convert to_get_raw_trace_data
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static void tcomplain (void) ATTRIBUTE_NORETURN;
64
65 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
66
67 static int return_zero (void);
68
69 static int return_minus_one (void);
70
71 static void *return_null (void);
72
73 void target_ignore (void);
74
75 static void target_command (char *, int);
76
77 static struct target_ops *find_default_run_target (char *);
78
79 static target_xfer_partial_ftype default_xfer_partial;
80
81 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
82 ptid_t ptid);
83
84 static int dummy_find_memory_regions (struct target_ops *self,
85 find_memory_region_ftype ignore1,
86 void *ignore2);
87
88 static char *dummy_make_corefile_notes (struct target_ops *self,
89 bfd *ignore1, int *ignore2);
90
91 static int find_default_can_async_p (struct target_ops *ignore);
92
93 static int find_default_is_async_p (struct target_ops *ignore);
94
95 static enum exec_direction_kind default_execution_direction
96 (struct target_ops *self);
97
98 #include "target-delegates.c"
99
100 static void init_dummy_target (void);
101
102 static struct target_ops debug_target;
103
104 static void debug_to_open (char *, int);
105
106 static void debug_to_prepare_to_store (struct target_ops *self,
107 struct regcache *);
108
109 static void debug_to_files_info (struct target_ops *);
110
111 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
118 int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
121 struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
125 struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (struct target_ops *self,
129 CORE_ADDR, int, int,
130 struct expression *);
131
132 static int debug_to_remove_watchpoint (struct target_ops *self,
133 CORE_ADDR, int, int,
134 struct expression *);
135
136 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
137
138 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
139 CORE_ADDR, CORE_ADDR, int);
140
141 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
142 CORE_ADDR, int);
143
144 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
145 CORE_ADDR, int, int,
146 struct expression *);
147
148 static void debug_to_terminal_init (struct target_ops *self);
149
150 static void debug_to_terminal_inferior (struct target_ops *self);
151
152 static void debug_to_terminal_ours_for_output (struct target_ops *self);
153
154 static void debug_to_terminal_save_ours (struct target_ops *self);
155
156 static void debug_to_terminal_ours (struct target_ops *self);
157
158 static void debug_to_load (struct target_ops *self, char *, int);
159
160 static int debug_to_can_run (struct target_ops *self);
161
162 static void debug_to_stop (struct target_ops *self, ptid_t);
163
164 /* Pointer to array of target architecture structures; the size of the
165 array; the current index into the array; the allocated size of the
166 array. */
167 struct target_ops **target_structs;
168 unsigned target_struct_size;
169 unsigned target_struct_allocsize;
170 #define DEFAULT_ALLOCSIZE 10
171
172 /* The initial current target, so that there is always a semi-valid
173 current target. */
174
175 static struct target_ops dummy_target;
176
177 /* Top of target stack. */
178
179 static struct target_ops *target_stack;
180
181 /* The target structure we are currently using to talk to a process
182 or file or whatever "inferior" we have. */
183
184 struct target_ops current_target;
185
186 /* Command list for target. */
187
188 static struct cmd_list_element *targetlist = NULL;
189
190 /* Nonzero if we should trust readonly sections from the
191 executable when reading memory. */
192
193 static int trust_readonly = 0;
194
195 /* Nonzero if we should show true memory content including
196 memory breakpoint inserted by gdb. */
197
198 static int show_memory_breakpoints = 0;
199
200 /* These globals control whether GDB attempts to perform these
201 operations; they are useful for targets that need to prevent
202 inadvertant disruption, such as in non-stop mode. */
203
204 int may_write_registers = 1;
205
206 int may_write_memory = 1;
207
208 int may_insert_breakpoints = 1;
209
210 int may_insert_tracepoints = 1;
211
212 int may_insert_fast_tracepoints = 1;
213
214 int may_stop = 1;
215
216 /* Non-zero if we want to see trace of target level stuff. */
217
218 static unsigned int targetdebug = 0;
219 static void
220 show_targetdebug (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
224 }
225
226 static void setup_target_debug (void);
227
228 /* The user just typed 'target' without the name of a target. */
229
230 static void
231 target_command (char *arg, int from_tty)
232 {
233 fputs_filtered ("Argument required (target name). Try `help target'\n",
234 gdb_stdout);
235 }
236
237 /* Default target_has_* methods for process_stratum targets. */
238
239 int
240 default_child_has_all_memory (struct target_ops *ops)
241 {
242 /* If no inferior selected, then we can't read memory here. */
243 if (ptid_equal (inferior_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249 int
250 default_child_has_memory (struct target_ops *ops)
251 {
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257 }
258
259 int
260 default_child_has_stack (struct target_ops *ops)
261 {
262 /* If no inferior selected, there's no stack. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269 int
270 default_child_has_registers (struct target_ops *ops)
271 {
272 /* Can't read registers from no inferior. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
281 {
282 /* If there's no thread selected, then we can't make it run through
283 hoops. */
284 if (ptid_equal (the_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290
291 int
292 target_has_all_memory_1 (void)
293 {
294 struct target_ops *t;
295
296 for (t = current_target.beneath; t != NULL; t = t->beneath)
297 if (t->to_has_all_memory (t))
298 return 1;
299
300 return 0;
301 }
302
303 int
304 target_has_memory_1 (void)
305 {
306 struct target_ops *t;
307
308 for (t = current_target.beneath; t != NULL; t = t->beneath)
309 if (t->to_has_memory (t))
310 return 1;
311
312 return 0;
313 }
314
315 int
316 target_has_stack_1 (void)
317 {
318 struct target_ops *t;
319
320 for (t = current_target.beneath; t != NULL; t = t->beneath)
321 if (t->to_has_stack (t))
322 return 1;
323
324 return 0;
325 }
326
327 int
328 target_has_registers_1 (void)
329 {
330 struct target_ops *t;
331
332 for (t = current_target.beneath; t != NULL; t = t->beneath)
333 if (t->to_has_registers (t))
334 return 1;
335
336 return 0;
337 }
338
339 int
340 target_has_execution_1 (ptid_t the_ptid)
341 {
342 struct target_ops *t;
343
344 for (t = current_target.beneath; t != NULL; t = t->beneath)
345 if (t->to_has_execution (t, the_ptid))
346 return 1;
347
348 return 0;
349 }
350
351 int
352 target_has_execution_current (void)
353 {
354 return target_has_execution_1 (inferior_ptid);
355 }
356
357 /* Complete initialization of T. This ensures that various fields in
358 T are set, if needed by the target implementation. */
359
360 void
361 complete_target_initialization (struct target_ops *t)
362 {
363 /* Provide default values for all "must have" methods. */
364 if (t->to_xfer_partial == NULL)
365 t->to_xfer_partial = default_xfer_partial;
366
367 if (t->to_has_all_memory == NULL)
368 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
369
370 if (t->to_has_memory == NULL)
371 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_stack == NULL)
374 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_registers == NULL)
377 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_execution == NULL)
380 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
381
382 install_delegators (t);
383 }
384
385 /* Add possible target architecture T to the list and add a new
386 command 'target T->to_shortname'. Set COMPLETER as the command's
387 completer if not NULL. */
388
389 void
390 add_target_with_completer (struct target_ops *t,
391 completer_ftype *completer)
392 {
393 struct cmd_list_element *c;
394
395 complete_target_initialization (t);
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
421 &targetlist);
422 if (completer != NULL)
423 set_cmd_completer (c, completer);
424 }
425
426 /* Add a possible target architecture to the list. */
427
428 void
429 add_target (struct target_ops *t)
430 {
431 add_target_with_completer (t, NULL);
432 }
433
434 /* See target.h. */
435
436 void
437 add_deprecated_target_alias (struct target_ops *t, char *alias)
438 {
439 struct cmd_list_element *c;
440 char *alt;
441
442 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
443 see PR cli/15104. */
444 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
445 alt = xstrprintf ("target %s", t->to_shortname);
446 deprecate_cmd (c, alt);
447 }
448
449 /* Stub functions */
450
451 void
452 target_ignore (void)
453 {
454 }
455
456 void
457 target_kill (void)
458 {
459 struct target_ops *t;
460
461 for (t = current_target.beneath; t != NULL; t = t->beneath)
462 if (t->to_kill != NULL)
463 {
464 if (targetdebug)
465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
466
467 t->to_kill (t);
468 return;
469 }
470
471 noprocess ();
472 }
473
474 void
475 target_load (char *arg, int from_tty)
476 {
477 target_dcache_invalidate ();
478 (*current_target.to_load) (&current_target, arg, from_tty);
479 }
480
481 void
482 target_create_inferior (char *exec_file, char *args,
483 char **env, int from_tty)
484 {
485 struct target_ops *t;
486
487 for (t = current_target.beneath; t != NULL; t = t->beneath)
488 {
489 if (t->to_create_inferior != NULL)
490 {
491 t->to_create_inferior (t, exec_file, args, env, from_tty);
492 if (targetdebug)
493 fprintf_unfiltered (gdb_stdlog,
494 "target_create_inferior (%s, %s, xxx, %d)\n",
495 exec_file, args, from_tty);
496 return;
497 }
498 }
499
500 internal_error (__FILE__, __LINE__,
501 _("could not find a target to create inferior"));
502 }
503
504 void
505 target_terminal_inferior (void)
506 {
507 /* A background resume (``run&'') should leave GDB in control of the
508 terminal. Use target_can_async_p, not target_is_async_p, since at
509 this point the target is not async yet. However, if sync_execution
510 is not set, we know it will become async prior to resume. */
511 if (target_can_async_p () && !sync_execution)
512 return;
513
514 /* If GDB is resuming the inferior in the foreground, install
515 inferior's terminal modes. */
516 (*current_target.to_terminal_inferior) (&current_target);
517 }
518
519 static int
520 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
521 struct target_ops *t)
522 {
523 errno = EIO; /* Can't read/write this location. */
524 return 0; /* No bytes handled. */
525 }
526
527 static void
528 tcomplain (void)
529 {
530 error (_("You can't do that when your target is `%s'"),
531 current_target.to_shortname);
532 }
533
534 void
535 noprocess (void)
536 {
537 error (_("You can't do that without a process to debug."));
538 }
539
540 static void
541 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
542 {
543 printf_unfiltered (_("No saved terminal information.\n"));
544 }
545
546 /* A default implementation for the to_get_ada_task_ptid target method.
547
548 This function builds the PTID by using both LWP and TID as part of
549 the PTID lwp and tid elements. The pid used is the pid of the
550 inferior_ptid. */
551
552 static ptid_t
553 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
554 {
555 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
556 }
557
558 static enum exec_direction_kind
559 default_execution_direction (struct target_ops *self)
560 {
561 if (!target_can_execute_reverse)
562 return EXEC_FORWARD;
563 else if (!target_can_async_p ())
564 return EXEC_FORWARD;
565 else
566 gdb_assert_not_reached ("\
567 to_execution_direction must be implemented for reverse async");
568 }
569
570 /* Go through the target stack from top to bottom, copying over zero
571 entries in current_target, then filling in still empty entries. In
572 effect, we are doing class inheritance through the pushed target
573 vectors.
574
575 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
576 is currently implemented, is that it discards any knowledge of
577 which target an inherited method originally belonged to.
578 Consequently, new new target methods should instead explicitly and
579 locally search the target stack for the target that can handle the
580 request. */
581
582 static void
583 update_current_target (void)
584 {
585 struct target_ops *t;
586
587 /* First, reset current's contents. */
588 memset (&current_target, 0, sizeof (current_target));
589
590 /* Install the delegators. */
591 install_delegators (&current_target);
592
593 #define INHERIT(FIELD, TARGET) \
594 if (!current_target.FIELD) \
595 current_target.FIELD = (TARGET)->FIELD
596
597 for (t = target_stack; t; t = t->beneath)
598 {
599 INHERIT (to_shortname, t);
600 INHERIT (to_longname, t);
601 INHERIT (to_doc, t);
602 /* Do not inherit to_open. */
603 /* Do not inherit to_close. */
604 /* Do not inherit to_attach. */
605 /* Do not inherit to_post_attach. */
606 INHERIT (to_attach_no_wait, t);
607 /* Do not inherit to_detach. */
608 /* Do not inherit to_disconnect. */
609 /* Do not inherit to_resume. */
610 /* Do not inherit to_wait. */
611 /* Do not inherit to_fetch_registers. */
612 /* Do not inherit to_store_registers. */
613 /* Do not inherit to_prepare_to_store. */
614 INHERIT (deprecated_xfer_memory, t);
615 /* Do not inherit to_files_info. */
616 /* Do not inherit to_insert_breakpoint. */
617 /* Do not inherit to_remove_breakpoint. */
618 /* Do not inherit to_can_use_hw_breakpoint. */
619 /* Do not inherit to_insert_hw_breakpoint. */
620 /* Do not inherit to_remove_hw_breakpoint. */
621 /* Do not inherit to_ranged_break_num_registers. */
622 /* Do not inherit to_insert_watchpoint. */
623 /* Do not inherit to_remove_watchpoint. */
624 /* Do not inherit to_insert_mask_watchpoint. */
625 /* Do not inherit to_remove_mask_watchpoint. */
626 /* Do not inherit to_stopped_data_address. */
627 INHERIT (to_have_steppable_watchpoint, t);
628 INHERIT (to_have_continuable_watchpoint, t);
629 /* Do not inherit to_stopped_by_watchpoint. */
630 /* Do not inherit to_watchpoint_addr_within_range. */
631 /* Do not inherit to_region_ok_for_hw_watchpoint. */
632 /* Do not inherit to_can_accel_watchpoint_condition. */
633 /* Do not inherit to_masked_watch_num_registers. */
634 /* Do not inherit to_terminal_init. */
635 /* Do not inherit to_terminal_inferior. */
636 /* Do not inherit to_terminal_ours_for_output. */
637 /* Do not inherit to_terminal_ours. */
638 /* Do not inherit to_terminal_save_ours. */
639 /* Do not inherit to_terminal_info. */
640 /* Do not inherit to_kill. */
641 /* Do not inherit to_load. */
642 /* Do no inherit to_create_inferior. */
643 /* Do not inherit to_post_startup_inferior. */
644 /* Do not inherit to_insert_fork_catchpoint. */
645 /* Do not inherit to_remove_fork_catchpoint. */
646 /* Do not inherit to_insert_vfork_catchpoint. */
647 /* Do not inherit to_remove_vfork_catchpoint. */
648 /* Do not inherit to_follow_fork. */
649 /* Do not inherit to_insert_exec_catchpoint. */
650 /* Do not inherit to_remove_exec_catchpoint. */
651 /* Do not inherit to_set_syscall_catchpoint. */
652 /* Do not inherit to_has_exited. */
653 /* Do not inherit to_mourn_inferior. */
654 INHERIT (to_can_run, t);
655 /* Do not inherit to_pass_signals. */
656 /* Do not inherit to_program_signals. */
657 /* Do not inherit to_thread_alive. */
658 /* Do not inherit to_find_new_threads. */
659 /* Do not inherit to_pid_to_str. */
660 /* Do not inherit to_extra_thread_info. */
661 /* Do not inherit to_thread_name. */
662 INHERIT (to_stop, t);
663 /* Do not inherit to_xfer_partial. */
664 /* Do not inherit to_rcmd. */
665 /* Do not inherit to_pid_to_exec_file. */
666 /* Do not inherit to_log_command. */
667 INHERIT (to_stratum, t);
668 /* Do not inherit to_has_all_memory. */
669 /* Do not inherit to_has_memory. */
670 /* Do not inherit to_has_stack. */
671 /* Do not inherit to_has_registers. */
672 /* Do not inherit to_has_execution. */
673 INHERIT (to_has_thread_control, t);
674 /* Do not inherit to_can_async_p. */
675 /* Do not inherit to_is_async_p. */
676 /* Do not inherit to_async. */
677 /* Do not inherit to_find_memory_regions. */
678 /* Do not inherit to_make_corefile_notes. */
679 /* Do not inherit to_get_bookmark. */
680 /* Do not inherit to_goto_bookmark. */
681 /* Do not inherit to_get_thread_local_address. */
682 /* Do not inherit to_can_execute_reverse. */
683 /* Do not inherit to_execution_direction. */
684 /* Do not inherit to_thread_architecture. */
685 /* Do not inherit to_read_description. */
686 /* Do not inherit to_get_ada_task_ptid. */
687 /* Do not inherit to_search_memory. */
688 /* Do not inherit to_supports_multi_process. */
689 /* Do not inherit to_supports_enable_disable_tracepoint. */
690 /* Do not inherit to_supports_string_tracing. */
691 /* Do not inherit to_trace_init. */
692 /* Do not inherit to_download_tracepoint. */
693 /* Do not inherit to_can_download_tracepoint. */
694 /* Do not inherit to_download_trace_state_variable. */
695 /* Do not inherit to_enable_tracepoint. */
696 /* Do not inherit to_disable_tracepoint. */
697 /* Do not inherit to_trace_set_readonly_regions. */
698 /* Do not inherit to_trace_start. */
699 /* Do not inherit to_get_trace_status. */
700 /* Do not inherit to_get_tracepoint_status. */
701 /* Do not inherit to_trace_stop. */
702 /* Do not inherit to_trace_find. */
703 /* Do not inherit to_get_trace_state_variable_value. */
704 /* Do not inherit to_save_trace_data. */
705 /* Do not inherit to_upload_tracepoints. */
706 /* Do not inherit to_upload_trace_state_variables. */
707 /* Do not inherit to_get_raw_trace_data. */
708 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
709 INHERIT (to_set_disconnected_tracing, t);
710 INHERIT (to_set_circular_trace_buffer, t);
711 INHERIT (to_set_trace_buffer_size, t);
712 INHERIT (to_set_trace_notes, t);
713 INHERIT (to_get_tib_address, t);
714 INHERIT (to_set_permissions, t);
715 INHERIT (to_static_tracepoint_marker_at, t);
716 INHERIT (to_static_tracepoint_markers_by_strid, t);
717 INHERIT (to_traceframe_info, t);
718 INHERIT (to_use_agent, t);
719 INHERIT (to_can_use_agent, t);
720 INHERIT (to_augmented_libraries_svr4_read, t);
721 INHERIT (to_magic, t);
722 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
723 INHERIT (to_can_run_breakpoint_commands, t);
724 /* Do not inherit to_memory_map. */
725 /* Do not inherit to_flash_erase. */
726 /* Do not inherit to_flash_done. */
727 }
728 #undef INHERIT
729
730 /* Clean up a target struct so it no longer has any zero pointers in
731 it. Some entries are defaulted to a method that print an error,
732 others are hard-wired to a standard recursive default. */
733
734 #define de_fault(field, value) \
735 if (!current_target.field) \
736 current_target.field = value
737
738 de_fault (to_open,
739 (void (*) (char *, int))
740 tcomplain);
741 de_fault (to_close,
742 (void (*) (struct target_ops *))
743 target_ignore);
744 de_fault (deprecated_xfer_memory,
745 (int (*) (CORE_ADDR, gdb_byte *, int, int,
746 struct mem_attrib *, struct target_ops *))
747 nomemory);
748 de_fault (to_can_run,
749 (int (*) (struct target_ops *))
750 return_zero);
751 de_fault (to_stop,
752 (void (*) (struct target_ops *, ptid_t))
753 target_ignore);
754 current_target.to_read_description = NULL;
755 de_fault (to_get_min_fast_tracepoint_insn_len,
756 (int (*) (struct target_ops *))
757 return_minus_one);
758 de_fault (to_set_disconnected_tracing,
759 (void (*) (struct target_ops *, int))
760 target_ignore);
761 de_fault (to_set_circular_trace_buffer,
762 (void (*) (struct target_ops *, int))
763 target_ignore);
764 de_fault (to_set_trace_buffer_size,
765 (void (*) (struct target_ops *, LONGEST))
766 target_ignore);
767 de_fault (to_set_trace_notes,
768 (int (*) (struct target_ops *,
769 const char *, const char *, const char *))
770 return_zero);
771 de_fault (to_get_tib_address,
772 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
773 tcomplain);
774 de_fault (to_set_permissions,
775 (void (*) (struct target_ops *))
776 target_ignore);
777 de_fault (to_static_tracepoint_marker_at,
778 (int (*) (struct target_ops *,
779 CORE_ADDR, struct static_tracepoint_marker *))
780 return_zero);
781 de_fault (to_static_tracepoint_markers_by_strid,
782 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
783 const char *))
784 tcomplain);
785 de_fault (to_traceframe_info,
786 (struct traceframe_info * (*) (struct target_ops *))
787 return_null);
788 de_fault (to_supports_evaluation_of_breakpoint_conditions,
789 (int (*) (struct target_ops *))
790 return_zero);
791 de_fault (to_can_run_breakpoint_commands,
792 (int (*) (struct target_ops *))
793 return_zero);
794 de_fault (to_use_agent,
795 (int (*) (struct target_ops *, int))
796 tcomplain);
797 de_fault (to_can_use_agent,
798 (int (*) (struct target_ops *))
799 return_zero);
800 de_fault (to_augmented_libraries_svr4_read,
801 (int (*) (struct target_ops *))
802 return_zero);
803
804 #undef de_fault
805
806 /* Finally, position the target-stack beneath the squashed
807 "current_target". That way code looking for a non-inherited
808 target method can quickly and simply find it. */
809 current_target.beneath = target_stack;
810
811 if (targetdebug)
812 setup_target_debug ();
813 }
814
815 /* Push a new target type into the stack of the existing target accessors,
816 possibly superseding some of the existing accessors.
817
818 Rather than allow an empty stack, we always have the dummy target at
819 the bottom stratum, so we can call the function vectors without
820 checking them. */
821
822 void
823 push_target (struct target_ops *t)
824 {
825 struct target_ops **cur;
826
827 /* Check magic number. If wrong, it probably means someone changed
828 the struct definition, but not all the places that initialize one. */
829 if (t->to_magic != OPS_MAGIC)
830 {
831 fprintf_unfiltered (gdb_stderr,
832 "Magic number of %s target struct wrong\n",
833 t->to_shortname);
834 internal_error (__FILE__, __LINE__,
835 _("failed internal consistency check"));
836 }
837
838 /* Find the proper stratum to install this target in. */
839 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
840 {
841 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
842 break;
843 }
844
845 /* If there's already targets at this stratum, remove them. */
846 /* FIXME: cagney/2003-10-15: I think this should be popping all
847 targets to CUR, and not just those at this stratum level. */
848 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
849 {
850 /* There's already something at this stratum level. Close it,
851 and un-hook it from the stack. */
852 struct target_ops *tmp = (*cur);
853
854 (*cur) = (*cur)->beneath;
855 tmp->beneath = NULL;
856 target_close (tmp);
857 }
858
859 /* We have removed all targets in our stratum, now add the new one. */
860 t->beneath = (*cur);
861 (*cur) = t;
862
863 update_current_target ();
864 }
865
866 /* Remove a target_ops vector from the stack, wherever it may be.
867 Return how many times it was removed (0 or 1). */
868
869 int
870 unpush_target (struct target_ops *t)
871 {
872 struct target_ops **cur;
873 struct target_ops *tmp;
874
875 if (t->to_stratum == dummy_stratum)
876 internal_error (__FILE__, __LINE__,
877 _("Attempt to unpush the dummy target"));
878
879 /* Look for the specified target. Note that we assume that a target
880 can only occur once in the target stack. */
881
882 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
883 {
884 if ((*cur) == t)
885 break;
886 }
887
888 /* If we don't find target_ops, quit. Only open targets should be
889 closed. */
890 if ((*cur) == NULL)
891 return 0;
892
893 /* Unchain the target. */
894 tmp = (*cur);
895 (*cur) = (*cur)->beneath;
896 tmp->beneath = NULL;
897
898 update_current_target ();
899
900 /* Finally close the target. Note we do this after unchaining, so
901 any target method calls from within the target_close
902 implementation don't end up in T anymore. */
903 target_close (t);
904
905 return 1;
906 }
907
908 void
909 pop_all_targets_above (enum strata above_stratum)
910 {
911 while ((int) (current_target.to_stratum) > (int) above_stratum)
912 {
913 if (!unpush_target (target_stack))
914 {
915 fprintf_unfiltered (gdb_stderr,
916 "pop_all_targets couldn't find target %s\n",
917 target_stack->to_shortname);
918 internal_error (__FILE__, __LINE__,
919 _("failed internal consistency check"));
920 break;
921 }
922 }
923 }
924
925 void
926 pop_all_targets (void)
927 {
928 pop_all_targets_above (dummy_stratum);
929 }
930
931 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
932
933 int
934 target_is_pushed (struct target_ops *t)
935 {
936 struct target_ops **cur;
937
938 /* Check magic number. If wrong, it probably means someone changed
939 the struct definition, but not all the places that initialize one. */
940 if (t->to_magic != OPS_MAGIC)
941 {
942 fprintf_unfiltered (gdb_stderr,
943 "Magic number of %s target struct wrong\n",
944 t->to_shortname);
945 internal_error (__FILE__, __LINE__,
946 _("failed internal consistency check"));
947 }
948
949 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
950 if (*cur == t)
951 return 1;
952
953 return 0;
954 }
955
956 /* Using the objfile specified in OBJFILE, find the address for the
957 current thread's thread-local storage with offset OFFSET. */
958 CORE_ADDR
959 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
960 {
961 volatile CORE_ADDR addr = 0;
962 struct target_ops *target;
963
964 for (target = current_target.beneath;
965 target != NULL;
966 target = target->beneath)
967 {
968 if (target->to_get_thread_local_address != NULL)
969 break;
970 }
971
972 if (target != NULL
973 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
974 {
975 ptid_t ptid = inferior_ptid;
976 volatile struct gdb_exception ex;
977
978 TRY_CATCH (ex, RETURN_MASK_ALL)
979 {
980 CORE_ADDR lm_addr;
981
982 /* Fetch the load module address for this objfile. */
983 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
984 objfile);
985 /* If it's 0, throw the appropriate exception. */
986 if (lm_addr == 0)
987 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
988 _("TLS load module not found"));
989
990 addr = target->to_get_thread_local_address (target, ptid,
991 lm_addr, offset);
992 }
993 /* If an error occurred, print TLS related messages here. Otherwise,
994 throw the error to some higher catcher. */
995 if (ex.reason < 0)
996 {
997 int objfile_is_library = (objfile->flags & OBJF_SHARED);
998
999 switch (ex.error)
1000 {
1001 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1002 error (_("Cannot find thread-local variables "
1003 "in this thread library."));
1004 break;
1005 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1006 if (objfile_is_library)
1007 error (_("Cannot find shared library `%s' in dynamic"
1008 " linker's load module list"), objfile_name (objfile));
1009 else
1010 error (_("Cannot find executable file `%s' in dynamic"
1011 " linker's load module list"), objfile_name (objfile));
1012 break;
1013 case TLS_NOT_ALLOCATED_YET_ERROR:
1014 if (objfile_is_library)
1015 error (_("The inferior has not yet allocated storage for"
1016 " thread-local variables in\n"
1017 "the shared library `%s'\n"
1018 "for %s"),
1019 objfile_name (objfile), target_pid_to_str (ptid));
1020 else
1021 error (_("The inferior has not yet allocated storage for"
1022 " thread-local variables in\n"
1023 "the executable `%s'\n"
1024 "for %s"),
1025 objfile_name (objfile), target_pid_to_str (ptid));
1026 break;
1027 case TLS_GENERIC_ERROR:
1028 if (objfile_is_library)
1029 error (_("Cannot find thread-local storage for %s, "
1030 "shared library %s:\n%s"),
1031 target_pid_to_str (ptid),
1032 objfile_name (objfile), ex.message);
1033 else
1034 error (_("Cannot find thread-local storage for %s, "
1035 "executable file %s:\n%s"),
1036 target_pid_to_str (ptid),
1037 objfile_name (objfile), ex.message);
1038 break;
1039 default:
1040 throw_exception (ex);
1041 break;
1042 }
1043 }
1044 }
1045 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1046 TLS is an ABI-specific thing. But we don't do that yet. */
1047 else
1048 error (_("Cannot find thread-local variables on this target"));
1049
1050 return addr;
1051 }
1052
1053 const char *
1054 target_xfer_status_to_string (enum target_xfer_status err)
1055 {
1056 #define CASE(X) case X: return #X
1057 switch (err)
1058 {
1059 CASE(TARGET_XFER_E_IO);
1060 CASE(TARGET_XFER_E_UNAVAILABLE);
1061 default:
1062 return "<unknown>";
1063 }
1064 #undef CASE
1065 };
1066
1067
1068 #undef MIN
1069 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1070
1071 /* target_read_string -- read a null terminated string, up to LEN bytes,
1072 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1073 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1074 is responsible for freeing it. Return the number of bytes successfully
1075 read. */
1076
1077 int
1078 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1079 {
1080 int tlen, offset, i;
1081 gdb_byte buf[4];
1082 int errcode = 0;
1083 char *buffer;
1084 int buffer_allocated;
1085 char *bufptr;
1086 unsigned int nbytes_read = 0;
1087
1088 gdb_assert (string);
1089
1090 /* Small for testing. */
1091 buffer_allocated = 4;
1092 buffer = xmalloc (buffer_allocated);
1093 bufptr = buffer;
1094
1095 while (len > 0)
1096 {
1097 tlen = MIN (len, 4 - (memaddr & 3));
1098 offset = memaddr & 3;
1099
1100 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1101 if (errcode != 0)
1102 {
1103 /* The transfer request might have crossed the boundary to an
1104 unallocated region of memory. Retry the transfer, requesting
1105 a single byte. */
1106 tlen = 1;
1107 offset = 0;
1108 errcode = target_read_memory (memaddr, buf, 1);
1109 if (errcode != 0)
1110 goto done;
1111 }
1112
1113 if (bufptr - buffer + tlen > buffer_allocated)
1114 {
1115 unsigned int bytes;
1116
1117 bytes = bufptr - buffer;
1118 buffer_allocated *= 2;
1119 buffer = xrealloc (buffer, buffer_allocated);
1120 bufptr = buffer + bytes;
1121 }
1122
1123 for (i = 0; i < tlen; i++)
1124 {
1125 *bufptr++ = buf[i + offset];
1126 if (buf[i + offset] == '\000')
1127 {
1128 nbytes_read += i + 1;
1129 goto done;
1130 }
1131 }
1132
1133 memaddr += tlen;
1134 len -= tlen;
1135 nbytes_read += tlen;
1136 }
1137 done:
1138 *string = buffer;
1139 if (errnop != NULL)
1140 *errnop = errcode;
1141 return nbytes_read;
1142 }
1143
1144 struct target_section_table *
1145 target_get_section_table (struct target_ops *target)
1146 {
1147 struct target_ops *t;
1148
1149 if (targetdebug)
1150 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1151
1152 for (t = target; t != NULL; t = t->beneath)
1153 if (t->to_get_section_table != NULL)
1154 return (*t->to_get_section_table) (t);
1155
1156 return NULL;
1157 }
1158
1159 /* Find a section containing ADDR. */
1160
1161 struct target_section *
1162 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1163 {
1164 struct target_section_table *table = target_get_section_table (target);
1165 struct target_section *secp;
1166
1167 if (table == NULL)
1168 return NULL;
1169
1170 for (secp = table->sections; secp < table->sections_end; secp++)
1171 {
1172 if (addr >= secp->addr && addr < secp->endaddr)
1173 return secp;
1174 }
1175 return NULL;
1176 }
1177
1178 /* Read memory from the live target, even if currently inspecting a
1179 traceframe. The return is the same as that of target_read. */
1180
1181 static enum target_xfer_status
1182 target_read_live_memory (enum target_object object,
1183 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1184 ULONGEST *xfered_len)
1185 {
1186 enum target_xfer_status ret;
1187 struct cleanup *cleanup;
1188
1189 /* Switch momentarily out of tfind mode so to access live memory.
1190 Note that this must not clear global state, such as the frame
1191 cache, which must still remain valid for the previous traceframe.
1192 We may be _building_ the frame cache at this point. */
1193 cleanup = make_cleanup_restore_traceframe_number ();
1194 set_traceframe_number (-1);
1195
1196 ret = target_xfer_partial (current_target.beneath, object, NULL,
1197 myaddr, NULL, memaddr, len, xfered_len);
1198
1199 do_cleanups (cleanup);
1200 return ret;
1201 }
1202
1203 /* Using the set of read-only target sections of OPS, read live
1204 read-only memory. Note that the actual reads start from the
1205 top-most target again.
1206
1207 For interface/parameters/return description see target.h,
1208 to_xfer_partial. */
1209
1210 static enum target_xfer_status
1211 memory_xfer_live_readonly_partial (struct target_ops *ops,
1212 enum target_object object,
1213 gdb_byte *readbuf, ULONGEST memaddr,
1214 ULONGEST len, ULONGEST *xfered_len)
1215 {
1216 struct target_section *secp;
1217 struct target_section_table *table;
1218
1219 secp = target_section_by_addr (ops, memaddr);
1220 if (secp != NULL
1221 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1222 secp->the_bfd_section)
1223 & SEC_READONLY))
1224 {
1225 struct target_section *p;
1226 ULONGEST memend = memaddr + len;
1227
1228 table = target_get_section_table (ops);
1229
1230 for (p = table->sections; p < table->sections_end; p++)
1231 {
1232 if (memaddr >= p->addr)
1233 {
1234 if (memend <= p->endaddr)
1235 {
1236 /* Entire transfer is within this section. */
1237 return target_read_live_memory (object, memaddr,
1238 readbuf, len, xfered_len);
1239 }
1240 else if (memaddr >= p->endaddr)
1241 {
1242 /* This section ends before the transfer starts. */
1243 continue;
1244 }
1245 else
1246 {
1247 /* This section overlaps the transfer. Just do half. */
1248 len = p->endaddr - memaddr;
1249 return target_read_live_memory (object, memaddr,
1250 readbuf, len, xfered_len);
1251 }
1252 }
1253 }
1254 }
1255
1256 return TARGET_XFER_EOF;
1257 }
1258
1259 /* Read memory from more than one valid target. A core file, for
1260 instance, could have some of memory but delegate other bits to
1261 the target below it. So, we must manually try all targets. */
1262
1263 static enum target_xfer_status
1264 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1265 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1266 ULONGEST *xfered_len)
1267 {
1268 enum target_xfer_status res;
1269
1270 do
1271 {
1272 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1273 readbuf, writebuf, memaddr, len,
1274 xfered_len);
1275 if (res == TARGET_XFER_OK)
1276 break;
1277
1278 /* Stop if the target reports that the memory is not available. */
1279 if (res == TARGET_XFER_E_UNAVAILABLE)
1280 break;
1281
1282 /* We want to continue past core files to executables, but not
1283 past a running target's memory. */
1284 if (ops->to_has_all_memory (ops))
1285 break;
1286
1287 ops = ops->beneath;
1288 }
1289 while (ops != NULL);
1290
1291 return res;
1292 }
1293
1294 /* Perform a partial memory transfer.
1295 For docs see target.h, to_xfer_partial. */
1296
1297 static enum target_xfer_status
1298 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1299 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1300 ULONGEST len, ULONGEST *xfered_len)
1301 {
1302 enum target_xfer_status res;
1303 int reg_len;
1304 struct mem_region *region;
1305 struct inferior *inf;
1306
1307 /* For accesses to unmapped overlay sections, read directly from
1308 files. Must do this first, as MEMADDR may need adjustment. */
1309 if (readbuf != NULL && overlay_debugging)
1310 {
1311 struct obj_section *section = find_pc_overlay (memaddr);
1312
1313 if (pc_in_unmapped_range (memaddr, section))
1314 {
1315 struct target_section_table *table
1316 = target_get_section_table (ops);
1317 const char *section_name = section->the_bfd_section->name;
1318
1319 memaddr = overlay_mapped_address (memaddr, section);
1320 return section_table_xfer_memory_partial (readbuf, writebuf,
1321 memaddr, len, xfered_len,
1322 table->sections,
1323 table->sections_end,
1324 section_name);
1325 }
1326 }
1327
1328 /* Try the executable files, if "trust-readonly-sections" is set. */
1329 if (readbuf != NULL && trust_readonly)
1330 {
1331 struct target_section *secp;
1332 struct target_section_table *table;
1333
1334 secp = target_section_by_addr (ops, memaddr);
1335 if (secp != NULL
1336 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1337 secp->the_bfd_section)
1338 & SEC_READONLY))
1339 {
1340 table = target_get_section_table (ops);
1341 return section_table_xfer_memory_partial (readbuf, writebuf,
1342 memaddr, len, xfered_len,
1343 table->sections,
1344 table->sections_end,
1345 NULL);
1346 }
1347 }
1348
1349 /* If reading unavailable memory in the context of traceframes, and
1350 this address falls within a read-only section, fallback to
1351 reading from live memory. */
1352 if (readbuf != NULL && get_traceframe_number () != -1)
1353 {
1354 VEC(mem_range_s) *available;
1355
1356 /* If we fail to get the set of available memory, then the
1357 target does not support querying traceframe info, and so we
1358 attempt reading from the traceframe anyway (assuming the
1359 target implements the old QTro packet then). */
1360 if (traceframe_available_memory (&available, memaddr, len))
1361 {
1362 struct cleanup *old_chain;
1363
1364 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1365
1366 if (VEC_empty (mem_range_s, available)
1367 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1368 {
1369 /* Don't read into the traceframe's available
1370 memory. */
1371 if (!VEC_empty (mem_range_s, available))
1372 {
1373 LONGEST oldlen = len;
1374
1375 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1376 gdb_assert (len <= oldlen);
1377 }
1378
1379 do_cleanups (old_chain);
1380
1381 /* This goes through the topmost target again. */
1382 res = memory_xfer_live_readonly_partial (ops, object,
1383 readbuf, memaddr,
1384 len, xfered_len);
1385 if (res == TARGET_XFER_OK)
1386 return TARGET_XFER_OK;
1387 else
1388 {
1389 /* No use trying further, we know some memory starting
1390 at MEMADDR isn't available. */
1391 *xfered_len = len;
1392 return TARGET_XFER_E_UNAVAILABLE;
1393 }
1394 }
1395
1396 /* Don't try to read more than how much is available, in
1397 case the target implements the deprecated QTro packet to
1398 cater for older GDBs (the target's knowledge of read-only
1399 sections may be outdated by now). */
1400 len = VEC_index (mem_range_s, available, 0)->length;
1401
1402 do_cleanups (old_chain);
1403 }
1404 }
1405
1406 /* Try GDB's internal data cache. */
1407 region = lookup_mem_region (memaddr);
1408 /* region->hi == 0 means there's no upper bound. */
1409 if (memaddr + len < region->hi || region->hi == 0)
1410 reg_len = len;
1411 else
1412 reg_len = region->hi - memaddr;
1413
1414 switch (region->attrib.mode)
1415 {
1416 case MEM_RO:
1417 if (writebuf != NULL)
1418 return TARGET_XFER_E_IO;
1419 break;
1420
1421 case MEM_WO:
1422 if (readbuf != NULL)
1423 return TARGET_XFER_E_IO;
1424 break;
1425
1426 case MEM_FLASH:
1427 /* We only support writing to flash during "load" for now. */
1428 if (writebuf != NULL)
1429 error (_("Writing to flash memory forbidden in this context"));
1430 break;
1431
1432 case MEM_NONE:
1433 return TARGET_XFER_E_IO;
1434 }
1435
1436 if (!ptid_equal (inferior_ptid, null_ptid))
1437 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1438 else
1439 inf = NULL;
1440
1441 if (inf != NULL
1442 /* The dcache reads whole cache lines; that doesn't play well
1443 with reading from a trace buffer, because reading outside of
1444 the collected memory range fails. */
1445 && get_traceframe_number () == -1
1446 && (region->attrib.cache
1447 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1448 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1449 {
1450 DCACHE *dcache = target_dcache_get_or_init ();
1451 int l;
1452
1453 if (readbuf != NULL)
1454 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1455 else
1456 /* FIXME drow/2006-08-09: If we're going to preserve const
1457 correctness dcache_xfer_memory should take readbuf and
1458 writebuf. */
1459 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1460 reg_len, 1);
1461 if (l <= 0)
1462 return TARGET_XFER_E_IO;
1463 else
1464 {
1465 *xfered_len = (ULONGEST) l;
1466 return TARGET_XFER_OK;
1467 }
1468 }
1469
1470 /* If none of those methods found the memory we wanted, fall back
1471 to a target partial transfer. Normally a single call to
1472 to_xfer_partial is enough; if it doesn't recognize an object
1473 it will call the to_xfer_partial of the next target down.
1474 But for memory this won't do. Memory is the only target
1475 object which can be read from more than one valid target.
1476 A core file, for instance, could have some of memory but
1477 delegate other bits to the target below it. So, we must
1478 manually try all targets. */
1479
1480 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1481 xfered_len);
1482
1483 /* Make sure the cache gets updated no matter what - if we are writing
1484 to the stack. Even if this write is not tagged as such, we still need
1485 to update the cache. */
1486
1487 if (res == TARGET_XFER_OK
1488 && inf != NULL
1489 && writebuf != NULL
1490 && target_dcache_init_p ()
1491 && !region->attrib.cache
1492 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1493 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1494 {
1495 DCACHE *dcache = target_dcache_get ();
1496
1497 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1498 }
1499
1500 /* If we still haven't got anything, return the last error. We
1501 give up. */
1502 return res;
1503 }
1504
1505 /* Perform a partial memory transfer. For docs see target.h,
1506 to_xfer_partial. */
1507
1508 static enum target_xfer_status
1509 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1510 gdb_byte *readbuf, const gdb_byte *writebuf,
1511 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1512 {
1513 enum target_xfer_status res;
1514
1515 /* Zero length requests are ok and require no work. */
1516 if (len == 0)
1517 return TARGET_XFER_EOF;
1518
1519 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1520 breakpoint insns, thus hiding out from higher layers whether
1521 there are software breakpoints inserted in the code stream. */
1522 if (readbuf != NULL)
1523 {
1524 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1525 xfered_len);
1526
1527 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1528 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1529 }
1530 else
1531 {
1532 void *buf;
1533 struct cleanup *old_chain;
1534
1535 /* A large write request is likely to be partially satisfied
1536 by memory_xfer_partial_1. We will continually malloc
1537 and free a copy of the entire write request for breakpoint
1538 shadow handling even though we only end up writing a small
1539 subset of it. Cap writes to 4KB to mitigate this. */
1540 len = min (4096, len);
1541
1542 buf = xmalloc (len);
1543 old_chain = make_cleanup (xfree, buf);
1544 memcpy (buf, writebuf, len);
1545
1546 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1547 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1548 xfered_len);
1549
1550 do_cleanups (old_chain);
1551 }
1552
1553 return res;
1554 }
1555
1556 static void
1557 restore_show_memory_breakpoints (void *arg)
1558 {
1559 show_memory_breakpoints = (uintptr_t) arg;
1560 }
1561
1562 struct cleanup *
1563 make_show_memory_breakpoints_cleanup (int show)
1564 {
1565 int current = show_memory_breakpoints;
1566
1567 show_memory_breakpoints = show;
1568 return make_cleanup (restore_show_memory_breakpoints,
1569 (void *) (uintptr_t) current);
1570 }
1571
1572 /* For docs see target.h, to_xfer_partial. */
1573
1574 enum target_xfer_status
1575 target_xfer_partial (struct target_ops *ops,
1576 enum target_object object, const char *annex,
1577 gdb_byte *readbuf, const gdb_byte *writebuf,
1578 ULONGEST offset, ULONGEST len,
1579 ULONGEST *xfered_len)
1580 {
1581 enum target_xfer_status retval;
1582
1583 gdb_assert (ops->to_xfer_partial != NULL);
1584
1585 /* Transfer is done when LEN is zero. */
1586 if (len == 0)
1587 return TARGET_XFER_EOF;
1588
1589 if (writebuf && !may_write_memory)
1590 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1591 core_addr_to_string_nz (offset), plongest (len));
1592
1593 *xfered_len = 0;
1594
1595 /* If this is a memory transfer, let the memory-specific code
1596 have a look at it instead. Memory transfers are more
1597 complicated. */
1598 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1599 || object == TARGET_OBJECT_CODE_MEMORY)
1600 retval = memory_xfer_partial (ops, object, readbuf,
1601 writebuf, offset, len, xfered_len);
1602 else if (object == TARGET_OBJECT_RAW_MEMORY)
1603 {
1604 /* Request the normal memory object from other layers. */
1605 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1606 xfered_len);
1607 }
1608 else
1609 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1610 writebuf, offset, len, xfered_len);
1611
1612 if (targetdebug)
1613 {
1614 const unsigned char *myaddr = NULL;
1615
1616 fprintf_unfiltered (gdb_stdlog,
1617 "%s:target_xfer_partial "
1618 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1619 ops->to_shortname,
1620 (int) object,
1621 (annex ? annex : "(null)"),
1622 host_address_to_string (readbuf),
1623 host_address_to_string (writebuf),
1624 core_addr_to_string_nz (offset),
1625 pulongest (len), retval,
1626 pulongest (*xfered_len));
1627
1628 if (readbuf)
1629 myaddr = readbuf;
1630 if (writebuf)
1631 myaddr = writebuf;
1632 if (retval == TARGET_XFER_OK && myaddr != NULL)
1633 {
1634 int i;
1635
1636 fputs_unfiltered (", bytes =", gdb_stdlog);
1637 for (i = 0; i < *xfered_len; i++)
1638 {
1639 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1640 {
1641 if (targetdebug < 2 && i > 0)
1642 {
1643 fprintf_unfiltered (gdb_stdlog, " ...");
1644 break;
1645 }
1646 fprintf_unfiltered (gdb_stdlog, "\n");
1647 }
1648
1649 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1650 }
1651 }
1652
1653 fputc_unfiltered ('\n', gdb_stdlog);
1654 }
1655
1656 /* Check implementations of to_xfer_partial update *XFERED_LEN
1657 properly. Do assertion after printing debug messages, so that we
1658 can find more clues on assertion failure from debugging messages. */
1659 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1660 gdb_assert (*xfered_len > 0);
1661
1662 return retval;
1663 }
1664
1665 /* Read LEN bytes of target memory at address MEMADDR, placing the
1666 results in GDB's memory at MYADDR. Returns either 0 for success or
1667 TARGET_XFER_E_IO if any error occurs.
1668
1669 If an error occurs, no guarantee is made about the contents of the data at
1670 MYADDR. In particular, the caller should not depend upon partial reads
1671 filling the buffer with good data. There is no way for the caller to know
1672 how much good data might have been transfered anyway. Callers that can
1673 deal with partial reads should call target_read (which will retry until
1674 it makes no progress, and then return how much was transferred). */
1675
1676 int
1677 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1678 {
1679 /* Dispatch to the topmost target, not the flattened current_target.
1680 Memory accesses check target->to_has_(all_)memory, and the
1681 flattened target doesn't inherit those. */
1682 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1683 myaddr, memaddr, len) == len)
1684 return 0;
1685 else
1686 return TARGET_XFER_E_IO;
1687 }
1688
1689 /* Like target_read_memory, but specify explicitly that this is a read
1690 from the target's raw memory. That is, this read bypasses the
1691 dcache, breakpoint shadowing, etc. */
1692
1693 int
1694 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1695 {
1696 /* See comment in target_read_memory about why the request starts at
1697 current_target.beneath. */
1698 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1699 myaddr, memaddr, len) == len)
1700 return 0;
1701 else
1702 return TARGET_XFER_E_IO;
1703 }
1704
1705 /* Like target_read_memory, but specify explicitly that this is a read from
1706 the target's stack. This may trigger different cache behavior. */
1707
1708 int
1709 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1710 {
1711 /* See comment in target_read_memory about why the request starts at
1712 current_target.beneath. */
1713 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1714 myaddr, memaddr, len) == len)
1715 return 0;
1716 else
1717 return TARGET_XFER_E_IO;
1718 }
1719
1720 /* Like target_read_memory, but specify explicitly that this is a read from
1721 the target's code. This may trigger different cache behavior. */
1722
1723 int
1724 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1725 {
1726 /* See comment in target_read_memory about why the request starts at
1727 current_target.beneath. */
1728 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1729 myaddr, memaddr, len) == len)
1730 return 0;
1731 else
1732 return TARGET_XFER_E_IO;
1733 }
1734
1735 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1736 Returns either 0 for success or TARGET_XFER_E_IO if any
1737 error occurs. If an error occurs, no guarantee is made about how
1738 much data got written. Callers that can deal with partial writes
1739 should call target_write. */
1740
1741 int
1742 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1743 {
1744 /* See comment in target_read_memory about why the request starts at
1745 current_target.beneath. */
1746 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1747 myaddr, memaddr, len) == len)
1748 return 0;
1749 else
1750 return TARGET_XFER_E_IO;
1751 }
1752
1753 /* Write LEN bytes from MYADDR to target raw memory at address
1754 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1755 if any error occurs. If an error occurs, no guarantee is made
1756 about how much data got written. Callers that can deal with
1757 partial writes should call target_write. */
1758
1759 int
1760 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1761 {
1762 /* See comment in target_read_memory about why the request starts at
1763 current_target.beneath. */
1764 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1765 myaddr, memaddr, len) == len)
1766 return 0;
1767 else
1768 return TARGET_XFER_E_IO;
1769 }
1770
1771 /* Fetch the target's memory map. */
1772
1773 VEC(mem_region_s) *
1774 target_memory_map (void)
1775 {
1776 VEC(mem_region_s) *result;
1777 struct mem_region *last_one, *this_one;
1778 int ix;
1779 struct target_ops *t;
1780
1781 if (targetdebug)
1782 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1783
1784 for (t = current_target.beneath; t != NULL; t = t->beneath)
1785 if (t->to_memory_map != NULL)
1786 break;
1787
1788 if (t == NULL)
1789 return NULL;
1790
1791 result = t->to_memory_map (t);
1792 if (result == NULL)
1793 return NULL;
1794
1795 qsort (VEC_address (mem_region_s, result),
1796 VEC_length (mem_region_s, result),
1797 sizeof (struct mem_region), mem_region_cmp);
1798
1799 /* Check that regions do not overlap. Simultaneously assign
1800 a numbering for the "mem" commands to use to refer to
1801 each region. */
1802 last_one = NULL;
1803 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1804 {
1805 this_one->number = ix;
1806
1807 if (last_one && last_one->hi > this_one->lo)
1808 {
1809 warning (_("Overlapping regions in memory map: ignoring"));
1810 VEC_free (mem_region_s, result);
1811 return NULL;
1812 }
1813 last_one = this_one;
1814 }
1815
1816 return result;
1817 }
1818
1819 void
1820 target_flash_erase (ULONGEST address, LONGEST length)
1821 {
1822 struct target_ops *t;
1823
1824 for (t = current_target.beneath; t != NULL; t = t->beneath)
1825 if (t->to_flash_erase != NULL)
1826 {
1827 if (targetdebug)
1828 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1829 hex_string (address), phex (length, 0));
1830 t->to_flash_erase (t, address, length);
1831 return;
1832 }
1833
1834 tcomplain ();
1835 }
1836
1837 void
1838 target_flash_done (void)
1839 {
1840 struct target_ops *t;
1841
1842 for (t = current_target.beneath; t != NULL; t = t->beneath)
1843 if (t->to_flash_done != NULL)
1844 {
1845 if (targetdebug)
1846 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1847 t->to_flash_done (t);
1848 return;
1849 }
1850
1851 tcomplain ();
1852 }
1853
1854 static void
1855 show_trust_readonly (struct ui_file *file, int from_tty,
1856 struct cmd_list_element *c, const char *value)
1857 {
1858 fprintf_filtered (file,
1859 _("Mode for reading from readonly sections is %s.\n"),
1860 value);
1861 }
1862
1863 /* More generic transfers. */
1864
1865 static enum target_xfer_status
1866 default_xfer_partial (struct target_ops *ops, enum target_object object,
1867 const char *annex, gdb_byte *readbuf,
1868 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1869 ULONGEST *xfered_len)
1870 {
1871 if (object == TARGET_OBJECT_MEMORY
1872 && ops->deprecated_xfer_memory != NULL)
1873 /* If available, fall back to the target's
1874 "deprecated_xfer_memory" method. */
1875 {
1876 int xfered = -1;
1877
1878 errno = 0;
1879 if (writebuf != NULL)
1880 {
1881 void *buffer = xmalloc (len);
1882 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1883
1884 memcpy (buffer, writebuf, len);
1885 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1886 1/*write*/, NULL, ops);
1887 do_cleanups (cleanup);
1888 }
1889 if (readbuf != NULL)
1890 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1891 0/*read*/, NULL, ops);
1892 if (xfered > 0)
1893 {
1894 *xfered_len = (ULONGEST) xfered;
1895 return TARGET_XFER_E_IO;
1896 }
1897 else if (xfered == 0 && errno == 0)
1898 /* "deprecated_xfer_memory" uses 0, cross checked against
1899 ERRNO as one indication of an error. */
1900 return TARGET_XFER_EOF;
1901 else
1902 return TARGET_XFER_E_IO;
1903 }
1904 else
1905 {
1906 gdb_assert (ops->beneath != NULL);
1907 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1908 readbuf, writebuf, offset, len,
1909 xfered_len);
1910 }
1911 }
1912
1913 /* Target vector read/write partial wrapper functions. */
1914
1915 static enum target_xfer_status
1916 target_read_partial (struct target_ops *ops,
1917 enum target_object object,
1918 const char *annex, gdb_byte *buf,
1919 ULONGEST offset, ULONGEST len,
1920 ULONGEST *xfered_len)
1921 {
1922 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1923 xfered_len);
1924 }
1925
1926 static enum target_xfer_status
1927 target_write_partial (struct target_ops *ops,
1928 enum target_object object,
1929 const char *annex, const gdb_byte *buf,
1930 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1931 {
1932 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1933 xfered_len);
1934 }
1935
1936 /* Wrappers to perform the full transfer. */
1937
1938 /* For docs on target_read see target.h. */
1939
1940 LONGEST
1941 target_read (struct target_ops *ops,
1942 enum target_object object,
1943 const char *annex, gdb_byte *buf,
1944 ULONGEST offset, LONGEST len)
1945 {
1946 LONGEST xfered = 0;
1947
1948 while (xfered < len)
1949 {
1950 ULONGEST xfered_len;
1951 enum target_xfer_status status;
1952
1953 status = target_read_partial (ops, object, annex,
1954 (gdb_byte *) buf + xfered,
1955 offset + xfered, len - xfered,
1956 &xfered_len);
1957
1958 /* Call an observer, notifying them of the xfer progress? */
1959 if (status == TARGET_XFER_EOF)
1960 return xfered;
1961 else if (status == TARGET_XFER_OK)
1962 {
1963 xfered += xfered_len;
1964 QUIT;
1965 }
1966 else
1967 return -1;
1968
1969 }
1970 return len;
1971 }
1972
1973 /* Assuming that the entire [begin, end) range of memory cannot be
1974 read, try to read whatever subrange is possible to read.
1975
1976 The function returns, in RESULT, either zero or one memory block.
1977 If there's a readable subrange at the beginning, it is completely
1978 read and returned. Any further readable subrange will not be read.
1979 Otherwise, if there's a readable subrange at the end, it will be
1980 completely read and returned. Any readable subranges before it
1981 (obviously, not starting at the beginning), will be ignored. In
1982 other cases -- either no readable subrange, or readable subrange(s)
1983 that is neither at the beginning, or end, nothing is returned.
1984
1985 The purpose of this function is to handle a read across a boundary
1986 of accessible memory in a case when memory map is not available.
1987 The above restrictions are fine for this case, but will give
1988 incorrect results if the memory is 'patchy'. However, supporting
1989 'patchy' memory would require trying to read every single byte,
1990 and it seems unacceptable solution. Explicit memory map is
1991 recommended for this case -- and target_read_memory_robust will
1992 take care of reading multiple ranges then. */
1993
1994 static void
1995 read_whatever_is_readable (struct target_ops *ops,
1996 ULONGEST begin, ULONGEST end,
1997 VEC(memory_read_result_s) **result)
1998 {
1999 gdb_byte *buf = xmalloc (end - begin);
2000 ULONGEST current_begin = begin;
2001 ULONGEST current_end = end;
2002 int forward;
2003 memory_read_result_s r;
2004 ULONGEST xfered_len;
2005
2006 /* If we previously failed to read 1 byte, nothing can be done here. */
2007 if (end - begin <= 1)
2008 {
2009 xfree (buf);
2010 return;
2011 }
2012
2013 /* Check that either first or the last byte is readable, and give up
2014 if not. This heuristic is meant to permit reading accessible memory
2015 at the boundary of accessible region. */
2016 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2017 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2018 {
2019 forward = 1;
2020 ++current_begin;
2021 }
2022 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2023 buf + (end-begin) - 1, end - 1, 1,
2024 &xfered_len) == TARGET_XFER_OK)
2025 {
2026 forward = 0;
2027 --current_end;
2028 }
2029 else
2030 {
2031 xfree (buf);
2032 return;
2033 }
2034
2035 /* Loop invariant is that the [current_begin, current_end) was previously
2036 found to be not readable as a whole.
2037
2038 Note loop condition -- if the range has 1 byte, we can't divide the range
2039 so there's no point trying further. */
2040 while (current_end - current_begin > 1)
2041 {
2042 ULONGEST first_half_begin, first_half_end;
2043 ULONGEST second_half_begin, second_half_end;
2044 LONGEST xfer;
2045 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2046
2047 if (forward)
2048 {
2049 first_half_begin = current_begin;
2050 first_half_end = middle;
2051 second_half_begin = middle;
2052 second_half_end = current_end;
2053 }
2054 else
2055 {
2056 first_half_begin = middle;
2057 first_half_end = current_end;
2058 second_half_begin = current_begin;
2059 second_half_end = middle;
2060 }
2061
2062 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2063 buf + (first_half_begin - begin),
2064 first_half_begin,
2065 first_half_end - first_half_begin);
2066
2067 if (xfer == first_half_end - first_half_begin)
2068 {
2069 /* This half reads up fine. So, the error must be in the
2070 other half. */
2071 current_begin = second_half_begin;
2072 current_end = second_half_end;
2073 }
2074 else
2075 {
2076 /* This half is not readable. Because we've tried one byte, we
2077 know some part of this half if actually redable. Go to the next
2078 iteration to divide again and try to read.
2079
2080 We don't handle the other half, because this function only tries
2081 to read a single readable subrange. */
2082 current_begin = first_half_begin;
2083 current_end = first_half_end;
2084 }
2085 }
2086
2087 if (forward)
2088 {
2089 /* The [begin, current_begin) range has been read. */
2090 r.begin = begin;
2091 r.end = current_begin;
2092 r.data = buf;
2093 }
2094 else
2095 {
2096 /* The [current_end, end) range has been read. */
2097 LONGEST rlen = end - current_end;
2098
2099 r.data = xmalloc (rlen);
2100 memcpy (r.data, buf + current_end - begin, rlen);
2101 r.begin = current_end;
2102 r.end = end;
2103 xfree (buf);
2104 }
2105 VEC_safe_push(memory_read_result_s, (*result), &r);
2106 }
2107
2108 void
2109 free_memory_read_result_vector (void *x)
2110 {
2111 VEC(memory_read_result_s) *v = x;
2112 memory_read_result_s *current;
2113 int ix;
2114
2115 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2116 {
2117 xfree (current->data);
2118 }
2119 VEC_free (memory_read_result_s, v);
2120 }
2121
2122 VEC(memory_read_result_s) *
2123 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2124 {
2125 VEC(memory_read_result_s) *result = 0;
2126
2127 LONGEST xfered = 0;
2128 while (xfered < len)
2129 {
2130 struct mem_region *region = lookup_mem_region (offset + xfered);
2131 LONGEST rlen;
2132
2133 /* If there is no explicit region, a fake one should be created. */
2134 gdb_assert (region);
2135
2136 if (region->hi == 0)
2137 rlen = len - xfered;
2138 else
2139 rlen = region->hi - offset;
2140
2141 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2142 {
2143 /* Cannot read this region. Note that we can end up here only
2144 if the region is explicitly marked inaccessible, or
2145 'inaccessible-by-default' is in effect. */
2146 xfered += rlen;
2147 }
2148 else
2149 {
2150 LONGEST to_read = min (len - xfered, rlen);
2151 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2152
2153 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2154 (gdb_byte *) buffer,
2155 offset + xfered, to_read);
2156 /* Call an observer, notifying them of the xfer progress? */
2157 if (xfer <= 0)
2158 {
2159 /* Got an error reading full chunk. See if maybe we can read
2160 some subrange. */
2161 xfree (buffer);
2162 read_whatever_is_readable (ops, offset + xfered,
2163 offset + xfered + to_read, &result);
2164 xfered += to_read;
2165 }
2166 else
2167 {
2168 struct memory_read_result r;
2169 r.data = buffer;
2170 r.begin = offset + xfered;
2171 r.end = r.begin + xfer;
2172 VEC_safe_push (memory_read_result_s, result, &r);
2173 xfered += xfer;
2174 }
2175 QUIT;
2176 }
2177 }
2178 return result;
2179 }
2180
2181
2182 /* An alternative to target_write with progress callbacks. */
2183
2184 LONGEST
2185 target_write_with_progress (struct target_ops *ops,
2186 enum target_object object,
2187 const char *annex, const gdb_byte *buf,
2188 ULONGEST offset, LONGEST len,
2189 void (*progress) (ULONGEST, void *), void *baton)
2190 {
2191 LONGEST xfered = 0;
2192
2193 /* Give the progress callback a chance to set up. */
2194 if (progress)
2195 (*progress) (0, baton);
2196
2197 while (xfered < len)
2198 {
2199 ULONGEST xfered_len;
2200 enum target_xfer_status status;
2201
2202 status = target_write_partial (ops, object, annex,
2203 (gdb_byte *) buf + xfered,
2204 offset + xfered, len - xfered,
2205 &xfered_len);
2206
2207 if (status == TARGET_XFER_EOF)
2208 return xfered;
2209 if (TARGET_XFER_STATUS_ERROR_P (status))
2210 return -1;
2211
2212 gdb_assert (status == TARGET_XFER_OK);
2213 if (progress)
2214 (*progress) (xfered_len, baton);
2215
2216 xfered += xfered_len;
2217 QUIT;
2218 }
2219 return len;
2220 }
2221
2222 /* For docs on target_write see target.h. */
2223
2224 LONGEST
2225 target_write (struct target_ops *ops,
2226 enum target_object object,
2227 const char *annex, const gdb_byte *buf,
2228 ULONGEST offset, LONGEST len)
2229 {
2230 return target_write_with_progress (ops, object, annex, buf, offset, len,
2231 NULL, NULL);
2232 }
2233
2234 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2235 the size of the transferred data. PADDING additional bytes are
2236 available in *BUF_P. This is a helper function for
2237 target_read_alloc; see the declaration of that function for more
2238 information. */
2239
2240 static LONGEST
2241 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2242 const char *annex, gdb_byte **buf_p, int padding)
2243 {
2244 size_t buf_alloc, buf_pos;
2245 gdb_byte *buf;
2246
2247 /* This function does not have a length parameter; it reads the
2248 entire OBJECT). Also, it doesn't support objects fetched partly
2249 from one target and partly from another (in a different stratum,
2250 e.g. a core file and an executable). Both reasons make it
2251 unsuitable for reading memory. */
2252 gdb_assert (object != TARGET_OBJECT_MEMORY);
2253
2254 /* Start by reading up to 4K at a time. The target will throttle
2255 this number down if necessary. */
2256 buf_alloc = 4096;
2257 buf = xmalloc (buf_alloc);
2258 buf_pos = 0;
2259 while (1)
2260 {
2261 ULONGEST xfered_len;
2262 enum target_xfer_status status;
2263
2264 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2265 buf_pos, buf_alloc - buf_pos - padding,
2266 &xfered_len);
2267
2268 if (status == TARGET_XFER_EOF)
2269 {
2270 /* Read all there was. */
2271 if (buf_pos == 0)
2272 xfree (buf);
2273 else
2274 *buf_p = buf;
2275 return buf_pos;
2276 }
2277 else if (status != TARGET_XFER_OK)
2278 {
2279 /* An error occurred. */
2280 xfree (buf);
2281 return TARGET_XFER_E_IO;
2282 }
2283
2284 buf_pos += xfered_len;
2285
2286 /* If the buffer is filling up, expand it. */
2287 if (buf_alloc < buf_pos * 2)
2288 {
2289 buf_alloc *= 2;
2290 buf = xrealloc (buf, buf_alloc);
2291 }
2292
2293 QUIT;
2294 }
2295 }
2296
2297 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2298 the size of the transferred data. See the declaration in "target.h"
2299 function for more information about the return value. */
2300
2301 LONGEST
2302 target_read_alloc (struct target_ops *ops, enum target_object object,
2303 const char *annex, gdb_byte **buf_p)
2304 {
2305 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2306 }
2307
2308 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2309 returned as a string, allocated using xmalloc. If an error occurs
2310 or the transfer is unsupported, NULL is returned. Empty objects
2311 are returned as allocated but empty strings. A warning is issued
2312 if the result contains any embedded NUL bytes. */
2313
2314 char *
2315 target_read_stralloc (struct target_ops *ops, enum target_object object,
2316 const char *annex)
2317 {
2318 gdb_byte *buffer;
2319 char *bufstr;
2320 LONGEST i, transferred;
2321
2322 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2323 bufstr = (char *) buffer;
2324
2325 if (transferred < 0)
2326 return NULL;
2327
2328 if (transferred == 0)
2329 return xstrdup ("");
2330
2331 bufstr[transferred] = 0;
2332
2333 /* Check for embedded NUL bytes; but allow trailing NULs. */
2334 for (i = strlen (bufstr); i < transferred; i++)
2335 if (bufstr[i] != 0)
2336 {
2337 warning (_("target object %d, annex %s, "
2338 "contained unexpected null characters"),
2339 (int) object, annex ? annex : "(none)");
2340 break;
2341 }
2342
2343 return bufstr;
2344 }
2345
2346 /* Memory transfer methods. */
2347
2348 void
2349 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2350 LONGEST len)
2351 {
2352 /* This method is used to read from an alternate, non-current
2353 target. This read must bypass the overlay support (as symbols
2354 don't match this target), and GDB's internal cache (wrong cache
2355 for this target). */
2356 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2357 != len)
2358 memory_error (TARGET_XFER_E_IO, addr);
2359 }
2360
2361 ULONGEST
2362 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2363 int len, enum bfd_endian byte_order)
2364 {
2365 gdb_byte buf[sizeof (ULONGEST)];
2366
2367 gdb_assert (len <= sizeof (buf));
2368 get_target_memory (ops, addr, buf, len);
2369 return extract_unsigned_integer (buf, len, byte_order);
2370 }
2371
2372 /* See target.h. */
2373
2374 int
2375 target_insert_breakpoint (struct gdbarch *gdbarch,
2376 struct bp_target_info *bp_tgt)
2377 {
2378 if (!may_insert_breakpoints)
2379 {
2380 warning (_("May not insert breakpoints"));
2381 return 1;
2382 }
2383
2384 return current_target.to_insert_breakpoint (&current_target,
2385 gdbarch, bp_tgt);
2386 }
2387
2388 /* See target.h. */
2389
2390 int
2391 target_remove_breakpoint (struct gdbarch *gdbarch,
2392 struct bp_target_info *bp_tgt)
2393 {
2394 /* This is kind of a weird case to handle, but the permission might
2395 have been changed after breakpoints were inserted - in which case
2396 we should just take the user literally and assume that any
2397 breakpoints should be left in place. */
2398 if (!may_insert_breakpoints)
2399 {
2400 warning (_("May not remove breakpoints"));
2401 return 1;
2402 }
2403
2404 return current_target.to_remove_breakpoint (&current_target,
2405 gdbarch, bp_tgt);
2406 }
2407
2408 static void
2409 target_info (char *args, int from_tty)
2410 {
2411 struct target_ops *t;
2412 int has_all_mem = 0;
2413
2414 if (symfile_objfile != NULL)
2415 printf_unfiltered (_("Symbols from \"%s\".\n"),
2416 objfile_name (symfile_objfile));
2417
2418 for (t = target_stack; t != NULL; t = t->beneath)
2419 {
2420 if (!(*t->to_has_memory) (t))
2421 continue;
2422
2423 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2424 continue;
2425 if (has_all_mem)
2426 printf_unfiltered (_("\tWhile running this, "
2427 "GDB does not access memory from...\n"));
2428 printf_unfiltered ("%s:\n", t->to_longname);
2429 (t->to_files_info) (t);
2430 has_all_mem = (*t->to_has_all_memory) (t);
2431 }
2432 }
2433
2434 /* This function is called before any new inferior is created, e.g.
2435 by running a program, attaching, or connecting to a target.
2436 It cleans up any state from previous invocations which might
2437 change between runs. This is a subset of what target_preopen
2438 resets (things which might change between targets). */
2439
2440 void
2441 target_pre_inferior (int from_tty)
2442 {
2443 /* Clear out solib state. Otherwise the solib state of the previous
2444 inferior might have survived and is entirely wrong for the new
2445 target. This has been observed on GNU/Linux using glibc 2.3. How
2446 to reproduce:
2447
2448 bash$ ./foo&
2449 [1] 4711
2450 bash$ ./foo&
2451 [1] 4712
2452 bash$ gdb ./foo
2453 [...]
2454 (gdb) attach 4711
2455 (gdb) detach
2456 (gdb) attach 4712
2457 Cannot access memory at address 0xdeadbeef
2458 */
2459
2460 /* In some OSs, the shared library list is the same/global/shared
2461 across inferiors. If code is shared between processes, so are
2462 memory regions and features. */
2463 if (!gdbarch_has_global_solist (target_gdbarch ()))
2464 {
2465 no_shared_libraries (NULL, from_tty);
2466
2467 invalidate_target_mem_regions ();
2468
2469 target_clear_description ();
2470 }
2471
2472 agent_capability_invalidate ();
2473 }
2474
2475 /* Callback for iterate_over_inferiors. Gets rid of the given
2476 inferior. */
2477
2478 static int
2479 dispose_inferior (struct inferior *inf, void *args)
2480 {
2481 struct thread_info *thread;
2482
2483 thread = any_thread_of_process (inf->pid);
2484 if (thread)
2485 {
2486 switch_to_thread (thread->ptid);
2487
2488 /* Core inferiors actually should be detached, not killed. */
2489 if (target_has_execution)
2490 target_kill ();
2491 else
2492 target_detach (NULL, 0);
2493 }
2494
2495 return 0;
2496 }
2497
2498 /* This is to be called by the open routine before it does
2499 anything. */
2500
2501 void
2502 target_preopen (int from_tty)
2503 {
2504 dont_repeat ();
2505
2506 if (have_inferiors ())
2507 {
2508 if (!from_tty
2509 || !have_live_inferiors ()
2510 || query (_("A program is being debugged already. Kill it? ")))
2511 iterate_over_inferiors (dispose_inferior, NULL);
2512 else
2513 error (_("Program not killed."));
2514 }
2515
2516 /* Calling target_kill may remove the target from the stack. But if
2517 it doesn't (which seems like a win for UDI), remove it now. */
2518 /* Leave the exec target, though. The user may be switching from a
2519 live process to a core of the same program. */
2520 pop_all_targets_above (file_stratum);
2521
2522 target_pre_inferior (from_tty);
2523 }
2524
2525 /* Detach a target after doing deferred register stores. */
2526
2527 void
2528 target_detach (const char *args, int from_tty)
2529 {
2530 struct target_ops* t;
2531
2532 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2533 /* Don't remove global breakpoints here. They're removed on
2534 disconnection from the target. */
2535 ;
2536 else
2537 /* If we're in breakpoints-always-inserted mode, have to remove
2538 them before detaching. */
2539 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2540
2541 prepare_for_detach ();
2542
2543 current_target.to_detach (&current_target, args, from_tty);
2544 if (targetdebug)
2545 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2546 args, from_tty);
2547 }
2548
2549 void
2550 target_disconnect (char *args, int from_tty)
2551 {
2552 struct target_ops *t;
2553
2554 /* If we're in breakpoints-always-inserted mode or if breakpoints
2555 are global across processes, we have to remove them before
2556 disconnecting. */
2557 remove_breakpoints ();
2558
2559 for (t = current_target.beneath; t != NULL; t = t->beneath)
2560 if (t->to_disconnect != NULL)
2561 {
2562 if (targetdebug)
2563 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2564 args, from_tty);
2565 t->to_disconnect (t, args, from_tty);
2566 return;
2567 }
2568
2569 tcomplain ();
2570 }
2571
2572 ptid_t
2573 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2574 {
2575 struct target_ops *t;
2576 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2577 status, options);
2578
2579 if (targetdebug)
2580 {
2581 char *status_string;
2582 char *options_string;
2583
2584 status_string = target_waitstatus_to_string (status);
2585 options_string = target_options_to_string (options);
2586 fprintf_unfiltered (gdb_stdlog,
2587 "target_wait (%d, status, options={%s})"
2588 " = %d, %s\n",
2589 ptid_get_pid (ptid), options_string,
2590 ptid_get_pid (retval), status_string);
2591 xfree (status_string);
2592 xfree (options_string);
2593 }
2594
2595 return retval;
2596 }
2597
2598 char *
2599 target_pid_to_str (ptid_t ptid)
2600 {
2601 struct target_ops *t;
2602
2603 for (t = current_target.beneath; t != NULL; t = t->beneath)
2604 {
2605 if (t->to_pid_to_str != NULL)
2606 return (*t->to_pid_to_str) (t, ptid);
2607 }
2608
2609 return normal_pid_to_str (ptid);
2610 }
2611
2612 char *
2613 target_thread_name (struct thread_info *info)
2614 {
2615 return current_target.to_thread_name (&current_target, info);
2616 }
2617
2618 void
2619 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2620 {
2621 struct target_ops *t;
2622
2623 target_dcache_invalidate ();
2624
2625 current_target.to_resume (&current_target, ptid, step, signal);
2626 if (targetdebug)
2627 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2628 ptid_get_pid (ptid),
2629 step ? "step" : "continue",
2630 gdb_signal_to_name (signal));
2631
2632 registers_changed_ptid (ptid);
2633 set_executing (ptid, 1);
2634 set_running (ptid, 1);
2635 clear_inline_frame_state (ptid);
2636 }
2637
2638 void
2639 target_pass_signals (int numsigs, unsigned char *pass_signals)
2640 {
2641 struct target_ops *t;
2642
2643 for (t = current_target.beneath; t != NULL; t = t->beneath)
2644 {
2645 if (t->to_pass_signals != NULL)
2646 {
2647 if (targetdebug)
2648 {
2649 int i;
2650
2651 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2652 numsigs);
2653
2654 for (i = 0; i < numsigs; i++)
2655 if (pass_signals[i])
2656 fprintf_unfiltered (gdb_stdlog, " %s",
2657 gdb_signal_to_name (i));
2658
2659 fprintf_unfiltered (gdb_stdlog, " })\n");
2660 }
2661
2662 (*t->to_pass_signals) (t, numsigs, pass_signals);
2663 return;
2664 }
2665 }
2666 }
2667
2668 void
2669 target_program_signals (int numsigs, unsigned char *program_signals)
2670 {
2671 struct target_ops *t;
2672
2673 for (t = current_target.beneath; t != NULL; t = t->beneath)
2674 {
2675 if (t->to_program_signals != NULL)
2676 {
2677 if (targetdebug)
2678 {
2679 int i;
2680
2681 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2682 numsigs);
2683
2684 for (i = 0; i < numsigs; i++)
2685 if (program_signals[i])
2686 fprintf_unfiltered (gdb_stdlog, " %s",
2687 gdb_signal_to_name (i));
2688
2689 fprintf_unfiltered (gdb_stdlog, " })\n");
2690 }
2691
2692 (*t->to_program_signals) (t, numsigs, program_signals);
2693 return;
2694 }
2695 }
2696 }
2697
2698 /* Look through the list of possible targets for a target that can
2699 follow forks. */
2700
2701 int
2702 target_follow_fork (int follow_child, int detach_fork)
2703 {
2704 struct target_ops *t;
2705
2706 for (t = current_target.beneath; t != NULL; t = t->beneath)
2707 {
2708 if (t->to_follow_fork != NULL)
2709 {
2710 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2711
2712 if (targetdebug)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "target_follow_fork (%d, %d) = %d\n",
2715 follow_child, detach_fork, retval);
2716 return retval;
2717 }
2718 }
2719
2720 /* Some target returned a fork event, but did not know how to follow it. */
2721 internal_error (__FILE__, __LINE__,
2722 _("could not find a target to follow fork"));
2723 }
2724
2725 void
2726 target_mourn_inferior (void)
2727 {
2728 struct target_ops *t;
2729
2730 for (t = current_target.beneath; t != NULL; t = t->beneath)
2731 {
2732 if (t->to_mourn_inferior != NULL)
2733 {
2734 t->to_mourn_inferior (t);
2735 if (targetdebug)
2736 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2737
2738 /* We no longer need to keep handles on any of the object files.
2739 Make sure to release them to avoid unnecessarily locking any
2740 of them while we're not actually debugging. */
2741 bfd_cache_close_all ();
2742
2743 return;
2744 }
2745 }
2746
2747 internal_error (__FILE__, __LINE__,
2748 _("could not find a target to follow mourn inferior"));
2749 }
2750
2751 /* Look for a target which can describe architectural features, starting
2752 from TARGET. If we find one, return its description. */
2753
2754 const struct target_desc *
2755 target_read_description (struct target_ops *target)
2756 {
2757 struct target_ops *t;
2758
2759 for (t = target; t != NULL; t = t->beneath)
2760 if (t->to_read_description != NULL)
2761 {
2762 const struct target_desc *tdesc;
2763
2764 tdesc = t->to_read_description (t);
2765 if (tdesc)
2766 return tdesc;
2767 }
2768
2769 return NULL;
2770 }
2771
2772 /* The default implementation of to_search_memory.
2773 This implements a basic search of memory, reading target memory and
2774 performing the search here (as opposed to performing the search in on the
2775 target side with, for example, gdbserver). */
2776
2777 int
2778 simple_search_memory (struct target_ops *ops,
2779 CORE_ADDR start_addr, ULONGEST search_space_len,
2780 const gdb_byte *pattern, ULONGEST pattern_len,
2781 CORE_ADDR *found_addrp)
2782 {
2783 /* NOTE: also defined in find.c testcase. */
2784 #define SEARCH_CHUNK_SIZE 16000
2785 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2786 /* Buffer to hold memory contents for searching. */
2787 gdb_byte *search_buf;
2788 unsigned search_buf_size;
2789 struct cleanup *old_cleanups;
2790
2791 search_buf_size = chunk_size + pattern_len - 1;
2792
2793 /* No point in trying to allocate a buffer larger than the search space. */
2794 if (search_space_len < search_buf_size)
2795 search_buf_size = search_space_len;
2796
2797 search_buf = malloc (search_buf_size);
2798 if (search_buf == NULL)
2799 error (_("Unable to allocate memory to perform the search."));
2800 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2801
2802 /* Prime the search buffer. */
2803
2804 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2805 search_buf, start_addr, search_buf_size) != search_buf_size)
2806 {
2807 warning (_("Unable to access %s bytes of target "
2808 "memory at %s, halting search."),
2809 pulongest (search_buf_size), hex_string (start_addr));
2810 do_cleanups (old_cleanups);
2811 return -1;
2812 }
2813
2814 /* Perform the search.
2815
2816 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2817 When we've scanned N bytes we copy the trailing bytes to the start and
2818 read in another N bytes. */
2819
2820 while (search_space_len >= pattern_len)
2821 {
2822 gdb_byte *found_ptr;
2823 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2824
2825 found_ptr = memmem (search_buf, nr_search_bytes,
2826 pattern, pattern_len);
2827
2828 if (found_ptr != NULL)
2829 {
2830 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2831
2832 *found_addrp = found_addr;
2833 do_cleanups (old_cleanups);
2834 return 1;
2835 }
2836
2837 /* Not found in this chunk, skip to next chunk. */
2838
2839 /* Don't let search_space_len wrap here, it's unsigned. */
2840 if (search_space_len >= chunk_size)
2841 search_space_len -= chunk_size;
2842 else
2843 search_space_len = 0;
2844
2845 if (search_space_len >= pattern_len)
2846 {
2847 unsigned keep_len = search_buf_size - chunk_size;
2848 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2849 int nr_to_read;
2850
2851 /* Copy the trailing part of the previous iteration to the front
2852 of the buffer for the next iteration. */
2853 gdb_assert (keep_len == pattern_len - 1);
2854 memcpy (search_buf, search_buf + chunk_size, keep_len);
2855
2856 nr_to_read = min (search_space_len - keep_len, chunk_size);
2857
2858 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2859 search_buf + keep_len, read_addr,
2860 nr_to_read) != nr_to_read)
2861 {
2862 warning (_("Unable to access %s bytes of target "
2863 "memory at %s, halting search."),
2864 plongest (nr_to_read),
2865 hex_string (read_addr));
2866 do_cleanups (old_cleanups);
2867 return -1;
2868 }
2869
2870 start_addr += chunk_size;
2871 }
2872 }
2873
2874 /* Not found. */
2875
2876 do_cleanups (old_cleanups);
2877 return 0;
2878 }
2879
2880 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2881 sequence of bytes in PATTERN with length PATTERN_LEN.
2882
2883 The result is 1 if found, 0 if not found, and -1 if there was an error
2884 requiring halting of the search (e.g. memory read error).
2885 If the pattern is found the address is recorded in FOUND_ADDRP. */
2886
2887 int
2888 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2889 const gdb_byte *pattern, ULONGEST pattern_len,
2890 CORE_ADDR *found_addrp)
2891 {
2892 struct target_ops *t;
2893 int found;
2894
2895 /* We don't use INHERIT to set current_target.to_search_memory,
2896 so we have to scan the target stack and handle targetdebug
2897 ourselves. */
2898
2899 if (targetdebug)
2900 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2901 hex_string (start_addr));
2902
2903 for (t = current_target.beneath; t != NULL; t = t->beneath)
2904 if (t->to_search_memory != NULL)
2905 break;
2906
2907 if (t != NULL)
2908 {
2909 found = t->to_search_memory (t, start_addr, search_space_len,
2910 pattern, pattern_len, found_addrp);
2911 }
2912 else
2913 {
2914 /* If a special version of to_search_memory isn't available, use the
2915 simple version. */
2916 found = simple_search_memory (current_target.beneath,
2917 start_addr, search_space_len,
2918 pattern, pattern_len, found_addrp);
2919 }
2920
2921 if (targetdebug)
2922 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2923
2924 return found;
2925 }
2926
2927 /* Look through the currently pushed targets. If none of them will
2928 be able to restart the currently running process, issue an error
2929 message. */
2930
2931 void
2932 target_require_runnable (void)
2933 {
2934 struct target_ops *t;
2935
2936 for (t = target_stack; t != NULL; t = t->beneath)
2937 {
2938 /* If this target knows how to create a new program, then
2939 assume we will still be able to after killing the current
2940 one. Either killing and mourning will not pop T, or else
2941 find_default_run_target will find it again. */
2942 if (t->to_create_inferior != NULL)
2943 return;
2944
2945 /* Do not worry about thread_stratum targets that can not
2946 create inferiors. Assume they will be pushed again if
2947 necessary, and continue to the process_stratum. */
2948 if (t->to_stratum == thread_stratum
2949 || t->to_stratum == arch_stratum)
2950 continue;
2951
2952 error (_("The \"%s\" target does not support \"run\". "
2953 "Try \"help target\" or \"continue\"."),
2954 t->to_shortname);
2955 }
2956
2957 /* This function is only called if the target is running. In that
2958 case there should have been a process_stratum target and it
2959 should either know how to create inferiors, or not... */
2960 internal_error (__FILE__, __LINE__, _("No targets found"));
2961 }
2962
2963 /* Look through the list of possible targets for a target that can
2964 execute a run or attach command without any other data. This is
2965 used to locate the default process stratum.
2966
2967 If DO_MESG is not NULL, the result is always valid (error() is
2968 called for errors); else, return NULL on error. */
2969
2970 static struct target_ops *
2971 find_default_run_target (char *do_mesg)
2972 {
2973 struct target_ops **t;
2974 struct target_ops *runable = NULL;
2975 int count;
2976
2977 count = 0;
2978
2979 for (t = target_structs; t < target_structs + target_struct_size;
2980 ++t)
2981 {
2982 if ((*t)->to_can_run && target_can_run (*t))
2983 {
2984 runable = *t;
2985 ++count;
2986 }
2987 }
2988
2989 if (count != 1)
2990 {
2991 if (do_mesg)
2992 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2993 else
2994 return NULL;
2995 }
2996
2997 return runable;
2998 }
2999
3000 void
3001 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3002 {
3003 struct target_ops *t;
3004
3005 t = find_default_run_target ("attach");
3006 (t->to_attach) (t, args, from_tty);
3007 return;
3008 }
3009
3010 void
3011 find_default_create_inferior (struct target_ops *ops,
3012 char *exec_file, char *allargs, char **env,
3013 int from_tty)
3014 {
3015 struct target_ops *t;
3016
3017 t = find_default_run_target ("run");
3018 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3019 return;
3020 }
3021
3022 static int
3023 find_default_can_async_p (struct target_ops *ignore)
3024 {
3025 struct target_ops *t;
3026
3027 /* This may be called before the target is pushed on the stack;
3028 look for the default process stratum. If there's none, gdb isn't
3029 configured with a native debugger, and target remote isn't
3030 connected yet. */
3031 t = find_default_run_target (NULL);
3032 if (t && t->to_can_async_p != delegate_can_async_p)
3033 return (t->to_can_async_p) (t);
3034 return 0;
3035 }
3036
3037 static int
3038 find_default_is_async_p (struct target_ops *ignore)
3039 {
3040 struct target_ops *t;
3041
3042 /* This may be called before the target is pushed on the stack;
3043 look for the default process stratum. If there's none, gdb isn't
3044 configured with a native debugger, and target remote isn't
3045 connected yet. */
3046 t = find_default_run_target (NULL);
3047 if (t && t->to_is_async_p != delegate_is_async_p)
3048 return (t->to_is_async_p) (t);
3049 return 0;
3050 }
3051
3052 static int
3053 find_default_supports_non_stop (struct target_ops *self)
3054 {
3055 struct target_ops *t;
3056
3057 t = find_default_run_target (NULL);
3058 if (t && t->to_supports_non_stop)
3059 return (t->to_supports_non_stop) (t);
3060 return 0;
3061 }
3062
3063 int
3064 target_supports_non_stop (void)
3065 {
3066 struct target_ops *t;
3067
3068 for (t = &current_target; t != NULL; t = t->beneath)
3069 if (t->to_supports_non_stop)
3070 return t->to_supports_non_stop (t);
3071
3072 return 0;
3073 }
3074
3075 /* Implement the "info proc" command. */
3076
3077 int
3078 target_info_proc (char *args, enum info_proc_what what)
3079 {
3080 struct target_ops *t;
3081
3082 /* If we're already connected to something that can get us OS
3083 related data, use it. Otherwise, try using the native
3084 target. */
3085 if (current_target.to_stratum >= process_stratum)
3086 t = current_target.beneath;
3087 else
3088 t = find_default_run_target (NULL);
3089
3090 for (; t != NULL; t = t->beneath)
3091 {
3092 if (t->to_info_proc != NULL)
3093 {
3094 t->to_info_proc (t, args, what);
3095
3096 if (targetdebug)
3097 fprintf_unfiltered (gdb_stdlog,
3098 "target_info_proc (\"%s\", %d)\n", args, what);
3099
3100 return 1;
3101 }
3102 }
3103
3104 return 0;
3105 }
3106
3107 static int
3108 find_default_supports_disable_randomization (struct target_ops *self)
3109 {
3110 struct target_ops *t;
3111
3112 t = find_default_run_target (NULL);
3113 if (t && t->to_supports_disable_randomization)
3114 return (t->to_supports_disable_randomization) (t);
3115 return 0;
3116 }
3117
3118 int
3119 target_supports_disable_randomization (void)
3120 {
3121 struct target_ops *t;
3122
3123 for (t = &current_target; t != NULL; t = t->beneath)
3124 if (t->to_supports_disable_randomization)
3125 return t->to_supports_disable_randomization (t);
3126
3127 return 0;
3128 }
3129
3130 char *
3131 target_get_osdata (const char *type)
3132 {
3133 struct target_ops *t;
3134
3135 /* If we're already connected to something that can get us OS
3136 related data, use it. Otherwise, try using the native
3137 target. */
3138 if (current_target.to_stratum >= process_stratum)
3139 t = current_target.beneath;
3140 else
3141 t = find_default_run_target ("get OS data");
3142
3143 if (!t)
3144 return NULL;
3145
3146 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3147 }
3148
3149 /* Determine the current address space of thread PTID. */
3150
3151 struct address_space *
3152 target_thread_address_space (ptid_t ptid)
3153 {
3154 struct address_space *aspace;
3155 struct inferior *inf;
3156 struct target_ops *t;
3157
3158 for (t = current_target.beneath; t != NULL; t = t->beneath)
3159 {
3160 if (t->to_thread_address_space != NULL)
3161 {
3162 aspace = t->to_thread_address_space (t, ptid);
3163 gdb_assert (aspace);
3164
3165 if (targetdebug)
3166 fprintf_unfiltered (gdb_stdlog,
3167 "target_thread_address_space (%s) = %d\n",
3168 target_pid_to_str (ptid),
3169 address_space_num (aspace));
3170 return aspace;
3171 }
3172 }
3173
3174 /* Fall-back to the "main" address space of the inferior. */
3175 inf = find_inferior_pid (ptid_get_pid (ptid));
3176
3177 if (inf == NULL || inf->aspace == NULL)
3178 internal_error (__FILE__, __LINE__,
3179 _("Can't determine the current "
3180 "address space of thread %s\n"),
3181 target_pid_to_str (ptid));
3182
3183 return inf->aspace;
3184 }
3185
3186
3187 /* Target file operations. */
3188
3189 static struct target_ops *
3190 default_fileio_target (void)
3191 {
3192 /* If we're already connected to something that can perform
3193 file I/O, use it. Otherwise, try using the native target. */
3194 if (current_target.to_stratum >= process_stratum)
3195 return current_target.beneath;
3196 else
3197 return find_default_run_target ("file I/O");
3198 }
3199
3200 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3201 target file descriptor, or -1 if an error occurs (and set
3202 *TARGET_ERRNO). */
3203 int
3204 target_fileio_open (const char *filename, int flags, int mode,
3205 int *target_errno)
3206 {
3207 struct target_ops *t;
3208
3209 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3210 {
3211 if (t->to_fileio_open != NULL)
3212 {
3213 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3214
3215 if (targetdebug)
3216 fprintf_unfiltered (gdb_stdlog,
3217 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3218 filename, flags, mode,
3219 fd, fd != -1 ? 0 : *target_errno);
3220 return fd;
3221 }
3222 }
3223
3224 *target_errno = FILEIO_ENOSYS;
3225 return -1;
3226 }
3227
3228 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3229 Return the number of bytes written, or -1 if an error occurs
3230 (and set *TARGET_ERRNO). */
3231 int
3232 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3233 ULONGEST offset, int *target_errno)
3234 {
3235 struct target_ops *t;
3236
3237 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3238 {
3239 if (t->to_fileio_pwrite != NULL)
3240 {
3241 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3242 target_errno);
3243
3244 if (targetdebug)
3245 fprintf_unfiltered (gdb_stdlog,
3246 "target_fileio_pwrite (%d,...,%d,%s) "
3247 "= %d (%d)\n",
3248 fd, len, pulongest (offset),
3249 ret, ret != -1 ? 0 : *target_errno);
3250 return ret;
3251 }
3252 }
3253
3254 *target_errno = FILEIO_ENOSYS;
3255 return -1;
3256 }
3257
3258 /* Read up to LEN bytes FD on the target into READ_BUF.
3259 Return the number of bytes read, or -1 if an error occurs
3260 (and set *TARGET_ERRNO). */
3261 int
3262 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3263 ULONGEST offset, int *target_errno)
3264 {
3265 struct target_ops *t;
3266
3267 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3268 {
3269 if (t->to_fileio_pread != NULL)
3270 {
3271 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3272 target_errno);
3273
3274 if (targetdebug)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "target_fileio_pread (%d,...,%d,%s) "
3277 "= %d (%d)\n",
3278 fd, len, pulongest (offset),
3279 ret, ret != -1 ? 0 : *target_errno);
3280 return ret;
3281 }
3282 }
3283
3284 *target_errno = FILEIO_ENOSYS;
3285 return -1;
3286 }
3287
3288 /* Close FD on the target. Return 0, or -1 if an error occurs
3289 (and set *TARGET_ERRNO). */
3290 int
3291 target_fileio_close (int fd, int *target_errno)
3292 {
3293 struct target_ops *t;
3294
3295 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3296 {
3297 if (t->to_fileio_close != NULL)
3298 {
3299 int ret = t->to_fileio_close (t, fd, target_errno);
3300
3301 if (targetdebug)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "target_fileio_close (%d) = %d (%d)\n",
3304 fd, ret, ret != -1 ? 0 : *target_errno);
3305 return ret;
3306 }
3307 }
3308
3309 *target_errno = FILEIO_ENOSYS;
3310 return -1;
3311 }
3312
3313 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3314 occurs (and set *TARGET_ERRNO). */
3315 int
3316 target_fileio_unlink (const char *filename, int *target_errno)
3317 {
3318 struct target_ops *t;
3319
3320 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3321 {
3322 if (t->to_fileio_unlink != NULL)
3323 {
3324 int ret = t->to_fileio_unlink (t, filename, target_errno);
3325
3326 if (targetdebug)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "target_fileio_unlink (%s) = %d (%d)\n",
3329 filename, ret, ret != -1 ? 0 : *target_errno);
3330 return ret;
3331 }
3332 }
3333
3334 *target_errno = FILEIO_ENOSYS;
3335 return -1;
3336 }
3337
3338 /* Read value of symbolic link FILENAME on the target. Return a
3339 null-terminated string allocated via xmalloc, or NULL if an error
3340 occurs (and set *TARGET_ERRNO). */
3341 char *
3342 target_fileio_readlink (const char *filename, int *target_errno)
3343 {
3344 struct target_ops *t;
3345
3346 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3347 {
3348 if (t->to_fileio_readlink != NULL)
3349 {
3350 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3351
3352 if (targetdebug)
3353 fprintf_unfiltered (gdb_stdlog,
3354 "target_fileio_readlink (%s) = %s (%d)\n",
3355 filename, ret? ret : "(nil)",
3356 ret? 0 : *target_errno);
3357 return ret;
3358 }
3359 }
3360
3361 *target_errno = FILEIO_ENOSYS;
3362 return NULL;
3363 }
3364
3365 static void
3366 target_fileio_close_cleanup (void *opaque)
3367 {
3368 int fd = *(int *) opaque;
3369 int target_errno;
3370
3371 target_fileio_close (fd, &target_errno);
3372 }
3373
3374 /* Read target file FILENAME. Store the result in *BUF_P and
3375 return the size of the transferred data. PADDING additional bytes are
3376 available in *BUF_P. This is a helper function for
3377 target_fileio_read_alloc; see the declaration of that function for more
3378 information. */
3379
3380 static LONGEST
3381 target_fileio_read_alloc_1 (const char *filename,
3382 gdb_byte **buf_p, int padding)
3383 {
3384 struct cleanup *close_cleanup;
3385 size_t buf_alloc, buf_pos;
3386 gdb_byte *buf;
3387 LONGEST n;
3388 int fd;
3389 int target_errno;
3390
3391 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3392 if (fd == -1)
3393 return -1;
3394
3395 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3396
3397 /* Start by reading up to 4K at a time. The target will throttle
3398 this number down if necessary. */
3399 buf_alloc = 4096;
3400 buf = xmalloc (buf_alloc);
3401 buf_pos = 0;
3402 while (1)
3403 {
3404 n = target_fileio_pread (fd, &buf[buf_pos],
3405 buf_alloc - buf_pos - padding, buf_pos,
3406 &target_errno);
3407 if (n < 0)
3408 {
3409 /* An error occurred. */
3410 do_cleanups (close_cleanup);
3411 xfree (buf);
3412 return -1;
3413 }
3414 else if (n == 0)
3415 {
3416 /* Read all there was. */
3417 do_cleanups (close_cleanup);
3418 if (buf_pos == 0)
3419 xfree (buf);
3420 else
3421 *buf_p = buf;
3422 return buf_pos;
3423 }
3424
3425 buf_pos += n;
3426
3427 /* If the buffer is filling up, expand it. */
3428 if (buf_alloc < buf_pos * 2)
3429 {
3430 buf_alloc *= 2;
3431 buf = xrealloc (buf, buf_alloc);
3432 }
3433
3434 QUIT;
3435 }
3436 }
3437
3438 /* Read target file FILENAME. Store the result in *BUF_P and return
3439 the size of the transferred data. See the declaration in "target.h"
3440 function for more information about the return value. */
3441
3442 LONGEST
3443 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3444 {
3445 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3446 }
3447
3448 /* Read target file FILENAME. The result is NUL-terminated and
3449 returned as a string, allocated using xmalloc. If an error occurs
3450 or the transfer is unsupported, NULL is returned. Empty objects
3451 are returned as allocated but empty strings. A warning is issued
3452 if the result contains any embedded NUL bytes. */
3453
3454 char *
3455 target_fileio_read_stralloc (const char *filename)
3456 {
3457 gdb_byte *buffer;
3458 char *bufstr;
3459 LONGEST i, transferred;
3460
3461 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3462 bufstr = (char *) buffer;
3463
3464 if (transferred < 0)
3465 return NULL;
3466
3467 if (transferred == 0)
3468 return xstrdup ("");
3469
3470 bufstr[transferred] = 0;
3471
3472 /* Check for embedded NUL bytes; but allow trailing NULs. */
3473 for (i = strlen (bufstr); i < transferred; i++)
3474 if (bufstr[i] != 0)
3475 {
3476 warning (_("target file %s "
3477 "contained unexpected null characters"),
3478 filename);
3479 break;
3480 }
3481
3482 return bufstr;
3483 }
3484
3485
3486 static int
3487 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3488 CORE_ADDR addr, int len)
3489 {
3490 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3491 }
3492
3493 static int
3494 default_watchpoint_addr_within_range (struct target_ops *target,
3495 CORE_ADDR addr,
3496 CORE_ADDR start, int length)
3497 {
3498 return addr >= start && addr < start + length;
3499 }
3500
3501 static struct gdbarch *
3502 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3503 {
3504 return target_gdbarch ();
3505 }
3506
3507 static int
3508 return_zero (void)
3509 {
3510 return 0;
3511 }
3512
3513 static int
3514 return_minus_one (void)
3515 {
3516 return -1;
3517 }
3518
3519 static void *
3520 return_null (void)
3521 {
3522 return 0;
3523 }
3524
3525 /*
3526 * Find the next target down the stack from the specified target.
3527 */
3528
3529 struct target_ops *
3530 find_target_beneath (struct target_ops *t)
3531 {
3532 return t->beneath;
3533 }
3534
3535 /* See target.h. */
3536
3537 struct target_ops *
3538 find_target_at (enum strata stratum)
3539 {
3540 struct target_ops *t;
3541
3542 for (t = current_target.beneath; t != NULL; t = t->beneath)
3543 if (t->to_stratum == stratum)
3544 return t;
3545
3546 return NULL;
3547 }
3548
3549 \f
3550 /* The inferior process has died. Long live the inferior! */
3551
3552 void
3553 generic_mourn_inferior (void)
3554 {
3555 ptid_t ptid;
3556
3557 ptid = inferior_ptid;
3558 inferior_ptid = null_ptid;
3559
3560 /* Mark breakpoints uninserted in case something tries to delete a
3561 breakpoint while we delete the inferior's threads (which would
3562 fail, since the inferior is long gone). */
3563 mark_breakpoints_out ();
3564
3565 if (!ptid_equal (ptid, null_ptid))
3566 {
3567 int pid = ptid_get_pid (ptid);
3568 exit_inferior (pid);
3569 }
3570
3571 /* Note this wipes step-resume breakpoints, so needs to be done
3572 after exit_inferior, which ends up referencing the step-resume
3573 breakpoints through clear_thread_inferior_resources. */
3574 breakpoint_init_inferior (inf_exited);
3575
3576 registers_changed ();
3577
3578 reopen_exec_file ();
3579 reinit_frame_cache ();
3580
3581 if (deprecated_detach_hook)
3582 deprecated_detach_hook ();
3583 }
3584 \f
3585 /* Convert a normal process ID to a string. Returns the string in a
3586 static buffer. */
3587
3588 char *
3589 normal_pid_to_str (ptid_t ptid)
3590 {
3591 static char buf[32];
3592
3593 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3594 return buf;
3595 }
3596
3597 static char *
3598 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3599 {
3600 return normal_pid_to_str (ptid);
3601 }
3602
3603 /* Error-catcher for target_find_memory_regions. */
3604 static int
3605 dummy_find_memory_regions (struct target_ops *self,
3606 find_memory_region_ftype ignore1, void *ignore2)
3607 {
3608 error (_("Command not implemented for this target."));
3609 return 0;
3610 }
3611
3612 /* Error-catcher for target_make_corefile_notes. */
3613 static char *
3614 dummy_make_corefile_notes (struct target_ops *self,
3615 bfd *ignore1, int *ignore2)
3616 {
3617 error (_("Command not implemented for this target."));
3618 return NULL;
3619 }
3620
3621 /* Set up the handful of non-empty slots needed by the dummy target
3622 vector. */
3623
3624 static void
3625 init_dummy_target (void)
3626 {
3627 dummy_target.to_shortname = "None";
3628 dummy_target.to_longname = "None";
3629 dummy_target.to_doc = "";
3630 dummy_target.to_create_inferior = find_default_create_inferior;
3631 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3632 dummy_target.to_supports_disable_randomization
3633 = find_default_supports_disable_randomization;
3634 dummy_target.to_pid_to_str = dummy_pid_to_str;
3635 dummy_target.to_stratum = dummy_stratum;
3636 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3637 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3638 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3639 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3640 dummy_target.to_has_execution
3641 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3642 dummy_target.to_magic = OPS_MAGIC;
3643
3644 install_dummy_methods (&dummy_target);
3645 }
3646 \f
3647 static void
3648 debug_to_open (char *args, int from_tty)
3649 {
3650 debug_target.to_open (args, from_tty);
3651
3652 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3653 }
3654
3655 void
3656 target_close (struct target_ops *targ)
3657 {
3658 gdb_assert (!target_is_pushed (targ));
3659
3660 if (targ->to_xclose != NULL)
3661 targ->to_xclose (targ);
3662 else if (targ->to_close != NULL)
3663 targ->to_close (targ);
3664
3665 if (targetdebug)
3666 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3667 }
3668
3669 void
3670 target_attach (char *args, int from_tty)
3671 {
3672 current_target.to_attach (&current_target, args, from_tty);
3673 if (targetdebug)
3674 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3675 args, from_tty);
3676 }
3677
3678 int
3679 target_thread_alive (ptid_t ptid)
3680 {
3681 struct target_ops *t;
3682
3683 for (t = current_target.beneath; t != NULL; t = t->beneath)
3684 {
3685 if (t->to_thread_alive != NULL)
3686 {
3687 int retval;
3688
3689 retval = t->to_thread_alive (t, ptid);
3690 if (targetdebug)
3691 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3692 ptid_get_pid (ptid), retval);
3693
3694 return retval;
3695 }
3696 }
3697
3698 return 0;
3699 }
3700
3701 void
3702 target_find_new_threads (void)
3703 {
3704 struct target_ops *t;
3705
3706 for (t = current_target.beneath; t != NULL; t = t->beneath)
3707 {
3708 if (t->to_find_new_threads != NULL)
3709 {
3710 t->to_find_new_threads (t);
3711 if (targetdebug)
3712 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3713
3714 return;
3715 }
3716 }
3717 }
3718
3719 void
3720 target_stop (ptid_t ptid)
3721 {
3722 if (!may_stop)
3723 {
3724 warning (_("May not interrupt or stop the target, ignoring attempt"));
3725 return;
3726 }
3727
3728 (*current_target.to_stop) (&current_target, ptid);
3729 }
3730
3731 static void
3732 debug_to_post_attach (struct target_ops *self, int pid)
3733 {
3734 debug_target.to_post_attach (&debug_target, pid);
3735
3736 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3737 }
3738
3739 /* Concatenate ELEM to LIST, a comma separate list, and return the
3740 result. The LIST incoming argument is released. */
3741
3742 static char *
3743 str_comma_list_concat_elem (char *list, const char *elem)
3744 {
3745 if (list == NULL)
3746 return xstrdup (elem);
3747 else
3748 return reconcat (list, list, ", ", elem, (char *) NULL);
3749 }
3750
3751 /* Helper for target_options_to_string. If OPT is present in
3752 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3753 Returns the new resulting string. OPT is removed from
3754 TARGET_OPTIONS. */
3755
3756 static char *
3757 do_option (int *target_options, char *ret,
3758 int opt, char *opt_str)
3759 {
3760 if ((*target_options & opt) != 0)
3761 {
3762 ret = str_comma_list_concat_elem (ret, opt_str);
3763 *target_options &= ~opt;
3764 }
3765
3766 return ret;
3767 }
3768
3769 char *
3770 target_options_to_string (int target_options)
3771 {
3772 char *ret = NULL;
3773
3774 #define DO_TARG_OPTION(OPT) \
3775 ret = do_option (&target_options, ret, OPT, #OPT)
3776
3777 DO_TARG_OPTION (TARGET_WNOHANG);
3778
3779 if (target_options != 0)
3780 ret = str_comma_list_concat_elem (ret, "unknown???");
3781
3782 if (ret == NULL)
3783 ret = xstrdup ("");
3784 return ret;
3785 }
3786
3787 static void
3788 debug_print_register (const char * func,
3789 struct regcache *regcache, int regno)
3790 {
3791 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3792
3793 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3794 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3795 && gdbarch_register_name (gdbarch, regno) != NULL
3796 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3797 fprintf_unfiltered (gdb_stdlog, "(%s)",
3798 gdbarch_register_name (gdbarch, regno));
3799 else
3800 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3801 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3802 {
3803 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3804 int i, size = register_size (gdbarch, regno);
3805 gdb_byte buf[MAX_REGISTER_SIZE];
3806
3807 regcache_raw_collect (regcache, regno, buf);
3808 fprintf_unfiltered (gdb_stdlog, " = ");
3809 for (i = 0; i < size; i++)
3810 {
3811 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3812 }
3813 if (size <= sizeof (LONGEST))
3814 {
3815 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3816
3817 fprintf_unfiltered (gdb_stdlog, " %s %s",
3818 core_addr_to_string_nz (val), plongest (val));
3819 }
3820 }
3821 fprintf_unfiltered (gdb_stdlog, "\n");
3822 }
3823
3824 void
3825 target_fetch_registers (struct regcache *regcache, int regno)
3826 {
3827 struct target_ops *t;
3828
3829 for (t = current_target.beneath; t != NULL; t = t->beneath)
3830 {
3831 if (t->to_fetch_registers != NULL)
3832 {
3833 t->to_fetch_registers (t, regcache, regno);
3834 if (targetdebug)
3835 debug_print_register ("target_fetch_registers", regcache, regno);
3836 return;
3837 }
3838 }
3839 }
3840
3841 void
3842 target_store_registers (struct regcache *regcache, int regno)
3843 {
3844 struct target_ops *t;
3845
3846 if (!may_write_registers)
3847 error (_("Writing to registers is not allowed (regno %d)"), regno);
3848
3849 current_target.to_store_registers (&current_target, regcache, regno);
3850 if (targetdebug)
3851 {
3852 debug_print_register ("target_store_registers", regcache, regno);
3853 }
3854 }
3855
3856 int
3857 target_core_of_thread (ptid_t ptid)
3858 {
3859 struct target_ops *t;
3860
3861 for (t = current_target.beneath; t != NULL; t = t->beneath)
3862 {
3863 if (t->to_core_of_thread != NULL)
3864 {
3865 int retval = t->to_core_of_thread (t, ptid);
3866
3867 if (targetdebug)
3868 fprintf_unfiltered (gdb_stdlog,
3869 "target_core_of_thread (%d) = %d\n",
3870 ptid_get_pid (ptid), retval);
3871 return retval;
3872 }
3873 }
3874
3875 return -1;
3876 }
3877
3878 int
3879 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3880 {
3881 struct target_ops *t;
3882
3883 for (t = current_target.beneath; t != NULL; t = t->beneath)
3884 {
3885 if (t->to_verify_memory != NULL)
3886 {
3887 int retval = t->to_verify_memory (t, data, memaddr, size);
3888
3889 if (targetdebug)
3890 fprintf_unfiltered (gdb_stdlog,
3891 "target_verify_memory (%s, %s) = %d\n",
3892 paddress (target_gdbarch (), memaddr),
3893 pulongest (size),
3894 retval);
3895 return retval;
3896 }
3897 }
3898
3899 tcomplain ();
3900 }
3901
3902 /* The documentation for this function is in its prototype declaration in
3903 target.h. */
3904
3905 int
3906 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3907 {
3908 struct target_ops *t;
3909
3910 for (t = current_target.beneath; t != NULL; t = t->beneath)
3911 if (t->to_insert_mask_watchpoint != NULL)
3912 {
3913 int ret;
3914
3915 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3916
3917 if (targetdebug)
3918 fprintf_unfiltered (gdb_stdlog, "\
3919 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3920 core_addr_to_string (addr),
3921 core_addr_to_string (mask), rw, ret);
3922
3923 return ret;
3924 }
3925
3926 return 1;
3927 }
3928
3929 /* The documentation for this function is in its prototype declaration in
3930 target.h. */
3931
3932 int
3933 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3934 {
3935 struct target_ops *t;
3936
3937 for (t = current_target.beneath; t != NULL; t = t->beneath)
3938 if (t->to_remove_mask_watchpoint != NULL)
3939 {
3940 int ret;
3941
3942 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3943
3944 if (targetdebug)
3945 fprintf_unfiltered (gdb_stdlog, "\
3946 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3947 core_addr_to_string (addr),
3948 core_addr_to_string (mask), rw, ret);
3949
3950 return ret;
3951 }
3952
3953 return 1;
3954 }
3955
3956 /* The documentation for this function is in its prototype declaration
3957 in target.h. */
3958
3959 int
3960 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3961 {
3962 struct target_ops *t;
3963
3964 for (t = current_target.beneath; t != NULL; t = t->beneath)
3965 if (t->to_masked_watch_num_registers != NULL)
3966 return t->to_masked_watch_num_registers (t, addr, mask);
3967
3968 return -1;
3969 }
3970
3971 /* The documentation for this function is in its prototype declaration
3972 in target.h. */
3973
3974 int
3975 target_ranged_break_num_registers (void)
3976 {
3977 struct target_ops *t;
3978
3979 for (t = current_target.beneath; t != NULL; t = t->beneath)
3980 if (t->to_ranged_break_num_registers != NULL)
3981 return t->to_ranged_break_num_registers (t);
3982
3983 return -1;
3984 }
3985
3986 /* See target.h. */
3987
3988 struct btrace_target_info *
3989 target_enable_btrace (ptid_t ptid)
3990 {
3991 struct target_ops *t;
3992
3993 for (t = current_target.beneath; t != NULL; t = t->beneath)
3994 if (t->to_enable_btrace != NULL)
3995 return t->to_enable_btrace (t, ptid);
3996
3997 tcomplain ();
3998 return NULL;
3999 }
4000
4001 /* See target.h. */
4002
4003 void
4004 target_disable_btrace (struct btrace_target_info *btinfo)
4005 {
4006 struct target_ops *t;
4007
4008 for (t = current_target.beneath; t != NULL; t = t->beneath)
4009 if (t->to_disable_btrace != NULL)
4010 {
4011 t->to_disable_btrace (t, btinfo);
4012 return;
4013 }
4014
4015 tcomplain ();
4016 }
4017
4018 /* See target.h. */
4019
4020 void
4021 target_teardown_btrace (struct btrace_target_info *btinfo)
4022 {
4023 struct target_ops *t;
4024
4025 for (t = current_target.beneath; t != NULL; t = t->beneath)
4026 if (t->to_teardown_btrace != NULL)
4027 {
4028 t->to_teardown_btrace (t, btinfo);
4029 return;
4030 }
4031
4032 tcomplain ();
4033 }
4034
4035 /* See target.h. */
4036
4037 enum btrace_error
4038 target_read_btrace (VEC (btrace_block_s) **btrace,
4039 struct btrace_target_info *btinfo,
4040 enum btrace_read_type type)
4041 {
4042 struct target_ops *t;
4043
4044 for (t = current_target.beneath; t != NULL; t = t->beneath)
4045 if (t->to_read_btrace != NULL)
4046 return t->to_read_btrace (t, btrace, btinfo, type);
4047
4048 tcomplain ();
4049 return BTRACE_ERR_NOT_SUPPORTED;
4050 }
4051
4052 /* See target.h. */
4053
4054 void
4055 target_stop_recording (void)
4056 {
4057 struct target_ops *t;
4058
4059 for (t = current_target.beneath; t != NULL; t = t->beneath)
4060 if (t->to_stop_recording != NULL)
4061 {
4062 t->to_stop_recording (t);
4063 return;
4064 }
4065
4066 /* This is optional. */
4067 }
4068
4069 /* See target.h. */
4070
4071 void
4072 target_info_record (void)
4073 {
4074 struct target_ops *t;
4075
4076 for (t = current_target.beneath; t != NULL; t = t->beneath)
4077 if (t->to_info_record != NULL)
4078 {
4079 t->to_info_record (t);
4080 return;
4081 }
4082
4083 tcomplain ();
4084 }
4085
4086 /* See target.h. */
4087
4088 void
4089 target_save_record (const char *filename)
4090 {
4091 struct target_ops *t;
4092
4093 for (t = current_target.beneath; t != NULL; t = t->beneath)
4094 if (t->to_save_record != NULL)
4095 {
4096 t->to_save_record (t, filename);
4097 return;
4098 }
4099
4100 tcomplain ();
4101 }
4102
4103 /* See target.h. */
4104
4105 int
4106 target_supports_delete_record (void)
4107 {
4108 struct target_ops *t;
4109
4110 for (t = current_target.beneath; t != NULL; t = t->beneath)
4111 if (t->to_delete_record != NULL)
4112 return 1;
4113
4114 return 0;
4115 }
4116
4117 /* See target.h. */
4118
4119 void
4120 target_delete_record (void)
4121 {
4122 struct target_ops *t;
4123
4124 for (t = current_target.beneath; t != NULL; t = t->beneath)
4125 if (t->to_delete_record != NULL)
4126 {
4127 t->to_delete_record (t);
4128 return;
4129 }
4130
4131 tcomplain ();
4132 }
4133
4134 /* See target.h. */
4135
4136 int
4137 target_record_is_replaying (void)
4138 {
4139 struct target_ops *t;
4140
4141 for (t = current_target.beneath; t != NULL; t = t->beneath)
4142 if (t->to_record_is_replaying != NULL)
4143 return t->to_record_is_replaying (t);
4144
4145 return 0;
4146 }
4147
4148 /* See target.h. */
4149
4150 void
4151 target_goto_record_begin (void)
4152 {
4153 struct target_ops *t;
4154
4155 for (t = current_target.beneath; t != NULL; t = t->beneath)
4156 if (t->to_goto_record_begin != NULL)
4157 {
4158 t->to_goto_record_begin (t);
4159 return;
4160 }
4161
4162 tcomplain ();
4163 }
4164
4165 /* See target.h. */
4166
4167 void
4168 target_goto_record_end (void)
4169 {
4170 struct target_ops *t;
4171
4172 for (t = current_target.beneath; t != NULL; t = t->beneath)
4173 if (t->to_goto_record_end != NULL)
4174 {
4175 t->to_goto_record_end (t);
4176 return;
4177 }
4178
4179 tcomplain ();
4180 }
4181
4182 /* See target.h. */
4183
4184 void
4185 target_goto_record (ULONGEST insn)
4186 {
4187 struct target_ops *t;
4188
4189 for (t = current_target.beneath; t != NULL; t = t->beneath)
4190 if (t->to_goto_record != NULL)
4191 {
4192 t->to_goto_record (t, insn);
4193 return;
4194 }
4195
4196 tcomplain ();
4197 }
4198
4199 /* See target.h. */
4200
4201 void
4202 target_insn_history (int size, int flags)
4203 {
4204 struct target_ops *t;
4205
4206 for (t = current_target.beneath; t != NULL; t = t->beneath)
4207 if (t->to_insn_history != NULL)
4208 {
4209 t->to_insn_history (t, size, flags);
4210 return;
4211 }
4212
4213 tcomplain ();
4214 }
4215
4216 /* See target.h. */
4217
4218 void
4219 target_insn_history_from (ULONGEST from, int size, int flags)
4220 {
4221 struct target_ops *t;
4222
4223 for (t = current_target.beneath; t != NULL; t = t->beneath)
4224 if (t->to_insn_history_from != NULL)
4225 {
4226 t->to_insn_history_from (t, from, size, flags);
4227 return;
4228 }
4229
4230 tcomplain ();
4231 }
4232
4233 /* See target.h. */
4234
4235 void
4236 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4237 {
4238 struct target_ops *t;
4239
4240 for (t = current_target.beneath; t != NULL; t = t->beneath)
4241 if (t->to_insn_history_range != NULL)
4242 {
4243 t->to_insn_history_range (t, begin, end, flags);
4244 return;
4245 }
4246
4247 tcomplain ();
4248 }
4249
4250 /* See target.h. */
4251
4252 void
4253 target_call_history (int size, int flags)
4254 {
4255 struct target_ops *t;
4256
4257 for (t = current_target.beneath; t != NULL; t = t->beneath)
4258 if (t->to_call_history != NULL)
4259 {
4260 t->to_call_history (t, size, flags);
4261 return;
4262 }
4263
4264 tcomplain ();
4265 }
4266
4267 /* See target.h. */
4268
4269 void
4270 target_call_history_from (ULONGEST begin, int size, int flags)
4271 {
4272 struct target_ops *t;
4273
4274 for (t = current_target.beneath; t != NULL; t = t->beneath)
4275 if (t->to_call_history_from != NULL)
4276 {
4277 t->to_call_history_from (t, begin, size, flags);
4278 return;
4279 }
4280
4281 tcomplain ();
4282 }
4283
4284 /* See target.h. */
4285
4286 void
4287 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4288 {
4289 struct target_ops *t;
4290
4291 for (t = current_target.beneath; t != NULL; t = t->beneath)
4292 if (t->to_call_history_range != NULL)
4293 {
4294 t->to_call_history_range (t, begin, end, flags);
4295 return;
4296 }
4297
4298 tcomplain ();
4299 }
4300
4301 static void
4302 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4303 {
4304 debug_target.to_prepare_to_store (&debug_target, regcache);
4305
4306 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4307 }
4308
4309 /* See target.h. */
4310
4311 const struct frame_unwind *
4312 target_get_unwinder (void)
4313 {
4314 struct target_ops *t;
4315
4316 for (t = current_target.beneath; t != NULL; t = t->beneath)
4317 if (t->to_get_unwinder != NULL)
4318 return t->to_get_unwinder;
4319
4320 return NULL;
4321 }
4322
4323 /* See target.h. */
4324
4325 const struct frame_unwind *
4326 target_get_tailcall_unwinder (void)
4327 {
4328 struct target_ops *t;
4329
4330 for (t = current_target.beneath; t != NULL; t = t->beneath)
4331 if (t->to_get_tailcall_unwinder != NULL)
4332 return t->to_get_tailcall_unwinder;
4333
4334 return NULL;
4335 }
4336
4337 /* See target.h. */
4338
4339 CORE_ADDR
4340 forward_target_decr_pc_after_break (struct target_ops *ops,
4341 struct gdbarch *gdbarch)
4342 {
4343 for (; ops != NULL; ops = ops->beneath)
4344 if (ops->to_decr_pc_after_break != NULL)
4345 return ops->to_decr_pc_after_break (ops, gdbarch);
4346
4347 return gdbarch_decr_pc_after_break (gdbarch);
4348 }
4349
4350 /* See target.h. */
4351
4352 CORE_ADDR
4353 target_decr_pc_after_break (struct gdbarch *gdbarch)
4354 {
4355 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4356 }
4357
4358 static int
4359 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4360 int write, struct mem_attrib *attrib,
4361 struct target_ops *target)
4362 {
4363 int retval;
4364
4365 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4366 attrib, target);
4367
4368 fprintf_unfiltered (gdb_stdlog,
4369 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4370 paddress (target_gdbarch (), memaddr), len,
4371 write ? "write" : "read", retval);
4372
4373 if (retval > 0)
4374 {
4375 int i;
4376
4377 fputs_unfiltered (", bytes =", gdb_stdlog);
4378 for (i = 0; i < retval; i++)
4379 {
4380 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4381 {
4382 if (targetdebug < 2 && i > 0)
4383 {
4384 fprintf_unfiltered (gdb_stdlog, " ...");
4385 break;
4386 }
4387 fprintf_unfiltered (gdb_stdlog, "\n");
4388 }
4389
4390 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4391 }
4392 }
4393
4394 fputc_unfiltered ('\n', gdb_stdlog);
4395
4396 return retval;
4397 }
4398
4399 static void
4400 debug_to_files_info (struct target_ops *target)
4401 {
4402 debug_target.to_files_info (target);
4403
4404 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4405 }
4406
4407 static int
4408 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4409 struct bp_target_info *bp_tgt)
4410 {
4411 int retval;
4412
4413 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4414
4415 fprintf_unfiltered (gdb_stdlog,
4416 "target_insert_breakpoint (%s, xxx) = %ld\n",
4417 core_addr_to_string (bp_tgt->placed_address),
4418 (unsigned long) retval);
4419 return retval;
4420 }
4421
4422 static int
4423 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4424 struct bp_target_info *bp_tgt)
4425 {
4426 int retval;
4427
4428 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4429
4430 fprintf_unfiltered (gdb_stdlog,
4431 "target_remove_breakpoint (%s, xxx) = %ld\n",
4432 core_addr_to_string (bp_tgt->placed_address),
4433 (unsigned long) retval);
4434 return retval;
4435 }
4436
4437 static int
4438 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4439 int type, int cnt, int from_tty)
4440 {
4441 int retval;
4442
4443 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4444 type, cnt, from_tty);
4445
4446 fprintf_unfiltered (gdb_stdlog,
4447 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4448 (unsigned long) type,
4449 (unsigned long) cnt,
4450 (unsigned long) from_tty,
4451 (unsigned long) retval);
4452 return retval;
4453 }
4454
4455 static int
4456 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4457 CORE_ADDR addr, int len)
4458 {
4459 CORE_ADDR retval;
4460
4461 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4462 addr, len);
4463
4464 fprintf_unfiltered (gdb_stdlog,
4465 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4466 core_addr_to_string (addr), (unsigned long) len,
4467 core_addr_to_string (retval));
4468 return retval;
4469 }
4470
4471 static int
4472 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4473 CORE_ADDR addr, int len, int rw,
4474 struct expression *cond)
4475 {
4476 int retval;
4477
4478 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4479 addr, len,
4480 rw, cond);
4481
4482 fprintf_unfiltered (gdb_stdlog,
4483 "target_can_accel_watchpoint_condition "
4484 "(%s, %d, %d, %s) = %ld\n",
4485 core_addr_to_string (addr), len, rw,
4486 host_address_to_string (cond), (unsigned long) retval);
4487 return retval;
4488 }
4489
4490 static int
4491 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4492 {
4493 int retval;
4494
4495 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4496
4497 fprintf_unfiltered (gdb_stdlog,
4498 "target_stopped_by_watchpoint () = %ld\n",
4499 (unsigned long) retval);
4500 return retval;
4501 }
4502
4503 static int
4504 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4505 {
4506 int retval;
4507
4508 retval = debug_target.to_stopped_data_address (target, addr);
4509
4510 fprintf_unfiltered (gdb_stdlog,
4511 "target_stopped_data_address ([%s]) = %ld\n",
4512 core_addr_to_string (*addr),
4513 (unsigned long)retval);
4514 return retval;
4515 }
4516
4517 static int
4518 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4519 CORE_ADDR addr,
4520 CORE_ADDR start, int length)
4521 {
4522 int retval;
4523
4524 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4525 start, length);
4526
4527 fprintf_filtered (gdb_stdlog,
4528 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4529 core_addr_to_string (addr), core_addr_to_string (start),
4530 length, retval);
4531 return retval;
4532 }
4533
4534 static int
4535 debug_to_insert_hw_breakpoint (struct target_ops *self,
4536 struct gdbarch *gdbarch,
4537 struct bp_target_info *bp_tgt)
4538 {
4539 int retval;
4540
4541 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4542 gdbarch, bp_tgt);
4543
4544 fprintf_unfiltered (gdb_stdlog,
4545 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4546 core_addr_to_string (bp_tgt->placed_address),
4547 (unsigned long) retval);
4548 return retval;
4549 }
4550
4551 static int
4552 debug_to_remove_hw_breakpoint (struct target_ops *self,
4553 struct gdbarch *gdbarch,
4554 struct bp_target_info *bp_tgt)
4555 {
4556 int retval;
4557
4558 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4559 gdbarch, bp_tgt);
4560
4561 fprintf_unfiltered (gdb_stdlog,
4562 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4563 core_addr_to_string (bp_tgt->placed_address),
4564 (unsigned long) retval);
4565 return retval;
4566 }
4567
4568 static int
4569 debug_to_insert_watchpoint (struct target_ops *self,
4570 CORE_ADDR addr, int len, int type,
4571 struct expression *cond)
4572 {
4573 int retval;
4574
4575 retval = debug_target.to_insert_watchpoint (&debug_target,
4576 addr, len, type, cond);
4577
4578 fprintf_unfiltered (gdb_stdlog,
4579 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4580 core_addr_to_string (addr), len, type,
4581 host_address_to_string (cond), (unsigned long) retval);
4582 return retval;
4583 }
4584
4585 static int
4586 debug_to_remove_watchpoint (struct target_ops *self,
4587 CORE_ADDR addr, int len, int type,
4588 struct expression *cond)
4589 {
4590 int retval;
4591
4592 retval = debug_target.to_remove_watchpoint (&debug_target,
4593 addr, len, type, cond);
4594
4595 fprintf_unfiltered (gdb_stdlog,
4596 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4597 core_addr_to_string (addr), len, type,
4598 host_address_to_string (cond), (unsigned long) retval);
4599 return retval;
4600 }
4601
4602 static void
4603 debug_to_terminal_init (struct target_ops *self)
4604 {
4605 debug_target.to_terminal_init (&debug_target);
4606
4607 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4608 }
4609
4610 static void
4611 debug_to_terminal_inferior (struct target_ops *self)
4612 {
4613 debug_target.to_terminal_inferior (&debug_target);
4614
4615 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4616 }
4617
4618 static void
4619 debug_to_terminal_ours_for_output (struct target_ops *self)
4620 {
4621 debug_target.to_terminal_ours_for_output (&debug_target);
4622
4623 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4624 }
4625
4626 static void
4627 debug_to_terminal_ours (struct target_ops *self)
4628 {
4629 debug_target.to_terminal_ours (&debug_target);
4630
4631 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4632 }
4633
4634 static void
4635 debug_to_terminal_save_ours (struct target_ops *self)
4636 {
4637 debug_target.to_terminal_save_ours (&debug_target);
4638
4639 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4640 }
4641
4642 static void
4643 debug_to_terminal_info (struct target_ops *self,
4644 const char *arg, int from_tty)
4645 {
4646 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4647
4648 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4649 from_tty);
4650 }
4651
4652 static void
4653 debug_to_load (struct target_ops *self, char *args, int from_tty)
4654 {
4655 debug_target.to_load (&debug_target, args, from_tty);
4656
4657 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4658 }
4659
4660 static void
4661 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4662 {
4663 debug_target.to_post_startup_inferior (&debug_target, ptid);
4664
4665 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4666 ptid_get_pid (ptid));
4667 }
4668
4669 static int
4670 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4671 {
4672 int retval;
4673
4674 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4675
4676 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4677 pid, retval);
4678
4679 return retval;
4680 }
4681
4682 static int
4683 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4684 {
4685 int retval;
4686
4687 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4688
4689 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4690 pid, retval);
4691
4692 return retval;
4693 }
4694
4695 static int
4696 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4697 {
4698 int retval;
4699
4700 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4701
4702 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4703 pid, retval);
4704
4705 return retval;
4706 }
4707
4708 static int
4709 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4710 {
4711 int retval;
4712
4713 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4714
4715 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4716 pid, retval);
4717
4718 return retval;
4719 }
4720
4721 static int
4722 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4723 {
4724 int retval;
4725
4726 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4727
4728 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4729 pid, retval);
4730
4731 return retval;
4732 }
4733
4734 static int
4735 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4736 {
4737 int retval;
4738
4739 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4740
4741 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4742 pid, retval);
4743
4744 return retval;
4745 }
4746
4747 static int
4748 debug_to_has_exited (struct target_ops *self,
4749 int pid, int wait_status, int *exit_status)
4750 {
4751 int has_exited;
4752
4753 has_exited = debug_target.to_has_exited (&debug_target,
4754 pid, wait_status, exit_status);
4755
4756 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4757 pid, wait_status, *exit_status, has_exited);
4758
4759 return has_exited;
4760 }
4761
4762 static int
4763 debug_to_can_run (struct target_ops *self)
4764 {
4765 int retval;
4766
4767 retval = debug_target.to_can_run (&debug_target);
4768
4769 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4770
4771 return retval;
4772 }
4773
4774 static struct gdbarch *
4775 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4776 {
4777 struct gdbarch *retval;
4778
4779 retval = debug_target.to_thread_architecture (ops, ptid);
4780
4781 fprintf_unfiltered (gdb_stdlog,
4782 "target_thread_architecture (%s) = %s [%s]\n",
4783 target_pid_to_str (ptid),
4784 host_address_to_string (retval),
4785 gdbarch_bfd_arch_info (retval)->printable_name);
4786 return retval;
4787 }
4788
4789 static void
4790 debug_to_stop (struct target_ops *self, ptid_t ptid)
4791 {
4792 debug_target.to_stop (&debug_target, ptid);
4793
4794 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4795 target_pid_to_str (ptid));
4796 }
4797
4798 static void
4799 debug_to_rcmd (struct target_ops *self, char *command,
4800 struct ui_file *outbuf)
4801 {
4802 debug_target.to_rcmd (&debug_target, command, outbuf);
4803 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4804 }
4805
4806 static char *
4807 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4808 {
4809 char *exec_file;
4810
4811 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4812
4813 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4814 pid, exec_file);
4815
4816 return exec_file;
4817 }
4818
4819 static void
4820 setup_target_debug (void)
4821 {
4822 memcpy (&debug_target, &current_target, sizeof debug_target);
4823
4824 current_target.to_open = debug_to_open;
4825 current_target.to_post_attach = debug_to_post_attach;
4826 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4827 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4828 current_target.to_files_info = debug_to_files_info;
4829 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4830 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4831 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4832 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4833 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4834 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4835 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4836 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4837 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4838 current_target.to_watchpoint_addr_within_range
4839 = debug_to_watchpoint_addr_within_range;
4840 current_target.to_region_ok_for_hw_watchpoint
4841 = debug_to_region_ok_for_hw_watchpoint;
4842 current_target.to_can_accel_watchpoint_condition
4843 = debug_to_can_accel_watchpoint_condition;
4844 current_target.to_terminal_init = debug_to_terminal_init;
4845 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4846 current_target.to_terminal_ours_for_output
4847 = debug_to_terminal_ours_for_output;
4848 current_target.to_terminal_ours = debug_to_terminal_ours;
4849 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4850 current_target.to_terminal_info = debug_to_terminal_info;
4851 current_target.to_load = debug_to_load;
4852 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4853 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4854 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4855 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4856 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4857 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4858 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4859 current_target.to_has_exited = debug_to_has_exited;
4860 current_target.to_can_run = debug_to_can_run;
4861 current_target.to_stop = debug_to_stop;
4862 current_target.to_rcmd = debug_to_rcmd;
4863 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4864 current_target.to_thread_architecture = debug_to_thread_architecture;
4865 }
4866 \f
4867
4868 static char targ_desc[] =
4869 "Names of targets and files being debugged.\nShows the entire \
4870 stack of targets currently in use (including the exec-file,\n\
4871 core-file, and process, if any), as well as the symbol file name.";
4872
4873 static void
4874 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4875 {
4876 error (_("\"monitor\" command not supported by this target."));
4877 }
4878
4879 static void
4880 do_monitor_command (char *cmd,
4881 int from_tty)
4882 {
4883 target_rcmd (cmd, gdb_stdtarg);
4884 }
4885
4886 /* Print the name of each layers of our target stack. */
4887
4888 static void
4889 maintenance_print_target_stack (char *cmd, int from_tty)
4890 {
4891 struct target_ops *t;
4892
4893 printf_filtered (_("The current target stack is:\n"));
4894
4895 for (t = target_stack; t != NULL; t = t->beneath)
4896 {
4897 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4898 }
4899 }
4900
4901 /* Controls if async mode is permitted. */
4902 int target_async_permitted = 0;
4903
4904 /* The set command writes to this variable. If the inferior is
4905 executing, target_async_permitted is *not* updated. */
4906 static int target_async_permitted_1 = 0;
4907
4908 static void
4909 set_target_async_command (char *args, int from_tty,
4910 struct cmd_list_element *c)
4911 {
4912 if (have_live_inferiors ())
4913 {
4914 target_async_permitted_1 = target_async_permitted;
4915 error (_("Cannot change this setting while the inferior is running."));
4916 }
4917
4918 target_async_permitted = target_async_permitted_1;
4919 }
4920
4921 static void
4922 show_target_async_command (struct ui_file *file, int from_tty,
4923 struct cmd_list_element *c,
4924 const char *value)
4925 {
4926 fprintf_filtered (file,
4927 _("Controlling the inferior in "
4928 "asynchronous mode is %s.\n"), value);
4929 }
4930
4931 /* Temporary copies of permission settings. */
4932
4933 static int may_write_registers_1 = 1;
4934 static int may_write_memory_1 = 1;
4935 static int may_insert_breakpoints_1 = 1;
4936 static int may_insert_tracepoints_1 = 1;
4937 static int may_insert_fast_tracepoints_1 = 1;
4938 static int may_stop_1 = 1;
4939
4940 /* Make the user-set values match the real values again. */
4941
4942 void
4943 update_target_permissions (void)
4944 {
4945 may_write_registers_1 = may_write_registers;
4946 may_write_memory_1 = may_write_memory;
4947 may_insert_breakpoints_1 = may_insert_breakpoints;
4948 may_insert_tracepoints_1 = may_insert_tracepoints;
4949 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4950 may_stop_1 = may_stop;
4951 }
4952
4953 /* The one function handles (most of) the permission flags in the same
4954 way. */
4955
4956 static void
4957 set_target_permissions (char *args, int from_tty,
4958 struct cmd_list_element *c)
4959 {
4960 if (target_has_execution)
4961 {
4962 update_target_permissions ();
4963 error (_("Cannot change this setting while the inferior is running."));
4964 }
4965
4966 /* Make the real values match the user-changed values. */
4967 may_write_registers = may_write_registers_1;
4968 may_insert_breakpoints = may_insert_breakpoints_1;
4969 may_insert_tracepoints = may_insert_tracepoints_1;
4970 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4971 may_stop = may_stop_1;
4972 update_observer_mode ();
4973 }
4974
4975 /* Set memory write permission independently of observer mode. */
4976
4977 static void
4978 set_write_memory_permission (char *args, int from_tty,
4979 struct cmd_list_element *c)
4980 {
4981 /* Make the real values match the user-changed values. */
4982 may_write_memory = may_write_memory_1;
4983 update_observer_mode ();
4984 }
4985
4986
4987 void
4988 initialize_targets (void)
4989 {
4990 init_dummy_target ();
4991 push_target (&dummy_target);
4992
4993 add_info ("target", target_info, targ_desc);
4994 add_info ("files", target_info, targ_desc);
4995
4996 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4997 Set target debugging."), _("\
4998 Show target debugging."), _("\
4999 When non-zero, target debugging is enabled. Higher numbers are more\n\
5000 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5001 command."),
5002 NULL,
5003 show_targetdebug,
5004 &setdebuglist, &showdebuglist);
5005
5006 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5007 &trust_readonly, _("\
5008 Set mode for reading from readonly sections."), _("\
5009 Show mode for reading from readonly sections."), _("\
5010 When this mode is on, memory reads from readonly sections (such as .text)\n\
5011 will be read from the object file instead of from the target. This will\n\
5012 result in significant performance improvement for remote targets."),
5013 NULL,
5014 show_trust_readonly,
5015 &setlist, &showlist);
5016
5017 add_com ("monitor", class_obscure, do_monitor_command,
5018 _("Send a command to the remote monitor (remote targets only)."));
5019
5020 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5021 _("Print the name of each layer of the internal target stack."),
5022 &maintenanceprintlist);
5023
5024 add_setshow_boolean_cmd ("target-async", no_class,
5025 &target_async_permitted_1, _("\
5026 Set whether gdb controls the inferior in asynchronous mode."), _("\
5027 Show whether gdb controls the inferior in asynchronous mode."), _("\
5028 Tells gdb whether to control the inferior in asynchronous mode."),
5029 set_target_async_command,
5030 show_target_async_command,
5031 &setlist,
5032 &showlist);
5033
5034 add_setshow_boolean_cmd ("may-write-registers", class_support,
5035 &may_write_registers_1, _("\
5036 Set permission to write into registers."), _("\
5037 Show permission to write into registers."), _("\
5038 When this permission is on, GDB may write into the target's registers.\n\
5039 Otherwise, any sort of write attempt will result in an error."),
5040 set_target_permissions, NULL,
5041 &setlist, &showlist);
5042
5043 add_setshow_boolean_cmd ("may-write-memory", class_support,
5044 &may_write_memory_1, _("\
5045 Set permission to write into target memory."), _("\
5046 Show permission to write into target memory."), _("\
5047 When this permission is on, GDB may write into the target's memory.\n\
5048 Otherwise, any sort of write attempt will result in an error."),
5049 set_write_memory_permission, NULL,
5050 &setlist, &showlist);
5051
5052 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5053 &may_insert_breakpoints_1, _("\
5054 Set permission to insert breakpoints in the target."), _("\
5055 Show permission to insert breakpoints in the target."), _("\
5056 When this permission is on, GDB may insert breakpoints in the program.\n\
5057 Otherwise, any sort of insertion attempt will result in an error."),
5058 set_target_permissions, NULL,
5059 &setlist, &showlist);
5060
5061 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5062 &may_insert_tracepoints_1, _("\
5063 Set permission to insert tracepoints in the target."), _("\
5064 Show permission to insert tracepoints in the target."), _("\
5065 When this permission is on, GDB may insert tracepoints in the program.\n\
5066 Otherwise, any sort of insertion attempt will result in an error."),
5067 set_target_permissions, NULL,
5068 &setlist, &showlist);
5069
5070 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5071 &may_insert_fast_tracepoints_1, _("\
5072 Set permission to insert fast tracepoints in the target."), _("\
5073 Show permission to insert fast tracepoints in the target."), _("\
5074 When this permission is on, GDB may insert fast tracepoints.\n\
5075 Otherwise, any sort of insertion attempt will result in an error."),
5076 set_target_permissions, NULL,
5077 &setlist, &showlist);
5078
5079 add_setshow_boolean_cmd ("may-interrupt", class_support,
5080 &may_stop_1, _("\
5081 Set permission to interrupt or signal the target."), _("\
5082 Show permission to interrupt or signal the target."), _("\
5083 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5084 Otherwise, any attempt to interrupt or stop will be ignored."),
5085 set_target_permissions, NULL,
5086 &setlist, &showlist);
5087 }