convert to_disconnect
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47 #include "auxv.h"
48
49 static void target_info (char *, int);
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static void tcomplain (void) ATTRIBUTE_NORETURN;
77
78 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
79
80 static int return_zero (void);
81
82 void target_ignore (void);
83
84 static void target_command (char *, int);
85
86 static struct target_ops *find_default_run_target (char *);
87
88 static target_xfer_partial_ftype default_xfer_partial;
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static int dummy_find_memory_regions (struct target_ops *self,
94 find_memory_region_ftype ignore1,
95 void *ignore2);
96
97 static char *dummy_make_corefile_notes (struct target_ops *self,
98 bfd *ignore1, int *ignore2);
99
100 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
101
102 static int find_default_can_async_p (struct target_ops *ignore);
103
104 static int find_default_is_async_p (struct target_ops *ignore);
105
106 static enum exec_direction_kind default_execution_direction
107 (struct target_ops *self);
108
109 #include "target-delegates.c"
110
111 static void init_dummy_target (void);
112
113 static struct target_ops debug_target;
114
115 static void debug_to_open (char *, int);
116
117 static void debug_to_prepare_to_store (struct target_ops *self,
118 struct regcache *);
119
120 static void debug_to_files_info (struct target_ops *);
121
122 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
123 struct bp_target_info *);
124
125 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
129 int, int, int);
130
131 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
132 struct gdbarch *,
133 struct bp_target_info *);
134
135 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
136 struct gdbarch *,
137 struct bp_target_info *);
138
139 static int debug_to_insert_watchpoint (struct target_ops *self,
140 CORE_ADDR, int, int,
141 struct expression *);
142
143 static int debug_to_remove_watchpoint (struct target_ops *self,
144 CORE_ADDR, int, int,
145 struct expression *);
146
147 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
148
149 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
150 CORE_ADDR, CORE_ADDR, int);
151
152 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
153 CORE_ADDR, int);
154
155 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
156 CORE_ADDR, int, int,
157 struct expression *);
158
159 static void debug_to_terminal_init (struct target_ops *self);
160
161 static void debug_to_terminal_inferior (struct target_ops *self);
162
163 static void debug_to_terminal_ours_for_output (struct target_ops *self);
164
165 static void debug_to_terminal_save_ours (struct target_ops *self);
166
167 static void debug_to_terminal_ours (struct target_ops *self);
168
169 static void debug_to_load (struct target_ops *self, char *, int);
170
171 static int debug_to_can_run (struct target_ops *self);
172
173 static void debug_to_stop (struct target_ops *self, ptid_t);
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_allocsize;
181 #define DEFAULT_ALLOCSIZE 10
182
183 /* The initial current target, so that there is always a semi-valid
184 current target. */
185
186 static struct target_ops dummy_target;
187
188 /* Top of target stack. */
189
190 static struct target_ops *target_stack;
191
192 /* The target structure we are currently using to talk to a process
193 or file or whatever "inferior" we have. */
194
195 struct target_ops current_target;
196
197 /* Command list for target. */
198
199 static struct cmd_list_element *targetlist = NULL;
200
201 /* Nonzero if we should trust readonly sections from the
202 executable when reading memory. */
203
204 static int trust_readonly = 0;
205
206 /* Nonzero if we should show true memory content including
207 memory breakpoint inserted by gdb. */
208
209 static int show_memory_breakpoints = 0;
210
211 /* These globals control whether GDB attempts to perform these
212 operations; they are useful for targets that need to prevent
213 inadvertant disruption, such as in non-stop mode. */
214
215 int may_write_registers = 1;
216
217 int may_write_memory = 1;
218
219 int may_insert_breakpoints = 1;
220
221 int may_insert_tracepoints = 1;
222
223 int may_insert_fast_tracepoints = 1;
224
225 int may_stop = 1;
226
227 /* Non-zero if we want to see trace of target level stuff. */
228
229 static unsigned int targetdebug = 0;
230 static void
231 show_targetdebug (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
235 }
236
237 static void setup_target_debug (void);
238
239 /* The user just typed 'target' without the name of a target. */
240
241 static void
242 target_command (char *arg, int from_tty)
243 {
244 fputs_filtered ("Argument required (target name). Try `help target'\n",
245 gdb_stdout);
246 }
247
248 /* Default target_has_* methods for process_stratum targets. */
249
250 int
251 default_child_has_all_memory (struct target_ops *ops)
252 {
253 /* If no inferior selected, then we can't read memory here. */
254 if (ptid_equal (inferior_ptid, null_ptid))
255 return 0;
256
257 return 1;
258 }
259
260 int
261 default_child_has_memory (struct target_ops *ops)
262 {
263 /* If no inferior selected, then we can't read memory here. */
264 if (ptid_equal (inferior_ptid, null_ptid))
265 return 0;
266
267 return 1;
268 }
269
270 int
271 default_child_has_stack (struct target_ops *ops)
272 {
273 /* If no inferior selected, there's no stack. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_registers (struct target_ops *ops)
282 {
283 /* Can't read registers from no inferior. */
284 if (ptid_equal (inferior_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290 int
291 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
292 {
293 /* If there's no thread selected, then we can't make it run through
294 hoops. */
295 if (ptid_equal (the_ptid, null_ptid))
296 return 0;
297
298 return 1;
299 }
300
301
302 int
303 target_has_all_memory_1 (void)
304 {
305 struct target_ops *t;
306
307 for (t = current_target.beneath; t != NULL; t = t->beneath)
308 if (t->to_has_all_memory (t))
309 return 1;
310
311 return 0;
312 }
313
314 int
315 target_has_memory_1 (void)
316 {
317 struct target_ops *t;
318
319 for (t = current_target.beneath; t != NULL; t = t->beneath)
320 if (t->to_has_memory (t))
321 return 1;
322
323 return 0;
324 }
325
326 int
327 target_has_stack_1 (void)
328 {
329 struct target_ops *t;
330
331 for (t = current_target.beneath; t != NULL; t = t->beneath)
332 if (t->to_has_stack (t))
333 return 1;
334
335 return 0;
336 }
337
338 int
339 target_has_registers_1 (void)
340 {
341 struct target_ops *t;
342
343 for (t = current_target.beneath; t != NULL; t = t->beneath)
344 if (t->to_has_registers (t))
345 return 1;
346
347 return 0;
348 }
349
350 int
351 target_has_execution_1 (ptid_t the_ptid)
352 {
353 struct target_ops *t;
354
355 for (t = current_target.beneath; t != NULL; t = t->beneath)
356 if (t->to_has_execution (t, the_ptid))
357 return 1;
358
359 return 0;
360 }
361
362 int
363 target_has_execution_current (void)
364 {
365 return target_has_execution_1 (inferior_ptid);
366 }
367
368 /* Complete initialization of T. This ensures that various fields in
369 T are set, if needed by the target implementation. */
370
371 void
372 complete_target_initialization (struct target_ops *t)
373 {
374 /* Provide default values for all "must have" methods. */
375 if (t->to_xfer_partial == NULL)
376 t->to_xfer_partial = default_xfer_partial;
377
378 if (t->to_has_all_memory == NULL)
379 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
380
381 if (t->to_has_memory == NULL)
382 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
383
384 if (t->to_has_stack == NULL)
385 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
386
387 if (t->to_has_registers == NULL)
388 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
389
390 if (t->to_has_execution == NULL)
391 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
392
393 install_delegators (t);
394 }
395
396 /* Add possible target architecture T to the list and add a new
397 command 'target T->to_shortname'. Set COMPLETER as the command's
398 completer if not NULL. */
399
400 void
401 add_target_with_completer (struct target_ops *t,
402 completer_ftype *completer)
403 {
404 struct cmd_list_element *c;
405
406 complete_target_initialization (t);
407
408 if (!target_structs)
409 {
410 target_struct_allocsize = DEFAULT_ALLOCSIZE;
411 target_structs = (struct target_ops **) xmalloc
412 (target_struct_allocsize * sizeof (*target_structs));
413 }
414 if (target_struct_size >= target_struct_allocsize)
415 {
416 target_struct_allocsize *= 2;
417 target_structs = (struct target_ops **)
418 xrealloc ((char *) target_structs,
419 target_struct_allocsize * sizeof (*target_structs));
420 }
421 target_structs[target_struct_size++] = t;
422
423 if (targetlist == NULL)
424 add_prefix_cmd ("target", class_run, target_command, _("\
425 Connect to a target machine or process.\n\
426 The first argument is the type or protocol of the target machine.\n\
427 Remaining arguments are interpreted by the target protocol. For more\n\
428 information on the arguments for a particular protocol, type\n\
429 `help target ' followed by the protocol name."),
430 &targetlist, "target ", 0, &cmdlist);
431 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
432 &targetlist);
433 if (completer != NULL)
434 set_cmd_completer (c, completer);
435 }
436
437 /* Add a possible target architecture to the list. */
438
439 void
440 add_target (struct target_ops *t)
441 {
442 add_target_with_completer (t, NULL);
443 }
444
445 /* See target.h. */
446
447 void
448 add_deprecated_target_alias (struct target_ops *t, char *alias)
449 {
450 struct cmd_list_element *c;
451 char *alt;
452
453 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
454 see PR cli/15104. */
455 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
456 alt = xstrprintf ("target %s", t->to_shortname);
457 deprecate_cmd (c, alt);
458 }
459
460 /* Stub functions */
461
462 void
463 target_ignore (void)
464 {
465 }
466
467 void
468 target_kill (void)
469 {
470 if (targetdebug)
471 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
472
473 current_target.to_kill (&current_target);
474 }
475
476 void
477 target_load (char *arg, int from_tty)
478 {
479 target_dcache_invalidate ();
480 (*current_target.to_load) (&current_target, arg, from_tty);
481 }
482
483 void
484 target_create_inferior (char *exec_file, char *args,
485 char **env, int from_tty)
486 {
487 struct target_ops *t;
488
489 for (t = current_target.beneath; t != NULL; t = t->beneath)
490 {
491 if (t->to_create_inferior != NULL)
492 {
493 t->to_create_inferior (t, exec_file, args, env, from_tty);
494 if (targetdebug)
495 fprintf_unfiltered (gdb_stdlog,
496 "target_create_inferior (%s, %s, xxx, %d)\n",
497 exec_file, args, from_tty);
498 return;
499 }
500 }
501
502 internal_error (__FILE__, __LINE__,
503 _("could not find a target to create inferior"));
504 }
505
506 void
507 target_terminal_inferior (void)
508 {
509 /* A background resume (``run&'') should leave GDB in control of the
510 terminal. Use target_can_async_p, not target_is_async_p, since at
511 this point the target is not async yet. However, if sync_execution
512 is not set, we know it will become async prior to resume. */
513 if (target_can_async_p () && !sync_execution)
514 return;
515
516 /* If GDB is resuming the inferior in the foreground, install
517 inferior's terminal modes. */
518 (*current_target.to_terminal_inferior) (&current_target);
519 }
520
521 static int
522 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
523 struct target_ops *t)
524 {
525 errno = EIO; /* Can't read/write this location. */
526 return 0; /* No bytes handled. */
527 }
528
529 static void
530 tcomplain (void)
531 {
532 error (_("You can't do that when your target is `%s'"),
533 current_target.to_shortname);
534 }
535
536 void
537 noprocess (void)
538 {
539 error (_("You can't do that without a process to debug."));
540 }
541
542 static void
543 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
544 {
545 printf_unfiltered (_("No saved terminal information.\n"));
546 }
547
548 /* A default implementation for the to_get_ada_task_ptid target method.
549
550 This function builds the PTID by using both LWP and TID as part of
551 the PTID lwp and tid elements. The pid used is the pid of the
552 inferior_ptid. */
553
554 static ptid_t
555 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
556 {
557 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
558 }
559
560 static enum exec_direction_kind
561 default_execution_direction (struct target_ops *self)
562 {
563 if (!target_can_execute_reverse)
564 return EXEC_FORWARD;
565 else if (!target_can_async_p ())
566 return EXEC_FORWARD;
567 else
568 gdb_assert_not_reached ("\
569 to_execution_direction must be implemented for reverse async");
570 }
571
572 /* Go through the target stack from top to bottom, copying over zero
573 entries in current_target, then filling in still empty entries. In
574 effect, we are doing class inheritance through the pushed target
575 vectors.
576
577 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
578 is currently implemented, is that it discards any knowledge of
579 which target an inherited method originally belonged to.
580 Consequently, new new target methods should instead explicitly and
581 locally search the target stack for the target that can handle the
582 request. */
583
584 static void
585 update_current_target (void)
586 {
587 struct target_ops *t;
588
589 /* First, reset current's contents. */
590 memset (&current_target, 0, sizeof (current_target));
591
592 /* Install the delegators. */
593 install_delegators (&current_target);
594
595 #define INHERIT(FIELD, TARGET) \
596 if (!current_target.FIELD) \
597 current_target.FIELD = (TARGET)->FIELD
598
599 for (t = target_stack; t; t = t->beneath)
600 {
601 INHERIT (to_shortname, t);
602 INHERIT (to_longname, t);
603 INHERIT (to_doc, t);
604 /* Do not inherit to_open. */
605 /* Do not inherit to_close. */
606 /* Do not inherit to_attach. */
607 /* Do not inherit to_post_attach. */
608 INHERIT (to_attach_no_wait, t);
609 /* Do not inherit to_detach. */
610 /* Do not inherit to_disconnect. */
611 /* Do not inherit to_resume. */
612 /* Do not inherit to_wait. */
613 /* Do not inherit to_fetch_registers. */
614 /* Do not inherit to_store_registers. */
615 /* Do not inherit to_prepare_to_store. */
616 INHERIT (deprecated_xfer_memory, t);
617 /* Do not inherit to_files_info. */
618 /* Do not inherit to_insert_breakpoint. */
619 /* Do not inherit to_remove_breakpoint. */
620 /* Do not inherit to_can_use_hw_breakpoint. */
621 /* Do not inherit to_insert_hw_breakpoint. */
622 /* Do not inherit to_remove_hw_breakpoint. */
623 /* Do not inherit to_ranged_break_num_registers. */
624 /* Do not inherit to_insert_watchpoint. */
625 /* Do not inherit to_remove_watchpoint. */
626 /* Do not inherit to_insert_mask_watchpoint. */
627 /* Do not inherit to_remove_mask_watchpoint. */
628 /* Do not inherit to_stopped_data_address. */
629 INHERIT (to_have_steppable_watchpoint, t);
630 INHERIT (to_have_continuable_watchpoint, t);
631 /* Do not inherit to_stopped_by_watchpoint. */
632 /* Do not inherit to_watchpoint_addr_within_range. */
633 /* Do not inherit to_region_ok_for_hw_watchpoint. */
634 /* Do not inherit to_can_accel_watchpoint_condition. */
635 /* Do not inherit to_masked_watch_num_registers. */
636 /* Do not inherit to_terminal_init. */
637 /* Do not inherit to_terminal_inferior. */
638 /* Do not inherit to_terminal_ours_for_output. */
639 /* Do not inherit to_terminal_ours. */
640 /* Do not inherit to_terminal_save_ours. */
641 /* Do not inherit to_terminal_info. */
642 /* Do not inherit to_kill. */
643 /* Do not inherit to_load. */
644 /* Do no inherit to_create_inferior. */
645 /* Do not inherit to_post_startup_inferior. */
646 /* Do not inherit to_insert_fork_catchpoint. */
647 /* Do not inherit to_remove_fork_catchpoint. */
648 /* Do not inherit to_insert_vfork_catchpoint. */
649 /* Do not inherit to_remove_vfork_catchpoint. */
650 /* Do not inherit to_follow_fork. */
651 /* Do not inherit to_insert_exec_catchpoint. */
652 /* Do not inherit to_remove_exec_catchpoint. */
653 /* Do not inherit to_set_syscall_catchpoint. */
654 /* Do not inherit to_has_exited. */
655 /* Do not inherit to_mourn_inferior. */
656 INHERIT (to_can_run, t);
657 /* Do not inherit to_pass_signals. */
658 /* Do not inherit to_program_signals. */
659 /* Do not inherit to_thread_alive. */
660 /* Do not inherit to_find_new_threads. */
661 /* Do not inherit to_pid_to_str. */
662 /* Do not inherit to_extra_thread_info. */
663 /* Do not inherit to_thread_name. */
664 /* Do not inherit to_stop. */
665 /* Do not inherit to_xfer_partial. */
666 /* Do not inherit to_rcmd. */
667 /* Do not inherit to_pid_to_exec_file. */
668 /* Do not inherit to_log_command. */
669 INHERIT (to_stratum, t);
670 /* Do not inherit to_has_all_memory. */
671 /* Do not inherit to_has_memory. */
672 /* Do not inherit to_has_stack. */
673 /* Do not inherit to_has_registers. */
674 /* Do not inherit to_has_execution. */
675 INHERIT (to_has_thread_control, t);
676 /* Do not inherit to_can_async_p. */
677 /* Do not inherit to_is_async_p. */
678 /* Do not inherit to_async. */
679 /* Do not inherit to_find_memory_regions. */
680 /* Do not inherit to_make_corefile_notes. */
681 /* Do not inherit to_get_bookmark. */
682 /* Do not inherit to_goto_bookmark. */
683 /* Do not inherit to_get_thread_local_address. */
684 /* Do not inherit to_can_execute_reverse. */
685 /* Do not inherit to_execution_direction. */
686 /* Do not inherit to_thread_architecture. */
687 /* Do not inherit to_read_description. */
688 /* Do not inherit to_get_ada_task_ptid. */
689 /* Do not inherit to_search_memory. */
690 /* Do not inherit to_supports_multi_process. */
691 /* Do not inherit to_supports_enable_disable_tracepoint. */
692 /* Do not inherit to_supports_string_tracing. */
693 /* Do not inherit to_trace_init. */
694 /* Do not inherit to_download_tracepoint. */
695 /* Do not inherit to_can_download_tracepoint. */
696 /* Do not inherit to_download_trace_state_variable. */
697 /* Do not inherit to_enable_tracepoint. */
698 /* Do not inherit to_disable_tracepoint. */
699 /* Do not inherit to_trace_set_readonly_regions. */
700 /* Do not inherit to_trace_start. */
701 /* Do not inherit to_get_trace_status. */
702 /* Do not inherit to_get_tracepoint_status. */
703 /* Do not inherit to_trace_stop. */
704 /* Do not inherit to_trace_find. */
705 /* Do not inherit to_get_trace_state_variable_value. */
706 /* Do not inherit to_save_trace_data. */
707 /* Do not inherit to_upload_tracepoints. */
708 /* Do not inherit to_upload_trace_state_variables. */
709 /* Do not inherit to_get_raw_trace_data. */
710 /* Do not inherit to_get_min_fast_tracepoint_insn_len. */
711 /* Do not inherit to_set_disconnected_tracing. */
712 /* Do not inherit to_set_circular_trace_buffer. */
713 /* Do not inherit to_set_trace_buffer_size. */
714 /* Do not inherit to_set_trace_notes. */
715 /* Do not inherit to_get_tib_address. */
716 /* Do not inherit to_set_permissions. */
717 /* Do not inherit to_static_tracepoint_marker_at. */
718 /* Do not inherit to_static_tracepoint_markers_by_strid. */
719 /* Do not inherit to_traceframe_info. */
720 /* Do not inherit to_use_agent. */
721 /* Do not inherit to_can_use_agent. */
722 /* Do not inherit to_augmented_libraries_svr4_read. */
723 INHERIT (to_magic, t);
724 /* Do not inherit
725 to_supports_evaluation_of_breakpoint_conditions. */
726 /* Do not inherit to_can_run_breakpoint_commands. */
727 /* Do not inherit to_memory_map. */
728 /* Do not inherit to_flash_erase. */
729 /* Do not inherit to_flash_done. */
730 }
731 #undef INHERIT
732
733 /* Clean up a target struct so it no longer has any zero pointers in
734 it. Some entries are defaulted to a method that print an error,
735 others are hard-wired to a standard recursive default. */
736
737 #define de_fault(field, value) \
738 if (!current_target.field) \
739 current_target.field = value
740
741 de_fault (to_open,
742 (void (*) (char *, int))
743 tcomplain);
744 de_fault (to_close,
745 (void (*) (struct target_ops *))
746 target_ignore);
747 de_fault (deprecated_xfer_memory,
748 (int (*) (CORE_ADDR, gdb_byte *, int, int,
749 struct mem_attrib *, struct target_ops *))
750 nomemory);
751 de_fault (to_can_run,
752 (int (*) (struct target_ops *))
753 return_zero);
754 current_target.to_read_description = NULL;
755
756 #undef de_fault
757
758 /* Finally, position the target-stack beneath the squashed
759 "current_target". That way code looking for a non-inherited
760 target method can quickly and simply find it. */
761 current_target.beneath = target_stack;
762
763 if (targetdebug)
764 setup_target_debug ();
765 }
766
767 /* Push a new target type into the stack of the existing target accessors,
768 possibly superseding some of the existing accessors.
769
770 Rather than allow an empty stack, we always have the dummy target at
771 the bottom stratum, so we can call the function vectors without
772 checking them. */
773
774 void
775 push_target (struct target_ops *t)
776 {
777 struct target_ops **cur;
778
779 /* Check magic number. If wrong, it probably means someone changed
780 the struct definition, but not all the places that initialize one. */
781 if (t->to_magic != OPS_MAGIC)
782 {
783 fprintf_unfiltered (gdb_stderr,
784 "Magic number of %s target struct wrong\n",
785 t->to_shortname);
786 internal_error (__FILE__, __LINE__,
787 _("failed internal consistency check"));
788 }
789
790 /* Find the proper stratum to install this target in. */
791 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
792 {
793 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
794 break;
795 }
796
797 /* If there's already targets at this stratum, remove them. */
798 /* FIXME: cagney/2003-10-15: I think this should be popping all
799 targets to CUR, and not just those at this stratum level. */
800 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
801 {
802 /* There's already something at this stratum level. Close it,
803 and un-hook it from the stack. */
804 struct target_ops *tmp = (*cur);
805
806 (*cur) = (*cur)->beneath;
807 tmp->beneath = NULL;
808 target_close (tmp);
809 }
810
811 /* We have removed all targets in our stratum, now add the new one. */
812 t->beneath = (*cur);
813 (*cur) = t;
814
815 update_current_target ();
816 }
817
818 /* Remove a target_ops vector from the stack, wherever it may be.
819 Return how many times it was removed (0 or 1). */
820
821 int
822 unpush_target (struct target_ops *t)
823 {
824 struct target_ops **cur;
825 struct target_ops *tmp;
826
827 if (t->to_stratum == dummy_stratum)
828 internal_error (__FILE__, __LINE__,
829 _("Attempt to unpush the dummy target"));
830
831 /* Look for the specified target. Note that we assume that a target
832 can only occur once in the target stack. */
833
834 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
835 {
836 if ((*cur) == t)
837 break;
838 }
839
840 /* If we don't find target_ops, quit. Only open targets should be
841 closed. */
842 if ((*cur) == NULL)
843 return 0;
844
845 /* Unchain the target. */
846 tmp = (*cur);
847 (*cur) = (*cur)->beneath;
848 tmp->beneath = NULL;
849
850 update_current_target ();
851
852 /* Finally close the target. Note we do this after unchaining, so
853 any target method calls from within the target_close
854 implementation don't end up in T anymore. */
855 target_close (t);
856
857 return 1;
858 }
859
860 void
861 pop_all_targets_above (enum strata above_stratum)
862 {
863 while ((int) (current_target.to_stratum) > (int) above_stratum)
864 {
865 if (!unpush_target (target_stack))
866 {
867 fprintf_unfiltered (gdb_stderr,
868 "pop_all_targets couldn't find target %s\n",
869 target_stack->to_shortname);
870 internal_error (__FILE__, __LINE__,
871 _("failed internal consistency check"));
872 break;
873 }
874 }
875 }
876
877 void
878 pop_all_targets (void)
879 {
880 pop_all_targets_above (dummy_stratum);
881 }
882
883 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
884
885 int
886 target_is_pushed (struct target_ops *t)
887 {
888 struct target_ops **cur;
889
890 /* Check magic number. If wrong, it probably means someone changed
891 the struct definition, but not all the places that initialize one. */
892 if (t->to_magic != OPS_MAGIC)
893 {
894 fprintf_unfiltered (gdb_stderr,
895 "Magic number of %s target struct wrong\n",
896 t->to_shortname);
897 internal_error (__FILE__, __LINE__,
898 _("failed internal consistency check"));
899 }
900
901 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
902 if (*cur == t)
903 return 1;
904
905 return 0;
906 }
907
908 /* Using the objfile specified in OBJFILE, find the address for the
909 current thread's thread-local storage with offset OFFSET. */
910 CORE_ADDR
911 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
912 {
913 volatile CORE_ADDR addr = 0;
914 struct target_ops *target;
915
916 for (target = current_target.beneath;
917 target != NULL;
918 target = target->beneath)
919 {
920 if (target->to_get_thread_local_address != NULL)
921 break;
922 }
923
924 if (target != NULL
925 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
926 {
927 ptid_t ptid = inferior_ptid;
928 volatile struct gdb_exception ex;
929
930 TRY_CATCH (ex, RETURN_MASK_ALL)
931 {
932 CORE_ADDR lm_addr;
933
934 /* Fetch the load module address for this objfile. */
935 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
936 objfile);
937 /* If it's 0, throw the appropriate exception. */
938 if (lm_addr == 0)
939 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
940 _("TLS load module not found"));
941
942 addr = target->to_get_thread_local_address (target, ptid,
943 lm_addr, offset);
944 }
945 /* If an error occurred, print TLS related messages here. Otherwise,
946 throw the error to some higher catcher. */
947 if (ex.reason < 0)
948 {
949 int objfile_is_library = (objfile->flags & OBJF_SHARED);
950
951 switch (ex.error)
952 {
953 case TLS_NO_LIBRARY_SUPPORT_ERROR:
954 error (_("Cannot find thread-local variables "
955 "in this thread library."));
956 break;
957 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
958 if (objfile_is_library)
959 error (_("Cannot find shared library `%s' in dynamic"
960 " linker's load module list"), objfile_name (objfile));
961 else
962 error (_("Cannot find executable file `%s' in dynamic"
963 " linker's load module list"), objfile_name (objfile));
964 break;
965 case TLS_NOT_ALLOCATED_YET_ERROR:
966 if (objfile_is_library)
967 error (_("The inferior has not yet allocated storage for"
968 " thread-local variables in\n"
969 "the shared library `%s'\n"
970 "for %s"),
971 objfile_name (objfile), target_pid_to_str (ptid));
972 else
973 error (_("The inferior has not yet allocated storage for"
974 " thread-local variables in\n"
975 "the executable `%s'\n"
976 "for %s"),
977 objfile_name (objfile), target_pid_to_str (ptid));
978 break;
979 case TLS_GENERIC_ERROR:
980 if (objfile_is_library)
981 error (_("Cannot find thread-local storage for %s, "
982 "shared library %s:\n%s"),
983 target_pid_to_str (ptid),
984 objfile_name (objfile), ex.message);
985 else
986 error (_("Cannot find thread-local storage for %s, "
987 "executable file %s:\n%s"),
988 target_pid_to_str (ptid),
989 objfile_name (objfile), ex.message);
990 break;
991 default:
992 throw_exception (ex);
993 break;
994 }
995 }
996 }
997 /* It wouldn't be wrong here to try a gdbarch method, too; finding
998 TLS is an ABI-specific thing. But we don't do that yet. */
999 else
1000 error (_("Cannot find thread-local variables on this target"));
1001
1002 return addr;
1003 }
1004
1005 const char *
1006 target_xfer_status_to_string (enum target_xfer_status err)
1007 {
1008 #define CASE(X) case X: return #X
1009 switch (err)
1010 {
1011 CASE(TARGET_XFER_E_IO);
1012 CASE(TARGET_XFER_E_UNAVAILABLE);
1013 default:
1014 return "<unknown>";
1015 }
1016 #undef CASE
1017 };
1018
1019
1020 #undef MIN
1021 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1022
1023 /* target_read_string -- read a null terminated string, up to LEN bytes,
1024 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1025 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1026 is responsible for freeing it. Return the number of bytes successfully
1027 read. */
1028
1029 int
1030 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1031 {
1032 int tlen, offset, i;
1033 gdb_byte buf[4];
1034 int errcode = 0;
1035 char *buffer;
1036 int buffer_allocated;
1037 char *bufptr;
1038 unsigned int nbytes_read = 0;
1039
1040 gdb_assert (string);
1041
1042 /* Small for testing. */
1043 buffer_allocated = 4;
1044 buffer = xmalloc (buffer_allocated);
1045 bufptr = buffer;
1046
1047 while (len > 0)
1048 {
1049 tlen = MIN (len, 4 - (memaddr & 3));
1050 offset = memaddr & 3;
1051
1052 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1053 if (errcode != 0)
1054 {
1055 /* The transfer request might have crossed the boundary to an
1056 unallocated region of memory. Retry the transfer, requesting
1057 a single byte. */
1058 tlen = 1;
1059 offset = 0;
1060 errcode = target_read_memory (memaddr, buf, 1);
1061 if (errcode != 0)
1062 goto done;
1063 }
1064
1065 if (bufptr - buffer + tlen > buffer_allocated)
1066 {
1067 unsigned int bytes;
1068
1069 bytes = bufptr - buffer;
1070 buffer_allocated *= 2;
1071 buffer = xrealloc (buffer, buffer_allocated);
1072 bufptr = buffer + bytes;
1073 }
1074
1075 for (i = 0; i < tlen; i++)
1076 {
1077 *bufptr++ = buf[i + offset];
1078 if (buf[i + offset] == '\000')
1079 {
1080 nbytes_read += i + 1;
1081 goto done;
1082 }
1083 }
1084
1085 memaddr += tlen;
1086 len -= tlen;
1087 nbytes_read += tlen;
1088 }
1089 done:
1090 *string = buffer;
1091 if (errnop != NULL)
1092 *errnop = errcode;
1093 return nbytes_read;
1094 }
1095
1096 struct target_section_table *
1097 target_get_section_table (struct target_ops *target)
1098 {
1099 if (targetdebug)
1100 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1101
1102 return (*target->to_get_section_table) (target);
1103 }
1104
1105 /* Find a section containing ADDR. */
1106
1107 struct target_section *
1108 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1109 {
1110 struct target_section_table *table = target_get_section_table (target);
1111 struct target_section *secp;
1112
1113 if (table == NULL)
1114 return NULL;
1115
1116 for (secp = table->sections; secp < table->sections_end; secp++)
1117 {
1118 if (addr >= secp->addr && addr < secp->endaddr)
1119 return secp;
1120 }
1121 return NULL;
1122 }
1123
1124 /* Read memory from the live target, even if currently inspecting a
1125 traceframe. The return is the same as that of target_read. */
1126
1127 static enum target_xfer_status
1128 target_read_live_memory (enum target_object object,
1129 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1130 ULONGEST *xfered_len)
1131 {
1132 enum target_xfer_status ret;
1133 struct cleanup *cleanup;
1134
1135 /* Switch momentarily out of tfind mode so to access live memory.
1136 Note that this must not clear global state, such as the frame
1137 cache, which must still remain valid for the previous traceframe.
1138 We may be _building_ the frame cache at this point. */
1139 cleanup = make_cleanup_restore_traceframe_number ();
1140 set_traceframe_number (-1);
1141
1142 ret = target_xfer_partial (current_target.beneath, object, NULL,
1143 myaddr, NULL, memaddr, len, xfered_len);
1144
1145 do_cleanups (cleanup);
1146 return ret;
1147 }
1148
1149 /* Using the set of read-only target sections of OPS, read live
1150 read-only memory. Note that the actual reads start from the
1151 top-most target again.
1152
1153 For interface/parameters/return description see target.h,
1154 to_xfer_partial. */
1155
1156 static enum target_xfer_status
1157 memory_xfer_live_readonly_partial (struct target_ops *ops,
1158 enum target_object object,
1159 gdb_byte *readbuf, ULONGEST memaddr,
1160 ULONGEST len, ULONGEST *xfered_len)
1161 {
1162 struct target_section *secp;
1163 struct target_section_table *table;
1164
1165 secp = target_section_by_addr (ops, memaddr);
1166 if (secp != NULL
1167 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1168 secp->the_bfd_section)
1169 & SEC_READONLY))
1170 {
1171 struct target_section *p;
1172 ULONGEST memend = memaddr + len;
1173
1174 table = target_get_section_table (ops);
1175
1176 for (p = table->sections; p < table->sections_end; p++)
1177 {
1178 if (memaddr >= p->addr)
1179 {
1180 if (memend <= p->endaddr)
1181 {
1182 /* Entire transfer is within this section. */
1183 return target_read_live_memory (object, memaddr,
1184 readbuf, len, xfered_len);
1185 }
1186 else if (memaddr >= p->endaddr)
1187 {
1188 /* This section ends before the transfer starts. */
1189 continue;
1190 }
1191 else
1192 {
1193 /* This section overlaps the transfer. Just do half. */
1194 len = p->endaddr - memaddr;
1195 return target_read_live_memory (object, memaddr,
1196 readbuf, len, xfered_len);
1197 }
1198 }
1199 }
1200 }
1201
1202 return TARGET_XFER_EOF;
1203 }
1204
1205 /* Read memory from more than one valid target. A core file, for
1206 instance, could have some of memory but delegate other bits to
1207 the target below it. So, we must manually try all targets. */
1208
1209 static enum target_xfer_status
1210 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1211 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1212 ULONGEST *xfered_len)
1213 {
1214 enum target_xfer_status res;
1215
1216 do
1217 {
1218 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1219 readbuf, writebuf, memaddr, len,
1220 xfered_len);
1221 if (res == TARGET_XFER_OK)
1222 break;
1223
1224 /* Stop if the target reports that the memory is not available. */
1225 if (res == TARGET_XFER_E_UNAVAILABLE)
1226 break;
1227
1228 /* We want to continue past core files to executables, but not
1229 past a running target's memory. */
1230 if (ops->to_has_all_memory (ops))
1231 break;
1232
1233 ops = ops->beneath;
1234 }
1235 while (ops != NULL);
1236
1237 return res;
1238 }
1239
1240 /* Perform a partial memory transfer.
1241 For docs see target.h, to_xfer_partial. */
1242
1243 static enum target_xfer_status
1244 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1245 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1246 ULONGEST len, ULONGEST *xfered_len)
1247 {
1248 enum target_xfer_status res;
1249 int reg_len;
1250 struct mem_region *region;
1251 struct inferior *inf;
1252
1253 /* For accesses to unmapped overlay sections, read directly from
1254 files. Must do this first, as MEMADDR may need adjustment. */
1255 if (readbuf != NULL && overlay_debugging)
1256 {
1257 struct obj_section *section = find_pc_overlay (memaddr);
1258
1259 if (pc_in_unmapped_range (memaddr, section))
1260 {
1261 struct target_section_table *table
1262 = target_get_section_table (ops);
1263 const char *section_name = section->the_bfd_section->name;
1264
1265 memaddr = overlay_mapped_address (memaddr, section);
1266 return section_table_xfer_memory_partial (readbuf, writebuf,
1267 memaddr, len, xfered_len,
1268 table->sections,
1269 table->sections_end,
1270 section_name);
1271 }
1272 }
1273
1274 /* Try the executable files, if "trust-readonly-sections" is set. */
1275 if (readbuf != NULL && trust_readonly)
1276 {
1277 struct target_section *secp;
1278 struct target_section_table *table;
1279
1280 secp = target_section_by_addr (ops, memaddr);
1281 if (secp != NULL
1282 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1283 secp->the_bfd_section)
1284 & SEC_READONLY))
1285 {
1286 table = target_get_section_table (ops);
1287 return section_table_xfer_memory_partial (readbuf, writebuf,
1288 memaddr, len, xfered_len,
1289 table->sections,
1290 table->sections_end,
1291 NULL);
1292 }
1293 }
1294
1295 /* If reading unavailable memory in the context of traceframes, and
1296 this address falls within a read-only section, fallback to
1297 reading from live memory. */
1298 if (readbuf != NULL && get_traceframe_number () != -1)
1299 {
1300 VEC(mem_range_s) *available;
1301
1302 /* If we fail to get the set of available memory, then the
1303 target does not support querying traceframe info, and so we
1304 attempt reading from the traceframe anyway (assuming the
1305 target implements the old QTro packet then). */
1306 if (traceframe_available_memory (&available, memaddr, len))
1307 {
1308 struct cleanup *old_chain;
1309
1310 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1311
1312 if (VEC_empty (mem_range_s, available)
1313 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1314 {
1315 /* Don't read into the traceframe's available
1316 memory. */
1317 if (!VEC_empty (mem_range_s, available))
1318 {
1319 LONGEST oldlen = len;
1320
1321 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1322 gdb_assert (len <= oldlen);
1323 }
1324
1325 do_cleanups (old_chain);
1326
1327 /* This goes through the topmost target again. */
1328 res = memory_xfer_live_readonly_partial (ops, object,
1329 readbuf, memaddr,
1330 len, xfered_len);
1331 if (res == TARGET_XFER_OK)
1332 return TARGET_XFER_OK;
1333 else
1334 {
1335 /* No use trying further, we know some memory starting
1336 at MEMADDR isn't available. */
1337 *xfered_len = len;
1338 return TARGET_XFER_E_UNAVAILABLE;
1339 }
1340 }
1341
1342 /* Don't try to read more than how much is available, in
1343 case the target implements the deprecated QTro packet to
1344 cater for older GDBs (the target's knowledge of read-only
1345 sections may be outdated by now). */
1346 len = VEC_index (mem_range_s, available, 0)->length;
1347
1348 do_cleanups (old_chain);
1349 }
1350 }
1351
1352 /* Try GDB's internal data cache. */
1353 region = lookup_mem_region (memaddr);
1354 /* region->hi == 0 means there's no upper bound. */
1355 if (memaddr + len < region->hi || region->hi == 0)
1356 reg_len = len;
1357 else
1358 reg_len = region->hi - memaddr;
1359
1360 switch (region->attrib.mode)
1361 {
1362 case MEM_RO:
1363 if (writebuf != NULL)
1364 return TARGET_XFER_E_IO;
1365 break;
1366
1367 case MEM_WO:
1368 if (readbuf != NULL)
1369 return TARGET_XFER_E_IO;
1370 break;
1371
1372 case MEM_FLASH:
1373 /* We only support writing to flash during "load" for now. */
1374 if (writebuf != NULL)
1375 error (_("Writing to flash memory forbidden in this context"));
1376 break;
1377
1378 case MEM_NONE:
1379 return TARGET_XFER_E_IO;
1380 }
1381
1382 if (!ptid_equal (inferior_ptid, null_ptid))
1383 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1384 else
1385 inf = NULL;
1386
1387 if (inf != NULL
1388 /* The dcache reads whole cache lines; that doesn't play well
1389 with reading from a trace buffer, because reading outside of
1390 the collected memory range fails. */
1391 && get_traceframe_number () == -1
1392 && (region->attrib.cache
1393 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1394 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1395 {
1396 DCACHE *dcache = target_dcache_get_or_init ();
1397 int l;
1398
1399 if (readbuf != NULL)
1400 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1401 else
1402 /* FIXME drow/2006-08-09: If we're going to preserve const
1403 correctness dcache_xfer_memory should take readbuf and
1404 writebuf. */
1405 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1406 reg_len, 1);
1407 if (l <= 0)
1408 return TARGET_XFER_E_IO;
1409 else
1410 {
1411 *xfered_len = (ULONGEST) l;
1412 return TARGET_XFER_OK;
1413 }
1414 }
1415
1416 /* If none of those methods found the memory we wanted, fall back
1417 to a target partial transfer. Normally a single call to
1418 to_xfer_partial is enough; if it doesn't recognize an object
1419 it will call the to_xfer_partial of the next target down.
1420 But for memory this won't do. Memory is the only target
1421 object which can be read from more than one valid target.
1422 A core file, for instance, could have some of memory but
1423 delegate other bits to the target below it. So, we must
1424 manually try all targets. */
1425
1426 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1427 xfered_len);
1428
1429 /* Make sure the cache gets updated no matter what - if we are writing
1430 to the stack. Even if this write is not tagged as such, we still need
1431 to update the cache. */
1432
1433 if (res == TARGET_XFER_OK
1434 && inf != NULL
1435 && writebuf != NULL
1436 && target_dcache_init_p ()
1437 && !region->attrib.cache
1438 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1439 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1440 {
1441 DCACHE *dcache = target_dcache_get ();
1442
1443 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1444 }
1445
1446 /* If we still haven't got anything, return the last error. We
1447 give up. */
1448 return res;
1449 }
1450
1451 /* Perform a partial memory transfer. For docs see target.h,
1452 to_xfer_partial. */
1453
1454 static enum target_xfer_status
1455 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1456 gdb_byte *readbuf, const gdb_byte *writebuf,
1457 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1458 {
1459 enum target_xfer_status res;
1460
1461 /* Zero length requests are ok and require no work. */
1462 if (len == 0)
1463 return TARGET_XFER_EOF;
1464
1465 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1466 breakpoint insns, thus hiding out from higher layers whether
1467 there are software breakpoints inserted in the code stream. */
1468 if (readbuf != NULL)
1469 {
1470 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1471 xfered_len);
1472
1473 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1474 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1475 }
1476 else
1477 {
1478 void *buf;
1479 struct cleanup *old_chain;
1480
1481 /* A large write request is likely to be partially satisfied
1482 by memory_xfer_partial_1. We will continually malloc
1483 and free a copy of the entire write request for breakpoint
1484 shadow handling even though we only end up writing a small
1485 subset of it. Cap writes to 4KB to mitigate this. */
1486 len = min (4096, len);
1487
1488 buf = xmalloc (len);
1489 old_chain = make_cleanup (xfree, buf);
1490 memcpy (buf, writebuf, len);
1491
1492 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1493 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1494 xfered_len);
1495
1496 do_cleanups (old_chain);
1497 }
1498
1499 return res;
1500 }
1501
1502 static void
1503 restore_show_memory_breakpoints (void *arg)
1504 {
1505 show_memory_breakpoints = (uintptr_t) arg;
1506 }
1507
1508 struct cleanup *
1509 make_show_memory_breakpoints_cleanup (int show)
1510 {
1511 int current = show_memory_breakpoints;
1512
1513 show_memory_breakpoints = show;
1514 return make_cleanup (restore_show_memory_breakpoints,
1515 (void *) (uintptr_t) current);
1516 }
1517
1518 /* For docs see target.h, to_xfer_partial. */
1519
1520 enum target_xfer_status
1521 target_xfer_partial (struct target_ops *ops,
1522 enum target_object object, const char *annex,
1523 gdb_byte *readbuf, const gdb_byte *writebuf,
1524 ULONGEST offset, ULONGEST len,
1525 ULONGEST *xfered_len)
1526 {
1527 enum target_xfer_status retval;
1528
1529 gdb_assert (ops->to_xfer_partial != NULL);
1530
1531 /* Transfer is done when LEN is zero. */
1532 if (len == 0)
1533 return TARGET_XFER_EOF;
1534
1535 if (writebuf && !may_write_memory)
1536 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1537 core_addr_to_string_nz (offset), plongest (len));
1538
1539 *xfered_len = 0;
1540
1541 /* If this is a memory transfer, let the memory-specific code
1542 have a look at it instead. Memory transfers are more
1543 complicated. */
1544 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1545 || object == TARGET_OBJECT_CODE_MEMORY)
1546 retval = memory_xfer_partial (ops, object, readbuf,
1547 writebuf, offset, len, xfered_len);
1548 else if (object == TARGET_OBJECT_RAW_MEMORY)
1549 {
1550 /* Request the normal memory object from other layers. */
1551 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1552 xfered_len);
1553 }
1554 else
1555 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1556 writebuf, offset, len, xfered_len);
1557
1558 if (targetdebug)
1559 {
1560 const unsigned char *myaddr = NULL;
1561
1562 fprintf_unfiltered (gdb_stdlog,
1563 "%s:target_xfer_partial "
1564 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1565 ops->to_shortname,
1566 (int) object,
1567 (annex ? annex : "(null)"),
1568 host_address_to_string (readbuf),
1569 host_address_to_string (writebuf),
1570 core_addr_to_string_nz (offset),
1571 pulongest (len), retval,
1572 pulongest (*xfered_len));
1573
1574 if (readbuf)
1575 myaddr = readbuf;
1576 if (writebuf)
1577 myaddr = writebuf;
1578 if (retval == TARGET_XFER_OK && myaddr != NULL)
1579 {
1580 int i;
1581
1582 fputs_unfiltered (", bytes =", gdb_stdlog);
1583 for (i = 0; i < *xfered_len; i++)
1584 {
1585 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1586 {
1587 if (targetdebug < 2 && i > 0)
1588 {
1589 fprintf_unfiltered (gdb_stdlog, " ...");
1590 break;
1591 }
1592 fprintf_unfiltered (gdb_stdlog, "\n");
1593 }
1594
1595 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1596 }
1597 }
1598
1599 fputc_unfiltered ('\n', gdb_stdlog);
1600 }
1601
1602 /* Check implementations of to_xfer_partial update *XFERED_LEN
1603 properly. Do assertion after printing debug messages, so that we
1604 can find more clues on assertion failure from debugging messages. */
1605 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1606 gdb_assert (*xfered_len > 0);
1607
1608 return retval;
1609 }
1610
1611 /* Read LEN bytes of target memory at address MEMADDR, placing the
1612 results in GDB's memory at MYADDR. Returns either 0 for success or
1613 TARGET_XFER_E_IO if any error occurs.
1614
1615 If an error occurs, no guarantee is made about the contents of the data at
1616 MYADDR. In particular, the caller should not depend upon partial reads
1617 filling the buffer with good data. There is no way for the caller to know
1618 how much good data might have been transfered anyway. Callers that can
1619 deal with partial reads should call target_read (which will retry until
1620 it makes no progress, and then return how much was transferred). */
1621
1622 int
1623 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1624 {
1625 /* Dispatch to the topmost target, not the flattened current_target.
1626 Memory accesses check target->to_has_(all_)memory, and the
1627 flattened target doesn't inherit those. */
1628 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1629 myaddr, memaddr, len) == len)
1630 return 0;
1631 else
1632 return TARGET_XFER_E_IO;
1633 }
1634
1635 /* Like target_read_memory, but specify explicitly that this is a read
1636 from the target's raw memory. That is, this read bypasses the
1637 dcache, breakpoint shadowing, etc. */
1638
1639 int
1640 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1641 {
1642 /* See comment in target_read_memory about why the request starts at
1643 current_target.beneath. */
1644 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1645 myaddr, memaddr, len) == len)
1646 return 0;
1647 else
1648 return TARGET_XFER_E_IO;
1649 }
1650
1651 /* Like target_read_memory, but specify explicitly that this is a read from
1652 the target's stack. This may trigger different cache behavior. */
1653
1654 int
1655 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1656 {
1657 /* See comment in target_read_memory about why the request starts at
1658 current_target.beneath. */
1659 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1660 myaddr, memaddr, len) == len)
1661 return 0;
1662 else
1663 return TARGET_XFER_E_IO;
1664 }
1665
1666 /* Like target_read_memory, but specify explicitly that this is a read from
1667 the target's code. This may trigger different cache behavior. */
1668
1669 int
1670 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1671 {
1672 /* See comment in target_read_memory about why the request starts at
1673 current_target.beneath. */
1674 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1675 myaddr, memaddr, len) == len)
1676 return 0;
1677 else
1678 return TARGET_XFER_E_IO;
1679 }
1680
1681 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1682 Returns either 0 for success or TARGET_XFER_E_IO if any
1683 error occurs. If an error occurs, no guarantee is made about how
1684 much data got written. Callers that can deal with partial writes
1685 should call target_write. */
1686
1687 int
1688 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1689 {
1690 /* See comment in target_read_memory about why the request starts at
1691 current_target.beneath. */
1692 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1693 myaddr, memaddr, len) == len)
1694 return 0;
1695 else
1696 return TARGET_XFER_E_IO;
1697 }
1698
1699 /* Write LEN bytes from MYADDR to target raw memory at address
1700 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1701 if any error occurs. If an error occurs, no guarantee is made
1702 about how much data got written. Callers that can deal with
1703 partial writes should call target_write. */
1704
1705 int
1706 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1707 {
1708 /* See comment in target_read_memory about why the request starts at
1709 current_target.beneath. */
1710 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1711 myaddr, memaddr, len) == len)
1712 return 0;
1713 else
1714 return TARGET_XFER_E_IO;
1715 }
1716
1717 /* Fetch the target's memory map. */
1718
1719 VEC(mem_region_s) *
1720 target_memory_map (void)
1721 {
1722 VEC(mem_region_s) *result;
1723 struct mem_region *last_one, *this_one;
1724 int ix;
1725 struct target_ops *t;
1726
1727 if (targetdebug)
1728 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1729
1730 result = current_target.to_memory_map (&current_target);
1731 if (result == NULL)
1732 return NULL;
1733
1734 qsort (VEC_address (mem_region_s, result),
1735 VEC_length (mem_region_s, result),
1736 sizeof (struct mem_region), mem_region_cmp);
1737
1738 /* Check that regions do not overlap. Simultaneously assign
1739 a numbering for the "mem" commands to use to refer to
1740 each region. */
1741 last_one = NULL;
1742 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1743 {
1744 this_one->number = ix;
1745
1746 if (last_one && last_one->hi > this_one->lo)
1747 {
1748 warning (_("Overlapping regions in memory map: ignoring"));
1749 VEC_free (mem_region_s, result);
1750 return NULL;
1751 }
1752 last_one = this_one;
1753 }
1754
1755 return result;
1756 }
1757
1758 void
1759 target_flash_erase (ULONGEST address, LONGEST length)
1760 {
1761 if (targetdebug)
1762 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1763 hex_string (address), phex (length, 0));
1764 current_target.to_flash_erase (&current_target, address, length);
1765 }
1766
1767 void
1768 target_flash_done (void)
1769 {
1770 if (targetdebug)
1771 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1772 current_target.to_flash_done (&current_target);
1773 }
1774
1775 static void
1776 show_trust_readonly (struct ui_file *file, int from_tty,
1777 struct cmd_list_element *c, const char *value)
1778 {
1779 fprintf_filtered (file,
1780 _("Mode for reading from readonly sections is %s.\n"),
1781 value);
1782 }
1783
1784 /* More generic transfers. */
1785
1786 static enum target_xfer_status
1787 default_xfer_partial (struct target_ops *ops, enum target_object object,
1788 const char *annex, gdb_byte *readbuf,
1789 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1790 ULONGEST *xfered_len)
1791 {
1792 if (object == TARGET_OBJECT_MEMORY
1793 && ops->deprecated_xfer_memory != NULL)
1794 /* If available, fall back to the target's
1795 "deprecated_xfer_memory" method. */
1796 {
1797 int xfered = -1;
1798
1799 errno = 0;
1800 if (writebuf != NULL)
1801 {
1802 void *buffer = xmalloc (len);
1803 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1804
1805 memcpy (buffer, writebuf, len);
1806 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1807 1/*write*/, NULL, ops);
1808 do_cleanups (cleanup);
1809 }
1810 if (readbuf != NULL)
1811 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1812 0/*read*/, NULL, ops);
1813 if (xfered > 0)
1814 {
1815 *xfered_len = (ULONGEST) xfered;
1816 return TARGET_XFER_E_IO;
1817 }
1818 else if (xfered == 0 && errno == 0)
1819 /* "deprecated_xfer_memory" uses 0, cross checked against
1820 ERRNO as one indication of an error. */
1821 return TARGET_XFER_EOF;
1822 else
1823 return TARGET_XFER_E_IO;
1824 }
1825 else
1826 {
1827 gdb_assert (ops->beneath != NULL);
1828 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1829 readbuf, writebuf, offset, len,
1830 xfered_len);
1831 }
1832 }
1833
1834 /* Target vector read/write partial wrapper functions. */
1835
1836 static enum target_xfer_status
1837 target_read_partial (struct target_ops *ops,
1838 enum target_object object,
1839 const char *annex, gdb_byte *buf,
1840 ULONGEST offset, ULONGEST len,
1841 ULONGEST *xfered_len)
1842 {
1843 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1844 xfered_len);
1845 }
1846
1847 static enum target_xfer_status
1848 target_write_partial (struct target_ops *ops,
1849 enum target_object object,
1850 const char *annex, const gdb_byte *buf,
1851 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1852 {
1853 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1854 xfered_len);
1855 }
1856
1857 /* Wrappers to perform the full transfer. */
1858
1859 /* For docs on target_read see target.h. */
1860
1861 LONGEST
1862 target_read (struct target_ops *ops,
1863 enum target_object object,
1864 const char *annex, gdb_byte *buf,
1865 ULONGEST offset, LONGEST len)
1866 {
1867 LONGEST xfered = 0;
1868
1869 while (xfered < len)
1870 {
1871 ULONGEST xfered_len;
1872 enum target_xfer_status status;
1873
1874 status = target_read_partial (ops, object, annex,
1875 (gdb_byte *) buf + xfered,
1876 offset + xfered, len - xfered,
1877 &xfered_len);
1878
1879 /* Call an observer, notifying them of the xfer progress? */
1880 if (status == TARGET_XFER_EOF)
1881 return xfered;
1882 else if (status == TARGET_XFER_OK)
1883 {
1884 xfered += xfered_len;
1885 QUIT;
1886 }
1887 else
1888 return -1;
1889
1890 }
1891 return len;
1892 }
1893
1894 /* Assuming that the entire [begin, end) range of memory cannot be
1895 read, try to read whatever subrange is possible to read.
1896
1897 The function returns, in RESULT, either zero or one memory block.
1898 If there's a readable subrange at the beginning, it is completely
1899 read and returned. Any further readable subrange will not be read.
1900 Otherwise, if there's a readable subrange at the end, it will be
1901 completely read and returned. Any readable subranges before it
1902 (obviously, not starting at the beginning), will be ignored. In
1903 other cases -- either no readable subrange, or readable subrange(s)
1904 that is neither at the beginning, or end, nothing is returned.
1905
1906 The purpose of this function is to handle a read across a boundary
1907 of accessible memory in a case when memory map is not available.
1908 The above restrictions are fine for this case, but will give
1909 incorrect results if the memory is 'patchy'. However, supporting
1910 'patchy' memory would require trying to read every single byte,
1911 and it seems unacceptable solution. Explicit memory map is
1912 recommended for this case -- and target_read_memory_robust will
1913 take care of reading multiple ranges then. */
1914
1915 static void
1916 read_whatever_is_readable (struct target_ops *ops,
1917 ULONGEST begin, ULONGEST end,
1918 VEC(memory_read_result_s) **result)
1919 {
1920 gdb_byte *buf = xmalloc (end - begin);
1921 ULONGEST current_begin = begin;
1922 ULONGEST current_end = end;
1923 int forward;
1924 memory_read_result_s r;
1925 ULONGEST xfered_len;
1926
1927 /* If we previously failed to read 1 byte, nothing can be done here. */
1928 if (end - begin <= 1)
1929 {
1930 xfree (buf);
1931 return;
1932 }
1933
1934 /* Check that either first or the last byte is readable, and give up
1935 if not. This heuristic is meant to permit reading accessible memory
1936 at the boundary of accessible region. */
1937 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1938 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1939 {
1940 forward = 1;
1941 ++current_begin;
1942 }
1943 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1944 buf + (end-begin) - 1, end - 1, 1,
1945 &xfered_len) == TARGET_XFER_OK)
1946 {
1947 forward = 0;
1948 --current_end;
1949 }
1950 else
1951 {
1952 xfree (buf);
1953 return;
1954 }
1955
1956 /* Loop invariant is that the [current_begin, current_end) was previously
1957 found to be not readable as a whole.
1958
1959 Note loop condition -- if the range has 1 byte, we can't divide the range
1960 so there's no point trying further. */
1961 while (current_end - current_begin > 1)
1962 {
1963 ULONGEST first_half_begin, first_half_end;
1964 ULONGEST second_half_begin, second_half_end;
1965 LONGEST xfer;
1966 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1967
1968 if (forward)
1969 {
1970 first_half_begin = current_begin;
1971 first_half_end = middle;
1972 second_half_begin = middle;
1973 second_half_end = current_end;
1974 }
1975 else
1976 {
1977 first_half_begin = middle;
1978 first_half_end = current_end;
1979 second_half_begin = current_begin;
1980 second_half_end = middle;
1981 }
1982
1983 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1984 buf + (first_half_begin - begin),
1985 first_half_begin,
1986 first_half_end - first_half_begin);
1987
1988 if (xfer == first_half_end - first_half_begin)
1989 {
1990 /* This half reads up fine. So, the error must be in the
1991 other half. */
1992 current_begin = second_half_begin;
1993 current_end = second_half_end;
1994 }
1995 else
1996 {
1997 /* This half is not readable. Because we've tried one byte, we
1998 know some part of this half if actually redable. Go to the next
1999 iteration to divide again and try to read.
2000
2001 We don't handle the other half, because this function only tries
2002 to read a single readable subrange. */
2003 current_begin = first_half_begin;
2004 current_end = first_half_end;
2005 }
2006 }
2007
2008 if (forward)
2009 {
2010 /* The [begin, current_begin) range has been read. */
2011 r.begin = begin;
2012 r.end = current_begin;
2013 r.data = buf;
2014 }
2015 else
2016 {
2017 /* The [current_end, end) range has been read. */
2018 LONGEST rlen = end - current_end;
2019
2020 r.data = xmalloc (rlen);
2021 memcpy (r.data, buf + current_end - begin, rlen);
2022 r.begin = current_end;
2023 r.end = end;
2024 xfree (buf);
2025 }
2026 VEC_safe_push(memory_read_result_s, (*result), &r);
2027 }
2028
2029 void
2030 free_memory_read_result_vector (void *x)
2031 {
2032 VEC(memory_read_result_s) *v = x;
2033 memory_read_result_s *current;
2034 int ix;
2035
2036 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2037 {
2038 xfree (current->data);
2039 }
2040 VEC_free (memory_read_result_s, v);
2041 }
2042
2043 VEC(memory_read_result_s) *
2044 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2045 {
2046 VEC(memory_read_result_s) *result = 0;
2047
2048 LONGEST xfered = 0;
2049 while (xfered < len)
2050 {
2051 struct mem_region *region = lookup_mem_region (offset + xfered);
2052 LONGEST rlen;
2053
2054 /* If there is no explicit region, a fake one should be created. */
2055 gdb_assert (region);
2056
2057 if (region->hi == 0)
2058 rlen = len - xfered;
2059 else
2060 rlen = region->hi - offset;
2061
2062 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2063 {
2064 /* Cannot read this region. Note that we can end up here only
2065 if the region is explicitly marked inaccessible, or
2066 'inaccessible-by-default' is in effect. */
2067 xfered += rlen;
2068 }
2069 else
2070 {
2071 LONGEST to_read = min (len - xfered, rlen);
2072 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2073
2074 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2075 (gdb_byte *) buffer,
2076 offset + xfered, to_read);
2077 /* Call an observer, notifying them of the xfer progress? */
2078 if (xfer <= 0)
2079 {
2080 /* Got an error reading full chunk. See if maybe we can read
2081 some subrange. */
2082 xfree (buffer);
2083 read_whatever_is_readable (ops, offset + xfered,
2084 offset + xfered + to_read, &result);
2085 xfered += to_read;
2086 }
2087 else
2088 {
2089 struct memory_read_result r;
2090 r.data = buffer;
2091 r.begin = offset + xfered;
2092 r.end = r.begin + xfer;
2093 VEC_safe_push (memory_read_result_s, result, &r);
2094 xfered += xfer;
2095 }
2096 QUIT;
2097 }
2098 }
2099 return result;
2100 }
2101
2102
2103 /* An alternative to target_write with progress callbacks. */
2104
2105 LONGEST
2106 target_write_with_progress (struct target_ops *ops,
2107 enum target_object object,
2108 const char *annex, const gdb_byte *buf,
2109 ULONGEST offset, LONGEST len,
2110 void (*progress) (ULONGEST, void *), void *baton)
2111 {
2112 LONGEST xfered = 0;
2113
2114 /* Give the progress callback a chance to set up. */
2115 if (progress)
2116 (*progress) (0, baton);
2117
2118 while (xfered < len)
2119 {
2120 ULONGEST xfered_len;
2121 enum target_xfer_status status;
2122
2123 status = target_write_partial (ops, object, annex,
2124 (gdb_byte *) buf + xfered,
2125 offset + xfered, len - xfered,
2126 &xfered_len);
2127
2128 if (status == TARGET_XFER_EOF)
2129 return xfered;
2130 if (TARGET_XFER_STATUS_ERROR_P (status))
2131 return -1;
2132
2133 gdb_assert (status == TARGET_XFER_OK);
2134 if (progress)
2135 (*progress) (xfered_len, baton);
2136
2137 xfered += xfered_len;
2138 QUIT;
2139 }
2140 return len;
2141 }
2142
2143 /* For docs on target_write see target.h. */
2144
2145 LONGEST
2146 target_write (struct target_ops *ops,
2147 enum target_object object,
2148 const char *annex, const gdb_byte *buf,
2149 ULONGEST offset, LONGEST len)
2150 {
2151 return target_write_with_progress (ops, object, annex, buf, offset, len,
2152 NULL, NULL);
2153 }
2154
2155 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2156 the size of the transferred data. PADDING additional bytes are
2157 available in *BUF_P. This is a helper function for
2158 target_read_alloc; see the declaration of that function for more
2159 information. */
2160
2161 static LONGEST
2162 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2163 const char *annex, gdb_byte **buf_p, int padding)
2164 {
2165 size_t buf_alloc, buf_pos;
2166 gdb_byte *buf;
2167
2168 /* This function does not have a length parameter; it reads the
2169 entire OBJECT). Also, it doesn't support objects fetched partly
2170 from one target and partly from another (in a different stratum,
2171 e.g. a core file and an executable). Both reasons make it
2172 unsuitable for reading memory. */
2173 gdb_assert (object != TARGET_OBJECT_MEMORY);
2174
2175 /* Start by reading up to 4K at a time. The target will throttle
2176 this number down if necessary. */
2177 buf_alloc = 4096;
2178 buf = xmalloc (buf_alloc);
2179 buf_pos = 0;
2180 while (1)
2181 {
2182 ULONGEST xfered_len;
2183 enum target_xfer_status status;
2184
2185 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2186 buf_pos, buf_alloc - buf_pos - padding,
2187 &xfered_len);
2188
2189 if (status == TARGET_XFER_EOF)
2190 {
2191 /* Read all there was. */
2192 if (buf_pos == 0)
2193 xfree (buf);
2194 else
2195 *buf_p = buf;
2196 return buf_pos;
2197 }
2198 else if (status != TARGET_XFER_OK)
2199 {
2200 /* An error occurred. */
2201 xfree (buf);
2202 return TARGET_XFER_E_IO;
2203 }
2204
2205 buf_pos += xfered_len;
2206
2207 /* If the buffer is filling up, expand it. */
2208 if (buf_alloc < buf_pos * 2)
2209 {
2210 buf_alloc *= 2;
2211 buf = xrealloc (buf, buf_alloc);
2212 }
2213
2214 QUIT;
2215 }
2216 }
2217
2218 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2219 the size of the transferred data. See the declaration in "target.h"
2220 function for more information about the return value. */
2221
2222 LONGEST
2223 target_read_alloc (struct target_ops *ops, enum target_object object,
2224 const char *annex, gdb_byte **buf_p)
2225 {
2226 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2227 }
2228
2229 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2230 returned as a string, allocated using xmalloc. If an error occurs
2231 or the transfer is unsupported, NULL is returned. Empty objects
2232 are returned as allocated but empty strings. A warning is issued
2233 if the result contains any embedded NUL bytes. */
2234
2235 char *
2236 target_read_stralloc (struct target_ops *ops, enum target_object object,
2237 const char *annex)
2238 {
2239 gdb_byte *buffer;
2240 char *bufstr;
2241 LONGEST i, transferred;
2242
2243 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2244 bufstr = (char *) buffer;
2245
2246 if (transferred < 0)
2247 return NULL;
2248
2249 if (transferred == 0)
2250 return xstrdup ("");
2251
2252 bufstr[transferred] = 0;
2253
2254 /* Check for embedded NUL bytes; but allow trailing NULs. */
2255 for (i = strlen (bufstr); i < transferred; i++)
2256 if (bufstr[i] != 0)
2257 {
2258 warning (_("target object %d, annex %s, "
2259 "contained unexpected null characters"),
2260 (int) object, annex ? annex : "(none)");
2261 break;
2262 }
2263
2264 return bufstr;
2265 }
2266
2267 /* Memory transfer methods. */
2268
2269 void
2270 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2271 LONGEST len)
2272 {
2273 /* This method is used to read from an alternate, non-current
2274 target. This read must bypass the overlay support (as symbols
2275 don't match this target), and GDB's internal cache (wrong cache
2276 for this target). */
2277 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2278 != len)
2279 memory_error (TARGET_XFER_E_IO, addr);
2280 }
2281
2282 ULONGEST
2283 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2284 int len, enum bfd_endian byte_order)
2285 {
2286 gdb_byte buf[sizeof (ULONGEST)];
2287
2288 gdb_assert (len <= sizeof (buf));
2289 get_target_memory (ops, addr, buf, len);
2290 return extract_unsigned_integer (buf, len, byte_order);
2291 }
2292
2293 /* See target.h. */
2294
2295 int
2296 target_insert_breakpoint (struct gdbarch *gdbarch,
2297 struct bp_target_info *bp_tgt)
2298 {
2299 if (!may_insert_breakpoints)
2300 {
2301 warning (_("May not insert breakpoints"));
2302 return 1;
2303 }
2304
2305 return current_target.to_insert_breakpoint (&current_target,
2306 gdbarch, bp_tgt);
2307 }
2308
2309 /* See target.h. */
2310
2311 int
2312 target_remove_breakpoint (struct gdbarch *gdbarch,
2313 struct bp_target_info *bp_tgt)
2314 {
2315 /* This is kind of a weird case to handle, but the permission might
2316 have been changed after breakpoints were inserted - in which case
2317 we should just take the user literally and assume that any
2318 breakpoints should be left in place. */
2319 if (!may_insert_breakpoints)
2320 {
2321 warning (_("May not remove breakpoints"));
2322 return 1;
2323 }
2324
2325 return current_target.to_remove_breakpoint (&current_target,
2326 gdbarch, bp_tgt);
2327 }
2328
2329 static void
2330 target_info (char *args, int from_tty)
2331 {
2332 struct target_ops *t;
2333 int has_all_mem = 0;
2334
2335 if (symfile_objfile != NULL)
2336 printf_unfiltered (_("Symbols from \"%s\".\n"),
2337 objfile_name (symfile_objfile));
2338
2339 for (t = target_stack; t != NULL; t = t->beneath)
2340 {
2341 if (!(*t->to_has_memory) (t))
2342 continue;
2343
2344 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2345 continue;
2346 if (has_all_mem)
2347 printf_unfiltered (_("\tWhile running this, "
2348 "GDB does not access memory from...\n"));
2349 printf_unfiltered ("%s:\n", t->to_longname);
2350 (t->to_files_info) (t);
2351 has_all_mem = (*t->to_has_all_memory) (t);
2352 }
2353 }
2354
2355 /* This function is called before any new inferior is created, e.g.
2356 by running a program, attaching, or connecting to a target.
2357 It cleans up any state from previous invocations which might
2358 change between runs. This is a subset of what target_preopen
2359 resets (things which might change between targets). */
2360
2361 void
2362 target_pre_inferior (int from_tty)
2363 {
2364 /* Clear out solib state. Otherwise the solib state of the previous
2365 inferior might have survived and is entirely wrong for the new
2366 target. This has been observed on GNU/Linux using glibc 2.3. How
2367 to reproduce:
2368
2369 bash$ ./foo&
2370 [1] 4711
2371 bash$ ./foo&
2372 [1] 4712
2373 bash$ gdb ./foo
2374 [...]
2375 (gdb) attach 4711
2376 (gdb) detach
2377 (gdb) attach 4712
2378 Cannot access memory at address 0xdeadbeef
2379 */
2380
2381 /* In some OSs, the shared library list is the same/global/shared
2382 across inferiors. If code is shared between processes, so are
2383 memory regions and features. */
2384 if (!gdbarch_has_global_solist (target_gdbarch ()))
2385 {
2386 no_shared_libraries (NULL, from_tty);
2387
2388 invalidate_target_mem_regions ();
2389
2390 target_clear_description ();
2391 }
2392
2393 agent_capability_invalidate ();
2394 }
2395
2396 /* Callback for iterate_over_inferiors. Gets rid of the given
2397 inferior. */
2398
2399 static int
2400 dispose_inferior (struct inferior *inf, void *args)
2401 {
2402 struct thread_info *thread;
2403
2404 thread = any_thread_of_process (inf->pid);
2405 if (thread)
2406 {
2407 switch_to_thread (thread->ptid);
2408
2409 /* Core inferiors actually should be detached, not killed. */
2410 if (target_has_execution)
2411 target_kill ();
2412 else
2413 target_detach (NULL, 0);
2414 }
2415
2416 return 0;
2417 }
2418
2419 /* This is to be called by the open routine before it does
2420 anything. */
2421
2422 void
2423 target_preopen (int from_tty)
2424 {
2425 dont_repeat ();
2426
2427 if (have_inferiors ())
2428 {
2429 if (!from_tty
2430 || !have_live_inferiors ()
2431 || query (_("A program is being debugged already. Kill it? ")))
2432 iterate_over_inferiors (dispose_inferior, NULL);
2433 else
2434 error (_("Program not killed."));
2435 }
2436
2437 /* Calling target_kill may remove the target from the stack. But if
2438 it doesn't (which seems like a win for UDI), remove it now. */
2439 /* Leave the exec target, though. The user may be switching from a
2440 live process to a core of the same program. */
2441 pop_all_targets_above (file_stratum);
2442
2443 target_pre_inferior (from_tty);
2444 }
2445
2446 /* Detach a target after doing deferred register stores. */
2447
2448 void
2449 target_detach (const char *args, int from_tty)
2450 {
2451 struct target_ops* t;
2452
2453 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2454 /* Don't remove global breakpoints here. They're removed on
2455 disconnection from the target. */
2456 ;
2457 else
2458 /* If we're in breakpoints-always-inserted mode, have to remove
2459 them before detaching. */
2460 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2461
2462 prepare_for_detach ();
2463
2464 current_target.to_detach (&current_target, args, from_tty);
2465 if (targetdebug)
2466 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2467 args, from_tty);
2468 }
2469
2470 void
2471 target_disconnect (char *args, int from_tty)
2472 {
2473 /* If we're in breakpoints-always-inserted mode or if breakpoints
2474 are global across processes, we have to remove them before
2475 disconnecting. */
2476 remove_breakpoints ();
2477
2478 if (targetdebug)
2479 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2480 args, from_tty);
2481 current_target.to_disconnect (&current_target, args, from_tty);
2482 }
2483
2484 ptid_t
2485 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2486 {
2487 struct target_ops *t;
2488 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2489 status, options);
2490
2491 if (targetdebug)
2492 {
2493 char *status_string;
2494 char *options_string;
2495
2496 status_string = target_waitstatus_to_string (status);
2497 options_string = target_options_to_string (options);
2498 fprintf_unfiltered (gdb_stdlog,
2499 "target_wait (%d, status, options={%s})"
2500 " = %d, %s\n",
2501 ptid_get_pid (ptid), options_string,
2502 ptid_get_pid (retval), status_string);
2503 xfree (status_string);
2504 xfree (options_string);
2505 }
2506
2507 return retval;
2508 }
2509
2510 char *
2511 target_pid_to_str (ptid_t ptid)
2512 {
2513 return (*current_target.to_pid_to_str) (&current_target, ptid);
2514 }
2515
2516 char *
2517 target_thread_name (struct thread_info *info)
2518 {
2519 return current_target.to_thread_name (&current_target, info);
2520 }
2521
2522 void
2523 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2524 {
2525 struct target_ops *t;
2526
2527 target_dcache_invalidate ();
2528
2529 current_target.to_resume (&current_target, ptid, step, signal);
2530 if (targetdebug)
2531 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2532 ptid_get_pid (ptid),
2533 step ? "step" : "continue",
2534 gdb_signal_to_name (signal));
2535
2536 registers_changed_ptid (ptid);
2537 set_executing (ptid, 1);
2538 set_running (ptid, 1);
2539 clear_inline_frame_state (ptid);
2540 }
2541
2542 void
2543 target_pass_signals (int numsigs, unsigned char *pass_signals)
2544 {
2545 if (targetdebug)
2546 {
2547 int i;
2548
2549 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2550 numsigs);
2551
2552 for (i = 0; i < numsigs; i++)
2553 if (pass_signals[i])
2554 fprintf_unfiltered (gdb_stdlog, " %s",
2555 gdb_signal_to_name (i));
2556
2557 fprintf_unfiltered (gdb_stdlog, " })\n");
2558 }
2559
2560 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2561 }
2562
2563 void
2564 target_program_signals (int numsigs, unsigned char *program_signals)
2565 {
2566 if (targetdebug)
2567 {
2568 int i;
2569
2570 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2571 numsigs);
2572
2573 for (i = 0; i < numsigs; i++)
2574 if (program_signals[i])
2575 fprintf_unfiltered (gdb_stdlog, " %s",
2576 gdb_signal_to_name (i));
2577
2578 fprintf_unfiltered (gdb_stdlog, " })\n");
2579 }
2580
2581 (*current_target.to_program_signals) (&current_target,
2582 numsigs, program_signals);
2583 }
2584
2585 static int
2586 default_follow_fork (struct target_ops *self, int follow_child,
2587 int detach_fork)
2588 {
2589 /* Some target returned a fork event, but did not know how to follow it. */
2590 internal_error (__FILE__, __LINE__,
2591 _("could not find a target to follow fork"));
2592 }
2593
2594 /* Look through the list of possible targets for a target that can
2595 follow forks. */
2596
2597 int
2598 target_follow_fork (int follow_child, int detach_fork)
2599 {
2600 int retval = current_target.to_follow_fork (&current_target,
2601 follow_child, detach_fork);
2602
2603 if (targetdebug)
2604 fprintf_unfiltered (gdb_stdlog,
2605 "target_follow_fork (%d, %d) = %d\n",
2606 follow_child, detach_fork, retval);
2607 return retval;
2608 }
2609
2610 static void
2611 default_mourn_inferior (struct target_ops *self)
2612 {
2613 internal_error (__FILE__, __LINE__,
2614 _("could not find a target to follow mourn inferior"));
2615 }
2616
2617 void
2618 target_mourn_inferior (void)
2619 {
2620 current_target.to_mourn_inferior (&current_target);
2621 if (targetdebug)
2622 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2623
2624 /* We no longer need to keep handles on any of the object files.
2625 Make sure to release them to avoid unnecessarily locking any
2626 of them while we're not actually debugging. */
2627 bfd_cache_close_all ();
2628 }
2629
2630 /* Look for a target which can describe architectural features, starting
2631 from TARGET. If we find one, return its description. */
2632
2633 const struct target_desc *
2634 target_read_description (struct target_ops *target)
2635 {
2636 struct target_ops *t;
2637
2638 for (t = target; t != NULL; t = t->beneath)
2639 if (t->to_read_description != NULL)
2640 {
2641 const struct target_desc *tdesc;
2642
2643 tdesc = t->to_read_description (t);
2644 if (tdesc)
2645 return tdesc;
2646 }
2647
2648 return NULL;
2649 }
2650
2651 /* This implements a basic search of memory, reading target memory and
2652 performing the search here (as opposed to performing the search in on the
2653 target side with, for example, gdbserver). */
2654
2655 int
2656 simple_search_memory (struct target_ops *ops,
2657 CORE_ADDR start_addr, ULONGEST search_space_len,
2658 const gdb_byte *pattern, ULONGEST pattern_len,
2659 CORE_ADDR *found_addrp)
2660 {
2661 /* NOTE: also defined in find.c testcase. */
2662 #define SEARCH_CHUNK_SIZE 16000
2663 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2664 /* Buffer to hold memory contents for searching. */
2665 gdb_byte *search_buf;
2666 unsigned search_buf_size;
2667 struct cleanup *old_cleanups;
2668
2669 search_buf_size = chunk_size + pattern_len - 1;
2670
2671 /* No point in trying to allocate a buffer larger than the search space. */
2672 if (search_space_len < search_buf_size)
2673 search_buf_size = search_space_len;
2674
2675 search_buf = malloc (search_buf_size);
2676 if (search_buf == NULL)
2677 error (_("Unable to allocate memory to perform the search."));
2678 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2679
2680 /* Prime the search buffer. */
2681
2682 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2683 search_buf, start_addr, search_buf_size) != search_buf_size)
2684 {
2685 warning (_("Unable to access %s bytes of target "
2686 "memory at %s, halting search."),
2687 pulongest (search_buf_size), hex_string (start_addr));
2688 do_cleanups (old_cleanups);
2689 return -1;
2690 }
2691
2692 /* Perform the search.
2693
2694 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2695 When we've scanned N bytes we copy the trailing bytes to the start and
2696 read in another N bytes. */
2697
2698 while (search_space_len >= pattern_len)
2699 {
2700 gdb_byte *found_ptr;
2701 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2702
2703 found_ptr = memmem (search_buf, nr_search_bytes,
2704 pattern, pattern_len);
2705
2706 if (found_ptr != NULL)
2707 {
2708 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2709
2710 *found_addrp = found_addr;
2711 do_cleanups (old_cleanups);
2712 return 1;
2713 }
2714
2715 /* Not found in this chunk, skip to next chunk. */
2716
2717 /* Don't let search_space_len wrap here, it's unsigned. */
2718 if (search_space_len >= chunk_size)
2719 search_space_len -= chunk_size;
2720 else
2721 search_space_len = 0;
2722
2723 if (search_space_len >= pattern_len)
2724 {
2725 unsigned keep_len = search_buf_size - chunk_size;
2726 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2727 int nr_to_read;
2728
2729 /* Copy the trailing part of the previous iteration to the front
2730 of the buffer for the next iteration. */
2731 gdb_assert (keep_len == pattern_len - 1);
2732 memcpy (search_buf, search_buf + chunk_size, keep_len);
2733
2734 nr_to_read = min (search_space_len - keep_len, chunk_size);
2735
2736 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2737 search_buf + keep_len, read_addr,
2738 nr_to_read) != nr_to_read)
2739 {
2740 warning (_("Unable to access %s bytes of target "
2741 "memory at %s, halting search."),
2742 plongest (nr_to_read),
2743 hex_string (read_addr));
2744 do_cleanups (old_cleanups);
2745 return -1;
2746 }
2747
2748 start_addr += chunk_size;
2749 }
2750 }
2751
2752 /* Not found. */
2753
2754 do_cleanups (old_cleanups);
2755 return 0;
2756 }
2757
2758 /* Default implementation of memory-searching. */
2759
2760 static int
2761 default_search_memory (struct target_ops *self,
2762 CORE_ADDR start_addr, ULONGEST search_space_len,
2763 const gdb_byte *pattern, ULONGEST pattern_len,
2764 CORE_ADDR *found_addrp)
2765 {
2766 /* Start over from the top of the target stack. */
2767 return simple_search_memory (current_target.beneath,
2768 start_addr, search_space_len,
2769 pattern, pattern_len, found_addrp);
2770 }
2771
2772 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2773 sequence of bytes in PATTERN with length PATTERN_LEN.
2774
2775 The result is 1 if found, 0 if not found, and -1 if there was an error
2776 requiring halting of the search (e.g. memory read error).
2777 If the pattern is found the address is recorded in FOUND_ADDRP. */
2778
2779 int
2780 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2781 const gdb_byte *pattern, ULONGEST pattern_len,
2782 CORE_ADDR *found_addrp)
2783 {
2784 int found;
2785
2786 if (targetdebug)
2787 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2788 hex_string (start_addr));
2789
2790 found = current_target.to_search_memory (&current_target, start_addr,
2791 search_space_len,
2792 pattern, pattern_len, found_addrp);
2793
2794 if (targetdebug)
2795 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2796
2797 return found;
2798 }
2799
2800 /* Look through the currently pushed targets. If none of them will
2801 be able to restart the currently running process, issue an error
2802 message. */
2803
2804 void
2805 target_require_runnable (void)
2806 {
2807 struct target_ops *t;
2808
2809 for (t = target_stack; t != NULL; t = t->beneath)
2810 {
2811 /* If this target knows how to create a new program, then
2812 assume we will still be able to after killing the current
2813 one. Either killing and mourning will not pop T, or else
2814 find_default_run_target will find it again. */
2815 if (t->to_create_inferior != NULL)
2816 return;
2817
2818 /* Do not worry about thread_stratum targets that can not
2819 create inferiors. Assume they will be pushed again if
2820 necessary, and continue to the process_stratum. */
2821 if (t->to_stratum == thread_stratum
2822 || t->to_stratum == arch_stratum)
2823 continue;
2824
2825 error (_("The \"%s\" target does not support \"run\". "
2826 "Try \"help target\" or \"continue\"."),
2827 t->to_shortname);
2828 }
2829
2830 /* This function is only called if the target is running. In that
2831 case there should have been a process_stratum target and it
2832 should either know how to create inferiors, or not... */
2833 internal_error (__FILE__, __LINE__, _("No targets found"));
2834 }
2835
2836 /* Look through the list of possible targets for a target that can
2837 execute a run or attach command without any other data. This is
2838 used to locate the default process stratum.
2839
2840 If DO_MESG is not NULL, the result is always valid (error() is
2841 called for errors); else, return NULL on error. */
2842
2843 static struct target_ops *
2844 find_default_run_target (char *do_mesg)
2845 {
2846 struct target_ops **t;
2847 struct target_ops *runable = NULL;
2848 int count;
2849
2850 count = 0;
2851
2852 for (t = target_structs; t < target_structs + target_struct_size;
2853 ++t)
2854 {
2855 if ((*t)->to_can_run && target_can_run (*t))
2856 {
2857 runable = *t;
2858 ++count;
2859 }
2860 }
2861
2862 if (count != 1)
2863 {
2864 if (do_mesg)
2865 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2866 else
2867 return NULL;
2868 }
2869
2870 return runable;
2871 }
2872
2873 void
2874 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2875 {
2876 struct target_ops *t;
2877
2878 t = find_default_run_target ("attach");
2879 (t->to_attach) (t, args, from_tty);
2880 return;
2881 }
2882
2883 void
2884 find_default_create_inferior (struct target_ops *ops,
2885 char *exec_file, char *allargs, char **env,
2886 int from_tty)
2887 {
2888 struct target_ops *t;
2889
2890 t = find_default_run_target ("run");
2891 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2892 return;
2893 }
2894
2895 static int
2896 find_default_can_async_p (struct target_ops *ignore)
2897 {
2898 struct target_ops *t;
2899
2900 /* This may be called before the target is pushed on the stack;
2901 look for the default process stratum. If there's none, gdb isn't
2902 configured with a native debugger, and target remote isn't
2903 connected yet. */
2904 t = find_default_run_target (NULL);
2905 if (t && t->to_can_async_p != delegate_can_async_p)
2906 return (t->to_can_async_p) (t);
2907 return 0;
2908 }
2909
2910 static int
2911 find_default_is_async_p (struct target_ops *ignore)
2912 {
2913 struct target_ops *t;
2914
2915 /* This may be called before the target is pushed on the stack;
2916 look for the default process stratum. If there's none, gdb isn't
2917 configured with a native debugger, and target remote isn't
2918 connected yet. */
2919 t = find_default_run_target (NULL);
2920 if (t && t->to_is_async_p != delegate_is_async_p)
2921 return (t->to_is_async_p) (t);
2922 return 0;
2923 }
2924
2925 static int
2926 find_default_supports_non_stop (struct target_ops *self)
2927 {
2928 struct target_ops *t;
2929
2930 t = find_default_run_target (NULL);
2931 if (t && t->to_supports_non_stop)
2932 return (t->to_supports_non_stop) (t);
2933 return 0;
2934 }
2935
2936 int
2937 target_supports_non_stop (void)
2938 {
2939 struct target_ops *t;
2940
2941 for (t = &current_target; t != NULL; t = t->beneath)
2942 if (t->to_supports_non_stop)
2943 return t->to_supports_non_stop (t);
2944
2945 return 0;
2946 }
2947
2948 /* Implement the "info proc" command. */
2949
2950 int
2951 target_info_proc (char *args, enum info_proc_what what)
2952 {
2953 struct target_ops *t;
2954
2955 /* If we're already connected to something that can get us OS
2956 related data, use it. Otherwise, try using the native
2957 target. */
2958 if (current_target.to_stratum >= process_stratum)
2959 t = current_target.beneath;
2960 else
2961 t = find_default_run_target (NULL);
2962
2963 for (; t != NULL; t = t->beneath)
2964 {
2965 if (t->to_info_proc != NULL)
2966 {
2967 t->to_info_proc (t, args, what);
2968
2969 if (targetdebug)
2970 fprintf_unfiltered (gdb_stdlog,
2971 "target_info_proc (\"%s\", %d)\n", args, what);
2972
2973 return 1;
2974 }
2975 }
2976
2977 return 0;
2978 }
2979
2980 static int
2981 find_default_supports_disable_randomization (struct target_ops *self)
2982 {
2983 struct target_ops *t;
2984
2985 t = find_default_run_target (NULL);
2986 if (t && t->to_supports_disable_randomization)
2987 return (t->to_supports_disable_randomization) (t);
2988 return 0;
2989 }
2990
2991 int
2992 target_supports_disable_randomization (void)
2993 {
2994 struct target_ops *t;
2995
2996 for (t = &current_target; t != NULL; t = t->beneath)
2997 if (t->to_supports_disable_randomization)
2998 return t->to_supports_disable_randomization (t);
2999
3000 return 0;
3001 }
3002
3003 char *
3004 target_get_osdata (const char *type)
3005 {
3006 struct target_ops *t;
3007
3008 /* If we're already connected to something that can get us OS
3009 related data, use it. Otherwise, try using the native
3010 target. */
3011 if (current_target.to_stratum >= process_stratum)
3012 t = current_target.beneath;
3013 else
3014 t = find_default_run_target ("get OS data");
3015
3016 if (!t)
3017 return NULL;
3018
3019 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3020 }
3021
3022 /* Determine the current address space of thread PTID. */
3023
3024 struct address_space *
3025 target_thread_address_space (ptid_t ptid)
3026 {
3027 struct address_space *aspace;
3028 struct inferior *inf;
3029 struct target_ops *t;
3030
3031 for (t = current_target.beneath; t != NULL; t = t->beneath)
3032 {
3033 if (t->to_thread_address_space != NULL)
3034 {
3035 aspace = t->to_thread_address_space (t, ptid);
3036 gdb_assert (aspace);
3037
3038 if (targetdebug)
3039 fprintf_unfiltered (gdb_stdlog,
3040 "target_thread_address_space (%s) = %d\n",
3041 target_pid_to_str (ptid),
3042 address_space_num (aspace));
3043 return aspace;
3044 }
3045 }
3046
3047 /* Fall-back to the "main" address space of the inferior. */
3048 inf = find_inferior_pid (ptid_get_pid (ptid));
3049
3050 if (inf == NULL || inf->aspace == NULL)
3051 internal_error (__FILE__, __LINE__,
3052 _("Can't determine the current "
3053 "address space of thread %s\n"),
3054 target_pid_to_str (ptid));
3055
3056 return inf->aspace;
3057 }
3058
3059
3060 /* Target file operations. */
3061
3062 static struct target_ops *
3063 default_fileio_target (void)
3064 {
3065 /* If we're already connected to something that can perform
3066 file I/O, use it. Otherwise, try using the native target. */
3067 if (current_target.to_stratum >= process_stratum)
3068 return current_target.beneath;
3069 else
3070 return find_default_run_target ("file I/O");
3071 }
3072
3073 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3074 target file descriptor, or -1 if an error occurs (and set
3075 *TARGET_ERRNO). */
3076 int
3077 target_fileio_open (const char *filename, int flags, int mode,
3078 int *target_errno)
3079 {
3080 struct target_ops *t;
3081
3082 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3083 {
3084 if (t->to_fileio_open != NULL)
3085 {
3086 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3087
3088 if (targetdebug)
3089 fprintf_unfiltered (gdb_stdlog,
3090 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3091 filename, flags, mode,
3092 fd, fd != -1 ? 0 : *target_errno);
3093 return fd;
3094 }
3095 }
3096
3097 *target_errno = FILEIO_ENOSYS;
3098 return -1;
3099 }
3100
3101 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3102 Return the number of bytes written, or -1 if an error occurs
3103 (and set *TARGET_ERRNO). */
3104 int
3105 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3106 ULONGEST offset, int *target_errno)
3107 {
3108 struct target_ops *t;
3109
3110 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3111 {
3112 if (t->to_fileio_pwrite != NULL)
3113 {
3114 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3115 target_errno);
3116
3117 if (targetdebug)
3118 fprintf_unfiltered (gdb_stdlog,
3119 "target_fileio_pwrite (%d,...,%d,%s) "
3120 "= %d (%d)\n",
3121 fd, len, pulongest (offset),
3122 ret, ret != -1 ? 0 : *target_errno);
3123 return ret;
3124 }
3125 }
3126
3127 *target_errno = FILEIO_ENOSYS;
3128 return -1;
3129 }
3130
3131 /* Read up to LEN bytes FD on the target into READ_BUF.
3132 Return the number of bytes read, or -1 if an error occurs
3133 (and set *TARGET_ERRNO). */
3134 int
3135 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3136 ULONGEST offset, int *target_errno)
3137 {
3138 struct target_ops *t;
3139
3140 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3141 {
3142 if (t->to_fileio_pread != NULL)
3143 {
3144 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3145 target_errno);
3146
3147 if (targetdebug)
3148 fprintf_unfiltered (gdb_stdlog,
3149 "target_fileio_pread (%d,...,%d,%s) "
3150 "= %d (%d)\n",
3151 fd, len, pulongest (offset),
3152 ret, ret != -1 ? 0 : *target_errno);
3153 return ret;
3154 }
3155 }
3156
3157 *target_errno = FILEIO_ENOSYS;
3158 return -1;
3159 }
3160
3161 /* Close FD on the target. Return 0, or -1 if an error occurs
3162 (and set *TARGET_ERRNO). */
3163 int
3164 target_fileio_close (int fd, int *target_errno)
3165 {
3166 struct target_ops *t;
3167
3168 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3169 {
3170 if (t->to_fileio_close != NULL)
3171 {
3172 int ret = t->to_fileio_close (t, fd, target_errno);
3173
3174 if (targetdebug)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "target_fileio_close (%d) = %d (%d)\n",
3177 fd, ret, ret != -1 ? 0 : *target_errno);
3178 return ret;
3179 }
3180 }
3181
3182 *target_errno = FILEIO_ENOSYS;
3183 return -1;
3184 }
3185
3186 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3187 occurs (and set *TARGET_ERRNO). */
3188 int
3189 target_fileio_unlink (const char *filename, int *target_errno)
3190 {
3191 struct target_ops *t;
3192
3193 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3194 {
3195 if (t->to_fileio_unlink != NULL)
3196 {
3197 int ret = t->to_fileio_unlink (t, filename, target_errno);
3198
3199 if (targetdebug)
3200 fprintf_unfiltered (gdb_stdlog,
3201 "target_fileio_unlink (%s) = %d (%d)\n",
3202 filename, ret, ret != -1 ? 0 : *target_errno);
3203 return ret;
3204 }
3205 }
3206
3207 *target_errno = FILEIO_ENOSYS;
3208 return -1;
3209 }
3210
3211 /* Read value of symbolic link FILENAME on the target. Return a
3212 null-terminated string allocated via xmalloc, or NULL if an error
3213 occurs (and set *TARGET_ERRNO). */
3214 char *
3215 target_fileio_readlink (const char *filename, int *target_errno)
3216 {
3217 struct target_ops *t;
3218
3219 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3220 {
3221 if (t->to_fileio_readlink != NULL)
3222 {
3223 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3224
3225 if (targetdebug)
3226 fprintf_unfiltered (gdb_stdlog,
3227 "target_fileio_readlink (%s) = %s (%d)\n",
3228 filename, ret? ret : "(nil)",
3229 ret? 0 : *target_errno);
3230 return ret;
3231 }
3232 }
3233
3234 *target_errno = FILEIO_ENOSYS;
3235 return NULL;
3236 }
3237
3238 static void
3239 target_fileio_close_cleanup (void *opaque)
3240 {
3241 int fd = *(int *) opaque;
3242 int target_errno;
3243
3244 target_fileio_close (fd, &target_errno);
3245 }
3246
3247 /* Read target file FILENAME. Store the result in *BUF_P and
3248 return the size of the transferred data. PADDING additional bytes are
3249 available in *BUF_P. This is a helper function for
3250 target_fileio_read_alloc; see the declaration of that function for more
3251 information. */
3252
3253 static LONGEST
3254 target_fileio_read_alloc_1 (const char *filename,
3255 gdb_byte **buf_p, int padding)
3256 {
3257 struct cleanup *close_cleanup;
3258 size_t buf_alloc, buf_pos;
3259 gdb_byte *buf;
3260 LONGEST n;
3261 int fd;
3262 int target_errno;
3263
3264 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3265 if (fd == -1)
3266 return -1;
3267
3268 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3269
3270 /* Start by reading up to 4K at a time. The target will throttle
3271 this number down if necessary. */
3272 buf_alloc = 4096;
3273 buf = xmalloc (buf_alloc);
3274 buf_pos = 0;
3275 while (1)
3276 {
3277 n = target_fileio_pread (fd, &buf[buf_pos],
3278 buf_alloc - buf_pos - padding, buf_pos,
3279 &target_errno);
3280 if (n < 0)
3281 {
3282 /* An error occurred. */
3283 do_cleanups (close_cleanup);
3284 xfree (buf);
3285 return -1;
3286 }
3287 else if (n == 0)
3288 {
3289 /* Read all there was. */
3290 do_cleanups (close_cleanup);
3291 if (buf_pos == 0)
3292 xfree (buf);
3293 else
3294 *buf_p = buf;
3295 return buf_pos;
3296 }
3297
3298 buf_pos += n;
3299
3300 /* If the buffer is filling up, expand it. */
3301 if (buf_alloc < buf_pos * 2)
3302 {
3303 buf_alloc *= 2;
3304 buf = xrealloc (buf, buf_alloc);
3305 }
3306
3307 QUIT;
3308 }
3309 }
3310
3311 /* Read target file FILENAME. Store the result in *BUF_P and return
3312 the size of the transferred data. See the declaration in "target.h"
3313 function for more information about the return value. */
3314
3315 LONGEST
3316 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3317 {
3318 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3319 }
3320
3321 /* Read target file FILENAME. The result is NUL-terminated and
3322 returned as a string, allocated using xmalloc. If an error occurs
3323 or the transfer is unsupported, NULL is returned. Empty objects
3324 are returned as allocated but empty strings. A warning is issued
3325 if the result contains any embedded NUL bytes. */
3326
3327 char *
3328 target_fileio_read_stralloc (const char *filename)
3329 {
3330 gdb_byte *buffer;
3331 char *bufstr;
3332 LONGEST i, transferred;
3333
3334 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3335 bufstr = (char *) buffer;
3336
3337 if (transferred < 0)
3338 return NULL;
3339
3340 if (transferred == 0)
3341 return xstrdup ("");
3342
3343 bufstr[transferred] = 0;
3344
3345 /* Check for embedded NUL bytes; but allow trailing NULs. */
3346 for (i = strlen (bufstr); i < transferred; i++)
3347 if (bufstr[i] != 0)
3348 {
3349 warning (_("target file %s "
3350 "contained unexpected null characters"),
3351 filename);
3352 break;
3353 }
3354
3355 return bufstr;
3356 }
3357
3358
3359 static int
3360 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3361 CORE_ADDR addr, int len)
3362 {
3363 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3364 }
3365
3366 static int
3367 default_watchpoint_addr_within_range (struct target_ops *target,
3368 CORE_ADDR addr,
3369 CORE_ADDR start, int length)
3370 {
3371 return addr >= start && addr < start + length;
3372 }
3373
3374 static struct gdbarch *
3375 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3376 {
3377 return target_gdbarch ();
3378 }
3379
3380 static int
3381 return_zero (void)
3382 {
3383 return 0;
3384 }
3385
3386 /*
3387 * Find the next target down the stack from the specified target.
3388 */
3389
3390 struct target_ops *
3391 find_target_beneath (struct target_ops *t)
3392 {
3393 return t->beneath;
3394 }
3395
3396 /* See target.h. */
3397
3398 struct target_ops *
3399 find_target_at (enum strata stratum)
3400 {
3401 struct target_ops *t;
3402
3403 for (t = current_target.beneath; t != NULL; t = t->beneath)
3404 if (t->to_stratum == stratum)
3405 return t;
3406
3407 return NULL;
3408 }
3409
3410 \f
3411 /* The inferior process has died. Long live the inferior! */
3412
3413 void
3414 generic_mourn_inferior (void)
3415 {
3416 ptid_t ptid;
3417
3418 ptid = inferior_ptid;
3419 inferior_ptid = null_ptid;
3420
3421 /* Mark breakpoints uninserted in case something tries to delete a
3422 breakpoint while we delete the inferior's threads (which would
3423 fail, since the inferior is long gone). */
3424 mark_breakpoints_out ();
3425
3426 if (!ptid_equal (ptid, null_ptid))
3427 {
3428 int pid = ptid_get_pid (ptid);
3429 exit_inferior (pid);
3430 }
3431
3432 /* Note this wipes step-resume breakpoints, so needs to be done
3433 after exit_inferior, which ends up referencing the step-resume
3434 breakpoints through clear_thread_inferior_resources. */
3435 breakpoint_init_inferior (inf_exited);
3436
3437 registers_changed ();
3438
3439 reopen_exec_file ();
3440 reinit_frame_cache ();
3441
3442 if (deprecated_detach_hook)
3443 deprecated_detach_hook ();
3444 }
3445 \f
3446 /* Convert a normal process ID to a string. Returns the string in a
3447 static buffer. */
3448
3449 char *
3450 normal_pid_to_str (ptid_t ptid)
3451 {
3452 static char buf[32];
3453
3454 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3455 return buf;
3456 }
3457
3458 static char *
3459 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3460 {
3461 return normal_pid_to_str (ptid);
3462 }
3463
3464 /* Error-catcher for target_find_memory_regions. */
3465 static int
3466 dummy_find_memory_regions (struct target_ops *self,
3467 find_memory_region_ftype ignore1, void *ignore2)
3468 {
3469 error (_("Command not implemented for this target."));
3470 return 0;
3471 }
3472
3473 /* Error-catcher for target_make_corefile_notes. */
3474 static char *
3475 dummy_make_corefile_notes (struct target_ops *self,
3476 bfd *ignore1, int *ignore2)
3477 {
3478 error (_("Command not implemented for this target."));
3479 return NULL;
3480 }
3481
3482 /* Set up the handful of non-empty slots needed by the dummy target
3483 vector. */
3484
3485 static void
3486 init_dummy_target (void)
3487 {
3488 dummy_target.to_shortname = "None";
3489 dummy_target.to_longname = "None";
3490 dummy_target.to_doc = "";
3491 dummy_target.to_create_inferior = find_default_create_inferior;
3492 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3493 dummy_target.to_supports_disable_randomization
3494 = find_default_supports_disable_randomization;
3495 dummy_target.to_stratum = dummy_stratum;
3496 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3497 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3498 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3499 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3500 dummy_target.to_has_execution
3501 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3502 dummy_target.to_magic = OPS_MAGIC;
3503
3504 install_dummy_methods (&dummy_target);
3505 }
3506 \f
3507 static void
3508 debug_to_open (char *args, int from_tty)
3509 {
3510 debug_target.to_open (args, from_tty);
3511
3512 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3513 }
3514
3515 void
3516 target_close (struct target_ops *targ)
3517 {
3518 gdb_assert (!target_is_pushed (targ));
3519
3520 if (targ->to_xclose != NULL)
3521 targ->to_xclose (targ);
3522 else if (targ->to_close != NULL)
3523 targ->to_close (targ);
3524
3525 if (targetdebug)
3526 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3527 }
3528
3529 void
3530 target_attach (char *args, int from_tty)
3531 {
3532 current_target.to_attach (&current_target, args, from_tty);
3533 if (targetdebug)
3534 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3535 args, from_tty);
3536 }
3537
3538 int
3539 target_thread_alive (ptid_t ptid)
3540 {
3541 int retval;
3542
3543 retval = current_target.to_thread_alive (&current_target, ptid);
3544 if (targetdebug)
3545 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3546 ptid_get_pid (ptid), retval);
3547
3548 return retval;
3549 }
3550
3551 void
3552 target_find_new_threads (void)
3553 {
3554 current_target.to_find_new_threads (&current_target);
3555 if (targetdebug)
3556 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3557 }
3558
3559 void
3560 target_stop (ptid_t ptid)
3561 {
3562 if (!may_stop)
3563 {
3564 warning (_("May not interrupt or stop the target, ignoring attempt"));
3565 return;
3566 }
3567
3568 (*current_target.to_stop) (&current_target, ptid);
3569 }
3570
3571 static void
3572 debug_to_post_attach (struct target_ops *self, int pid)
3573 {
3574 debug_target.to_post_attach (&debug_target, pid);
3575
3576 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3577 }
3578
3579 /* Concatenate ELEM to LIST, a comma separate list, and return the
3580 result. The LIST incoming argument is released. */
3581
3582 static char *
3583 str_comma_list_concat_elem (char *list, const char *elem)
3584 {
3585 if (list == NULL)
3586 return xstrdup (elem);
3587 else
3588 return reconcat (list, list, ", ", elem, (char *) NULL);
3589 }
3590
3591 /* Helper for target_options_to_string. If OPT is present in
3592 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3593 Returns the new resulting string. OPT is removed from
3594 TARGET_OPTIONS. */
3595
3596 static char *
3597 do_option (int *target_options, char *ret,
3598 int opt, char *opt_str)
3599 {
3600 if ((*target_options & opt) != 0)
3601 {
3602 ret = str_comma_list_concat_elem (ret, opt_str);
3603 *target_options &= ~opt;
3604 }
3605
3606 return ret;
3607 }
3608
3609 char *
3610 target_options_to_string (int target_options)
3611 {
3612 char *ret = NULL;
3613
3614 #define DO_TARG_OPTION(OPT) \
3615 ret = do_option (&target_options, ret, OPT, #OPT)
3616
3617 DO_TARG_OPTION (TARGET_WNOHANG);
3618
3619 if (target_options != 0)
3620 ret = str_comma_list_concat_elem (ret, "unknown???");
3621
3622 if (ret == NULL)
3623 ret = xstrdup ("");
3624 return ret;
3625 }
3626
3627 static void
3628 debug_print_register (const char * func,
3629 struct regcache *regcache, int regno)
3630 {
3631 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3632
3633 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3634 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3635 && gdbarch_register_name (gdbarch, regno) != NULL
3636 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3637 fprintf_unfiltered (gdb_stdlog, "(%s)",
3638 gdbarch_register_name (gdbarch, regno));
3639 else
3640 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3641 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3642 {
3643 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3644 int i, size = register_size (gdbarch, regno);
3645 gdb_byte buf[MAX_REGISTER_SIZE];
3646
3647 regcache_raw_collect (regcache, regno, buf);
3648 fprintf_unfiltered (gdb_stdlog, " = ");
3649 for (i = 0; i < size; i++)
3650 {
3651 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3652 }
3653 if (size <= sizeof (LONGEST))
3654 {
3655 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3656
3657 fprintf_unfiltered (gdb_stdlog, " %s %s",
3658 core_addr_to_string_nz (val), plongest (val));
3659 }
3660 }
3661 fprintf_unfiltered (gdb_stdlog, "\n");
3662 }
3663
3664 void
3665 target_fetch_registers (struct regcache *regcache, int regno)
3666 {
3667 current_target.to_fetch_registers (&current_target, regcache, regno);
3668 if (targetdebug)
3669 debug_print_register ("target_fetch_registers", regcache, regno);
3670 }
3671
3672 void
3673 target_store_registers (struct regcache *regcache, int regno)
3674 {
3675 struct target_ops *t;
3676
3677 if (!may_write_registers)
3678 error (_("Writing to registers is not allowed (regno %d)"), regno);
3679
3680 current_target.to_store_registers (&current_target, regcache, regno);
3681 if (targetdebug)
3682 {
3683 debug_print_register ("target_store_registers", regcache, regno);
3684 }
3685 }
3686
3687 int
3688 target_core_of_thread (ptid_t ptid)
3689 {
3690 int retval = current_target.to_core_of_thread (&current_target, ptid);
3691
3692 if (targetdebug)
3693 fprintf_unfiltered (gdb_stdlog,
3694 "target_core_of_thread (%d) = %d\n",
3695 ptid_get_pid (ptid), retval);
3696 return retval;
3697 }
3698
3699 int
3700 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3701 {
3702 int retval = current_target.to_verify_memory (&current_target,
3703 data, memaddr, size);
3704
3705 if (targetdebug)
3706 fprintf_unfiltered (gdb_stdlog,
3707 "target_verify_memory (%s, %s) = %d\n",
3708 paddress (target_gdbarch (), memaddr),
3709 pulongest (size),
3710 retval);
3711 return retval;
3712 }
3713
3714 /* The documentation for this function is in its prototype declaration in
3715 target.h. */
3716
3717 int
3718 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3719 {
3720 int ret;
3721
3722 ret = current_target.to_insert_mask_watchpoint (&current_target,
3723 addr, mask, rw);
3724
3725 if (targetdebug)
3726 fprintf_unfiltered (gdb_stdlog, "\
3727 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3728 core_addr_to_string (addr),
3729 core_addr_to_string (mask), rw, ret);
3730
3731 return ret;
3732 }
3733
3734 /* The documentation for this function is in its prototype declaration in
3735 target.h. */
3736
3737 int
3738 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3739 {
3740 int ret;
3741
3742 ret = current_target.to_remove_mask_watchpoint (&current_target,
3743 addr, mask, rw);
3744
3745 if (targetdebug)
3746 fprintf_unfiltered (gdb_stdlog, "\
3747 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3748 core_addr_to_string (addr),
3749 core_addr_to_string (mask), rw, ret);
3750
3751 return ret;
3752 }
3753
3754 /* The documentation for this function is in its prototype declaration
3755 in target.h. */
3756
3757 int
3758 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3759 {
3760 return current_target.to_masked_watch_num_registers (&current_target,
3761 addr, mask);
3762 }
3763
3764 /* The documentation for this function is in its prototype declaration
3765 in target.h. */
3766
3767 int
3768 target_ranged_break_num_registers (void)
3769 {
3770 return current_target.to_ranged_break_num_registers (&current_target);
3771 }
3772
3773 /* See target.h. */
3774
3775 struct btrace_target_info *
3776 target_enable_btrace (ptid_t ptid)
3777 {
3778 return current_target.to_enable_btrace (&current_target, ptid);
3779 }
3780
3781 /* See target.h. */
3782
3783 void
3784 target_disable_btrace (struct btrace_target_info *btinfo)
3785 {
3786 current_target.to_disable_btrace (&current_target, btinfo);
3787 }
3788
3789 /* See target.h. */
3790
3791 void
3792 target_teardown_btrace (struct btrace_target_info *btinfo)
3793 {
3794 current_target.to_teardown_btrace (&current_target, btinfo);
3795 }
3796
3797 /* See target.h. */
3798
3799 enum btrace_error
3800 target_read_btrace (VEC (btrace_block_s) **btrace,
3801 struct btrace_target_info *btinfo,
3802 enum btrace_read_type type)
3803 {
3804 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3805 }
3806
3807 /* See target.h. */
3808
3809 void
3810 target_stop_recording (void)
3811 {
3812 current_target.to_stop_recording (&current_target);
3813 }
3814
3815 /* See target.h. */
3816
3817 void
3818 target_info_record (void)
3819 {
3820 struct target_ops *t;
3821
3822 for (t = current_target.beneath; t != NULL; t = t->beneath)
3823 if (t->to_info_record != NULL)
3824 {
3825 t->to_info_record (t);
3826 return;
3827 }
3828
3829 tcomplain ();
3830 }
3831
3832 /* See target.h. */
3833
3834 void
3835 target_save_record (const char *filename)
3836 {
3837 current_target.to_save_record (&current_target, filename);
3838 }
3839
3840 /* See target.h. */
3841
3842 int
3843 target_supports_delete_record (void)
3844 {
3845 struct target_ops *t;
3846
3847 for (t = current_target.beneath; t != NULL; t = t->beneath)
3848 if (t->to_delete_record != NULL)
3849 return 1;
3850
3851 return 0;
3852 }
3853
3854 /* See target.h. */
3855
3856 void
3857 target_delete_record (void)
3858 {
3859 current_target.to_delete_record (&current_target);
3860 }
3861
3862 /* See target.h. */
3863
3864 int
3865 target_record_is_replaying (void)
3866 {
3867 return current_target.to_record_is_replaying (&current_target);
3868 }
3869
3870 /* See target.h. */
3871
3872 void
3873 target_goto_record_begin (void)
3874 {
3875 current_target.to_goto_record_begin (&current_target);
3876 }
3877
3878 /* See target.h. */
3879
3880 void
3881 target_goto_record_end (void)
3882 {
3883 current_target.to_goto_record_end (&current_target);
3884 }
3885
3886 /* See target.h. */
3887
3888 void
3889 target_goto_record (ULONGEST insn)
3890 {
3891 current_target.to_goto_record (&current_target, insn);
3892 }
3893
3894 /* See target.h. */
3895
3896 void
3897 target_insn_history (int size, int flags)
3898 {
3899 current_target.to_insn_history (&current_target, size, flags);
3900 }
3901
3902 /* See target.h. */
3903
3904 void
3905 target_insn_history_from (ULONGEST from, int size, int flags)
3906 {
3907 current_target.to_insn_history_from (&current_target, from, size, flags);
3908 }
3909
3910 /* See target.h. */
3911
3912 void
3913 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3914 {
3915 current_target.to_insn_history_range (&current_target, begin, end, flags);
3916 }
3917
3918 /* See target.h. */
3919
3920 void
3921 target_call_history (int size, int flags)
3922 {
3923 current_target.to_call_history (&current_target, size, flags);
3924 }
3925
3926 /* See target.h. */
3927
3928 void
3929 target_call_history_from (ULONGEST begin, int size, int flags)
3930 {
3931 current_target.to_call_history_from (&current_target, begin, size, flags);
3932 }
3933
3934 /* See target.h. */
3935
3936 void
3937 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3938 {
3939 current_target.to_call_history_range (&current_target, begin, end, flags);
3940 }
3941
3942 static void
3943 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
3944 {
3945 debug_target.to_prepare_to_store (&debug_target, regcache);
3946
3947 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3948 }
3949
3950 /* See target.h. */
3951
3952 const struct frame_unwind *
3953 target_get_unwinder (void)
3954 {
3955 struct target_ops *t;
3956
3957 for (t = current_target.beneath; t != NULL; t = t->beneath)
3958 if (t->to_get_unwinder != NULL)
3959 return t->to_get_unwinder;
3960
3961 return NULL;
3962 }
3963
3964 /* See target.h. */
3965
3966 const struct frame_unwind *
3967 target_get_tailcall_unwinder (void)
3968 {
3969 struct target_ops *t;
3970
3971 for (t = current_target.beneath; t != NULL; t = t->beneath)
3972 if (t->to_get_tailcall_unwinder != NULL)
3973 return t->to_get_tailcall_unwinder;
3974
3975 return NULL;
3976 }
3977
3978 /* See target.h. */
3979
3980 CORE_ADDR
3981 forward_target_decr_pc_after_break (struct target_ops *ops,
3982 struct gdbarch *gdbarch)
3983 {
3984 for (; ops != NULL; ops = ops->beneath)
3985 if (ops->to_decr_pc_after_break != NULL)
3986 return ops->to_decr_pc_after_break (ops, gdbarch);
3987
3988 return gdbarch_decr_pc_after_break (gdbarch);
3989 }
3990
3991 /* See target.h. */
3992
3993 CORE_ADDR
3994 target_decr_pc_after_break (struct gdbarch *gdbarch)
3995 {
3996 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
3997 }
3998
3999 static int
4000 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4001 int write, struct mem_attrib *attrib,
4002 struct target_ops *target)
4003 {
4004 int retval;
4005
4006 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4007 attrib, target);
4008
4009 fprintf_unfiltered (gdb_stdlog,
4010 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4011 paddress (target_gdbarch (), memaddr), len,
4012 write ? "write" : "read", retval);
4013
4014 if (retval > 0)
4015 {
4016 int i;
4017
4018 fputs_unfiltered (", bytes =", gdb_stdlog);
4019 for (i = 0; i < retval; i++)
4020 {
4021 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4022 {
4023 if (targetdebug < 2 && i > 0)
4024 {
4025 fprintf_unfiltered (gdb_stdlog, " ...");
4026 break;
4027 }
4028 fprintf_unfiltered (gdb_stdlog, "\n");
4029 }
4030
4031 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4032 }
4033 }
4034
4035 fputc_unfiltered ('\n', gdb_stdlog);
4036
4037 return retval;
4038 }
4039
4040 static void
4041 debug_to_files_info (struct target_ops *target)
4042 {
4043 debug_target.to_files_info (target);
4044
4045 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4046 }
4047
4048 static int
4049 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4050 struct bp_target_info *bp_tgt)
4051 {
4052 int retval;
4053
4054 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4055
4056 fprintf_unfiltered (gdb_stdlog,
4057 "target_insert_breakpoint (%s, xxx) = %ld\n",
4058 core_addr_to_string (bp_tgt->placed_address),
4059 (unsigned long) retval);
4060 return retval;
4061 }
4062
4063 static int
4064 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4065 struct bp_target_info *bp_tgt)
4066 {
4067 int retval;
4068
4069 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4070
4071 fprintf_unfiltered (gdb_stdlog,
4072 "target_remove_breakpoint (%s, xxx) = %ld\n",
4073 core_addr_to_string (bp_tgt->placed_address),
4074 (unsigned long) retval);
4075 return retval;
4076 }
4077
4078 static int
4079 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4080 int type, int cnt, int from_tty)
4081 {
4082 int retval;
4083
4084 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4085 type, cnt, from_tty);
4086
4087 fprintf_unfiltered (gdb_stdlog,
4088 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4089 (unsigned long) type,
4090 (unsigned long) cnt,
4091 (unsigned long) from_tty,
4092 (unsigned long) retval);
4093 return retval;
4094 }
4095
4096 static int
4097 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4098 CORE_ADDR addr, int len)
4099 {
4100 CORE_ADDR retval;
4101
4102 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4103 addr, len);
4104
4105 fprintf_unfiltered (gdb_stdlog,
4106 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4107 core_addr_to_string (addr), (unsigned long) len,
4108 core_addr_to_string (retval));
4109 return retval;
4110 }
4111
4112 static int
4113 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4114 CORE_ADDR addr, int len, int rw,
4115 struct expression *cond)
4116 {
4117 int retval;
4118
4119 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4120 addr, len,
4121 rw, cond);
4122
4123 fprintf_unfiltered (gdb_stdlog,
4124 "target_can_accel_watchpoint_condition "
4125 "(%s, %d, %d, %s) = %ld\n",
4126 core_addr_to_string (addr), len, rw,
4127 host_address_to_string (cond), (unsigned long) retval);
4128 return retval;
4129 }
4130
4131 static int
4132 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4133 {
4134 int retval;
4135
4136 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4137
4138 fprintf_unfiltered (gdb_stdlog,
4139 "target_stopped_by_watchpoint () = %ld\n",
4140 (unsigned long) retval);
4141 return retval;
4142 }
4143
4144 static int
4145 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4146 {
4147 int retval;
4148
4149 retval = debug_target.to_stopped_data_address (target, addr);
4150
4151 fprintf_unfiltered (gdb_stdlog,
4152 "target_stopped_data_address ([%s]) = %ld\n",
4153 core_addr_to_string (*addr),
4154 (unsigned long)retval);
4155 return retval;
4156 }
4157
4158 static int
4159 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4160 CORE_ADDR addr,
4161 CORE_ADDR start, int length)
4162 {
4163 int retval;
4164
4165 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4166 start, length);
4167
4168 fprintf_filtered (gdb_stdlog,
4169 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4170 core_addr_to_string (addr), core_addr_to_string (start),
4171 length, retval);
4172 return retval;
4173 }
4174
4175 static int
4176 debug_to_insert_hw_breakpoint (struct target_ops *self,
4177 struct gdbarch *gdbarch,
4178 struct bp_target_info *bp_tgt)
4179 {
4180 int retval;
4181
4182 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4183 gdbarch, bp_tgt);
4184
4185 fprintf_unfiltered (gdb_stdlog,
4186 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4187 core_addr_to_string (bp_tgt->placed_address),
4188 (unsigned long) retval);
4189 return retval;
4190 }
4191
4192 static int
4193 debug_to_remove_hw_breakpoint (struct target_ops *self,
4194 struct gdbarch *gdbarch,
4195 struct bp_target_info *bp_tgt)
4196 {
4197 int retval;
4198
4199 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4200 gdbarch, bp_tgt);
4201
4202 fprintf_unfiltered (gdb_stdlog,
4203 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4204 core_addr_to_string (bp_tgt->placed_address),
4205 (unsigned long) retval);
4206 return retval;
4207 }
4208
4209 static int
4210 debug_to_insert_watchpoint (struct target_ops *self,
4211 CORE_ADDR addr, int len, int type,
4212 struct expression *cond)
4213 {
4214 int retval;
4215
4216 retval = debug_target.to_insert_watchpoint (&debug_target,
4217 addr, len, type, cond);
4218
4219 fprintf_unfiltered (gdb_stdlog,
4220 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4221 core_addr_to_string (addr), len, type,
4222 host_address_to_string (cond), (unsigned long) retval);
4223 return retval;
4224 }
4225
4226 static int
4227 debug_to_remove_watchpoint (struct target_ops *self,
4228 CORE_ADDR addr, int len, int type,
4229 struct expression *cond)
4230 {
4231 int retval;
4232
4233 retval = debug_target.to_remove_watchpoint (&debug_target,
4234 addr, len, type, cond);
4235
4236 fprintf_unfiltered (gdb_stdlog,
4237 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4238 core_addr_to_string (addr), len, type,
4239 host_address_to_string (cond), (unsigned long) retval);
4240 return retval;
4241 }
4242
4243 static void
4244 debug_to_terminal_init (struct target_ops *self)
4245 {
4246 debug_target.to_terminal_init (&debug_target);
4247
4248 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4249 }
4250
4251 static void
4252 debug_to_terminal_inferior (struct target_ops *self)
4253 {
4254 debug_target.to_terminal_inferior (&debug_target);
4255
4256 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4257 }
4258
4259 static void
4260 debug_to_terminal_ours_for_output (struct target_ops *self)
4261 {
4262 debug_target.to_terminal_ours_for_output (&debug_target);
4263
4264 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4265 }
4266
4267 static void
4268 debug_to_terminal_ours (struct target_ops *self)
4269 {
4270 debug_target.to_terminal_ours (&debug_target);
4271
4272 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4273 }
4274
4275 static void
4276 debug_to_terminal_save_ours (struct target_ops *self)
4277 {
4278 debug_target.to_terminal_save_ours (&debug_target);
4279
4280 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4281 }
4282
4283 static void
4284 debug_to_terminal_info (struct target_ops *self,
4285 const char *arg, int from_tty)
4286 {
4287 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4288
4289 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4290 from_tty);
4291 }
4292
4293 static void
4294 debug_to_load (struct target_ops *self, char *args, int from_tty)
4295 {
4296 debug_target.to_load (&debug_target, args, from_tty);
4297
4298 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4299 }
4300
4301 static void
4302 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4303 {
4304 debug_target.to_post_startup_inferior (&debug_target, ptid);
4305
4306 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4307 ptid_get_pid (ptid));
4308 }
4309
4310 static int
4311 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4312 {
4313 int retval;
4314
4315 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4316
4317 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4318 pid, retval);
4319
4320 return retval;
4321 }
4322
4323 static int
4324 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4325 {
4326 int retval;
4327
4328 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4329
4330 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4331 pid, retval);
4332
4333 return retval;
4334 }
4335
4336 static int
4337 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4338 {
4339 int retval;
4340
4341 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4342
4343 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4344 pid, retval);
4345
4346 return retval;
4347 }
4348
4349 static int
4350 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4351 {
4352 int retval;
4353
4354 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4355
4356 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4357 pid, retval);
4358
4359 return retval;
4360 }
4361
4362 static int
4363 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4364 {
4365 int retval;
4366
4367 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4368
4369 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4370 pid, retval);
4371
4372 return retval;
4373 }
4374
4375 static int
4376 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4377 {
4378 int retval;
4379
4380 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4381
4382 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4383 pid, retval);
4384
4385 return retval;
4386 }
4387
4388 static int
4389 debug_to_has_exited (struct target_ops *self,
4390 int pid, int wait_status, int *exit_status)
4391 {
4392 int has_exited;
4393
4394 has_exited = debug_target.to_has_exited (&debug_target,
4395 pid, wait_status, exit_status);
4396
4397 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4398 pid, wait_status, *exit_status, has_exited);
4399
4400 return has_exited;
4401 }
4402
4403 static int
4404 debug_to_can_run (struct target_ops *self)
4405 {
4406 int retval;
4407
4408 retval = debug_target.to_can_run (&debug_target);
4409
4410 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4411
4412 return retval;
4413 }
4414
4415 static struct gdbarch *
4416 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4417 {
4418 struct gdbarch *retval;
4419
4420 retval = debug_target.to_thread_architecture (ops, ptid);
4421
4422 fprintf_unfiltered (gdb_stdlog,
4423 "target_thread_architecture (%s) = %s [%s]\n",
4424 target_pid_to_str (ptid),
4425 host_address_to_string (retval),
4426 gdbarch_bfd_arch_info (retval)->printable_name);
4427 return retval;
4428 }
4429
4430 static void
4431 debug_to_stop (struct target_ops *self, ptid_t ptid)
4432 {
4433 debug_target.to_stop (&debug_target, ptid);
4434
4435 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4436 target_pid_to_str (ptid));
4437 }
4438
4439 static void
4440 debug_to_rcmd (struct target_ops *self, char *command,
4441 struct ui_file *outbuf)
4442 {
4443 debug_target.to_rcmd (&debug_target, command, outbuf);
4444 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4445 }
4446
4447 static char *
4448 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4449 {
4450 char *exec_file;
4451
4452 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4453
4454 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4455 pid, exec_file);
4456
4457 return exec_file;
4458 }
4459
4460 static void
4461 setup_target_debug (void)
4462 {
4463 memcpy (&debug_target, &current_target, sizeof debug_target);
4464
4465 current_target.to_open = debug_to_open;
4466 current_target.to_post_attach = debug_to_post_attach;
4467 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4468 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4469 current_target.to_files_info = debug_to_files_info;
4470 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4471 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4472 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4473 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4474 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4475 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4476 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4477 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4478 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4479 current_target.to_watchpoint_addr_within_range
4480 = debug_to_watchpoint_addr_within_range;
4481 current_target.to_region_ok_for_hw_watchpoint
4482 = debug_to_region_ok_for_hw_watchpoint;
4483 current_target.to_can_accel_watchpoint_condition
4484 = debug_to_can_accel_watchpoint_condition;
4485 current_target.to_terminal_init = debug_to_terminal_init;
4486 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4487 current_target.to_terminal_ours_for_output
4488 = debug_to_terminal_ours_for_output;
4489 current_target.to_terminal_ours = debug_to_terminal_ours;
4490 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4491 current_target.to_terminal_info = debug_to_terminal_info;
4492 current_target.to_load = debug_to_load;
4493 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4494 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4495 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4496 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4497 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4498 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4499 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4500 current_target.to_has_exited = debug_to_has_exited;
4501 current_target.to_can_run = debug_to_can_run;
4502 current_target.to_stop = debug_to_stop;
4503 current_target.to_rcmd = debug_to_rcmd;
4504 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4505 current_target.to_thread_architecture = debug_to_thread_architecture;
4506 }
4507 \f
4508
4509 static char targ_desc[] =
4510 "Names of targets and files being debugged.\nShows the entire \
4511 stack of targets currently in use (including the exec-file,\n\
4512 core-file, and process, if any), as well as the symbol file name.";
4513
4514 static void
4515 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4516 {
4517 error (_("\"monitor\" command not supported by this target."));
4518 }
4519
4520 static void
4521 do_monitor_command (char *cmd,
4522 int from_tty)
4523 {
4524 target_rcmd (cmd, gdb_stdtarg);
4525 }
4526
4527 /* Print the name of each layers of our target stack. */
4528
4529 static void
4530 maintenance_print_target_stack (char *cmd, int from_tty)
4531 {
4532 struct target_ops *t;
4533
4534 printf_filtered (_("The current target stack is:\n"));
4535
4536 for (t = target_stack; t != NULL; t = t->beneath)
4537 {
4538 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4539 }
4540 }
4541
4542 /* Controls if async mode is permitted. */
4543 int target_async_permitted = 0;
4544
4545 /* The set command writes to this variable. If the inferior is
4546 executing, target_async_permitted is *not* updated. */
4547 static int target_async_permitted_1 = 0;
4548
4549 static void
4550 set_target_async_command (char *args, int from_tty,
4551 struct cmd_list_element *c)
4552 {
4553 if (have_live_inferiors ())
4554 {
4555 target_async_permitted_1 = target_async_permitted;
4556 error (_("Cannot change this setting while the inferior is running."));
4557 }
4558
4559 target_async_permitted = target_async_permitted_1;
4560 }
4561
4562 static void
4563 show_target_async_command (struct ui_file *file, int from_tty,
4564 struct cmd_list_element *c,
4565 const char *value)
4566 {
4567 fprintf_filtered (file,
4568 _("Controlling the inferior in "
4569 "asynchronous mode is %s.\n"), value);
4570 }
4571
4572 /* Temporary copies of permission settings. */
4573
4574 static int may_write_registers_1 = 1;
4575 static int may_write_memory_1 = 1;
4576 static int may_insert_breakpoints_1 = 1;
4577 static int may_insert_tracepoints_1 = 1;
4578 static int may_insert_fast_tracepoints_1 = 1;
4579 static int may_stop_1 = 1;
4580
4581 /* Make the user-set values match the real values again. */
4582
4583 void
4584 update_target_permissions (void)
4585 {
4586 may_write_registers_1 = may_write_registers;
4587 may_write_memory_1 = may_write_memory;
4588 may_insert_breakpoints_1 = may_insert_breakpoints;
4589 may_insert_tracepoints_1 = may_insert_tracepoints;
4590 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4591 may_stop_1 = may_stop;
4592 }
4593
4594 /* The one function handles (most of) the permission flags in the same
4595 way. */
4596
4597 static void
4598 set_target_permissions (char *args, int from_tty,
4599 struct cmd_list_element *c)
4600 {
4601 if (target_has_execution)
4602 {
4603 update_target_permissions ();
4604 error (_("Cannot change this setting while the inferior is running."));
4605 }
4606
4607 /* Make the real values match the user-changed values. */
4608 may_write_registers = may_write_registers_1;
4609 may_insert_breakpoints = may_insert_breakpoints_1;
4610 may_insert_tracepoints = may_insert_tracepoints_1;
4611 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4612 may_stop = may_stop_1;
4613 update_observer_mode ();
4614 }
4615
4616 /* Set memory write permission independently of observer mode. */
4617
4618 static void
4619 set_write_memory_permission (char *args, int from_tty,
4620 struct cmd_list_element *c)
4621 {
4622 /* Make the real values match the user-changed values. */
4623 may_write_memory = may_write_memory_1;
4624 update_observer_mode ();
4625 }
4626
4627
4628 void
4629 initialize_targets (void)
4630 {
4631 init_dummy_target ();
4632 push_target (&dummy_target);
4633
4634 add_info ("target", target_info, targ_desc);
4635 add_info ("files", target_info, targ_desc);
4636
4637 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4638 Set target debugging."), _("\
4639 Show target debugging."), _("\
4640 When non-zero, target debugging is enabled. Higher numbers are more\n\
4641 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4642 command."),
4643 NULL,
4644 show_targetdebug,
4645 &setdebuglist, &showdebuglist);
4646
4647 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4648 &trust_readonly, _("\
4649 Set mode for reading from readonly sections."), _("\
4650 Show mode for reading from readonly sections."), _("\
4651 When this mode is on, memory reads from readonly sections (such as .text)\n\
4652 will be read from the object file instead of from the target. This will\n\
4653 result in significant performance improvement for remote targets."),
4654 NULL,
4655 show_trust_readonly,
4656 &setlist, &showlist);
4657
4658 add_com ("monitor", class_obscure, do_monitor_command,
4659 _("Send a command to the remote monitor (remote targets only)."));
4660
4661 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4662 _("Print the name of each layer of the internal target stack."),
4663 &maintenanceprintlist);
4664
4665 add_setshow_boolean_cmd ("target-async", no_class,
4666 &target_async_permitted_1, _("\
4667 Set whether gdb controls the inferior in asynchronous mode."), _("\
4668 Show whether gdb controls the inferior in asynchronous mode."), _("\
4669 Tells gdb whether to control the inferior in asynchronous mode."),
4670 set_target_async_command,
4671 show_target_async_command,
4672 &setlist,
4673 &showlist);
4674
4675 add_setshow_boolean_cmd ("may-write-registers", class_support,
4676 &may_write_registers_1, _("\
4677 Set permission to write into registers."), _("\
4678 Show permission to write into registers."), _("\
4679 When this permission is on, GDB may write into the target's registers.\n\
4680 Otherwise, any sort of write attempt will result in an error."),
4681 set_target_permissions, NULL,
4682 &setlist, &showlist);
4683
4684 add_setshow_boolean_cmd ("may-write-memory", class_support,
4685 &may_write_memory_1, _("\
4686 Set permission to write into target memory."), _("\
4687 Show permission to write into target memory."), _("\
4688 When this permission is on, GDB may write into the target's memory.\n\
4689 Otherwise, any sort of write attempt will result in an error."),
4690 set_write_memory_permission, NULL,
4691 &setlist, &showlist);
4692
4693 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4694 &may_insert_breakpoints_1, _("\
4695 Set permission to insert breakpoints in the target."), _("\
4696 Show permission to insert breakpoints in the target."), _("\
4697 When this permission is on, GDB may insert breakpoints in the program.\n\
4698 Otherwise, any sort of insertion attempt will result in an error."),
4699 set_target_permissions, NULL,
4700 &setlist, &showlist);
4701
4702 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4703 &may_insert_tracepoints_1, _("\
4704 Set permission to insert tracepoints in the target."), _("\
4705 Show permission to insert tracepoints in the target."), _("\
4706 When this permission is on, GDB may insert tracepoints in the program.\n\
4707 Otherwise, any sort of insertion attempt will result in an error."),
4708 set_target_permissions, NULL,
4709 &setlist, &showlist);
4710
4711 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4712 &may_insert_fast_tracepoints_1, _("\
4713 Set permission to insert fast tracepoints in the target."), _("\
4714 Show permission to insert fast tracepoints in the target."), _("\
4715 When this permission is on, GDB may insert fast tracepoints.\n\
4716 Otherwise, any sort of insertion attempt will result in an error."),
4717 set_target_permissions, NULL,
4718 &setlist, &showlist);
4719
4720 add_setshow_boolean_cmd ("may-interrupt", class_support,
4721 &may_stop_1, _("\
4722 Set permission to interrupt or signal the target."), _("\
4723 Show permission to interrupt or signal the target."), _("\
4724 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4725 Otherwise, any attempt to interrupt or stop will be ignored."),
4726 set_target_permissions, NULL,
4727 &setlist, &showlist);
4728 }