = (*t->to_has_all_memory) (t);
2475 }
2476 }
2477
2478 /* This function is called before any new inferior is created, e.g.
2479 by running a program, attaching, or connecting to a target.
2480 It cleans up any state from previous invocations which might
2481 change between runs. This is a subset of what target_preopen
2482 resets (things which might change between targets). */
2483
2484 void
2485 target_pre_inferior (int from_tty)
2486 {
2487 /* Clear out solib state. Otherwise the solib state of the previous
2488 inferior might have survived and is entirely wrong for the new
2489 target. This has been observed on GNU/Linux using glibc 2.3. How
2490 to reproduce:
2491
2492 bash$ ./foo&
2493 [1] 4711
2494 bash$ ./foo&
2495 [1] 4712
2496 bash$ gdb ./foo
2497 [...]
2498 (gdb) attach 4711
2499 (gdb) detach
2500 (gdb) attach 4712
2501 Cannot access memory at address 0xdeadbeef
2502 */
2503
2504 /* In some OSs, the shared library list is the same/global/shared
2505 across inferiors. If code is shared between processes, so are
2506 memory regions and features. */
2507 if (!gdbarch_has_global_solist (target_gdbarch ()))
2508 {
2509 no_shared_libraries (NULL, from_tty);
2510
2511 invalidate_target_mem_regions ();
2512
2513 target_clear_description ();
2514 }
2515
2516 agent_capability_invalidate ();
2517 }
2518
2519 /* Callback for iterate_over_inferiors. Gets rid of the given
2520 inferior. */
2521
2522 static int
2523 dispose_inferior (struct inferior *inf, void *args)
2524 {
2525 struct thread_info *thread;
2526
2527 thread = any_thread_of_process (inf->pid);
2528 if (thread)
2529 {
2530 switch_to_thread (thread->ptid);
2531
2532 /* Core inferiors actually should be detached, not killed. */
2533 if (target_has_execution)
2534 target_kill ();
2535 else
2536 target_detach (NULL, 0);
2537 }
2538
2539 return 0;
2540 }
2541
2542 /* This is to be called by the open routine before it does
2543 anything. */
2544
2545 void
2546 target_preopen (int from_tty)
2547 {
2548 dont_repeat ();
2549
2550 if (have_inferiors ())
2551 {
2552 if (!from_tty
2553 || !have_live_inferiors ()
2554 || query (_("A program is being debugged already. Kill it? ")))
2555 iterate_over_inferiors (dispose_inferior, NULL);
2556 else
2557 error (_("Program not killed."));
2558 }
2559
2560 /* Calling target_kill may remove the target from the stack. But if
2561 it doesn't (which seems like a win for UDI), remove it now. */
2562 /* Leave the exec target, though. The user may be switching from a
2563 live process to a core of the same program. */
2564 pop_all_targets_above (file_stratum);
2565
2566 target_pre_inferior (from_tty);
2567 }
2568
2569 /* Detach a target after doing deferred register stores. */
2570
2571 void
2572 target_detach (const char *args, int from_tty)
2573 {
2574 struct target_ops* t;
2575
2576 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2577 /* Don't remove global breakpoints here. They're removed on
2578 disconnection from the target. */
2579 ;
2580 else
2581 /* If we're in breakpoints-always-inserted mode, have to remove
2582 them before detaching. */
2583 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2584
2585 prepare_for_detach ();
2586
2587 current_target.to_detach (&current_target, args, from_tty);
2588 if (targetdebug)
2589 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2590 args, from_tty);
2591 }
2592
2593 void
2594 target_disconnect (char *args, int from_tty)
2595 {
2596 struct target_ops *t;
2597
2598 /* If we're in breakpoints-always-inserted mode or if breakpoints
2599 are global across processes, we have to remove them before
2600 disconnecting. */
2601 remove_breakpoints ();
2602
2603 for (t = current_target.beneath; t != NULL; t = t->beneath)
2604 if (t->to_disconnect != NULL)
2605 {
2606 if (targetdebug)
2607 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2608 args, from_tty);
2609 t->to_disconnect (t, args, from_tty);
2610 return;
2611 }
2612
2613 tcomplain ();
2614 }
2615
2616 ptid_t
2617 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2618 {
2619 struct target_ops *t;
2620 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2621 status, options);
2622
2623 if (targetdebug)
2624 {
2625 char *status_string;
2626 char *options_string;
2627
2628 status_string = target_waitstatus_to_string (status);
2629 options_string = target_options_to_string (options);
2630 fprintf_unfiltered (gdb_stdlog,
2631 "target_wait (%d, status, options={%s})"
2632 " = %d, %s\n",
2633 ptid_get_pid (ptid), options_string,
2634 ptid_get_pid (retval), status_string);
2635 xfree (status_string);
2636 xfree (options_string);
2637 }
2638
2639 return retval;
2640 }
2641
2642 char *
2643 target_pid_to_str (ptid_t ptid)
2644 {
2645 struct target_ops *t;
2646
2647 for (t = current_target.beneath; t != NULL; t = t->beneath)
2648 {
2649 if (t->to_pid_to_str != NULL)
2650 return (*t->to_pid_to_str) (t, ptid);
2651 }
2652
2653 return normal_pid_to_str (ptid);
2654 }
2655
2656 char *
2657 target_thread_name (struct thread_info *info)
2658 {
2659 return current_target.to_thread_name (&current_target, info);
2660 }
2661
2662 void
2663 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2664 {
2665 struct target_ops *t;
2666
2667 target_dcache_invalidate ();
2668
2669 current_target.to_resume (&current_target, ptid, step, signal);
2670 if (targetdebug)
2671 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2672 ptid_get_pid (ptid),
2673 step ? "step" : "continue",
2674 gdb_signal_to_name (signal));
2675
2676 registers_changed_ptid (ptid);
2677 set_executing (ptid, 1);
2678 set_running (ptid, 1);
2679 clear_inline_frame_state (ptid);
2680 }
2681
2682 void
2683 target_pass_signals (int numsigs, unsigned char *pass_signals)
2684 {
2685 struct target_ops *t;
2686
2687 for (t = current_target.beneath; t != NULL; t = t->beneath)
2688 {
2689 if (t->to_pass_signals != NULL)
2690 {
2691 if (targetdebug)
2692 {
2693 int i;
2694
2695 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2696 numsigs);
2697
2698 for (i = 0; i < numsigs; i++)
2699 if (pass_signals[i])
2700 fprintf_unfiltered (gdb_stdlog, " %s",
2701 gdb_signal_to_name (i));
2702
2703 fprintf_unfiltered (gdb_stdlog, " })\n");
2704 }
2705
2706 (*t->to_pass_signals) (t, numsigs, pass_signals);
2707 return;
2708 }
2709 }
2710 }
2711
2712 void
2713 target_program_signals (int numsigs, unsigned char *program_signals)
2714 {
2715 struct target_ops *t;
2716
2717 for (t = current_target.beneath; t != NULL; t = t->beneath)
2718 {
2719 if (t->to_program_signals != NULL)
2720 {
2721 if (targetdebug)
2722 {
2723 int i;
2724
2725 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2726 numsigs);
2727
2728 for (i = 0; i < numsigs; i++)
2729 if (program_signals[i])
2730 fprintf_unfiltered (gdb_stdlog, " %s",
2731 gdb_signal_to_name (i));
2732
2733 fprintf_unfiltered (gdb_stdlog, " })\n");
2734 }
2735
2736 (*t->to_program_signals) (t, numsigs, program_signals);
2737 return;
2738 }
2739 }
2740 }
2741
2742 /* Look through the list of possible targets for a target that can
2743 follow forks. */
2744
2745 int
2746 target_follow_fork (int follow_child, int detach_fork)
2747 {
2748 struct target_ops *t;
2749
2750 for (t = current_target.beneath; t != NULL; t = t->beneath)
2751 {
2752 if (t->to_follow_fork != NULL)
2753 {
2754 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2755
2756 if (targetdebug)
2757 fprintf_unfiltered (gdb_stdlog,
2758 "target_follow_fork (%d, %d) = %d\n",
2759 follow_child, detach_fork, retval);
2760 return retval;
2761 }
2762 }
2763
2764 /* Some target returned a fork event, but did not know how to follow it. */
2765 internal_error (__FILE__, __LINE__,
2766 _("could not find a target to follow fork"));
2767 }
2768
2769 void
2770 target_mourn_inferior (void)
2771 {
2772 struct target_ops *t;
2773
2774 for (t = current_target.beneath; t != NULL; t = t->beneath)
2775 {
2776 if (t->to_mourn_inferior != NULL)
2777 {
2778 t->to_mourn_inferior (t);
2779 if (targetdebug)
2780 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2781
2782 /* We no longer need to keep handles on any of the object files.
2783 Make sure to release them to avoid unnecessarily locking any
2784 of them while we're not actually debugging. */
2785 bfd_cache_close_all ();
2786
2787 return;
2788 }
2789 }
2790
2791 internal_error (__FILE__, __LINE__,
2792 _("could not find a target to follow mourn inferior"));
2793 }
2794
2795 /* Look for a target which can describe architectural features, starting
2796 from TARGET. If we find one, return its description. */
2797
2798 const struct target_desc *
2799 target_read_description (struct target_ops *target)
2800 {
2801 struct target_ops *t;
2802
2803 for (t = target; t != NULL; t = t->beneath)
2804 if (t->to_read_description != NULL)
2805 {
2806 const struct target_desc *tdesc;
2807
2808 tdesc = t->to_read_description (t);
2809 if (tdesc)
2810 return tdesc;
2811 }
2812
2813 return NULL;
2814 }
2815
2816 /* The default implementation of to_search_memory.
2817 This implements a basic search of memory, reading target memory and
2818 performing the search here (as opposed to performing the search in on the
2819 target side with, for example, gdbserver). */
2820
2821 int
2822 simple_search_memory (struct target_ops *ops,
2823 CORE_ADDR start_addr, ULONGEST search_space_len,
2824 const gdb_byte *pattern, ULONGEST pattern_len,
2825 CORE_ADDR *found_addrp)
2826 {
2827 /* NOTE: also defined in find.c testcase. */
2828 #define SEARCH_CHUNK_SIZE 16000
2829 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2830 /* Buffer to hold memory contents for searching. */
2831 gdb_byte *search_buf;
2832 unsigned search_buf_size;
2833 struct cleanup *old_cleanups;
2834
2835 search_buf_size = chunk_size + pattern_len - 1;
2836
2837 /* No point in trying to allocate a buffer larger than the search space. */
2838 if (search_space_len < search_buf_size)
2839 search_buf_size = search_space_len;
2840
2841 search_buf = malloc (search_buf_size);
2842 if (search_buf == NULL)
2843 error (_("Unable to allocate memory to perform the search."));
2844 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2845
2846 /* Prime the search buffer. */
2847
2848 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2849 search_buf, start_addr, search_buf_size) != search_buf_size)
2850 {
2851 warning (_("Unable to access %s bytes of target "
2852 "memory at %s, halting search."),
2853 pulongest (search_buf_size), hex_string (start_addr));
2854 do_cleanups (old_cleanups);
2855 return -1;
2856 }
2857
2858 /* Perform the search.
2859
2860 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2861 When we've scanned N bytes we copy the trailing bytes to the start and
2862 read in another N bytes. */
2863
2864 while (search_space_len >= pattern_len)
2865 {
2866 gdb_byte *found_ptr;
2867 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2868
2869 found_ptr = memmem (search_buf, nr_search_bytes,
2870 pattern, pattern_len);
2871
2872 if (found_ptr != NULL)
2873 {
2874 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2875
2876 *found_addrp = found_addr;
2877 do_cleanups (old_cleanups);
2878 return 1;
2879 }
2880
2881 /* Not found in this chunk, skip to next chunk. */
2882
2883 /* Don't let search_space_len wrap here, it's unsigned. */
2884 if (search_space_len >= chunk_size)
2885 search_space_len -= chunk_size;
2886 else
2887 search_space_len = 0;
2888
2889 if (search_space_len >= pattern_len)
2890 {
2891 unsigned keep_len = search_buf_size - chunk_size;
2892 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2893 int nr_to_read;
2894
2895 /* Copy the trailing part of the previous iteration to the front
2896 of the buffer for the next iteration. */
2897 gdb_assert (keep_len == pattern_len - 1);
2898 memcpy (search_buf, search_buf + chunk_size, keep_len);
2899
2900 nr_to_read = min (search_space_len - keep_len, chunk_size);
2901
2902 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2903 search_buf + keep_len, read_addr,
2904 nr_to_read) != nr_to_read)
2905 {
2906 warning (_("Unable to access %s bytes of target "
2907 "memory at %s, halting search."),
2908 plongest (nr_to_read),
2909 hex_string (read_addr));
2910 do_cleanups (old_cleanups);
2911 return -1;
2912 }
2913
2914 start_addr += chunk_size;
2915 }
2916 }
2917
2918 /* Not found. */
2919
2920 do_cleanups (old_cleanups);
2921 return 0;
2922 }
2923
2924 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2925 sequence of bytes in PATTERN with length PATTERN_LEN.
2926
2927 The result is 1 if found, 0 if not found, and -1 if there was an error
2928 requiring halting of the search (e.g. memory read error).
2929 If the pattern is found the address is recorded in FOUND_ADDRP. */
2930
2931 int
2932 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2933 const gdb_byte *pattern, ULONGEST pattern_len,
2934 CORE_ADDR *found_addrp)
2935 {
2936 struct target_ops *t;
2937 int found;
2938
2939 /* We don't use INHERIT to set current_target.to_search_memory,
2940 so we have to scan the target stack and handle targetdebug
2941 ourselves. */
2942
2943 if (targetdebug)
2944 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2945 hex_string (start_addr));
2946
2947 for (t = current_target.beneath; t != NULL; t = t->beneath)
2948 if (t->to_search_memory != NULL)
2949 break;
2950
2951 if (t != NULL)
2952 {
2953 found = t->to_search_memory (t, start_addr, search_space_len,
2954 pattern, pattern_len, found_addrp);
2955 }
2956 else
2957 {
2958 /* If a special version of to_search_memory isn't available, use the
2959 simple version. */
2960 found = simple_search_memory (current_target.beneath,
2961 start_addr, search_space_len,
2962 pattern, pattern_len, found_addrp);
2963 }
2964
2965 if (targetdebug)
2966 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2967
2968 return found;
2969 }
2970
2971 /* Look through the currently pushed targets. If none of them will
2972 be able to restart the currently running process, issue an error
2973 message. */
2974
2975 void
2976 target_require_runnable (void)
2977 {
2978 struct target_ops *t;
2979
2980 for (t = target_stack; t != NULL; t = t->beneath)
2981 {
2982 /* If this target knows how to create a new program, then
2983 assume we will still be able to after killing the current
2984 one. Either killing and mourning will not pop T, or else
2985 find_default_run_target will find it again. */
2986 if (t->to_create_inferior != NULL)
2987 return;
2988
2989 /* Do not worry about thread_stratum targets that can not
2990 create inferiors. Assume they will be pushed again if
2991 necessary, and continue to the process_stratum. */
2992 if (t->to_stratum == thread_stratum
2993 || t->to_stratum == arch_stratum)
2994 continue;
2995
2996 error (_("The \"%s\" target does not support \"run\". "
2997 "Try \"help target\" or \"continue\"."),
2998 t->to_shortname);
2999 }
3000
3001 /* This function is only called if the target is running. In that
3002 case there should have been a process_stratum target and it
3003 should either know how to create inferiors, or not... */
3004 internal_error (__FILE__, __LINE__, _("No targets found"));
3005 }
3006
3007 /* Look through the list of possible targets for a target that can
3008 execute a run or attach command without any other data. This is
3009 used to locate the default process stratum.
3010
3011 If DO_MESG is not NULL, the result is always valid (error() is
3012 called for errors); else, return NULL on error. */
3013
3014 static struct target_ops *
3015 find_default_run_target (char *do_mesg)
3016 {
3017 struct target_ops **t;
3018 struct target_ops *runable = NULL;
3019 int count;
3020
3021 count = 0;
3022
3023 for (t = target_structs; t < target_structs + target_struct_size;
3024 ++t)
3025 {
3026 if ((*t)->to_can_run && target_can_run (*t))
3027 {
3028 runable = *t;
3029 ++count;
3030 }
3031 }
3032
3033 if (count != 1)
3034 {
3035 if (do_mesg)
3036 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3037 else
3038 return NULL;
3039 }
3040
3041 return runable;
3042 }
3043
3044 void
3045 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3046 {
3047 struct target_ops *t;
3048
3049 t = find_default_run_target ("attach");
3050 (t->to_attach) (t, args, from_tty);
3051 return;
3052 }
3053
3054 void
3055 find_default_create_inferior (struct target_ops *ops,
3056 char *exec_file, char *allargs, char **env,
3057 int from_tty)
3058 {
3059 struct target_ops *t;
3060
3061 t = find_default_run_target ("run");
3062 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3063 return;
3064 }
3065
3066 static int
3067 find_default_can_async_p (struct target_ops *ignore)
3068 {
3069 struct target_ops *t;
3070
3071 /* This may be called before the target is pushed on the stack;
3072 look for the default process stratum. If there's none, gdb isn't
3073 configured with a native debugger, and target remote isn't
3074 connected yet. */
3075 t = find_default_run_target (NULL);
3076 if (t && t->to_can_async_p != delegate_can_async_p)
3077 return (t->to_can_async_p) (t);
3078 return 0;
3079 }
3080
3081 static int
3082 find_default_is_async_p (struct target_ops *ignore)
3083 {
3084 struct target_ops *t;
3085
3086 /* This may be called before the target is pushed on the stack;
3087 look for the default process stratum. If there's none, gdb isn't
3088 configured with a native debugger, and target remote isn't
3089 connected yet. */
3090 t = find_default_run_target (NULL);
3091 if (t && t->to_is_async_p != delegate_is_async_p)
3092 return (t->to_is_async_p) (t);
3093 return 0;
3094 }
3095
3096 static int
3097 find_default_supports_non_stop (struct target_ops *self)
3098 {
3099 struct target_ops *t;
3100
3101 t = find_default_run_target (NULL);
3102 if (t && t->to_supports_non_stop)
3103 return (t->to_supports_non_stop) (t);
3104 return 0;
3105 }
3106
3107 int
3108 target_supports_non_stop (void)
3109 {
3110 struct target_ops *t;
3111
3112 for (t = &current_target; t != NULL; t = t->beneath)
3113 if (t->to_supports_non_stop)
3114 return t->to_supports_non_stop (t);
3115
3116 return 0;
3117 }
3118
3119 /* Implement the "info proc" command. */
3120
3121 int
3122 target_info_proc (char *args, enum info_proc_what what)
3123 {
3124 struct target_ops *t;
3125
3126 /* If we're already connected to something that can get us OS
3127 related data, use it. Otherwise, try using the native
3128 target. */
3129 if (current_target.to_stratum >= process_stratum)
3130 t = current_target.beneath;
3131 else
3132 t = find_default_run_target (NULL);
3133
3134 for (; t != NULL; t = t->beneath)
3135 {
3136 if (t->to_info_proc != NULL)
3137 {
3138 t->to_info_proc (t, args, what);
3139
3140 if (targetdebug)
3141 fprintf_unfiltered (gdb_stdlog,
3142 "target_info_proc (\"%s\", %d)\n", args, what);
3143
3144 return 1;
3145 }
3146 }
3147
3148 return 0;
3149 }
3150
3151 static int
3152 find_default_supports_disable_randomization (struct target_ops *self)
3153 {
3154 struct target_ops *t;
3155
3156 t = find_default_run_target (NULL);
3157 if (t && t->to_supports_disable_randomization)
3158 return (t->to_supports_disable_randomization) (t);
3159 return 0;
3160 }
3161
3162 int
3163 target_supports_disable_randomization (void)
3164 {
3165 struct target_ops *t;
3166
3167 for (t = &current_target; t != NULL; t = t->beneath)
3168 if (t->to_supports_disable_randomization)
3169 return t->to_supports_disable_randomization (t);
3170
3171 return 0;
3172 }
3173
3174 char *
3175 target_get_osdata (const char *type)
3176 {
3177 struct target_ops *t;
3178
3179 /* If we're already connected to something that can get us OS
3180 related data, use it. Otherwise, try using the native
3181 target. */
3182 if (current_target.to_stratum >= process_stratum)
3183 t = current_target.beneath;
3184 else
3185 t = find_default_run_target ("get OS data");
3186
3187 if (!t)
3188 return NULL;
3189
3190 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3191 }
3192
3193 /* Determine the current address space of thread PTID. */
3194
3195 struct address_space *
3196 target_thread_address_space (ptid_t ptid)
3197 {
3198 struct address_space *aspace;
3199 struct inferior *inf;
3200 struct target_ops *t;
3201
3202 for (t = current_target.beneath; t != NULL; t = t->beneath)
3203 {
3204 if (t->to_thread_address_space != NULL)
3205 {
3206 aspace = t->to_thread_address_space (t, ptid);
3207 gdb_assert (aspace);
3208
3209 if (targetdebug)
3210 fprintf_unfiltered (gdb_stdlog,
3211 "target_thread_address_space (%s) = %d\n",
3212 target_pid_to_str (ptid),
3213 address_space_num (aspace));
3214 return aspace;
3215 }
3216 }
3217
3218 /* Fall-back to the "main" address space of the inferior. */
3219 inf = find_inferior_pid (ptid_get_pid (ptid));
3220
3221 if (inf == NULL || inf->aspace == NULL)
3222 internal_error (__FILE__, __LINE__,
3223 _("Can't determine the current "
3224 "address space of thread %s\n"),
3225 target_pid_to_str (ptid));
3226
3227 return inf->aspace;
3228 }
3229
3230
3231 /* Target file operations. */
3232
3233 static struct target_ops *
3234 default_fileio_target (void)
3235 {
3236 /* If we're already connected to something that can perform
3237 file I/O, use it. Otherwise, try using the native target. */
3238 if (current_target.to_stratum >= process_stratum)
3239 return current_target.beneath;
3240 else
3241 return find_default_run_target ("file I/O");
3242 }
3243
3244 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3245 target file descriptor, or -1 if an error occurs (and set
3246 *TARGET_ERRNO). */
3247 int
3248 target_fileio_open (const char *filename, int flags, int mode,
3249 int *target_errno)
3250 {
3251 struct target_ops *t;
3252
3253 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3254 {
3255 if (t->to_fileio_open != NULL)
3256 {
3257 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3258
3259 if (targetdebug)
3260 fprintf_unfiltered (gdb_stdlog,
3261 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3262 filename, flags, mode,
3263 fd, fd != -1 ? 0 : *target_errno);
3264 return fd;
3265 }
3266 }
3267
3268 *target_errno = FILEIO_ENOSYS;
3269 return -1;
3270 }
3271
3272 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3273 Return the number of bytes written, or -1 if an error occurs
3274 (and set *TARGET_ERRNO). */
3275 int
3276 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3277 ULONGEST offset, int *target_errno)
3278 {
3279 struct target_ops *t;
3280
3281 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3282 {
3283 if (t->to_fileio_pwrite != NULL)
3284 {
3285 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3286 target_errno);
3287
3288 if (targetdebug)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "target_fileio_pwrite (%d,...,%d,%s) "
3291 "= %d (%d)\n",
3292 fd, len, pulongest (offset),
3293 ret, ret != -1 ? 0 : *target_errno);
3294 return ret;
3295 }
3296 }
3297
3298 *target_errno = FILEIO_ENOSYS;
3299 return -1;
3300 }
3301
3302 /* Read up to LEN bytes FD on the target into READ_BUF.
3303 Return the number of bytes read, or -1 if an error occurs
3304 (and set *TARGET_ERRNO). */
3305 int
3306 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3307 ULONGEST offset, int *target_errno)
3308 {
3309 struct target_ops *t;
3310
3311 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3312 {
3313 if (t->to_fileio_pread != NULL)
3314 {
3315 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3316 target_errno);
3317
3318 if (targetdebug)
3319 fprintf_unfiltered (gdb_stdlog,
3320 "target_fileio_pread (%d,...,%d,%s) "
3321 "= %d (%d)\n",
3322 fd, len, pulongest (offset),
3323 ret, ret != -1 ? 0 : *target_errno);
3324 return ret;
3325 }
3326 }
3327
3328 *target_errno = FILEIO_ENOSYS;
3329 return -1;
3330 }
3331
3332 /* Close FD on the target. Return 0, or -1 if an error occurs
3333 (and set *TARGET_ERRNO). */
3334 int
3335 target_fileio_close (int fd, int *target_errno)
3336 {
3337 struct target_ops *t;
3338
3339 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3340 {
3341 if (t->to_fileio_close != NULL)
3342 {
3343 int ret = t->to_fileio_close (t, fd, target_errno);
3344
3345 if (targetdebug)
3346 fprintf_unfiltered (gdb_stdlog,
3347 "target_fileio_close (%d) = %d (%d)\n",
3348 fd, ret, ret != -1 ? 0 : *target_errno);
3349 return ret;
3350 }
3351 }
3352
3353 *target_errno = FILEIO_ENOSYS;
3354 return -1;
3355 }
3356
3357 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3358 occurs (and set *TARGET_ERRNO). */
3359 int
3360 target_fileio_unlink (const char *filename, int *target_errno)
3361 {
3362 struct target_ops *t;
3363
3364 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3365 {
3366 if (t->to_fileio_unlink != NULL)
3367 {
3368 int ret = t->to_fileio_unlink (t, filename, target_errno);
3369
3370 if (targetdebug)
3371 fprintf_unfiltered (gdb_stdlog,
3372 "target_fileio_unlink (%s) = %d (%d)\n",
3373 filename, ret, ret != -1 ? 0 : *target_errno);
3374 return ret;
3375 }
3376 }
3377
3378 *target_errno = FILEIO_ENOSYS;
3379 return -1;
3380 }
3381
3382 /* Read value of symbolic link FILENAME on the target. Return a
3383 null-terminated string allocated via xmalloc, or NULL if an error
3384 occurs (and set *TARGET_ERRNO). */
3385 char *
3386 target_fileio_readlink (const char *filename, int *target_errno)
3387 {
3388 struct target_ops *t;
3389
3390 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3391 {
3392 if (t->to_fileio_readlink != NULL)
3393 {
3394 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3395
3396 if (targetdebug)
3397 fprintf_unfiltered (gdb_stdlog,
3398 "target_fileio_readlink (%s) = %s (%d)\n",
3399 filename, ret? ret : "(nil)",
3400 ret? 0 : *target_errno);
3401 return ret;
3402 }
3403 }
3404
3405 *target_errno = FILEIO_ENOSYS;
3406 return NULL;
3407 }
3408
3409 static void
3410 target_fileio_close_cleanup (void *opaque)
3411 {
3412 int fd = *(int *) opaque;
3413 int target_errno;
3414
3415 target_fileio_close (fd, &target_errno);
3416 }
3417
3418 /* Read target file FILENAME. Store the result in *BUF_P and
3419 return the size of the transferred data. PADDING additional bytes are
3420 available in *BUF_P. This is a helper function for
3421 target_fileio_read_alloc; see the declaration of that function for more
3422 information. */
3423
3424 static LONGEST
3425 target_fileio_read_alloc_1 (const char *filename,
3426 gdb_byte **buf_p, int padding)
3427 {
3428 struct cleanup *close_cleanup;
3429 size_t buf_alloc, buf_pos;
3430 gdb_byte *buf;
3431 LONGEST n;
3432 int fd;
3433 int target_errno;
3434
3435 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3436 if (fd == -1)
3437 return -1;
3438
3439 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3440
3441 /* Start by reading up to 4K at a time. The target will throttle
3442 this number down if necessary. */
3443 buf_alloc = 4096;
3444 buf = xmalloc (buf_alloc);
3445 buf_pos = 0;
3446 while (1)
3447 {
3448 n = target_fileio_pread (fd, &buf[buf_pos],
3449 buf_alloc - buf_pos - padding, buf_pos,
3450 &target_errno);
3451 if (n < 0)
3452 {
3453 /* An error occurred. */
3454 do_cleanups (close_cleanup);
3455 xfree (buf);
3456 return -1;
3457 }
3458 else if (n == 0)
3459 {
3460 /* Read all there was. */
3461 do_cleanups (close_cleanup);
3462 if (buf_pos == 0)
3463 xfree (buf);
3464 else
3465 *buf_p = buf;
3466 return buf_pos;
3467 }
3468
3469 buf_pos += n;
3470
3471 /* If the buffer is filling up, expand it. */
3472 if (buf_alloc < buf_pos * 2)
3473 {
3474 buf_alloc *= 2;
3475 buf = xrealloc (buf, buf_alloc);
3476 }
3477
3478 QUIT;
3479 }
3480 }
3481
3482 /* Read target file FILENAME. Store the result in *BUF_P and return
3483 the size of the transferred data. See the declaration in "target.h"
3484 function for more information about the return value. */
3485
3486 LONGEST
3487 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3488 {
3489 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3490 }
3491
3492 /* Read target file FILENAME. The result is NUL-terminated and
3493 returned as a string, allocated using xmalloc. If an error occurs
3494 or the transfer is unsupported, NULL is returned. Empty objects
3495 are returned as allocated but empty strings. A warning is issued
3496 if the result contains any embedded NUL bytes. */
3497
3498 char *
3499 target_fileio_read_stralloc (const char *filename)
3500 {
3501 gdb_byte *buffer;
3502 char *bufstr;
3503 LONGEST i, transferred;
3504
3505 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3506 bufstr = (char *) buffer;
3507
3508 if (transferred < 0)
3509 return NULL;
3510
3511 if (transferred == 0)
3512 return xstrdup ("");
3513
3514 bufstr[transferred] = 0;
3515
3516 /* Check for embedded NUL bytes; but allow trailing NULs. */
3517 for (i = strlen (bufstr); i < transferred; i++)
3518 if (bufstr[i] != 0)
3519 {
3520 warning (_("target file %s "
3521 "contained unexpected null characters"),
3522 filename);
3523 break;
3524 }
3525
3526 return bufstr;
3527 }
3528
3529
3530 static int
3531 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3532 CORE_ADDR addr, int len)
3533 {
3534 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3535 }
3536
3537 static int
3538 default_watchpoint_addr_within_range (struct target_ops *target,
3539 CORE_ADDR addr,
3540 CORE_ADDR start, int length)
3541 {
3542 return addr >= start && addr < start + length;
3543 }
3544
3545 static struct gdbarch *
3546 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3547 {
3548 return target_gdbarch ();
3549 }
3550
3551 static int
3552 return_zero (void)
3553 {
3554 return 0;
3555 }
3556
3557 static int
3558 return_minus_one (void)
3559 {
3560 return -1;
3561 }
3562
3563 static void *
3564 return_null (void)
3565 {
3566 return 0;
3567 }
3568
3569 /*
3570 * Find the next target down the stack from the specified target.
3571 */
3572
3573 struct target_ops *
3574 find_target_beneath (struct target_ops *t)
3575 {
3576 return t->beneath;
3577 }
3578
3579 /* See target.h. */
3580
3581 struct target_ops *
3582 find_target_at (enum strata stratum)
3583 {
3584 struct target_ops *t;
3585
3586 for (t = current_target.beneath; t != NULL; t = t->beneath)
3587 if (t->to_stratum == stratum)
3588 return t;
3589
3590 return NULL;
3591 }
3592
3593 \f
3594 /* The inferior process has died. Long live the inferior! */
3595
3596 void
3597 generic_mourn_inferior (void)
3598 {
3599 ptid_t ptid;
3600
3601 ptid = inferior_ptid;
3602 inferior_ptid = null_ptid;
3603
3604 /* Mark breakpoints uninserted in case something tries to delete a
3605 breakpoint while we delete the inferior's threads (which would
3606 fail, since the inferior is long gone). */
3607 mark_breakpoints_out ();
3608
3609 if (!ptid_equal (ptid, null_ptid))
3610 {
3611 int pid = ptid_get_pid (ptid);
3612 exit_inferior (pid);
3613 }
3614
3615 /* Note this wipes step-resume breakpoints, so needs to be done
3616 after exit_inferior, which ends up referencing the step-resume
3617 breakpoints through clear_thread_inferior_resources. */
3618 breakpoint_init_inferior (inf_exited);
3619
3620 registers_changed ();
3621
3622 reopen_exec_file ();
3623 reinit_frame_cache ();
3624
3625 if (deprecated_detach_hook)
3626 deprecated_detach_hook ();
3627 }
3628 \f
3629 /* Convert a normal process ID to a string. Returns the string in a
3630 static buffer. */
3631
3632 char *
3633 normal_pid_to_str (ptid_t ptid)
3634 {
3635 static char buf[32];
3636
3637 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3638 return buf;
3639 }
3640
3641 static char *
3642 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3643 {
3644 return normal_pid_to_str (ptid);
3645 }
3646
3647 /* Error-catcher for target_find_memory_regions. */
3648 static int
3649 dummy_find_memory_regions (struct target_ops *self,
3650 find_memory_region_ftype ignore1, void *ignore2)
3651 {
3652 error (_("Command not implemented for this target."));
3653 return 0;
3654 }
3655
3656 /* Error-catcher for target_make_corefile_notes. */
3657 static char *
3658 dummy_make_corefile_notes (struct target_ops *self,
3659 bfd *ignore1, int *ignore2)
3660 {
3661 error (_("Command not implemented for this target."));
3662 return NULL;
3663 }
3664
3665 /* Set up the handful of non-empty slots needed by the dummy target
3666 vector. */
3667
3668 static void
3669 init_dummy_target (void)
3670 {
3671 dummy_target.to_shortname = "None";
3672 dummy_target.to_longname = "None";
3673 dummy_target.to_doc = "";
3674 dummy_target.to_create_inferior = find_default_create_inferior;
3675 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3676 dummy_target.to_supports_disable_randomization
3677 = find_default_supports_disable_randomization;
3678 dummy_target.to_pid_to_str = dummy_pid_to_str;
3679 dummy_target.to_stratum = dummy_stratum;
3680 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3681 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3682 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3683 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3684 dummy_target.to_has_execution
3685 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3686 dummy_target.to_magic = OPS_MAGIC;
3687
3688 install_dummy_methods (&dummy_target);
3689 }
3690 \f
3691 static void
3692 debug_to_open (char *args, int from_tty)
3693 {
3694 debug_target.to_open (args, from_tty);
3695
3696 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3697 }
3698
3699 void
3700 target_close (struct target_ops *targ)
3701 {
3702 gdb_assert (!target_is_pushed (targ));
3703
3704 if (targ->to_xclose != NULL)
3705 targ->to_xclose (targ);
3706 else if (targ->to_close != NULL)
3707 targ->to_close (targ);
3708
3709 if (targetdebug)
3710 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3711 }
3712
3713 void
3714 target_attach (char *args, int from_tty)
3715 {
3716 current_target.to_attach (&current_target, args, from_tty);
3717 if (targetdebug)
3718 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3719 args, from_tty);
3720 }
3721
3722 int
3723 target_thread_alive (ptid_t ptid)
3724 {
3725 struct target_ops *t;
3726
3727 for (t = current_target.beneath; t != NULL; t = t->beneath)
3728 {
3729 if (t->to_thread_alive != NULL)
3730 {
3731 int retval;
3732
3733 retval = t->to_thread_alive (t, ptid);
3734 if (targetdebug)
3735 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3736 ptid_get_pid (ptid), retval);
3737
3738 return retval;
3739 }
3740 }
3741
3742 return 0;
3743 }
3744
3745 void
3746 target_find_new_threads (void)
3747 {
3748 struct target_ops *t;
3749
3750 for (t = current_target.beneath; t != NULL; t = t->beneath)
3751 {
3752 if (t->to_find_new_threads != NULL)
3753 {
3754 t->to_find_new_threads (t);
3755 if (targetdebug)
3756 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3757
3758 return;
3759 }
3760 }
3761 }
3762
3763 void
3764 target_stop (ptid_t ptid)
3765 {
3766 if (!may_stop)
3767 {
3768 warning (_("May not interrupt or stop the target, ignoring attempt"));
3769 return;
3770 }
3771
3772 (*current_target.to_stop) (&current_target, ptid);
3773 }
3774
3775 static void
3776 debug_to_post_attach (struct target_ops *self, int pid)
3777 {
3778 debug_target.to_post_attach (&debug_target, pid);
3779
3780 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3781 }
3782
3783 /* Concatenate ELEM to LIST, a comma separate list, and return the
3784 result. The LIST incoming argument is released. */
3785
3786 static char *
3787 str_comma_list_concat_elem (char *list, const char *elem)
3788 {
3789 if (list == NULL)
3790 return xstrdup (elem);
3791 else
3792 return reconcat (list, list, ", ", elem, (char *) NULL);
3793 }
3794
3795 /* Helper for target_options_to_string. If OPT is present in
3796 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3797 Returns the new resulting string. OPT is removed from
3798 TARGET_OPTIONS. */
3799
3800 static char *
3801 do_option (int *target_options, char *ret,
3802 int opt, char *opt_str)
3803 {
3804 if ((*target_options & opt) != 0)
3805 {
3806 ret = str_comma_list_concat_elem (ret, opt_str);
3807 *target_options &= ~opt;
3808 }
3809
3810 return ret;
3811 }
3812
3813 char *
3814 target_options_to_string (int target_options)
3815 {
3816 char *ret = NULL;
3817
3818 #define DO_TARG_OPTION(OPT) \
3819 ret = do_option (&target_options, ret, OPT, #OPT)
3820
3821 DO_TARG_OPTION (TARGET_WNOHANG);
3822
3823 if (target_options != 0)
3824 ret = str_comma_list_concat_elem (ret, "unknown???");
3825
3826 if (ret == NULL)
3827 ret = xstrdup ("");
3828 return ret;
3829 }
3830
3831 static void
3832 debug_print_register (const char * func,
3833 struct regcache *regcache, int regno)
3834 {
3835 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3836
3837 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3838 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3839 && gdbarch_register_name (gdbarch, regno) != NULL
3840 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3841 fprintf_unfiltered (gdb_stdlog, "(%s)",
3842 gdbarch_register_name (gdbarch, regno));
3843 else
3844 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3845 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3846 {
3847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3848 int i, size = register_size (gdbarch, regno);
3849 gdb_byte buf[MAX_REGISTER_SIZE];
3850
3851 regcache_raw_collect (regcache, regno, buf);
3852 fprintf_unfiltered (gdb_stdlog, " = ");
3853 for (i = 0; i < size; i++)
3854 {
3855 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3856 }
3857 if (size <= sizeof (LONGEST))
3858 {
3859 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3860
3861 fprintf_unfiltered (gdb_stdlog, " %s %s",
3862 core_addr_to_string_nz (val), plongest (val));
3863 }
3864 }
3865 fprintf_unfiltered (gdb_stdlog, "\n");
3866 }
3867
3868 void
3869 target_fetch_registers (struct regcache *regcache, int regno)
3870 {
3871 struct target_ops *t;
3872
3873 for (t = current_target.beneath; t != NULL; t = t->beneath)
3874 {
3875 if (t->to_fetch_registers != NULL)
3876 {
3877 t->to_fetch_registers (t, regcache, regno);
3878 if (targetdebug)
3879 debug_print_register ("target_fetch_registers", regcache, regno);
3880 return;
3881 }
3882 }
3883 }
3884
3885 void
3886 target_store_registers (struct regcache *regcache, int regno)
3887 {
3888 struct target_ops *t;
3889
3890 if (!may_write_registers)
3891 error (_("Writing to registers is not allowed (regno %d)"), regno);
3892
3893 current_target.to_store_registers (&current_target, regcache, regno);
3894 if (targetdebug)
3895 {
3896 debug_print_register ("target_store_registers", regcache, regno);
3897 }
3898 }
3899
3900 int
3901 target_core_of_thread (ptid_t ptid)
3902 {
3903 struct target_ops *t;
3904
3905 for (t = current_target.beneath; t != NULL; t = t->beneath)
3906 {
3907 if (t->to_core_of_thread != NULL)
3908 {
3909 int retval = t->to_core_of_thread (t, ptid);
3910
3911 if (targetdebug)
3912 fprintf_unfiltered (gdb_stdlog,
3913 "target_core_of_thread (%d) = %d\n",
3914 ptid_get_pid (ptid), retval);
3915 return retval;
3916 }
3917 }
3918
3919 return -1;
3920 }
3921
3922 int
3923 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3924 {
3925 struct target_ops *t;
3926
3927 for (t = current_target.beneath; t != NULL; t = t->beneath)
3928 {
3929 if (t->to_verify_memory != NULL)
3930 {
3931 int retval = t->to_verify_memory (t, data, memaddr, size);
3932
3933 if (targetdebug)
3934 fprintf_unfiltered (gdb_stdlog,
3935 "target_verify_memory (%s, %s) = %d\n",
3936 paddress (target_gdbarch (), memaddr),
3937 pulongest (size),
3938 retval);
3939 return retval;
3940 }
3941 }
3942
3943 tcomplain ();
3944 }
3945
3946 /* The documentation for this function is in its prototype declaration in
3947 target.h. */
3948
3949 int
3950 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3951 {
3952 struct target_ops *t;
3953
3954 for (t = current_target.beneath; t != NULL; t = t->beneath)
3955 if (t->to_insert_mask_watchpoint != NULL)
3956 {
3957 int ret;
3958
3959 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3960
3961 if (targetdebug)
3962 fprintf_unfiltered (gdb_stdlog, "\
3963 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3964 core_addr_to_string (addr),
3965 core_addr_to_string (mask), rw, ret);
3966
3967 return ret;
3968 }
3969
3970 return 1;
3971 }
3972
3973 /* The documentation for this function is in its prototype declaration in
3974 target.h. */
3975
3976 int
3977 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3978 {
3979 struct target_ops *t;
3980
3981 for (t = current_target.beneath; t != NULL; t = t->beneath)
3982 if (t->to_remove_mask_watchpoint != NULL)
3983 {
3984 int ret;
3985
3986 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3987
3988 if (targetdebug)
3989 fprintf_unfiltered (gdb_stdlog, "\
3990 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3991 core_addr_to_string (addr),
3992 core_addr_to_string (mask), rw, ret);
3993
3994 return ret;
3995 }
3996
3997 return 1;
3998 }
3999
4000 /* The documentation for this function is in its prototype declaration
4001 in target.h. */
4002
4003 int
4004 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4005 {
4006 struct target_ops *t;
4007
4008 for (t = current_target.beneath; t != NULL; t = t->beneath)
4009 if (t->to_masked_watch_num_registers != NULL)
4010 return t->to_masked_watch_num_registers (t, addr, mask);
4011
4012 return -1;
4013 }
4014
4015 /* The documentation for this function is in its prototype declaration
4016 in target.h. */
4017
4018 int
4019 target_ranged_break_num_registers (void)
4020 {
4021 struct target_ops *t;
4022
4023 for (t = current_target.beneath; t != NULL; t = t->beneath)
4024 if (t->to_ranged_break_num_registers != NULL)
4025 return t->to_ranged_break_num_registers (t);
4026
4027 return -1;
4028 }
4029
4030 /* See target.h. */
4031
4032 struct btrace_target_info *
4033 target_enable_btrace (ptid_t ptid)
4034 {
4035 struct target_ops *t;
4036
4037 for (t = current_target.beneath; t != NULL; t = t->beneath)
4038 if (t->to_enable_btrace != NULL)
4039 return t->to_enable_btrace (t, ptid);
4040
4041 tcomplain ();
4042 return NULL;
4043 }
4044
4045 /* See target.h. */
4046
4047 void
4048 target_disable_btrace (struct btrace_target_info *btinfo)
4049 {
4050 struct target_ops *t;
4051
4052 for (t = current_target.beneath; t != NULL; t = t->beneath)
4053 if (t->to_disable_btrace != NULL)
4054 {
4055 t->to_disable_btrace (t, btinfo);
4056 return;
4057 }
4058
4059 tcomplain ();
4060 }
4061
4062 /* See target.h. */
4063
4064 void
4065 target_teardown_btrace (struct btrace_target_info *btinfo)
4066 {
4067 struct target_ops *t;
4068
4069 for (t = current_target.beneath; t != NULL; t = t->beneath)
4070 if (t->to_teardown_btrace != NULL)
4071 {
4072 t->to_teardown_btrace (t, btinfo);
4073 return;
4074 }
4075
4076 tcomplain ();
4077 }
4078
4079 /* See target.h. */
4080
4081 enum btrace_error
4082 target_read_btrace (VEC (btrace_block_s) **btrace,
4083 struct btrace_target_info *btinfo,
4084 enum btrace_read_type type)
4085 {
4086 struct target_ops *t;
4087
4088 for (t = current_target.beneath; t != NULL; t = t->beneath)
4089 if (t->to_read_btrace != NULL)
4090 return t->to_read_btrace (t, btrace, btinfo, type);
4091
4092 tcomplain ();
4093 return BTRACE_ERR_NOT_SUPPORTED;
4094 }
4095
4096 /* See target.h. */
4097
4098 void
4099 target_stop_recording (void)
4100 {
4101 struct target_ops *t;
4102
4103 for (t = current_target.beneath; t != NULL; t = t->beneath)
4104 if (t->to_stop_recording != NULL)
4105 {
4106 t->to_stop_recording (t);
4107 return;
4108 }
4109
4110 /* This is optional. */
4111 }
4112
4113 /* See target.h. */
4114
4115 void
4116 target_info_record (void)
4117 {
4118 struct target_ops *t;
4119
4120 for (t = current_target.beneath; t != NULL; t = t->beneath)
4121 if (t->to_info_record != NULL)
4122 {
4123 t->to_info_record (t);
4124 return;
4125 }
4126
4127 tcomplain ();
4128 }
4129
4130 /* See target.h. */
4131
4132 void
4133 target_save_record (const char *filename)
4134 {
4135 struct target_ops *t;
4136
4137 for (t = current_target.beneath; t != NULL; t = t->beneath)
4138 if (t->to_save_record != NULL)
4139 {
4140 t->to_save_record (t, filename);
4141 return;
4142 }
4143
4144 tcomplain ();
4145 }
4146
4147 /* See target.h. */
4148
4149 int
4150 target_supports_delete_record (void)
4151 {
4152 struct target_ops *t;
4153
4154 for (t = current_target.beneath; t != NULL; t = t->beneath)
4155 if (t->to_delete_record != NULL)
4156 return 1;
4157
4158 return 0;
4159 }
4160
4161 /* See target.h. */
4162
4163 void
4164 target_delete_record (void)
4165 {
4166 struct target_ops *t;
4167
4168 for (t = current_target.beneath; t != NULL; t = t->beneath)
4169 if (t->to_delete_record != NULL)
4170 {
4171 t->to_delete_record (t);
4172 return;
4173 }
4174
4175 tcomplain ();
4176 }
4177
4178 /* See target.h. */
4179
4180 int
4181 target_record_is_replaying (void)
4182 {
4183 struct target_ops *t;
4184
4185 for (t = current_target.beneath; t != NULL; t = t->beneath)
4186 if (t->to_record_is_replaying != NULL)
4187 return t->to_record_is_replaying (t);
4188
4189 return 0;
4190 }
4191
4192 /* See target.h. */
4193
4194 void
4195 target_goto_record_begin (void)
4196 {
4197 struct target_ops *t;
4198
4199 for (t = current_target.beneath; t != NULL; t = t->beneath)
4200 if (t->to_goto_record_begin != NULL)
4201 {
4202 t->to_goto_record_begin (t);
4203 return;
4204 }
4205
4206 tcomplain ();
4207 }
4208
4209 /* See target.h. */
4210
4211 void
4212 target_goto_record_end (void)
4213 {
4214 struct target_ops *t;
4215
4216 for (t = current_target.beneath; t != NULL; t = t->beneath)
4217 if (t->to_goto_record_end != NULL)
4218 {
4219 t->to_goto_record_end (t);
4220 return;
4221 }
4222
4223 tcomplain ();
4224 }
4225
4226 /* See target.h. */
4227
4228 void
4229 target_goto_record (ULONGEST insn)
4230 {
4231 struct target_ops *t;
4232
4233 for (t = current_target.beneath; t != NULL; t = t->beneath)
4234 if (t->to_goto_record != NULL)
4235 {
4236 t->to_goto_record (t, insn);
4237 return;
4238 }
4239
4240 tcomplain ();
4241 }
4242
4243 /* See target.h. */
4244
4245 void
4246 target_insn_history (int size, int flags)
4247 {
4248 struct target_ops *t;
4249
4250 for (t = current_target.beneath; t != NULL; t = t->beneath)
4251 if (t->to_insn_history != NULL)
4252 {
4253 t->to_insn_history (t, size, flags);
4254 return;
4255 }
4256
4257 tcomplain ();
4258 }
4259
4260 /* See target.h. */
4261
4262 void
4263 target_insn_history_from (ULONGEST from, int size, int flags)
4264 {
4265 struct target_ops *t;
4266
4267 for (t = current_target.beneath; t != NULL; t = t->beneath)
4268 if (t->to_insn_history_from != NULL)
4269 {
4270 t->to_insn_history_from (t, from, size, flags);
4271 return;
4272 }
4273
4274 tcomplain ();
4275 }
4276
4277 /* See target.h. */
4278
4279 void
4280 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4281 {
4282 struct target_ops *t;
4283
4284 for (t = current_target.beneath; t != NULL; t = t->beneath)
4285 if (t->to_insn_history_range != NULL)
4286 {
4287 t->to_insn_history_range (t, begin, end, flags);
4288 return;
4289 }
4290
4291 tcomplain ();
4292 }
4293
4294 /* See target.h. */
4295
4296 void
4297 target_call_history (int size, int flags)
4298 {
4299 struct target_ops *t;
4300
4301 for (t = current_target.beneath; t != NULL; t = t->beneath)
4302 if (t->to_call_history != NULL)
4303 {
4304 t->to_call_history (t, size, flags);
4305 return;
4306 }
4307
4308 tcomplain ();
4309 }
4310
4311 /* See target.h. */
4312
4313 void
4314 target_call_history_from (ULONGEST begin, int size, int flags)
4315 {
4316 struct target_ops *t;
4317
4318 for (t = current_target.beneath; t != NULL; t = t->beneath)
4319 if (t->to_call_history_from != NULL)
4320 {
4321 t->to_call_history_from (t, begin, size, flags);
4322 return;
4323 }
4324
4325 tcomplain ();
4326 }
4327
4328 /* See target.h. */
4329
4330 void
4331 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4332 {
4333 struct target_ops *t;
4334
4335 for (t = current_target.beneath; t != NULL; t = t->beneath)
4336 if (t->to_call_history_range != NULL)
4337 {
4338 t->to_call_history_range (t, begin, end, flags);
4339 return;
4340 }
4341
4342 tcomplain ();
4343 }
4344
4345 static void
4346 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4347 {
4348 debug_target.to_prepare_to_store (&debug_target, regcache);
4349
4350 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4351 }
4352
4353 /* See target.h. */
4354
4355 const struct frame_unwind *
4356 target_get_unwinder (void)
4357 {
4358 struct target_ops *t;
4359
4360 for (t = current_target.beneath; t != NULL; t = t->beneath)
4361 if (t->to_get_unwinder != NULL)
4362 return t->to_get_unwinder;
4363
4364 return NULL;
4365 }
4366
4367 /* See target.h. */
4368
4369 const struct frame_unwind *
4370 target_get_tailcall_unwinder (void)
4371 {
4372 struct target_ops *t;
4373
4374 for (t = current_target.beneath; t != NULL; t = t->beneath)
4375 if (t->to_get_tailcall_unwinder != NULL)
4376 return t->to_get_tailcall_unwinder;
4377
4378 return NULL;
4379 }
4380
4381 /* See target.h. */
4382
4383 CORE_ADDR
4384 forward_target_decr_pc_after_break (struct target_ops *ops,
4385 struct gdbarch *gdbarch)
4386 {
4387 for (; ops != NULL; ops = ops->beneath)
4388 if (ops->to_decr_pc_after_break != NULL)
4389 return ops->to_decr_pc_after_break (ops, gdbarch);
4390
4391 return gdbarch_decr_pc_after_break (gdbarch);
4392 }
4393
4394 /* See target.h. */
4395
4396 CORE_ADDR
4397 target_decr_pc_after_break (struct gdbarch *gdbarch)
4398 {
4399 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4400 }
4401
4402 static int
4403 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4404 int write, struct mem_attrib *attrib,
4405 struct target_ops *target)
4406 {
4407 int retval;
4408
4409 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4410 attrib, target);
4411
4412 fprintf_unfiltered (gdb_stdlog,
4413 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4414 paddress (target_gdbarch (), memaddr), len,
4415 write ? "write" : "read", retval);
4416
4417 if (retval > 0)
4418 {
4419 int i;
4420
4421 fputs_unfiltered (", bytes =", gdb_stdlog);
4422 for (i = 0; i < retval; i++)
4423 {
4424 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4425 {
4426 if (targetdebug < 2 && i > 0)
4427 {
4428 fprintf_unfiltered (gdb_stdlog, " ...");
4429 break;
4430 }
4431 fprintf_unfiltered (gdb_stdlog, "\n");
4432 }
4433
4434 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4435 }
4436 }
4437
4438 fputc_unfiltered ('\n', gdb_stdlog);
4439
4440 return retval;
4441 }
4442
4443 static void
4444 debug_to_files_info (struct target_ops *target)
4445 {
4446 debug_target.to_files_info (target);
4447
4448 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4449 }
4450
4451 static int
4452 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4453 struct bp_target_info *bp_tgt)
4454 {
4455 int retval;
4456
4457 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4458
4459 fprintf_unfiltered (gdb_stdlog,
4460 "target_insert_breakpoint (%s, xxx) = %ld\n",
4461 core_addr_to_string (bp_tgt->placed_address),
4462 (unsigned long) retval);
4463 return retval;
4464 }
4465
4466 static int
4467 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4468 struct bp_target_info *bp_tgt)
4469 {
4470 int retval;
4471
4472 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4473
4474 fprintf_unfiltered (gdb_stdlog,
4475 "target_remove_breakpoint (%s, xxx) = %ld\n",
4476 core_addr_to_string (bp_tgt->placed_address),
4477 (unsigned long) retval);
4478 return retval;
4479 }
4480
4481 static int
4482 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4483 int type, int cnt, int from_tty)
4484 {
4485 int retval;
4486
4487 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4488 type, cnt, from_tty);
4489
4490 fprintf_unfiltered (gdb_stdlog,
4491 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4492 (unsigned long) type,
4493 (unsigned long) cnt,
4494 (unsigned long) from_tty,
4495 (unsigned long) retval);
4496 return retval;
4497 }
4498
4499 static int
4500 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4501 CORE_ADDR addr, int len)
4502 {
4503 CORE_ADDR retval;
4504
4505 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4506 addr, len);
4507
4508 fprintf_unfiltered (gdb_stdlog,
4509 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4510 core_addr_to_string (addr), (unsigned long) len,
4511 core_addr_to_string (retval));
4512 return retval;
4513 }
4514
4515 static int
4516 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4517 CORE_ADDR addr, int len, int rw,
4518 struct expression *cond)
4519 {
4520 int retval;
4521
4522 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4523 addr, len,
4524 rw, cond);
4525
4526 fprintf_unfiltered (gdb_stdlog,
4527 "target_can_accel_watchpoint_condition "
4528 "(%s, %d, %d, %s) = %ld\n",
4529 core_addr_to_string (addr), len, rw,
4530 host_address_to_string (cond), (unsigned long) retval);
4531 return retval;
4532 }
4533
4534 static int
4535 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4536 {
4537 int retval;
4538
4539 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4540
4541 fprintf_unfiltered (gdb_stdlog,
4542 "target_stopped_by_watchpoint () = %ld\n",
4543 (unsigned long) retval);
4544 return retval;
4545 }
4546
4547 static int
4548 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4549 {
4550 int retval;
4551
4552 retval = debug_target.to_stopped_data_address (target, addr);
4553
4554 fprintf_unfiltered (gdb_stdlog,
4555 "target_stopped_data_address ([%s]) = %ld\n",
4556 core_addr_to_string (*addr),
4557 (unsigned long)retval);
4558 return retval;
4559 }
4560
4561 static int
4562 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4563 CORE_ADDR addr,
4564 CORE_ADDR start, int length)
4565 {
4566 int retval;
4567
4568 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4569 start, length);
4570
4571 fprintf_filtered (gdb_stdlog,
4572 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4573 core_addr_to_string (addr), core_addr_to_string (start),
4574 length, retval);
4575 return retval;
4576 }
4577
4578 static int
4579 debug_to_insert_hw_breakpoint (struct target_ops *self,
4580 struct gdbarch *gdbarch,
4581 struct bp_target_info *bp_tgt)
4582 {
4583 int retval;
4584
4585 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4586 gdbarch, bp_tgt);
4587
4588 fprintf_unfiltered (gdb_stdlog,
4589 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4590 core_addr_to_string (bp_tgt->placed_address),
4591 (unsigned long) retval);
4592 return retval;
4593 }
4594
4595 static int
4596 debug_to_remove_hw_breakpoint (struct target_ops *self,
4597 struct gdbarch *gdbarch,
4598 struct bp_target_info *bp_tgt)
4599 {
4600 int retval;
4601
4602 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4603 gdbarch, bp_tgt);
4604
4605 fprintf_unfiltered (gdb_stdlog,
4606 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4607 core_addr_to_string (bp_tgt->placed_address),
4608 (unsigned long) retval);
4609 return retval;
4610 }
4611
4612 static int
4613 debug_to_insert_watchpoint (struct target_ops *self,
4614 CORE_ADDR addr, int len, int type,
4615 struct expression *cond)
4616 {
4617 int retval;
4618
4619 retval = debug_target.to_insert_watchpoint (&debug_target,
4620 addr, len, type, cond);
4621
4622 fprintf_unfiltered (gdb_stdlog,
4623 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4624 core_addr_to_string (addr), len, type,
4625 host_address_to_string (cond), (unsigned long) retval);
4626 return retval;
4627 }
4628
4629 static int
4630 debug_to_remove_watchpoint (struct target_ops *self,
4631 CORE_ADDR addr, int len, int type,
4632 struct expression *cond)
4633 {
4634 int retval;
4635
4636 retval = debug_target.to_remove_watchpoint (&debug_target,
4637 addr, len, type, cond);
4638
4639 fprintf_unfiltered (gdb_stdlog,
4640 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4641 core_addr_to_string (addr), len, type,
4642 host_address_to_string (cond), (unsigned long) retval);
4643 return retval;
4644 }
4645
4646 static void
4647 debug_to_terminal_init (struct target_ops *self)
4648 {
4649 debug_target.to_terminal_init (&debug_target);
4650
4651 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4652 }
4653
4654 static void
4655 debug_to_terminal_inferior (struct target_ops *self)
4656 {
4657 debug_target.to_terminal_inferior (&debug_target);
4658
4659 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4660 }
4661
4662 static void
4663 debug_to_terminal_ours_for_output (struct target_ops *self)
4664 {
4665 debug_target.to_terminal_ours_for_output (&debug_target);
4666
4667 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4668 }
4669
4670 static void
4671 debug_to_terminal_ours (struct target_ops *self)
4672 {
4673 debug_target.to_terminal_ours (&debug_target);
4674
4675 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4676 }
4677
4678 static void
4679 debug_to_terminal_save_ours (struct target_ops *self)
4680 {
4681 debug_target.to_terminal_save_ours (&debug_target);
4682
4683 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4684 }
4685
4686 static void
4687 debug_to_terminal_info (struct target_ops *self,
4688 const char *arg, int from_tty)
4689 {
4690 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4691
4692 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4693 from_tty);
4694 }
4695
4696 static void
4697 debug_to_load (struct target_ops *self, char *args, int from_tty)
4698 {
4699 debug_target.to_load (&debug_target, args, from_tty);
4700
4701 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4702 }
4703
4704 static void
4705 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4706 {
4707 debug_target.to_post_startup_inferior (&debug_target, ptid);
4708
4709 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4710 ptid_get_pid (ptid));
4711 }
4712
4713 static int
4714 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4715 {
4716 int retval;
4717
4718 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4719
4720 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4721 pid, retval);
4722
4723 return retval;
4724 }
4725
4726 static int
4727 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4728 {
4729 int retval;
4730
4731 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4732
4733 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4734 pid, retval);
4735
4736 return retval;
4737 }
4738
4739 static int
4740 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4741 {
4742 int retval;
4743
4744 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4745
4746 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4747 pid, retval);
4748
4749 return retval;
4750 }
4751
4752 static int
4753 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4754 {
4755 int retval;
4756
4757 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4758
4759 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4760 pid, retval);
4761
4762 return retval;
4763 }
4764
4765 static int
4766 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4767 {
4768 int retval;
4769
4770 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4771
4772 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4773 pid, retval);
4774
4775 return retval;
4776 }
4777
4778 static int
4779 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4780 {
4781 int retval;
4782
4783 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4784
4785 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4786 pid, retval);
4787
4788 return retval;
4789 }
4790
4791 static int
4792 debug_to_has_exited (struct target_ops *self,
4793 int pid, int wait_status, int *exit_status)
4794 {
4795 int has_exited;
4796
4797 has_exited = debug_target.to_has_exited (&debug_target,
4798 pid, wait_status, exit_status);
4799
4800 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4801 pid, wait_status, *exit_status, has_exited);
4802
4803 return has_exited;
4804 }
4805
4806 static int
4807 debug_to_can_run (struct target_ops *self)
4808 {
4809 int retval;
4810
4811 retval = debug_target.to_can_run (&debug_target);
4812
4813 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4814
4815 return retval;
4816 }
4817
4818 static struct gdbarch *
4819 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4820 {
4821 struct gdbarch *retval;
4822
4823 retval = debug_target.to_thread_architecture (ops, ptid);
4824
4825 fprintf_unfiltered (gdb_stdlog,
4826 "target_thread_architecture (%s) = %s [%s]\n",
4827 target_pid_to_str (ptid),
4828 host_address_to_string (retval),
4829 gdbarch_bfd_arch_info (retval)->printable_name);
4830 return retval;
4831 }
4832
4833 static void
4834 debug_to_stop (struct target_ops *self, ptid_t ptid)
4835 {
4836 debug_target.to_stop (&debug_target, ptid);
4837
4838 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4839 target_pid_to_str (ptid));
4840 }
4841
4842 static void
4843 debug_to_rcmd (struct target_ops *self, char *command,
4844 struct ui_file *outbuf)
4845 {
4846 debug_target.to_rcmd (&debug_target, command, outbuf);
4847 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4848 }
4849
4850 static char *
4851 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4852 {
4853 char *exec_file;
4854
4855 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4856
4857 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4858 pid, exec_file);
4859
4860 return exec_file;
4861 }
4862
4863 static void
4864 setup_target_debug (void)
4865 {
4866 memcpy (&debug_target, &current_target, sizeof debug_target);
4867
4868 current_target.to_open = debug_to_open;
4869 current_target.to_post_attach = debug_to_post_attach;
4870 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4871 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4872 current_target.to_files_info = debug_to_files_info;
4873 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4874 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4875 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4876 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4877 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4878 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4879 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4880 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4881 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4882 current_target.to_watchpoint_addr_within_range
4883 = debug_to_watchpoint_addr_within_range;
4884 current_target.to_region_ok_for_hw_watchpoint
4885 = debug_to_region_ok_for_hw_watchpoint;
4886 current_target.to_can_accel_watchpoint_condition
4887 = debug_to_can_accel_watchpoint_condition;
4888 current_target.to_terminal_init = debug_to_terminal_init;
4889 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4890 current_target.to_terminal_ours_for_output
4891 = debug_to_terminal_ours_for_output;
4892 current_target.to_terminal_ours = debug_to_terminal_ours;
4893 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4894 current_target.to_terminal_info = debug_to_terminal_info;
4895 current_target.to_load = debug_to_load;
4896 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4897 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4898 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4899 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4900 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4901 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4902 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4903 current_target.to_has_exited = debug_to_has_exited;
4904 current_target.to_can_run = debug_to_can_run;
4905 current_target.to_stop = debug_to_stop;
4906 current_target.to_rcmd = debug_to_rcmd;
4907 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4908 current_target.to_thread_architecture = debug_to_thread_architecture;
4909 }
4910 \f
4911
4912 static char targ_desc[] =
4913 "Names of targets and files being debugged.\nShows the entire \
4914 stack of targets currently in use (including the exec-file,\n\
4915 core-file, and process, if any), as well as the symbol file name.";
4916
4917 static void
4918 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4919 {
4920 error (_("\"monitor\" command not supported by this target."));
4921 }
4922
4923 static void
4924 do_monitor_command (char *cmd,
4925 int from_tty)
4926 {
4927 target_rcmd (cmd, gdb_stdtarg);
4928 }
4929
4930 /* Print the name of each layers of our target stack. */
4931
4932 static void
4933 maintenance_print_target_stack (char *cmd, int from_tty)
4934 {
4935 struct target_ops *t;
4936
4937 printf_filtered (_("The current target stack is:\n"));
4938
4939 for (t = target_stack; t != NULL; t = t->beneath)
4940 {
4941 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4942 }
4943 }
4944
4945 /* Controls if async mode is permitted. */
4946 int target_async_permitted = 0;
4947
4948 /* The set command writes to this variable. If the inferior is
4949 executing, target_async_permitted is *not* updated. */
4950 static int target_async_permitted_1 = 0;
4951
4952 static void
4953 set_target_async_command (char *args, int from_tty,
4954 struct cmd_list_element *c)
4955 {
4956 if (have_live_inferiors ())
4957 {
4958 target_async_permitted_1 = target_async_permitted;
4959 error (_("Cannot change this setting while the inferior is running."));
4960 }
4961
4962 target_async_permitted = target_async_permitted_1;
4963 }
4964
4965 static void
4966 show_target_async_command (struct ui_file *file, int from_tty,
4967 struct cmd_list_element *c,
4968 const char *value)
4969 {
4970 fprintf_filtered (file,
4971 _("Controlling the inferior in "
4972 "asynchronous mode is %s.\n"), value);
4973 }
4974
4975 /* Temporary copies of permission settings. */
4976
4977 static int may_write_registers_1 = 1;
4978 static int may_write_memory_1 = 1;
4979 static int may_insert_breakpoints_1 = 1;
4980 static int may_insert_tracepoints_1 = 1;
4981 static int may_insert_fast_tracepoints_1 = 1;
4982 static int may_stop_1 = 1;
4983
4984 /* Make the user-set values match the real values again. */
4985
4986 void
4987 update_target_permissions (void)
4988 {
4989 may_write_registers_1 = may_write_registers;
4990 may_write_memory_1 = may_write_memory;
4991 may_insert_breakpoints_1 = may_insert_breakpoints;
4992 may_insert_tracepoints_1 = may_insert_tracepoints;
4993 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4994 may_stop_1 = may_stop;
4995 }
4996
4997 /* The one function handles (most of) the permission flags in the same
4998 way. */
4999
5000 static void
5001 set_target_permissions (char *args, int from_tty,
5002 struct cmd_list_element *c)
5003 {
5004 if (target_has_execution)
5005 {
5006 update_target_permissions ();
5007 error (_("Cannot change this setting while the inferior is running."));
5008 }
5009
5010 /* Make the real values match the user-changed values. */
5011 may_write_registers = may_write_registers_1;
5012 may_insert_breakpoints = may_insert_breakpoints_1;
5013 may_insert_tracepoints = may_insert_tracepoints_1;
5014 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5015 may_stop = may_stop_1;
5016 update_observer_mode ();
5017 }
5018
5019 /* Set memory write permission independently of observer mode. */
5020
5021 static void
5022 set_write_memory_permission (char *args, int from_tty,
5023 struct cmd_list_element *c)
5024 {
5025 /* Make the real values match the user-changed values. */
5026 may_write_memory = may_write_memory_1;
5027 update_observer_mode ();
5028 }
5029
5030
5031 void
5032 initialize_targets (void)
5033 {
5034 init_dummy_target ();
5035 push_target (&dummy_target);
5036
5037 add_info ("target", target_info, targ_desc);
5038 add_info ("files", target_info, targ_desc);
5039
5040 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5041 Set target debugging."), _("\
5042 Show target debugging."), _("\
5043 When non-zero, target debugging is enabled. Higher numbers are more\n\
5044 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5045 command."),
5046 NULL,
5047 show_targetdebug,
5048 &setdebuglist, &showdebuglist);
5049
5050 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5051 &trust_readonly, _("\
5052 Set mode for reading from readonly sections."), _("\
5053 Show mode for reading from readonly sections."), _("\
5054 When this mode is on, memory reads from readonly sections (such as .text)\n\
5055 will be read from the object file instead of from the target. This will\n\
5056 result in significant performance improvement for remote targets."),
5057 NULL,
5058 show_trust_readonly,
5059 &setlist, &showlist);
5060
5061 add_com ("monitor", class_obscure, do_monitor_command,
5062 _("Send a command to the remote monitor (remote targets only)."));
5063
5064 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5065 _("Print the name of each layer of the internal target stack."),
5066 &maintenanceprintlist);
5067
5068 add_setshow_boolean_cmd ("target-async", no_class,
5069 &target_async_permitted_1, _("\
5070 Set whether gdb controls the inferior in asynchronous mode."), _("\
5071 Show whether gdb controls the inferior in asynchronous mode."), _("\
5072 Tells gdb whether to control the inferior in asynchronous mode."),
5073 set_target_async_command,
5074 show_target_async_command,
5075 &setlist,
5076 &showlist);
5077
5078 add_setshow_boolean_cmd ("may-write-registers", class_support,
5079 &may_write_registers_1, _("\
5080 Set permission to write into registers."), _("\
5081 Show permission to write into registers."), _("\
5082 When this permission is on, GDB may write into the target's registers.\n\
5083 Otherwise, any sort of write attempt will result in an error."),
5084 set_target_permissions, NULL,
5085 &setlist, &showlist);
5086
5087 add_setshow_boolean_cmd ("may-write-memory", class_support,
5088 &may_write_memory_1, _("\
5089 Set permission to write into target memory."), _("\
5090 Show permission to write into target memory."), _("\
5091 When this permission is on, GDB may write into the target's memory.\n\
5092 Otherwise, any sort of write attempt will result in an error."),
5093 set_write_memory_permission, NULL,
5094 &setlist, &showlist);
5095
5096 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5097 &may_insert_breakpoints_1, _("\
5098 Set permission to insert breakpoints in the target."), _("\
5099 Show permission to insert breakpoints in the target."), _("\
5100 When this permission is on, GDB may insert breakpoints in the program.\n\
5101 Otherwise, any sort of insertion attempt will result in an error."),
5102 set_target_permissions, NULL,
5103 &setlist, &showlist);
5104
5105 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5106 &may_insert_tracepoints_1, _("\
5107 Set permission to insert tracepoints in the target."), _("\
5108 Show permission to insert tracepoints in the target."), _("\
5109 When this permission is on, GDB may insert tracepoints in the program.\n\
5110 Otherwise, any sort of insertion attempt will result in an error."),
5111 set_target_permissions, NULL,
5112 &setlist, &showlist);
5113
5114 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5115 &may_insert_fast_tracepoints_1, _("\
5116 Set permission to insert fast tracepoints in the target."), _("\
5117 Show permission to insert fast tracepoints in the target."), _("\
5118 When this permission is on, GDB may insert fast tracepoints.\n\
5119 Otherwise, any sort of insertion attempt will result in an error."),
5120 set_target_permissions, NULL,
5121 &setlist, &showlist);
5122
5123 add_setshow_boolean_cmd ("may-interrupt", class_support,
5124 &may_stop_1, _("\
5125 Set permission to interrupt or signal the target."), _("\
5126 Show permission to interrupt or signal the target."), _("\
5127 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5128 Otherwise, any attempt to interrupt or stop will be ignored."),
5129 set_target_permissions, NULL,
5130 &setlist, &showlist);
5131 }