convert to_pid_to_str
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static int default_follow_fork (struct target_ops *self, int follow_child,
64 int detach_fork);
65
66 static void default_mourn_inferior (struct target_ops *self);
67
68 static void tcomplain (void) ATTRIBUTE_NORETURN;
69
70 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
71
72 static int return_zero (void);
73
74 void target_ignore (void);
75
76 static void target_command (char *, int);
77
78 static struct target_ops *find_default_run_target (char *);
79
80 static target_xfer_partial_ftype default_xfer_partial;
81
82 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
83 ptid_t ptid);
84
85 static int dummy_find_memory_regions (struct target_ops *self,
86 find_memory_region_ftype ignore1,
87 void *ignore2);
88
89 static char *dummy_make_corefile_notes (struct target_ops *self,
90 bfd *ignore1, int *ignore2);
91
92 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
93
94 static int find_default_can_async_p (struct target_ops *ignore);
95
96 static int find_default_is_async_p (struct target_ops *ignore);
97
98 static enum exec_direction_kind default_execution_direction
99 (struct target_ops *self);
100
101 #include "target-delegates.c"
102
103 static void init_dummy_target (void);
104
105 static struct target_ops debug_target;
106
107 static void debug_to_open (char *, int);
108
109 static void debug_to_prepare_to_store (struct target_ops *self,
110 struct regcache *);
111
112 static void debug_to_files_info (struct target_ops *);
113
114 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
121 int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
124 struct gdbarch *,
125 struct bp_target_info *);
126
127 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
128 struct gdbarch *,
129 struct bp_target_info *);
130
131 static int debug_to_insert_watchpoint (struct target_ops *self,
132 CORE_ADDR, int, int,
133 struct expression *);
134
135 static int debug_to_remove_watchpoint (struct target_ops *self,
136 CORE_ADDR, int, int,
137 struct expression *);
138
139 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
140
141 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
142 CORE_ADDR, CORE_ADDR, int);
143
144 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
145 CORE_ADDR, int);
146
147 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
148 CORE_ADDR, int, int,
149 struct expression *);
150
151 static void debug_to_terminal_init (struct target_ops *self);
152
153 static void debug_to_terminal_inferior (struct target_ops *self);
154
155 static void debug_to_terminal_ours_for_output (struct target_ops *self);
156
157 static void debug_to_terminal_save_ours (struct target_ops *self);
158
159 static void debug_to_terminal_ours (struct target_ops *self);
160
161 static void debug_to_load (struct target_ops *self, char *, int);
162
163 static int debug_to_can_run (struct target_ops *self);
164
165 static void debug_to_stop (struct target_ops *self, ptid_t);
166
167 /* Pointer to array of target architecture structures; the size of the
168 array; the current index into the array; the allocated size of the
169 array. */
170 struct target_ops **target_structs;
171 unsigned target_struct_size;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
174
175 /* The initial current target, so that there is always a semi-valid
176 current target. */
177
178 static struct target_ops dummy_target;
179
180 /* Top of target stack. */
181
182 static struct target_ops *target_stack;
183
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
186
187 struct target_ops current_target;
188
189 /* Command list for target. */
190
191 static struct cmd_list_element *targetlist = NULL;
192
193 /* Nonzero if we should trust readonly sections from the
194 executable when reading memory. */
195
196 static int trust_readonly = 0;
197
198 /* Nonzero if we should show true memory content including
199 memory breakpoint inserted by gdb. */
200
201 static int show_memory_breakpoints = 0;
202
203 /* These globals control whether GDB attempts to perform these
204 operations; they are useful for targets that need to prevent
205 inadvertant disruption, such as in non-stop mode. */
206
207 int may_write_registers = 1;
208
209 int may_write_memory = 1;
210
211 int may_insert_breakpoints = 1;
212
213 int may_insert_tracepoints = 1;
214
215 int may_insert_fast_tracepoints = 1;
216
217 int may_stop = 1;
218
219 /* Non-zero if we want to see trace of target level stuff. */
220
221 static unsigned int targetdebug = 0;
222 static void
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
227 }
228
229 static void setup_target_debug (void);
230
231 /* The user just typed 'target' without the name of a target. */
232
233 static void
234 target_command (char *arg, int from_tty)
235 {
236 fputs_filtered ("Argument required (target name). Try `help target'\n",
237 gdb_stdout);
238 }
239
240 /* Default target_has_* methods for process_stratum targets. */
241
242 int
243 default_child_has_all_memory (struct target_ops *ops)
244 {
245 /* If no inferior selected, then we can't read memory here. */
246 if (ptid_equal (inferior_ptid, null_ptid))
247 return 0;
248
249 return 1;
250 }
251
252 int
253 default_child_has_memory (struct target_ops *ops)
254 {
255 /* If no inferior selected, then we can't read memory here. */
256 if (ptid_equal (inferior_ptid, null_ptid))
257 return 0;
258
259 return 1;
260 }
261
262 int
263 default_child_has_stack (struct target_ops *ops)
264 {
265 /* If no inferior selected, there's no stack. */
266 if (ptid_equal (inferior_ptid, null_ptid))
267 return 0;
268
269 return 1;
270 }
271
272 int
273 default_child_has_registers (struct target_ops *ops)
274 {
275 /* Can't read registers from no inferior. */
276 if (ptid_equal (inferior_ptid, null_ptid))
277 return 0;
278
279 return 1;
280 }
281
282 int
283 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
284 {
285 /* If there's no thread selected, then we can't make it run through
286 hoops. */
287 if (ptid_equal (the_ptid, null_ptid))
288 return 0;
289
290 return 1;
291 }
292
293
294 int
295 target_has_all_memory_1 (void)
296 {
297 struct target_ops *t;
298
299 for (t = current_target.beneath; t != NULL; t = t->beneath)
300 if (t->to_has_all_memory (t))
301 return 1;
302
303 return 0;
304 }
305
306 int
307 target_has_memory_1 (void)
308 {
309 struct target_ops *t;
310
311 for (t = current_target.beneath; t != NULL; t = t->beneath)
312 if (t->to_has_memory (t))
313 return 1;
314
315 return 0;
316 }
317
318 int
319 target_has_stack_1 (void)
320 {
321 struct target_ops *t;
322
323 for (t = current_target.beneath; t != NULL; t = t->beneath)
324 if (t->to_has_stack (t))
325 return 1;
326
327 return 0;
328 }
329
330 int
331 target_has_registers_1 (void)
332 {
333 struct target_ops *t;
334
335 for (t = current_target.beneath; t != NULL; t = t->beneath)
336 if (t->to_has_registers (t))
337 return 1;
338
339 return 0;
340 }
341
342 int
343 target_has_execution_1 (ptid_t the_ptid)
344 {
345 struct target_ops *t;
346
347 for (t = current_target.beneath; t != NULL; t = t->beneath)
348 if (t->to_has_execution (t, the_ptid))
349 return 1;
350
351 return 0;
352 }
353
354 int
355 target_has_execution_current (void)
356 {
357 return target_has_execution_1 (inferior_ptid);
358 }
359
360 /* Complete initialization of T. This ensures that various fields in
361 T are set, if needed by the target implementation. */
362
363 void
364 complete_target_initialization (struct target_ops *t)
365 {
366 /* Provide default values for all "must have" methods. */
367 if (t->to_xfer_partial == NULL)
368 t->to_xfer_partial = default_xfer_partial;
369
370 if (t->to_has_all_memory == NULL)
371 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_memory == NULL)
374 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_stack == NULL)
377 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_registers == NULL)
380 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
381
382 if (t->to_has_execution == NULL)
383 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
384
385 install_delegators (t);
386 }
387
388 /* Add possible target architecture T to the list and add a new
389 command 'target T->to_shortname'. Set COMPLETER as the command's
390 completer if not NULL. */
391
392 void
393 add_target_with_completer (struct target_ops *t,
394 completer_ftype *completer)
395 {
396 struct cmd_list_element *c;
397
398 complete_target_initialization (t);
399
400 if (!target_structs)
401 {
402 target_struct_allocsize = DEFAULT_ALLOCSIZE;
403 target_structs = (struct target_ops **) xmalloc
404 (target_struct_allocsize * sizeof (*target_structs));
405 }
406 if (target_struct_size >= target_struct_allocsize)
407 {
408 target_struct_allocsize *= 2;
409 target_structs = (struct target_ops **)
410 xrealloc ((char *) target_structs,
411 target_struct_allocsize * sizeof (*target_structs));
412 }
413 target_structs[target_struct_size++] = t;
414
415 if (targetlist == NULL)
416 add_prefix_cmd ("target", class_run, target_command, _("\
417 Connect to a target machine or process.\n\
418 The first argument is the type or protocol of the target machine.\n\
419 Remaining arguments are interpreted by the target protocol. For more\n\
420 information on the arguments for a particular protocol, type\n\
421 `help target ' followed by the protocol name."),
422 &targetlist, "target ", 0, &cmdlist);
423 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
424 &targetlist);
425 if (completer != NULL)
426 set_cmd_completer (c, completer);
427 }
428
429 /* Add a possible target architecture to the list. */
430
431 void
432 add_target (struct target_ops *t)
433 {
434 add_target_with_completer (t, NULL);
435 }
436
437 /* See target.h. */
438
439 void
440 add_deprecated_target_alias (struct target_ops *t, char *alias)
441 {
442 struct cmd_list_element *c;
443 char *alt;
444
445 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
446 see PR cli/15104. */
447 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
448 alt = xstrprintf ("target %s", t->to_shortname);
449 deprecate_cmd (c, alt);
450 }
451
452 /* Stub functions */
453
454 void
455 target_ignore (void)
456 {
457 }
458
459 void
460 target_kill (void)
461 {
462 if (targetdebug)
463 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
464
465 current_target.to_kill (&current_target);
466 }
467
468 void
469 target_load (char *arg, int from_tty)
470 {
471 target_dcache_invalidate ();
472 (*current_target.to_load) (&current_target, arg, from_tty);
473 }
474
475 void
476 target_create_inferior (char *exec_file, char *args,
477 char **env, int from_tty)
478 {
479 struct target_ops *t;
480
481 for (t = current_target.beneath; t != NULL; t = t->beneath)
482 {
483 if (t->to_create_inferior != NULL)
484 {
485 t->to_create_inferior (t, exec_file, args, env, from_tty);
486 if (targetdebug)
487 fprintf_unfiltered (gdb_stdlog,
488 "target_create_inferior (%s, %s, xxx, %d)\n",
489 exec_file, args, from_tty);
490 return;
491 }
492 }
493
494 internal_error (__FILE__, __LINE__,
495 _("could not find a target to create inferior"));
496 }
497
498 void
499 target_terminal_inferior (void)
500 {
501 /* A background resume (``run&'') should leave GDB in control of the
502 terminal. Use target_can_async_p, not target_is_async_p, since at
503 this point the target is not async yet. However, if sync_execution
504 is not set, we know it will become async prior to resume. */
505 if (target_can_async_p () && !sync_execution)
506 return;
507
508 /* If GDB is resuming the inferior in the foreground, install
509 inferior's terminal modes. */
510 (*current_target.to_terminal_inferior) (&current_target);
511 }
512
513 static int
514 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
515 struct target_ops *t)
516 {
517 errno = EIO; /* Can't read/write this location. */
518 return 0; /* No bytes handled. */
519 }
520
521 static void
522 tcomplain (void)
523 {
524 error (_("You can't do that when your target is `%s'"),
525 current_target.to_shortname);
526 }
527
528 void
529 noprocess (void)
530 {
531 error (_("You can't do that without a process to debug."));
532 }
533
534 static void
535 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
536 {
537 printf_unfiltered (_("No saved terminal information.\n"));
538 }
539
540 /* A default implementation for the to_get_ada_task_ptid target method.
541
542 This function builds the PTID by using both LWP and TID as part of
543 the PTID lwp and tid elements. The pid used is the pid of the
544 inferior_ptid. */
545
546 static ptid_t
547 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
548 {
549 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
550 }
551
552 static enum exec_direction_kind
553 default_execution_direction (struct target_ops *self)
554 {
555 if (!target_can_execute_reverse)
556 return EXEC_FORWARD;
557 else if (!target_can_async_p ())
558 return EXEC_FORWARD;
559 else
560 gdb_assert_not_reached ("\
561 to_execution_direction must be implemented for reverse async");
562 }
563
564 /* Go through the target stack from top to bottom, copying over zero
565 entries in current_target, then filling in still empty entries. In
566 effect, we are doing class inheritance through the pushed target
567 vectors.
568
569 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
570 is currently implemented, is that it discards any knowledge of
571 which target an inherited method originally belonged to.
572 Consequently, new new target methods should instead explicitly and
573 locally search the target stack for the target that can handle the
574 request. */
575
576 static void
577 update_current_target (void)
578 {
579 struct target_ops *t;
580
581 /* First, reset current's contents. */
582 memset (&current_target, 0, sizeof (current_target));
583
584 /* Install the delegators. */
585 install_delegators (&current_target);
586
587 #define INHERIT(FIELD, TARGET) \
588 if (!current_target.FIELD) \
589 current_target.FIELD = (TARGET)->FIELD
590
591 for (t = target_stack; t; t = t->beneath)
592 {
593 INHERIT (to_shortname, t);
594 INHERIT (to_longname, t);
595 INHERIT (to_doc, t);
596 /* Do not inherit to_open. */
597 /* Do not inherit to_close. */
598 /* Do not inherit to_attach. */
599 /* Do not inherit to_post_attach. */
600 INHERIT (to_attach_no_wait, t);
601 /* Do not inherit to_detach. */
602 /* Do not inherit to_disconnect. */
603 /* Do not inherit to_resume. */
604 /* Do not inherit to_wait. */
605 /* Do not inherit to_fetch_registers. */
606 /* Do not inherit to_store_registers. */
607 /* Do not inherit to_prepare_to_store. */
608 INHERIT (deprecated_xfer_memory, t);
609 /* Do not inherit to_files_info. */
610 /* Do not inherit to_insert_breakpoint. */
611 /* Do not inherit to_remove_breakpoint. */
612 /* Do not inherit to_can_use_hw_breakpoint. */
613 /* Do not inherit to_insert_hw_breakpoint. */
614 /* Do not inherit to_remove_hw_breakpoint. */
615 /* Do not inherit to_ranged_break_num_registers. */
616 /* Do not inherit to_insert_watchpoint. */
617 /* Do not inherit to_remove_watchpoint. */
618 /* Do not inherit to_insert_mask_watchpoint. */
619 /* Do not inherit to_remove_mask_watchpoint. */
620 /* Do not inherit to_stopped_data_address. */
621 INHERIT (to_have_steppable_watchpoint, t);
622 INHERIT (to_have_continuable_watchpoint, t);
623 /* Do not inherit to_stopped_by_watchpoint. */
624 /* Do not inherit to_watchpoint_addr_within_range. */
625 /* Do not inherit to_region_ok_for_hw_watchpoint. */
626 /* Do not inherit to_can_accel_watchpoint_condition. */
627 /* Do not inherit to_masked_watch_num_registers. */
628 /* Do not inherit to_terminal_init. */
629 /* Do not inherit to_terminal_inferior. */
630 /* Do not inherit to_terminal_ours_for_output. */
631 /* Do not inherit to_terminal_ours. */
632 /* Do not inherit to_terminal_save_ours. */
633 /* Do not inherit to_terminal_info. */
634 /* Do not inherit to_kill. */
635 /* Do not inherit to_load. */
636 /* Do no inherit to_create_inferior. */
637 /* Do not inherit to_post_startup_inferior. */
638 /* Do not inherit to_insert_fork_catchpoint. */
639 /* Do not inherit to_remove_fork_catchpoint. */
640 /* Do not inherit to_insert_vfork_catchpoint. */
641 /* Do not inherit to_remove_vfork_catchpoint. */
642 /* Do not inherit to_follow_fork. */
643 /* Do not inherit to_insert_exec_catchpoint. */
644 /* Do not inherit to_remove_exec_catchpoint. */
645 /* Do not inherit to_set_syscall_catchpoint. */
646 /* Do not inherit to_has_exited. */
647 /* Do not inherit to_mourn_inferior. */
648 INHERIT (to_can_run, t);
649 /* Do not inherit to_pass_signals. */
650 /* Do not inherit to_program_signals. */
651 /* Do not inherit to_thread_alive. */
652 /* Do not inherit to_find_new_threads. */
653 /* Do not inherit to_pid_to_str. */
654 /* Do not inherit to_extra_thread_info. */
655 /* Do not inherit to_thread_name. */
656 /* Do not inherit to_stop. */
657 /* Do not inherit to_xfer_partial. */
658 /* Do not inherit to_rcmd. */
659 /* Do not inherit to_pid_to_exec_file. */
660 /* Do not inherit to_log_command. */
661 INHERIT (to_stratum, t);
662 /* Do not inherit to_has_all_memory. */
663 /* Do not inherit to_has_memory. */
664 /* Do not inherit to_has_stack. */
665 /* Do not inherit to_has_registers. */
666 /* Do not inherit to_has_execution. */
667 INHERIT (to_has_thread_control, t);
668 /* Do not inherit to_can_async_p. */
669 /* Do not inherit to_is_async_p. */
670 /* Do not inherit to_async. */
671 /* Do not inherit to_find_memory_regions. */
672 /* Do not inherit to_make_corefile_notes. */
673 /* Do not inherit to_get_bookmark. */
674 /* Do not inherit to_goto_bookmark. */
675 /* Do not inherit to_get_thread_local_address. */
676 /* Do not inherit to_can_execute_reverse. */
677 /* Do not inherit to_execution_direction. */
678 /* Do not inherit to_thread_architecture. */
679 /* Do not inherit to_read_description. */
680 /* Do not inherit to_get_ada_task_ptid. */
681 /* Do not inherit to_search_memory. */
682 /* Do not inherit to_supports_multi_process. */
683 /* Do not inherit to_supports_enable_disable_tracepoint. */
684 /* Do not inherit to_supports_string_tracing. */
685 /* Do not inherit to_trace_init. */
686 /* Do not inherit to_download_tracepoint. */
687 /* Do not inherit to_can_download_tracepoint. */
688 /* Do not inherit to_download_trace_state_variable. */
689 /* Do not inherit to_enable_tracepoint. */
690 /* Do not inherit to_disable_tracepoint. */
691 /* Do not inherit to_trace_set_readonly_regions. */
692 /* Do not inherit to_trace_start. */
693 /* Do not inherit to_get_trace_status. */
694 /* Do not inherit to_get_tracepoint_status. */
695 /* Do not inherit to_trace_stop. */
696 /* Do not inherit to_trace_find. */
697 /* Do not inherit to_get_trace_state_variable_value. */
698 /* Do not inherit to_save_trace_data. */
699 /* Do not inherit to_upload_tracepoints. */
700 /* Do not inherit to_upload_trace_state_variables. */
701 /* Do not inherit to_get_raw_trace_data. */
702 /* Do not inherit to_get_min_fast_tracepoint_insn_len. */
703 /* Do not inherit to_set_disconnected_tracing. */
704 /* Do not inherit to_set_circular_trace_buffer. */
705 /* Do not inherit to_set_trace_buffer_size. */
706 /* Do not inherit to_set_trace_notes. */
707 /* Do not inherit to_get_tib_address. */
708 /* Do not inherit to_set_permissions. */
709 /* Do not inherit to_static_tracepoint_marker_at. */
710 /* Do not inherit to_static_tracepoint_markers_by_strid. */
711 /* Do not inherit to_traceframe_info. */
712 /* Do not inherit to_use_agent. */
713 /* Do not inherit to_can_use_agent. */
714 /* Do not inherit to_augmented_libraries_svr4_read. */
715 INHERIT (to_magic, t);
716 /* Do not inherit
717 to_supports_evaluation_of_breakpoint_conditions. */
718 /* Do not inherit to_can_run_breakpoint_commands. */
719 /* Do not inherit to_memory_map. */
720 /* Do not inherit to_flash_erase. */
721 /* Do not inherit to_flash_done. */
722 }
723 #undef INHERIT
724
725 /* Clean up a target struct so it no longer has any zero pointers in
726 it. Some entries are defaulted to a method that print an error,
727 others are hard-wired to a standard recursive default. */
728
729 #define de_fault(field, value) \
730 if (!current_target.field) \
731 current_target.field = value
732
733 de_fault (to_open,
734 (void (*) (char *, int))
735 tcomplain);
736 de_fault (to_close,
737 (void (*) (struct target_ops *))
738 target_ignore);
739 de_fault (deprecated_xfer_memory,
740 (int (*) (CORE_ADDR, gdb_byte *, int, int,
741 struct mem_attrib *, struct target_ops *))
742 nomemory);
743 de_fault (to_can_run,
744 (int (*) (struct target_ops *))
745 return_zero);
746 current_target.to_read_description = NULL;
747
748 #undef de_fault
749
750 /* Finally, position the target-stack beneath the squashed
751 "current_target". That way code looking for a non-inherited
752 target method can quickly and simply find it. */
753 current_target.beneath = target_stack;
754
755 if (targetdebug)
756 setup_target_debug ();
757 }
758
759 /* Push a new target type into the stack of the existing target accessors,
760 possibly superseding some of the existing accessors.
761
762 Rather than allow an empty stack, we always have the dummy target at
763 the bottom stratum, so we can call the function vectors without
764 checking them. */
765
766 void
767 push_target (struct target_ops *t)
768 {
769 struct target_ops **cur;
770
771 /* Check magic number. If wrong, it probably means someone changed
772 the struct definition, but not all the places that initialize one. */
773 if (t->to_magic != OPS_MAGIC)
774 {
775 fprintf_unfiltered (gdb_stderr,
776 "Magic number of %s target struct wrong\n",
777 t->to_shortname);
778 internal_error (__FILE__, __LINE__,
779 _("failed internal consistency check"));
780 }
781
782 /* Find the proper stratum to install this target in. */
783 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
784 {
785 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
786 break;
787 }
788
789 /* If there's already targets at this stratum, remove them. */
790 /* FIXME: cagney/2003-10-15: I think this should be popping all
791 targets to CUR, and not just those at this stratum level. */
792 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
793 {
794 /* There's already something at this stratum level. Close it,
795 and un-hook it from the stack. */
796 struct target_ops *tmp = (*cur);
797
798 (*cur) = (*cur)->beneath;
799 tmp->beneath = NULL;
800 target_close (tmp);
801 }
802
803 /* We have removed all targets in our stratum, now add the new one. */
804 t->beneath = (*cur);
805 (*cur) = t;
806
807 update_current_target ();
808 }
809
810 /* Remove a target_ops vector from the stack, wherever it may be.
811 Return how many times it was removed (0 or 1). */
812
813 int
814 unpush_target (struct target_ops *t)
815 {
816 struct target_ops **cur;
817 struct target_ops *tmp;
818
819 if (t->to_stratum == dummy_stratum)
820 internal_error (__FILE__, __LINE__,
821 _("Attempt to unpush the dummy target"));
822
823 /* Look for the specified target. Note that we assume that a target
824 can only occur once in the target stack. */
825
826 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
827 {
828 if ((*cur) == t)
829 break;
830 }
831
832 /* If we don't find target_ops, quit. Only open targets should be
833 closed. */
834 if ((*cur) == NULL)
835 return 0;
836
837 /* Unchain the target. */
838 tmp = (*cur);
839 (*cur) = (*cur)->beneath;
840 tmp->beneath = NULL;
841
842 update_current_target ();
843
844 /* Finally close the target. Note we do this after unchaining, so
845 any target method calls from within the target_close
846 implementation don't end up in T anymore. */
847 target_close (t);
848
849 return 1;
850 }
851
852 void
853 pop_all_targets_above (enum strata above_stratum)
854 {
855 while ((int) (current_target.to_stratum) > (int) above_stratum)
856 {
857 if (!unpush_target (target_stack))
858 {
859 fprintf_unfiltered (gdb_stderr,
860 "pop_all_targets couldn't find target %s\n",
861 target_stack->to_shortname);
862 internal_error (__FILE__, __LINE__,
863 _("failed internal consistency check"));
864 break;
865 }
866 }
867 }
868
869 void
870 pop_all_targets (void)
871 {
872 pop_all_targets_above (dummy_stratum);
873 }
874
875 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
876
877 int
878 target_is_pushed (struct target_ops *t)
879 {
880 struct target_ops **cur;
881
882 /* Check magic number. If wrong, it probably means someone changed
883 the struct definition, but not all the places that initialize one. */
884 if (t->to_magic != OPS_MAGIC)
885 {
886 fprintf_unfiltered (gdb_stderr,
887 "Magic number of %s target struct wrong\n",
888 t->to_shortname);
889 internal_error (__FILE__, __LINE__,
890 _("failed internal consistency check"));
891 }
892
893 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
894 if (*cur == t)
895 return 1;
896
897 return 0;
898 }
899
900 /* Using the objfile specified in OBJFILE, find the address for the
901 current thread's thread-local storage with offset OFFSET. */
902 CORE_ADDR
903 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
904 {
905 volatile CORE_ADDR addr = 0;
906 struct target_ops *target;
907
908 for (target = current_target.beneath;
909 target != NULL;
910 target = target->beneath)
911 {
912 if (target->to_get_thread_local_address != NULL)
913 break;
914 }
915
916 if (target != NULL
917 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
918 {
919 ptid_t ptid = inferior_ptid;
920 volatile struct gdb_exception ex;
921
922 TRY_CATCH (ex, RETURN_MASK_ALL)
923 {
924 CORE_ADDR lm_addr;
925
926 /* Fetch the load module address for this objfile. */
927 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
928 objfile);
929 /* If it's 0, throw the appropriate exception. */
930 if (lm_addr == 0)
931 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
932 _("TLS load module not found"));
933
934 addr = target->to_get_thread_local_address (target, ptid,
935 lm_addr, offset);
936 }
937 /* If an error occurred, print TLS related messages here. Otherwise,
938 throw the error to some higher catcher. */
939 if (ex.reason < 0)
940 {
941 int objfile_is_library = (objfile->flags & OBJF_SHARED);
942
943 switch (ex.error)
944 {
945 case TLS_NO_LIBRARY_SUPPORT_ERROR:
946 error (_("Cannot find thread-local variables "
947 "in this thread library."));
948 break;
949 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
950 if (objfile_is_library)
951 error (_("Cannot find shared library `%s' in dynamic"
952 " linker's load module list"), objfile_name (objfile));
953 else
954 error (_("Cannot find executable file `%s' in dynamic"
955 " linker's load module list"), objfile_name (objfile));
956 break;
957 case TLS_NOT_ALLOCATED_YET_ERROR:
958 if (objfile_is_library)
959 error (_("The inferior has not yet allocated storage for"
960 " thread-local variables in\n"
961 "the shared library `%s'\n"
962 "for %s"),
963 objfile_name (objfile), target_pid_to_str (ptid));
964 else
965 error (_("The inferior has not yet allocated storage for"
966 " thread-local variables in\n"
967 "the executable `%s'\n"
968 "for %s"),
969 objfile_name (objfile), target_pid_to_str (ptid));
970 break;
971 case TLS_GENERIC_ERROR:
972 if (objfile_is_library)
973 error (_("Cannot find thread-local storage for %s, "
974 "shared library %s:\n%s"),
975 target_pid_to_str (ptid),
976 objfile_name (objfile), ex.message);
977 else
978 error (_("Cannot find thread-local storage for %s, "
979 "executable file %s:\n%s"),
980 target_pid_to_str (ptid),
981 objfile_name (objfile), ex.message);
982 break;
983 default:
984 throw_exception (ex);
985 break;
986 }
987 }
988 }
989 /* It wouldn't be wrong here to try a gdbarch method, too; finding
990 TLS is an ABI-specific thing. But we don't do that yet. */
991 else
992 error (_("Cannot find thread-local variables on this target"));
993
994 return addr;
995 }
996
997 const char *
998 target_xfer_status_to_string (enum target_xfer_status err)
999 {
1000 #define CASE(X) case X: return #X
1001 switch (err)
1002 {
1003 CASE(TARGET_XFER_E_IO);
1004 CASE(TARGET_XFER_E_UNAVAILABLE);
1005 default:
1006 return "<unknown>";
1007 }
1008 #undef CASE
1009 };
1010
1011
1012 #undef MIN
1013 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1014
1015 /* target_read_string -- read a null terminated string, up to LEN bytes,
1016 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1017 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1018 is responsible for freeing it. Return the number of bytes successfully
1019 read. */
1020
1021 int
1022 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1023 {
1024 int tlen, offset, i;
1025 gdb_byte buf[4];
1026 int errcode = 0;
1027 char *buffer;
1028 int buffer_allocated;
1029 char *bufptr;
1030 unsigned int nbytes_read = 0;
1031
1032 gdb_assert (string);
1033
1034 /* Small for testing. */
1035 buffer_allocated = 4;
1036 buffer = xmalloc (buffer_allocated);
1037 bufptr = buffer;
1038
1039 while (len > 0)
1040 {
1041 tlen = MIN (len, 4 - (memaddr & 3));
1042 offset = memaddr & 3;
1043
1044 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1045 if (errcode != 0)
1046 {
1047 /* The transfer request might have crossed the boundary to an
1048 unallocated region of memory. Retry the transfer, requesting
1049 a single byte. */
1050 tlen = 1;
1051 offset = 0;
1052 errcode = target_read_memory (memaddr, buf, 1);
1053 if (errcode != 0)
1054 goto done;
1055 }
1056
1057 if (bufptr - buffer + tlen > buffer_allocated)
1058 {
1059 unsigned int bytes;
1060
1061 bytes = bufptr - buffer;
1062 buffer_allocated *= 2;
1063 buffer = xrealloc (buffer, buffer_allocated);
1064 bufptr = buffer + bytes;
1065 }
1066
1067 for (i = 0; i < tlen; i++)
1068 {
1069 *bufptr++ = buf[i + offset];
1070 if (buf[i + offset] == '\000')
1071 {
1072 nbytes_read += i + 1;
1073 goto done;
1074 }
1075 }
1076
1077 memaddr += tlen;
1078 len -= tlen;
1079 nbytes_read += tlen;
1080 }
1081 done:
1082 *string = buffer;
1083 if (errnop != NULL)
1084 *errnop = errcode;
1085 return nbytes_read;
1086 }
1087
1088 struct target_section_table *
1089 target_get_section_table (struct target_ops *target)
1090 {
1091 struct target_ops *t;
1092
1093 if (targetdebug)
1094 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1095
1096 for (t = target; t != NULL; t = t->beneath)
1097 if (t->to_get_section_table != NULL)
1098 return (*t->to_get_section_table) (t);
1099
1100 return NULL;
1101 }
1102
1103 /* Find a section containing ADDR. */
1104
1105 struct target_section *
1106 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1107 {
1108 struct target_section_table *table = target_get_section_table (target);
1109 struct target_section *secp;
1110
1111 if (table == NULL)
1112 return NULL;
1113
1114 for (secp = table->sections; secp < table->sections_end; secp++)
1115 {
1116 if (addr >= secp->addr && addr < secp->endaddr)
1117 return secp;
1118 }
1119 return NULL;
1120 }
1121
1122 /* Read memory from the live target, even if currently inspecting a
1123 traceframe. The return is the same as that of target_read. */
1124
1125 static enum target_xfer_status
1126 target_read_live_memory (enum target_object object,
1127 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1128 ULONGEST *xfered_len)
1129 {
1130 enum target_xfer_status ret;
1131 struct cleanup *cleanup;
1132
1133 /* Switch momentarily out of tfind mode so to access live memory.
1134 Note that this must not clear global state, such as the frame
1135 cache, which must still remain valid for the previous traceframe.
1136 We may be _building_ the frame cache at this point. */
1137 cleanup = make_cleanup_restore_traceframe_number ();
1138 set_traceframe_number (-1);
1139
1140 ret = target_xfer_partial (current_target.beneath, object, NULL,
1141 myaddr, NULL, memaddr, len, xfered_len);
1142
1143 do_cleanups (cleanup);
1144 return ret;
1145 }
1146
1147 /* Using the set of read-only target sections of OPS, read live
1148 read-only memory. Note that the actual reads start from the
1149 top-most target again.
1150
1151 For interface/parameters/return description see target.h,
1152 to_xfer_partial. */
1153
1154 static enum target_xfer_status
1155 memory_xfer_live_readonly_partial (struct target_ops *ops,
1156 enum target_object object,
1157 gdb_byte *readbuf, ULONGEST memaddr,
1158 ULONGEST len, ULONGEST *xfered_len)
1159 {
1160 struct target_section *secp;
1161 struct target_section_table *table;
1162
1163 secp = target_section_by_addr (ops, memaddr);
1164 if (secp != NULL
1165 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1166 secp->the_bfd_section)
1167 & SEC_READONLY))
1168 {
1169 struct target_section *p;
1170 ULONGEST memend = memaddr + len;
1171
1172 table = target_get_section_table (ops);
1173
1174 for (p = table->sections; p < table->sections_end; p++)
1175 {
1176 if (memaddr >= p->addr)
1177 {
1178 if (memend <= p->endaddr)
1179 {
1180 /* Entire transfer is within this section. */
1181 return target_read_live_memory (object, memaddr,
1182 readbuf, len, xfered_len);
1183 }
1184 else if (memaddr >= p->endaddr)
1185 {
1186 /* This section ends before the transfer starts. */
1187 continue;
1188 }
1189 else
1190 {
1191 /* This section overlaps the transfer. Just do half. */
1192 len = p->endaddr - memaddr;
1193 return target_read_live_memory (object, memaddr,
1194 readbuf, len, xfered_len);
1195 }
1196 }
1197 }
1198 }
1199
1200 return TARGET_XFER_EOF;
1201 }
1202
1203 /* Read memory from more than one valid target. A core file, for
1204 instance, could have some of memory but delegate other bits to
1205 the target below it. So, we must manually try all targets. */
1206
1207 static enum target_xfer_status
1208 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1209 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1210 ULONGEST *xfered_len)
1211 {
1212 enum target_xfer_status res;
1213
1214 do
1215 {
1216 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1217 readbuf, writebuf, memaddr, len,
1218 xfered_len);
1219 if (res == TARGET_XFER_OK)
1220 break;
1221
1222 /* Stop if the target reports that the memory is not available. */
1223 if (res == TARGET_XFER_E_UNAVAILABLE)
1224 break;
1225
1226 /* We want to continue past core files to executables, but not
1227 past a running target's memory. */
1228 if (ops->to_has_all_memory (ops))
1229 break;
1230
1231 ops = ops->beneath;
1232 }
1233 while (ops != NULL);
1234
1235 return res;
1236 }
1237
1238 /* Perform a partial memory transfer.
1239 For docs see target.h, to_xfer_partial. */
1240
1241 static enum target_xfer_status
1242 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1243 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1244 ULONGEST len, ULONGEST *xfered_len)
1245 {
1246 enum target_xfer_status res;
1247 int reg_len;
1248 struct mem_region *region;
1249 struct inferior *inf;
1250
1251 /* For accesses to unmapped overlay sections, read directly from
1252 files. Must do this first, as MEMADDR may need adjustment. */
1253 if (readbuf != NULL && overlay_debugging)
1254 {
1255 struct obj_section *section = find_pc_overlay (memaddr);
1256
1257 if (pc_in_unmapped_range (memaddr, section))
1258 {
1259 struct target_section_table *table
1260 = target_get_section_table (ops);
1261 const char *section_name = section->the_bfd_section->name;
1262
1263 memaddr = overlay_mapped_address (memaddr, section);
1264 return section_table_xfer_memory_partial (readbuf, writebuf,
1265 memaddr, len, xfered_len,
1266 table->sections,
1267 table->sections_end,
1268 section_name);
1269 }
1270 }
1271
1272 /* Try the executable files, if "trust-readonly-sections" is set. */
1273 if (readbuf != NULL && trust_readonly)
1274 {
1275 struct target_section *secp;
1276 struct target_section_table *table;
1277
1278 secp = target_section_by_addr (ops, memaddr);
1279 if (secp != NULL
1280 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1281 secp->the_bfd_section)
1282 & SEC_READONLY))
1283 {
1284 table = target_get_section_table (ops);
1285 return section_table_xfer_memory_partial (readbuf, writebuf,
1286 memaddr, len, xfered_len,
1287 table->sections,
1288 table->sections_end,
1289 NULL);
1290 }
1291 }
1292
1293 /* If reading unavailable memory in the context of traceframes, and
1294 this address falls within a read-only section, fallback to
1295 reading from live memory. */
1296 if (readbuf != NULL && get_traceframe_number () != -1)
1297 {
1298 VEC(mem_range_s) *available;
1299
1300 /* If we fail to get the set of available memory, then the
1301 target does not support querying traceframe info, and so we
1302 attempt reading from the traceframe anyway (assuming the
1303 target implements the old QTro packet then). */
1304 if (traceframe_available_memory (&available, memaddr, len))
1305 {
1306 struct cleanup *old_chain;
1307
1308 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1309
1310 if (VEC_empty (mem_range_s, available)
1311 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1312 {
1313 /* Don't read into the traceframe's available
1314 memory. */
1315 if (!VEC_empty (mem_range_s, available))
1316 {
1317 LONGEST oldlen = len;
1318
1319 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1320 gdb_assert (len <= oldlen);
1321 }
1322
1323 do_cleanups (old_chain);
1324
1325 /* This goes through the topmost target again. */
1326 res = memory_xfer_live_readonly_partial (ops, object,
1327 readbuf, memaddr,
1328 len, xfered_len);
1329 if (res == TARGET_XFER_OK)
1330 return TARGET_XFER_OK;
1331 else
1332 {
1333 /* No use trying further, we know some memory starting
1334 at MEMADDR isn't available. */
1335 *xfered_len = len;
1336 return TARGET_XFER_E_UNAVAILABLE;
1337 }
1338 }
1339
1340 /* Don't try to read more than how much is available, in
1341 case the target implements the deprecated QTro packet to
1342 cater for older GDBs (the target's knowledge of read-only
1343 sections may be outdated by now). */
1344 len = VEC_index (mem_range_s, available, 0)->length;
1345
1346 do_cleanups (old_chain);
1347 }
1348 }
1349
1350 /* Try GDB's internal data cache. */
1351 region = lookup_mem_region (memaddr);
1352 /* region->hi == 0 means there's no upper bound. */
1353 if (memaddr + len < region->hi || region->hi == 0)
1354 reg_len = len;
1355 else
1356 reg_len = region->hi - memaddr;
1357
1358 switch (region->attrib.mode)
1359 {
1360 case MEM_RO:
1361 if (writebuf != NULL)
1362 return TARGET_XFER_E_IO;
1363 break;
1364
1365 case MEM_WO:
1366 if (readbuf != NULL)
1367 return TARGET_XFER_E_IO;
1368 break;
1369
1370 case MEM_FLASH:
1371 /* We only support writing to flash during "load" for now. */
1372 if (writebuf != NULL)
1373 error (_("Writing to flash memory forbidden in this context"));
1374 break;
1375
1376 case MEM_NONE:
1377 return TARGET_XFER_E_IO;
1378 }
1379
1380 if (!ptid_equal (inferior_ptid, null_ptid))
1381 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1382 else
1383 inf = NULL;
1384
1385 if (inf != NULL
1386 /* The dcache reads whole cache lines; that doesn't play well
1387 with reading from a trace buffer, because reading outside of
1388 the collected memory range fails. */
1389 && get_traceframe_number () == -1
1390 && (region->attrib.cache
1391 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1392 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1393 {
1394 DCACHE *dcache = target_dcache_get_or_init ();
1395 int l;
1396
1397 if (readbuf != NULL)
1398 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1399 else
1400 /* FIXME drow/2006-08-09: If we're going to preserve const
1401 correctness dcache_xfer_memory should take readbuf and
1402 writebuf. */
1403 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1404 reg_len, 1);
1405 if (l <= 0)
1406 return TARGET_XFER_E_IO;
1407 else
1408 {
1409 *xfered_len = (ULONGEST) l;
1410 return TARGET_XFER_OK;
1411 }
1412 }
1413
1414 /* If none of those methods found the memory we wanted, fall back
1415 to a target partial transfer. Normally a single call to
1416 to_xfer_partial is enough; if it doesn't recognize an object
1417 it will call the to_xfer_partial of the next target down.
1418 But for memory this won't do. Memory is the only target
1419 object which can be read from more than one valid target.
1420 A core file, for instance, could have some of memory but
1421 delegate other bits to the target below it. So, we must
1422 manually try all targets. */
1423
1424 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1425 xfered_len);
1426
1427 /* Make sure the cache gets updated no matter what - if we are writing
1428 to the stack. Even if this write is not tagged as such, we still need
1429 to update the cache. */
1430
1431 if (res == TARGET_XFER_OK
1432 && inf != NULL
1433 && writebuf != NULL
1434 && target_dcache_init_p ()
1435 && !region->attrib.cache
1436 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1437 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1438 {
1439 DCACHE *dcache = target_dcache_get ();
1440
1441 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1442 }
1443
1444 /* If we still haven't got anything, return the last error. We
1445 give up. */
1446 return res;
1447 }
1448
1449 /* Perform a partial memory transfer. For docs see target.h,
1450 to_xfer_partial. */
1451
1452 static enum target_xfer_status
1453 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1454 gdb_byte *readbuf, const gdb_byte *writebuf,
1455 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1456 {
1457 enum target_xfer_status res;
1458
1459 /* Zero length requests are ok and require no work. */
1460 if (len == 0)
1461 return TARGET_XFER_EOF;
1462
1463 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1464 breakpoint insns, thus hiding out from higher layers whether
1465 there are software breakpoints inserted in the code stream. */
1466 if (readbuf != NULL)
1467 {
1468 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1469 xfered_len);
1470
1471 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1472 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1473 }
1474 else
1475 {
1476 void *buf;
1477 struct cleanup *old_chain;
1478
1479 /* A large write request is likely to be partially satisfied
1480 by memory_xfer_partial_1. We will continually malloc
1481 and free a copy of the entire write request for breakpoint
1482 shadow handling even though we only end up writing a small
1483 subset of it. Cap writes to 4KB to mitigate this. */
1484 len = min (4096, len);
1485
1486 buf = xmalloc (len);
1487 old_chain = make_cleanup (xfree, buf);
1488 memcpy (buf, writebuf, len);
1489
1490 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1491 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1492 xfered_len);
1493
1494 do_cleanups (old_chain);
1495 }
1496
1497 return res;
1498 }
1499
1500 static void
1501 restore_show_memory_breakpoints (void *arg)
1502 {
1503 show_memory_breakpoints = (uintptr_t) arg;
1504 }
1505
1506 struct cleanup *
1507 make_show_memory_breakpoints_cleanup (int show)
1508 {
1509 int current = show_memory_breakpoints;
1510
1511 show_memory_breakpoints = show;
1512 return make_cleanup (restore_show_memory_breakpoints,
1513 (void *) (uintptr_t) current);
1514 }
1515
1516 /* For docs see target.h, to_xfer_partial. */
1517
1518 enum target_xfer_status
1519 target_xfer_partial (struct target_ops *ops,
1520 enum target_object object, const char *annex,
1521 gdb_byte *readbuf, const gdb_byte *writebuf,
1522 ULONGEST offset, ULONGEST len,
1523 ULONGEST *xfered_len)
1524 {
1525 enum target_xfer_status retval;
1526
1527 gdb_assert (ops->to_xfer_partial != NULL);
1528
1529 /* Transfer is done when LEN is zero. */
1530 if (len == 0)
1531 return TARGET_XFER_EOF;
1532
1533 if (writebuf && !may_write_memory)
1534 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1535 core_addr_to_string_nz (offset), plongest (len));
1536
1537 *xfered_len = 0;
1538
1539 /* If this is a memory transfer, let the memory-specific code
1540 have a look at it instead. Memory transfers are more
1541 complicated. */
1542 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1543 || object == TARGET_OBJECT_CODE_MEMORY)
1544 retval = memory_xfer_partial (ops, object, readbuf,
1545 writebuf, offset, len, xfered_len);
1546 else if (object == TARGET_OBJECT_RAW_MEMORY)
1547 {
1548 /* Request the normal memory object from other layers. */
1549 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1550 xfered_len);
1551 }
1552 else
1553 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1554 writebuf, offset, len, xfered_len);
1555
1556 if (targetdebug)
1557 {
1558 const unsigned char *myaddr = NULL;
1559
1560 fprintf_unfiltered (gdb_stdlog,
1561 "%s:target_xfer_partial "
1562 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1563 ops->to_shortname,
1564 (int) object,
1565 (annex ? annex : "(null)"),
1566 host_address_to_string (readbuf),
1567 host_address_to_string (writebuf),
1568 core_addr_to_string_nz (offset),
1569 pulongest (len), retval,
1570 pulongest (*xfered_len));
1571
1572 if (readbuf)
1573 myaddr = readbuf;
1574 if (writebuf)
1575 myaddr = writebuf;
1576 if (retval == TARGET_XFER_OK && myaddr != NULL)
1577 {
1578 int i;
1579
1580 fputs_unfiltered (", bytes =", gdb_stdlog);
1581 for (i = 0; i < *xfered_len; i++)
1582 {
1583 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1584 {
1585 if (targetdebug < 2 && i > 0)
1586 {
1587 fprintf_unfiltered (gdb_stdlog, " ...");
1588 break;
1589 }
1590 fprintf_unfiltered (gdb_stdlog, "\n");
1591 }
1592
1593 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1594 }
1595 }
1596
1597 fputc_unfiltered ('\n', gdb_stdlog);
1598 }
1599
1600 /* Check implementations of to_xfer_partial update *XFERED_LEN
1601 properly. Do assertion after printing debug messages, so that we
1602 can find more clues on assertion failure from debugging messages. */
1603 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1604 gdb_assert (*xfered_len > 0);
1605
1606 return retval;
1607 }
1608
1609 /* Read LEN bytes of target memory at address MEMADDR, placing the
1610 results in GDB's memory at MYADDR. Returns either 0 for success or
1611 TARGET_XFER_E_IO if any error occurs.
1612
1613 If an error occurs, no guarantee is made about the contents of the data at
1614 MYADDR. In particular, the caller should not depend upon partial reads
1615 filling the buffer with good data. There is no way for the caller to know
1616 how much good data might have been transfered anyway. Callers that can
1617 deal with partial reads should call target_read (which will retry until
1618 it makes no progress, and then return how much was transferred). */
1619
1620 int
1621 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1622 {
1623 /* Dispatch to the topmost target, not the flattened current_target.
1624 Memory accesses check target->to_has_(all_)memory, and the
1625 flattened target doesn't inherit those. */
1626 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1627 myaddr, memaddr, len) == len)
1628 return 0;
1629 else
1630 return TARGET_XFER_E_IO;
1631 }
1632
1633 /* Like target_read_memory, but specify explicitly that this is a read
1634 from the target's raw memory. That is, this read bypasses the
1635 dcache, breakpoint shadowing, etc. */
1636
1637 int
1638 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1639 {
1640 /* See comment in target_read_memory about why the request starts at
1641 current_target.beneath. */
1642 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1643 myaddr, memaddr, len) == len)
1644 return 0;
1645 else
1646 return TARGET_XFER_E_IO;
1647 }
1648
1649 /* Like target_read_memory, but specify explicitly that this is a read from
1650 the target's stack. This may trigger different cache behavior. */
1651
1652 int
1653 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1654 {
1655 /* See comment in target_read_memory about why the request starts at
1656 current_target.beneath. */
1657 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1658 myaddr, memaddr, len) == len)
1659 return 0;
1660 else
1661 return TARGET_XFER_E_IO;
1662 }
1663
1664 /* Like target_read_memory, but specify explicitly that this is a read from
1665 the target's code. This may trigger different cache behavior. */
1666
1667 int
1668 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1669 {
1670 /* See comment in target_read_memory about why the request starts at
1671 current_target.beneath. */
1672 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1673 myaddr, memaddr, len) == len)
1674 return 0;
1675 else
1676 return TARGET_XFER_E_IO;
1677 }
1678
1679 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1680 Returns either 0 for success or TARGET_XFER_E_IO if any
1681 error occurs. If an error occurs, no guarantee is made about how
1682 much data got written. Callers that can deal with partial writes
1683 should call target_write. */
1684
1685 int
1686 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1687 {
1688 /* See comment in target_read_memory about why the request starts at
1689 current_target.beneath. */
1690 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1691 myaddr, memaddr, len) == len)
1692 return 0;
1693 else
1694 return TARGET_XFER_E_IO;
1695 }
1696
1697 /* Write LEN bytes from MYADDR to target raw memory at address
1698 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1699 if any error occurs. If an error occurs, no guarantee is made
1700 about how much data got written. Callers that can deal with
1701 partial writes should call target_write. */
1702
1703 int
1704 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1705 {
1706 /* See comment in target_read_memory about why the request starts at
1707 current_target.beneath. */
1708 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1709 myaddr, memaddr, len) == len)
1710 return 0;
1711 else
1712 return TARGET_XFER_E_IO;
1713 }
1714
1715 /* Fetch the target's memory map. */
1716
1717 VEC(mem_region_s) *
1718 target_memory_map (void)
1719 {
1720 VEC(mem_region_s) *result;
1721 struct mem_region *last_one, *this_one;
1722 int ix;
1723 struct target_ops *t;
1724
1725 if (targetdebug)
1726 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1727
1728 for (t = current_target.beneath; t != NULL; t = t->beneath)
1729 if (t->to_memory_map != NULL)
1730 break;
1731
1732 if (t == NULL)
1733 return NULL;
1734
1735 result = t->to_memory_map (t);
1736 if (result == NULL)
1737 return NULL;
1738
1739 qsort (VEC_address (mem_region_s, result),
1740 VEC_length (mem_region_s, result),
1741 sizeof (struct mem_region), mem_region_cmp);
1742
1743 /* Check that regions do not overlap. Simultaneously assign
1744 a numbering for the "mem" commands to use to refer to
1745 each region. */
1746 last_one = NULL;
1747 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1748 {
1749 this_one->number = ix;
1750
1751 if (last_one && last_one->hi > this_one->lo)
1752 {
1753 warning (_("Overlapping regions in memory map: ignoring"));
1754 VEC_free (mem_region_s, result);
1755 return NULL;
1756 }
1757 last_one = this_one;
1758 }
1759
1760 return result;
1761 }
1762
1763 void
1764 target_flash_erase (ULONGEST address, LONGEST length)
1765 {
1766 struct target_ops *t;
1767
1768 for (t = current_target.beneath; t != NULL; t = t->beneath)
1769 if (t->to_flash_erase != NULL)
1770 {
1771 if (targetdebug)
1772 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1773 hex_string (address), phex (length, 0));
1774 t->to_flash_erase (t, address, length);
1775 return;
1776 }
1777
1778 tcomplain ();
1779 }
1780
1781 void
1782 target_flash_done (void)
1783 {
1784 struct target_ops *t;
1785
1786 for (t = current_target.beneath; t != NULL; t = t->beneath)
1787 if (t->to_flash_done != NULL)
1788 {
1789 if (targetdebug)
1790 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1791 t->to_flash_done (t);
1792 return;
1793 }
1794
1795 tcomplain ();
1796 }
1797
1798 static void
1799 show_trust_readonly (struct ui_file *file, int from_tty,
1800 struct cmd_list_element *c, const char *value)
1801 {
1802 fprintf_filtered (file,
1803 _("Mode for reading from readonly sections is %s.\n"),
1804 value);
1805 }
1806
1807 /* More generic transfers. */
1808
1809 static enum target_xfer_status
1810 default_xfer_partial (struct target_ops *ops, enum target_object object,
1811 const char *annex, gdb_byte *readbuf,
1812 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1813 ULONGEST *xfered_len)
1814 {
1815 if (object == TARGET_OBJECT_MEMORY
1816 && ops->deprecated_xfer_memory != NULL)
1817 /* If available, fall back to the target's
1818 "deprecated_xfer_memory" method. */
1819 {
1820 int xfered = -1;
1821
1822 errno = 0;
1823 if (writebuf != NULL)
1824 {
1825 void *buffer = xmalloc (len);
1826 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1827
1828 memcpy (buffer, writebuf, len);
1829 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1830 1/*write*/, NULL, ops);
1831 do_cleanups (cleanup);
1832 }
1833 if (readbuf != NULL)
1834 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1835 0/*read*/, NULL, ops);
1836 if (xfered > 0)
1837 {
1838 *xfered_len = (ULONGEST) xfered;
1839 return TARGET_XFER_E_IO;
1840 }
1841 else if (xfered == 0 && errno == 0)
1842 /* "deprecated_xfer_memory" uses 0, cross checked against
1843 ERRNO as one indication of an error. */
1844 return TARGET_XFER_EOF;
1845 else
1846 return TARGET_XFER_E_IO;
1847 }
1848 else
1849 {
1850 gdb_assert (ops->beneath != NULL);
1851 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1852 readbuf, writebuf, offset, len,
1853 xfered_len);
1854 }
1855 }
1856
1857 /* Target vector read/write partial wrapper functions. */
1858
1859 static enum target_xfer_status
1860 target_read_partial (struct target_ops *ops,
1861 enum target_object object,
1862 const char *annex, gdb_byte *buf,
1863 ULONGEST offset, ULONGEST len,
1864 ULONGEST *xfered_len)
1865 {
1866 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1867 xfered_len);
1868 }
1869
1870 static enum target_xfer_status
1871 target_write_partial (struct target_ops *ops,
1872 enum target_object object,
1873 const char *annex, const gdb_byte *buf,
1874 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1875 {
1876 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1877 xfered_len);
1878 }
1879
1880 /* Wrappers to perform the full transfer. */
1881
1882 /* For docs on target_read see target.h. */
1883
1884 LONGEST
1885 target_read (struct target_ops *ops,
1886 enum target_object object,
1887 const char *annex, gdb_byte *buf,
1888 ULONGEST offset, LONGEST len)
1889 {
1890 LONGEST xfered = 0;
1891
1892 while (xfered < len)
1893 {
1894 ULONGEST xfered_len;
1895 enum target_xfer_status status;
1896
1897 status = target_read_partial (ops, object, annex,
1898 (gdb_byte *) buf + xfered,
1899 offset + xfered, len - xfered,
1900 &xfered_len);
1901
1902 /* Call an observer, notifying them of the xfer progress? */
1903 if (status == TARGET_XFER_EOF)
1904 return xfered;
1905 else if (status == TARGET_XFER_OK)
1906 {
1907 xfered += xfered_len;
1908 QUIT;
1909 }
1910 else
1911 return -1;
1912
1913 }
1914 return len;
1915 }
1916
1917 /* Assuming that the entire [begin, end) range of memory cannot be
1918 read, try to read whatever subrange is possible to read.
1919
1920 The function returns, in RESULT, either zero or one memory block.
1921 If there's a readable subrange at the beginning, it is completely
1922 read and returned. Any further readable subrange will not be read.
1923 Otherwise, if there's a readable subrange at the end, it will be
1924 completely read and returned. Any readable subranges before it
1925 (obviously, not starting at the beginning), will be ignored. In
1926 other cases -- either no readable subrange, or readable subrange(s)
1927 that is neither at the beginning, or end, nothing is returned.
1928
1929 The purpose of this function is to handle a read across a boundary
1930 of accessible memory in a case when memory map is not available.
1931 The above restrictions are fine for this case, but will give
1932 incorrect results if the memory is 'patchy'. However, supporting
1933 'patchy' memory would require trying to read every single byte,
1934 and it seems unacceptable solution. Explicit memory map is
1935 recommended for this case -- and target_read_memory_robust will
1936 take care of reading multiple ranges then. */
1937
1938 static void
1939 read_whatever_is_readable (struct target_ops *ops,
1940 ULONGEST begin, ULONGEST end,
1941 VEC(memory_read_result_s) **result)
1942 {
1943 gdb_byte *buf = xmalloc (end - begin);
1944 ULONGEST current_begin = begin;
1945 ULONGEST current_end = end;
1946 int forward;
1947 memory_read_result_s r;
1948 ULONGEST xfered_len;
1949
1950 /* If we previously failed to read 1 byte, nothing can be done here. */
1951 if (end - begin <= 1)
1952 {
1953 xfree (buf);
1954 return;
1955 }
1956
1957 /* Check that either first or the last byte is readable, and give up
1958 if not. This heuristic is meant to permit reading accessible memory
1959 at the boundary of accessible region. */
1960 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1961 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1962 {
1963 forward = 1;
1964 ++current_begin;
1965 }
1966 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1967 buf + (end-begin) - 1, end - 1, 1,
1968 &xfered_len) == TARGET_XFER_OK)
1969 {
1970 forward = 0;
1971 --current_end;
1972 }
1973 else
1974 {
1975 xfree (buf);
1976 return;
1977 }
1978
1979 /* Loop invariant is that the [current_begin, current_end) was previously
1980 found to be not readable as a whole.
1981
1982 Note loop condition -- if the range has 1 byte, we can't divide the range
1983 so there's no point trying further. */
1984 while (current_end - current_begin > 1)
1985 {
1986 ULONGEST first_half_begin, first_half_end;
1987 ULONGEST second_half_begin, second_half_end;
1988 LONGEST xfer;
1989 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1990
1991 if (forward)
1992 {
1993 first_half_begin = current_begin;
1994 first_half_end = middle;
1995 second_half_begin = middle;
1996 second_half_end = current_end;
1997 }
1998 else
1999 {
2000 first_half_begin = middle;
2001 first_half_end = current_end;
2002 second_half_begin = current_begin;
2003 second_half_end = middle;
2004 }
2005
2006 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2007 buf + (first_half_begin - begin),
2008 first_half_begin,
2009 first_half_end - first_half_begin);
2010
2011 if (xfer == first_half_end - first_half_begin)
2012 {
2013 /* This half reads up fine. So, the error must be in the
2014 other half. */
2015 current_begin = second_half_begin;
2016 current_end = second_half_end;
2017 }
2018 else
2019 {
2020 /* This half is not readable. Because we've tried one byte, we
2021 know some part of this half if actually redable. Go to the next
2022 iteration to divide again and try to read.
2023
2024 We don't handle the other half, because this function only tries
2025 to read a single readable subrange. */
2026 current_begin = first_half_begin;
2027 current_end = first_half_end;
2028 }
2029 }
2030
2031 if (forward)
2032 {
2033 /* The [begin, current_begin) range has been read. */
2034 r.begin = begin;
2035 r.end = current_begin;
2036 r.data = buf;
2037 }
2038 else
2039 {
2040 /* The [current_end, end) range has been read. */
2041 LONGEST rlen = end - current_end;
2042
2043 r.data = xmalloc (rlen);
2044 memcpy (r.data, buf + current_end - begin, rlen);
2045 r.begin = current_end;
2046 r.end = end;
2047 xfree (buf);
2048 }
2049 VEC_safe_push(memory_read_result_s, (*result), &r);
2050 }
2051
2052 void
2053 free_memory_read_result_vector (void *x)
2054 {
2055 VEC(memory_read_result_s) *v = x;
2056 memory_read_result_s *current;
2057 int ix;
2058
2059 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2060 {
2061 xfree (current->data);
2062 }
2063 VEC_free (memory_read_result_s, v);
2064 }
2065
2066 VEC(memory_read_result_s) *
2067 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2068 {
2069 VEC(memory_read_result_s) *result = 0;
2070
2071 LONGEST xfered = 0;
2072 while (xfered < len)
2073 {
2074 struct mem_region *region = lookup_mem_region (offset + xfered);
2075 LONGEST rlen;
2076
2077 /* If there is no explicit region, a fake one should be created. */
2078 gdb_assert (region);
2079
2080 if (region->hi == 0)
2081 rlen = len - xfered;
2082 else
2083 rlen = region->hi - offset;
2084
2085 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2086 {
2087 /* Cannot read this region. Note that we can end up here only
2088 if the region is explicitly marked inaccessible, or
2089 'inaccessible-by-default' is in effect. */
2090 xfered += rlen;
2091 }
2092 else
2093 {
2094 LONGEST to_read = min (len - xfered, rlen);
2095 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2096
2097 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2098 (gdb_byte *) buffer,
2099 offset + xfered, to_read);
2100 /* Call an observer, notifying them of the xfer progress? */
2101 if (xfer <= 0)
2102 {
2103 /* Got an error reading full chunk. See if maybe we can read
2104 some subrange. */
2105 xfree (buffer);
2106 read_whatever_is_readable (ops, offset + xfered,
2107 offset + xfered + to_read, &result);
2108 xfered += to_read;
2109 }
2110 else
2111 {
2112 struct memory_read_result r;
2113 r.data = buffer;
2114 r.begin = offset + xfered;
2115 r.end = r.begin + xfer;
2116 VEC_safe_push (memory_read_result_s, result, &r);
2117 xfered += xfer;
2118 }
2119 QUIT;
2120 }
2121 }
2122 return result;
2123 }
2124
2125
2126 /* An alternative to target_write with progress callbacks. */
2127
2128 LONGEST
2129 target_write_with_progress (struct target_ops *ops,
2130 enum target_object object,
2131 const char *annex, const gdb_byte *buf,
2132 ULONGEST offset, LONGEST len,
2133 void (*progress) (ULONGEST, void *), void *baton)
2134 {
2135 LONGEST xfered = 0;
2136
2137 /* Give the progress callback a chance to set up. */
2138 if (progress)
2139 (*progress) (0, baton);
2140
2141 while (xfered < len)
2142 {
2143 ULONGEST xfered_len;
2144 enum target_xfer_status status;
2145
2146 status = target_write_partial (ops, object, annex,
2147 (gdb_byte *) buf + xfered,
2148 offset + xfered, len - xfered,
2149 &xfered_len);
2150
2151 if (status == TARGET_XFER_EOF)
2152 return xfered;
2153 if (TARGET_XFER_STATUS_ERROR_P (status))
2154 return -1;
2155
2156 gdb_assert (status == TARGET_XFER_OK);
2157 if (progress)
2158 (*progress) (xfered_len, baton);
2159
2160 xfered += xfered_len;
2161 QUIT;
2162 }
2163 return len;
2164 }
2165
2166 /* For docs on target_write see target.h. */
2167
2168 LONGEST
2169 target_write (struct target_ops *ops,
2170 enum target_object object,
2171 const char *annex, const gdb_byte *buf,
2172 ULONGEST offset, LONGEST len)
2173 {
2174 return target_write_with_progress (ops, object, annex, buf, offset, len,
2175 NULL, NULL);
2176 }
2177
2178 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2179 the size of the transferred data. PADDING additional bytes are
2180 available in *BUF_P. This is a helper function for
2181 target_read_alloc; see the declaration of that function for more
2182 information. */
2183
2184 static LONGEST
2185 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2186 const char *annex, gdb_byte **buf_p, int padding)
2187 {
2188 size_t buf_alloc, buf_pos;
2189 gdb_byte *buf;
2190
2191 /* This function does not have a length parameter; it reads the
2192 entire OBJECT). Also, it doesn't support objects fetched partly
2193 from one target and partly from another (in a different stratum,
2194 e.g. a core file and an executable). Both reasons make it
2195 unsuitable for reading memory. */
2196 gdb_assert (object != TARGET_OBJECT_MEMORY);
2197
2198 /* Start by reading up to 4K at a time. The target will throttle
2199 this number down if necessary. */
2200 buf_alloc = 4096;
2201 buf = xmalloc (buf_alloc);
2202 buf_pos = 0;
2203 while (1)
2204 {
2205 ULONGEST xfered_len;
2206 enum target_xfer_status status;
2207
2208 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2209 buf_pos, buf_alloc - buf_pos - padding,
2210 &xfered_len);
2211
2212 if (status == TARGET_XFER_EOF)
2213 {
2214 /* Read all there was. */
2215 if (buf_pos == 0)
2216 xfree (buf);
2217 else
2218 *buf_p = buf;
2219 return buf_pos;
2220 }
2221 else if (status != TARGET_XFER_OK)
2222 {
2223 /* An error occurred. */
2224 xfree (buf);
2225 return TARGET_XFER_E_IO;
2226 }
2227
2228 buf_pos += xfered_len;
2229
2230 /* If the buffer is filling up, expand it. */
2231 if (buf_alloc < buf_pos * 2)
2232 {
2233 buf_alloc *= 2;
2234 buf = xrealloc (buf, buf_alloc);
2235 }
2236
2237 QUIT;
2238 }
2239 }
2240
2241 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2242 the size of the transferred data. See the declaration in "target.h"
2243 function for more information about the return value. */
2244
2245 LONGEST
2246 target_read_alloc (struct target_ops *ops, enum target_object object,
2247 const char *annex, gdb_byte **buf_p)
2248 {
2249 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2250 }
2251
2252 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2253 returned as a string, allocated using xmalloc. If an error occurs
2254 or the transfer is unsupported, NULL is returned. Empty objects
2255 are returned as allocated but empty strings. A warning is issued
2256 if the result contains any embedded NUL bytes. */
2257
2258 char *
2259 target_read_stralloc (struct target_ops *ops, enum target_object object,
2260 const char *annex)
2261 {
2262 gdb_byte *buffer;
2263 char *bufstr;
2264 LONGEST i, transferred;
2265
2266 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2267 bufstr = (char *) buffer;
2268
2269 if (transferred < 0)
2270 return NULL;
2271
2272 if (transferred == 0)
2273 return xstrdup ("");
2274
2275 bufstr[transferred] = 0;
2276
2277 /* Check for embedded NUL bytes; but allow trailing NULs. */
2278 for (i = strlen (bufstr); i < transferred; i++)
2279 if (bufstr[i] != 0)
2280 {
2281 warning (_("target object %d, annex %s, "
2282 "contained unexpected null characters"),
2283 (int) object, annex ? annex : "(none)");
2284 break;
2285 }
2286
2287 return bufstr;
2288 }
2289
2290 /* Memory transfer methods. */
2291
2292 void
2293 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2294 LONGEST len)
2295 {
2296 /* This method is used to read from an alternate, non-current
2297 target. This read must bypass the overlay support (as symbols
2298 don't match this target), and GDB's internal cache (wrong cache
2299 for this target). */
2300 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2301 != len)
2302 memory_error (TARGET_XFER_E_IO, addr);
2303 }
2304
2305 ULONGEST
2306 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2307 int len, enum bfd_endian byte_order)
2308 {
2309 gdb_byte buf[sizeof (ULONGEST)];
2310
2311 gdb_assert (len <= sizeof (buf));
2312 get_target_memory (ops, addr, buf, len);
2313 return extract_unsigned_integer (buf, len, byte_order);
2314 }
2315
2316 /* See target.h. */
2317
2318 int
2319 target_insert_breakpoint (struct gdbarch *gdbarch,
2320 struct bp_target_info *bp_tgt)
2321 {
2322 if (!may_insert_breakpoints)
2323 {
2324 warning (_("May not insert breakpoints"));
2325 return 1;
2326 }
2327
2328 return current_target.to_insert_breakpoint (&current_target,
2329 gdbarch, bp_tgt);
2330 }
2331
2332 /* See target.h. */
2333
2334 int
2335 target_remove_breakpoint (struct gdbarch *gdbarch,
2336 struct bp_target_info *bp_tgt)
2337 {
2338 /* This is kind of a weird case to handle, but the permission might
2339 have been changed after breakpoints were inserted - in which case
2340 we should just take the user literally and assume that any
2341 breakpoints should be left in place. */
2342 if (!may_insert_breakpoints)
2343 {
2344 warning (_("May not remove breakpoints"));
2345 return 1;
2346 }
2347
2348 return current_target.to_remove_breakpoint (&current_target,
2349 gdbarch, bp_tgt);
2350 }
2351
2352 static void
2353 target_info (char *args, int from_tty)
2354 {
2355 struct target_ops *t;
2356 int has_all_mem = 0;
2357
2358 if (symfile_objfile != NULL)
2359 printf_unfiltered (_("Symbols from \"%s\".\n"),
2360 objfile_name (symfile_objfile));
2361
2362 for (t = target_stack; t != NULL; t = t->beneath)
2363 {
2364 if (!(*t->to_has_memory) (t))
2365 continue;
2366
2367 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2368 continue;
2369 if (has_all_mem)
2370 printf_unfiltered (_("\tWhile running this, "
2371 "GDB does not access memory from...\n"));
2372 printf_unfiltered ("%s:\n", t->to_longname);
2373 (t->to_files_info) (t);
2374 has_all_mem = (*t->to_has_all_memory) (t);
2375 }
2376 }
2377
2378 /* This function is called before any new inferior is created, e.g.
2379 by running a program, attaching, or connecting to a target.
2380 It cleans up any state from previous invocations which might
2381 change between runs. This is a subset of what target_preopen
2382 resets (things which might change between targets). */
2383
2384 void
2385 target_pre_inferior (int from_tty)
2386 {
2387 /* Clear out solib state. Otherwise the solib state of the previous
2388 inferior might have survived and is entirely wrong for the new
2389 target. This has been observed on GNU/Linux using glibc 2.3. How
2390 to reproduce:
2391
2392 bash$ ./foo&
2393 [1] 4711
2394 bash$ ./foo&
2395 [1] 4712
2396 bash$ gdb ./foo
2397 [...]
2398 (gdb) attach 4711
2399 (gdb) detach
2400 (gdb) attach 4712
2401 Cannot access memory at address 0xdeadbeef
2402 */
2403
2404 /* In some OSs, the shared library list is the same/global/shared
2405 across inferiors. If code is shared between processes, so are
2406 memory regions and features. */
2407 if (!gdbarch_has_global_solist (target_gdbarch ()))
2408 {
2409 no_shared_libraries (NULL, from_tty);
2410
2411 invalidate_target_mem_regions ();
2412
2413 target_clear_description ();
2414 }
2415
2416 agent_capability_invalidate ();
2417 }
2418
2419 /* Callback for iterate_over_inferiors. Gets rid of the given
2420 inferior. */
2421
2422 static int
2423 dispose_inferior (struct inferior *inf, void *args)
2424 {
2425 struct thread_info *thread;
2426
2427 thread = any_thread_of_process (inf->pid);
2428 if (thread)
2429 {
2430 switch_to_thread (thread->ptid);
2431
2432 /* Core inferiors actually should be detached, not killed. */
2433 if (target_has_execution)
2434 target_kill ();
2435 else
2436 target_detach (NULL, 0);
2437 }
2438
2439 return 0;
2440 }
2441
2442 /* This is to be called by the open routine before it does
2443 anything. */
2444
2445 void
2446 target_preopen (int from_tty)
2447 {
2448 dont_repeat ();
2449
2450 if (have_inferiors ())
2451 {
2452 if (!from_tty
2453 || !have_live_inferiors ()
2454 || query (_("A program is being debugged already. Kill it? ")))
2455 iterate_over_inferiors (dispose_inferior, NULL);
2456 else
2457 error (_("Program not killed."));
2458 }
2459
2460 /* Calling target_kill may remove the target from the stack. But if
2461 it doesn't (which seems like a win for UDI), remove it now. */
2462 /* Leave the exec target, though. The user may be switching from a
2463 live process to a core of the same program. */
2464 pop_all_targets_above (file_stratum);
2465
2466 target_pre_inferior (from_tty);
2467 }
2468
2469 /* Detach a target after doing deferred register stores. */
2470
2471 void
2472 target_detach (const char *args, int from_tty)
2473 {
2474 struct target_ops* t;
2475
2476 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2477 /* Don't remove global breakpoints here. They're removed on
2478 disconnection from the target. */
2479 ;
2480 else
2481 /* If we're in breakpoints-always-inserted mode, have to remove
2482 them before detaching. */
2483 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2484
2485 prepare_for_detach ();
2486
2487 current_target.to_detach (&current_target, args, from_tty);
2488 if (targetdebug)
2489 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2490 args, from_tty);
2491 }
2492
2493 void
2494 target_disconnect (char *args, int from_tty)
2495 {
2496 struct target_ops *t;
2497
2498 /* If we're in breakpoints-always-inserted mode or if breakpoints
2499 are global across processes, we have to remove them before
2500 disconnecting. */
2501 remove_breakpoints ();
2502
2503 for (t = current_target.beneath; t != NULL; t = t->beneath)
2504 if (t->to_disconnect != NULL)
2505 {
2506 if (targetdebug)
2507 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2508 args, from_tty);
2509 t->to_disconnect (t, args, from_tty);
2510 return;
2511 }
2512
2513 tcomplain ();
2514 }
2515
2516 ptid_t
2517 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2518 {
2519 struct target_ops *t;
2520 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2521 status, options);
2522
2523 if (targetdebug)
2524 {
2525 char *status_string;
2526 char *options_string;
2527
2528 status_string = target_waitstatus_to_string (status);
2529 options_string = target_options_to_string (options);
2530 fprintf_unfiltered (gdb_stdlog,
2531 "target_wait (%d, status, options={%s})"
2532 " = %d, %s\n",
2533 ptid_get_pid (ptid), options_string,
2534 ptid_get_pid (retval), status_string);
2535 xfree (status_string);
2536 xfree (options_string);
2537 }
2538
2539 return retval;
2540 }
2541
2542 char *
2543 target_pid_to_str (ptid_t ptid)
2544 {
2545 return (*current_target.to_pid_to_str) (&current_target, ptid);
2546 }
2547
2548 char *
2549 target_thread_name (struct thread_info *info)
2550 {
2551 return current_target.to_thread_name (&current_target, info);
2552 }
2553
2554 void
2555 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2556 {
2557 struct target_ops *t;
2558
2559 target_dcache_invalidate ();
2560
2561 current_target.to_resume (&current_target, ptid, step, signal);
2562 if (targetdebug)
2563 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2564 ptid_get_pid (ptid),
2565 step ? "step" : "continue",
2566 gdb_signal_to_name (signal));
2567
2568 registers_changed_ptid (ptid);
2569 set_executing (ptid, 1);
2570 set_running (ptid, 1);
2571 clear_inline_frame_state (ptid);
2572 }
2573
2574 void
2575 target_pass_signals (int numsigs, unsigned char *pass_signals)
2576 {
2577 if (targetdebug)
2578 {
2579 int i;
2580
2581 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2582 numsigs);
2583
2584 for (i = 0; i < numsigs; i++)
2585 if (pass_signals[i])
2586 fprintf_unfiltered (gdb_stdlog, " %s",
2587 gdb_signal_to_name (i));
2588
2589 fprintf_unfiltered (gdb_stdlog, " })\n");
2590 }
2591
2592 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2593 }
2594
2595 void
2596 target_program_signals (int numsigs, unsigned char *program_signals)
2597 {
2598 if (targetdebug)
2599 {
2600 int i;
2601
2602 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2603 numsigs);
2604
2605 for (i = 0; i < numsigs; i++)
2606 if (program_signals[i])
2607 fprintf_unfiltered (gdb_stdlog, " %s",
2608 gdb_signal_to_name (i));
2609
2610 fprintf_unfiltered (gdb_stdlog, " })\n");
2611 }
2612
2613 (*current_target.to_program_signals) (&current_target,
2614 numsigs, program_signals);
2615 }
2616
2617 static int
2618 default_follow_fork (struct target_ops *self, int follow_child,
2619 int detach_fork)
2620 {
2621 /* Some target returned a fork event, but did not know how to follow it. */
2622 internal_error (__FILE__, __LINE__,
2623 _("could not find a target to follow fork"));
2624 }
2625
2626 /* Look through the list of possible targets for a target that can
2627 follow forks. */
2628
2629 int
2630 target_follow_fork (int follow_child, int detach_fork)
2631 {
2632 int retval = current_target.to_follow_fork (&current_target,
2633 follow_child, detach_fork);
2634
2635 if (targetdebug)
2636 fprintf_unfiltered (gdb_stdlog,
2637 "target_follow_fork (%d, %d) = %d\n",
2638 follow_child, detach_fork, retval);
2639 return retval;
2640 }
2641
2642 static void
2643 default_mourn_inferior (struct target_ops *self)
2644 {
2645 internal_error (__FILE__, __LINE__,
2646 _("could not find a target to follow mourn inferior"));
2647 }
2648
2649 void
2650 target_mourn_inferior (void)
2651 {
2652 current_target.to_mourn_inferior (&current_target);
2653 if (targetdebug)
2654 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2655
2656 /* We no longer need to keep handles on any of the object files.
2657 Make sure to release them to avoid unnecessarily locking any
2658 of them while we're not actually debugging. */
2659 bfd_cache_close_all ();
2660 }
2661
2662 /* Look for a target which can describe architectural features, starting
2663 from TARGET. If we find one, return its description. */
2664
2665 const struct target_desc *
2666 target_read_description (struct target_ops *target)
2667 {
2668 struct target_ops *t;
2669
2670 for (t = target; t != NULL; t = t->beneath)
2671 if (t->to_read_description != NULL)
2672 {
2673 const struct target_desc *tdesc;
2674
2675 tdesc = t->to_read_description (t);
2676 if (tdesc)
2677 return tdesc;
2678 }
2679
2680 return NULL;
2681 }
2682
2683 /* The default implementation of to_search_memory.
2684 This implements a basic search of memory, reading target memory and
2685 performing the search here (as opposed to performing the search in on the
2686 target side with, for example, gdbserver). */
2687
2688 int
2689 simple_search_memory (struct target_ops *ops,
2690 CORE_ADDR start_addr, ULONGEST search_space_len,
2691 const gdb_byte *pattern, ULONGEST pattern_len,
2692 CORE_ADDR *found_addrp)
2693 {
2694 /* NOTE: also defined in find.c testcase. */
2695 #define SEARCH_CHUNK_SIZE 16000
2696 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2697 /* Buffer to hold memory contents for searching. */
2698 gdb_byte *search_buf;
2699 unsigned search_buf_size;
2700 struct cleanup *old_cleanups;
2701
2702 search_buf_size = chunk_size + pattern_len - 1;
2703
2704 /* No point in trying to allocate a buffer larger than the search space. */
2705 if (search_space_len < search_buf_size)
2706 search_buf_size = search_space_len;
2707
2708 search_buf = malloc (search_buf_size);
2709 if (search_buf == NULL)
2710 error (_("Unable to allocate memory to perform the search."));
2711 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2712
2713 /* Prime the search buffer. */
2714
2715 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2716 search_buf, start_addr, search_buf_size) != search_buf_size)
2717 {
2718 warning (_("Unable to access %s bytes of target "
2719 "memory at %s, halting search."),
2720 pulongest (search_buf_size), hex_string (start_addr));
2721 do_cleanups (old_cleanups);
2722 return -1;
2723 }
2724
2725 /* Perform the search.
2726
2727 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2728 When we've scanned N bytes we copy the trailing bytes to the start and
2729 read in another N bytes. */
2730
2731 while (search_space_len >= pattern_len)
2732 {
2733 gdb_byte *found_ptr;
2734 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2735
2736 found_ptr = memmem (search_buf, nr_search_bytes,
2737 pattern, pattern_len);
2738
2739 if (found_ptr != NULL)
2740 {
2741 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2742
2743 *found_addrp = found_addr;
2744 do_cleanups (old_cleanups);
2745 return 1;
2746 }
2747
2748 /* Not found in this chunk, skip to next chunk. */
2749
2750 /* Don't let search_space_len wrap here, it's unsigned. */
2751 if (search_space_len >= chunk_size)
2752 search_space_len -= chunk_size;
2753 else
2754 search_space_len = 0;
2755
2756 if (search_space_len >= pattern_len)
2757 {
2758 unsigned keep_len = search_buf_size - chunk_size;
2759 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2760 int nr_to_read;
2761
2762 /* Copy the trailing part of the previous iteration to the front
2763 of the buffer for the next iteration. */
2764 gdb_assert (keep_len == pattern_len - 1);
2765 memcpy (search_buf, search_buf + chunk_size, keep_len);
2766
2767 nr_to_read = min (search_space_len - keep_len, chunk_size);
2768
2769 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2770 search_buf + keep_len, read_addr,
2771 nr_to_read) != nr_to_read)
2772 {
2773 warning (_("Unable to access %s bytes of target "
2774 "memory at %s, halting search."),
2775 plongest (nr_to_read),
2776 hex_string (read_addr));
2777 do_cleanups (old_cleanups);
2778 return -1;
2779 }
2780
2781 start_addr += chunk_size;
2782 }
2783 }
2784
2785 /* Not found. */
2786
2787 do_cleanups (old_cleanups);
2788 return 0;
2789 }
2790
2791 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2792 sequence of bytes in PATTERN with length PATTERN_LEN.
2793
2794 The result is 1 if found, 0 if not found, and -1 if there was an error
2795 requiring halting of the search (e.g. memory read error).
2796 If the pattern is found the address is recorded in FOUND_ADDRP. */
2797
2798 int
2799 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2800 const gdb_byte *pattern, ULONGEST pattern_len,
2801 CORE_ADDR *found_addrp)
2802 {
2803 struct target_ops *t;
2804 int found;
2805
2806 /* We don't use INHERIT to set current_target.to_search_memory,
2807 so we have to scan the target stack and handle targetdebug
2808 ourselves. */
2809
2810 if (targetdebug)
2811 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2812 hex_string (start_addr));
2813
2814 for (t = current_target.beneath; t != NULL; t = t->beneath)
2815 if (t->to_search_memory != NULL)
2816 break;
2817
2818 if (t != NULL)
2819 {
2820 found = t->to_search_memory (t, start_addr, search_space_len,
2821 pattern, pattern_len, found_addrp);
2822 }
2823 else
2824 {
2825 /* If a special version of to_search_memory isn't available, use the
2826 simple version. */
2827 found = simple_search_memory (current_target.beneath,
2828 start_addr, search_space_len,
2829 pattern, pattern_len, found_addrp);
2830 }
2831
2832 if (targetdebug)
2833 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2834
2835 return found;
2836 }
2837
2838 /* Look through the currently pushed targets. If none of them will
2839 be able to restart the currently running process, issue an error
2840 message. */
2841
2842 void
2843 target_require_runnable (void)
2844 {
2845 struct target_ops *t;
2846
2847 for (t = target_stack; t != NULL; t = t->beneath)
2848 {
2849 /* If this target knows how to create a new program, then
2850 assume we will still be able to after killing the current
2851 one. Either killing and mourning will not pop T, or else
2852 find_default_run_target will find it again. */
2853 if (t->to_create_inferior != NULL)
2854 return;
2855
2856 /* Do not worry about thread_stratum targets that can not
2857 create inferiors. Assume they will be pushed again if
2858 necessary, and continue to the process_stratum. */
2859 if (t->to_stratum == thread_stratum
2860 || t->to_stratum == arch_stratum)
2861 continue;
2862
2863 error (_("The \"%s\" target does not support \"run\". "
2864 "Try \"help target\" or \"continue\"."),
2865 t->to_shortname);
2866 }
2867
2868 /* This function is only called if the target is running. In that
2869 case there should have been a process_stratum target and it
2870 should either know how to create inferiors, or not... */
2871 internal_error (__FILE__, __LINE__, _("No targets found"));
2872 }
2873
2874 /* Look through the list of possible targets for a target that can
2875 execute a run or attach command without any other data. This is
2876 used to locate the default process stratum.
2877
2878 If DO_MESG is not NULL, the result is always valid (error() is
2879 called for errors); else, return NULL on error. */
2880
2881 static struct target_ops *
2882 find_default_run_target (char *do_mesg)
2883 {
2884 struct target_ops **t;
2885 struct target_ops *runable = NULL;
2886 int count;
2887
2888 count = 0;
2889
2890 for (t = target_structs; t < target_structs + target_struct_size;
2891 ++t)
2892 {
2893 if ((*t)->to_can_run && target_can_run (*t))
2894 {
2895 runable = *t;
2896 ++count;
2897 }
2898 }
2899
2900 if (count != 1)
2901 {
2902 if (do_mesg)
2903 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2904 else
2905 return NULL;
2906 }
2907
2908 return runable;
2909 }
2910
2911 void
2912 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2913 {
2914 struct target_ops *t;
2915
2916 t = find_default_run_target ("attach");
2917 (t->to_attach) (t, args, from_tty);
2918 return;
2919 }
2920
2921 void
2922 find_default_create_inferior (struct target_ops *ops,
2923 char *exec_file, char *allargs, char **env,
2924 int from_tty)
2925 {
2926 struct target_ops *t;
2927
2928 t = find_default_run_target ("run");
2929 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2930 return;
2931 }
2932
2933 static int
2934 find_default_can_async_p (struct target_ops *ignore)
2935 {
2936 struct target_ops *t;
2937
2938 /* This may be called before the target is pushed on the stack;
2939 look for the default process stratum. If there's none, gdb isn't
2940 configured with a native debugger, and target remote isn't
2941 connected yet. */
2942 t = find_default_run_target (NULL);
2943 if (t && t->to_can_async_p != delegate_can_async_p)
2944 return (t->to_can_async_p) (t);
2945 return 0;
2946 }
2947
2948 static int
2949 find_default_is_async_p (struct target_ops *ignore)
2950 {
2951 struct target_ops *t;
2952
2953 /* This may be called before the target is pushed on the stack;
2954 look for the default process stratum. If there's none, gdb isn't
2955 configured with a native debugger, and target remote isn't
2956 connected yet. */
2957 t = find_default_run_target (NULL);
2958 if (t && t->to_is_async_p != delegate_is_async_p)
2959 return (t->to_is_async_p) (t);
2960 return 0;
2961 }
2962
2963 static int
2964 find_default_supports_non_stop (struct target_ops *self)
2965 {
2966 struct target_ops *t;
2967
2968 t = find_default_run_target (NULL);
2969 if (t && t->to_supports_non_stop)
2970 return (t->to_supports_non_stop) (t);
2971 return 0;
2972 }
2973
2974 int
2975 target_supports_non_stop (void)
2976 {
2977 struct target_ops *t;
2978
2979 for (t = &current_target; t != NULL; t = t->beneath)
2980 if (t->to_supports_non_stop)
2981 return t->to_supports_non_stop (t);
2982
2983 return 0;
2984 }
2985
2986 /* Implement the "info proc" command. */
2987
2988 int
2989 target_info_proc (char *args, enum info_proc_what what)
2990 {
2991 struct target_ops *t;
2992
2993 /* If we're already connected to something that can get us OS
2994 related data, use it. Otherwise, try using the native
2995 target. */
2996 if (current_target.to_stratum >= process_stratum)
2997 t = current_target.beneath;
2998 else
2999 t = find_default_run_target (NULL);
3000
3001 for (; t != NULL; t = t->beneath)
3002 {
3003 if (t->to_info_proc != NULL)
3004 {
3005 t->to_info_proc (t, args, what);
3006
3007 if (targetdebug)
3008 fprintf_unfiltered (gdb_stdlog,
3009 "target_info_proc (\"%s\", %d)\n", args, what);
3010
3011 return 1;
3012 }
3013 }
3014
3015 return 0;
3016 }
3017
3018 static int
3019 find_default_supports_disable_randomization (struct target_ops *self)
3020 {
3021 struct target_ops *t;
3022
3023 t = find_default_run_target (NULL);
3024 if (t && t->to_supports_disable_randomization)
3025 return (t->to_supports_disable_randomization) (t);
3026 return 0;
3027 }
3028
3029 int
3030 target_supports_disable_randomization (void)
3031 {
3032 struct target_ops *t;
3033
3034 for (t = &current_target; t != NULL; t = t->beneath)
3035 if (t->to_supports_disable_randomization)
3036 return t->to_supports_disable_randomization (t);
3037
3038 return 0;
3039 }
3040
3041 char *
3042 target_get_osdata (const char *type)
3043 {
3044 struct target_ops *t;
3045
3046 /* If we're already connected to something that can get us OS
3047 related data, use it. Otherwise, try using the native
3048 target. */
3049 if (current_target.to_stratum >= process_stratum)
3050 t = current_target.beneath;
3051 else
3052 t = find_default_run_target ("get OS data");
3053
3054 if (!t)
3055 return NULL;
3056
3057 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3058 }
3059
3060 /* Determine the current address space of thread PTID. */
3061
3062 struct address_space *
3063 target_thread_address_space (ptid_t ptid)
3064 {
3065 struct address_space *aspace;
3066 struct inferior *inf;
3067 struct target_ops *t;
3068
3069 for (t = current_target.beneath; t != NULL; t = t->beneath)
3070 {
3071 if (t->to_thread_address_space != NULL)
3072 {
3073 aspace = t->to_thread_address_space (t, ptid);
3074 gdb_assert (aspace);
3075
3076 if (targetdebug)
3077 fprintf_unfiltered (gdb_stdlog,
3078 "target_thread_address_space (%s) = %d\n",
3079 target_pid_to_str (ptid),
3080 address_space_num (aspace));
3081 return aspace;
3082 }
3083 }
3084
3085 /* Fall-back to the "main" address space of the inferior. */
3086 inf = find_inferior_pid (ptid_get_pid (ptid));
3087
3088 if (inf == NULL || inf->aspace == NULL)
3089 internal_error (__FILE__, __LINE__,
3090 _("Can't determine the current "
3091 "address space of thread %s\n"),
3092 target_pid_to_str (ptid));
3093
3094 return inf->aspace;
3095 }
3096
3097
3098 /* Target file operations. */
3099
3100 static struct target_ops *
3101 default_fileio_target (void)
3102 {
3103 /* If we're already connected to something that can perform
3104 file I/O, use it. Otherwise, try using the native target. */
3105 if (current_target.to_stratum >= process_stratum)
3106 return current_target.beneath;
3107 else
3108 return find_default_run_target ("file I/O");
3109 }
3110
3111 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3112 target file descriptor, or -1 if an error occurs (and set
3113 *TARGET_ERRNO). */
3114 int
3115 target_fileio_open (const char *filename, int flags, int mode,
3116 int *target_errno)
3117 {
3118 struct target_ops *t;
3119
3120 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3121 {
3122 if (t->to_fileio_open != NULL)
3123 {
3124 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3125
3126 if (targetdebug)
3127 fprintf_unfiltered (gdb_stdlog,
3128 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3129 filename, flags, mode,
3130 fd, fd != -1 ? 0 : *target_errno);
3131 return fd;
3132 }
3133 }
3134
3135 *target_errno = FILEIO_ENOSYS;
3136 return -1;
3137 }
3138
3139 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3140 Return the number of bytes written, or -1 if an error occurs
3141 (and set *TARGET_ERRNO). */
3142 int
3143 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3144 ULONGEST offset, int *target_errno)
3145 {
3146 struct target_ops *t;
3147
3148 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3149 {
3150 if (t->to_fileio_pwrite != NULL)
3151 {
3152 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3153 target_errno);
3154
3155 if (targetdebug)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "target_fileio_pwrite (%d,...,%d,%s) "
3158 "= %d (%d)\n",
3159 fd, len, pulongest (offset),
3160 ret, ret != -1 ? 0 : *target_errno);
3161 return ret;
3162 }
3163 }
3164
3165 *target_errno = FILEIO_ENOSYS;
3166 return -1;
3167 }
3168
3169 /* Read up to LEN bytes FD on the target into READ_BUF.
3170 Return the number of bytes read, or -1 if an error occurs
3171 (and set *TARGET_ERRNO). */
3172 int
3173 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3174 ULONGEST offset, int *target_errno)
3175 {
3176 struct target_ops *t;
3177
3178 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3179 {
3180 if (t->to_fileio_pread != NULL)
3181 {
3182 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3183 target_errno);
3184
3185 if (targetdebug)
3186 fprintf_unfiltered (gdb_stdlog,
3187 "target_fileio_pread (%d,...,%d,%s) "
3188 "= %d (%d)\n",
3189 fd, len, pulongest (offset),
3190 ret, ret != -1 ? 0 : *target_errno);
3191 return ret;
3192 }
3193 }
3194
3195 *target_errno = FILEIO_ENOSYS;
3196 return -1;
3197 }
3198
3199 /* Close FD on the target. Return 0, or -1 if an error occurs
3200 (and set *TARGET_ERRNO). */
3201 int
3202 target_fileio_close (int fd, int *target_errno)
3203 {
3204 struct target_ops *t;
3205
3206 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3207 {
3208 if (t->to_fileio_close != NULL)
3209 {
3210 int ret = t->to_fileio_close (t, fd, target_errno);
3211
3212 if (targetdebug)
3213 fprintf_unfiltered (gdb_stdlog,
3214 "target_fileio_close (%d) = %d (%d)\n",
3215 fd, ret, ret != -1 ? 0 : *target_errno);
3216 return ret;
3217 }
3218 }
3219
3220 *target_errno = FILEIO_ENOSYS;
3221 return -1;
3222 }
3223
3224 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3225 occurs (and set *TARGET_ERRNO). */
3226 int
3227 target_fileio_unlink (const char *filename, int *target_errno)
3228 {
3229 struct target_ops *t;
3230
3231 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3232 {
3233 if (t->to_fileio_unlink != NULL)
3234 {
3235 int ret = t->to_fileio_unlink (t, filename, target_errno);
3236
3237 if (targetdebug)
3238 fprintf_unfiltered (gdb_stdlog,
3239 "target_fileio_unlink (%s) = %d (%d)\n",
3240 filename, ret, ret != -1 ? 0 : *target_errno);
3241 return ret;
3242 }
3243 }
3244
3245 *target_errno = FILEIO_ENOSYS;
3246 return -1;
3247 }
3248
3249 /* Read value of symbolic link FILENAME on the target. Return a
3250 null-terminated string allocated via xmalloc, or NULL if an error
3251 occurs (and set *TARGET_ERRNO). */
3252 char *
3253 target_fileio_readlink (const char *filename, int *target_errno)
3254 {
3255 struct target_ops *t;
3256
3257 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3258 {
3259 if (t->to_fileio_readlink != NULL)
3260 {
3261 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3262
3263 if (targetdebug)
3264 fprintf_unfiltered (gdb_stdlog,
3265 "target_fileio_readlink (%s) = %s (%d)\n",
3266 filename, ret? ret : "(nil)",
3267 ret? 0 : *target_errno);
3268 return ret;
3269 }
3270 }
3271
3272 *target_errno = FILEIO_ENOSYS;
3273 return NULL;
3274 }
3275
3276 static void
3277 target_fileio_close_cleanup (void *opaque)
3278 {
3279 int fd = *(int *) opaque;
3280 int target_errno;
3281
3282 target_fileio_close (fd, &target_errno);
3283 }
3284
3285 /* Read target file FILENAME. Store the result in *BUF_P and
3286 return the size of the transferred data. PADDING additional bytes are
3287 available in *BUF_P. This is a helper function for
3288 target_fileio_read_alloc; see the declaration of that function for more
3289 information. */
3290
3291 static LONGEST
3292 target_fileio_read_alloc_1 (const char *filename,
3293 gdb_byte **buf_p, int padding)
3294 {
3295 struct cleanup *close_cleanup;
3296 size_t buf_alloc, buf_pos;
3297 gdb_byte *buf;
3298 LONGEST n;
3299 int fd;
3300 int target_errno;
3301
3302 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3303 if (fd == -1)
3304 return -1;
3305
3306 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3307
3308 /* Start by reading up to 4K at a time. The target will throttle
3309 this number down if necessary. */
3310 buf_alloc = 4096;
3311 buf = xmalloc (buf_alloc);
3312 buf_pos = 0;
3313 while (1)
3314 {
3315 n = target_fileio_pread (fd, &buf[buf_pos],
3316 buf_alloc - buf_pos - padding, buf_pos,
3317 &target_errno);
3318 if (n < 0)
3319 {
3320 /* An error occurred. */
3321 do_cleanups (close_cleanup);
3322 xfree (buf);
3323 return -1;
3324 }
3325 else if (n == 0)
3326 {
3327 /* Read all there was. */
3328 do_cleanups (close_cleanup);
3329 if (buf_pos == 0)
3330 xfree (buf);
3331 else
3332 *buf_p = buf;
3333 return buf_pos;
3334 }
3335
3336 buf_pos += n;
3337
3338 /* If the buffer is filling up, expand it. */
3339 if (buf_alloc < buf_pos * 2)
3340 {
3341 buf_alloc *= 2;
3342 buf = xrealloc (buf, buf_alloc);
3343 }
3344
3345 QUIT;
3346 }
3347 }
3348
3349 /* Read target file FILENAME. Store the result in *BUF_P and return
3350 the size of the transferred data. See the declaration in "target.h"
3351 function for more information about the return value. */
3352
3353 LONGEST
3354 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3355 {
3356 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3357 }
3358
3359 /* Read target file FILENAME. The result is NUL-terminated and
3360 returned as a string, allocated using xmalloc. If an error occurs
3361 or the transfer is unsupported, NULL is returned. Empty objects
3362 are returned as allocated but empty strings. A warning is issued
3363 if the result contains any embedded NUL bytes. */
3364
3365 char *
3366 target_fileio_read_stralloc (const char *filename)
3367 {
3368 gdb_byte *buffer;
3369 char *bufstr;
3370 LONGEST i, transferred;
3371
3372 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3373 bufstr = (char *) buffer;
3374
3375 if (transferred < 0)
3376 return NULL;
3377
3378 if (transferred == 0)
3379 return xstrdup ("");
3380
3381 bufstr[transferred] = 0;
3382
3383 /* Check for embedded NUL bytes; but allow trailing NULs. */
3384 for (i = strlen (bufstr); i < transferred; i++)
3385 if (bufstr[i] != 0)
3386 {
3387 warning (_("target file %s "
3388 "contained unexpected null characters"),
3389 filename);
3390 break;
3391 }
3392
3393 return bufstr;
3394 }
3395
3396
3397 static int
3398 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3399 CORE_ADDR addr, int len)
3400 {
3401 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3402 }
3403
3404 static int
3405 default_watchpoint_addr_within_range (struct target_ops *target,
3406 CORE_ADDR addr,
3407 CORE_ADDR start, int length)
3408 {
3409 return addr >= start && addr < start + length;
3410 }
3411
3412 static struct gdbarch *
3413 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3414 {
3415 return target_gdbarch ();
3416 }
3417
3418 static int
3419 return_zero (void)
3420 {
3421 return 0;
3422 }
3423
3424 /*
3425 * Find the next target down the stack from the specified target.
3426 */
3427
3428 struct target_ops *
3429 find_target_beneath (struct target_ops *t)
3430 {
3431 return t->beneath;
3432 }
3433
3434 /* See target.h. */
3435
3436 struct target_ops *
3437 find_target_at (enum strata stratum)
3438 {
3439 struct target_ops *t;
3440
3441 for (t = current_target.beneath; t != NULL; t = t->beneath)
3442 if (t->to_stratum == stratum)
3443 return t;
3444
3445 return NULL;
3446 }
3447
3448 \f
3449 /* The inferior process has died. Long live the inferior! */
3450
3451 void
3452 generic_mourn_inferior (void)
3453 {
3454 ptid_t ptid;
3455
3456 ptid = inferior_ptid;
3457 inferior_ptid = null_ptid;
3458
3459 /* Mark breakpoints uninserted in case something tries to delete a
3460 breakpoint while we delete the inferior's threads (which would
3461 fail, since the inferior is long gone). */
3462 mark_breakpoints_out ();
3463
3464 if (!ptid_equal (ptid, null_ptid))
3465 {
3466 int pid = ptid_get_pid (ptid);
3467 exit_inferior (pid);
3468 }
3469
3470 /* Note this wipes step-resume breakpoints, so needs to be done
3471 after exit_inferior, which ends up referencing the step-resume
3472 breakpoints through clear_thread_inferior_resources. */
3473 breakpoint_init_inferior (inf_exited);
3474
3475 registers_changed ();
3476
3477 reopen_exec_file ();
3478 reinit_frame_cache ();
3479
3480 if (deprecated_detach_hook)
3481 deprecated_detach_hook ();
3482 }
3483 \f
3484 /* Convert a normal process ID to a string. Returns the string in a
3485 static buffer. */
3486
3487 char *
3488 normal_pid_to_str (ptid_t ptid)
3489 {
3490 static char buf[32];
3491
3492 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3493 return buf;
3494 }
3495
3496 static char *
3497 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3498 {
3499 return normal_pid_to_str (ptid);
3500 }
3501
3502 /* Error-catcher for target_find_memory_regions. */
3503 static int
3504 dummy_find_memory_regions (struct target_ops *self,
3505 find_memory_region_ftype ignore1, void *ignore2)
3506 {
3507 error (_("Command not implemented for this target."));
3508 return 0;
3509 }
3510
3511 /* Error-catcher for target_make_corefile_notes. */
3512 static char *
3513 dummy_make_corefile_notes (struct target_ops *self,
3514 bfd *ignore1, int *ignore2)
3515 {
3516 error (_("Command not implemented for this target."));
3517 return NULL;
3518 }
3519
3520 /* Set up the handful of non-empty slots needed by the dummy target
3521 vector. */
3522
3523 static void
3524 init_dummy_target (void)
3525 {
3526 dummy_target.to_shortname = "None";
3527 dummy_target.to_longname = "None";
3528 dummy_target.to_doc = "";
3529 dummy_target.to_create_inferior = find_default_create_inferior;
3530 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3531 dummy_target.to_supports_disable_randomization
3532 = find_default_supports_disable_randomization;
3533 dummy_target.to_stratum = dummy_stratum;
3534 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3535 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3536 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3537 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3538 dummy_target.to_has_execution
3539 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3540 dummy_target.to_magic = OPS_MAGIC;
3541
3542 install_dummy_methods (&dummy_target);
3543 }
3544 \f
3545 static void
3546 debug_to_open (char *args, int from_tty)
3547 {
3548 debug_target.to_open (args, from_tty);
3549
3550 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3551 }
3552
3553 void
3554 target_close (struct target_ops *targ)
3555 {
3556 gdb_assert (!target_is_pushed (targ));
3557
3558 if (targ->to_xclose != NULL)
3559 targ->to_xclose (targ);
3560 else if (targ->to_close != NULL)
3561 targ->to_close (targ);
3562
3563 if (targetdebug)
3564 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3565 }
3566
3567 void
3568 target_attach (char *args, int from_tty)
3569 {
3570 current_target.to_attach (&current_target, args, from_tty);
3571 if (targetdebug)
3572 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3573 args, from_tty);
3574 }
3575
3576 int
3577 target_thread_alive (ptid_t ptid)
3578 {
3579 struct target_ops *t;
3580
3581 for (t = current_target.beneath; t != NULL; t = t->beneath)
3582 {
3583 if (t->to_thread_alive != NULL)
3584 {
3585 int retval;
3586
3587 retval = t->to_thread_alive (t, ptid);
3588 if (targetdebug)
3589 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3590 ptid_get_pid (ptid), retval);
3591
3592 return retval;
3593 }
3594 }
3595
3596 return 0;
3597 }
3598
3599 void
3600 target_find_new_threads (void)
3601 {
3602 current_target.to_find_new_threads (&current_target);
3603 if (targetdebug)
3604 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3605 }
3606
3607 void
3608 target_stop (ptid_t ptid)
3609 {
3610 if (!may_stop)
3611 {
3612 warning (_("May not interrupt or stop the target, ignoring attempt"));
3613 return;
3614 }
3615
3616 (*current_target.to_stop) (&current_target, ptid);
3617 }
3618
3619 static void
3620 debug_to_post_attach (struct target_ops *self, int pid)
3621 {
3622 debug_target.to_post_attach (&debug_target, pid);
3623
3624 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3625 }
3626
3627 /* Concatenate ELEM to LIST, a comma separate list, and return the
3628 result. The LIST incoming argument is released. */
3629
3630 static char *
3631 str_comma_list_concat_elem (char *list, const char *elem)
3632 {
3633 if (list == NULL)
3634 return xstrdup (elem);
3635 else
3636 return reconcat (list, list, ", ", elem, (char *) NULL);
3637 }
3638
3639 /* Helper for target_options_to_string. If OPT is present in
3640 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3641 Returns the new resulting string. OPT is removed from
3642 TARGET_OPTIONS. */
3643
3644 static char *
3645 do_option (int *target_options, char *ret,
3646 int opt, char *opt_str)
3647 {
3648 if ((*target_options & opt) != 0)
3649 {
3650 ret = str_comma_list_concat_elem (ret, opt_str);
3651 *target_options &= ~opt;
3652 }
3653
3654 return ret;
3655 }
3656
3657 char *
3658 target_options_to_string (int target_options)
3659 {
3660 char *ret = NULL;
3661
3662 #define DO_TARG_OPTION(OPT) \
3663 ret = do_option (&target_options, ret, OPT, #OPT)
3664
3665 DO_TARG_OPTION (TARGET_WNOHANG);
3666
3667 if (target_options != 0)
3668 ret = str_comma_list_concat_elem (ret, "unknown???");
3669
3670 if (ret == NULL)
3671 ret = xstrdup ("");
3672 return ret;
3673 }
3674
3675 static void
3676 debug_print_register (const char * func,
3677 struct regcache *regcache, int regno)
3678 {
3679 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3680
3681 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3682 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3683 && gdbarch_register_name (gdbarch, regno) != NULL
3684 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3685 fprintf_unfiltered (gdb_stdlog, "(%s)",
3686 gdbarch_register_name (gdbarch, regno));
3687 else
3688 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3689 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3690 {
3691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3692 int i, size = register_size (gdbarch, regno);
3693 gdb_byte buf[MAX_REGISTER_SIZE];
3694
3695 regcache_raw_collect (regcache, regno, buf);
3696 fprintf_unfiltered (gdb_stdlog, " = ");
3697 for (i = 0; i < size; i++)
3698 {
3699 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3700 }
3701 if (size <= sizeof (LONGEST))
3702 {
3703 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3704
3705 fprintf_unfiltered (gdb_stdlog, " %s %s",
3706 core_addr_to_string_nz (val), plongest (val));
3707 }
3708 }
3709 fprintf_unfiltered (gdb_stdlog, "\n");
3710 }
3711
3712 void
3713 target_fetch_registers (struct regcache *regcache, int regno)
3714 {
3715 current_target.to_fetch_registers (&current_target, regcache, regno);
3716 if (targetdebug)
3717 debug_print_register ("target_fetch_registers", regcache, regno);
3718 }
3719
3720 void
3721 target_store_registers (struct regcache *regcache, int regno)
3722 {
3723 struct target_ops *t;
3724
3725 if (!may_write_registers)
3726 error (_("Writing to registers is not allowed (regno %d)"), regno);
3727
3728 current_target.to_store_registers (&current_target, regcache, regno);
3729 if (targetdebug)
3730 {
3731 debug_print_register ("target_store_registers", regcache, regno);
3732 }
3733 }
3734
3735 int
3736 target_core_of_thread (ptid_t ptid)
3737 {
3738 struct target_ops *t;
3739
3740 for (t = current_target.beneath; t != NULL; t = t->beneath)
3741 {
3742 if (t->to_core_of_thread != NULL)
3743 {
3744 int retval = t->to_core_of_thread (t, ptid);
3745
3746 if (targetdebug)
3747 fprintf_unfiltered (gdb_stdlog,
3748 "target_core_of_thread (%d) = %d\n",
3749 ptid_get_pid (ptid), retval);
3750 return retval;
3751 }
3752 }
3753
3754 return -1;
3755 }
3756
3757 int
3758 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3759 {
3760 struct target_ops *t;
3761
3762 for (t = current_target.beneath; t != NULL; t = t->beneath)
3763 {
3764 if (t->to_verify_memory != NULL)
3765 {
3766 int retval = t->to_verify_memory (t, data, memaddr, size);
3767
3768 if (targetdebug)
3769 fprintf_unfiltered (gdb_stdlog,
3770 "target_verify_memory (%s, %s) = %d\n",
3771 paddress (target_gdbarch (), memaddr),
3772 pulongest (size),
3773 retval);
3774 return retval;
3775 }
3776 }
3777
3778 tcomplain ();
3779 }
3780
3781 /* The documentation for this function is in its prototype declaration in
3782 target.h. */
3783
3784 int
3785 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3786 {
3787 int ret;
3788
3789 ret = current_target.to_insert_mask_watchpoint (&current_target,
3790 addr, mask, rw);
3791
3792 if (targetdebug)
3793 fprintf_unfiltered (gdb_stdlog, "\
3794 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3795 core_addr_to_string (addr),
3796 core_addr_to_string (mask), rw, ret);
3797
3798 return ret;
3799 }
3800
3801 /* The documentation for this function is in its prototype declaration in
3802 target.h. */
3803
3804 int
3805 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3806 {
3807 int ret;
3808
3809 ret = current_target.to_remove_mask_watchpoint (&current_target,
3810 addr, mask, rw);
3811
3812 if (targetdebug)
3813 fprintf_unfiltered (gdb_stdlog, "\
3814 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3815 core_addr_to_string (addr),
3816 core_addr_to_string (mask), rw, ret);
3817
3818 return ret;
3819 }
3820
3821 /* The documentation for this function is in its prototype declaration
3822 in target.h. */
3823
3824 int
3825 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3826 {
3827 return current_target.to_masked_watch_num_registers (&current_target,
3828 addr, mask);
3829 }
3830
3831 /* The documentation for this function is in its prototype declaration
3832 in target.h. */
3833
3834 int
3835 target_ranged_break_num_registers (void)
3836 {
3837 return current_target.to_ranged_break_num_registers (&current_target);
3838 }
3839
3840 /* See target.h. */
3841
3842 struct btrace_target_info *
3843 target_enable_btrace (ptid_t ptid)
3844 {
3845 struct target_ops *t;
3846
3847 for (t = current_target.beneath; t != NULL; t = t->beneath)
3848 if (t->to_enable_btrace != NULL)
3849 return t->to_enable_btrace (t, ptid);
3850
3851 tcomplain ();
3852 return NULL;
3853 }
3854
3855 /* See target.h. */
3856
3857 void
3858 target_disable_btrace (struct btrace_target_info *btinfo)
3859 {
3860 struct target_ops *t;
3861
3862 for (t = current_target.beneath; t != NULL; t = t->beneath)
3863 if (t->to_disable_btrace != NULL)
3864 {
3865 t->to_disable_btrace (t, btinfo);
3866 return;
3867 }
3868
3869 tcomplain ();
3870 }
3871
3872 /* See target.h. */
3873
3874 void
3875 target_teardown_btrace (struct btrace_target_info *btinfo)
3876 {
3877 struct target_ops *t;
3878
3879 for (t = current_target.beneath; t != NULL; t = t->beneath)
3880 if (t->to_teardown_btrace != NULL)
3881 {
3882 t->to_teardown_btrace (t, btinfo);
3883 return;
3884 }
3885
3886 tcomplain ();
3887 }
3888
3889 /* See target.h. */
3890
3891 enum btrace_error
3892 target_read_btrace (VEC (btrace_block_s) **btrace,
3893 struct btrace_target_info *btinfo,
3894 enum btrace_read_type type)
3895 {
3896 struct target_ops *t;
3897
3898 for (t = current_target.beneath; t != NULL; t = t->beneath)
3899 if (t->to_read_btrace != NULL)
3900 return t->to_read_btrace (t, btrace, btinfo, type);
3901
3902 tcomplain ();
3903 return BTRACE_ERR_NOT_SUPPORTED;
3904 }
3905
3906 /* See target.h. */
3907
3908 void
3909 target_stop_recording (void)
3910 {
3911 struct target_ops *t;
3912
3913 for (t = current_target.beneath; t != NULL; t = t->beneath)
3914 if (t->to_stop_recording != NULL)
3915 {
3916 t->to_stop_recording (t);
3917 return;
3918 }
3919
3920 /* This is optional. */
3921 }
3922
3923 /* See target.h. */
3924
3925 void
3926 target_info_record (void)
3927 {
3928 struct target_ops *t;
3929
3930 for (t = current_target.beneath; t != NULL; t = t->beneath)
3931 if (t->to_info_record != NULL)
3932 {
3933 t->to_info_record (t);
3934 return;
3935 }
3936
3937 tcomplain ();
3938 }
3939
3940 /* See target.h. */
3941
3942 void
3943 target_save_record (const char *filename)
3944 {
3945 struct target_ops *t;
3946
3947 for (t = current_target.beneath; t != NULL; t = t->beneath)
3948 if (t->to_save_record != NULL)
3949 {
3950 t->to_save_record (t, filename);
3951 return;
3952 }
3953
3954 tcomplain ();
3955 }
3956
3957 /* See target.h. */
3958
3959 int
3960 target_supports_delete_record (void)
3961 {
3962 struct target_ops *t;
3963
3964 for (t = current_target.beneath; t != NULL; t = t->beneath)
3965 if (t->to_delete_record != NULL)
3966 return 1;
3967
3968 return 0;
3969 }
3970
3971 /* See target.h. */
3972
3973 void
3974 target_delete_record (void)
3975 {
3976 struct target_ops *t;
3977
3978 for (t = current_target.beneath; t != NULL; t = t->beneath)
3979 if (t->to_delete_record != NULL)
3980 {
3981 t->to_delete_record (t);
3982 return;
3983 }
3984
3985 tcomplain ();
3986 }
3987
3988 /* See target.h. */
3989
3990 int
3991 target_record_is_replaying (void)
3992 {
3993 struct target_ops *t;
3994
3995 for (t = current_target.beneath; t != NULL; t = t->beneath)
3996 if (t->to_record_is_replaying != NULL)
3997 return t->to_record_is_replaying (t);
3998
3999 return 0;
4000 }
4001
4002 /* See target.h. */
4003
4004 void
4005 target_goto_record_begin (void)
4006 {
4007 struct target_ops *t;
4008
4009 for (t = current_target.beneath; t != NULL; t = t->beneath)
4010 if (t->to_goto_record_begin != NULL)
4011 {
4012 t->to_goto_record_begin (t);
4013 return;
4014 }
4015
4016 tcomplain ();
4017 }
4018
4019 /* See target.h. */
4020
4021 void
4022 target_goto_record_end (void)
4023 {
4024 struct target_ops *t;
4025
4026 for (t = current_target.beneath; t != NULL; t = t->beneath)
4027 if (t->to_goto_record_end != NULL)
4028 {
4029 t->to_goto_record_end (t);
4030 return;
4031 }
4032
4033 tcomplain ();
4034 }
4035
4036 /* See target.h. */
4037
4038 void
4039 target_goto_record (ULONGEST insn)
4040 {
4041 struct target_ops *t;
4042
4043 for (t = current_target.beneath; t != NULL; t = t->beneath)
4044 if (t->to_goto_record != NULL)
4045 {
4046 t->to_goto_record (t, insn);
4047 return;
4048 }
4049
4050 tcomplain ();
4051 }
4052
4053 /* See target.h. */
4054
4055 void
4056 target_insn_history (int size, int flags)
4057 {
4058 struct target_ops *t;
4059
4060 for (t = current_target.beneath; t != NULL; t = t->beneath)
4061 if (t->to_insn_history != NULL)
4062 {
4063 t->to_insn_history (t, size, flags);
4064 return;
4065 }
4066
4067 tcomplain ();
4068 }
4069
4070 /* See target.h. */
4071
4072 void
4073 target_insn_history_from (ULONGEST from, int size, int flags)
4074 {
4075 struct target_ops *t;
4076
4077 for (t = current_target.beneath; t != NULL; t = t->beneath)
4078 if (t->to_insn_history_from != NULL)
4079 {
4080 t->to_insn_history_from (t, from, size, flags);
4081 return;
4082 }
4083
4084 tcomplain ();
4085 }
4086
4087 /* See target.h. */
4088
4089 void
4090 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4091 {
4092 struct target_ops *t;
4093
4094 for (t = current_target.beneath; t != NULL; t = t->beneath)
4095 if (t->to_insn_history_range != NULL)
4096 {
4097 t->to_insn_history_range (t, begin, end, flags);
4098 return;
4099 }
4100
4101 tcomplain ();
4102 }
4103
4104 /* See target.h. */
4105
4106 void
4107 target_call_history (int size, int flags)
4108 {
4109 struct target_ops *t;
4110
4111 for (t = current_target.beneath; t != NULL; t = t->beneath)
4112 if (t->to_call_history != NULL)
4113 {
4114 t->to_call_history (t, size, flags);
4115 return;
4116 }
4117
4118 tcomplain ();
4119 }
4120
4121 /* See target.h. */
4122
4123 void
4124 target_call_history_from (ULONGEST begin, int size, int flags)
4125 {
4126 struct target_ops *t;
4127
4128 for (t = current_target.beneath; t != NULL; t = t->beneath)
4129 if (t->to_call_history_from != NULL)
4130 {
4131 t->to_call_history_from (t, begin, size, flags);
4132 return;
4133 }
4134
4135 tcomplain ();
4136 }
4137
4138 /* See target.h. */
4139
4140 void
4141 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4142 {
4143 struct target_ops *t;
4144
4145 for (t = current_target.beneath; t != NULL; t = t->beneath)
4146 if (t->to_call_history_range != NULL)
4147 {
4148 t->to_call_history_range (t, begin, end, flags);
4149 return;
4150 }
4151
4152 tcomplain ();
4153 }
4154
4155 static void
4156 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4157 {
4158 debug_target.to_prepare_to_store (&debug_target, regcache);
4159
4160 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4161 }
4162
4163 /* See target.h. */
4164
4165 const struct frame_unwind *
4166 target_get_unwinder (void)
4167 {
4168 struct target_ops *t;
4169
4170 for (t = current_target.beneath; t != NULL; t = t->beneath)
4171 if (t->to_get_unwinder != NULL)
4172 return t->to_get_unwinder;
4173
4174 return NULL;
4175 }
4176
4177 /* See target.h. */
4178
4179 const struct frame_unwind *
4180 target_get_tailcall_unwinder (void)
4181 {
4182 struct target_ops *t;
4183
4184 for (t = current_target.beneath; t != NULL; t = t->beneath)
4185 if (t->to_get_tailcall_unwinder != NULL)
4186 return t->to_get_tailcall_unwinder;
4187
4188 return NULL;
4189 }
4190
4191 /* See target.h. */
4192
4193 CORE_ADDR
4194 forward_target_decr_pc_after_break (struct target_ops *ops,
4195 struct gdbarch *gdbarch)
4196 {
4197 for (; ops != NULL; ops = ops->beneath)
4198 if (ops->to_decr_pc_after_break != NULL)
4199 return ops->to_decr_pc_after_break (ops, gdbarch);
4200
4201 return gdbarch_decr_pc_after_break (gdbarch);
4202 }
4203
4204 /* See target.h. */
4205
4206 CORE_ADDR
4207 target_decr_pc_after_break (struct gdbarch *gdbarch)
4208 {
4209 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4210 }
4211
4212 static int
4213 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4214 int write, struct mem_attrib *attrib,
4215 struct target_ops *target)
4216 {
4217 int retval;
4218
4219 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4220 attrib, target);
4221
4222 fprintf_unfiltered (gdb_stdlog,
4223 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4224 paddress (target_gdbarch (), memaddr), len,
4225 write ? "write" : "read", retval);
4226
4227 if (retval > 0)
4228 {
4229 int i;
4230
4231 fputs_unfiltered (", bytes =", gdb_stdlog);
4232 for (i = 0; i < retval; i++)
4233 {
4234 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4235 {
4236 if (targetdebug < 2 && i > 0)
4237 {
4238 fprintf_unfiltered (gdb_stdlog, " ...");
4239 break;
4240 }
4241 fprintf_unfiltered (gdb_stdlog, "\n");
4242 }
4243
4244 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4245 }
4246 }
4247
4248 fputc_unfiltered ('\n', gdb_stdlog);
4249
4250 return retval;
4251 }
4252
4253 static void
4254 debug_to_files_info (struct target_ops *target)
4255 {
4256 debug_target.to_files_info (target);
4257
4258 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4259 }
4260
4261 static int
4262 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4263 struct bp_target_info *bp_tgt)
4264 {
4265 int retval;
4266
4267 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4268
4269 fprintf_unfiltered (gdb_stdlog,
4270 "target_insert_breakpoint (%s, xxx) = %ld\n",
4271 core_addr_to_string (bp_tgt->placed_address),
4272 (unsigned long) retval);
4273 return retval;
4274 }
4275
4276 static int
4277 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4278 struct bp_target_info *bp_tgt)
4279 {
4280 int retval;
4281
4282 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4283
4284 fprintf_unfiltered (gdb_stdlog,
4285 "target_remove_breakpoint (%s, xxx) = %ld\n",
4286 core_addr_to_string (bp_tgt->placed_address),
4287 (unsigned long) retval);
4288 return retval;
4289 }
4290
4291 static int
4292 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4293 int type, int cnt, int from_tty)
4294 {
4295 int retval;
4296
4297 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4298 type, cnt, from_tty);
4299
4300 fprintf_unfiltered (gdb_stdlog,
4301 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4302 (unsigned long) type,
4303 (unsigned long) cnt,
4304 (unsigned long) from_tty,
4305 (unsigned long) retval);
4306 return retval;
4307 }
4308
4309 static int
4310 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4311 CORE_ADDR addr, int len)
4312 {
4313 CORE_ADDR retval;
4314
4315 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4316 addr, len);
4317
4318 fprintf_unfiltered (gdb_stdlog,
4319 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4320 core_addr_to_string (addr), (unsigned long) len,
4321 core_addr_to_string (retval));
4322 return retval;
4323 }
4324
4325 static int
4326 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4327 CORE_ADDR addr, int len, int rw,
4328 struct expression *cond)
4329 {
4330 int retval;
4331
4332 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4333 addr, len,
4334 rw, cond);
4335
4336 fprintf_unfiltered (gdb_stdlog,
4337 "target_can_accel_watchpoint_condition "
4338 "(%s, %d, %d, %s) = %ld\n",
4339 core_addr_to_string (addr), len, rw,
4340 host_address_to_string (cond), (unsigned long) retval);
4341 return retval;
4342 }
4343
4344 static int
4345 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4346 {
4347 int retval;
4348
4349 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4350
4351 fprintf_unfiltered (gdb_stdlog,
4352 "target_stopped_by_watchpoint () = %ld\n",
4353 (unsigned long) retval);
4354 return retval;
4355 }
4356
4357 static int
4358 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4359 {
4360 int retval;
4361
4362 retval = debug_target.to_stopped_data_address (target, addr);
4363
4364 fprintf_unfiltered (gdb_stdlog,
4365 "target_stopped_data_address ([%s]) = %ld\n",
4366 core_addr_to_string (*addr),
4367 (unsigned long)retval);
4368 return retval;
4369 }
4370
4371 static int
4372 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4373 CORE_ADDR addr,
4374 CORE_ADDR start, int length)
4375 {
4376 int retval;
4377
4378 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4379 start, length);
4380
4381 fprintf_filtered (gdb_stdlog,
4382 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4383 core_addr_to_string (addr), core_addr_to_string (start),
4384 length, retval);
4385 return retval;
4386 }
4387
4388 static int
4389 debug_to_insert_hw_breakpoint (struct target_ops *self,
4390 struct gdbarch *gdbarch,
4391 struct bp_target_info *bp_tgt)
4392 {
4393 int retval;
4394
4395 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4396 gdbarch, bp_tgt);
4397
4398 fprintf_unfiltered (gdb_stdlog,
4399 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4400 core_addr_to_string (bp_tgt->placed_address),
4401 (unsigned long) retval);
4402 return retval;
4403 }
4404
4405 static int
4406 debug_to_remove_hw_breakpoint (struct target_ops *self,
4407 struct gdbarch *gdbarch,
4408 struct bp_target_info *bp_tgt)
4409 {
4410 int retval;
4411
4412 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4413 gdbarch, bp_tgt);
4414
4415 fprintf_unfiltered (gdb_stdlog,
4416 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4417 core_addr_to_string (bp_tgt->placed_address),
4418 (unsigned long) retval);
4419 return retval;
4420 }
4421
4422 static int
4423 debug_to_insert_watchpoint (struct target_ops *self,
4424 CORE_ADDR addr, int len, int type,
4425 struct expression *cond)
4426 {
4427 int retval;
4428
4429 retval = debug_target.to_insert_watchpoint (&debug_target,
4430 addr, len, type, cond);
4431
4432 fprintf_unfiltered (gdb_stdlog,
4433 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4434 core_addr_to_string (addr), len, type,
4435 host_address_to_string (cond), (unsigned long) retval);
4436 return retval;
4437 }
4438
4439 static int
4440 debug_to_remove_watchpoint (struct target_ops *self,
4441 CORE_ADDR addr, int len, int type,
4442 struct expression *cond)
4443 {
4444 int retval;
4445
4446 retval = debug_target.to_remove_watchpoint (&debug_target,
4447 addr, len, type, cond);
4448
4449 fprintf_unfiltered (gdb_stdlog,
4450 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4451 core_addr_to_string (addr), len, type,
4452 host_address_to_string (cond), (unsigned long) retval);
4453 return retval;
4454 }
4455
4456 static void
4457 debug_to_terminal_init (struct target_ops *self)
4458 {
4459 debug_target.to_terminal_init (&debug_target);
4460
4461 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4462 }
4463
4464 static void
4465 debug_to_terminal_inferior (struct target_ops *self)
4466 {
4467 debug_target.to_terminal_inferior (&debug_target);
4468
4469 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4470 }
4471
4472 static void
4473 debug_to_terminal_ours_for_output (struct target_ops *self)
4474 {
4475 debug_target.to_terminal_ours_for_output (&debug_target);
4476
4477 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4478 }
4479
4480 static void
4481 debug_to_terminal_ours (struct target_ops *self)
4482 {
4483 debug_target.to_terminal_ours (&debug_target);
4484
4485 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4486 }
4487
4488 static void
4489 debug_to_terminal_save_ours (struct target_ops *self)
4490 {
4491 debug_target.to_terminal_save_ours (&debug_target);
4492
4493 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4494 }
4495
4496 static void
4497 debug_to_terminal_info (struct target_ops *self,
4498 const char *arg, int from_tty)
4499 {
4500 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4501
4502 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4503 from_tty);
4504 }
4505
4506 static void
4507 debug_to_load (struct target_ops *self, char *args, int from_tty)
4508 {
4509 debug_target.to_load (&debug_target, args, from_tty);
4510
4511 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4512 }
4513
4514 static void
4515 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4516 {
4517 debug_target.to_post_startup_inferior (&debug_target, ptid);
4518
4519 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4520 ptid_get_pid (ptid));
4521 }
4522
4523 static int
4524 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4525 {
4526 int retval;
4527
4528 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4529
4530 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4531 pid, retval);
4532
4533 return retval;
4534 }
4535
4536 static int
4537 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4538 {
4539 int retval;
4540
4541 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4542
4543 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4544 pid, retval);
4545
4546 return retval;
4547 }
4548
4549 static int
4550 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4551 {
4552 int retval;
4553
4554 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4555
4556 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4557 pid, retval);
4558
4559 return retval;
4560 }
4561
4562 static int
4563 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4564 {
4565 int retval;
4566
4567 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4568
4569 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4570 pid, retval);
4571
4572 return retval;
4573 }
4574
4575 static int
4576 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4577 {
4578 int retval;
4579
4580 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4581
4582 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4583 pid, retval);
4584
4585 return retval;
4586 }
4587
4588 static int
4589 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4590 {
4591 int retval;
4592
4593 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4594
4595 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4596 pid, retval);
4597
4598 return retval;
4599 }
4600
4601 static int
4602 debug_to_has_exited (struct target_ops *self,
4603 int pid, int wait_status, int *exit_status)
4604 {
4605 int has_exited;
4606
4607 has_exited = debug_target.to_has_exited (&debug_target,
4608 pid, wait_status, exit_status);
4609
4610 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4611 pid, wait_status, *exit_status, has_exited);
4612
4613 return has_exited;
4614 }
4615
4616 static int
4617 debug_to_can_run (struct target_ops *self)
4618 {
4619 int retval;
4620
4621 retval = debug_target.to_can_run (&debug_target);
4622
4623 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4624
4625 return retval;
4626 }
4627
4628 static struct gdbarch *
4629 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4630 {
4631 struct gdbarch *retval;
4632
4633 retval = debug_target.to_thread_architecture (ops, ptid);
4634
4635 fprintf_unfiltered (gdb_stdlog,
4636 "target_thread_architecture (%s) = %s [%s]\n",
4637 target_pid_to_str (ptid),
4638 host_address_to_string (retval),
4639 gdbarch_bfd_arch_info (retval)->printable_name);
4640 return retval;
4641 }
4642
4643 static void
4644 debug_to_stop (struct target_ops *self, ptid_t ptid)
4645 {
4646 debug_target.to_stop (&debug_target, ptid);
4647
4648 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4649 target_pid_to_str (ptid));
4650 }
4651
4652 static void
4653 debug_to_rcmd (struct target_ops *self, char *command,
4654 struct ui_file *outbuf)
4655 {
4656 debug_target.to_rcmd (&debug_target, command, outbuf);
4657 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4658 }
4659
4660 static char *
4661 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4662 {
4663 char *exec_file;
4664
4665 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4666
4667 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4668 pid, exec_file);
4669
4670 return exec_file;
4671 }
4672
4673 static void
4674 setup_target_debug (void)
4675 {
4676 memcpy (&debug_target, &current_target, sizeof debug_target);
4677
4678 current_target.to_open = debug_to_open;
4679 current_target.to_post_attach = debug_to_post_attach;
4680 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4681 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4682 current_target.to_files_info = debug_to_files_info;
4683 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4684 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4685 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4686 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4687 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4688 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4689 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4690 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4691 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4692 current_target.to_watchpoint_addr_within_range
4693 = debug_to_watchpoint_addr_within_range;
4694 current_target.to_region_ok_for_hw_watchpoint
4695 = debug_to_region_ok_for_hw_watchpoint;
4696 current_target.to_can_accel_watchpoint_condition
4697 = debug_to_can_accel_watchpoint_condition;
4698 current_target.to_terminal_init = debug_to_terminal_init;
4699 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4700 current_target.to_terminal_ours_for_output
4701 = debug_to_terminal_ours_for_output;
4702 current_target.to_terminal_ours = debug_to_terminal_ours;
4703 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4704 current_target.to_terminal_info = debug_to_terminal_info;
4705 current_target.to_load = debug_to_load;
4706 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4707 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4708 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4709 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4710 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4711 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4712 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4713 current_target.to_has_exited = debug_to_has_exited;
4714 current_target.to_can_run = debug_to_can_run;
4715 current_target.to_stop = debug_to_stop;
4716 current_target.to_rcmd = debug_to_rcmd;
4717 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4718 current_target.to_thread_architecture = debug_to_thread_architecture;
4719 }
4720 \f
4721
4722 static char targ_desc[] =
4723 "Names of targets and files being debugged.\nShows the entire \
4724 stack of targets currently in use (including the exec-file,\n\
4725 core-file, and process, if any), as well as the symbol file name.";
4726
4727 static void
4728 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4729 {
4730 error (_("\"monitor\" command not supported by this target."));
4731 }
4732
4733 static void
4734 do_monitor_command (char *cmd,
4735 int from_tty)
4736 {
4737 target_rcmd (cmd, gdb_stdtarg);
4738 }
4739
4740 /* Print the name of each layers of our target stack. */
4741
4742 static void
4743 maintenance_print_target_stack (char *cmd, int from_tty)
4744 {
4745 struct target_ops *t;
4746
4747 printf_filtered (_("The current target stack is:\n"));
4748
4749 for (t = target_stack; t != NULL; t = t->beneath)
4750 {
4751 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4752 }
4753 }
4754
4755 /* Controls if async mode is permitted. */
4756 int target_async_permitted = 0;
4757
4758 /* The set command writes to this variable. If the inferior is
4759 executing, target_async_permitted is *not* updated. */
4760 static int target_async_permitted_1 = 0;
4761
4762 static void
4763 set_target_async_command (char *args, int from_tty,
4764 struct cmd_list_element *c)
4765 {
4766 if (have_live_inferiors ())
4767 {
4768 target_async_permitted_1 = target_async_permitted;
4769 error (_("Cannot change this setting while the inferior is running."));
4770 }
4771
4772 target_async_permitted = target_async_permitted_1;
4773 }
4774
4775 static void
4776 show_target_async_command (struct ui_file *file, int from_tty,
4777 struct cmd_list_element *c,
4778 const char *value)
4779 {
4780 fprintf_filtered (file,
4781 _("Controlling the inferior in "
4782 "asynchronous mode is %s.\n"), value);
4783 }
4784
4785 /* Temporary copies of permission settings. */
4786
4787 static int may_write_registers_1 = 1;
4788 static int may_write_memory_1 = 1;
4789 static int may_insert_breakpoints_1 = 1;
4790 static int may_insert_tracepoints_1 = 1;
4791 static int may_insert_fast_tracepoints_1 = 1;
4792 static int may_stop_1 = 1;
4793
4794 /* Make the user-set values match the real values again. */
4795
4796 void
4797 update_target_permissions (void)
4798 {
4799 may_write_registers_1 = may_write_registers;
4800 may_write_memory_1 = may_write_memory;
4801 may_insert_breakpoints_1 = may_insert_breakpoints;
4802 may_insert_tracepoints_1 = may_insert_tracepoints;
4803 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4804 may_stop_1 = may_stop;
4805 }
4806
4807 /* The one function handles (most of) the permission flags in the same
4808 way. */
4809
4810 static void
4811 set_target_permissions (char *args, int from_tty,
4812 struct cmd_list_element *c)
4813 {
4814 if (target_has_execution)
4815 {
4816 update_target_permissions ();
4817 error (_("Cannot change this setting while the inferior is running."));
4818 }
4819
4820 /* Make the real values match the user-changed values. */
4821 may_write_registers = may_write_registers_1;
4822 may_insert_breakpoints = may_insert_breakpoints_1;
4823 may_insert_tracepoints = may_insert_tracepoints_1;
4824 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4825 may_stop = may_stop_1;
4826 update_observer_mode ();
4827 }
4828
4829 /* Set memory write permission independently of observer mode. */
4830
4831 static void
4832 set_write_memory_permission (char *args, int from_tty,
4833 struct cmd_list_element *c)
4834 {
4835 /* Make the real values match the user-changed values. */
4836 may_write_memory = may_write_memory_1;
4837 update_observer_mode ();
4838 }
4839
4840
4841 void
4842 initialize_targets (void)
4843 {
4844 init_dummy_target ();
4845 push_target (&dummy_target);
4846
4847 add_info ("target", target_info, targ_desc);
4848 add_info ("files", target_info, targ_desc);
4849
4850 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4851 Set target debugging."), _("\
4852 Show target debugging."), _("\
4853 When non-zero, target debugging is enabled. Higher numbers are more\n\
4854 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4855 command."),
4856 NULL,
4857 show_targetdebug,
4858 &setdebuglist, &showdebuglist);
4859
4860 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4861 &trust_readonly, _("\
4862 Set mode for reading from readonly sections."), _("\
4863 Show mode for reading from readonly sections."), _("\
4864 When this mode is on, memory reads from readonly sections (such as .text)\n\
4865 will be read from the object file instead of from the target. This will\n\
4866 result in significant performance improvement for remote targets."),
4867 NULL,
4868 show_trust_readonly,
4869 &setlist, &showlist);
4870
4871 add_com ("monitor", class_obscure, do_monitor_command,
4872 _("Send a command to the remote monitor (remote targets only)."));
4873
4874 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4875 _("Print the name of each layer of the internal target stack."),
4876 &maintenanceprintlist);
4877
4878 add_setshow_boolean_cmd ("target-async", no_class,
4879 &target_async_permitted_1, _("\
4880 Set whether gdb controls the inferior in asynchronous mode."), _("\
4881 Show whether gdb controls the inferior in asynchronous mode."), _("\
4882 Tells gdb whether to control the inferior in asynchronous mode."),
4883 set_target_async_command,
4884 show_target_async_command,
4885 &setlist,
4886 &showlist);
4887
4888 add_setshow_boolean_cmd ("may-write-registers", class_support,
4889 &may_write_registers_1, _("\
4890 Set permission to write into registers."), _("\
4891 Show permission to write into registers."), _("\
4892 When this permission is on, GDB may write into the target's registers.\n\
4893 Otherwise, any sort of write attempt will result in an error."),
4894 set_target_permissions, NULL,
4895 &setlist, &showlist);
4896
4897 add_setshow_boolean_cmd ("may-write-memory", class_support,
4898 &may_write_memory_1, _("\
4899 Set permission to write into target memory."), _("\
4900 Show permission to write into target memory."), _("\
4901 When this permission is on, GDB may write into the target's memory.\n\
4902 Otherwise, any sort of write attempt will result in an error."),
4903 set_write_memory_permission, NULL,
4904 &setlist, &showlist);
4905
4906 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4907 &may_insert_breakpoints_1, _("\
4908 Set permission to insert breakpoints in the target."), _("\
4909 Show permission to insert breakpoints in the target."), _("\
4910 When this permission is on, GDB may insert breakpoints in the program.\n\
4911 Otherwise, any sort of insertion attempt will result in an error."),
4912 set_target_permissions, NULL,
4913 &setlist, &showlist);
4914
4915 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4916 &may_insert_tracepoints_1, _("\
4917 Set permission to insert tracepoints in the target."), _("\
4918 Show permission to insert tracepoints in the target."), _("\
4919 When this permission is on, GDB may insert tracepoints in the program.\n\
4920 Otherwise, any sort of insertion attempt will result in an error."),
4921 set_target_permissions, NULL,
4922 &setlist, &showlist);
4923
4924 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4925 &may_insert_fast_tracepoints_1, _("\
4926 Set permission to insert fast tracepoints in the target."), _("\
4927 Show permission to insert fast tracepoints in the target."), _("\
4928 When this permission is on, GDB may insert fast tracepoints.\n\
4929 Otherwise, any sort of insertion attempt will result in an error."),
4930 set_target_permissions, NULL,
4931 &setlist, &showlist);
4932
4933 add_setshow_boolean_cmd ("may-interrupt", class_support,
4934 &may_stop_1, _("\
4935 Set permission to interrupt or signal the target."), _("\
4936 Show permission to interrupt or signal the target."), _("\
4937 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4938 Otherwise, any attempt to interrupt or stop will be ignored."),
4939 set_target_permissions, NULL,
4940 &setlist, &showlist);
4941 }