simplify target_is_pushed
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "dcache.h"
35 #include <signal.h>
36 #include "regcache.h"
37 #include "gdb_assert.h"
38 #include "gdbcore.h"
39 #include "exceptions.h"
40 #include "target-descriptions.h"
41 #include "gdbthread.h"
42 #include "solib.h"
43 #include "exec.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "gdb/fileio.h"
47 #include "agent.h"
48 #include "auxv.h"
49 #include "target-debug.h"
50
51 static void target_info (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static void target_command (char *, int);
94
95 static struct target_ops *find_default_run_target (char *);
96
97 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 ptid_t ptid);
99
100 static int dummy_find_memory_regions (struct target_ops *self,
101 find_memory_region_ftype ignore1,
102 void *ignore2);
103
104 static char *dummy_make_corefile_notes (struct target_ops *self,
105 bfd *ignore1, int *ignore2);
106
107 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
108
109 static enum exec_direction_kind default_execution_direction
110 (struct target_ops *self);
111
112 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
113 struct gdbarch *gdbarch);
114
115 static struct target_ops debug_target;
116
117 #include "target-delegates.c"
118
119 static void init_dummy_target (void);
120
121 static void debug_to_open (char *, int);
122
123 /* Pointer to array of target architecture structures; the size of the
124 array; the current index into the array; the allocated size of the
125 array. */
126 struct target_ops **target_structs;
127 unsigned target_struct_size;
128 unsigned target_struct_allocsize;
129 #define DEFAULT_ALLOCSIZE 10
130
131 /* The initial current target, so that there is always a semi-valid
132 current target. */
133
134 static struct target_ops dummy_target;
135
136 /* Top of target stack. */
137
138 static struct target_ops *target_stack;
139
140 /* The target structure we are currently using to talk to a process
141 or file or whatever "inferior" we have. */
142
143 struct target_ops current_target;
144
145 /* Command list for target. */
146
147 static struct cmd_list_element *targetlist = NULL;
148
149 /* Nonzero if we should trust readonly sections from the
150 executable when reading memory. */
151
152 static int trust_readonly = 0;
153
154 /* Nonzero if we should show true memory content including
155 memory breakpoint inserted by gdb. */
156
157 static int show_memory_breakpoints = 0;
158
159 /* These globals control whether GDB attempts to perform these
160 operations; they are useful for targets that need to prevent
161 inadvertant disruption, such as in non-stop mode. */
162
163 int may_write_registers = 1;
164
165 int may_write_memory = 1;
166
167 int may_insert_breakpoints = 1;
168
169 int may_insert_tracepoints = 1;
170
171 int may_insert_fast_tracepoints = 1;
172
173 int may_stop = 1;
174
175 /* Non-zero if we want to see trace of target level stuff. */
176
177 static unsigned int targetdebug = 0;
178 static void
179 show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183 }
184
185 static void setup_target_debug (void);
186
187 /* The user just typed 'target' without the name of a target. */
188
189 static void
190 target_command (char *arg, int from_tty)
191 {
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194 }
195
196 /* Default target_has_* methods for process_stratum targets. */
197
198 int
199 default_child_has_all_memory (struct target_ops *ops)
200 {
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206 }
207
208 int
209 default_child_has_memory (struct target_ops *ops)
210 {
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216 }
217
218 int
219 default_child_has_stack (struct target_ops *ops)
220 {
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_registers (struct target_ops *ops)
230 {
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
240 {
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
243 if (ptid_equal (the_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249
250 int
251 target_has_all_memory_1 (void)
252 {
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260 }
261
262 int
263 target_has_memory_1 (void)
264 {
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272 }
273
274 int
275 target_has_stack_1 (void)
276 {
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284 }
285
286 int
287 target_has_registers_1 (void)
288 {
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296 }
297
298 int
299 target_has_execution_1 (ptid_t the_ptid)
300 {
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
304 if (t->to_has_execution (t, the_ptid))
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_current (void)
312 {
313 return target_has_execution_1 (inferior_ptid);
314 }
315
316 /* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
318
319 void
320 complete_target_initialization (struct target_ops *t)
321 {
322 /* Provide default values for all "must have" methods. */
323
324 if (t->to_has_all_memory == NULL)
325 t->to_has_all_memory = return_zero;
326
327 if (t->to_has_memory == NULL)
328 t->to_has_memory = return_zero;
329
330 if (t->to_has_stack == NULL)
331 t->to_has_stack = return_zero;
332
333 if (t->to_has_registers == NULL)
334 t->to_has_registers = return_zero;
335
336 if (t->to_has_execution == NULL)
337 t->to_has_execution = return_zero_has_execution;
338
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
345 install_delegators (t);
346 }
347
348 /* Add possible target architecture T to the list and add a new
349 command 'target T->to_shortname'. Set COMPLETER as the command's
350 completer if not NULL. */
351
352 void
353 add_target_with_completer (struct target_ops *t,
354 completer_ftype *completer)
355 {
356 struct cmd_list_element *c;
357
358 complete_target_initialization (t);
359
360 if (!target_structs)
361 {
362 target_struct_allocsize = DEFAULT_ALLOCSIZE;
363 target_structs = (struct target_ops **) xmalloc
364 (target_struct_allocsize * sizeof (*target_structs));
365 }
366 if (target_struct_size >= target_struct_allocsize)
367 {
368 target_struct_allocsize *= 2;
369 target_structs = (struct target_ops **)
370 xrealloc ((char *) target_structs,
371 target_struct_allocsize * sizeof (*target_structs));
372 }
373 target_structs[target_struct_size++] = t;
374
375 if (targetlist == NULL)
376 add_prefix_cmd ("target", class_run, target_command, _("\
377 Connect to a target machine or process.\n\
378 The first argument is the type or protocol of the target machine.\n\
379 Remaining arguments are interpreted by the target protocol. For more\n\
380 information on the arguments for a particular protocol, type\n\
381 `help target ' followed by the protocol name."),
382 &targetlist, "target ", 0, &cmdlist);
383 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
384 &targetlist);
385 if (completer != NULL)
386 set_cmd_completer (c, completer);
387 }
388
389 /* Add a possible target architecture to the list. */
390
391 void
392 add_target (struct target_ops *t)
393 {
394 add_target_with_completer (t, NULL);
395 }
396
397 /* See target.h. */
398
399 void
400 add_deprecated_target_alias (struct target_ops *t, char *alias)
401 {
402 struct cmd_list_element *c;
403 char *alt;
404
405 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
406 see PR cli/15104. */
407 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
408 alt = xstrprintf ("target %s", t->to_shortname);
409 deprecate_cmd (c, alt);
410 }
411
412 /* Stub functions */
413
414 void
415 target_kill (void)
416 {
417 current_target.to_kill (&current_target);
418 }
419
420 void
421 target_load (const char *arg, int from_tty)
422 {
423 target_dcache_invalidate ();
424 (*current_target.to_load) (&current_target, arg, from_tty);
425 }
426
427 void
428 target_terminal_inferior (void)
429 {
430 /* A background resume (``run&'') should leave GDB in control of the
431 terminal. Use target_can_async_p, not target_is_async_p, since at
432 this point the target is not async yet. However, if sync_execution
433 is not set, we know it will become async prior to resume. */
434 if (target_can_async_p () && !sync_execution)
435 return;
436
437 /* If GDB is resuming the inferior in the foreground, install
438 inferior's terminal modes. */
439 (*current_target.to_terminal_inferior) (&current_target);
440 }
441
442 /* See target.h. */
443
444 int
445 target_supports_terminal_ours (void)
446 {
447 struct target_ops *t;
448
449 for (t = current_target.beneath; t != NULL; t = t->beneath)
450 {
451 if (t->to_terminal_ours != delegate_terminal_ours
452 && t->to_terminal_ours != tdefault_terminal_ours)
453 return 1;
454 }
455
456 return 0;
457 }
458
459 static void
460 tcomplain (void)
461 {
462 error (_("You can't do that when your target is `%s'"),
463 current_target.to_shortname);
464 }
465
466 void
467 noprocess (void)
468 {
469 error (_("You can't do that without a process to debug."));
470 }
471
472 static void
473 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
474 {
475 printf_unfiltered (_("No saved terminal information.\n"));
476 }
477
478 /* A default implementation for the to_get_ada_task_ptid target method.
479
480 This function builds the PTID by using both LWP and TID as part of
481 the PTID lwp and tid elements. The pid used is the pid of the
482 inferior_ptid. */
483
484 static ptid_t
485 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
486 {
487 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
488 }
489
490 static enum exec_direction_kind
491 default_execution_direction (struct target_ops *self)
492 {
493 if (!target_can_execute_reverse)
494 return EXEC_FORWARD;
495 else if (!target_can_async_p ())
496 return EXEC_FORWARD;
497 else
498 gdb_assert_not_reached ("\
499 to_execution_direction must be implemented for reverse async");
500 }
501
502 /* Go through the target stack from top to bottom, copying over zero
503 entries in current_target, then filling in still empty entries. In
504 effect, we are doing class inheritance through the pushed target
505 vectors.
506
507 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
508 is currently implemented, is that it discards any knowledge of
509 which target an inherited method originally belonged to.
510 Consequently, new new target methods should instead explicitly and
511 locally search the target stack for the target that can handle the
512 request. */
513
514 static void
515 update_current_target (void)
516 {
517 struct target_ops *t;
518
519 /* First, reset current's contents. */
520 memset (&current_target, 0, sizeof (current_target));
521
522 /* Install the delegators. */
523 install_delegators (&current_target);
524
525 current_target.to_stratum = target_stack->to_stratum;
526
527 #define INHERIT(FIELD, TARGET) \
528 if (!current_target.FIELD) \
529 current_target.FIELD = (TARGET)->FIELD
530
531 /* Do not add any new INHERITs here. Instead, use the delegation
532 mechanism provided by make-target-delegates. */
533 for (t = target_stack; t; t = t->beneath)
534 {
535 INHERIT (to_shortname, t);
536 INHERIT (to_longname, t);
537 INHERIT (to_attach_no_wait, t);
538 INHERIT (to_have_steppable_watchpoint, t);
539 INHERIT (to_have_continuable_watchpoint, t);
540 INHERIT (to_has_thread_control, t);
541 }
542 #undef INHERIT
543
544 /* Finally, position the target-stack beneath the squashed
545 "current_target". That way code looking for a non-inherited
546 target method can quickly and simply find it. */
547 current_target.beneath = target_stack;
548
549 if (targetdebug)
550 setup_target_debug ();
551 }
552
553 /* Push a new target type into the stack of the existing target accessors,
554 possibly superseding some of the existing accessors.
555
556 Rather than allow an empty stack, we always have the dummy target at
557 the bottom stratum, so we can call the function vectors without
558 checking them. */
559
560 void
561 push_target (struct target_ops *t)
562 {
563 struct target_ops **cur;
564
565 /* Check magic number. If wrong, it probably means someone changed
566 the struct definition, but not all the places that initialize one. */
567 if (t->to_magic != OPS_MAGIC)
568 {
569 fprintf_unfiltered (gdb_stderr,
570 "Magic number of %s target struct wrong\n",
571 t->to_shortname);
572 internal_error (__FILE__, __LINE__,
573 _("failed internal consistency check"));
574 }
575
576 /* Find the proper stratum to install this target in. */
577 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
578 {
579 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
580 break;
581 }
582
583 /* If there's already targets at this stratum, remove them. */
584 /* FIXME: cagney/2003-10-15: I think this should be popping all
585 targets to CUR, and not just those at this stratum level. */
586 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
587 {
588 /* There's already something at this stratum level. Close it,
589 and un-hook it from the stack. */
590 struct target_ops *tmp = (*cur);
591
592 (*cur) = (*cur)->beneath;
593 tmp->beneath = NULL;
594 target_close (tmp);
595 }
596
597 /* We have removed all targets in our stratum, now add the new one. */
598 t->beneath = (*cur);
599 (*cur) = t;
600
601 update_current_target ();
602 }
603
604 /* Remove a target_ops vector from the stack, wherever it may be.
605 Return how many times it was removed (0 or 1). */
606
607 int
608 unpush_target (struct target_ops *t)
609 {
610 struct target_ops **cur;
611 struct target_ops *tmp;
612
613 if (t->to_stratum == dummy_stratum)
614 internal_error (__FILE__, __LINE__,
615 _("Attempt to unpush the dummy target"));
616
617 /* Look for the specified target. Note that we assume that a target
618 can only occur once in the target stack. */
619
620 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
621 {
622 if ((*cur) == t)
623 break;
624 }
625
626 /* If we don't find target_ops, quit. Only open targets should be
627 closed. */
628 if ((*cur) == NULL)
629 return 0;
630
631 /* Unchain the target. */
632 tmp = (*cur);
633 (*cur) = (*cur)->beneath;
634 tmp->beneath = NULL;
635
636 update_current_target ();
637
638 /* Finally close the target. Note we do this after unchaining, so
639 any target method calls from within the target_close
640 implementation don't end up in T anymore. */
641 target_close (t);
642
643 return 1;
644 }
645
646 void
647 pop_all_targets_above (enum strata above_stratum)
648 {
649 while ((int) (current_target.to_stratum) > (int) above_stratum)
650 {
651 if (!unpush_target (target_stack))
652 {
653 fprintf_unfiltered (gdb_stderr,
654 "pop_all_targets couldn't find target %s\n",
655 target_stack->to_shortname);
656 internal_error (__FILE__, __LINE__,
657 _("failed internal consistency check"));
658 break;
659 }
660 }
661 }
662
663 void
664 pop_all_targets (void)
665 {
666 pop_all_targets_above (dummy_stratum);
667 }
668
669 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
670
671 int
672 target_is_pushed (struct target_ops *t)
673 {
674 struct target_ops *cur;
675
676 /* Check magic number. If wrong, it probably means someone changed
677 the struct definition, but not all the places that initialize one. */
678 if (t->to_magic != OPS_MAGIC)
679 {
680 fprintf_unfiltered (gdb_stderr,
681 "Magic number of %s target struct wrong\n",
682 t->to_shortname);
683 internal_error (__FILE__, __LINE__,
684 _("failed internal consistency check"));
685 }
686
687 for (cur = target_stack; cur != NULL; cur = cur->beneath)
688 if (cur == t)
689 return 1;
690
691 return 0;
692 }
693
694 /* Default implementation of to_get_thread_local_address. */
695
696 static void
697 generic_tls_error (void)
698 {
699 throw_error (TLS_GENERIC_ERROR,
700 _("Cannot find thread-local variables on this target"));
701 }
702
703 /* Using the objfile specified in OBJFILE, find the address for the
704 current thread's thread-local storage with offset OFFSET. */
705 CORE_ADDR
706 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
707 {
708 volatile CORE_ADDR addr = 0;
709 struct target_ops *target = &current_target;
710
711 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
712 {
713 ptid_t ptid = inferior_ptid;
714 volatile struct gdb_exception ex;
715
716 TRY_CATCH (ex, RETURN_MASK_ALL)
717 {
718 CORE_ADDR lm_addr;
719
720 /* Fetch the load module address for this objfile. */
721 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
722 objfile);
723
724 addr = target->to_get_thread_local_address (target, ptid,
725 lm_addr, offset);
726 }
727 /* If an error occurred, print TLS related messages here. Otherwise,
728 throw the error to some higher catcher. */
729 if (ex.reason < 0)
730 {
731 int objfile_is_library = (objfile->flags & OBJF_SHARED);
732
733 switch (ex.error)
734 {
735 case TLS_NO_LIBRARY_SUPPORT_ERROR:
736 error (_("Cannot find thread-local variables "
737 "in this thread library."));
738 break;
739 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
740 if (objfile_is_library)
741 error (_("Cannot find shared library `%s' in dynamic"
742 " linker's load module list"), objfile_name (objfile));
743 else
744 error (_("Cannot find executable file `%s' in dynamic"
745 " linker's load module list"), objfile_name (objfile));
746 break;
747 case TLS_NOT_ALLOCATED_YET_ERROR:
748 if (objfile_is_library)
749 error (_("The inferior has not yet allocated storage for"
750 " thread-local variables in\n"
751 "the shared library `%s'\n"
752 "for %s"),
753 objfile_name (objfile), target_pid_to_str (ptid));
754 else
755 error (_("The inferior has not yet allocated storage for"
756 " thread-local variables in\n"
757 "the executable `%s'\n"
758 "for %s"),
759 objfile_name (objfile), target_pid_to_str (ptid));
760 break;
761 case TLS_GENERIC_ERROR:
762 if (objfile_is_library)
763 error (_("Cannot find thread-local storage for %s, "
764 "shared library %s:\n%s"),
765 target_pid_to_str (ptid),
766 objfile_name (objfile), ex.message);
767 else
768 error (_("Cannot find thread-local storage for %s, "
769 "executable file %s:\n%s"),
770 target_pid_to_str (ptid),
771 objfile_name (objfile), ex.message);
772 break;
773 default:
774 throw_exception (ex);
775 break;
776 }
777 }
778 }
779 /* It wouldn't be wrong here to try a gdbarch method, too; finding
780 TLS is an ABI-specific thing. But we don't do that yet. */
781 else
782 error (_("Cannot find thread-local variables on this target"));
783
784 return addr;
785 }
786
787 const char *
788 target_xfer_status_to_string (enum target_xfer_status status)
789 {
790 #define CASE(X) case X: return #X
791 switch (status)
792 {
793 CASE(TARGET_XFER_E_IO);
794 CASE(TARGET_XFER_UNAVAILABLE);
795 default:
796 return "<unknown>";
797 }
798 #undef CASE
799 };
800
801
802 #undef MIN
803 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
804
805 /* target_read_string -- read a null terminated string, up to LEN bytes,
806 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
807 Set *STRING to a pointer to malloc'd memory containing the data; the caller
808 is responsible for freeing it. Return the number of bytes successfully
809 read. */
810
811 int
812 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
813 {
814 int tlen, offset, i;
815 gdb_byte buf[4];
816 int errcode = 0;
817 char *buffer;
818 int buffer_allocated;
819 char *bufptr;
820 unsigned int nbytes_read = 0;
821
822 gdb_assert (string);
823
824 /* Small for testing. */
825 buffer_allocated = 4;
826 buffer = xmalloc (buffer_allocated);
827 bufptr = buffer;
828
829 while (len > 0)
830 {
831 tlen = MIN (len, 4 - (memaddr & 3));
832 offset = memaddr & 3;
833
834 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
835 if (errcode != 0)
836 {
837 /* The transfer request might have crossed the boundary to an
838 unallocated region of memory. Retry the transfer, requesting
839 a single byte. */
840 tlen = 1;
841 offset = 0;
842 errcode = target_read_memory (memaddr, buf, 1);
843 if (errcode != 0)
844 goto done;
845 }
846
847 if (bufptr - buffer + tlen > buffer_allocated)
848 {
849 unsigned int bytes;
850
851 bytes = bufptr - buffer;
852 buffer_allocated *= 2;
853 buffer = xrealloc (buffer, buffer_allocated);
854 bufptr = buffer + bytes;
855 }
856
857 for (i = 0; i < tlen; i++)
858 {
859 *bufptr++ = buf[i + offset];
860 if (buf[i + offset] == '\000')
861 {
862 nbytes_read += i + 1;
863 goto done;
864 }
865 }
866
867 memaddr += tlen;
868 len -= tlen;
869 nbytes_read += tlen;
870 }
871 done:
872 *string = buffer;
873 if (errnop != NULL)
874 *errnop = errcode;
875 return nbytes_read;
876 }
877
878 struct target_section_table *
879 target_get_section_table (struct target_ops *target)
880 {
881 return (*target->to_get_section_table) (target);
882 }
883
884 /* Find a section containing ADDR. */
885
886 struct target_section *
887 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
888 {
889 struct target_section_table *table = target_get_section_table (target);
890 struct target_section *secp;
891
892 if (table == NULL)
893 return NULL;
894
895 for (secp = table->sections; secp < table->sections_end; secp++)
896 {
897 if (addr >= secp->addr && addr < secp->endaddr)
898 return secp;
899 }
900 return NULL;
901 }
902
903 /* Read memory from more than one valid target. A core file, for
904 instance, could have some of memory but delegate other bits to
905 the target below it. So, we must manually try all targets. */
906
907 static enum target_xfer_status
908 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
909 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
910 ULONGEST *xfered_len)
911 {
912 enum target_xfer_status res;
913
914 do
915 {
916 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
917 readbuf, writebuf, memaddr, len,
918 xfered_len);
919 if (res == TARGET_XFER_OK)
920 break;
921
922 /* Stop if the target reports that the memory is not available. */
923 if (res == TARGET_XFER_UNAVAILABLE)
924 break;
925
926 /* We want to continue past core files to executables, but not
927 past a running target's memory. */
928 if (ops->to_has_all_memory (ops))
929 break;
930
931 ops = ops->beneath;
932 }
933 while (ops != NULL);
934
935 /* The cache works at the raw memory level. Make sure the cache
936 gets updated with raw contents no matter what kind of memory
937 object was originally being written. Note we do write-through
938 first, so that if it fails, we don't write to the cache contents
939 that never made it to the target. */
940 if (writebuf != NULL
941 && !ptid_equal (inferior_ptid, null_ptid)
942 && target_dcache_init_p ()
943 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
944 {
945 DCACHE *dcache = target_dcache_get ();
946
947 /* Note that writing to an area of memory which wasn't present
948 in the cache doesn't cause it to be loaded in. */
949 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
950 }
951
952 return res;
953 }
954
955 /* Perform a partial memory transfer.
956 For docs see target.h, to_xfer_partial. */
957
958 static enum target_xfer_status
959 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
960 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
961 ULONGEST len, ULONGEST *xfered_len)
962 {
963 enum target_xfer_status res;
964 int reg_len;
965 struct mem_region *region;
966 struct inferior *inf;
967
968 /* For accesses to unmapped overlay sections, read directly from
969 files. Must do this first, as MEMADDR may need adjustment. */
970 if (readbuf != NULL && overlay_debugging)
971 {
972 struct obj_section *section = find_pc_overlay (memaddr);
973
974 if (pc_in_unmapped_range (memaddr, section))
975 {
976 struct target_section_table *table
977 = target_get_section_table (ops);
978 const char *section_name = section->the_bfd_section->name;
979
980 memaddr = overlay_mapped_address (memaddr, section);
981 return section_table_xfer_memory_partial (readbuf, writebuf,
982 memaddr, len, xfered_len,
983 table->sections,
984 table->sections_end,
985 section_name);
986 }
987 }
988
989 /* Try the executable files, if "trust-readonly-sections" is set. */
990 if (readbuf != NULL && trust_readonly)
991 {
992 struct target_section *secp;
993 struct target_section_table *table;
994
995 secp = target_section_by_addr (ops, memaddr);
996 if (secp != NULL
997 && (bfd_get_section_flags (secp->the_bfd_section->owner,
998 secp->the_bfd_section)
999 & SEC_READONLY))
1000 {
1001 table = target_get_section_table (ops);
1002 return section_table_xfer_memory_partial (readbuf, writebuf,
1003 memaddr, len, xfered_len,
1004 table->sections,
1005 table->sections_end,
1006 NULL);
1007 }
1008 }
1009
1010 /* Try GDB's internal data cache. */
1011 region = lookup_mem_region (memaddr);
1012 /* region->hi == 0 means there's no upper bound. */
1013 if (memaddr + len < region->hi || region->hi == 0)
1014 reg_len = len;
1015 else
1016 reg_len = region->hi - memaddr;
1017
1018 switch (region->attrib.mode)
1019 {
1020 case MEM_RO:
1021 if (writebuf != NULL)
1022 return TARGET_XFER_E_IO;
1023 break;
1024
1025 case MEM_WO:
1026 if (readbuf != NULL)
1027 return TARGET_XFER_E_IO;
1028 break;
1029
1030 case MEM_FLASH:
1031 /* We only support writing to flash during "load" for now. */
1032 if (writebuf != NULL)
1033 error (_("Writing to flash memory forbidden in this context"));
1034 break;
1035
1036 case MEM_NONE:
1037 return TARGET_XFER_E_IO;
1038 }
1039
1040 if (!ptid_equal (inferior_ptid, null_ptid))
1041 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1042 else
1043 inf = NULL;
1044
1045 if (inf != NULL
1046 && readbuf != NULL
1047 /* The dcache reads whole cache lines; that doesn't play well
1048 with reading from a trace buffer, because reading outside of
1049 the collected memory range fails. */
1050 && get_traceframe_number () == -1
1051 && (region->attrib.cache
1052 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1053 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1054 {
1055 DCACHE *dcache = target_dcache_get_or_init ();
1056
1057 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1058 reg_len, xfered_len);
1059 }
1060
1061 /* If none of those methods found the memory we wanted, fall back
1062 to a target partial transfer. Normally a single call to
1063 to_xfer_partial is enough; if it doesn't recognize an object
1064 it will call the to_xfer_partial of the next target down.
1065 But for memory this won't do. Memory is the only target
1066 object which can be read from more than one valid target.
1067 A core file, for instance, could have some of memory but
1068 delegate other bits to the target below it. So, we must
1069 manually try all targets. */
1070
1071 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1072 xfered_len);
1073
1074 /* If we still haven't got anything, return the last error. We
1075 give up. */
1076 return res;
1077 }
1078
1079 /* Perform a partial memory transfer. For docs see target.h,
1080 to_xfer_partial. */
1081
1082 static enum target_xfer_status
1083 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1084 gdb_byte *readbuf, const gdb_byte *writebuf,
1085 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1086 {
1087 enum target_xfer_status res;
1088
1089 /* Zero length requests are ok and require no work. */
1090 if (len == 0)
1091 return TARGET_XFER_EOF;
1092
1093 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1094 breakpoint insns, thus hiding out from higher layers whether
1095 there are software breakpoints inserted in the code stream. */
1096 if (readbuf != NULL)
1097 {
1098 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1099 xfered_len);
1100
1101 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1102 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1103 }
1104 else
1105 {
1106 void *buf;
1107 struct cleanup *old_chain;
1108
1109 /* A large write request is likely to be partially satisfied
1110 by memory_xfer_partial_1. We will continually malloc
1111 and free a copy of the entire write request for breakpoint
1112 shadow handling even though we only end up writing a small
1113 subset of it. Cap writes to 4KB to mitigate this. */
1114 len = min (4096, len);
1115
1116 buf = xmalloc (len);
1117 old_chain = make_cleanup (xfree, buf);
1118 memcpy (buf, writebuf, len);
1119
1120 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1121 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1122 xfered_len);
1123
1124 do_cleanups (old_chain);
1125 }
1126
1127 return res;
1128 }
1129
1130 static void
1131 restore_show_memory_breakpoints (void *arg)
1132 {
1133 show_memory_breakpoints = (uintptr_t) arg;
1134 }
1135
1136 struct cleanup *
1137 make_show_memory_breakpoints_cleanup (int show)
1138 {
1139 int current = show_memory_breakpoints;
1140
1141 show_memory_breakpoints = show;
1142 return make_cleanup (restore_show_memory_breakpoints,
1143 (void *) (uintptr_t) current);
1144 }
1145
1146 /* For docs see target.h, to_xfer_partial. */
1147
1148 enum target_xfer_status
1149 target_xfer_partial (struct target_ops *ops,
1150 enum target_object object, const char *annex,
1151 gdb_byte *readbuf, const gdb_byte *writebuf,
1152 ULONGEST offset, ULONGEST len,
1153 ULONGEST *xfered_len)
1154 {
1155 enum target_xfer_status retval;
1156
1157 gdb_assert (ops->to_xfer_partial != NULL);
1158
1159 /* Transfer is done when LEN is zero. */
1160 if (len == 0)
1161 return TARGET_XFER_EOF;
1162
1163 if (writebuf && !may_write_memory)
1164 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1165 core_addr_to_string_nz (offset), plongest (len));
1166
1167 *xfered_len = 0;
1168
1169 /* If this is a memory transfer, let the memory-specific code
1170 have a look at it instead. Memory transfers are more
1171 complicated. */
1172 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1173 || object == TARGET_OBJECT_CODE_MEMORY)
1174 retval = memory_xfer_partial (ops, object, readbuf,
1175 writebuf, offset, len, xfered_len);
1176 else if (object == TARGET_OBJECT_RAW_MEMORY)
1177 {
1178 /* Request the normal memory object from other layers. */
1179 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1180 xfered_len);
1181 }
1182 else
1183 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1184 writebuf, offset, len, xfered_len);
1185
1186 if (targetdebug)
1187 {
1188 const unsigned char *myaddr = NULL;
1189
1190 fprintf_unfiltered (gdb_stdlog,
1191 "%s:target_xfer_partial "
1192 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1193 ops->to_shortname,
1194 (int) object,
1195 (annex ? annex : "(null)"),
1196 host_address_to_string (readbuf),
1197 host_address_to_string (writebuf),
1198 core_addr_to_string_nz (offset),
1199 pulongest (len), retval,
1200 pulongest (*xfered_len));
1201
1202 if (readbuf)
1203 myaddr = readbuf;
1204 if (writebuf)
1205 myaddr = writebuf;
1206 if (retval == TARGET_XFER_OK && myaddr != NULL)
1207 {
1208 int i;
1209
1210 fputs_unfiltered (", bytes =", gdb_stdlog);
1211 for (i = 0; i < *xfered_len; i++)
1212 {
1213 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1214 {
1215 if (targetdebug < 2 && i > 0)
1216 {
1217 fprintf_unfiltered (gdb_stdlog, " ...");
1218 break;
1219 }
1220 fprintf_unfiltered (gdb_stdlog, "\n");
1221 }
1222
1223 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1224 }
1225 }
1226
1227 fputc_unfiltered ('\n', gdb_stdlog);
1228 }
1229
1230 /* Check implementations of to_xfer_partial update *XFERED_LEN
1231 properly. Do assertion after printing debug messages, so that we
1232 can find more clues on assertion failure from debugging messages. */
1233 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1234 gdb_assert (*xfered_len > 0);
1235
1236 return retval;
1237 }
1238
1239 /* Read LEN bytes of target memory at address MEMADDR, placing the
1240 results in GDB's memory at MYADDR. Returns either 0 for success or
1241 TARGET_XFER_E_IO if any error occurs.
1242
1243 If an error occurs, no guarantee is made about the contents of the data at
1244 MYADDR. In particular, the caller should not depend upon partial reads
1245 filling the buffer with good data. There is no way for the caller to know
1246 how much good data might have been transfered anyway. Callers that can
1247 deal with partial reads should call target_read (which will retry until
1248 it makes no progress, and then return how much was transferred). */
1249
1250 int
1251 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1252 {
1253 /* Dispatch to the topmost target, not the flattened current_target.
1254 Memory accesses check target->to_has_(all_)memory, and the
1255 flattened target doesn't inherit those. */
1256 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1257 myaddr, memaddr, len) == len)
1258 return 0;
1259 else
1260 return TARGET_XFER_E_IO;
1261 }
1262
1263 /* Like target_read_memory, but specify explicitly that this is a read
1264 from the target's raw memory. That is, this read bypasses the
1265 dcache, breakpoint shadowing, etc. */
1266
1267 int
1268 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1269 {
1270 /* See comment in target_read_memory about why the request starts at
1271 current_target.beneath. */
1272 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1273 myaddr, memaddr, len) == len)
1274 return 0;
1275 else
1276 return TARGET_XFER_E_IO;
1277 }
1278
1279 /* Like target_read_memory, but specify explicitly that this is a read from
1280 the target's stack. This may trigger different cache behavior. */
1281
1282 int
1283 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1284 {
1285 /* See comment in target_read_memory about why the request starts at
1286 current_target.beneath. */
1287 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1288 myaddr, memaddr, len) == len)
1289 return 0;
1290 else
1291 return TARGET_XFER_E_IO;
1292 }
1293
1294 /* Like target_read_memory, but specify explicitly that this is a read from
1295 the target's code. This may trigger different cache behavior. */
1296
1297 int
1298 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1299 {
1300 /* See comment in target_read_memory about why the request starts at
1301 current_target.beneath. */
1302 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1303 myaddr, memaddr, len) == len)
1304 return 0;
1305 else
1306 return TARGET_XFER_E_IO;
1307 }
1308
1309 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1310 Returns either 0 for success or TARGET_XFER_E_IO if any
1311 error occurs. If an error occurs, no guarantee is made about how
1312 much data got written. Callers that can deal with partial writes
1313 should call target_write. */
1314
1315 int
1316 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1317 {
1318 /* See comment in target_read_memory about why the request starts at
1319 current_target.beneath. */
1320 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1321 myaddr, memaddr, len) == len)
1322 return 0;
1323 else
1324 return TARGET_XFER_E_IO;
1325 }
1326
1327 /* Write LEN bytes from MYADDR to target raw memory at address
1328 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1329 if any error occurs. If an error occurs, no guarantee is made
1330 about how much data got written. Callers that can deal with
1331 partial writes should call target_write. */
1332
1333 int
1334 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1335 {
1336 /* See comment in target_read_memory about why the request starts at
1337 current_target.beneath. */
1338 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1339 myaddr, memaddr, len) == len)
1340 return 0;
1341 else
1342 return TARGET_XFER_E_IO;
1343 }
1344
1345 /* Fetch the target's memory map. */
1346
1347 VEC(mem_region_s) *
1348 target_memory_map (void)
1349 {
1350 VEC(mem_region_s) *result;
1351 struct mem_region *last_one, *this_one;
1352 int ix;
1353 struct target_ops *t;
1354
1355 result = current_target.to_memory_map (&current_target);
1356 if (result == NULL)
1357 return NULL;
1358
1359 qsort (VEC_address (mem_region_s, result),
1360 VEC_length (mem_region_s, result),
1361 sizeof (struct mem_region), mem_region_cmp);
1362
1363 /* Check that regions do not overlap. Simultaneously assign
1364 a numbering for the "mem" commands to use to refer to
1365 each region. */
1366 last_one = NULL;
1367 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1368 {
1369 this_one->number = ix;
1370
1371 if (last_one && last_one->hi > this_one->lo)
1372 {
1373 warning (_("Overlapping regions in memory map: ignoring"));
1374 VEC_free (mem_region_s, result);
1375 return NULL;
1376 }
1377 last_one = this_one;
1378 }
1379
1380 return result;
1381 }
1382
1383 void
1384 target_flash_erase (ULONGEST address, LONGEST length)
1385 {
1386 current_target.to_flash_erase (&current_target, address, length);
1387 }
1388
1389 void
1390 target_flash_done (void)
1391 {
1392 current_target.to_flash_done (&current_target);
1393 }
1394
1395 static void
1396 show_trust_readonly (struct ui_file *file, int from_tty,
1397 struct cmd_list_element *c, const char *value)
1398 {
1399 fprintf_filtered (file,
1400 _("Mode for reading from readonly sections is %s.\n"),
1401 value);
1402 }
1403
1404 /* Target vector read/write partial wrapper functions. */
1405
1406 static enum target_xfer_status
1407 target_read_partial (struct target_ops *ops,
1408 enum target_object object,
1409 const char *annex, gdb_byte *buf,
1410 ULONGEST offset, ULONGEST len,
1411 ULONGEST *xfered_len)
1412 {
1413 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1414 xfered_len);
1415 }
1416
1417 static enum target_xfer_status
1418 target_write_partial (struct target_ops *ops,
1419 enum target_object object,
1420 const char *annex, const gdb_byte *buf,
1421 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1422 {
1423 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1424 xfered_len);
1425 }
1426
1427 /* Wrappers to perform the full transfer. */
1428
1429 /* For docs on target_read see target.h. */
1430
1431 LONGEST
1432 target_read (struct target_ops *ops,
1433 enum target_object object,
1434 const char *annex, gdb_byte *buf,
1435 ULONGEST offset, LONGEST len)
1436 {
1437 LONGEST xfered = 0;
1438
1439 while (xfered < len)
1440 {
1441 ULONGEST xfered_len;
1442 enum target_xfer_status status;
1443
1444 status = target_read_partial (ops, object, annex,
1445 (gdb_byte *) buf + xfered,
1446 offset + xfered, len - xfered,
1447 &xfered_len);
1448
1449 /* Call an observer, notifying them of the xfer progress? */
1450 if (status == TARGET_XFER_EOF)
1451 return xfered;
1452 else if (status == TARGET_XFER_OK)
1453 {
1454 xfered += xfered_len;
1455 QUIT;
1456 }
1457 else
1458 return -1;
1459
1460 }
1461 return len;
1462 }
1463
1464 /* Assuming that the entire [begin, end) range of memory cannot be
1465 read, try to read whatever subrange is possible to read.
1466
1467 The function returns, in RESULT, either zero or one memory block.
1468 If there's a readable subrange at the beginning, it is completely
1469 read and returned. Any further readable subrange will not be read.
1470 Otherwise, if there's a readable subrange at the end, it will be
1471 completely read and returned. Any readable subranges before it
1472 (obviously, not starting at the beginning), will be ignored. In
1473 other cases -- either no readable subrange, or readable subrange(s)
1474 that is neither at the beginning, or end, nothing is returned.
1475
1476 The purpose of this function is to handle a read across a boundary
1477 of accessible memory in a case when memory map is not available.
1478 The above restrictions are fine for this case, but will give
1479 incorrect results if the memory is 'patchy'. However, supporting
1480 'patchy' memory would require trying to read every single byte,
1481 and it seems unacceptable solution. Explicit memory map is
1482 recommended for this case -- and target_read_memory_robust will
1483 take care of reading multiple ranges then. */
1484
1485 static void
1486 read_whatever_is_readable (struct target_ops *ops,
1487 ULONGEST begin, ULONGEST end,
1488 VEC(memory_read_result_s) **result)
1489 {
1490 gdb_byte *buf = xmalloc (end - begin);
1491 ULONGEST current_begin = begin;
1492 ULONGEST current_end = end;
1493 int forward;
1494 memory_read_result_s r;
1495 ULONGEST xfered_len;
1496
1497 /* If we previously failed to read 1 byte, nothing can be done here. */
1498 if (end - begin <= 1)
1499 {
1500 xfree (buf);
1501 return;
1502 }
1503
1504 /* Check that either first or the last byte is readable, and give up
1505 if not. This heuristic is meant to permit reading accessible memory
1506 at the boundary of accessible region. */
1507 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1508 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1509 {
1510 forward = 1;
1511 ++current_begin;
1512 }
1513 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1514 buf + (end-begin) - 1, end - 1, 1,
1515 &xfered_len) == TARGET_XFER_OK)
1516 {
1517 forward = 0;
1518 --current_end;
1519 }
1520 else
1521 {
1522 xfree (buf);
1523 return;
1524 }
1525
1526 /* Loop invariant is that the [current_begin, current_end) was previously
1527 found to be not readable as a whole.
1528
1529 Note loop condition -- if the range has 1 byte, we can't divide the range
1530 so there's no point trying further. */
1531 while (current_end - current_begin > 1)
1532 {
1533 ULONGEST first_half_begin, first_half_end;
1534 ULONGEST second_half_begin, second_half_end;
1535 LONGEST xfer;
1536 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1537
1538 if (forward)
1539 {
1540 first_half_begin = current_begin;
1541 first_half_end = middle;
1542 second_half_begin = middle;
1543 second_half_end = current_end;
1544 }
1545 else
1546 {
1547 first_half_begin = middle;
1548 first_half_end = current_end;
1549 second_half_begin = current_begin;
1550 second_half_end = middle;
1551 }
1552
1553 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1554 buf + (first_half_begin - begin),
1555 first_half_begin,
1556 first_half_end - first_half_begin);
1557
1558 if (xfer == first_half_end - first_half_begin)
1559 {
1560 /* This half reads up fine. So, the error must be in the
1561 other half. */
1562 current_begin = second_half_begin;
1563 current_end = second_half_end;
1564 }
1565 else
1566 {
1567 /* This half is not readable. Because we've tried one byte, we
1568 know some part of this half if actually redable. Go to the next
1569 iteration to divide again and try to read.
1570
1571 We don't handle the other half, because this function only tries
1572 to read a single readable subrange. */
1573 current_begin = first_half_begin;
1574 current_end = first_half_end;
1575 }
1576 }
1577
1578 if (forward)
1579 {
1580 /* The [begin, current_begin) range has been read. */
1581 r.begin = begin;
1582 r.end = current_begin;
1583 r.data = buf;
1584 }
1585 else
1586 {
1587 /* The [current_end, end) range has been read. */
1588 LONGEST rlen = end - current_end;
1589
1590 r.data = xmalloc (rlen);
1591 memcpy (r.data, buf + current_end - begin, rlen);
1592 r.begin = current_end;
1593 r.end = end;
1594 xfree (buf);
1595 }
1596 VEC_safe_push(memory_read_result_s, (*result), &r);
1597 }
1598
1599 void
1600 free_memory_read_result_vector (void *x)
1601 {
1602 VEC(memory_read_result_s) *v = x;
1603 memory_read_result_s *current;
1604 int ix;
1605
1606 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1607 {
1608 xfree (current->data);
1609 }
1610 VEC_free (memory_read_result_s, v);
1611 }
1612
1613 VEC(memory_read_result_s) *
1614 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1615 {
1616 VEC(memory_read_result_s) *result = 0;
1617
1618 LONGEST xfered = 0;
1619 while (xfered < len)
1620 {
1621 struct mem_region *region = lookup_mem_region (offset + xfered);
1622 LONGEST rlen;
1623
1624 /* If there is no explicit region, a fake one should be created. */
1625 gdb_assert (region);
1626
1627 if (region->hi == 0)
1628 rlen = len - xfered;
1629 else
1630 rlen = region->hi - offset;
1631
1632 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1633 {
1634 /* Cannot read this region. Note that we can end up here only
1635 if the region is explicitly marked inaccessible, or
1636 'inaccessible-by-default' is in effect. */
1637 xfered += rlen;
1638 }
1639 else
1640 {
1641 LONGEST to_read = min (len - xfered, rlen);
1642 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1643
1644 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1645 (gdb_byte *) buffer,
1646 offset + xfered, to_read);
1647 /* Call an observer, notifying them of the xfer progress? */
1648 if (xfer <= 0)
1649 {
1650 /* Got an error reading full chunk. See if maybe we can read
1651 some subrange. */
1652 xfree (buffer);
1653 read_whatever_is_readable (ops, offset + xfered,
1654 offset + xfered + to_read, &result);
1655 xfered += to_read;
1656 }
1657 else
1658 {
1659 struct memory_read_result r;
1660 r.data = buffer;
1661 r.begin = offset + xfered;
1662 r.end = r.begin + xfer;
1663 VEC_safe_push (memory_read_result_s, result, &r);
1664 xfered += xfer;
1665 }
1666 QUIT;
1667 }
1668 }
1669 return result;
1670 }
1671
1672
1673 /* An alternative to target_write with progress callbacks. */
1674
1675 LONGEST
1676 target_write_with_progress (struct target_ops *ops,
1677 enum target_object object,
1678 const char *annex, const gdb_byte *buf,
1679 ULONGEST offset, LONGEST len,
1680 void (*progress) (ULONGEST, void *), void *baton)
1681 {
1682 LONGEST xfered = 0;
1683
1684 /* Give the progress callback a chance to set up. */
1685 if (progress)
1686 (*progress) (0, baton);
1687
1688 while (xfered < len)
1689 {
1690 ULONGEST xfered_len;
1691 enum target_xfer_status status;
1692
1693 status = target_write_partial (ops, object, annex,
1694 (gdb_byte *) buf + xfered,
1695 offset + xfered, len - xfered,
1696 &xfered_len);
1697
1698 if (status != TARGET_XFER_OK)
1699 return status == TARGET_XFER_EOF ? xfered : -1;
1700
1701 if (progress)
1702 (*progress) (xfered_len, baton);
1703
1704 xfered += xfered_len;
1705 QUIT;
1706 }
1707 return len;
1708 }
1709
1710 /* For docs on target_write see target.h. */
1711
1712 LONGEST
1713 target_write (struct target_ops *ops,
1714 enum target_object object,
1715 const char *annex, const gdb_byte *buf,
1716 ULONGEST offset, LONGEST len)
1717 {
1718 return target_write_with_progress (ops, object, annex, buf, offset, len,
1719 NULL, NULL);
1720 }
1721
1722 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1723 the size of the transferred data. PADDING additional bytes are
1724 available in *BUF_P. This is a helper function for
1725 target_read_alloc; see the declaration of that function for more
1726 information. */
1727
1728 static LONGEST
1729 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1730 const char *annex, gdb_byte **buf_p, int padding)
1731 {
1732 size_t buf_alloc, buf_pos;
1733 gdb_byte *buf;
1734
1735 /* This function does not have a length parameter; it reads the
1736 entire OBJECT). Also, it doesn't support objects fetched partly
1737 from one target and partly from another (in a different stratum,
1738 e.g. a core file and an executable). Both reasons make it
1739 unsuitable for reading memory. */
1740 gdb_assert (object != TARGET_OBJECT_MEMORY);
1741
1742 /* Start by reading up to 4K at a time. The target will throttle
1743 this number down if necessary. */
1744 buf_alloc = 4096;
1745 buf = xmalloc (buf_alloc);
1746 buf_pos = 0;
1747 while (1)
1748 {
1749 ULONGEST xfered_len;
1750 enum target_xfer_status status;
1751
1752 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1753 buf_pos, buf_alloc - buf_pos - padding,
1754 &xfered_len);
1755
1756 if (status == TARGET_XFER_EOF)
1757 {
1758 /* Read all there was. */
1759 if (buf_pos == 0)
1760 xfree (buf);
1761 else
1762 *buf_p = buf;
1763 return buf_pos;
1764 }
1765 else if (status != TARGET_XFER_OK)
1766 {
1767 /* An error occurred. */
1768 xfree (buf);
1769 return TARGET_XFER_E_IO;
1770 }
1771
1772 buf_pos += xfered_len;
1773
1774 /* If the buffer is filling up, expand it. */
1775 if (buf_alloc < buf_pos * 2)
1776 {
1777 buf_alloc *= 2;
1778 buf = xrealloc (buf, buf_alloc);
1779 }
1780
1781 QUIT;
1782 }
1783 }
1784
1785 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1786 the size of the transferred data. See the declaration in "target.h"
1787 function for more information about the return value. */
1788
1789 LONGEST
1790 target_read_alloc (struct target_ops *ops, enum target_object object,
1791 const char *annex, gdb_byte **buf_p)
1792 {
1793 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1794 }
1795
1796 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1797 returned as a string, allocated using xmalloc. If an error occurs
1798 or the transfer is unsupported, NULL is returned. Empty objects
1799 are returned as allocated but empty strings. A warning is issued
1800 if the result contains any embedded NUL bytes. */
1801
1802 char *
1803 target_read_stralloc (struct target_ops *ops, enum target_object object,
1804 const char *annex)
1805 {
1806 gdb_byte *buffer;
1807 char *bufstr;
1808 LONGEST i, transferred;
1809
1810 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1811 bufstr = (char *) buffer;
1812
1813 if (transferred < 0)
1814 return NULL;
1815
1816 if (transferred == 0)
1817 return xstrdup ("");
1818
1819 bufstr[transferred] = 0;
1820
1821 /* Check for embedded NUL bytes; but allow trailing NULs. */
1822 for (i = strlen (bufstr); i < transferred; i++)
1823 if (bufstr[i] != 0)
1824 {
1825 warning (_("target object %d, annex %s, "
1826 "contained unexpected null characters"),
1827 (int) object, annex ? annex : "(none)");
1828 break;
1829 }
1830
1831 return bufstr;
1832 }
1833
1834 /* Memory transfer methods. */
1835
1836 void
1837 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1838 LONGEST len)
1839 {
1840 /* This method is used to read from an alternate, non-current
1841 target. This read must bypass the overlay support (as symbols
1842 don't match this target), and GDB's internal cache (wrong cache
1843 for this target). */
1844 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1845 != len)
1846 memory_error (TARGET_XFER_E_IO, addr);
1847 }
1848
1849 ULONGEST
1850 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1851 int len, enum bfd_endian byte_order)
1852 {
1853 gdb_byte buf[sizeof (ULONGEST)];
1854
1855 gdb_assert (len <= sizeof (buf));
1856 get_target_memory (ops, addr, buf, len);
1857 return extract_unsigned_integer (buf, len, byte_order);
1858 }
1859
1860 /* See target.h. */
1861
1862 int
1863 target_insert_breakpoint (struct gdbarch *gdbarch,
1864 struct bp_target_info *bp_tgt)
1865 {
1866 if (!may_insert_breakpoints)
1867 {
1868 warning (_("May not insert breakpoints"));
1869 return 1;
1870 }
1871
1872 return current_target.to_insert_breakpoint (&current_target,
1873 gdbarch, bp_tgt);
1874 }
1875
1876 /* See target.h. */
1877
1878 int
1879 target_remove_breakpoint (struct gdbarch *gdbarch,
1880 struct bp_target_info *bp_tgt)
1881 {
1882 /* This is kind of a weird case to handle, but the permission might
1883 have been changed after breakpoints were inserted - in which case
1884 we should just take the user literally and assume that any
1885 breakpoints should be left in place. */
1886 if (!may_insert_breakpoints)
1887 {
1888 warning (_("May not remove breakpoints"));
1889 return 1;
1890 }
1891
1892 return current_target.to_remove_breakpoint (&current_target,
1893 gdbarch, bp_tgt);
1894 }
1895
1896 static void
1897 target_info (char *args, int from_tty)
1898 {
1899 struct target_ops *t;
1900 int has_all_mem = 0;
1901
1902 if (symfile_objfile != NULL)
1903 printf_unfiltered (_("Symbols from \"%s\".\n"),
1904 objfile_name (symfile_objfile));
1905
1906 for (t = target_stack; t != NULL; t = t->beneath)
1907 {
1908 if (!(*t->to_has_memory) (t))
1909 continue;
1910
1911 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1912 continue;
1913 if (has_all_mem)
1914 printf_unfiltered (_("\tWhile running this, "
1915 "GDB does not access memory from...\n"));
1916 printf_unfiltered ("%s:\n", t->to_longname);
1917 (t->to_files_info) (t);
1918 has_all_mem = (*t->to_has_all_memory) (t);
1919 }
1920 }
1921
1922 /* This function is called before any new inferior is created, e.g.
1923 by running a program, attaching, or connecting to a target.
1924 It cleans up any state from previous invocations which might
1925 change between runs. This is a subset of what target_preopen
1926 resets (things which might change between targets). */
1927
1928 void
1929 target_pre_inferior (int from_tty)
1930 {
1931 /* Clear out solib state. Otherwise the solib state of the previous
1932 inferior might have survived and is entirely wrong for the new
1933 target. This has been observed on GNU/Linux using glibc 2.3. How
1934 to reproduce:
1935
1936 bash$ ./foo&
1937 [1] 4711
1938 bash$ ./foo&
1939 [1] 4712
1940 bash$ gdb ./foo
1941 [...]
1942 (gdb) attach 4711
1943 (gdb) detach
1944 (gdb) attach 4712
1945 Cannot access memory at address 0xdeadbeef
1946 */
1947
1948 /* In some OSs, the shared library list is the same/global/shared
1949 across inferiors. If code is shared between processes, so are
1950 memory regions and features. */
1951 if (!gdbarch_has_global_solist (target_gdbarch ()))
1952 {
1953 no_shared_libraries (NULL, from_tty);
1954
1955 invalidate_target_mem_regions ();
1956
1957 target_clear_description ();
1958 }
1959
1960 agent_capability_invalidate ();
1961 }
1962
1963 /* Callback for iterate_over_inferiors. Gets rid of the given
1964 inferior. */
1965
1966 static int
1967 dispose_inferior (struct inferior *inf, void *args)
1968 {
1969 struct thread_info *thread;
1970
1971 thread = any_thread_of_process (inf->pid);
1972 if (thread)
1973 {
1974 switch_to_thread (thread->ptid);
1975
1976 /* Core inferiors actually should be detached, not killed. */
1977 if (target_has_execution)
1978 target_kill ();
1979 else
1980 target_detach (NULL, 0);
1981 }
1982
1983 return 0;
1984 }
1985
1986 /* This is to be called by the open routine before it does
1987 anything. */
1988
1989 void
1990 target_preopen (int from_tty)
1991 {
1992 dont_repeat ();
1993
1994 if (have_inferiors ())
1995 {
1996 if (!from_tty
1997 || !have_live_inferiors ()
1998 || query (_("A program is being debugged already. Kill it? ")))
1999 iterate_over_inferiors (dispose_inferior, NULL);
2000 else
2001 error (_("Program not killed."));
2002 }
2003
2004 /* Calling target_kill may remove the target from the stack. But if
2005 it doesn't (which seems like a win for UDI), remove it now. */
2006 /* Leave the exec target, though. The user may be switching from a
2007 live process to a core of the same program. */
2008 pop_all_targets_above (file_stratum);
2009
2010 target_pre_inferior (from_tty);
2011 }
2012
2013 /* Detach a target after doing deferred register stores. */
2014
2015 void
2016 target_detach (const char *args, int from_tty)
2017 {
2018 struct target_ops* t;
2019
2020 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2021 /* Don't remove global breakpoints here. They're removed on
2022 disconnection from the target. */
2023 ;
2024 else
2025 /* If we're in breakpoints-always-inserted mode, have to remove
2026 them before detaching. */
2027 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2028
2029 prepare_for_detach ();
2030
2031 current_target.to_detach (&current_target, args, from_tty);
2032 }
2033
2034 void
2035 target_disconnect (const char *args, int from_tty)
2036 {
2037 /* If we're in breakpoints-always-inserted mode or if breakpoints
2038 are global across processes, we have to remove them before
2039 disconnecting. */
2040 remove_breakpoints ();
2041
2042 current_target.to_disconnect (&current_target, args, from_tty);
2043 }
2044
2045 ptid_t
2046 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2047 {
2048 return (current_target.to_wait) (&current_target, ptid, status, options);
2049 }
2050
2051 char *
2052 target_pid_to_str (ptid_t ptid)
2053 {
2054 return (*current_target.to_pid_to_str) (&current_target, ptid);
2055 }
2056
2057 char *
2058 target_thread_name (struct thread_info *info)
2059 {
2060 return current_target.to_thread_name (&current_target, info);
2061 }
2062
2063 void
2064 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2065 {
2066 struct target_ops *t;
2067
2068 target_dcache_invalidate ();
2069
2070 current_target.to_resume (&current_target, ptid, step, signal);
2071
2072 registers_changed_ptid (ptid);
2073 /* We only set the internal executing state here. The user/frontend
2074 running state is set at a higher level. */
2075 set_executing (ptid, 1);
2076 clear_inline_frame_state (ptid);
2077 }
2078
2079 void
2080 target_pass_signals (int numsigs, unsigned char *pass_signals)
2081 {
2082 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2083 }
2084
2085 void
2086 target_program_signals (int numsigs, unsigned char *program_signals)
2087 {
2088 (*current_target.to_program_signals) (&current_target,
2089 numsigs, program_signals);
2090 }
2091
2092 static int
2093 default_follow_fork (struct target_ops *self, int follow_child,
2094 int detach_fork)
2095 {
2096 /* Some target returned a fork event, but did not know how to follow it. */
2097 internal_error (__FILE__, __LINE__,
2098 _("could not find a target to follow fork"));
2099 }
2100
2101 /* Look through the list of possible targets for a target that can
2102 follow forks. */
2103
2104 int
2105 target_follow_fork (int follow_child, int detach_fork)
2106 {
2107 return current_target.to_follow_fork (&current_target,
2108 follow_child, detach_fork);
2109 }
2110
2111 static void
2112 default_mourn_inferior (struct target_ops *self)
2113 {
2114 internal_error (__FILE__, __LINE__,
2115 _("could not find a target to follow mourn inferior"));
2116 }
2117
2118 void
2119 target_mourn_inferior (void)
2120 {
2121 current_target.to_mourn_inferior (&current_target);
2122
2123 /* We no longer need to keep handles on any of the object files.
2124 Make sure to release them to avoid unnecessarily locking any
2125 of them while we're not actually debugging. */
2126 bfd_cache_close_all ();
2127 }
2128
2129 /* Look for a target which can describe architectural features, starting
2130 from TARGET. If we find one, return its description. */
2131
2132 const struct target_desc *
2133 target_read_description (struct target_ops *target)
2134 {
2135 return target->to_read_description (target);
2136 }
2137
2138 /* This implements a basic search of memory, reading target memory and
2139 performing the search here (as opposed to performing the search in on the
2140 target side with, for example, gdbserver). */
2141
2142 int
2143 simple_search_memory (struct target_ops *ops,
2144 CORE_ADDR start_addr, ULONGEST search_space_len,
2145 const gdb_byte *pattern, ULONGEST pattern_len,
2146 CORE_ADDR *found_addrp)
2147 {
2148 /* NOTE: also defined in find.c testcase. */
2149 #define SEARCH_CHUNK_SIZE 16000
2150 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2151 /* Buffer to hold memory contents for searching. */
2152 gdb_byte *search_buf;
2153 unsigned search_buf_size;
2154 struct cleanup *old_cleanups;
2155
2156 search_buf_size = chunk_size + pattern_len - 1;
2157
2158 /* No point in trying to allocate a buffer larger than the search space. */
2159 if (search_space_len < search_buf_size)
2160 search_buf_size = search_space_len;
2161
2162 search_buf = malloc (search_buf_size);
2163 if (search_buf == NULL)
2164 error (_("Unable to allocate memory to perform the search."));
2165 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2166
2167 /* Prime the search buffer. */
2168
2169 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2170 search_buf, start_addr, search_buf_size) != search_buf_size)
2171 {
2172 warning (_("Unable to access %s bytes of target "
2173 "memory at %s, halting search."),
2174 pulongest (search_buf_size), hex_string (start_addr));
2175 do_cleanups (old_cleanups);
2176 return -1;
2177 }
2178
2179 /* Perform the search.
2180
2181 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2182 When we've scanned N bytes we copy the trailing bytes to the start and
2183 read in another N bytes. */
2184
2185 while (search_space_len >= pattern_len)
2186 {
2187 gdb_byte *found_ptr;
2188 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2189
2190 found_ptr = memmem (search_buf, nr_search_bytes,
2191 pattern, pattern_len);
2192
2193 if (found_ptr != NULL)
2194 {
2195 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2196
2197 *found_addrp = found_addr;
2198 do_cleanups (old_cleanups);
2199 return 1;
2200 }
2201
2202 /* Not found in this chunk, skip to next chunk. */
2203
2204 /* Don't let search_space_len wrap here, it's unsigned. */
2205 if (search_space_len >= chunk_size)
2206 search_space_len -= chunk_size;
2207 else
2208 search_space_len = 0;
2209
2210 if (search_space_len >= pattern_len)
2211 {
2212 unsigned keep_len = search_buf_size - chunk_size;
2213 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2214 int nr_to_read;
2215
2216 /* Copy the trailing part of the previous iteration to the front
2217 of the buffer for the next iteration. */
2218 gdb_assert (keep_len == pattern_len - 1);
2219 memcpy (search_buf, search_buf + chunk_size, keep_len);
2220
2221 nr_to_read = min (search_space_len - keep_len, chunk_size);
2222
2223 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2224 search_buf + keep_len, read_addr,
2225 nr_to_read) != nr_to_read)
2226 {
2227 warning (_("Unable to access %s bytes of target "
2228 "memory at %s, halting search."),
2229 plongest (nr_to_read),
2230 hex_string (read_addr));
2231 do_cleanups (old_cleanups);
2232 return -1;
2233 }
2234
2235 start_addr += chunk_size;
2236 }
2237 }
2238
2239 /* Not found. */
2240
2241 do_cleanups (old_cleanups);
2242 return 0;
2243 }
2244
2245 /* Default implementation of memory-searching. */
2246
2247 static int
2248 default_search_memory (struct target_ops *self,
2249 CORE_ADDR start_addr, ULONGEST search_space_len,
2250 const gdb_byte *pattern, ULONGEST pattern_len,
2251 CORE_ADDR *found_addrp)
2252 {
2253 /* Start over from the top of the target stack. */
2254 return simple_search_memory (current_target.beneath,
2255 start_addr, search_space_len,
2256 pattern, pattern_len, found_addrp);
2257 }
2258
2259 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2260 sequence of bytes in PATTERN with length PATTERN_LEN.
2261
2262 The result is 1 if found, 0 if not found, and -1 if there was an error
2263 requiring halting of the search (e.g. memory read error).
2264 If the pattern is found the address is recorded in FOUND_ADDRP. */
2265
2266 int
2267 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2268 const gdb_byte *pattern, ULONGEST pattern_len,
2269 CORE_ADDR *found_addrp)
2270 {
2271 return current_target.to_search_memory (&current_target, start_addr,
2272 search_space_len,
2273 pattern, pattern_len, found_addrp);
2274 }
2275
2276 /* Look through the currently pushed targets. If none of them will
2277 be able to restart the currently running process, issue an error
2278 message. */
2279
2280 void
2281 target_require_runnable (void)
2282 {
2283 struct target_ops *t;
2284
2285 for (t = target_stack; t != NULL; t = t->beneath)
2286 {
2287 /* If this target knows how to create a new program, then
2288 assume we will still be able to after killing the current
2289 one. Either killing and mourning will not pop T, or else
2290 find_default_run_target will find it again. */
2291 if (t->to_create_inferior != NULL)
2292 return;
2293
2294 /* Do not worry about targets at certain strata that can not
2295 create inferiors. Assume they will be pushed again if
2296 necessary, and continue to the process_stratum. */
2297 if (t->to_stratum == thread_stratum
2298 || t->to_stratum == record_stratum
2299 || t->to_stratum == arch_stratum)
2300 continue;
2301
2302 error (_("The \"%s\" target does not support \"run\". "
2303 "Try \"help target\" or \"continue\"."),
2304 t->to_shortname);
2305 }
2306
2307 /* This function is only called if the target is running. In that
2308 case there should have been a process_stratum target and it
2309 should either know how to create inferiors, or not... */
2310 internal_error (__FILE__, __LINE__, _("No targets found"));
2311 }
2312
2313 /* Whether GDB is allowed to fall back to the default run target for
2314 "run", "attach", etc. when no target is connected yet. */
2315 static int auto_connect_native_target = 1;
2316
2317 static void
2318 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2319 struct cmd_list_element *c, const char *value)
2320 {
2321 fprintf_filtered (file,
2322 _("Whether GDB may automatically connect to the "
2323 "native target is %s.\n"),
2324 value);
2325 }
2326
2327 /* Look through the list of possible targets for a target that can
2328 execute a run or attach command without any other data. This is
2329 used to locate the default process stratum.
2330
2331 If DO_MESG is not NULL, the result is always valid (error() is
2332 called for errors); else, return NULL on error. */
2333
2334 static struct target_ops *
2335 find_default_run_target (char *do_mesg)
2336 {
2337 struct target_ops *runable = NULL;
2338
2339 if (auto_connect_native_target)
2340 {
2341 struct target_ops **t;
2342 int count = 0;
2343
2344 for (t = target_structs; t < target_structs + target_struct_size;
2345 ++t)
2346 {
2347 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2348 {
2349 runable = *t;
2350 ++count;
2351 }
2352 }
2353
2354 if (count != 1)
2355 runable = NULL;
2356 }
2357
2358 if (runable == NULL)
2359 {
2360 if (do_mesg)
2361 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2362 else
2363 return NULL;
2364 }
2365
2366 return runable;
2367 }
2368
2369 /* See target.h. */
2370
2371 struct target_ops *
2372 find_attach_target (void)
2373 {
2374 struct target_ops *t;
2375
2376 /* If a target on the current stack can attach, use it. */
2377 for (t = current_target.beneath; t != NULL; t = t->beneath)
2378 {
2379 if (t->to_attach != NULL)
2380 break;
2381 }
2382
2383 /* Otherwise, use the default run target for attaching. */
2384 if (t == NULL)
2385 t = find_default_run_target ("attach");
2386
2387 return t;
2388 }
2389
2390 /* See target.h. */
2391
2392 struct target_ops *
2393 find_run_target (void)
2394 {
2395 struct target_ops *t;
2396
2397 /* If a target on the current stack can attach, use it. */
2398 for (t = current_target.beneath; t != NULL; t = t->beneath)
2399 {
2400 if (t->to_create_inferior != NULL)
2401 break;
2402 }
2403
2404 /* Otherwise, use the default run target. */
2405 if (t == NULL)
2406 t = find_default_run_target ("run");
2407
2408 return t;
2409 }
2410
2411 /* Implement the "info proc" command. */
2412
2413 int
2414 target_info_proc (const char *args, enum info_proc_what what)
2415 {
2416 struct target_ops *t;
2417
2418 /* If we're already connected to something that can get us OS
2419 related data, use it. Otherwise, try using the native
2420 target. */
2421 if (current_target.to_stratum >= process_stratum)
2422 t = current_target.beneath;
2423 else
2424 t = find_default_run_target (NULL);
2425
2426 for (; t != NULL; t = t->beneath)
2427 {
2428 if (t->to_info_proc != NULL)
2429 {
2430 t->to_info_proc (t, args, what);
2431
2432 if (targetdebug)
2433 fprintf_unfiltered (gdb_stdlog,
2434 "target_info_proc (\"%s\", %d)\n", args, what);
2435
2436 return 1;
2437 }
2438 }
2439
2440 return 0;
2441 }
2442
2443 static int
2444 find_default_supports_disable_randomization (struct target_ops *self)
2445 {
2446 struct target_ops *t;
2447
2448 t = find_default_run_target (NULL);
2449 if (t && t->to_supports_disable_randomization)
2450 return (t->to_supports_disable_randomization) (t);
2451 return 0;
2452 }
2453
2454 int
2455 target_supports_disable_randomization (void)
2456 {
2457 struct target_ops *t;
2458
2459 for (t = &current_target; t != NULL; t = t->beneath)
2460 if (t->to_supports_disable_randomization)
2461 return t->to_supports_disable_randomization (t);
2462
2463 return 0;
2464 }
2465
2466 char *
2467 target_get_osdata (const char *type)
2468 {
2469 struct target_ops *t;
2470
2471 /* If we're already connected to something that can get us OS
2472 related data, use it. Otherwise, try using the native
2473 target. */
2474 if (current_target.to_stratum >= process_stratum)
2475 t = current_target.beneath;
2476 else
2477 t = find_default_run_target ("get OS data");
2478
2479 if (!t)
2480 return NULL;
2481
2482 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2483 }
2484
2485 static struct address_space *
2486 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2487 {
2488 struct inferior *inf;
2489
2490 /* Fall-back to the "main" address space of the inferior. */
2491 inf = find_inferior_pid (ptid_get_pid (ptid));
2492
2493 if (inf == NULL || inf->aspace == NULL)
2494 internal_error (__FILE__, __LINE__,
2495 _("Can't determine the current "
2496 "address space of thread %s\n"),
2497 target_pid_to_str (ptid));
2498
2499 return inf->aspace;
2500 }
2501
2502 /* Determine the current address space of thread PTID. */
2503
2504 struct address_space *
2505 target_thread_address_space (ptid_t ptid)
2506 {
2507 struct address_space *aspace;
2508
2509 aspace = current_target.to_thread_address_space (&current_target, ptid);
2510 gdb_assert (aspace != NULL);
2511
2512 return aspace;
2513 }
2514
2515
2516 /* Target file operations. */
2517
2518 static struct target_ops *
2519 default_fileio_target (void)
2520 {
2521 /* If we're already connected to something that can perform
2522 file I/O, use it. Otherwise, try using the native target. */
2523 if (current_target.to_stratum >= process_stratum)
2524 return current_target.beneath;
2525 else
2526 return find_default_run_target ("file I/O");
2527 }
2528
2529 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2530 target file descriptor, or -1 if an error occurs (and set
2531 *TARGET_ERRNO). */
2532 int
2533 target_fileio_open (const char *filename, int flags, int mode,
2534 int *target_errno)
2535 {
2536 struct target_ops *t;
2537
2538 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2539 {
2540 if (t->to_fileio_open != NULL)
2541 {
2542 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2543
2544 if (targetdebug)
2545 fprintf_unfiltered (gdb_stdlog,
2546 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2547 filename, flags, mode,
2548 fd, fd != -1 ? 0 : *target_errno);
2549 return fd;
2550 }
2551 }
2552
2553 *target_errno = FILEIO_ENOSYS;
2554 return -1;
2555 }
2556
2557 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2558 Return the number of bytes written, or -1 if an error occurs
2559 (and set *TARGET_ERRNO). */
2560 int
2561 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2562 ULONGEST offset, int *target_errno)
2563 {
2564 struct target_ops *t;
2565
2566 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2567 {
2568 if (t->to_fileio_pwrite != NULL)
2569 {
2570 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2571 target_errno);
2572
2573 if (targetdebug)
2574 fprintf_unfiltered (gdb_stdlog,
2575 "target_fileio_pwrite (%d,...,%d,%s) "
2576 "= %d (%d)\n",
2577 fd, len, pulongest (offset),
2578 ret, ret != -1 ? 0 : *target_errno);
2579 return ret;
2580 }
2581 }
2582
2583 *target_errno = FILEIO_ENOSYS;
2584 return -1;
2585 }
2586
2587 /* Read up to LEN bytes FD on the target into READ_BUF.
2588 Return the number of bytes read, or -1 if an error occurs
2589 (and set *TARGET_ERRNO). */
2590 int
2591 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2592 ULONGEST offset, int *target_errno)
2593 {
2594 struct target_ops *t;
2595
2596 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2597 {
2598 if (t->to_fileio_pread != NULL)
2599 {
2600 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2601 target_errno);
2602
2603 if (targetdebug)
2604 fprintf_unfiltered (gdb_stdlog,
2605 "target_fileio_pread (%d,...,%d,%s) "
2606 "= %d (%d)\n",
2607 fd, len, pulongest (offset),
2608 ret, ret != -1 ? 0 : *target_errno);
2609 return ret;
2610 }
2611 }
2612
2613 *target_errno = FILEIO_ENOSYS;
2614 return -1;
2615 }
2616
2617 /* Close FD on the target. Return 0, or -1 if an error occurs
2618 (and set *TARGET_ERRNO). */
2619 int
2620 target_fileio_close (int fd, int *target_errno)
2621 {
2622 struct target_ops *t;
2623
2624 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2625 {
2626 if (t->to_fileio_close != NULL)
2627 {
2628 int ret = t->to_fileio_close (t, fd, target_errno);
2629
2630 if (targetdebug)
2631 fprintf_unfiltered (gdb_stdlog,
2632 "target_fileio_close (%d) = %d (%d)\n",
2633 fd, ret, ret != -1 ? 0 : *target_errno);
2634 return ret;
2635 }
2636 }
2637
2638 *target_errno = FILEIO_ENOSYS;
2639 return -1;
2640 }
2641
2642 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2643 occurs (and set *TARGET_ERRNO). */
2644 int
2645 target_fileio_unlink (const char *filename, int *target_errno)
2646 {
2647 struct target_ops *t;
2648
2649 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2650 {
2651 if (t->to_fileio_unlink != NULL)
2652 {
2653 int ret = t->to_fileio_unlink (t, filename, target_errno);
2654
2655 if (targetdebug)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "target_fileio_unlink (%s) = %d (%d)\n",
2658 filename, ret, ret != -1 ? 0 : *target_errno);
2659 return ret;
2660 }
2661 }
2662
2663 *target_errno = FILEIO_ENOSYS;
2664 return -1;
2665 }
2666
2667 /* Read value of symbolic link FILENAME on the target. Return a
2668 null-terminated string allocated via xmalloc, or NULL if an error
2669 occurs (and set *TARGET_ERRNO). */
2670 char *
2671 target_fileio_readlink (const char *filename, int *target_errno)
2672 {
2673 struct target_ops *t;
2674
2675 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2676 {
2677 if (t->to_fileio_readlink != NULL)
2678 {
2679 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2680
2681 if (targetdebug)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "target_fileio_readlink (%s) = %s (%d)\n",
2684 filename, ret? ret : "(nil)",
2685 ret? 0 : *target_errno);
2686 return ret;
2687 }
2688 }
2689
2690 *target_errno = FILEIO_ENOSYS;
2691 return NULL;
2692 }
2693
2694 static void
2695 target_fileio_close_cleanup (void *opaque)
2696 {
2697 int fd = *(int *) opaque;
2698 int target_errno;
2699
2700 target_fileio_close (fd, &target_errno);
2701 }
2702
2703 /* Read target file FILENAME. Store the result in *BUF_P and
2704 return the size of the transferred data. PADDING additional bytes are
2705 available in *BUF_P. This is a helper function for
2706 target_fileio_read_alloc; see the declaration of that function for more
2707 information. */
2708
2709 static LONGEST
2710 target_fileio_read_alloc_1 (const char *filename,
2711 gdb_byte **buf_p, int padding)
2712 {
2713 struct cleanup *close_cleanup;
2714 size_t buf_alloc, buf_pos;
2715 gdb_byte *buf;
2716 LONGEST n;
2717 int fd;
2718 int target_errno;
2719
2720 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2721 if (fd == -1)
2722 return -1;
2723
2724 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2725
2726 /* Start by reading up to 4K at a time. The target will throttle
2727 this number down if necessary. */
2728 buf_alloc = 4096;
2729 buf = xmalloc (buf_alloc);
2730 buf_pos = 0;
2731 while (1)
2732 {
2733 n = target_fileio_pread (fd, &buf[buf_pos],
2734 buf_alloc - buf_pos - padding, buf_pos,
2735 &target_errno);
2736 if (n < 0)
2737 {
2738 /* An error occurred. */
2739 do_cleanups (close_cleanup);
2740 xfree (buf);
2741 return -1;
2742 }
2743 else if (n == 0)
2744 {
2745 /* Read all there was. */
2746 do_cleanups (close_cleanup);
2747 if (buf_pos == 0)
2748 xfree (buf);
2749 else
2750 *buf_p = buf;
2751 return buf_pos;
2752 }
2753
2754 buf_pos += n;
2755
2756 /* If the buffer is filling up, expand it. */
2757 if (buf_alloc < buf_pos * 2)
2758 {
2759 buf_alloc *= 2;
2760 buf = xrealloc (buf, buf_alloc);
2761 }
2762
2763 QUIT;
2764 }
2765 }
2766
2767 /* Read target file FILENAME. Store the result in *BUF_P and return
2768 the size of the transferred data. See the declaration in "target.h"
2769 function for more information about the return value. */
2770
2771 LONGEST
2772 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2773 {
2774 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2775 }
2776
2777 /* Read target file FILENAME. The result is NUL-terminated and
2778 returned as a string, allocated using xmalloc. If an error occurs
2779 or the transfer is unsupported, NULL is returned. Empty objects
2780 are returned as allocated but empty strings. A warning is issued
2781 if the result contains any embedded NUL bytes. */
2782
2783 char *
2784 target_fileio_read_stralloc (const char *filename)
2785 {
2786 gdb_byte *buffer;
2787 char *bufstr;
2788 LONGEST i, transferred;
2789
2790 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2791 bufstr = (char *) buffer;
2792
2793 if (transferred < 0)
2794 return NULL;
2795
2796 if (transferred == 0)
2797 return xstrdup ("");
2798
2799 bufstr[transferred] = 0;
2800
2801 /* Check for embedded NUL bytes; but allow trailing NULs. */
2802 for (i = strlen (bufstr); i < transferred; i++)
2803 if (bufstr[i] != 0)
2804 {
2805 warning (_("target file %s "
2806 "contained unexpected null characters"),
2807 filename);
2808 break;
2809 }
2810
2811 return bufstr;
2812 }
2813
2814
2815 static int
2816 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2817 CORE_ADDR addr, int len)
2818 {
2819 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2820 }
2821
2822 static int
2823 default_watchpoint_addr_within_range (struct target_ops *target,
2824 CORE_ADDR addr,
2825 CORE_ADDR start, int length)
2826 {
2827 return addr >= start && addr < start + length;
2828 }
2829
2830 static struct gdbarch *
2831 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2832 {
2833 return target_gdbarch ();
2834 }
2835
2836 static int
2837 return_zero (struct target_ops *ignore)
2838 {
2839 return 0;
2840 }
2841
2842 static int
2843 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2844 {
2845 return 0;
2846 }
2847
2848 /*
2849 * Find the next target down the stack from the specified target.
2850 */
2851
2852 struct target_ops *
2853 find_target_beneath (struct target_ops *t)
2854 {
2855 return t->beneath;
2856 }
2857
2858 /* See target.h. */
2859
2860 struct target_ops *
2861 find_target_at (enum strata stratum)
2862 {
2863 struct target_ops *t;
2864
2865 for (t = current_target.beneath; t != NULL; t = t->beneath)
2866 if (t->to_stratum == stratum)
2867 return t;
2868
2869 return NULL;
2870 }
2871
2872 \f
2873 /* The inferior process has died. Long live the inferior! */
2874
2875 void
2876 generic_mourn_inferior (void)
2877 {
2878 ptid_t ptid;
2879
2880 ptid = inferior_ptid;
2881 inferior_ptid = null_ptid;
2882
2883 /* Mark breakpoints uninserted in case something tries to delete a
2884 breakpoint while we delete the inferior's threads (which would
2885 fail, since the inferior is long gone). */
2886 mark_breakpoints_out ();
2887
2888 if (!ptid_equal (ptid, null_ptid))
2889 {
2890 int pid = ptid_get_pid (ptid);
2891 exit_inferior (pid);
2892 }
2893
2894 /* Note this wipes step-resume breakpoints, so needs to be done
2895 after exit_inferior, which ends up referencing the step-resume
2896 breakpoints through clear_thread_inferior_resources. */
2897 breakpoint_init_inferior (inf_exited);
2898
2899 registers_changed ();
2900
2901 reopen_exec_file ();
2902 reinit_frame_cache ();
2903
2904 if (deprecated_detach_hook)
2905 deprecated_detach_hook ();
2906 }
2907 \f
2908 /* Convert a normal process ID to a string. Returns the string in a
2909 static buffer. */
2910
2911 char *
2912 normal_pid_to_str (ptid_t ptid)
2913 {
2914 static char buf[32];
2915
2916 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2917 return buf;
2918 }
2919
2920 static char *
2921 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
2922 {
2923 return normal_pid_to_str (ptid);
2924 }
2925
2926 /* Error-catcher for target_find_memory_regions. */
2927 static int
2928 dummy_find_memory_regions (struct target_ops *self,
2929 find_memory_region_ftype ignore1, void *ignore2)
2930 {
2931 error (_("Command not implemented for this target."));
2932 return 0;
2933 }
2934
2935 /* Error-catcher for target_make_corefile_notes. */
2936 static char *
2937 dummy_make_corefile_notes (struct target_ops *self,
2938 bfd *ignore1, int *ignore2)
2939 {
2940 error (_("Command not implemented for this target."));
2941 return NULL;
2942 }
2943
2944 /* Set up the handful of non-empty slots needed by the dummy target
2945 vector. */
2946
2947 static void
2948 init_dummy_target (void)
2949 {
2950 dummy_target.to_shortname = "None";
2951 dummy_target.to_longname = "None";
2952 dummy_target.to_doc = "";
2953 dummy_target.to_supports_disable_randomization
2954 = find_default_supports_disable_randomization;
2955 dummy_target.to_stratum = dummy_stratum;
2956 dummy_target.to_has_all_memory = return_zero;
2957 dummy_target.to_has_memory = return_zero;
2958 dummy_target.to_has_stack = return_zero;
2959 dummy_target.to_has_registers = return_zero;
2960 dummy_target.to_has_execution = return_zero_has_execution;
2961 dummy_target.to_magic = OPS_MAGIC;
2962
2963 install_dummy_methods (&dummy_target);
2964 }
2965 \f
2966 static void
2967 debug_to_open (char *args, int from_tty)
2968 {
2969 debug_target.to_open (args, from_tty);
2970
2971 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2972 }
2973
2974 void
2975 target_close (struct target_ops *targ)
2976 {
2977 gdb_assert (!target_is_pushed (targ));
2978
2979 if (targ->to_xclose != NULL)
2980 targ->to_xclose (targ);
2981 else if (targ->to_close != NULL)
2982 targ->to_close (targ);
2983
2984 if (targetdebug)
2985 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
2986 }
2987
2988 int
2989 target_thread_alive (ptid_t ptid)
2990 {
2991 return current_target.to_thread_alive (&current_target, ptid);
2992 }
2993
2994 void
2995 target_find_new_threads (void)
2996 {
2997 current_target.to_find_new_threads (&current_target);
2998 }
2999
3000 void
3001 target_stop (ptid_t ptid)
3002 {
3003 if (!may_stop)
3004 {
3005 warning (_("May not interrupt or stop the target, ignoring attempt"));
3006 return;
3007 }
3008
3009 (*current_target.to_stop) (&current_target, ptid);
3010 }
3011
3012 /* Concatenate ELEM to LIST, a comma separate list, and return the
3013 result. The LIST incoming argument is released. */
3014
3015 static char *
3016 str_comma_list_concat_elem (char *list, const char *elem)
3017 {
3018 if (list == NULL)
3019 return xstrdup (elem);
3020 else
3021 return reconcat (list, list, ", ", elem, (char *) NULL);
3022 }
3023
3024 /* Helper for target_options_to_string. If OPT is present in
3025 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3026 Returns the new resulting string. OPT is removed from
3027 TARGET_OPTIONS. */
3028
3029 static char *
3030 do_option (int *target_options, char *ret,
3031 int opt, char *opt_str)
3032 {
3033 if ((*target_options & opt) != 0)
3034 {
3035 ret = str_comma_list_concat_elem (ret, opt_str);
3036 *target_options &= ~opt;
3037 }
3038
3039 return ret;
3040 }
3041
3042 char *
3043 target_options_to_string (int target_options)
3044 {
3045 char *ret = NULL;
3046
3047 #define DO_TARG_OPTION(OPT) \
3048 ret = do_option (&target_options, ret, OPT, #OPT)
3049
3050 DO_TARG_OPTION (TARGET_WNOHANG);
3051
3052 if (target_options != 0)
3053 ret = str_comma_list_concat_elem (ret, "unknown???");
3054
3055 if (ret == NULL)
3056 ret = xstrdup ("");
3057 return ret;
3058 }
3059
3060 static void
3061 debug_print_register (const char * func,
3062 struct regcache *regcache, int regno)
3063 {
3064 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3065
3066 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3067 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3068 && gdbarch_register_name (gdbarch, regno) != NULL
3069 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3070 fprintf_unfiltered (gdb_stdlog, "(%s)",
3071 gdbarch_register_name (gdbarch, regno));
3072 else
3073 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3074 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3075 {
3076 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3077 int i, size = register_size (gdbarch, regno);
3078 gdb_byte buf[MAX_REGISTER_SIZE];
3079
3080 regcache_raw_collect (regcache, regno, buf);
3081 fprintf_unfiltered (gdb_stdlog, " = ");
3082 for (i = 0; i < size; i++)
3083 {
3084 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3085 }
3086 if (size <= sizeof (LONGEST))
3087 {
3088 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3089
3090 fprintf_unfiltered (gdb_stdlog, " %s %s",
3091 core_addr_to_string_nz (val), plongest (val));
3092 }
3093 }
3094 fprintf_unfiltered (gdb_stdlog, "\n");
3095 }
3096
3097 void
3098 target_fetch_registers (struct regcache *regcache, int regno)
3099 {
3100 current_target.to_fetch_registers (&current_target, regcache, regno);
3101 if (targetdebug)
3102 debug_print_register ("target_fetch_registers", regcache, regno);
3103 }
3104
3105 void
3106 target_store_registers (struct regcache *regcache, int regno)
3107 {
3108 struct target_ops *t;
3109
3110 if (!may_write_registers)
3111 error (_("Writing to registers is not allowed (regno %d)"), regno);
3112
3113 current_target.to_store_registers (&current_target, regcache, regno);
3114 if (targetdebug)
3115 {
3116 debug_print_register ("target_store_registers", regcache, regno);
3117 }
3118 }
3119
3120 int
3121 target_core_of_thread (ptid_t ptid)
3122 {
3123 return current_target.to_core_of_thread (&current_target, ptid);
3124 }
3125
3126 int
3127 simple_verify_memory (struct target_ops *ops,
3128 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3129 {
3130 LONGEST total_xfered = 0;
3131
3132 while (total_xfered < size)
3133 {
3134 ULONGEST xfered_len;
3135 enum target_xfer_status status;
3136 gdb_byte buf[1024];
3137 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3138
3139 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3140 buf, NULL, lma + total_xfered, howmuch,
3141 &xfered_len);
3142 if (status == TARGET_XFER_OK
3143 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3144 {
3145 total_xfered += xfered_len;
3146 QUIT;
3147 }
3148 else
3149 return 0;
3150 }
3151 return 1;
3152 }
3153
3154 /* Default implementation of memory verification. */
3155
3156 static int
3157 default_verify_memory (struct target_ops *self,
3158 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3159 {
3160 /* Start over from the top of the target stack. */
3161 return simple_verify_memory (current_target.beneath,
3162 data, memaddr, size);
3163 }
3164
3165 int
3166 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3167 {
3168 return current_target.to_verify_memory (&current_target,
3169 data, memaddr, size);
3170 }
3171
3172 /* The documentation for this function is in its prototype declaration in
3173 target.h. */
3174
3175 int
3176 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3177 {
3178 return current_target.to_insert_mask_watchpoint (&current_target,
3179 addr, mask, rw);
3180 }
3181
3182 /* The documentation for this function is in its prototype declaration in
3183 target.h. */
3184
3185 int
3186 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3187 {
3188 return current_target.to_remove_mask_watchpoint (&current_target,
3189 addr, mask, rw);
3190 }
3191
3192 /* The documentation for this function is in its prototype declaration
3193 in target.h. */
3194
3195 int
3196 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3197 {
3198 return current_target.to_masked_watch_num_registers (&current_target,
3199 addr, mask);
3200 }
3201
3202 /* The documentation for this function is in its prototype declaration
3203 in target.h. */
3204
3205 int
3206 target_ranged_break_num_registers (void)
3207 {
3208 return current_target.to_ranged_break_num_registers (&current_target);
3209 }
3210
3211 /* See target.h. */
3212
3213 struct btrace_target_info *
3214 target_enable_btrace (ptid_t ptid)
3215 {
3216 return current_target.to_enable_btrace (&current_target, ptid);
3217 }
3218
3219 /* See target.h. */
3220
3221 void
3222 target_disable_btrace (struct btrace_target_info *btinfo)
3223 {
3224 current_target.to_disable_btrace (&current_target, btinfo);
3225 }
3226
3227 /* See target.h. */
3228
3229 void
3230 target_teardown_btrace (struct btrace_target_info *btinfo)
3231 {
3232 current_target.to_teardown_btrace (&current_target, btinfo);
3233 }
3234
3235 /* See target.h. */
3236
3237 enum btrace_error
3238 target_read_btrace (VEC (btrace_block_s) **btrace,
3239 struct btrace_target_info *btinfo,
3240 enum btrace_read_type type)
3241 {
3242 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3243 }
3244
3245 /* See target.h. */
3246
3247 void
3248 target_stop_recording (void)
3249 {
3250 current_target.to_stop_recording (&current_target);
3251 }
3252
3253 /* See target.h. */
3254
3255 void
3256 target_save_record (const char *filename)
3257 {
3258 current_target.to_save_record (&current_target, filename);
3259 }
3260
3261 /* See target.h. */
3262
3263 int
3264 target_supports_delete_record (void)
3265 {
3266 struct target_ops *t;
3267
3268 for (t = current_target.beneath; t != NULL; t = t->beneath)
3269 if (t->to_delete_record != delegate_delete_record
3270 && t->to_delete_record != tdefault_delete_record)
3271 return 1;
3272
3273 return 0;
3274 }
3275
3276 /* See target.h. */
3277
3278 void
3279 target_delete_record (void)
3280 {
3281 current_target.to_delete_record (&current_target);
3282 }
3283
3284 /* See target.h. */
3285
3286 int
3287 target_record_is_replaying (void)
3288 {
3289 return current_target.to_record_is_replaying (&current_target);
3290 }
3291
3292 /* See target.h. */
3293
3294 void
3295 target_goto_record_begin (void)
3296 {
3297 current_target.to_goto_record_begin (&current_target);
3298 }
3299
3300 /* See target.h. */
3301
3302 void
3303 target_goto_record_end (void)
3304 {
3305 current_target.to_goto_record_end (&current_target);
3306 }
3307
3308 /* See target.h. */
3309
3310 void
3311 target_goto_record (ULONGEST insn)
3312 {
3313 current_target.to_goto_record (&current_target, insn);
3314 }
3315
3316 /* See target.h. */
3317
3318 void
3319 target_insn_history (int size, int flags)
3320 {
3321 current_target.to_insn_history (&current_target, size, flags);
3322 }
3323
3324 /* See target.h. */
3325
3326 void
3327 target_insn_history_from (ULONGEST from, int size, int flags)
3328 {
3329 current_target.to_insn_history_from (&current_target, from, size, flags);
3330 }
3331
3332 /* See target.h. */
3333
3334 void
3335 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3336 {
3337 current_target.to_insn_history_range (&current_target, begin, end, flags);
3338 }
3339
3340 /* See target.h. */
3341
3342 void
3343 target_call_history (int size, int flags)
3344 {
3345 current_target.to_call_history (&current_target, size, flags);
3346 }
3347
3348 /* See target.h. */
3349
3350 void
3351 target_call_history_from (ULONGEST begin, int size, int flags)
3352 {
3353 current_target.to_call_history_from (&current_target, begin, size, flags);
3354 }
3355
3356 /* See target.h. */
3357
3358 void
3359 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3360 {
3361 current_target.to_call_history_range (&current_target, begin, end, flags);
3362 }
3363
3364 /* See target.h. */
3365
3366 const struct frame_unwind *
3367 target_get_unwinder (void)
3368 {
3369 return current_target.to_get_unwinder (&current_target);
3370 }
3371
3372 /* See target.h. */
3373
3374 const struct frame_unwind *
3375 target_get_tailcall_unwinder (void)
3376 {
3377 return current_target.to_get_tailcall_unwinder (&current_target);
3378 }
3379
3380 /* Default implementation of to_decr_pc_after_break. */
3381
3382 static CORE_ADDR
3383 default_target_decr_pc_after_break (struct target_ops *ops,
3384 struct gdbarch *gdbarch)
3385 {
3386 return gdbarch_decr_pc_after_break (gdbarch);
3387 }
3388
3389 /* See target.h. */
3390
3391 CORE_ADDR
3392 target_decr_pc_after_break (struct gdbarch *gdbarch)
3393 {
3394 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3395 }
3396
3397 /* See target.h. */
3398
3399 void
3400 target_prepare_to_generate_core (void)
3401 {
3402 current_target.to_prepare_to_generate_core (&current_target);
3403 }
3404
3405 /* See target.h. */
3406
3407 void
3408 target_done_generating_core (void)
3409 {
3410 current_target.to_done_generating_core (&current_target);
3411 }
3412
3413 static void
3414 setup_target_debug (void)
3415 {
3416 memcpy (&debug_target, &current_target, sizeof debug_target);
3417
3418 current_target.to_open = debug_to_open;
3419 init_debug_target (&current_target);
3420 }
3421 \f
3422
3423 static char targ_desc[] =
3424 "Names of targets and files being debugged.\nShows the entire \
3425 stack of targets currently in use (including the exec-file,\n\
3426 core-file, and process, if any), as well as the symbol file name.";
3427
3428 static void
3429 default_rcmd (struct target_ops *self, const char *command,
3430 struct ui_file *output)
3431 {
3432 error (_("\"monitor\" command not supported by this target."));
3433 }
3434
3435 static void
3436 do_monitor_command (char *cmd,
3437 int from_tty)
3438 {
3439 target_rcmd (cmd, gdb_stdtarg);
3440 }
3441
3442 /* Print the name of each layers of our target stack. */
3443
3444 static void
3445 maintenance_print_target_stack (char *cmd, int from_tty)
3446 {
3447 struct target_ops *t;
3448
3449 printf_filtered (_("The current target stack is:\n"));
3450
3451 for (t = target_stack; t != NULL; t = t->beneath)
3452 {
3453 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3454 }
3455 }
3456
3457 /* Controls if targets can report that they can/are async. This is
3458 just for maintainers to use when debugging gdb. */
3459 int target_async_permitted = 1;
3460
3461 /* The set command writes to this variable. If the inferior is
3462 executing, target_async_permitted is *not* updated. */
3463 static int target_async_permitted_1 = 1;
3464
3465 static void
3466 maint_set_target_async_command (char *args, int from_tty,
3467 struct cmd_list_element *c)
3468 {
3469 if (have_live_inferiors ())
3470 {
3471 target_async_permitted_1 = target_async_permitted;
3472 error (_("Cannot change this setting while the inferior is running."));
3473 }
3474
3475 target_async_permitted = target_async_permitted_1;
3476 }
3477
3478 static void
3479 maint_show_target_async_command (struct ui_file *file, int from_tty,
3480 struct cmd_list_element *c,
3481 const char *value)
3482 {
3483 fprintf_filtered (file,
3484 _("Controlling the inferior in "
3485 "asynchronous mode is %s.\n"), value);
3486 }
3487
3488 /* Temporary copies of permission settings. */
3489
3490 static int may_write_registers_1 = 1;
3491 static int may_write_memory_1 = 1;
3492 static int may_insert_breakpoints_1 = 1;
3493 static int may_insert_tracepoints_1 = 1;
3494 static int may_insert_fast_tracepoints_1 = 1;
3495 static int may_stop_1 = 1;
3496
3497 /* Make the user-set values match the real values again. */
3498
3499 void
3500 update_target_permissions (void)
3501 {
3502 may_write_registers_1 = may_write_registers;
3503 may_write_memory_1 = may_write_memory;
3504 may_insert_breakpoints_1 = may_insert_breakpoints;
3505 may_insert_tracepoints_1 = may_insert_tracepoints;
3506 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3507 may_stop_1 = may_stop;
3508 }
3509
3510 /* The one function handles (most of) the permission flags in the same
3511 way. */
3512
3513 static void
3514 set_target_permissions (char *args, int from_tty,
3515 struct cmd_list_element *c)
3516 {
3517 if (target_has_execution)
3518 {
3519 update_target_permissions ();
3520 error (_("Cannot change this setting while the inferior is running."));
3521 }
3522
3523 /* Make the real values match the user-changed values. */
3524 may_write_registers = may_write_registers_1;
3525 may_insert_breakpoints = may_insert_breakpoints_1;
3526 may_insert_tracepoints = may_insert_tracepoints_1;
3527 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3528 may_stop = may_stop_1;
3529 update_observer_mode ();
3530 }
3531
3532 /* Set memory write permission independently of observer mode. */
3533
3534 static void
3535 set_write_memory_permission (char *args, int from_tty,
3536 struct cmd_list_element *c)
3537 {
3538 /* Make the real values match the user-changed values. */
3539 may_write_memory = may_write_memory_1;
3540 update_observer_mode ();
3541 }
3542
3543
3544 void
3545 initialize_targets (void)
3546 {
3547 init_dummy_target ();
3548 push_target (&dummy_target);
3549
3550 add_info ("target", target_info, targ_desc);
3551 add_info ("files", target_info, targ_desc);
3552
3553 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3554 Set target debugging."), _("\
3555 Show target debugging."), _("\
3556 When non-zero, target debugging is enabled. Higher numbers are more\n\
3557 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3558 command."),
3559 NULL,
3560 show_targetdebug,
3561 &setdebuglist, &showdebuglist);
3562
3563 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3564 &trust_readonly, _("\
3565 Set mode for reading from readonly sections."), _("\
3566 Show mode for reading from readonly sections."), _("\
3567 When this mode is on, memory reads from readonly sections (such as .text)\n\
3568 will be read from the object file instead of from the target. This will\n\
3569 result in significant performance improvement for remote targets."),
3570 NULL,
3571 show_trust_readonly,
3572 &setlist, &showlist);
3573
3574 add_com ("monitor", class_obscure, do_monitor_command,
3575 _("Send a command to the remote monitor (remote targets only)."));
3576
3577 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3578 _("Print the name of each layer of the internal target stack."),
3579 &maintenanceprintlist);
3580
3581 add_setshow_boolean_cmd ("target-async", no_class,
3582 &target_async_permitted_1, _("\
3583 Set whether gdb controls the inferior in asynchronous mode."), _("\
3584 Show whether gdb controls the inferior in asynchronous mode."), _("\
3585 Tells gdb whether to control the inferior in asynchronous mode."),
3586 maint_set_target_async_command,
3587 maint_show_target_async_command,
3588 &maintenance_set_cmdlist,
3589 &maintenance_show_cmdlist);
3590
3591 add_setshow_boolean_cmd ("may-write-registers", class_support,
3592 &may_write_registers_1, _("\
3593 Set permission to write into registers."), _("\
3594 Show permission to write into registers."), _("\
3595 When this permission is on, GDB may write into the target's registers.\n\
3596 Otherwise, any sort of write attempt will result in an error."),
3597 set_target_permissions, NULL,
3598 &setlist, &showlist);
3599
3600 add_setshow_boolean_cmd ("may-write-memory", class_support,
3601 &may_write_memory_1, _("\
3602 Set permission to write into target memory."), _("\
3603 Show permission to write into target memory."), _("\
3604 When this permission is on, GDB may write into the target's memory.\n\
3605 Otherwise, any sort of write attempt will result in an error."),
3606 set_write_memory_permission, NULL,
3607 &setlist, &showlist);
3608
3609 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3610 &may_insert_breakpoints_1, _("\
3611 Set permission to insert breakpoints in the target."), _("\
3612 Show permission to insert breakpoints in the target."), _("\
3613 When this permission is on, GDB may insert breakpoints in the program.\n\
3614 Otherwise, any sort of insertion attempt will result in an error."),
3615 set_target_permissions, NULL,
3616 &setlist, &showlist);
3617
3618 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3619 &may_insert_tracepoints_1, _("\
3620 Set permission to insert tracepoints in the target."), _("\
3621 Show permission to insert tracepoints in the target."), _("\
3622 When this permission is on, GDB may insert tracepoints in the program.\n\
3623 Otherwise, any sort of insertion attempt will result in an error."),
3624 set_target_permissions, NULL,
3625 &setlist, &showlist);
3626
3627 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3628 &may_insert_fast_tracepoints_1, _("\
3629 Set permission to insert fast tracepoints in the target."), _("\
3630 Show permission to insert fast tracepoints in the target."), _("\
3631 When this permission is on, GDB may insert fast tracepoints.\n\
3632 Otherwise, any sort of insertion attempt will result in an error."),
3633 set_target_permissions, NULL,
3634 &setlist, &showlist);
3635
3636 add_setshow_boolean_cmd ("may-interrupt", class_support,
3637 &may_stop_1, _("\
3638 Set permission to interrupt or signal the target."), _("\
3639 Show permission to interrupt or signal the target."), _("\
3640 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3641 Otherwise, any attempt to interrupt or stop will be ignored."),
3642 set_target_permissions, NULL,
3643 &setlist, &showlist);
3644
3645 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3646 &auto_connect_native_target, _("\
3647 Set whether GDB may automatically connect to the native target."), _("\
3648 Show whether GDB may automatically connect to the native target."), _("\
3649 When on, and GDB is not connected to a target yet, GDB\n\
3650 attempts \"run\" and other commands with the native target."),
3651 NULL, show_auto_connect_native_target,
3652 &setlist, &showlist);
3653 }