convert to_can_use_agent
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static void tcomplain (void) ATTRIBUTE_NORETURN;
64
65 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
66
67 static int return_zero (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static target_xfer_partial_ftype default_xfer_partial;
76
77 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
78 ptid_t ptid);
79
80 static int dummy_find_memory_regions (struct target_ops *self,
81 find_memory_region_ftype ignore1,
82 void *ignore2);
83
84 static char *dummy_make_corefile_notes (struct target_ops *self,
85 bfd *ignore1, int *ignore2);
86
87 static int find_default_can_async_p (struct target_ops *ignore);
88
89 static int find_default_is_async_p (struct target_ops *ignore);
90
91 static enum exec_direction_kind default_execution_direction
92 (struct target_ops *self);
93
94 #include "target-delegates.c"
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct target_ops *self,
103 struct regcache *);
104
105 static void debug_to_files_info (struct target_ops *);
106
107 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
108 struct bp_target_info *);
109
110 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
111 struct bp_target_info *);
112
113 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
114 int, int, int);
115
116 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
117 struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
121 struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_insert_watchpoint (struct target_ops *self,
125 CORE_ADDR, int, int,
126 struct expression *);
127
128 static int debug_to_remove_watchpoint (struct target_ops *self,
129 CORE_ADDR, int, int,
130 struct expression *);
131
132 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
133
134 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
135 CORE_ADDR, CORE_ADDR, int);
136
137 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
138 CORE_ADDR, int);
139
140 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
141 CORE_ADDR, int, int,
142 struct expression *);
143
144 static void debug_to_terminal_init (struct target_ops *self);
145
146 static void debug_to_terminal_inferior (struct target_ops *self);
147
148 static void debug_to_terminal_ours_for_output (struct target_ops *self);
149
150 static void debug_to_terminal_save_ours (struct target_ops *self);
151
152 static void debug_to_terminal_ours (struct target_ops *self);
153
154 static void debug_to_load (struct target_ops *self, char *, int);
155
156 static int debug_to_can_run (struct target_ops *self);
157
158 static void debug_to_stop (struct target_ops *self, ptid_t);
159
160 /* Pointer to array of target architecture structures; the size of the
161 array; the current index into the array; the allocated size of the
162 array. */
163 struct target_ops **target_structs;
164 unsigned target_struct_size;
165 unsigned target_struct_allocsize;
166 #define DEFAULT_ALLOCSIZE 10
167
168 /* The initial current target, so that there is always a semi-valid
169 current target. */
170
171 static struct target_ops dummy_target;
172
173 /* Top of target stack. */
174
175 static struct target_ops *target_stack;
176
177 /* The target structure we are currently using to talk to a process
178 or file or whatever "inferior" we have. */
179
180 struct target_ops current_target;
181
182 /* Command list for target. */
183
184 static struct cmd_list_element *targetlist = NULL;
185
186 /* Nonzero if we should trust readonly sections from the
187 executable when reading memory. */
188
189 static int trust_readonly = 0;
190
191 /* Nonzero if we should show true memory content including
192 memory breakpoint inserted by gdb. */
193
194 static int show_memory_breakpoints = 0;
195
196 /* These globals control whether GDB attempts to perform these
197 operations; they are useful for targets that need to prevent
198 inadvertant disruption, such as in non-stop mode. */
199
200 int may_write_registers = 1;
201
202 int may_write_memory = 1;
203
204 int may_insert_breakpoints = 1;
205
206 int may_insert_tracepoints = 1;
207
208 int may_insert_fast_tracepoints = 1;
209
210 int may_stop = 1;
211
212 /* Non-zero if we want to see trace of target level stuff. */
213
214 static unsigned int targetdebug = 0;
215 static void
216 show_targetdebug (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
220 }
221
222 static void setup_target_debug (void);
223
224 /* The user just typed 'target' without the name of a target. */
225
226 static void
227 target_command (char *arg, int from_tty)
228 {
229 fputs_filtered ("Argument required (target name). Try `help target'\n",
230 gdb_stdout);
231 }
232
233 /* Default target_has_* methods for process_stratum targets. */
234
235 int
236 default_child_has_all_memory (struct target_ops *ops)
237 {
238 /* If no inferior selected, then we can't read memory here. */
239 if (ptid_equal (inferior_ptid, null_ptid))
240 return 0;
241
242 return 1;
243 }
244
245 int
246 default_child_has_memory (struct target_ops *ops)
247 {
248 /* If no inferior selected, then we can't read memory here. */
249 if (ptid_equal (inferior_ptid, null_ptid))
250 return 0;
251
252 return 1;
253 }
254
255 int
256 default_child_has_stack (struct target_ops *ops)
257 {
258 /* If no inferior selected, there's no stack. */
259 if (ptid_equal (inferior_ptid, null_ptid))
260 return 0;
261
262 return 1;
263 }
264
265 int
266 default_child_has_registers (struct target_ops *ops)
267 {
268 /* Can't read registers from no inferior. */
269 if (ptid_equal (inferior_ptid, null_ptid))
270 return 0;
271
272 return 1;
273 }
274
275 int
276 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
277 {
278 /* If there's no thread selected, then we can't make it run through
279 hoops. */
280 if (ptid_equal (the_ptid, null_ptid))
281 return 0;
282
283 return 1;
284 }
285
286
287 int
288 target_has_all_memory_1 (void)
289 {
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_all_memory (t))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_memory_1 (void)
301 {
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_memory (t))
306 return 1;
307
308 return 0;
309 }
310
311 int
312 target_has_stack_1 (void)
313 {
314 struct target_ops *t;
315
316 for (t = current_target.beneath; t != NULL; t = t->beneath)
317 if (t->to_has_stack (t))
318 return 1;
319
320 return 0;
321 }
322
323 int
324 target_has_registers_1 (void)
325 {
326 struct target_ops *t;
327
328 for (t = current_target.beneath; t != NULL; t = t->beneath)
329 if (t->to_has_registers (t))
330 return 1;
331
332 return 0;
333 }
334
335 int
336 target_has_execution_1 (ptid_t the_ptid)
337 {
338 struct target_ops *t;
339
340 for (t = current_target.beneath; t != NULL; t = t->beneath)
341 if (t->to_has_execution (t, the_ptid))
342 return 1;
343
344 return 0;
345 }
346
347 int
348 target_has_execution_current (void)
349 {
350 return target_has_execution_1 (inferior_ptid);
351 }
352
353 /* Complete initialization of T. This ensures that various fields in
354 T are set, if needed by the target implementation. */
355
356 void
357 complete_target_initialization (struct target_ops *t)
358 {
359 /* Provide default values for all "must have" methods. */
360 if (t->to_xfer_partial == NULL)
361 t->to_xfer_partial = default_xfer_partial;
362
363 if (t->to_has_all_memory == NULL)
364 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
365
366 if (t->to_has_memory == NULL)
367 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
368
369 if (t->to_has_stack == NULL)
370 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
371
372 if (t->to_has_registers == NULL)
373 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
374
375 if (t->to_has_execution == NULL)
376 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
377
378 install_delegators (t);
379 }
380
381 /* Add possible target architecture T to the list and add a new
382 command 'target T->to_shortname'. Set COMPLETER as the command's
383 completer if not NULL. */
384
385 void
386 add_target_with_completer (struct target_ops *t,
387 completer_ftype *completer)
388 {
389 struct cmd_list_element *c;
390
391 complete_target_initialization (t);
392
393 if (!target_structs)
394 {
395 target_struct_allocsize = DEFAULT_ALLOCSIZE;
396 target_structs = (struct target_ops **) xmalloc
397 (target_struct_allocsize * sizeof (*target_structs));
398 }
399 if (target_struct_size >= target_struct_allocsize)
400 {
401 target_struct_allocsize *= 2;
402 target_structs = (struct target_ops **)
403 xrealloc ((char *) target_structs,
404 target_struct_allocsize * sizeof (*target_structs));
405 }
406 target_structs[target_struct_size++] = t;
407
408 if (targetlist == NULL)
409 add_prefix_cmd ("target", class_run, target_command, _("\
410 Connect to a target machine or process.\n\
411 The first argument is the type or protocol of the target machine.\n\
412 Remaining arguments are interpreted by the target protocol. For more\n\
413 information on the arguments for a particular protocol, type\n\
414 `help target ' followed by the protocol name."),
415 &targetlist, "target ", 0, &cmdlist);
416 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
417 &targetlist);
418 if (completer != NULL)
419 set_cmd_completer (c, completer);
420 }
421
422 /* Add a possible target architecture to the list. */
423
424 void
425 add_target (struct target_ops *t)
426 {
427 add_target_with_completer (t, NULL);
428 }
429
430 /* See target.h. */
431
432 void
433 add_deprecated_target_alias (struct target_ops *t, char *alias)
434 {
435 struct cmd_list_element *c;
436 char *alt;
437
438 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
439 see PR cli/15104. */
440 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
441 alt = xstrprintf ("target %s", t->to_shortname);
442 deprecate_cmd (c, alt);
443 }
444
445 /* Stub functions */
446
447 void
448 target_ignore (void)
449 {
450 }
451
452 void
453 target_kill (void)
454 {
455 struct target_ops *t;
456
457 for (t = current_target.beneath; t != NULL; t = t->beneath)
458 if (t->to_kill != NULL)
459 {
460 if (targetdebug)
461 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
462
463 t->to_kill (t);
464 return;
465 }
466
467 noprocess ();
468 }
469
470 void
471 target_load (char *arg, int from_tty)
472 {
473 target_dcache_invalidate ();
474 (*current_target.to_load) (&current_target, arg, from_tty);
475 }
476
477 void
478 target_create_inferior (char *exec_file, char *args,
479 char **env, int from_tty)
480 {
481 struct target_ops *t;
482
483 for (t = current_target.beneath; t != NULL; t = t->beneath)
484 {
485 if (t->to_create_inferior != NULL)
486 {
487 t->to_create_inferior (t, exec_file, args, env, from_tty);
488 if (targetdebug)
489 fprintf_unfiltered (gdb_stdlog,
490 "target_create_inferior (%s, %s, xxx, %d)\n",
491 exec_file, args, from_tty);
492 return;
493 }
494 }
495
496 internal_error (__FILE__, __LINE__,
497 _("could not find a target to create inferior"));
498 }
499
500 void
501 target_terminal_inferior (void)
502 {
503 /* A background resume (``run&'') should leave GDB in control of the
504 terminal. Use target_can_async_p, not target_is_async_p, since at
505 this point the target is not async yet. However, if sync_execution
506 is not set, we know it will become async prior to resume. */
507 if (target_can_async_p () && !sync_execution)
508 return;
509
510 /* If GDB is resuming the inferior in the foreground, install
511 inferior's terminal modes. */
512 (*current_target.to_terminal_inferior) (&current_target);
513 }
514
515 static int
516 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
517 struct target_ops *t)
518 {
519 errno = EIO; /* Can't read/write this location. */
520 return 0; /* No bytes handled. */
521 }
522
523 static void
524 tcomplain (void)
525 {
526 error (_("You can't do that when your target is `%s'"),
527 current_target.to_shortname);
528 }
529
530 void
531 noprocess (void)
532 {
533 error (_("You can't do that without a process to debug."));
534 }
535
536 static void
537 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
538 {
539 printf_unfiltered (_("No saved terminal information.\n"));
540 }
541
542 /* A default implementation for the to_get_ada_task_ptid target method.
543
544 This function builds the PTID by using both LWP and TID as part of
545 the PTID lwp and tid elements. The pid used is the pid of the
546 inferior_ptid. */
547
548 static ptid_t
549 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
550 {
551 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
552 }
553
554 static enum exec_direction_kind
555 default_execution_direction (struct target_ops *self)
556 {
557 if (!target_can_execute_reverse)
558 return EXEC_FORWARD;
559 else if (!target_can_async_p ())
560 return EXEC_FORWARD;
561 else
562 gdb_assert_not_reached ("\
563 to_execution_direction must be implemented for reverse async");
564 }
565
566 /* Go through the target stack from top to bottom, copying over zero
567 entries in current_target, then filling in still empty entries. In
568 effect, we are doing class inheritance through the pushed target
569 vectors.
570
571 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
572 is currently implemented, is that it discards any knowledge of
573 which target an inherited method originally belonged to.
574 Consequently, new new target methods should instead explicitly and
575 locally search the target stack for the target that can handle the
576 request. */
577
578 static void
579 update_current_target (void)
580 {
581 struct target_ops *t;
582
583 /* First, reset current's contents. */
584 memset (&current_target, 0, sizeof (current_target));
585
586 /* Install the delegators. */
587 install_delegators (&current_target);
588
589 #define INHERIT(FIELD, TARGET) \
590 if (!current_target.FIELD) \
591 current_target.FIELD = (TARGET)->FIELD
592
593 for (t = target_stack; t; t = t->beneath)
594 {
595 INHERIT (to_shortname, t);
596 INHERIT (to_longname, t);
597 INHERIT (to_doc, t);
598 /* Do not inherit to_open. */
599 /* Do not inherit to_close. */
600 /* Do not inherit to_attach. */
601 /* Do not inherit to_post_attach. */
602 INHERIT (to_attach_no_wait, t);
603 /* Do not inherit to_detach. */
604 /* Do not inherit to_disconnect. */
605 /* Do not inherit to_resume. */
606 /* Do not inherit to_wait. */
607 /* Do not inherit to_fetch_registers. */
608 /* Do not inherit to_store_registers. */
609 /* Do not inherit to_prepare_to_store. */
610 INHERIT (deprecated_xfer_memory, t);
611 /* Do not inherit to_files_info. */
612 /* Do not inherit to_insert_breakpoint. */
613 /* Do not inherit to_remove_breakpoint. */
614 /* Do not inherit to_can_use_hw_breakpoint. */
615 /* Do not inherit to_insert_hw_breakpoint. */
616 /* Do not inherit to_remove_hw_breakpoint. */
617 /* Do not inherit to_ranged_break_num_registers. */
618 /* Do not inherit to_insert_watchpoint. */
619 /* Do not inherit to_remove_watchpoint. */
620 /* Do not inherit to_insert_mask_watchpoint. */
621 /* Do not inherit to_remove_mask_watchpoint. */
622 /* Do not inherit to_stopped_data_address. */
623 INHERIT (to_have_steppable_watchpoint, t);
624 INHERIT (to_have_continuable_watchpoint, t);
625 /* Do not inherit to_stopped_by_watchpoint. */
626 /* Do not inherit to_watchpoint_addr_within_range. */
627 /* Do not inherit to_region_ok_for_hw_watchpoint. */
628 /* Do not inherit to_can_accel_watchpoint_condition. */
629 /* Do not inherit to_masked_watch_num_registers. */
630 /* Do not inherit to_terminal_init. */
631 /* Do not inherit to_terminal_inferior. */
632 /* Do not inherit to_terminal_ours_for_output. */
633 /* Do not inherit to_terminal_ours. */
634 /* Do not inherit to_terminal_save_ours. */
635 /* Do not inherit to_terminal_info. */
636 /* Do not inherit to_kill. */
637 /* Do not inherit to_load. */
638 /* Do no inherit to_create_inferior. */
639 /* Do not inherit to_post_startup_inferior. */
640 /* Do not inherit to_insert_fork_catchpoint. */
641 /* Do not inherit to_remove_fork_catchpoint. */
642 /* Do not inherit to_insert_vfork_catchpoint. */
643 /* Do not inherit to_remove_vfork_catchpoint. */
644 /* Do not inherit to_follow_fork. */
645 /* Do not inherit to_insert_exec_catchpoint. */
646 /* Do not inherit to_remove_exec_catchpoint. */
647 /* Do not inherit to_set_syscall_catchpoint. */
648 /* Do not inherit to_has_exited. */
649 /* Do not inherit to_mourn_inferior. */
650 INHERIT (to_can_run, t);
651 /* Do not inherit to_pass_signals. */
652 /* Do not inherit to_program_signals. */
653 /* Do not inherit to_thread_alive. */
654 /* Do not inherit to_find_new_threads. */
655 /* Do not inherit to_pid_to_str. */
656 /* Do not inherit to_extra_thread_info. */
657 /* Do not inherit to_thread_name. */
658 INHERIT (to_stop, t);
659 /* Do not inherit to_xfer_partial. */
660 /* Do not inherit to_rcmd. */
661 /* Do not inherit to_pid_to_exec_file. */
662 /* Do not inherit to_log_command. */
663 INHERIT (to_stratum, t);
664 /* Do not inherit to_has_all_memory. */
665 /* Do not inherit to_has_memory. */
666 /* Do not inherit to_has_stack. */
667 /* Do not inherit to_has_registers. */
668 /* Do not inherit to_has_execution. */
669 INHERIT (to_has_thread_control, t);
670 /* Do not inherit to_can_async_p. */
671 /* Do not inherit to_is_async_p. */
672 /* Do not inherit to_async. */
673 /* Do not inherit to_find_memory_regions. */
674 /* Do not inherit to_make_corefile_notes. */
675 /* Do not inherit to_get_bookmark. */
676 /* Do not inherit to_goto_bookmark. */
677 /* Do not inherit to_get_thread_local_address. */
678 /* Do not inherit to_can_execute_reverse. */
679 /* Do not inherit to_execution_direction. */
680 /* Do not inherit to_thread_architecture. */
681 /* Do not inherit to_read_description. */
682 /* Do not inherit to_get_ada_task_ptid. */
683 /* Do not inherit to_search_memory. */
684 /* Do not inherit to_supports_multi_process. */
685 /* Do not inherit to_supports_enable_disable_tracepoint. */
686 /* Do not inherit to_supports_string_tracing. */
687 /* Do not inherit to_trace_init. */
688 /* Do not inherit to_download_tracepoint. */
689 /* Do not inherit to_can_download_tracepoint. */
690 /* Do not inherit to_download_trace_state_variable. */
691 /* Do not inherit to_enable_tracepoint. */
692 /* Do not inherit to_disable_tracepoint. */
693 /* Do not inherit to_trace_set_readonly_regions. */
694 /* Do not inherit to_trace_start. */
695 /* Do not inherit to_get_trace_status. */
696 /* Do not inherit to_get_tracepoint_status. */
697 /* Do not inherit to_trace_stop. */
698 /* Do not inherit to_trace_find. */
699 /* Do not inherit to_get_trace_state_variable_value. */
700 /* Do not inherit to_save_trace_data. */
701 /* Do not inherit to_upload_tracepoints. */
702 /* Do not inherit to_upload_trace_state_variables. */
703 /* Do not inherit to_get_raw_trace_data. */
704 /* Do not inherit to_get_min_fast_tracepoint_insn_len. */
705 /* Do not inherit to_set_disconnected_tracing. */
706 /* Do not inherit to_set_circular_trace_buffer. */
707 /* Do not inherit to_set_trace_buffer_size. */
708 /* Do not inherit to_set_trace_notes. */
709 /* Do not inherit to_get_tib_address. */
710 /* Do not inherit to_set_permissions. */
711 /* Do not inherit to_static_tracepoint_marker_at. */
712 /* Do not inherit to_static_tracepoint_markers_by_strid. */
713 /* Do not inherit to_traceframe_info. */
714 /* Do not inherit to_use_agent. */
715 /* Do not inherit to_can_use_agent. */
716 INHERIT (to_augmented_libraries_svr4_read, t);
717 INHERIT (to_magic, t);
718 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
719 INHERIT (to_can_run_breakpoint_commands, t);
720 /* Do not inherit to_memory_map. */
721 /* Do not inherit to_flash_erase. */
722 /* Do not inherit to_flash_done. */
723 }
724 #undef INHERIT
725
726 /* Clean up a target struct so it no longer has any zero pointers in
727 it. Some entries are defaulted to a method that print an error,
728 others are hard-wired to a standard recursive default. */
729
730 #define de_fault(field, value) \
731 if (!current_target.field) \
732 current_target.field = value
733
734 de_fault (to_open,
735 (void (*) (char *, int))
736 tcomplain);
737 de_fault (to_close,
738 (void (*) (struct target_ops *))
739 target_ignore);
740 de_fault (deprecated_xfer_memory,
741 (int (*) (CORE_ADDR, gdb_byte *, int, int,
742 struct mem_attrib *, struct target_ops *))
743 nomemory);
744 de_fault (to_can_run,
745 (int (*) (struct target_ops *))
746 return_zero);
747 de_fault (to_stop,
748 (void (*) (struct target_ops *, ptid_t))
749 target_ignore);
750 current_target.to_read_description = NULL;
751 de_fault (to_supports_evaluation_of_breakpoint_conditions,
752 (int (*) (struct target_ops *))
753 return_zero);
754 de_fault (to_can_run_breakpoint_commands,
755 (int (*) (struct target_ops *))
756 return_zero);
757 de_fault (to_augmented_libraries_svr4_read,
758 (int (*) (struct target_ops *))
759 return_zero);
760
761 #undef de_fault
762
763 /* Finally, position the target-stack beneath the squashed
764 "current_target". That way code looking for a non-inherited
765 target method can quickly and simply find it. */
766 current_target.beneath = target_stack;
767
768 if (targetdebug)
769 setup_target_debug ();
770 }
771
772 /* Push a new target type into the stack of the existing target accessors,
773 possibly superseding some of the existing accessors.
774
775 Rather than allow an empty stack, we always have the dummy target at
776 the bottom stratum, so we can call the function vectors without
777 checking them. */
778
779 void
780 push_target (struct target_ops *t)
781 {
782 struct target_ops **cur;
783
784 /* Check magic number. If wrong, it probably means someone changed
785 the struct definition, but not all the places that initialize one. */
786 if (t->to_magic != OPS_MAGIC)
787 {
788 fprintf_unfiltered (gdb_stderr,
789 "Magic number of %s target struct wrong\n",
790 t->to_shortname);
791 internal_error (__FILE__, __LINE__,
792 _("failed internal consistency check"));
793 }
794
795 /* Find the proper stratum to install this target in. */
796 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
797 {
798 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
799 break;
800 }
801
802 /* If there's already targets at this stratum, remove them. */
803 /* FIXME: cagney/2003-10-15: I think this should be popping all
804 targets to CUR, and not just those at this stratum level. */
805 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
806 {
807 /* There's already something at this stratum level. Close it,
808 and un-hook it from the stack. */
809 struct target_ops *tmp = (*cur);
810
811 (*cur) = (*cur)->beneath;
812 tmp->beneath = NULL;
813 target_close (tmp);
814 }
815
816 /* We have removed all targets in our stratum, now add the new one. */
817 t->beneath = (*cur);
818 (*cur) = t;
819
820 update_current_target ();
821 }
822
823 /* Remove a target_ops vector from the stack, wherever it may be.
824 Return how many times it was removed (0 or 1). */
825
826 int
827 unpush_target (struct target_ops *t)
828 {
829 struct target_ops **cur;
830 struct target_ops *tmp;
831
832 if (t->to_stratum == dummy_stratum)
833 internal_error (__FILE__, __LINE__,
834 _("Attempt to unpush the dummy target"));
835
836 /* Look for the specified target. Note that we assume that a target
837 can only occur once in the target stack. */
838
839 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
840 {
841 if ((*cur) == t)
842 break;
843 }
844
845 /* If we don't find target_ops, quit. Only open targets should be
846 closed. */
847 if ((*cur) == NULL)
848 return 0;
849
850 /* Unchain the target. */
851 tmp = (*cur);
852 (*cur) = (*cur)->beneath;
853 tmp->beneath = NULL;
854
855 update_current_target ();
856
857 /* Finally close the target. Note we do this after unchaining, so
858 any target method calls from within the target_close
859 implementation don't end up in T anymore. */
860 target_close (t);
861
862 return 1;
863 }
864
865 void
866 pop_all_targets_above (enum strata above_stratum)
867 {
868 while ((int) (current_target.to_stratum) > (int) above_stratum)
869 {
870 if (!unpush_target (target_stack))
871 {
872 fprintf_unfiltered (gdb_stderr,
873 "pop_all_targets couldn't find target %s\n",
874 target_stack->to_shortname);
875 internal_error (__FILE__, __LINE__,
876 _("failed internal consistency check"));
877 break;
878 }
879 }
880 }
881
882 void
883 pop_all_targets (void)
884 {
885 pop_all_targets_above (dummy_stratum);
886 }
887
888 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
889
890 int
891 target_is_pushed (struct target_ops *t)
892 {
893 struct target_ops **cur;
894
895 /* Check magic number. If wrong, it probably means someone changed
896 the struct definition, but not all the places that initialize one. */
897 if (t->to_magic != OPS_MAGIC)
898 {
899 fprintf_unfiltered (gdb_stderr,
900 "Magic number of %s target struct wrong\n",
901 t->to_shortname);
902 internal_error (__FILE__, __LINE__,
903 _("failed internal consistency check"));
904 }
905
906 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
907 if (*cur == t)
908 return 1;
909
910 return 0;
911 }
912
913 /* Using the objfile specified in OBJFILE, find the address for the
914 current thread's thread-local storage with offset OFFSET. */
915 CORE_ADDR
916 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
917 {
918 volatile CORE_ADDR addr = 0;
919 struct target_ops *target;
920
921 for (target = current_target.beneath;
922 target != NULL;
923 target = target->beneath)
924 {
925 if (target->to_get_thread_local_address != NULL)
926 break;
927 }
928
929 if (target != NULL
930 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
931 {
932 ptid_t ptid = inferior_ptid;
933 volatile struct gdb_exception ex;
934
935 TRY_CATCH (ex, RETURN_MASK_ALL)
936 {
937 CORE_ADDR lm_addr;
938
939 /* Fetch the load module address for this objfile. */
940 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
941 objfile);
942 /* If it's 0, throw the appropriate exception. */
943 if (lm_addr == 0)
944 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
945 _("TLS load module not found"));
946
947 addr = target->to_get_thread_local_address (target, ptid,
948 lm_addr, offset);
949 }
950 /* If an error occurred, print TLS related messages here. Otherwise,
951 throw the error to some higher catcher. */
952 if (ex.reason < 0)
953 {
954 int objfile_is_library = (objfile->flags & OBJF_SHARED);
955
956 switch (ex.error)
957 {
958 case TLS_NO_LIBRARY_SUPPORT_ERROR:
959 error (_("Cannot find thread-local variables "
960 "in this thread library."));
961 break;
962 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
963 if (objfile_is_library)
964 error (_("Cannot find shared library `%s' in dynamic"
965 " linker's load module list"), objfile_name (objfile));
966 else
967 error (_("Cannot find executable file `%s' in dynamic"
968 " linker's load module list"), objfile_name (objfile));
969 break;
970 case TLS_NOT_ALLOCATED_YET_ERROR:
971 if (objfile_is_library)
972 error (_("The inferior has not yet allocated storage for"
973 " thread-local variables in\n"
974 "the shared library `%s'\n"
975 "for %s"),
976 objfile_name (objfile), target_pid_to_str (ptid));
977 else
978 error (_("The inferior has not yet allocated storage for"
979 " thread-local variables in\n"
980 "the executable `%s'\n"
981 "for %s"),
982 objfile_name (objfile), target_pid_to_str (ptid));
983 break;
984 case TLS_GENERIC_ERROR:
985 if (objfile_is_library)
986 error (_("Cannot find thread-local storage for %s, "
987 "shared library %s:\n%s"),
988 target_pid_to_str (ptid),
989 objfile_name (objfile), ex.message);
990 else
991 error (_("Cannot find thread-local storage for %s, "
992 "executable file %s:\n%s"),
993 target_pid_to_str (ptid),
994 objfile_name (objfile), ex.message);
995 break;
996 default:
997 throw_exception (ex);
998 break;
999 }
1000 }
1001 }
1002 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1003 TLS is an ABI-specific thing. But we don't do that yet. */
1004 else
1005 error (_("Cannot find thread-local variables on this target"));
1006
1007 return addr;
1008 }
1009
1010 const char *
1011 target_xfer_status_to_string (enum target_xfer_status err)
1012 {
1013 #define CASE(X) case X: return #X
1014 switch (err)
1015 {
1016 CASE(TARGET_XFER_E_IO);
1017 CASE(TARGET_XFER_E_UNAVAILABLE);
1018 default:
1019 return "<unknown>";
1020 }
1021 #undef CASE
1022 };
1023
1024
1025 #undef MIN
1026 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1027
1028 /* target_read_string -- read a null terminated string, up to LEN bytes,
1029 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1030 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1031 is responsible for freeing it. Return the number of bytes successfully
1032 read. */
1033
1034 int
1035 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1036 {
1037 int tlen, offset, i;
1038 gdb_byte buf[4];
1039 int errcode = 0;
1040 char *buffer;
1041 int buffer_allocated;
1042 char *bufptr;
1043 unsigned int nbytes_read = 0;
1044
1045 gdb_assert (string);
1046
1047 /* Small for testing. */
1048 buffer_allocated = 4;
1049 buffer = xmalloc (buffer_allocated);
1050 bufptr = buffer;
1051
1052 while (len > 0)
1053 {
1054 tlen = MIN (len, 4 - (memaddr & 3));
1055 offset = memaddr & 3;
1056
1057 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1058 if (errcode != 0)
1059 {
1060 /* The transfer request might have crossed the boundary to an
1061 unallocated region of memory. Retry the transfer, requesting
1062 a single byte. */
1063 tlen = 1;
1064 offset = 0;
1065 errcode = target_read_memory (memaddr, buf, 1);
1066 if (errcode != 0)
1067 goto done;
1068 }
1069
1070 if (bufptr - buffer + tlen > buffer_allocated)
1071 {
1072 unsigned int bytes;
1073
1074 bytes = bufptr - buffer;
1075 buffer_allocated *= 2;
1076 buffer = xrealloc (buffer, buffer_allocated);
1077 bufptr = buffer + bytes;
1078 }
1079
1080 for (i = 0; i < tlen; i++)
1081 {
1082 *bufptr++ = buf[i + offset];
1083 if (buf[i + offset] == '\000')
1084 {
1085 nbytes_read += i + 1;
1086 goto done;
1087 }
1088 }
1089
1090 memaddr += tlen;
1091 len -= tlen;
1092 nbytes_read += tlen;
1093 }
1094 done:
1095 *string = buffer;
1096 if (errnop != NULL)
1097 *errnop = errcode;
1098 return nbytes_read;
1099 }
1100
1101 struct target_section_table *
1102 target_get_section_table (struct target_ops *target)
1103 {
1104 struct target_ops *t;
1105
1106 if (targetdebug)
1107 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1108
1109 for (t = target; t != NULL; t = t->beneath)
1110 if (t->to_get_section_table != NULL)
1111 return (*t->to_get_section_table) (t);
1112
1113 return NULL;
1114 }
1115
1116 /* Find a section containing ADDR. */
1117
1118 struct target_section *
1119 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1120 {
1121 struct target_section_table *table = target_get_section_table (target);
1122 struct target_section *secp;
1123
1124 if (table == NULL)
1125 return NULL;
1126
1127 for (secp = table->sections; secp < table->sections_end; secp++)
1128 {
1129 if (addr >= secp->addr && addr < secp->endaddr)
1130 return secp;
1131 }
1132 return NULL;
1133 }
1134
1135 /* Read memory from the live target, even if currently inspecting a
1136 traceframe. The return is the same as that of target_read. */
1137
1138 static enum target_xfer_status
1139 target_read_live_memory (enum target_object object,
1140 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1141 ULONGEST *xfered_len)
1142 {
1143 enum target_xfer_status ret;
1144 struct cleanup *cleanup;
1145
1146 /* Switch momentarily out of tfind mode so to access live memory.
1147 Note that this must not clear global state, such as the frame
1148 cache, which must still remain valid for the previous traceframe.
1149 We may be _building_ the frame cache at this point. */
1150 cleanup = make_cleanup_restore_traceframe_number ();
1151 set_traceframe_number (-1);
1152
1153 ret = target_xfer_partial (current_target.beneath, object, NULL,
1154 myaddr, NULL, memaddr, len, xfered_len);
1155
1156 do_cleanups (cleanup);
1157 return ret;
1158 }
1159
1160 /* Using the set of read-only target sections of OPS, read live
1161 read-only memory. Note that the actual reads start from the
1162 top-most target again.
1163
1164 For interface/parameters/return description see target.h,
1165 to_xfer_partial. */
1166
1167 static enum target_xfer_status
1168 memory_xfer_live_readonly_partial (struct target_ops *ops,
1169 enum target_object object,
1170 gdb_byte *readbuf, ULONGEST memaddr,
1171 ULONGEST len, ULONGEST *xfered_len)
1172 {
1173 struct target_section *secp;
1174 struct target_section_table *table;
1175
1176 secp = target_section_by_addr (ops, memaddr);
1177 if (secp != NULL
1178 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1179 secp->the_bfd_section)
1180 & SEC_READONLY))
1181 {
1182 struct target_section *p;
1183 ULONGEST memend = memaddr + len;
1184
1185 table = target_get_section_table (ops);
1186
1187 for (p = table->sections; p < table->sections_end; p++)
1188 {
1189 if (memaddr >= p->addr)
1190 {
1191 if (memend <= p->endaddr)
1192 {
1193 /* Entire transfer is within this section. */
1194 return target_read_live_memory (object, memaddr,
1195 readbuf, len, xfered_len);
1196 }
1197 else if (memaddr >= p->endaddr)
1198 {
1199 /* This section ends before the transfer starts. */
1200 continue;
1201 }
1202 else
1203 {
1204 /* This section overlaps the transfer. Just do half. */
1205 len = p->endaddr - memaddr;
1206 return target_read_live_memory (object, memaddr,
1207 readbuf, len, xfered_len);
1208 }
1209 }
1210 }
1211 }
1212
1213 return TARGET_XFER_EOF;
1214 }
1215
1216 /* Read memory from more than one valid target. A core file, for
1217 instance, could have some of memory but delegate other bits to
1218 the target below it. So, we must manually try all targets. */
1219
1220 static enum target_xfer_status
1221 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1222 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1223 ULONGEST *xfered_len)
1224 {
1225 enum target_xfer_status res;
1226
1227 do
1228 {
1229 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1230 readbuf, writebuf, memaddr, len,
1231 xfered_len);
1232 if (res == TARGET_XFER_OK)
1233 break;
1234
1235 /* Stop if the target reports that the memory is not available. */
1236 if (res == TARGET_XFER_E_UNAVAILABLE)
1237 break;
1238
1239 /* We want to continue past core files to executables, but not
1240 past a running target's memory. */
1241 if (ops->to_has_all_memory (ops))
1242 break;
1243
1244 ops = ops->beneath;
1245 }
1246 while (ops != NULL);
1247
1248 return res;
1249 }
1250
1251 /* Perform a partial memory transfer.
1252 For docs see target.h, to_xfer_partial. */
1253
1254 static enum target_xfer_status
1255 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1256 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1257 ULONGEST len, ULONGEST *xfered_len)
1258 {
1259 enum target_xfer_status res;
1260 int reg_len;
1261 struct mem_region *region;
1262 struct inferior *inf;
1263
1264 /* For accesses to unmapped overlay sections, read directly from
1265 files. Must do this first, as MEMADDR may need adjustment. */
1266 if (readbuf != NULL && overlay_debugging)
1267 {
1268 struct obj_section *section = find_pc_overlay (memaddr);
1269
1270 if (pc_in_unmapped_range (memaddr, section))
1271 {
1272 struct target_section_table *table
1273 = target_get_section_table (ops);
1274 const char *section_name = section->the_bfd_section->name;
1275
1276 memaddr = overlay_mapped_address (memaddr, section);
1277 return section_table_xfer_memory_partial (readbuf, writebuf,
1278 memaddr, len, xfered_len,
1279 table->sections,
1280 table->sections_end,
1281 section_name);
1282 }
1283 }
1284
1285 /* Try the executable files, if "trust-readonly-sections" is set. */
1286 if (readbuf != NULL && trust_readonly)
1287 {
1288 struct target_section *secp;
1289 struct target_section_table *table;
1290
1291 secp = target_section_by_addr (ops, memaddr);
1292 if (secp != NULL
1293 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1294 secp->the_bfd_section)
1295 & SEC_READONLY))
1296 {
1297 table = target_get_section_table (ops);
1298 return section_table_xfer_memory_partial (readbuf, writebuf,
1299 memaddr, len, xfered_len,
1300 table->sections,
1301 table->sections_end,
1302 NULL);
1303 }
1304 }
1305
1306 /* If reading unavailable memory in the context of traceframes, and
1307 this address falls within a read-only section, fallback to
1308 reading from live memory. */
1309 if (readbuf != NULL && get_traceframe_number () != -1)
1310 {
1311 VEC(mem_range_s) *available;
1312
1313 /* If we fail to get the set of available memory, then the
1314 target does not support querying traceframe info, and so we
1315 attempt reading from the traceframe anyway (assuming the
1316 target implements the old QTro packet then). */
1317 if (traceframe_available_memory (&available, memaddr, len))
1318 {
1319 struct cleanup *old_chain;
1320
1321 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1322
1323 if (VEC_empty (mem_range_s, available)
1324 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1325 {
1326 /* Don't read into the traceframe's available
1327 memory. */
1328 if (!VEC_empty (mem_range_s, available))
1329 {
1330 LONGEST oldlen = len;
1331
1332 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1333 gdb_assert (len <= oldlen);
1334 }
1335
1336 do_cleanups (old_chain);
1337
1338 /* This goes through the topmost target again. */
1339 res = memory_xfer_live_readonly_partial (ops, object,
1340 readbuf, memaddr,
1341 len, xfered_len);
1342 if (res == TARGET_XFER_OK)
1343 return TARGET_XFER_OK;
1344 else
1345 {
1346 /* No use trying further, we know some memory starting
1347 at MEMADDR isn't available. */
1348 *xfered_len = len;
1349 return TARGET_XFER_E_UNAVAILABLE;
1350 }
1351 }
1352
1353 /* Don't try to read more than how much is available, in
1354 case the target implements the deprecated QTro packet to
1355 cater for older GDBs (the target's knowledge of read-only
1356 sections may be outdated by now). */
1357 len = VEC_index (mem_range_s, available, 0)->length;
1358
1359 do_cleanups (old_chain);
1360 }
1361 }
1362
1363 /* Try GDB's internal data cache. */
1364 region = lookup_mem_region (memaddr);
1365 /* region->hi == 0 means there's no upper bound. */
1366 if (memaddr + len < region->hi || region->hi == 0)
1367 reg_len = len;
1368 else
1369 reg_len = region->hi - memaddr;
1370
1371 switch (region->attrib.mode)
1372 {
1373 case MEM_RO:
1374 if (writebuf != NULL)
1375 return TARGET_XFER_E_IO;
1376 break;
1377
1378 case MEM_WO:
1379 if (readbuf != NULL)
1380 return TARGET_XFER_E_IO;
1381 break;
1382
1383 case MEM_FLASH:
1384 /* We only support writing to flash during "load" for now. */
1385 if (writebuf != NULL)
1386 error (_("Writing to flash memory forbidden in this context"));
1387 break;
1388
1389 case MEM_NONE:
1390 return TARGET_XFER_E_IO;
1391 }
1392
1393 if (!ptid_equal (inferior_ptid, null_ptid))
1394 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1395 else
1396 inf = NULL;
1397
1398 if (inf != NULL
1399 /* The dcache reads whole cache lines; that doesn't play well
1400 with reading from a trace buffer, because reading outside of
1401 the collected memory range fails. */
1402 && get_traceframe_number () == -1
1403 && (region->attrib.cache
1404 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1405 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1406 {
1407 DCACHE *dcache = target_dcache_get_or_init ();
1408 int l;
1409
1410 if (readbuf != NULL)
1411 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1412 else
1413 /* FIXME drow/2006-08-09: If we're going to preserve const
1414 correctness dcache_xfer_memory should take readbuf and
1415 writebuf. */
1416 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1417 reg_len, 1);
1418 if (l <= 0)
1419 return TARGET_XFER_E_IO;
1420 else
1421 {
1422 *xfered_len = (ULONGEST) l;
1423 return TARGET_XFER_OK;
1424 }
1425 }
1426
1427 /* If none of those methods found the memory we wanted, fall back
1428 to a target partial transfer. Normally a single call to
1429 to_xfer_partial is enough; if it doesn't recognize an object
1430 it will call the to_xfer_partial of the next target down.
1431 But for memory this won't do. Memory is the only target
1432 object which can be read from more than one valid target.
1433 A core file, for instance, could have some of memory but
1434 delegate other bits to the target below it. So, we must
1435 manually try all targets. */
1436
1437 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1438 xfered_len);
1439
1440 /* Make sure the cache gets updated no matter what - if we are writing
1441 to the stack. Even if this write is not tagged as such, we still need
1442 to update the cache. */
1443
1444 if (res == TARGET_XFER_OK
1445 && inf != NULL
1446 && writebuf != NULL
1447 && target_dcache_init_p ()
1448 && !region->attrib.cache
1449 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1450 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1451 {
1452 DCACHE *dcache = target_dcache_get ();
1453
1454 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1455 }
1456
1457 /* If we still haven't got anything, return the last error. We
1458 give up. */
1459 return res;
1460 }
1461
1462 /* Perform a partial memory transfer. For docs see target.h,
1463 to_xfer_partial. */
1464
1465 static enum target_xfer_status
1466 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1467 gdb_byte *readbuf, const gdb_byte *writebuf,
1468 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1469 {
1470 enum target_xfer_status res;
1471
1472 /* Zero length requests are ok and require no work. */
1473 if (len == 0)
1474 return TARGET_XFER_EOF;
1475
1476 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1477 breakpoint insns, thus hiding out from higher layers whether
1478 there are software breakpoints inserted in the code stream. */
1479 if (readbuf != NULL)
1480 {
1481 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1482 xfered_len);
1483
1484 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1485 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1486 }
1487 else
1488 {
1489 void *buf;
1490 struct cleanup *old_chain;
1491
1492 /* A large write request is likely to be partially satisfied
1493 by memory_xfer_partial_1. We will continually malloc
1494 and free a copy of the entire write request for breakpoint
1495 shadow handling even though we only end up writing a small
1496 subset of it. Cap writes to 4KB to mitigate this. */
1497 len = min (4096, len);
1498
1499 buf = xmalloc (len);
1500 old_chain = make_cleanup (xfree, buf);
1501 memcpy (buf, writebuf, len);
1502
1503 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1504 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1505 xfered_len);
1506
1507 do_cleanups (old_chain);
1508 }
1509
1510 return res;
1511 }
1512
1513 static void
1514 restore_show_memory_breakpoints (void *arg)
1515 {
1516 show_memory_breakpoints = (uintptr_t) arg;
1517 }
1518
1519 struct cleanup *
1520 make_show_memory_breakpoints_cleanup (int show)
1521 {
1522 int current = show_memory_breakpoints;
1523
1524 show_memory_breakpoints = show;
1525 return make_cleanup (restore_show_memory_breakpoints,
1526 (void *) (uintptr_t) current);
1527 }
1528
1529 /* For docs see target.h, to_xfer_partial. */
1530
1531 enum target_xfer_status
1532 target_xfer_partial (struct target_ops *ops,
1533 enum target_object object, const char *annex,
1534 gdb_byte *readbuf, const gdb_byte *writebuf,
1535 ULONGEST offset, ULONGEST len,
1536 ULONGEST *xfered_len)
1537 {
1538 enum target_xfer_status retval;
1539
1540 gdb_assert (ops->to_xfer_partial != NULL);
1541
1542 /* Transfer is done when LEN is zero. */
1543 if (len == 0)
1544 return TARGET_XFER_EOF;
1545
1546 if (writebuf && !may_write_memory)
1547 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1548 core_addr_to_string_nz (offset), plongest (len));
1549
1550 *xfered_len = 0;
1551
1552 /* If this is a memory transfer, let the memory-specific code
1553 have a look at it instead. Memory transfers are more
1554 complicated. */
1555 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1556 || object == TARGET_OBJECT_CODE_MEMORY)
1557 retval = memory_xfer_partial (ops, object, readbuf,
1558 writebuf, offset, len, xfered_len);
1559 else if (object == TARGET_OBJECT_RAW_MEMORY)
1560 {
1561 /* Request the normal memory object from other layers. */
1562 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1563 xfered_len);
1564 }
1565 else
1566 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1567 writebuf, offset, len, xfered_len);
1568
1569 if (targetdebug)
1570 {
1571 const unsigned char *myaddr = NULL;
1572
1573 fprintf_unfiltered (gdb_stdlog,
1574 "%s:target_xfer_partial "
1575 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1576 ops->to_shortname,
1577 (int) object,
1578 (annex ? annex : "(null)"),
1579 host_address_to_string (readbuf),
1580 host_address_to_string (writebuf),
1581 core_addr_to_string_nz (offset),
1582 pulongest (len), retval,
1583 pulongest (*xfered_len));
1584
1585 if (readbuf)
1586 myaddr = readbuf;
1587 if (writebuf)
1588 myaddr = writebuf;
1589 if (retval == TARGET_XFER_OK && myaddr != NULL)
1590 {
1591 int i;
1592
1593 fputs_unfiltered (", bytes =", gdb_stdlog);
1594 for (i = 0; i < *xfered_len; i++)
1595 {
1596 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1597 {
1598 if (targetdebug < 2 && i > 0)
1599 {
1600 fprintf_unfiltered (gdb_stdlog, " ...");
1601 break;
1602 }
1603 fprintf_unfiltered (gdb_stdlog, "\n");
1604 }
1605
1606 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1607 }
1608 }
1609
1610 fputc_unfiltered ('\n', gdb_stdlog);
1611 }
1612
1613 /* Check implementations of to_xfer_partial update *XFERED_LEN
1614 properly. Do assertion after printing debug messages, so that we
1615 can find more clues on assertion failure from debugging messages. */
1616 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1617 gdb_assert (*xfered_len > 0);
1618
1619 return retval;
1620 }
1621
1622 /* Read LEN bytes of target memory at address MEMADDR, placing the
1623 results in GDB's memory at MYADDR. Returns either 0 for success or
1624 TARGET_XFER_E_IO if any error occurs.
1625
1626 If an error occurs, no guarantee is made about the contents of the data at
1627 MYADDR. In particular, the caller should not depend upon partial reads
1628 filling the buffer with good data. There is no way for the caller to know
1629 how much good data might have been transfered anyway. Callers that can
1630 deal with partial reads should call target_read (which will retry until
1631 it makes no progress, and then return how much was transferred). */
1632
1633 int
1634 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1635 {
1636 /* Dispatch to the topmost target, not the flattened current_target.
1637 Memory accesses check target->to_has_(all_)memory, and the
1638 flattened target doesn't inherit those. */
1639 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1640 myaddr, memaddr, len) == len)
1641 return 0;
1642 else
1643 return TARGET_XFER_E_IO;
1644 }
1645
1646 /* Like target_read_memory, but specify explicitly that this is a read
1647 from the target's raw memory. That is, this read bypasses the
1648 dcache, breakpoint shadowing, etc. */
1649
1650 int
1651 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1652 {
1653 /* See comment in target_read_memory about why the request starts at
1654 current_target.beneath. */
1655 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1656 myaddr, memaddr, len) == len)
1657 return 0;
1658 else
1659 return TARGET_XFER_E_IO;
1660 }
1661
1662 /* Like target_read_memory, but specify explicitly that this is a read from
1663 the target's stack. This may trigger different cache behavior. */
1664
1665 int
1666 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1667 {
1668 /* See comment in target_read_memory about why the request starts at
1669 current_target.beneath. */
1670 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1671 myaddr, memaddr, len) == len)
1672 return 0;
1673 else
1674 return TARGET_XFER_E_IO;
1675 }
1676
1677 /* Like target_read_memory, but specify explicitly that this is a read from
1678 the target's code. This may trigger different cache behavior. */
1679
1680 int
1681 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1682 {
1683 /* See comment in target_read_memory about why the request starts at
1684 current_target.beneath. */
1685 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1686 myaddr, memaddr, len) == len)
1687 return 0;
1688 else
1689 return TARGET_XFER_E_IO;
1690 }
1691
1692 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1693 Returns either 0 for success or TARGET_XFER_E_IO if any
1694 error occurs. If an error occurs, no guarantee is made about how
1695 much data got written. Callers that can deal with partial writes
1696 should call target_write. */
1697
1698 int
1699 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1700 {
1701 /* See comment in target_read_memory about why the request starts at
1702 current_target.beneath. */
1703 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1704 myaddr, memaddr, len) == len)
1705 return 0;
1706 else
1707 return TARGET_XFER_E_IO;
1708 }
1709
1710 /* Write LEN bytes from MYADDR to target raw memory at address
1711 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1712 if any error occurs. If an error occurs, no guarantee is made
1713 about how much data got written. Callers that can deal with
1714 partial writes should call target_write. */
1715
1716 int
1717 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1718 {
1719 /* See comment in target_read_memory about why the request starts at
1720 current_target.beneath. */
1721 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1722 myaddr, memaddr, len) == len)
1723 return 0;
1724 else
1725 return TARGET_XFER_E_IO;
1726 }
1727
1728 /* Fetch the target's memory map. */
1729
1730 VEC(mem_region_s) *
1731 target_memory_map (void)
1732 {
1733 VEC(mem_region_s) *result;
1734 struct mem_region *last_one, *this_one;
1735 int ix;
1736 struct target_ops *t;
1737
1738 if (targetdebug)
1739 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1740
1741 for (t = current_target.beneath; t != NULL; t = t->beneath)
1742 if (t->to_memory_map != NULL)
1743 break;
1744
1745 if (t == NULL)
1746 return NULL;
1747
1748 result = t->to_memory_map (t);
1749 if (result == NULL)
1750 return NULL;
1751
1752 qsort (VEC_address (mem_region_s, result),
1753 VEC_length (mem_region_s, result),
1754 sizeof (struct mem_region), mem_region_cmp);
1755
1756 /* Check that regions do not overlap. Simultaneously assign
1757 a numbering for the "mem" commands to use to refer to
1758 each region. */
1759 last_one = NULL;
1760 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1761 {
1762 this_one->number = ix;
1763
1764 if (last_one && last_one->hi > this_one->lo)
1765 {
1766 warning (_("Overlapping regions in memory map: ignoring"));
1767 VEC_free (mem_region_s, result);
1768 return NULL;
1769 }
1770 last_one = this_one;
1771 }
1772
1773 return result;
1774 }
1775
1776 void
1777 target_flash_erase (ULONGEST address, LONGEST length)
1778 {
1779 struct target_ops *t;
1780
1781 for (t = current_target.beneath; t != NULL; t = t->beneath)
1782 if (t->to_flash_erase != NULL)
1783 {
1784 if (targetdebug)
1785 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1786 hex_string (address), phex (length, 0));
1787 t->to_flash_erase (t, address, length);
1788 return;
1789 }
1790
1791 tcomplain ();
1792 }
1793
1794 void
1795 target_flash_done (void)
1796 {
1797 struct target_ops *t;
1798
1799 for (t = current_target.beneath; t != NULL; t = t->beneath)
1800 if (t->to_flash_done != NULL)
1801 {
1802 if (targetdebug)
1803 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1804 t->to_flash_done (t);
1805 return;
1806 }
1807
1808 tcomplain ();
1809 }
1810
1811 static void
1812 show_trust_readonly (struct ui_file *file, int from_tty,
1813 struct cmd_list_element *c, const char *value)
1814 {
1815 fprintf_filtered (file,
1816 _("Mode for reading from readonly sections is %s.\n"),
1817 value);
1818 }
1819
1820 /* More generic transfers. */
1821
1822 static enum target_xfer_status
1823 default_xfer_partial (struct target_ops *ops, enum target_object object,
1824 const char *annex, gdb_byte *readbuf,
1825 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1826 ULONGEST *xfered_len)
1827 {
1828 if (object == TARGET_OBJECT_MEMORY
1829 && ops->deprecated_xfer_memory != NULL)
1830 /* If available, fall back to the target's
1831 "deprecated_xfer_memory" method. */
1832 {
1833 int xfered = -1;
1834
1835 errno = 0;
1836 if (writebuf != NULL)
1837 {
1838 void *buffer = xmalloc (len);
1839 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1840
1841 memcpy (buffer, writebuf, len);
1842 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1843 1/*write*/, NULL, ops);
1844 do_cleanups (cleanup);
1845 }
1846 if (readbuf != NULL)
1847 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1848 0/*read*/, NULL, ops);
1849 if (xfered > 0)
1850 {
1851 *xfered_len = (ULONGEST) xfered;
1852 return TARGET_XFER_E_IO;
1853 }
1854 else if (xfered == 0 && errno == 0)
1855 /* "deprecated_xfer_memory" uses 0, cross checked against
1856 ERRNO as one indication of an error. */
1857 return TARGET_XFER_EOF;
1858 else
1859 return TARGET_XFER_E_IO;
1860 }
1861 else
1862 {
1863 gdb_assert (ops->beneath != NULL);
1864 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1865 readbuf, writebuf, offset, len,
1866 xfered_len);
1867 }
1868 }
1869
1870 /* Target vector read/write partial wrapper functions. */
1871
1872 static enum target_xfer_status
1873 target_read_partial (struct target_ops *ops,
1874 enum target_object object,
1875 const char *annex, gdb_byte *buf,
1876 ULONGEST offset, ULONGEST len,
1877 ULONGEST *xfered_len)
1878 {
1879 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1880 xfered_len);
1881 }
1882
1883 static enum target_xfer_status
1884 target_write_partial (struct target_ops *ops,
1885 enum target_object object,
1886 const char *annex, const gdb_byte *buf,
1887 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1888 {
1889 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1890 xfered_len);
1891 }
1892
1893 /* Wrappers to perform the full transfer. */
1894
1895 /* For docs on target_read see target.h. */
1896
1897 LONGEST
1898 target_read (struct target_ops *ops,
1899 enum target_object object,
1900 const char *annex, gdb_byte *buf,
1901 ULONGEST offset, LONGEST len)
1902 {
1903 LONGEST xfered = 0;
1904
1905 while (xfered < len)
1906 {
1907 ULONGEST xfered_len;
1908 enum target_xfer_status status;
1909
1910 status = target_read_partial (ops, object, annex,
1911 (gdb_byte *) buf + xfered,
1912 offset + xfered, len - xfered,
1913 &xfered_len);
1914
1915 /* Call an observer, notifying them of the xfer progress? */
1916 if (status == TARGET_XFER_EOF)
1917 return xfered;
1918 else if (status == TARGET_XFER_OK)
1919 {
1920 xfered += xfered_len;
1921 QUIT;
1922 }
1923 else
1924 return -1;
1925
1926 }
1927 return len;
1928 }
1929
1930 /* Assuming that the entire [begin, end) range of memory cannot be
1931 read, try to read whatever subrange is possible to read.
1932
1933 The function returns, in RESULT, either zero or one memory block.
1934 If there's a readable subrange at the beginning, it is completely
1935 read and returned. Any further readable subrange will not be read.
1936 Otherwise, if there's a readable subrange at the end, it will be
1937 completely read and returned. Any readable subranges before it
1938 (obviously, not starting at the beginning), will be ignored. In
1939 other cases -- either no readable subrange, or readable subrange(s)
1940 that is neither at the beginning, or end, nothing is returned.
1941
1942 The purpose of this function is to handle a read across a boundary
1943 of accessible memory in a case when memory map is not available.
1944 The above restrictions are fine for this case, but will give
1945 incorrect results if the memory is 'patchy'. However, supporting
1946 'patchy' memory would require trying to read every single byte,
1947 and it seems unacceptable solution. Explicit memory map is
1948 recommended for this case -- and target_read_memory_robust will
1949 take care of reading multiple ranges then. */
1950
1951 static void
1952 read_whatever_is_readable (struct target_ops *ops,
1953 ULONGEST begin, ULONGEST end,
1954 VEC(memory_read_result_s) **result)
1955 {
1956 gdb_byte *buf = xmalloc (end - begin);
1957 ULONGEST current_begin = begin;
1958 ULONGEST current_end = end;
1959 int forward;
1960 memory_read_result_s r;
1961 ULONGEST xfered_len;
1962
1963 /* If we previously failed to read 1 byte, nothing can be done here. */
1964 if (end - begin <= 1)
1965 {
1966 xfree (buf);
1967 return;
1968 }
1969
1970 /* Check that either first or the last byte is readable, and give up
1971 if not. This heuristic is meant to permit reading accessible memory
1972 at the boundary of accessible region. */
1973 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1974 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1975 {
1976 forward = 1;
1977 ++current_begin;
1978 }
1979 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1980 buf + (end-begin) - 1, end - 1, 1,
1981 &xfered_len) == TARGET_XFER_OK)
1982 {
1983 forward = 0;
1984 --current_end;
1985 }
1986 else
1987 {
1988 xfree (buf);
1989 return;
1990 }
1991
1992 /* Loop invariant is that the [current_begin, current_end) was previously
1993 found to be not readable as a whole.
1994
1995 Note loop condition -- if the range has 1 byte, we can't divide the range
1996 so there's no point trying further. */
1997 while (current_end - current_begin > 1)
1998 {
1999 ULONGEST first_half_begin, first_half_end;
2000 ULONGEST second_half_begin, second_half_end;
2001 LONGEST xfer;
2002 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2003
2004 if (forward)
2005 {
2006 first_half_begin = current_begin;
2007 first_half_end = middle;
2008 second_half_begin = middle;
2009 second_half_end = current_end;
2010 }
2011 else
2012 {
2013 first_half_begin = middle;
2014 first_half_end = current_end;
2015 second_half_begin = current_begin;
2016 second_half_end = middle;
2017 }
2018
2019 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2020 buf + (first_half_begin - begin),
2021 first_half_begin,
2022 first_half_end - first_half_begin);
2023
2024 if (xfer == first_half_end - first_half_begin)
2025 {
2026 /* This half reads up fine. So, the error must be in the
2027 other half. */
2028 current_begin = second_half_begin;
2029 current_end = second_half_end;
2030 }
2031 else
2032 {
2033 /* This half is not readable. Because we've tried one byte, we
2034 know some part of this half if actually redable. Go to the next
2035 iteration to divide again and try to read.
2036
2037 We don't handle the other half, because this function only tries
2038 to read a single readable subrange. */
2039 current_begin = first_half_begin;
2040 current_end = first_half_end;
2041 }
2042 }
2043
2044 if (forward)
2045 {
2046 /* The [begin, current_begin) range has been read. */
2047 r.begin = begin;
2048 r.end = current_begin;
2049 r.data = buf;
2050 }
2051 else
2052 {
2053 /* The [current_end, end) range has been read. */
2054 LONGEST rlen = end - current_end;
2055
2056 r.data = xmalloc (rlen);
2057 memcpy (r.data, buf + current_end - begin, rlen);
2058 r.begin = current_end;
2059 r.end = end;
2060 xfree (buf);
2061 }
2062 VEC_safe_push(memory_read_result_s, (*result), &r);
2063 }
2064
2065 void
2066 free_memory_read_result_vector (void *x)
2067 {
2068 VEC(memory_read_result_s) *v = x;
2069 memory_read_result_s *current;
2070 int ix;
2071
2072 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2073 {
2074 xfree (current->data);
2075 }
2076 VEC_free (memory_read_result_s, v);
2077 }
2078
2079 VEC(memory_read_result_s) *
2080 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2081 {
2082 VEC(memory_read_result_s) *result = 0;
2083
2084 LONGEST xfered = 0;
2085 while (xfered < len)
2086 {
2087 struct mem_region *region = lookup_mem_region (offset + xfered);
2088 LONGEST rlen;
2089
2090 /* If there is no explicit region, a fake one should be created. */
2091 gdb_assert (region);
2092
2093 if (region->hi == 0)
2094 rlen = len - xfered;
2095 else
2096 rlen = region->hi - offset;
2097
2098 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2099 {
2100 /* Cannot read this region. Note that we can end up here only
2101 if the region is explicitly marked inaccessible, or
2102 'inaccessible-by-default' is in effect. */
2103 xfered += rlen;
2104 }
2105 else
2106 {
2107 LONGEST to_read = min (len - xfered, rlen);
2108 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2109
2110 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2111 (gdb_byte *) buffer,
2112 offset + xfered, to_read);
2113 /* Call an observer, notifying them of the xfer progress? */
2114 if (xfer <= 0)
2115 {
2116 /* Got an error reading full chunk. See if maybe we can read
2117 some subrange. */
2118 xfree (buffer);
2119 read_whatever_is_readable (ops, offset + xfered,
2120 offset + xfered + to_read, &result);
2121 xfered += to_read;
2122 }
2123 else
2124 {
2125 struct memory_read_result r;
2126 r.data = buffer;
2127 r.begin = offset + xfered;
2128 r.end = r.begin + xfer;
2129 VEC_safe_push (memory_read_result_s, result, &r);
2130 xfered += xfer;
2131 }
2132 QUIT;
2133 }
2134 }
2135 return result;
2136 }
2137
2138
2139 /* An alternative to target_write with progress callbacks. */
2140
2141 LONGEST
2142 target_write_with_progress (struct target_ops *ops,
2143 enum target_object object,
2144 const char *annex, const gdb_byte *buf,
2145 ULONGEST offset, LONGEST len,
2146 void (*progress) (ULONGEST, void *), void *baton)
2147 {
2148 LONGEST xfered = 0;
2149
2150 /* Give the progress callback a chance to set up. */
2151 if (progress)
2152 (*progress) (0, baton);
2153
2154 while (xfered < len)
2155 {
2156 ULONGEST xfered_len;
2157 enum target_xfer_status status;
2158
2159 status = target_write_partial (ops, object, annex,
2160 (gdb_byte *) buf + xfered,
2161 offset + xfered, len - xfered,
2162 &xfered_len);
2163
2164 if (status == TARGET_XFER_EOF)
2165 return xfered;
2166 if (TARGET_XFER_STATUS_ERROR_P (status))
2167 return -1;
2168
2169 gdb_assert (status == TARGET_XFER_OK);
2170 if (progress)
2171 (*progress) (xfered_len, baton);
2172
2173 xfered += xfered_len;
2174 QUIT;
2175 }
2176 return len;
2177 }
2178
2179 /* For docs on target_write see target.h. */
2180
2181 LONGEST
2182 target_write (struct target_ops *ops,
2183 enum target_object object,
2184 const char *annex, const gdb_byte *buf,
2185 ULONGEST offset, LONGEST len)
2186 {
2187 return target_write_with_progress (ops, object, annex, buf, offset, len,
2188 NULL, NULL);
2189 }
2190
2191 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2192 the size of the transferred data. PADDING additional bytes are
2193 available in *BUF_P. This is a helper function for
2194 target_read_alloc; see the declaration of that function for more
2195 information. */
2196
2197 static LONGEST
2198 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2199 const char *annex, gdb_byte **buf_p, int padding)
2200 {
2201 size_t buf_alloc, buf_pos;
2202 gdb_byte *buf;
2203
2204 /* This function does not have a length parameter; it reads the
2205 entire OBJECT). Also, it doesn't support objects fetched partly
2206 from one target and partly from another (in a different stratum,
2207 e.g. a core file and an executable). Both reasons make it
2208 unsuitable for reading memory. */
2209 gdb_assert (object != TARGET_OBJECT_MEMORY);
2210
2211 /* Start by reading up to 4K at a time. The target will throttle
2212 this number down if necessary. */
2213 buf_alloc = 4096;
2214 buf = xmalloc (buf_alloc);
2215 buf_pos = 0;
2216 while (1)
2217 {
2218 ULONGEST xfered_len;
2219 enum target_xfer_status status;
2220
2221 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2222 buf_pos, buf_alloc - buf_pos - padding,
2223 &xfered_len);
2224
2225 if (status == TARGET_XFER_EOF)
2226 {
2227 /* Read all there was. */
2228 if (buf_pos == 0)
2229 xfree (buf);
2230 else
2231 *buf_p = buf;
2232 return buf_pos;
2233 }
2234 else if (status != TARGET_XFER_OK)
2235 {
2236 /* An error occurred. */
2237 xfree (buf);
2238 return TARGET_XFER_E_IO;
2239 }
2240
2241 buf_pos += xfered_len;
2242
2243 /* If the buffer is filling up, expand it. */
2244 if (buf_alloc < buf_pos * 2)
2245 {
2246 buf_alloc *= 2;
2247 buf = xrealloc (buf, buf_alloc);
2248 }
2249
2250 QUIT;
2251 }
2252 }
2253
2254 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2255 the size of the transferred data. See the declaration in "target.h"
2256 function for more information about the return value. */
2257
2258 LONGEST
2259 target_read_alloc (struct target_ops *ops, enum target_object object,
2260 const char *annex, gdb_byte **buf_p)
2261 {
2262 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2263 }
2264
2265 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2266 returned as a string, allocated using xmalloc. If an error occurs
2267 or the transfer is unsupported, NULL is returned. Empty objects
2268 are returned as allocated but empty strings. A warning is issued
2269 if the result contains any embedded NUL bytes. */
2270
2271 char *
2272 target_read_stralloc (struct target_ops *ops, enum target_object object,
2273 const char *annex)
2274 {
2275 gdb_byte *buffer;
2276 char *bufstr;
2277 LONGEST i, transferred;
2278
2279 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2280 bufstr = (char *) buffer;
2281
2282 if (transferred < 0)
2283 return NULL;
2284
2285 if (transferred == 0)
2286 return xstrdup ("");
2287
2288 bufstr[transferred] = 0;
2289
2290 /* Check for embedded NUL bytes; but allow trailing NULs. */
2291 for (i = strlen (bufstr); i < transferred; i++)
2292 if (bufstr[i] != 0)
2293 {
2294 warning (_("target object %d, annex %s, "
2295 "contained unexpected null characters"),
2296 (int) object, annex ? annex : "(none)");
2297 break;
2298 }
2299
2300 return bufstr;
2301 }
2302
2303 /* Memory transfer methods. */
2304
2305 void
2306 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2307 LONGEST len)
2308 {
2309 /* This method is used to read from an alternate, non-current
2310 target. This read must bypass the overlay support (as symbols
2311 don't match this target), and GDB's internal cache (wrong cache
2312 for this target). */
2313 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2314 != len)
2315 memory_error (TARGET_XFER_E_IO, addr);
2316 }
2317
2318 ULONGEST
2319 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2320 int len, enum bfd_endian byte_order)
2321 {
2322 gdb_byte buf[sizeof (ULONGEST)];
2323
2324 gdb_assert (len <= sizeof (buf));
2325 get_target_memory (ops, addr, buf, len);
2326 return extract_unsigned_integer (buf, len, byte_order);
2327 }
2328
2329 /* See target.h. */
2330
2331 int
2332 target_insert_breakpoint (struct gdbarch *gdbarch,
2333 struct bp_target_info *bp_tgt)
2334 {
2335 if (!may_insert_breakpoints)
2336 {
2337 warning (_("May not insert breakpoints"));
2338 return 1;
2339 }
2340
2341 return current_target.to_insert_breakpoint (&current_target,
2342 gdbarch, bp_tgt);
2343 }
2344
2345 /* See target.h. */
2346
2347 int
2348 target_remove_breakpoint (struct gdbarch *gdbarch,
2349 struct bp_target_info *bp_tgt)
2350 {
2351 /* This is kind of a weird case to handle, but the permission might
2352 have been changed after breakpoints were inserted - in which case
2353 we should just take the user literally and assume that any
2354 breakpoints should be left in place. */
2355 if (!may_insert_breakpoints)
2356 {
2357 warning (_("May not remove breakpoints"));
2358 return 1;
2359 }
2360
2361 return current_target.to_remove_breakpoint (&current_target,
2362 gdbarch, bp_tgt);
2363 }
2364
2365 static void
2366 target_info (char *args, int from_tty)
2367 {
2368 struct target_ops *t;
2369 int has_all_mem = 0;
2370
2371 if (symfile_objfile != NULL)
2372 printf_unfiltered (_("Symbols from \"%s\".\n"),
2373 objfile_name (symfile_objfile));
2374
2375 for (t = target_stack; t != NULL; t = t->beneath)
2376 {
2377 if (!(*t->to_has_memory) (t))
2378 continue;
2379
2380 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2381 continue;
2382 if (has_all_mem)
2383 printf_unfiltered (_("\tWhile running this, "
2384 "GDB does not access memory from...\n"));
2385 printf_unfiltered ("%s:\n", t->to_longname);
2386 (t->to_files_info) (t);
2387 has_all_mem = (*t->to_has_all_memory) (t);
2388 }
2389 }
2390
2391 /* This function is called before any new inferior is created, e.g.
2392 by running a program, attaching, or connecting to a target.
2393 It cleans up any state from previous invocations which might
2394 change between runs. This is a subset of what target_preopen
2395 resets (things which might change between targets). */
2396
2397 void
2398 target_pre_inferior (int from_tty)
2399 {
2400 /* Clear out solib state. Otherwise the solib state of the previous
2401 inferior might have survived and is entirely wrong for the new
2402 target. This has been observed on GNU/Linux using glibc 2.3. How
2403 to reproduce:
2404
2405 bash$ ./foo&
2406 [1] 4711
2407 bash$ ./foo&
2408 [1] 4712
2409 bash$ gdb ./foo
2410 [...]
2411 (gdb) attach 4711
2412 (gdb) detach
2413 (gdb) attach 4712
2414 Cannot access memory at address 0xdeadbeef
2415 */
2416
2417 /* In some OSs, the shared library list is the same/global/shared
2418 across inferiors. If code is shared between processes, so are
2419 memory regions and features. */
2420 if (!gdbarch_has_global_solist (target_gdbarch ()))
2421 {
2422 no_shared_libraries (NULL, from_tty);
2423
2424 invalidate_target_mem_regions ();
2425
2426 target_clear_description ();
2427 }
2428
2429 agent_capability_invalidate ();
2430 }
2431
2432 /* Callback for iterate_over_inferiors. Gets rid of the given
2433 inferior. */
2434
2435 static int
2436 dispose_inferior (struct inferior *inf, void *args)
2437 {
2438 struct thread_info *thread;
2439
2440 thread = any_thread_of_process (inf->pid);
2441 if (thread)
2442 {
2443 switch_to_thread (thread->ptid);
2444
2445 /* Core inferiors actually should be detached, not killed. */
2446 if (target_has_execution)
2447 target_kill ();
2448 else
2449 target_detach (NULL, 0);
2450 }
2451
2452 return 0;
2453 }
2454
2455 /* This is to be called by the open routine before it does
2456 anything. */
2457
2458 void
2459 target_preopen (int from_tty)
2460 {
2461 dont_repeat ();
2462
2463 if (have_inferiors ())
2464 {
2465 if (!from_tty
2466 || !have_live_inferiors ()
2467 || query (_("A program is being debugged already. Kill it? ")))
2468 iterate_over_inferiors (dispose_inferior, NULL);
2469 else
2470 error (_("Program not killed."));
2471 }
2472
2473 /* Calling target_kill may remove the target from the stack. But if
2474 it doesn't (which seems like a win for UDI), remove it now. */
2475 /* Leave the exec target, though. The user may be switching from a
2476 live process to a core of the same program. */
2477 pop_all_targets_above (file_stratum);
2478
2479 target_pre_inferior (from_tty);
2480 }
2481
2482 /* Detach a target after doing deferred register stores. */
2483
2484 void
2485 target_detach (const char *args, int from_tty)
2486 {
2487 struct target_ops* t;
2488
2489 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2490 /* Don't remove global breakpoints here. They're removed on
2491 disconnection from the target. */
2492 ;
2493 else
2494 /* If we're in breakpoints-always-inserted mode, have to remove
2495 them before detaching. */
2496 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2497
2498 prepare_for_detach ();
2499
2500 current_target.to_detach (&current_target, args, from_tty);
2501 if (targetdebug)
2502 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2503 args, from_tty);
2504 }
2505
2506 void
2507 target_disconnect (char *args, int from_tty)
2508 {
2509 struct target_ops *t;
2510
2511 /* If we're in breakpoints-always-inserted mode or if breakpoints
2512 are global across processes, we have to remove them before
2513 disconnecting. */
2514 remove_breakpoints ();
2515
2516 for (t = current_target.beneath; t != NULL; t = t->beneath)
2517 if (t->to_disconnect != NULL)
2518 {
2519 if (targetdebug)
2520 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2521 args, from_tty);
2522 t->to_disconnect (t, args, from_tty);
2523 return;
2524 }
2525
2526 tcomplain ();
2527 }
2528
2529 ptid_t
2530 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2531 {
2532 struct target_ops *t;
2533 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2534 status, options);
2535
2536 if (targetdebug)
2537 {
2538 char *status_string;
2539 char *options_string;
2540
2541 status_string = target_waitstatus_to_string (status);
2542 options_string = target_options_to_string (options);
2543 fprintf_unfiltered (gdb_stdlog,
2544 "target_wait (%d, status, options={%s})"
2545 " = %d, %s\n",
2546 ptid_get_pid (ptid), options_string,
2547 ptid_get_pid (retval), status_string);
2548 xfree (status_string);
2549 xfree (options_string);
2550 }
2551
2552 return retval;
2553 }
2554
2555 char *
2556 target_pid_to_str (ptid_t ptid)
2557 {
2558 struct target_ops *t;
2559
2560 for (t = current_target.beneath; t != NULL; t = t->beneath)
2561 {
2562 if (t->to_pid_to_str != NULL)
2563 return (*t->to_pid_to_str) (t, ptid);
2564 }
2565
2566 return normal_pid_to_str (ptid);
2567 }
2568
2569 char *
2570 target_thread_name (struct thread_info *info)
2571 {
2572 return current_target.to_thread_name (&current_target, info);
2573 }
2574
2575 void
2576 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2577 {
2578 struct target_ops *t;
2579
2580 target_dcache_invalidate ();
2581
2582 current_target.to_resume (&current_target, ptid, step, signal);
2583 if (targetdebug)
2584 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2585 ptid_get_pid (ptid),
2586 step ? "step" : "continue",
2587 gdb_signal_to_name (signal));
2588
2589 registers_changed_ptid (ptid);
2590 set_executing (ptid, 1);
2591 set_running (ptid, 1);
2592 clear_inline_frame_state (ptid);
2593 }
2594
2595 void
2596 target_pass_signals (int numsigs, unsigned char *pass_signals)
2597 {
2598 struct target_ops *t;
2599
2600 for (t = current_target.beneath; t != NULL; t = t->beneath)
2601 {
2602 if (t->to_pass_signals != NULL)
2603 {
2604 if (targetdebug)
2605 {
2606 int i;
2607
2608 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2609 numsigs);
2610
2611 for (i = 0; i < numsigs; i++)
2612 if (pass_signals[i])
2613 fprintf_unfiltered (gdb_stdlog, " %s",
2614 gdb_signal_to_name (i));
2615
2616 fprintf_unfiltered (gdb_stdlog, " })\n");
2617 }
2618
2619 (*t->to_pass_signals) (t, numsigs, pass_signals);
2620 return;
2621 }
2622 }
2623 }
2624
2625 void
2626 target_program_signals (int numsigs, unsigned char *program_signals)
2627 {
2628 struct target_ops *t;
2629
2630 for (t = current_target.beneath; t != NULL; t = t->beneath)
2631 {
2632 if (t->to_program_signals != NULL)
2633 {
2634 if (targetdebug)
2635 {
2636 int i;
2637
2638 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2639 numsigs);
2640
2641 for (i = 0; i < numsigs; i++)
2642 if (program_signals[i])
2643 fprintf_unfiltered (gdb_stdlog, " %s",
2644 gdb_signal_to_name (i));
2645
2646 fprintf_unfiltered (gdb_stdlog, " })\n");
2647 }
2648
2649 (*t->to_program_signals) (t, numsigs, program_signals);
2650 return;
2651 }
2652 }
2653 }
2654
2655 /* Look through the list of possible targets for a target that can
2656 follow forks. */
2657
2658 int
2659 target_follow_fork (int follow_child, int detach_fork)
2660 {
2661 struct target_ops *t;
2662
2663 for (t = current_target.beneath; t != NULL; t = t->beneath)
2664 {
2665 if (t->to_follow_fork != NULL)
2666 {
2667 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2668
2669 if (targetdebug)
2670 fprintf_unfiltered (gdb_stdlog,
2671 "target_follow_fork (%d, %d) = %d\n",
2672 follow_child, detach_fork, retval);
2673 return retval;
2674 }
2675 }
2676
2677 /* Some target returned a fork event, but did not know how to follow it. */
2678 internal_error (__FILE__, __LINE__,
2679 _("could not find a target to follow fork"));
2680 }
2681
2682 void
2683 target_mourn_inferior (void)
2684 {
2685 struct target_ops *t;
2686
2687 for (t = current_target.beneath; t != NULL; t = t->beneath)
2688 {
2689 if (t->to_mourn_inferior != NULL)
2690 {
2691 t->to_mourn_inferior (t);
2692 if (targetdebug)
2693 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2694
2695 /* We no longer need to keep handles on any of the object files.
2696 Make sure to release them to avoid unnecessarily locking any
2697 of them while we're not actually debugging. */
2698 bfd_cache_close_all ();
2699
2700 return;
2701 }
2702 }
2703
2704 internal_error (__FILE__, __LINE__,
2705 _("could not find a target to follow mourn inferior"));
2706 }
2707
2708 /* Look for a target which can describe architectural features, starting
2709 from TARGET. If we find one, return its description. */
2710
2711 const struct target_desc *
2712 target_read_description (struct target_ops *target)
2713 {
2714 struct target_ops *t;
2715
2716 for (t = target; t != NULL; t = t->beneath)
2717 if (t->to_read_description != NULL)
2718 {
2719 const struct target_desc *tdesc;
2720
2721 tdesc = t->to_read_description (t);
2722 if (tdesc)
2723 return tdesc;
2724 }
2725
2726 return NULL;
2727 }
2728
2729 /* The default implementation of to_search_memory.
2730 This implements a basic search of memory, reading target memory and
2731 performing the search here (as opposed to performing the search in on the
2732 target side with, for example, gdbserver). */
2733
2734 int
2735 simple_search_memory (struct target_ops *ops,
2736 CORE_ADDR start_addr, ULONGEST search_space_len,
2737 const gdb_byte *pattern, ULONGEST pattern_len,
2738 CORE_ADDR *found_addrp)
2739 {
2740 /* NOTE: also defined in find.c testcase. */
2741 #define SEARCH_CHUNK_SIZE 16000
2742 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2743 /* Buffer to hold memory contents for searching. */
2744 gdb_byte *search_buf;
2745 unsigned search_buf_size;
2746 struct cleanup *old_cleanups;
2747
2748 search_buf_size = chunk_size + pattern_len - 1;
2749
2750 /* No point in trying to allocate a buffer larger than the search space. */
2751 if (search_space_len < search_buf_size)
2752 search_buf_size = search_space_len;
2753
2754 search_buf = malloc (search_buf_size);
2755 if (search_buf == NULL)
2756 error (_("Unable to allocate memory to perform the search."));
2757 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2758
2759 /* Prime the search buffer. */
2760
2761 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2762 search_buf, start_addr, search_buf_size) != search_buf_size)
2763 {
2764 warning (_("Unable to access %s bytes of target "
2765 "memory at %s, halting search."),
2766 pulongest (search_buf_size), hex_string (start_addr));
2767 do_cleanups (old_cleanups);
2768 return -1;
2769 }
2770
2771 /* Perform the search.
2772
2773 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2774 When we've scanned N bytes we copy the trailing bytes to the start and
2775 read in another N bytes. */
2776
2777 while (search_space_len >= pattern_len)
2778 {
2779 gdb_byte *found_ptr;
2780 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2781
2782 found_ptr = memmem (search_buf, nr_search_bytes,
2783 pattern, pattern_len);
2784
2785 if (found_ptr != NULL)
2786 {
2787 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2788
2789 *found_addrp = found_addr;
2790 do_cleanups (old_cleanups);
2791 return 1;
2792 }
2793
2794 /* Not found in this chunk, skip to next chunk. */
2795
2796 /* Don't let search_space_len wrap here, it's unsigned. */
2797 if (search_space_len >= chunk_size)
2798 search_space_len -= chunk_size;
2799 else
2800 search_space_len = 0;
2801
2802 if (search_space_len >= pattern_len)
2803 {
2804 unsigned keep_len = search_buf_size - chunk_size;
2805 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2806 int nr_to_read;
2807
2808 /* Copy the trailing part of the previous iteration to the front
2809 of the buffer for the next iteration. */
2810 gdb_assert (keep_len == pattern_len - 1);
2811 memcpy (search_buf, search_buf + chunk_size, keep_len);
2812
2813 nr_to_read = min (search_space_len - keep_len, chunk_size);
2814
2815 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2816 search_buf + keep_len, read_addr,
2817 nr_to_read) != nr_to_read)
2818 {
2819 warning (_("Unable to access %s bytes of target "
2820 "memory at %s, halting search."),
2821 plongest (nr_to_read),
2822 hex_string (read_addr));
2823 do_cleanups (old_cleanups);
2824 return -1;
2825 }
2826
2827 start_addr += chunk_size;
2828 }
2829 }
2830
2831 /* Not found. */
2832
2833 do_cleanups (old_cleanups);
2834 return 0;
2835 }
2836
2837 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2838 sequence of bytes in PATTERN with length PATTERN_LEN.
2839
2840 The result is 1 if found, 0 if not found, and -1 if there was an error
2841 requiring halting of the search (e.g. memory read error).
2842 If the pattern is found the address is recorded in FOUND_ADDRP. */
2843
2844 int
2845 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2846 const gdb_byte *pattern, ULONGEST pattern_len,
2847 CORE_ADDR *found_addrp)
2848 {
2849 struct target_ops *t;
2850 int found;
2851
2852 /* We don't use INHERIT to set current_target.to_search_memory,
2853 so we have to scan the target stack and handle targetdebug
2854 ourselves. */
2855
2856 if (targetdebug)
2857 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2858 hex_string (start_addr));
2859
2860 for (t = current_target.beneath; t != NULL; t = t->beneath)
2861 if (t->to_search_memory != NULL)
2862 break;
2863
2864 if (t != NULL)
2865 {
2866 found = t->to_search_memory (t, start_addr, search_space_len,
2867 pattern, pattern_len, found_addrp);
2868 }
2869 else
2870 {
2871 /* If a special version of to_search_memory isn't available, use the
2872 simple version. */
2873 found = simple_search_memory (current_target.beneath,
2874 start_addr, search_space_len,
2875 pattern, pattern_len, found_addrp);
2876 }
2877
2878 if (targetdebug)
2879 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2880
2881 return found;
2882 }
2883
2884 /* Look through the currently pushed targets. If none of them will
2885 be able to restart the currently running process, issue an error
2886 message. */
2887
2888 void
2889 target_require_runnable (void)
2890 {
2891 struct target_ops *t;
2892
2893 for (t = target_stack; t != NULL; t = t->beneath)
2894 {
2895 /* If this target knows how to create a new program, then
2896 assume we will still be able to after killing the current
2897 one. Either killing and mourning will not pop T, or else
2898 find_default_run_target will find it again. */
2899 if (t->to_create_inferior != NULL)
2900 return;
2901
2902 /* Do not worry about thread_stratum targets that can not
2903 create inferiors. Assume they will be pushed again if
2904 necessary, and continue to the process_stratum. */
2905 if (t->to_stratum == thread_stratum
2906 || t->to_stratum == arch_stratum)
2907 continue;
2908
2909 error (_("The \"%s\" target does not support \"run\". "
2910 "Try \"help target\" or \"continue\"."),
2911 t->to_shortname);
2912 }
2913
2914 /* This function is only called if the target is running. In that
2915 case there should have been a process_stratum target and it
2916 should either know how to create inferiors, or not... */
2917 internal_error (__FILE__, __LINE__, _("No targets found"));
2918 }
2919
2920 /* Look through the list of possible targets for a target that can
2921 execute a run or attach command without any other data. This is
2922 used to locate the default process stratum.
2923
2924 If DO_MESG is not NULL, the result is always valid (error() is
2925 called for errors); else, return NULL on error. */
2926
2927 static struct target_ops *
2928 find_default_run_target (char *do_mesg)
2929 {
2930 struct target_ops **t;
2931 struct target_ops *runable = NULL;
2932 int count;
2933
2934 count = 0;
2935
2936 for (t = target_structs; t < target_structs + target_struct_size;
2937 ++t)
2938 {
2939 if ((*t)->to_can_run && target_can_run (*t))
2940 {
2941 runable = *t;
2942 ++count;
2943 }
2944 }
2945
2946 if (count != 1)
2947 {
2948 if (do_mesg)
2949 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2950 else
2951 return NULL;
2952 }
2953
2954 return runable;
2955 }
2956
2957 void
2958 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2959 {
2960 struct target_ops *t;
2961
2962 t = find_default_run_target ("attach");
2963 (t->to_attach) (t, args, from_tty);
2964 return;
2965 }
2966
2967 void
2968 find_default_create_inferior (struct target_ops *ops,
2969 char *exec_file, char *allargs, char **env,
2970 int from_tty)
2971 {
2972 struct target_ops *t;
2973
2974 t = find_default_run_target ("run");
2975 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2976 return;
2977 }
2978
2979 static int
2980 find_default_can_async_p (struct target_ops *ignore)
2981 {
2982 struct target_ops *t;
2983
2984 /* This may be called before the target is pushed on the stack;
2985 look for the default process stratum. If there's none, gdb isn't
2986 configured with a native debugger, and target remote isn't
2987 connected yet. */
2988 t = find_default_run_target (NULL);
2989 if (t && t->to_can_async_p != delegate_can_async_p)
2990 return (t->to_can_async_p) (t);
2991 return 0;
2992 }
2993
2994 static int
2995 find_default_is_async_p (struct target_ops *ignore)
2996 {
2997 struct target_ops *t;
2998
2999 /* This may be called before the target is pushed on the stack;
3000 look for the default process stratum. If there's none, gdb isn't
3001 configured with a native debugger, and target remote isn't
3002 connected yet. */
3003 t = find_default_run_target (NULL);
3004 if (t && t->to_is_async_p != delegate_is_async_p)
3005 return (t->to_is_async_p) (t);
3006 return 0;
3007 }
3008
3009 static int
3010 find_default_supports_non_stop (struct target_ops *self)
3011 {
3012 struct target_ops *t;
3013
3014 t = find_default_run_target (NULL);
3015 if (t && t->to_supports_non_stop)
3016 return (t->to_supports_non_stop) (t);
3017 return 0;
3018 }
3019
3020 int
3021 target_supports_non_stop (void)
3022 {
3023 struct target_ops *t;
3024
3025 for (t = &current_target; t != NULL; t = t->beneath)
3026 if (t->to_supports_non_stop)
3027 return t->to_supports_non_stop (t);
3028
3029 return 0;
3030 }
3031
3032 /* Implement the "info proc" command. */
3033
3034 int
3035 target_info_proc (char *args, enum info_proc_what what)
3036 {
3037 struct target_ops *t;
3038
3039 /* If we're already connected to something that can get us OS
3040 related data, use it. Otherwise, try using the native
3041 target. */
3042 if (current_target.to_stratum >= process_stratum)
3043 t = current_target.beneath;
3044 else
3045 t = find_default_run_target (NULL);
3046
3047 for (; t != NULL; t = t->beneath)
3048 {
3049 if (t->to_info_proc != NULL)
3050 {
3051 t->to_info_proc (t, args, what);
3052
3053 if (targetdebug)
3054 fprintf_unfiltered (gdb_stdlog,
3055 "target_info_proc (\"%s\", %d)\n", args, what);
3056
3057 return 1;
3058 }
3059 }
3060
3061 return 0;
3062 }
3063
3064 static int
3065 find_default_supports_disable_randomization (struct target_ops *self)
3066 {
3067 struct target_ops *t;
3068
3069 t = find_default_run_target (NULL);
3070 if (t && t->to_supports_disable_randomization)
3071 return (t->to_supports_disable_randomization) (t);
3072 return 0;
3073 }
3074
3075 int
3076 target_supports_disable_randomization (void)
3077 {
3078 struct target_ops *t;
3079
3080 for (t = &current_target; t != NULL; t = t->beneath)
3081 if (t->to_supports_disable_randomization)
3082 return t->to_supports_disable_randomization (t);
3083
3084 return 0;
3085 }
3086
3087 char *
3088 target_get_osdata (const char *type)
3089 {
3090 struct target_ops *t;
3091
3092 /* If we're already connected to something that can get us OS
3093 related data, use it. Otherwise, try using the native
3094 target. */
3095 if (current_target.to_stratum >= process_stratum)
3096 t = current_target.beneath;
3097 else
3098 t = find_default_run_target ("get OS data");
3099
3100 if (!t)
3101 return NULL;
3102
3103 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3104 }
3105
3106 /* Determine the current address space of thread PTID. */
3107
3108 struct address_space *
3109 target_thread_address_space (ptid_t ptid)
3110 {
3111 struct address_space *aspace;
3112 struct inferior *inf;
3113 struct target_ops *t;
3114
3115 for (t = current_target.beneath; t != NULL; t = t->beneath)
3116 {
3117 if (t->to_thread_address_space != NULL)
3118 {
3119 aspace = t->to_thread_address_space (t, ptid);
3120 gdb_assert (aspace);
3121
3122 if (targetdebug)
3123 fprintf_unfiltered (gdb_stdlog,
3124 "target_thread_address_space (%s) = %d\n",
3125 target_pid_to_str (ptid),
3126 address_space_num (aspace));
3127 return aspace;
3128 }
3129 }
3130
3131 /* Fall-back to the "main" address space of the inferior. */
3132 inf = find_inferior_pid (ptid_get_pid (ptid));
3133
3134 if (inf == NULL || inf->aspace == NULL)
3135 internal_error (__FILE__, __LINE__,
3136 _("Can't determine the current "
3137 "address space of thread %s\n"),
3138 target_pid_to_str (ptid));
3139
3140 return inf->aspace;
3141 }
3142
3143
3144 /* Target file operations. */
3145
3146 static struct target_ops *
3147 default_fileio_target (void)
3148 {
3149 /* If we're already connected to something that can perform
3150 file I/O, use it. Otherwise, try using the native target. */
3151 if (current_target.to_stratum >= process_stratum)
3152 return current_target.beneath;
3153 else
3154 return find_default_run_target ("file I/O");
3155 }
3156
3157 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3158 target file descriptor, or -1 if an error occurs (and set
3159 *TARGET_ERRNO). */
3160 int
3161 target_fileio_open (const char *filename, int flags, int mode,
3162 int *target_errno)
3163 {
3164 struct target_ops *t;
3165
3166 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3167 {
3168 if (t->to_fileio_open != NULL)
3169 {
3170 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3171
3172 if (targetdebug)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3175 filename, flags, mode,
3176 fd, fd != -1 ? 0 : *target_errno);
3177 return fd;
3178 }
3179 }
3180
3181 *target_errno = FILEIO_ENOSYS;
3182 return -1;
3183 }
3184
3185 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3186 Return the number of bytes written, or -1 if an error occurs
3187 (and set *TARGET_ERRNO). */
3188 int
3189 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3190 ULONGEST offset, int *target_errno)
3191 {
3192 struct target_ops *t;
3193
3194 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3195 {
3196 if (t->to_fileio_pwrite != NULL)
3197 {
3198 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3199 target_errno);
3200
3201 if (targetdebug)
3202 fprintf_unfiltered (gdb_stdlog,
3203 "target_fileio_pwrite (%d,...,%d,%s) "
3204 "= %d (%d)\n",
3205 fd, len, pulongest (offset),
3206 ret, ret != -1 ? 0 : *target_errno);
3207 return ret;
3208 }
3209 }
3210
3211 *target_errno = FILEIO_ENOSYS;
3212 return -1;
3213 }
3214
3215 /* Read up to LEN bytes FD on the target into READ_BUF.
3216 Return the number of bytes read, or -1 if an error occurs
3217 (and set *TARGET_ERRNO). */
3218 int
3219 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3220 ULONGEST offset, int *target_errno)
3221 {
3222 struct target_ops *t;
3223
3224 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3225 {
3226 if (t->to_fileio_pread != NULL)
3227 {
3228 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3229 target_errno);
3230
3231 if (targetdebug)
3232 fprintf_unfiltered (gdb_stdlog,
3233 "target_fileio_pread (%d,...,%d,%s) "
3234 "= %d (%d)\n",
3235 fd, len, pulongest (offset),
3236 ret, ret != -1 ? 0 : *target_errno);
3237 return ret;
3238 }
3239 }
3240
3241 *target_errno = FILEIO_ENOSYS;
3242 return -1;
3243 }
3244
3245 /* Close FD on the target. Return 0, or -1 if an error occurs
3246 (and set *TARGET_ERRNO). */
3247 int
3248 target_fileio_close (int fd, int *target_errno)
3249 {
3250 struct target_ops *t;
3251
3252 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3253 {
3254 if (t->to_fileio_close != NULL)
3255 {
3256 int ret = t->to_fileio_close (t, fd, target_errno);
3257
3258 if (targetdebug)
3259 fprintf_unfiltered (gdb_stdlog,
3260 "target_fileio_close (%d) = %d (%d)\n",
3261 fd, ret, ret != -1 ? 0 : *target_errno);
3262 return ret;
3263 }
3264 }
3265
3266 *target_errno = FILEIO_ENOSYS;
3267 return -1;
3268 }
3269
3270 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3271 occurs (and set *TARGET_ERRNO). */
3272 int
3273 target_fileio_unlink (const char *filename, int *target_errno)
3274 {
3275 struct target_ops *t;
3276
3277 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3278 {
3279 if (t->to_fileio_unlink != NULL)
3280 {
3281 int ret = t->to_fileio_unlink (t, filename, target_errno);
3282
3283 if (targetdebug)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "target_fileio_unlink (%s) = %d (%d)\n",
3286 filename, ret, ret != -1 ? 0 : *target_errno);
3287 return ret;
3288 }
3289 }
3290
3291 *target_errno = FILEIO_ENOSYS;
3292 return -1;
3293 }
3294
3295 /* Read value of symbolic link FILENAME on the target. Return a
3296 null-terminated string allocated via xmalloc, or NULL if an error
3297 occurs (and set *TARGET_ERRNO). */
3298 char *
3299 target_fileio_readlink (const char *filename, int *target_errno)
3300 {
3301 struct target_ops *t;
3302
3303 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3304 {
3305 if (t->to_fileio_readlink != NULL)
3306 {
3307 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3308
3309 if (targetdebug)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "target_fileio_readlink (%s) = %s (%d)\n",
3312 filename, ret? ret : "(nil)",
3313 ret? 0 : *target_errno);
3314 return ret;
3315 }
3316 }
3317
3318 *target_errno = FILEIO_ENOSYS;
3319 return NULL;
3320 }
3321
3322 static void
3323 target_fileio_close_cleanup (void *opaque)
3324 {
3325 int fd = *(int *) opaque;
3326 int target_errno;
3327
3328 target_fileio_close (fd, &target_errno);
3329 }
3330
3331 /* Read target file FILENAME. Store the result in *BUF_P and
3332 return the size of the transferred data. PADDING additional bytes are
3333 available in *BUF_P. This is a helper function for
3334 target_fileio_read_alloc; see the declaration of that function for more
3335 information. */
3336
3337 static LONGEST
3338 target_fileio_read_alloc_1 (const char *filename,
3339 gdb_byte **buf_p, int padding)
3340 {
3341 struct cleanup *close_cleanup;
3342 size_t buf_alloc, buf_pos;
3343 gdb_byte *buf;
3344 LONGEST n;
3345 int fd;
3346 int target_errno;
3347
3348 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3349 if (fd == -1)
3350 return -1;
3351
3352 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3353
3354 /* Start by reading up to 4K at a time. The target will throttle
3355 this number down if necessary. */
3356 buf_alloc = 4096;
3357 buf = xmalloc (buf_alloc);
3358 buf_pos = 0;
3359 while (1)
3360 {
3361 n = target_fileio_pread (fd, &buf[buf_pos],
3362 buf_alloc - buf_pos - padding, buf_pos,
3363 &target_errno);
3364 if (n < 0)
3365 {
3366 /* An error occurred. */
3367 do_cleanups (close_cleanup);
3368 xfree (buf);
3369 return -1;
3370 }
3371 else if (n == 0)
3372 {
3373 /* Read all there was. */
3374 do_cleanups (close_cleanup);
3375 if (buf_pos == 0)
3376 xfree (buf);
3377 else
3378 *buf_p = buf;
3379 return buf_pos;
3380 }
3381
3382 buf_pos += n;
3383
3384 /* If the buffer is filling up, expand it. */
3385 if (buf_alloc < buf_pos * 2)
3386 {
3387 buf_alloc *= 2;
3388 buf = xrealloc (buf, buf_alloc);
3389 }
3390
3391 QUIT;
3392 }
3393 }
3394
3395 /* Read target file FILENAME. Store the result in *BUF_P and return
3396 the size of the transferred data. See the declaration in "target.h"
3397 function for more information about the return value. */
3398
3399 LONGEST
3400 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3401 {
3402 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3403 }
3404
3405 /* Read target file FILENAME. The result is NUL-terminated and
3406 returned as a string, allocated using xmalloc. If an error occurs
3407 or the transfer is unsupported, NULL is returned. Empty objects
3408 are returned as allocated but empty strings. A warning is issued
3409 if the result contains any embedded NUL bytes. */
3410
3411 char *
3412 target_fileio_read_stralloc (const char *filename)
3413 {
3414 gdb_byte *buffer;
3415 char *bufstr;
3416 LONGEST i, transferred;
3417
3418 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3419 bufstr = (char *) buffer;
3420
3421 if (transferred < 0)
3422 return NULL;
3423
3424 if (transferred == 0)
3425 return xstrdup ("");
3426
3427 bufstr[transferred] = 0;
3428
3429 /* Check for embedded NUL bytes; but allow trailing NULs. */
3430 for (i = strlen (bufstr); i < transferred; i++)
3431 if (bufstr[i] != 0)
3432 {
3433 warning (_("target file %s "
3434 "contained unexpected null characters"),
3435 filename);
3436 break;
3437 }
3438
3439 return bufstr;
3440 }
3441
3442
3443 static int
3444 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3445 CORE_ADDR addr, int len)
3446 {
3447 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3448 }
3449
3450 static int
3451 default_watchpoint_addr_within_range (struct target_ops *target,
3452 CORE_ADDR addr,
3453 CORE_ADDR start, int length)
3454 {
3455 return addr >= start && addr < start + length;
3456 }
3457
3458 static struct gdbarch *
3459 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3460 {
3461 return target_gdbarch ();
3462 }
3463
3464 static int
3465 return_zero (void)
3466 {
3467 return 0;
3468 }
3469
3470 /*
3471 * Find the next target down the stack from the specified target.
3472 */
3473
3474 struct target_ops *
3475 find_target_beneath (struct target_ops *t)
3476 {
3477 return t->beneath;
3478 }
3479
3480 /* See target.h. */
3481
3482 struct target_ops *
3483 find_target_at (enum strata stratum)
3484 {
3485 struct target_ops *t;
3486
3487 for (t = current_target.beneath; t != NULL; t = t->beneath)
3488 if (t->to_stratum == stratum)
3489 return t;
3490
3491 return NULL;
3492 }
3493
3494 \f
3495 /* The inferior process has died. Long live the inferior! */
3496
3497 void
3498 generic_mourn_inferior (void)
3499 {
3500 ptid_t ptid;
3501
3502 ptid = inferior_ptid;
3503 inferior_ptid = null_ptid;
3504
3505 /* Mark breakpoints uninserted in case something tries to delete a
3506 breakpoint while we delete the inferior's threads (which would
3507 fail, since the inferior is long gone). */
3508 mark_breakpoints_out ();
3509
3510 if (!ptid_equal (ptid, null_ptid))
3511 {
3512 int pid = ptid_get_pid (ptid);
3513 exit_inferior (pid);
3514 }
3515
3516 /* Note this wipes step-resume breakpoints, so needs to be done
3517 after exit_inferior, which ends up referencing the step-resume
3518 breakpoints through clear_thread_inferior_resources. */
3519 breakpoint_init_inferior (inf_exited);
3520
3521 registers_changed ();
3522
3523 reopen_exec_file ();
3524 reinit_frame_cache ();
3525
3526 if (deprecated_detach_hook)
3527 deprecated_detach_hook ();
3528 }
3529 \f
3530 /* Convert a normal process ID to a string. Returns the string in a
3531 static buffer. */
3532
3533 char *
3534 normal_pid_to_str (ptid_t ptid)
3535 {
3536 static char buf[32];
3537
3538 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3539 return buf;
3540 }
3541
3542 static char *
3543 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3544 {
3545 return normal_pid_to_str (ptid);
3546 }
3547
3548 /* Error-catcher for target_find_memory_regions. */
3549 static int
3550 dummy_find_memory_regions (struct target_ops *self,
3551 find_memory_region_ftype ignore1, void *ignore2)
3552 {
3553 error (_("Command not implemented for this target."));
3554 return 0;
3555 }
3556
3557 /* Error-catcher for target_make_corefile_notes. */
3558 static char *
3559 dummy_make_corefile_notes (struct target_ops *self,
3560 bfd *ignore1, int *ignore2)
3561 {
3562 error (_("Command not implemented for this target."));
3563 return NULL;
3564 }
3565
3566 /* Set up the handful of non-empty slots needed by the dummy target
3567 vector. */
3568
3569 static void
3570 init_dummy_target (void)
3571 {
3572 dummy_target.to_shortname = "None";
3573 dummy_target.to_longname = "None";
3574 dummy_target.to_doc = "";
3575 dummy_target.to_create_inferior = find_default_create_inferior;
3576 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3577 dummy_target.to_supports_disable_randomization
3578 = find_default_supports_disable_randomization;
3579 dummy_target.to_pid_to_str = dummy_pid_to_str;
3580 dummy_target.to_stratum = dummy_stratum;
3581 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3582 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3583 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3584 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3585 dummy_target.to_has_execution
3586 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3587 dummy_target.to_magic = OPS_MAGIC;
3588
3589 install_dummy_methods (&dummy_target);
3590 }
3591 \f
3592 static void
3593 debug_to_open (char *args, int from_tty)
3594 {
3595 debug_target.to_open (args, from_tty);
3596
3597 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3598 }
3599
3600 void
3601 target_close (struct target_ops *targ)
3602 {
3603 gdb_assert (!target_is_pushed (targ));
3604
3605 if (targ->to_xclose != NULL)
3606 targ->to_xclose (targ);
3607 else if (targ->to_close != NULL)
3608 targ->to_close (targ);
3609
3610 if (targetdebug)
3611 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3612 }
3613
3614 void
3615 target_attach (char *args, int from_tty)
3616 {
3617 current_target.to_attach (&current_target, args, from_tty);
3618 if (targetdebug)
3619 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3620 args, from_tty);
3621 }
3622
3623 int
3624 target_thread_alive (ptid_t ptid)
3625 {
3626 struct target_ops *t;
3627
3628 for (t = current_target.beneath; t != NULL; t = t->beneath)
3629 {
3630 if (t->to_thread_alive != NULL)
3631 {
3632 int retval;
3633
3634 retval = t->to_thread_alive (t, ptid);
3635 if (targetdebug)
3636 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3637 ptid_get_pid (ptid), retval);
3638
3639 return retval;
3640 }
3641 }
3642
3643 return 0;
3644 }
3645
3646 void
3647 target_find_new_threads (void)
3648 {
3649 struct target_ops *t;
3650
3651 for (t = current_target.beneath; t != NULL; t = t->beneath)
3652 {
3653 if (t->to_find_new_threads != NULL)
3654 {
3655 t->to_find_new_threads (t);
3656 if (targetdebug)
3657 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3658
3659 return;
3660 }
3661 }
3662 }
3663
3664 void
3665 target_stop (ptid_t ptid)
3666 {
3667 if (!may_stop)
3668 {
3669 warning (_("May not interrupt or stop the target, ignoring attempt"));
3670 return;
3671 }
3672
3673 (*current_target.to_stop) (&current_target, ptid);
3674 }
3675
3676 static void
3677 debug_to_post_attach (struct target_ops *self, int pid)
3678 {
3679 debug_target.to_post_attach (&debug_target, pid);
3680
3681 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3682 }
3683
3684 /* Concatenate ELEM to LIST, a comma separate list, and return the
3685 result. The LIST incoming argument is released. */
3686
3687 static char *
3688 str_comma_list_concat_elem (char *list, const char *elem)
3689 {
3690 if (list == NULL)
3691 return xstrdup (elem);
3692 else
3693 return reconcat (list, list, ", ", elem, (char *) NULL);
3694 }
3695
3696 /* Helper for target_options_to_string. If OPT is present in
3697 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3698 Returns the new resulting string. OPT is removed from
3699 TARGET_OPTIONS. */
3700
3701 static char *
3702 do_option (int *target_options, char *ret,
3703 int opt, char *opt_str)
3704 {
3705 if ((*target_options & opt) != 0)
3706 {
3707 ret = str_comma_list_concat_elem (ret, opt_str);
3708 *target_options &= ~opt;
3709 }
3710
3711 return ret;
3712 }
3713
3714 char *
3715 target_options_to_string (int target_options)
3716 {
3717 char *ret = NULL;
3718
3719 #define DO_TARG_OPTION(OPT) \
3720 ret = do_option (&target_options, ret, OPT, #OPT)
3721
3722 DO_TARG_OPTION (TARGET_WNOHANG);
3723
3724 if (target_options != 0)
3725 ret = str_comma_list_concat_elem (ret, "unknown???");
3726
3727 if (ret == NULL)
3728 ret = xstrdup ("");
3729 return ret;
3730 }
3731
3732 static void
3733 debug_print_register (const char * func,
3734 struct regcache *regcache, int regno)
3735 {
3736 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3737
3738 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3739 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3740 && gdbarch_register_name (gdbarch, regno) != NULL
3741 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3742 fprintf_unfiltered (gdb_stdlog, "(%s)",
3743 gdbarch_register_name (gdbarch, regno));
3744 else
3745 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3746 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3747 {
3748 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3749 int i, size = register_size (gdbarch, regno);
3750 gdb_byte buf[MAX_REGISTER_SIZE];
3751
3752 regcache_raw_collect (regcache, regno, buf);
3753 fprintf_unfiltered (gdb_stdlog, " = ");
3754 for (i = 0; i < size; i++)
3755 {
3756 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3757 }
3758 if (size <= sizeof (LONGEST))
3759 {
3760 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3761
3762 fprintf_unfiltered (gdb_stdlog, " %s %s",
3763 core_addr_to_string_nz (val), plongest (val));
3764 }
3765 }
3766 fprintf_unfiltered (gdb_stdlog, "\n");
3767 }
3768
3769 void
3770 target_fetch_registers (struct regcache *regcache, int regno)
3771 {
3772 struct target_ops *t;
3773
3774 for (t = current_target.beneath; t != NULL; t = t->beneath)
3775 {
3776 if (t->to_fetch_registers != NULL)
3777 {
3778 t->to_fetch_registers (t, regcache, regno);
3779 if (targetdebug)
3780 debug_print_register ("target_fetch_registers", regcache, regno);
3781 return;
3782 }
3783 }
3784 }
3785
3786 void
3787 target_store_registers (struct regcache *regcache, int regno)
3788 {
3789 struct target_ops *t;
3790
3791 if (!may_write_registers)
3792 error (_("Writing to registers is not allowed (regno %d)"), regno);
3793
3794 current_target.to_store_registers (&current_target, regcache, regno);
3795 if (targetdebug)
3796 {
3797 debug_print_register ("target_store_registers", regcache, regno);
3798 }
3799 }
3800
3801 int
3802 target_core_of_thread (ptid_t ptid)
3803 {
3804 struct target_ops *t;
3805
3806 for (t = current_target.beneath; t != NULL; t = t->beneath)
3807 {
3808 if (t->to_core_of_thread != NULL)
3809 {
3810 int retval = t->to_core_of_thread (t, ptid);
3811
3812 if (targetdebug)
3813 fprintf_unfiltered (gdb_stdlog,
3814 "target_core_of_thread (%d) = %d\n",
3815 ptid_get_pid (ptid), retval);
3816 return retval;
3817 }
3818 }
3819
3820 return -1;
3821 }
3822
3823 int
3824 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3825 {
3826 struct target_ops *t;
3827
3828 for (t = current_target.beneath; t != NULL; t = t->beneath)
3829 {
3830 if (t->to_verify_memory != NULL)
3831 {
3832 int retval = t->to_verify_memory (t, data, memaddr, size);
3833
3834 if (targetdebug)
3835 fprintf_unfiltered (gdb_stdlog,
3836 "target_verify_memory (%s, %s) = %d\n",
3837 paddress (target_gdbarch (), memaddr),
3838 pulongest (size),
3839 retval);
3840 return retval;
3841 }
3842 }
3843
3844 tcomplain ();
3845 }
3846
3847 /* The documentation for this function is in its prototype declaration in
3848 target.h. */
3849
3850 int
3851 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3852 {
3853 struct target_ops *t;
3854
3855 for (t = current_target.beneath; t != NULL; t = t->beneath)
3856 if (t->to_insert_mask_watchpoint != NULL)
3857 {
3858 int ret;
3859
3860 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3861
3862 if (targetdebug)
3863 fprintf_unfiltered (gdb_stdlog, "\
3864 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3865 core_addr_to_string (addr),
3866 core_addr_to_string (mask), rw, ret);
3867
3868 return ret;
3869 }
3870
3871 return 1;
3872 }
3873
3874 /* The documentation for this function is in its prototype declaration in
3875 target.h. */
3876
3877 int
3878 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3879 {
3880 struct target_ops *t;
3881
3882 for (t = current_target.beneath; t != NULL; t = t->beneath)
3883 if (t->to_remove_mask_watchpoint != NULL)
3884 {
3885 int ret;
3886
3887 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3888
3889 if (targetdebug)
3890 fprintf_unfiltered (gdb_stdlog, "\
3891 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3892 core_addr_to_string (addr),
3893 core_addr_to_string (mask), rw, ret);
3894
3895 return ret;
3896 }
3897
3898 return 1;
3899 }
3900
3901 /* The documentation for this function is in its prototype declaration
3902 in target.h. */
3903
3904 int
3905 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3906 {
3907 struct target_ops *t;
3908
3909 for (t = current_target.beneath; t != NULL; t = t->beneath)
3910 if (t->to_masked_watch_num_registers != NULL)
3911 return t->to_masked_watch_num_registers (t, addr, mask);
3912
3913 return -1;
3914 }
3915
3916 /* The documentation for this function is in its prototype declaration
3917 in target.h. */
3918
3919 int
3920 target_ranged_break_num_registers (void)
3921 {
3922 struct target_ops *t;
3923
3924 for (t = current_target.beneath; t != NULL; t = t->beneath)
3925 if (t->to_ranged_break_num_registers != NULL)
3926 return t->to_ranged_break_num_registers (t);
3927
3928 return -1;
3929 }
3930
3931 /* See target.h. */
3932
3933 struct btrace_target_info *
3934 target_enable_btrace (ptid_t ptid)
3935 {
3936 struct target_ops *t;
3937
3938 for (t = current_target.beneath; t != NULL; t = t->beneath)
3939 if (t->to_enable_btrace != NULL)
3940 return t->to_enable_btrace (t, ptid);
3941
3942 tcomplain ();
3943 return NULL;
3944 }
3945
3946 /* See target.h. */
3947
3948 void
3949 target_disable_btrace (struct btrace_target_info *btinfo)
3950 {
3951 struct target_ops *t;
3952
3953 for (t = current_target.beneath; t != NULL; t = t->beneath)
3954 if (t->to_disable_btrace != NULL)
3955 {
3956 t->to_disable_btrace (t, btinfo);
3957 return;
3958 }
3959
3960 tcomplain ();
3961 }
3962
3963 /* See target.h. */
3964
3965 void
3966 target_teardown_btrace (struct btrace_target_info *btinfo)
3967 {
3968 struct target_ops *t;
3969
3970 for (t = current_target.beneath; t != NULL; t = t->beneath)
3971 if (t->to_teardown_btrace != NULL)
3972 {
3973 t->to_teardown_btrace (t, btinfo);
3974 return;
3975 }
3976
3977 tcomplain ();
3978 }
3979
3980 /* See target.h. */
3981
3982 enum btrace_error
3983 target_read_btrace (VEC (btrace_block_s) **btrace,
3984 struct btrace_target_info *btinfo,
3985 enum btrace_read_type type)
3986 {
3987 struct target_ops *t;
3988
3989 for (t = current_target.beneath; t != NULL; t = t->beneath)
3990 if (t->to_read_btrace != NULL)
3991 return t->to_read_btrace (t, btrace, btinfo, type);
3992
3993 tcomplain ();
3994 return BTRACE_ERR_NOT_SUPPORTED;
3995 }
3996
3997 /* See target.h. */
3998
3999 void
4000 target_stop_recording (void)
4001 {
4002 struct target_ops *t;
4003
4004 for (t = current_target.beneath; t != NULL; t = t->beneath)
4005 if (t->to_stop_recording != NULL)
4006 {
4007 t->to_stop_recording (t);
4008 return;
4009 }
4010
4011 /* This is optional. */
4012 }
4013
4014 /* See target.h. */
4015
4016 void
4017 target_info_record (void)
4018 {
4019 struct target_ops *t;
4020
4021 for (t = current_target.beneath; t != NULL; t = t->beneath)
4022 if (t->to_info_record != NULL)
4023 {
4024 t->to_info_record (t);
4025 return;
4026 }
4027
4028 tcomplain ();
4029 }
4030
4031 /* See target.h. */
4032
4033 void
4034 target_save_record (const char *filename)
4035 {
4036 struct target_ops *t;
4037
4038 for (t = current_target.beneath; t != NULL; t = t->beneath)
4039 if (t->to_save_record != NULL)
4040 {
4041 t->to_save_record (t, filename);
4042 return;
4043 }
4044
4045 tcomplain ();
4046 }
4047
4048 /* See target.h. */
4049
4050 int
4051 target_supports_delete_record (void)
4052 {
4053 struct target_ops *t;
4054
4055 for (t = current_target.beneath; t != NULL; t = t->beneath)
4056 if (t->to_delete_record != NULL)
4057 return 1;
4058
4059 return 0;
4060 }
4061
4062 /* See target.h. */
4063
4064 void
4065 target_delete_record (void)
4066 {
4067 struct target_ops *t;
4068
4069 for (t = current_target.beneath; t != NULL; t = t->beneath)
4070 if (t->to_delete_record != NULL)
4071 {
4072 t->to_delete_record (t);
4073 return;
4074 }
4075
4076 tcomplain ();
4077 }
4078
4079 /* See target.h. */
4080
4081 int
4082 target_record_is_replaying (void)
4083 {
4084 struct target_ops *t;
4085
4086 for (t = current_target.beneath; t != NULL; t = t->beneath)
4087 if (t->to_record_is_replaying != NULL)
4088 return t->to_record_is_replaying (t);
4089
4090 return 0;
4091 }
4092
4093 /* See target.h. */
4094
4095 void
4096 target_goto_record_begin (void)
4097 {
4098 struct target_ops *t;
4099
4100 for (t = current_target.beneath; t != NULL; t = t->beneath)
4101 if (t->to_goto_record_begin != NULL)
4102 {
4103 t->to_goto_record_begin (t);
4104 return;
4105 }
4106
4107 tcomplain ();
4108 }
4109
4110 /* See target.h. */
4111
4112 void
4113 target_goto_record_end (void)
4114 {
4115 struct target_ops *t;
4116
4117 for (t = current_target.beneath; t != NULL; t = t->beneath)
4118 if (t->to_goto_record_end != NULL)
4119 {
4120 t->to_goto_record_end (t);
4121 return;
4122 }
4123
4124 tcomplain ();
4125 }
4126
4127 /* See target.h. */
4128
4129 void
4130 target_goto_record (ULONGEST insn)
4131 {
4132 struct target_ops *t;
4133
4134 for (t = current_target.beneath; t != NULL; t = t->beneath)
4135 if (t->to_goto_record != NULL)
4136 {
4137 t->to_goto_record (t, insn);
4138 return;
4139 }
4140
4141 tcomplain ();
4142 }
4143
4144 /* See target.h. */
4145
4146 void
4147 target_insn_history (int size, int flags)
4148 {
4149 struct target_ops *t;
4150
4151 for (t = current_target.beneath; t != NULL; t = t->beneath)
4152 if (t->to_insn_history != NULL)
4153 {
4154 t->to_insn_history (t, size, flags);
4155 return;
4156 }
4157
4158 tcomplain ();
4159 }
4160
4161 /* See target.h. */
4162
4163 void
4164 target_insn_history_from (ULONGEST from, int size, int flags)
4165 {
4166 struct target_ops *t;
4167
4168 for (t = current_target.beneath; t != NULL; t = t->beneath)
4169 if (t->to_insn_history_from != NULL)
4170 {
4171 t->to_insn_history_from (t, from, size, flags);
4172 return;
4173 }
4174
4175 tcomplain ();
4176 }
4177
4178 /* See target.h. */
4179
4180 void
4181 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4182 {
4183 struct target_ops *t;
4184
4185 for (t = current_target.beneath; t != NULL; t = t->beneath)
4186 if (t->to_insn_history_range != NULL)
4187 {
4188 t->to_insn_history_range (t, begin, end, flags);
4189 return;
4190 }
4191
4192 tcomplain ();
4193 }
4194
4195 /* See target.h. */
4196
4197 void
4198 target_call_history (int size, int flags)
4199 {
4200 struct target_ops *t;
4201
4202 for (t = current_target.beneath; t != NULL; t = t->beneath)
4203 if (t->to_call_history != NULL)
4204 {
4205 t->to_call_history (t, size, flags);
4206 return;
4207 }
4208
4209 tcomplain ();
4210 }
4211
4212 /* See target.h. */
4213
4214 void
4215 target_call_history_from (ULONGEST begin, int size, int flags)
4216 {
4217 struct target_ops *t;
4218
4219 for (t = current_target.beneath; t != NULL; t = t->beneath)
4220 if (t->to_call_history_from != NULL)
4221 {
4222 t->to_call_history_from (t, begin, size, flags);
4223 return;
4224 }
4225
4226 tcomplain ();
4227 }
4228
4229 /* See target.h. */
4230
4231 void
4232 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4233 {
4234 struct target_ops *t;
4235
4236 for (t = current_target.beneath; t != NULL; t = t->beneath)
4237 if (t->to_call_history_range != NULL)
4238 {
4239 t->to_call_history_range (t, begin, end, flags);
4240 return;
4241 }
4242
4243 tcomplain ();
4244 }
4245
4246 static void
4247 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4248 {
4249 debug_target.to_prepare_to_store (&debug_target, regcache);
4250
4251 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4252 }
4253
4254 /* See target.h. */
4255
4256 const struct frame_unwind *
4257 target_get_unwinder (void)
4258 {
4259 struct target_ops *t;
4260
4261 for (t = current_target.beneath; t != NULL; t = t->beneath)
4262 if (t->to_get_unwinder != NULL)
4263 return t->to_get_unwinder;
4264
4265 return NULL;
4266 }
4267
4268 /* See target.h. */
4269
4270 const struct frame_unwind *
4271 target_get_tailcall_unwinder (void)
4272 {
4273 struct target_ops *t;
4274
4275 for (t = current_target.beneath; t != NULL; t = t->beneath)
4276 if (t->to_get_tailcall_unwinder != NULL)
4277 return t->to_get_tailcall_unwinder;
4278
4279 return NULL;
4280 }
4281
4282 /* See target.h. */
4283
4284 CORE_ADDR
4285 forward_target_decr_pc_after_break (struct target_ops *ops,
4286 struct gdbarch *gdbarch)
4287 {
4288 for (; ops != NULL; ops = ops->beneath)
4289 if (ops->to_decr_pc_after_break != NULL)
4290 return ops->to_decr_pc_after_break (ops, gdbarch);
4291
4292 return gdbarch_decr_pc_after_break (gdbarch);
4293 }
4294
4295 /* See target.h. */
4296
4297 CORE_ADDR
4298 target_decr_pc_after_break (struct gdbarch *gdbarch)
4299 {
4300 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4301 }
4302
4303 static int
4304 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4305 int write, struct mem_attrib *attrib,
4306 struct target_ops *target)
4307 {
4308 int retval;
4309
4310 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4311 attrib, target);
4312
4313 fprintf_unfiltered (gdb_stdlog,
4314 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4315 paddress (target_gdbarch (), memaddr), len,
4316 write ? "write" : "read", retval);
4317
4318 if (retval > 0)
4319 {
4320 int i;
4321
4322 fputs_unfiltered (", bytes =", gdb_stdlog);
4323 for (i = 0; i < retval; i++)
4324 {
4325 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4326 {
4327 if (targetdebug < 2 && i > 0)
4328 {
4329 fprintf_unfiltered (gdb_stdlog, " ...");
4330 break;
4331 }
4332 fprintf_unfiltered (gdb_stdlog, "\n");
4333 }
4334
4335 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4336 }
4337 }
4338
4339 fputc_unfiltered ('\n', gdb_stdlog);
4340
4341 return retval;
4342 }
4343
4344 static void
4345 debug_to_files_info (struct target_ops *target)
4346 {
4347 debug_target.to_files_info (target);
4348
4349 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4350 }
4351
4352 static int
4353 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4354 struct bp_target_info *bp_tgt)
4355 {
4356 int retval;
4357
4358 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4359
4360 fprintf_unfiltered (gdb_stdlog,
4361 "target_insert_breakpoint (%s, xxx) = %ld\n",
4362 core_addr_to_string (bp_tgt->placed_address),
4363 (unsigned long) retval);
4364 return retval;
4365 }
4366
4367 static int
4368 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4369 struct bp_target_info *bp_tgt)
4370 {
4371 int retval;
4372
4373 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4374
4375 fprintf_unfiltered (gdb_stdlog,
4376 "target_remove_breakpoint (%s, xxx) = %ld\n",
4377 core_addr_to_string (bp_tgt->placed_address),
4378 (unsigned long) retval);
4379 return retval;
4380 }
4381
4382 static int
4383 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4384 int type, int cnt, int from_tty)
4385 {
4386 int retval;
4387
4388 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4389 type, cnt, from_tty);
4390
4391 fprintf_unfiltered (gdb_stdlog,
4392 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4393 (unsigned long) type,
4394 (unsigned long) cnt,
4395 (unsigned long) from_tty,
4396 (unsigned long) retval);
4397 return retval;
4398 }
4399
4400 static int
4401 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4402 CORE_ADDR addr, int len)
4403 {
4404 CORE_ADDR retval;
4405
4406 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4407 addr, len);
4408
4409 fprintf_unfiltered (gdb_stdlog,
4410 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4411 core_addr_to_string (addr), (unsigned long) len,
4412 core_addr_to_string (retval));
4413 return retval;
4414 }
4415
4416 static int
4417 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4418 CORE_ADDR addr, int len, int rw,
4419 struct expression *cond)
4420 {
4421 int retval;
4422
4423 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4424 addr, len,
4425 rw, cond);
4426
4427 fprintf_unfiltered (gdb_stdlog,
4428 "target_can_accel_watchpoint_condition "
4429 "(%s, %d, %d, %s) = %ld\n",
4430 core_addr_to_string (addr), len, rw,
4431 host_address_to_string (cond), (unsigned long) retval);
4432 return retval;
4433 }
4434
4435 static int
4436 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4437 {
4438 int retval;
4439
4440 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4441
4442 fprintf_unfiltered (gdb_stdlog,
4443 "target_stopped_by_watchpoint () = %ld\n",
4444 (unsigned long) retval);
4445 return retval;
4446 }
4447
4448 static int
4449 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4450 {
4451 int retval;
4452
4453 retval = debug_target.to_stopped_data_address (target, addr);
4454
4455 fprintf_unfiltered (gdb_stdlog,
4456 "target_stopped_data_address ([%s]) = %ld\n",
4457 core_addr_to_string (*addr),
4458 (unsigned long)retval);
4459 return retval;
4460 }
4461
4462 static int
4463 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4464 CORE_ADDR addr,
4465 CORE_ADDR start, int length)
4466 {
4467 int retval;
4468
4469 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4470 start, length);
4471
4472 fprintf_filtered (gdb_stdlog,
4473 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4474 core_addr_to_string (addr), core_addr_to_string (start),
4475 length, retval);
4476 return retval;
4477 }
4478
4479 static int
4480 debug_to_insert_hw_breakpoint (struct target_ops *self,
4481 struct gdbarch *gdbarch,
4482 struct bp_target_info *bp_tgt)
4483 {
4484 int retval;
4485
4486 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4487 gdbarch, bp_tgt);
4488
4489 fprintf_unfiltered (gdb_stdlog,
4490 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4491 core_addr_to_string (bp_tgt->placed_address),
4492 (unsigned long) retval);
4493 return retval;
4494 }
4495
4496 static int
4497 debug_to_remove_hw_breakpoint (struct target_ops *self,
4498 struct gdbarch *gdbarch,
4499 struct bp_target_info *bp_tgt)
4500 {
4501 int retval;
4502
4503 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4504 gdbarch, bp_tgt);
4505
4506 fprintf_unfiltered (gdb_stdlog,
4507 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4508 core_addr_to_string (bp_tgt->placed_address),
4509 (unsigned long) retval);
4510 return retval;
4511 }
4512
4513 static int
4514 debug_to_insert_watchpoint (struct target_ops *self,
4515 CORE_ADDR addr, int len, int type,
4516 struct expression *cond)
4517 {
4518 int retval;
4519
4520 retval = debug_target.to_insert_watchpoint (&debug_target,
4521 addr, len, type, cond);
4522
4523 fprintf_unfiltered (gdb_stdlog,
4524 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4525 core_addr_to_string (addr), len, type,
4526 host_address_to_string (cond), (unsigned long) retval);
4527 return retval;
4528 }
4529
4530 static int
4531 debug_to_remove_watchpoint (struct target_ops *self,
4532 CORE_ADDR addr, int len, int type,
4533 struct expression *cond)
4534 {
4535 int retval;
4536
4537 retval = debug_target.to_remove_watchpoint (&debug_target,
4538 addr, len, type, cond);
4539
4540 fprintf_unfiltered (gdb_stdlog,
4541 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4542 core_addr_to_string (addr), len, type,
4543 host_address_to_string (cond), (unsigned long) retval);
4544 return retval;
4545 }
4546
4547 static void
4548 debug_to_terminal_init (struct target_ops *self)
4549 {
4550 debug_target.to_terminal_init (&debug_target);
4551
4552 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4553 }
4554
4555 static void
4556 debug_to_terminal_inferior (struct target_ops *self)
4557 {
4558 debug_target.to_terminal_inferior (&debug_target);
4559
4560 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4561 }
4562
4563 static void
4564 debug_to_terminal_ours_for_output (struct target_ops *self)
4565 {
4566 debug_target.to_terminal_ours_for_output (&debug_target);
4567
4568 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4569 }
4570
4571 static void
4572 debug_to_terminal_ours (struct target_ops *self)
4573 {
4574 debug_target.to_terminal_ours (&debug_target);
4575
4576 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4577 }
4578
4579 static void
4580 debug_to_terminal_save_ours (struct target_ops *self)
4581 {
4582 debug_target.to_terminal_save_ours (&debug_target);
4583
4584 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4585 }
4586
4587 static void
4588 debug_to_terminal_info (struct target_ops *self,
4589 const char *arg, int from_tty)
4590 {
4591 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4592
4593 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4594 from_tty);
4595 }
4596
4597 static void
4598 debug_to_load (struct target_ops *self, char *args, int from_tty)
4599 {
4600 debug_target.to_load (&debug_target, args, from_tty);
4601
4602 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4603 }
4604
4605 static void
4606 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4607 {
4608 debug_target.to_post_startup_inferior (&debug_target, ptid);
4609
4610 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4611 ptid_get_pid (ptid));
4612 }
4613
4614 static int
4615 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4616 {
4617 int retval;
4618
4619 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4620
4621 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4622 pid, retval);
4623
4624 return retval;
4625 }
4626
4627 static int
4628 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4629 {
4630 int retval;
4631
4632 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4633
4634 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4635 pid, retval);
4636
4637 return retval;
4638 }
4639
4640 static int
4641 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4642 {
4643 int retval;
4644
4645 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4646
4647 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4648 pid, retval);
4649
4650 return retval;
4651 }
4652
4653 static int
4654 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4655 {
4656 int retval;
4657
4658 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4659
4660 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4661 pid, retval);
4662
4663 return retval;
4664 }
4665
4666 static int
4667 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4668 {
4669 int retval;
4670
4671 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4672
4673 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4674 pid, retval);
4675
4676 return retval;
4677 }
4678
4679 static int
4680 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4681 {
4682 int retval;
4683
4684 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4685
4686 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4687 pid, retval);
4688
4689 return retval;
4690 }
4691
4692 static int
4693 debug_to_has_exited (struct target_ops *self,
4694 int pid, int wait_status, int *exit_status)
4695 {
4696 int has_exited;
4697
4698 has_exited = debug_target.to_has_exited (&debug_target,
4699 pid, wait_status, exit_status);
4700
4701 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4702 pid, wait_status, *exit_status, has_exited);
4703
4704 return has_exited;
4705 }
4706
4707 static int
4708 debug_to_can_run (struct target_ops *self)
4709 {
4710 int retval;
4711
4712 retval = debug_target.to_can_run (&debug_target);
4713
4714 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4715
4716 return retval;
4717 }
4718
4719 static struct gdbarch *
4720 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4721 {
4722 struct gdbarch *retval;
4723
4724 retval = debug_target.to_thread_architecture (ops, ptid);
4725
4726 fprintf_unfiltered (gdb_stdlog,
4727 "target_thread_architecture (%s) = %s [%s]\n",
4728 target_pid_to_str (ptid),
4729 host_address_to_string (retval),
4730 gdbarch_bfd_arch_info (retval)->printable_name);
4731 return retval;
4732 }
4733
4734 static void
4735 debug_to_stop (struct target_ops *self, ptid_t ptid)
4736 {
4737 debug_target.to_stop (&debug_target, ptid);
4738
4739 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4740 target_pid_to_str (ptid));
4741 }
4742
4743 static void
4744 debug_to_rcmd (struct target_ops *self, char *command,
4745 struct ui_file *outbuf)
4746 {
4747 debug_target.to_rcmd (&debug_target, command, outbuf);
4748 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4749 }
4750
4751 static char *
4752 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4753 {
4754 char *exec_file;
4755
4756 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4757
4758 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4759 pid, exec_file);
4760
4761 return exec_file;
4762 }
4763
4764 static void
4765 setup_target_debug (void)
4766 {
4767 memcpy (&debug_target, &current_target, sizeof debug_target);
4768
4769 current_target.to_open = debug_to_open;
4770 current_target.to_post_attach = debug_to_post_attach;
4771 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4772 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4773 current_target.to_files_info = debug_to_files_info;
4774 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4775 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4776 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4777 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4778 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4779 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4780 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4781 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4782 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4783 current_target.to_watchpoint_addr_within_range
4784 = debug_to_watchpoint_addr_within_range;
4785 current_target.to_region_ok_for_hw_watchpoint
4786 = debug_to_region_ok_for_hw_watchpoint;
4787 current_target.to_can_accel_watchpoint_condition
4788 = debug_to_can_accel_watchpoint_condition;
4789 current_target.to_terminal_init = debug_to_terminal_init;
4790 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4791 current_target.to_terminal_ours_for_output
4792 = debug_to_terminal_ours_for_output;
4793 current_target.to_terminal_ours = debug_to_terminal_ours;
4794 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4795 current_target.to_terminal_info = debug_to_terminal_info;
4796 current_target.to_load = debug_to_load;
4797 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4798 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4799 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4800 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4801 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4802 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4803 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4804 current_target.to_has_exited = debug_to_has_exited;
4805 current_target.to_can_run = debug_to_can_run;
4806 current_target.to_stop = debug_to_stop;
4807 current_target.to_rcmd = debug_to_rcmd;
4808 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4809 current_target.to_thread_architecture = debug_to_thread_architecture;
4810 }
4811 \f
4812
4813 static char targ_desc[] =
4814 "Names of targets and files being debugged.\nShows the entire \
4815 stack of targets currently in use (including the exec-file,\n\
4816 core-file, and process, if any), as well as the symbol file name.";
4817
4818 static void
4819 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4820 {
4821 error (_("\"monitor\" command not supported by this target."));
4822 }
4823
4824 static void
4825 do_monitor_command (char *cmd,
4826 int from_tty)
4827 {
4828 target_rcmd (cmd, gdb_stdtarg);
4829 }
4830
4831 /* Print the name of each layers of our target stack. */
4832
4833 static void
4834 maintenance_print_target_stack (char *cmd, int from_tty)
4835 {
4836 struct target_ops *t;
4837
4838 printf_filtered (_("The current target stack is:\n"));
4839
4840 for (t = target_stack; t != NULL; t = t->beneath)
4841 {
4842 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4843 }
4844 }
4845
4846 /* Controls if async mode is permitted. */
4847 int target_async_permitted = 0;
4848
4849 /* The set command writes to this variable. If the inferior is
4850 executing, target_async_permitted is *not* updated. */
4851 static int target_async_permitted_1 = 0;
4852
4853 static void
4854 set_target_async_command (char *args, int from_tty,
4855 struct cmd_list_element *c)
4856 {
4857 if (have_live_inferiors ())
4858 {
4859 target_async_permitted_1 = target_async_permitted;
4860 error (_("Cannot change this setting while the inferior is running."));
4861 }
4862
4863 target_async_permitted = target_async_permitted_1;
4864 }
4865
4866 static void
4867 show_target_async_command (struct ui_file *file, int from_tty,
4868 struct cmd_list_element *c,
4869 const char *value)
4870 {
4871 fprintf_filtered (file,
4872 _("Controlling the inferior in "
4873 "asynchronous mode is %s.\n"), value);
4874 }
4875
4876 /* Temporary copies of permission settings. */
4877
4878 static int may_write_registers_1 = 1;
4879 static int may_write_memory_1 = 1;
4880 static int may_insert_breakpoints_1 = 1;
4881 static int may_insert_tracepoints_1 = 1;
4882 static int may_insert_fast_tracepoints_1 = 1;
4883 static int may_stop_1 = 1;
4884
4885 /* Make the user-set values match the real values again. */
4886
4887 void
4888 update_target_permissions (void)
4889 {
4890 may_write_registers_1 = may_write_registers;
4891 may_write_memory_1 = may_write_memory;
4892 may_insert_breakpoints_1 = may_insert_breakpoints;
4893 may_insert_tracepoints_1 = may_insert_tracepoints;
4894 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4895 may_stop_1 = may_stop;
4896 }
4897
4898 /* The one function handles (most of) the permission flags in the same
4899 way. */
4900
4901 static void
4902 set_target_permissions (char *args, int from_tty,
4903 struct cmd_list_element *c)
4904 {
4905 if (target_has_execution)
4906 {
4907 update_target_permissions ();
4908 error (_("Cannot change this setting while the inferior is running."));
4909 }
4910
4911 /* Make the real values match the user-changed values. */
4912 may_write_registers = may_write_registers_1;
4913 may_insert_breakpoints = may_insert_breakpoints_1;
4914 may_insert_tracepoints = may_insert_tracepoints_1;
4915 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4916 may_stop = may_stop_1;
4917 update_observer_mode ();
4918 }
4919
4920 /* Set memory write permission independently of observer mode. */
4921
4922 static void
4923 set_write_memory_permission (char *args, int from_tty,
4924 struct cmd_list_element *c)
4925 {
4926 /* Make the real values match the user-changed values. */
4927 may_write_memory = may_write_memory_1;
4928 update_observer_mode ();
4929 }
4930
4931
4932 void
4933 initialize_targets (void)
4934 {
4935 init_dummy_target ();
4936 push_target (&dummy_target);
4937
4938 add_info ("target", target_info, targ_desc);
4939 add_info ("files", target_info, targ_desc);
4940
4941 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4942 Set target debugging."), _("\
4943 Show target debugging."), _("\
4944 When non-zero, target debugging is enabled. Higher numbers are more\n\
4945 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4946 command."),
4947 NULL,
4948 show_targetdebug,
4949 &setdebuglist, &showdebuglist);
4950
4951 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4952 &trust_readonly, _("\
4953 Set mode for reading from readonly sections."), _("\
4954 Show mode for reading from readonly sections."), _("\
4955 When this mode is on, memory reads from readonly sections (such as .text)\n\
4956 will be read from the object file instead of from the target. This will\n\
4957 result in significant performance improvement for remote targets."),
4958 NULL,
4959 show_trust_readonly,
4960 &setlist, &showlist);
4961
4962 add_com ("monitor", class_obscure, do_monitor_command,
4963 _("Send a command to the remote monitor (remote targets only)."));
4964
4965 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4966 _("Print the name of each layer of the internal target stack."),
4967 &maintenanceprintlist);
4968
4969 add_setshow_boolean_cmd ("target-async", no_class,
4970 &target_async_permitted_1, _("\
4971 Set whether gdb controls the inferior in asynchronous mode."), _("\
4972 Show whether gdb controls the inferior in asynchronous mode."), _("\
4973 Tells gdb whether to control the inferior in asynchronous mode."),
4974 set_target_async_command,
4975 show_target_async_command,
4976 &setlist,
4977 &showlist);
4978
4979 add_setshow_boolean_cmd ("may-write-registers", class_support,
4980 &may_write_registers_1, _("\
4981 Set permission to write into registers."), _("\
4982 Show permission to write into registers."), _("\
4983 When this permission is on, GDB may write into the target's registers.\n\
4984 Otherwise, any sort of write attempt will result in an error."),
4985 set_target_permissions, NULL,
4986 &setlist, &showlist);
4987
4988 add_setshow_boolean_cmd ("may-write-memory", class_support,
4989 &may_write_memory_1, _("\
4990 Set permission to write into target memory."), _("\
4991 Show permission to write into target memory."), _("\
4992 When this permission is on, GDB may write into the target's memory.\n\
4993 Otherwise, any sort of write attempt will result in an error."),
4994 set_write_memory_permission, NULL,
4995 &setlist, &showlist);
4996
4997 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4998 &may_insert_breakpoints_1, _("\
4999 Set permission to insert breakpoints in the target."), _("\
5000 Show permission to insert breakpoints in the target."), _("\
5001 When this permission is on, GDB may insert breakpoints in the program.\n\
5002 Otherwise, any sort of insertion attempt will result in an error."),
5003 set_target_permissions, NULL,
5004 &setlist, &showlist);
5005
5006 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5007 &may_insert_tracepoints_1, _("\
5008 Set permission to insert tracepoints in the target."), _("\
5009 Show permission to insert tracepoints in the target."), _("\
5010 When this permission is on, GDB may insert tracepoints in the program.\n\
5011 Otherwise, any sort of insertion attempt will result in an error."),
5012 set_target_permissions, NULL,
5013 &setlist, &showlist);
5014
5015 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5016 &may_insert_fast_tracepoints_1, _("\
5017 Set permission to insert fast tracepoints in the target."), _("\
5018 Show permission to insert fast tracepoints in the target."), _("\
5019 When this permission is on, GDB may insert fast tracepoints.\n\
5020 Otherwise, any sort of insertion attempt will result in an error."),
5021 set_target_permissions, NULL,
5022 &setlist, &showlist);
5023
5024 add_setshow_boolean_cmd ("may-interrupt", class_support,
5025 &may_stop_1, _("\
5026 Set permission to interrupt or signal the target."), _("\
5027 Show permission to interrupt or signal the target."), _("\
5028 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5029 Otherwise, any attempt to interrupt or stop will be ignored."),
5030 set_target_permissions, NULL,
5031 &setlist, &showlist);
5032 }