gdb/
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
121
122 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static void debug_to_terminal_init (void);
134
135 static void debug_to_terminal_inferior (void);
136
137 static void debug_to_terminal_ours_for_output (void);
138
139 static void debug_to_terminal_save_ours (void);
140
141 static void debug_to_terminal_ours (void);
142
143 static void debug_to_terminal_info (char *, int);
144
145 static void debug_to_load (char *, int);
146
147 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_notice_signals (ptid_t);
152
153 static void debug_to_stop (ptid_t);
154
155 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
156 wierd and mysterious ways. Putting the variable here lets those
157 wierd and mysterious ways keep building while they are being
158 converted to the inferior inheritance structure. */
159 struct target_ops deprecated_child_ops;
160
161 /* Pointer to array of target architecture structures; the size of the
162 array; the current index into the array; the allocated size of the
163 array. */
164 struct target_ops **target_structs;
165 unsigned target_struct_size;
166 unsigned target_struct_index;
167 unsigned target_struct_allocsize;
168 #define DEFAULT_ALLOCSIZE 10
169
170 /* The initial current target, so that there is always a semi-valid
171 current target. */
172
173 static struct target_ops dummy_target;
174
175 /* Top of target stack. */
176
177 static struct target_ops *target_stack;
178
179 /* The target structure we are currently using to talk to a process
180 or file or whatever "inferior" we have. */
181
182 struct target_ops current_target;
183
184 /* Command list for target. */
185
186 static struct cmd_list_element *targetlist = NULL;
187
188 /* Nonzero if we should trust readonly sections from the
189 executable when reading memory. */
190
191 static int trust_readonly = 0;
192
193 /* Nonzero if we should show true memory content including
194 memory breakpoint inserted by gdb. */
195
196 static int show_memory_breakpoints = 0;
197
198 /* Non-zero if we want to see trace of target level stuff. */
199
200 static int targetdebug = 0;
201 static void
202 show_targetdebug (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
206 }
207
208 static void setup_target_debug (void);
209
210 /* The option sets this. */
211 static int stack_cache_enabled_p_1 = 1;
212 /* And set_stack_cache_enabled_p updates this.
213 The reason for the separation is so that we don't flush the cache for
214 on->on transitions. */
215 static int stack_cache_enabled_p = 1;
216
217 /* This is called *after* the stack-cache has been set.
218 Flush the cache for off->on and on->off transitions.
219 There's no real need to flush the cache for on->off transitions,
220 except cleanliness. */
221
222 static void
223 set_stack_cache_enabled_p (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
227 target_dcache_invalidate ();
228
229 stack_cache_enabled_p = stack_cache_enabled_p_1;
230 }
231
232 static void
233 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
237 }
238
239 /* Cache of memory operations, to speed up remote access. */
240 static DCACHE *target_dcache;
241
242 /* Invalidate the target dcache. */
243
244 void
245 target_dcache_invalidate (void)
246 {
247 dcache_invalidate (target_dcache);
248 }
249
250 /* The user just typed 'target' without the name of a target. */
251
252 static void
253 target_command (char *arg, int from_tty)
254 {
255 fputs_filtered ("Argument required (target name). Try `help target'\n",
256 gdb_stdout);
257 }
258
259 /* Default target_has_* methods for process_stratum targets. */
260
261 int
262 default_child_has_all_memory (struct target_ops *ops)
263 {
264 /* If no inferior selected, then we can't read memory here. */
265 if (ptid_equal (inferior_ptid, null_ptid))
266 return 0;
267
268 return 1;
269 }
270
271 int
272 default_child_has_memory (struct target_ops *ops)
273 {
274 /* If no inferior selected, then we can't read memory here. */
275 if (ptid_equal (inferior_ptid, null_ptid))
276 return 0;
277
278 return 1;
279 }
280
281 int
282 default_child_has_stack (struct target_ops *ops)
283 {
284 /* If no inferior selected, there's no stack. */
285 if (ptid_equal (inferior_ptid, null_ptid))
286 return 0;
287
288 return 1;
289 }
290
291 int
292 default_child_has_registers (struct target_ops *ops)
293 {
294 /* Can't read registers from no inferior. */
295 if (ptid_equal (inferior_ptid, null_ptid))
296 return 0;
297
298 return 1;
299 }
300
301 int
302 default_child_has_execution (struct target_ops *ops)
303 {
304 /* If there's no thread selected, then we can't make it run through
305 hoops. */
306 if (ptid_equal (inferior_ptid, null_ptid))
307 return 0;
308
309 return 1;
310 }
311
312
313 int
314 target_has_all_memory_1 (void)
315 {
316 struct target_ops *t;
317
318 for (t = current_target.beneath; t != NULL; t = t->beneath)
319 if (t->to_has_all_memory (t))
320 return 1;
321
322 return 0;
323 }
324
325 int
326 target_has_memory_1 (void)
327 {
328 struct target_ops *t;
329
330 for (t = current_target.beneath; t != NULL; t = t->beneath)
331 if (t->to_has_memory (t))
332 return 1;
333
334 return 0;
335 }
336
337 int
338 target_has_stack_1 (void)
339 {
340 struct target_ops *t;
341
342 for (t = current_target.beneath; t != NULL; t = t->beneath)
343 if (t->to_has_stack (t))
344 return 1;
345
346 return 0;
347 }
348
349 int
350 target_has_registers_1 (void)
351 {
352 struct target_ops *t;
353
354 for (t = current_target.beneath; t != NULL; t = t->beneath)
355 if (t->to_has_registers (t))
356 return 1;
357
358 return 0;
359 }
360
361 int
362 target_has_execution_1 (void)
363 {
364 struct target_ops *t;
365
366 for (t = current_target.beneath; t != NULL; t = t->beneath)
367 if (t->to_has_execution (t))
368 return 1;
369
370 return 0;
371 }
372
373 /* Add a possible target architecture to the list. */
374
375 void
376 add_target (struct target_ops *t)
377 {
378 /* Provide default values for all "must have" methods. */
379 if (t->to_xfer_partial == NULL)
380 t->to_xfer_partial = default_xfer_partial;
381
382 if (t->to_has_all_memory == NULL)
383 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
384
385 if (t->to_has_memory == NULL)
386 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
387
388 if (t->to_has_stack == NULL)
389 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
390
391 if (t->to_has_registers == NULL)
392 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
393
394 if (t->to_has_execution == NULL)
395 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
421 }
422
423 /* Stub functions */
424
425 void
426 target_ignore (void)
427 {
428 }
429
430 void
431 target_kill (void)
432 {
433 struct target_ops *t;
434
435 for (t = current_target.beneath; t != NULL; t = t->beneath)
436 if (t->to_kill != NULL)
437 {
438 if (targetdebug)
439 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
440
441 t->to_kill (t);
442 return;
443 }
444
445 noprocess ();
446 }
447
448 void
449 target_load (char *arg, int from_tty)
450 {
451 target_dcache_invalidate ();
452 (*current_target.to_load) (arg, from_tty);
453 }
454
455 void
456 target_create_inferior (char *exec_file, char *args,
457 char **env, int from_tty)
458 {
459 struct target_ops *t;
460 for (t = current_target.beneath; t != NULL; t = t->beneath)
461 {
462 if (t->to_create_inferior != NULL)
463 {
464 t->to_create_inferior (t, exec_file, args, env, from_tty);
465 if (targetdebug)
466 fprintf_unfiltered (gdb_stdlog,
467 "target_create_inferior (%s, %s, xxx, %d)\n",
468 exec_file, args, from_tty);
469 return;
470 }
471 }
472
473 internal_error (__FILE__, __LINE__,
474 "could not find a target to create inferior");
475 }
476
477 void
478 target_terminal_inferior (void)
479 {
480 /* A background resume (``run&'') should leave GDB in control of the
481 terminal. Use target_can_async_p, not target_is_async_p, since at
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
485 return;
486
487 /* If GDB is resuming the inferior in the foreground, install
488 inferior's terminal modes. */
489 (*current_target.to_terminal_inferior) ();
490 }
491
492 static int
493 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
494 struct target_ops *t)
495 {
496 errno = EIO; /* Can't read/write this location */
497 return 0; /* No bytes handled */
498 }
499
500 static void
501 tcomplain (void)
502 {
503 error (_("You can't do that when your target is `%s'"),
504 current_target.to_shortname);
505 }
506
507 void
508 noprocess (void)
509 {
510 error (_("You can't do that without a process to debug."));
511 }
512
513 static int
514 nosymbol (char *name, CORE_ADDR *addrp)
515 {
516 return 1; /* Symbol does not exist in target env */
517 }
518
519 static void
520 default_terminal_info (char *args, int from_tty)
521 {
522 printf_unfiltered (_("No saved terminal information.\n"));
523 }
524
525 /* A default implementation for the to_get_ada_task_ptid target method.
526
527 This function builds the PTID by using both LWP and TID as part of
528 the PTID lwp and tid elements. The pid used is the pid of the
529 inferior_ptid. */
530
531 static ptid_t
532 default_get_ada_task_ptid (long lwp, long tid)
533 {
534 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
535 }
536
537 /* Go through the target stack from top to bottom, copying over zero
538 entries in current_target, then filling in still empty entries. In
539 effect, we are doing class inheritance through the pushed target
540 vectors.
541
542 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
543 is currently implemented, is that it discards any knowledge of
544 which target an inherited method originally belonged to.
545 Consequently, new new target methods should instead explicitly and
546 locally search the target stack for the target that can handle the
547 request. */
548
549 static void
550 update_current_target (void)
551 {
552 struct target_ops *t;
553
554 /* First, reset current's contents. */
555 memset (&current_target, 0, sizeof (current_target));
556
557 #define INHERIT(FIELD, TARGET) \
558 if (!current_target.FIELD) \
559 current_target.FIELD = (TARGET)->FIELD
560
561 for (t = target_stack; t; t = t->beneath)
562 {
563 INHERIT (to_shortname, t);
564 INHERIT (to_longname, t);
565 INHERIT (to_doc, t);
566 /* Do not inherit to_open. */
567 /* Do not inherit to_close. */
568 /* Do not inherit to_attach. */
569 INHERIT (to_post_attach, t);
570 INHERIT (to_attach_no_wait, t);
571 /* Do not inherit to_detach. */
572 /* Do not inherit to_disconnect. */
573 /* Do not inherit to_resume. */
574 /* Do not inherit to_wait. */
575 /* Do not inherit to_fetch_registers. */
576 /* Do not inherit to_store_registers. */
577 INHERIT (to_prepare_to_store, t);
578 INHERIT (deprecated_xfer_memory, t);
579 INHERIT (to_files_info, t);
580 INHERIT (to_insert_breakpoint, t);
581 INHERIT (to_remove_breakpoint, t);
582 INHERIT (to_can_use_hw_breakpoint, t);
583 INHERIT (to_insert_hw_breakpoint, t);
584 INHERIT (to_remove_hw_breakpoint, t);
585 INHERIT (to_insert_watchpoint, t);
586 INHERIT (to_remove_watchpoint, t);
587 INHERIT (to_stopped_data_address, t);
588 INHERIT (to_have_steppable_watchpoint, t);
589 INHERIT (to_have_continuable_watchpoint, t);
590 INHERIT (to_stopped_by_watchpoint, t);
591 INHERIT (to_watchpoint_addr_within_range, t);
592 INHERIT (to_region_ok_for_hw_watchpoint, t);
593 INHERIT (to_terminal_init, t);
594 INHERIT (to_terminal_inferior, t);
595 INHERIT (to_terminal_ours_for_output, t);
596 INHERIT (to_terminal_ours, t);
597 INHERIT (to_terminal_save_ours, t);
598 INHERIT (to_terminal_info, t);
599 /* Do not inherit to_kill. */
600 INHERIT (to_load, t);
601 INHERIT (to_lookup_symbol, t);
602 /* Do no inherit to_create_inferior. */
603 INHERIT (to_post_startup_inferior, t);
604 INHERIT (to_acknowledge_created_inferior, t);
605 INHERIT (to_insert_fork_catchpoint, t);
606 INHERIT (to_remove_fork_catchpoint, t);
607 INHERIT (to_insert_vfork_catchpoint, t);
608 INHERIT (to_remove_vfork_catchpoint, t);
609 /* Do not inherit to_follow_fork. */
610 INHERIT (to_insert_exec_catchpoint, t);
611 INHERIT (to_remove_exec_catchpoint, t);
612 INHERIT (to_set_syscall_catchpoint, t);
613 INHERIT (to_has_exited, t);
614 /* Do not inherit to_mourn_inferiour. */
615 INHERIT (to_can_run, t);
616 INHERIT (to_notice_signals, t);
617 /* Do not inherit to_thread_alive. */
618 /* Do not inherit to_find_new_threads. */
619 /* Do not inherit to_pid_to_str. */
620 INHERIT (to_extra_thread_info, t);
621 INHERIT (to_stop, t);
622 /* Do not inherit to_xfer_partial. */
623 INHERIT (to_rcmd, t);
624 INHERIT (to_pid_to_exec_file, t);
625 INHERIT (to_log_command, t);
626 INHERIT (to_stratum, t);
627 /* Do not inherit to_has_all_memory */
628 /* Do not inherit to_has_memory */
629 /* Do not inherit to_has_stack */
630 /* Do not inherit to_has_registers */
631 /* Do not inherit to_has_execution */
632 INHERIT (to_has_thread_control, t);
633 INHERIT (to_can_async_p, t);
634 INHERIT (to_is_async_p, t);
635 INHERIT (to_async, t);
636 INHERIT (to_async_mask, t);
637 INHERIT (to_find_memory_regions, t);
638 INHERIT (to_make_corefile_notes, t);
639 INHERIT (to_get_bookmark, t);
640 INHERIT (to_goto_bookmark, t);
641 /* Do not inherit to_get_thread_local_address. */
642 INHERIT (to_can_execute_reverse, t);
643 INHERIT (to_thread_architecture, t);
644 /* Do not inherit to_read_description. */
645 INHERIT (to_get_ada_task_ptid, t);
646 /* Do not inherit to_search_memory. */
647 INHERIT (to_supports_multi_process, t);
648 INHERIT (to_trace_init, t);
649 INHERIT (to_download_tracepoint, t);
650 INHERIT (to_download_trace_state_variable, t);
651 INHERIT (to_trace_set_readonly_regions, t);
652 INHERIT (to_trace_start, t);
653 INHERIT (to_get_trace_status, t);
654 INHERIT (to_trace_stop, t);
655 INHERIT (to_trace_find, t);
656 INHERIT (to_get_trace_state_variable_value, t);
657 INHERIT (to_save_trace_data, t);
658 INHERIT (to_upload_tracepoints, t);
659 INHERIT (to_upload_trace_state_variables, t);
660 INHERIT (to_get_raw_trace_data, t);
661 INHERIT (to_set_disconnected_tracing, t);
662 INHERIT (to_set_circular_trace_buffer, t);
663 INHERIT (to_get_tib_address, t);
664 INHERIT (to_magic, t);
665 /* Do not inherit to_memory_map. */
666 /* Do not inherit to_flash_erase. */
667 /* Do not inherit to_flash_done. */
668 }
669 #undef INHERIT
670
671 /* Clean up a target struct so it no longer has any zero pointers in
672 it. Some entries are defaulted to a method that print an error,
673 others are hard-wired to a standard recursive default. */
674
675 #define de_fault(field, value) \
676 if (!current_target.field) \
677 current_target.field = value
678
679 de_fault (to_open,
680 (void (*) (char *, int))
681 tcomplain);
682 de_fault (to_close,
683 (void (*) (int))
684 target_ignore);
685 de_fault (to_post_attach,
686 (void (*) (int))
687 target_ignore);
688 de_fault (to_prepare_to_store,
689 (void (*) (struct regcache *))
690 noprocess);
691 de_fault (deprecated_xfer_memory,
692 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
693 nomemory);
694 de_fault (to_files_info,
695 (void (*) (struct target_ops *))
696 target_ignore);
697 de_fault (to_insert_breakpoint,
698 memory_insert_breakpoint);
699 de_fault (to_remove_breakpoint,
700 memory_remove_breakpoint);
701 de_fault (to_can_use_hw_breakpoint,
702 (int (*) (int, int, int))
703 return_zero);
704 de_fault (to_insert_hw_breakpoint,
705 (int (*) (struct gdbarch *, struct bp_target_info *))
706 return_minus_one);
707 de_fault (to_remove_hw_breakpoint,
708 (int (*) (struct gdbarch *, struct bp_target_info *))
709 return_minus_one);
710 de_fault (to_insert_watchpoint,
711 (int (*) (CORE_ADDR, int, int))
712 return_minus_one);
713 de_fault (to_remove_watchpoint,
714 (int (*) (CORE_ADDR, int, int))
715 return_minus_one);
716 de_fault (to_stopped_by_watchpoint,
717 (int (*) (void))
718 return_zero);
719 de_fault (to_stopped_data_address,
720 (int (*) (struct target_ops *, CORE_ADDR *))
721 return_zero);
722 de_fault (to_watchpoint_addr_within_range,
723 default_watchpoint_addr_within_range);
724 de_fault (to_region_ok_for_hw_watchpoint,
725 default_region_ok_for_hw_watchpoint);
726 de_fault (to_terminal_init,
727 (void (*) (void))
728 target_ignore);
729 de_fault (to_terminal_inferior,
730 (void (*) (void))
731 target_ignore);
732 de_fault (to_terminal_ours_for_output,
733 (void (*) (void))
734 target_ignore);
735 de_fault (to_terminal_ours,
736 (void (*) (void))
737 target_ignore);
738 de_fault (to_terminal_save_ours,
739 (void (*) (void))
740 target_ignore);
741 de_fault (to_terminal_info,
742 default_terminal_info);
743 de_fault (to_load,
744 (void (*) (char *, int))
745 tcomplain);
746 de_fault (to_lookup_symbol,
747 (int (*) (char *, CORE_ADDR *))
748 nosymbol);
749 de_fault (to_post_startup_inferior,
750 (void (*) (ptid_t))
751 target_ignore);
752 de_fault (to_acknowledge_created_inferior,
753 (void (*) (int))
754 target_ignore);
755 de_fault (to_insert_fork_catchpoint,
756 (void (*) (int))
757 tcomplain);
758 de_fault (to_remove_fork_catchpoint,
759 (int (*) (int))
760 tcomplain);
761 de_fault (to_insert_vfork_catchpoint,
762 (void (*) (int))
763 tcomplain);
764 de_fault (to_remove_vfork_catchpoint,
765 (int (*) (int))
766 tcomplain);
767 de_fault (to_insert_exec_catchpoint,
768 (void (*) (int))
769 tcomplain);
770 de_fault (to_remove_exec_catchpoint,
771 (int (*) (int))
772 tcomplain);
773 de_fault (to_set_syscall_catchpoint,
774 (int (*) (int, int, int, int, int *))
775 tcomplain);
776 de_fault (to_has_exited,
777 (int (*) (int, int, int *))
778 return_zero);
779 de_fault (to_can_run,
780 return_zero);
781 de_fault (to_notice_signals,
782 (void (*) (ptid_t))
783 target_ignore);
784 de_fault (to_extra_thread_info,
785 (char *(*) (struct thread_info *))
786 return_zero);
787 de_fault (to_stop,
788 (void (*) (ptid_t))
789 target_ignore);
790 current_target.to_xfer_partial = current_xfer_partial;
791 de_fault (to_rcmd,
792 (void (*) (char *, struct ui_file *))
793 tcomplain);
794 de_fault (to_pid_to_exec_file,
795 (char *(*) (int))
796 return_zero);
797 de_fault (to_async,
798 (void (*) (void (*) (enum inferior_event_type, void*), void*))
799 tcomplain);
800 de_fault (to_async_mask,
801 (int (*) (int))
802 return_one);
803 de_fault (to_thread_architecture,
804 default_thread_architecture);
805 current_target.to_read_description = NULL;
806 de_fault (to_get_ada_task_ptid,
807 (ptid_t (*) (long, long))
808 default_get_ada_task_ptid);
809 de_fault (to_supports_multi_process,
810 (int (*) (void))
811 return_zero);
812 de_fault (to_trace_init,
813 (void (*) (void))
814 tcomplain);
815 de_fault (to_download_tracepoint,
816 (void (*) (struct breakpoint *))
817 tcomplain);
818 de_fault (to_download_trace_state_variable,
819 (void (*) (struct trace_state_variable *))
820 tcomplain);
821 de_fault (to_trace_set_readonly_regions,
822 (void (*) (void))
823 tcomplain);
824 de_fault (to_trace_start,
825 (void (*) (void))
826 tcomplain);
827 de_fault (to_get_trace_status,
828 (int (*) (struct trace_status *))
829 return_minus_one);
830 de_fault (to_trace_stop,
831 (void (*) (void))
832 tcomplain);
833 de_fault (to_trace_find,
834 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
835 return_minus_one);
836 de_fault (to_get_trace_state_variable_value,
837 (int (*) (int, LONGEST *))
838 return_zero);
839 de_fault (to_save_trace_data,
840 (int (*) (const char *))
841 tcomplain);
842 de_fault (to_upload_tracepoints,
843 (int (*) (struct uploaded_tp **))
844 return_zero);
845 de_fault (to_upload_trace_state_variables,
846 (int (*) (struct uploaded_tsv **))
847 return_zero);
848 de_fault (to_get_raw_trace_data,
849 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
850 tcomplain);
851 de_fault (to_set_disconnected_tracing,
852 (void (*) (int))
853 target_ignore);
854 de_fault (to_set_circular_trace_buffer,
855 (void (*) (int))
856 target_ignore);
857 de_fault (to_get_tib_address,
858 (int (*) (ptid_t, CORE_ADDR *))
859 tcomplain);
860 #undef de_fault
861
862 /* Finally, position the target-stack beneath the squashed
863 "current_target". That way code looking for a non-inherited
864 target method can quickly and simply find it. */
865 current_target.beneath = target_stack;
866
867 if (targetdebug)
868 setup_target_debug ();
869 }
870
871 /* Push a new target type into the stack of the existing target accessors,
872 possibly superseding some of the existing accessors.
873
874 Result is zero if the pushed target ended up on top of the stack,
875 nonzero if at least one target is on top of it.
876
877 Rather than allow an empty stack, we always have the dummy target at
878 the bottom stratum, so we can call the function vectors without
879 checking them. */
880
881 int
882 push_target (struct target_ops *t)
883 {
884 struct target_ops **cur;
885
886 /* Check magic number. If wrong, it probably means someone changed
887 the struct definition, but not all the places that initialize one. */
888 if (t->to_magic != OPS_MAGIC)
889 {
890 fprintf_unfiltered (gdb_stderr,
891 "Magic number of %s target struct wrong\n",
892 t->to_shortname);
893 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
894 }
895
896 /* Find the proper stratum to install this target in. */
897 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
898 {
899 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
900 break;
901 }
902
903 /* If there's already targets at this stratum, remove them. */
904 /* FIXME: cagney/2003-10-15: I think this should be popping all
905 targets to CUR, and not just those at this stratum level. */
906 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
907 {
908 /* There's already something at this stratum level. Close it,
909 and un-hook it from the stack. */
910 struct target_ops *tmp = (*cur);
911 (*cur) = (*cur)->beneath;
912 tmp->beneath = NULL;
913 target_close (tmp, 0);
914 }
915
916 /* We have removed all targets in our stratum, now add the new one. */
917 t->beneath = (*cur);
918 (*cur) = t;
919
920 update_current_target ();
921
922 /* Not on top? */
923 return (t != target_stack);
924 }
925
926 /* Remove a target_ops vector from the stack, wherever it may be.
927 Return how many times it was removed (0 or 1). */
928
929 int
930 unpush_target (struct target_ops *t)
931 {
932 struct target_ops **cur;
933 struct target_ops *tmp;
934
935 if (t->to_stratum == dummy_stratum)
936 internal_error (__FILE__, __LINE__,
937 "Attempt to unpush the dummy target");
938
939 /* Look for the specified target. Note that we assume that a target
940 can only occur once in the target stack. */
941
942 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
943 {
944 if ((*cur) == t)
945 break;
946 }
947
948 if ((*cur) == NULL)
949 return 0; /* Didn't find target_ops, quit now */
950
951 /* NOTE: cagney/2003-12-06: In '94 the close call was made
952 unconditional by moving it to before the above check that the
953 target was in the target stack (something about "Change the way
954 pushing and popping of targets work to support target overlays
955 and inheritance"). This doesn't make much sense - only open
956 targets should be closed. */
957 target_close (t, 0);
958
959 /* Unchain the target */
960 tmp = (*cur);
961 (*cur) = (*cur)->beneath;
962 tmp->beneath = NULL;
963
964 update_current_target ();
965
966 return 1;
967 }
968
969 void
970 pop_target (void)
971 {
972 target_close (target_stack, 0); /* Let it clean up */
973 if (unpush_target (target_stack) == 1)
974 return;
975
976 fprintf_unfiltered (gdb_stderr,
977 "pop_target couldn't find target %s\n",
978 current_target.to_shortname);
979 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
980 }
981
982 void
983 pop_all_targets_above (enum strata above_stratum, int quitting)
984 {
985 while ((int) (current_target.to_stratum) > (int) above_stratum)
986 {
987 target_close (target_stack, quitting);
988 if (!unpush_target (target_stack))
989 {
990 fprintf_unfiltered (gdb_stderr,
991 "pop_all_targets couldn't find target %s\n",
992 target_stack->to_shortname);
993 internal_error (__FILE__, __LINE__,
994 _("failed internal consistency check"));
995 break;
996 }
997 }
998 }
999
1000 void
1001 pop_all_targets (int quitting)
1002 {
1003 pop_all_targets_above (dummy_stratum, quitting);
1004 }
1005
1006 /* Using the objfile specified in OBJFILE, find the address for the
1007 current thread's thread-local storage with offset OFFSET. */
1008 CORE_ADDR
1009 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1010 {
1011 volatile CORE_ADDR addr = 0;
1012 struct target_ops *target;
1013
1014 for (target = current_target.beneath;
1015 target != NULL;
1016 target = target->beneath)
1017 {
1018 if (target->to_get_thread_local_address != NULL)
1019 break;
1020 }
1021
1022 if (target != NULL
1023 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1024 {
1025 ptid_t ptid = inferior_ptid;
1026 volatile struct gdb_exception ex;
1027
1028 TRY_CATCH (ex, RETURN_MASK_ALL)
1029 {
1030 CORE_ADDR lm_addr;
1031
1032 /* Fetch the load module address for this objfile. */
1033 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1034 objfile);
1035 /* If it's 0, throw the appropriate exception. */
1036 if (lm_addr == 0)
1037 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1038 _("TLS load module not found"));
1039
1040 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1041 }
1042 /* If an error occurred, print TLS related messages here. Otherwise,
1043 throw the error to some higher catcher. */
1044 if (ex.reason < 0)
1045 {
1046 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1047
1048 switch (ex.error)
1049 {
1050 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1051 error (_("Cannot find thread-local variables in this thread library."));
1052 break;
1053 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1054 if (objfile_is_library)
1055 error (_("Cannot find shared library `%s' in dynamic"
1056 " linker's load module list"), objfile->name);
1057 else
1058 error (_("Cannot find executable file `%s' in dynamic"
1059 " linker's load module list"), objfile->name);
1060 break;
1061 case TLS_NOT_ALLOCATED_YET_ERROR:
1062 if (objfile_is_library)
1063 error (_("The inferior has not yet allocated storage for"
1064 " thread-local variables in\n"
1065 "the shared library `%s'\n"
1066 "for %s"),
1067 objfile->name, target_pid_to_str (ptid));
1068 else
1069 error (_("The inferior has not yet allocated storage for"
1070 " thread-local variables in\n"
1071 "the executable `%s'\n"
1072 "for %s"),
1073 objfile->name, target_pid_to_str (ptid));
1074 break;
1075 case TLS_GENERIC_ERROR:
1076 if (objfile_is_library)
1077 error (_("Cannot find thread-local storage for %s, "
1078 "shared library %s:\n%s"),
1079 target_pid_to_str (ptid),
1080 objfile->name, ex.message);
1081 else
1082 error (_("Cannot find thread-local storage for %s, "
1083 "executable file %s:\n%s"),
1084 target_pid_to_str (ptid),
1085 objfile->name, ex.message);
1086 break;
1087 default:
1088 throw_exception (ex);
1089 break;
1090 }
1091 }
1092 }
1093 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1094 TLS is an ABI-specific thing. But we don't do that yet. */
1095 else
1096 error (_("Cannot find thread-local variables on this target"));
1097
1098 return addr;
1099 }
1100
1101 #undef MIN
1102 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1103
1104 /* target_read_string -- read a null terminated string, up to LEN bytes,
1105 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1106 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1107 is responsible for freeing it. Return the number of bytes successfully
1108 read. */
1109
1110 int
1111 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1112 {
1113 int tlen, origlen, offset, i;
1114 gdb_byte buf[4];
1115 int errcode = 0;
1116 char *buffer;
1117 int buffer_allocated;
1118 char *bufptr;
1119 unsigned int nbytes_read = 0;
1120
1121 gdb_assert (string);
1122
1123 /* Small for testing. */
1124 buffer_allocated = 4;
1125 buffer = xmalloc (buffer_allocated);
1126 bufptr = buffer;
1127
1128 origlen = len;
1129
1130 while (len > 0)
1131 {
1132 tlen = MIN (len, 4 - (memaddr & 3));
1133 offset = memaddr & 3;
1134
1135 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1136 if (errcode != 0)
1137 {
1138 /* The transfer request might have crossed the boundary to an
1139 unallocated region of memory. Retry the transfer, requesting
1140 a single byte. */
1141 tlen = 1;
1142 offset = 0;
1143 errcode = target_read_memory (memaddr, buf, 1);
1144 if (errcode != 0)
1145 goto done;
1146 }
1147
1148 if (bufptr - buffer + tlen > buffer_allocated)
1149 {
1150 unsigned int bytes;
1151 bytes = bufptr - buffer;
1152 buffer_allocated *= 2;
1153 buffer = xrealloc (buffer, buffer_allocated);
1154 bufptr = buffer + bytes;
1155 }
1156
1157 for (i = 0; i < tlen; i++)
1158 {
1159 *bufptr++ = buf[i + offset];
1160 if (buf[i + offset] == '\000')
1161 {
1162 nbytes_read += i + 1;
1163 goto done;
1164 }
1165 }
1166
1167 memaddr += tlen;
1168 len -= tlen;
1169 nbytes_read += tlen;
1170 }
1171 done:
1172 *string = buffer;
1173 if (errnop != NULL)
1174 *errnop = errcode;
1175 return nbytes_read;
1176 }
1177
1178 struct target_section_table *
1179 target_get_section_table (struct target_ops *target)
1180 {
1181 struct target_ops *t;
1182
1183 if (targetdebug)
1184 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1185
1186 for (t = target; t != NULL; t = t->beneath)
1187 if (t->to_get_section_table != NULL)
1188 return (*t->to_get_section_table) (t);
1189
1190 return NULL;
1191 }
1192
1193 /* Find a section containing ADDR. */
1194
1195 struct target_section *
1196 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1197 {
1198 struct target_section_table *table = target_get_section_table (target);
1199 struct target_section *secp;
1200
1201 if (table == NULL)
1202 return NULL;
1203
1204 for (secp = table->sections; secp < table->sections_end; secp++)
1205 {
1206 if (addr >= secp->addr && addr < secp->endaddr)
1207 return secp;
1208 }
1209 return NULL;
1210 }
1211
1212 /* Perform a partial memory transfer.
1213 For docs see target.h, to_xfer_partial. */
1214
1215 static LONGEST
1216 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1217 void *readbuf, const void *writebuf, ULONGEST memaddr,
1218 LONGEST len)
1219 {
1220 LONGEST res;
1221 int reg_len;
1222 struct mem_region *region;
1223 struct inferior *inf;
1224
1225 /* Zero length requests are ok and require no work. */
1226 if (len == 0)
1227 return 0;
1228
1229 /* For accesses to unmapped overlay sections, read directly from
1230 files. Must do this first, as MEMADDR may need adjustment. */
1231 if (readbuf != NULL && overlay_debugging)
1232 {
1233 struct obj_section *section = find_pc_overlay (memaddr);
1234 if (pc_in_unmapped_range (memaddr, section))
1235 {
1236 struct target_section_table *table
1237 = target_get_section_table (ops);
1238 const char *section_name = section->the_bfd_section->name;
1239 memaddr = overlay_mapped_address (memaddr, section);
1240 return section_table_xfer_memory_partial (readbuf, writebuf,
1241 memaddr, len,
1242 table->sections,
1243 table->sections_end,
1244 section_name);
1245 }
1246 }
1247
1248 /* Try the executable files, if "trust-readonly-sections" is set. */
1249 if (readbuf != NULL && trust_readonly)
1250 {
1251 struct target_section *secp;
1252 struct target_section_table *table;
1253
1254 secp = target_section_by_addr (ops, memaddr);
1255 if (secp != NULL
1256 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1257 & SEC_READONLY))
1258 {
1259 table = target_get_section_table (ops);
1260 return section_table_xfer_memory_partial (readbuf, writebuf,
1261 memaddr, len,
1262 table->sections,
1263 table->sections_end,
1264 NULL);
1265 }
1266 }
1267
1268 /* Try GDB's internal data cache. */
1269 region = lookup_mem_region (memaddr);
1270 /* region->hi == 0 means there's no upper bound. */
1271 if (memaddr + len < region->hi || region->hi == 0)
1272 reg_len = len;
1273 else
1274 reg_len = region->hi - memaddr;
1275
1276 switch (region->attrib.mode)
1277 {
1278 case MEM_RO:
1279 if (writebuf != NULL)
1280 return -1;
1281 break;
1282
1283 case MEM_WO:
1284 if (readbuf != NULL)
1285 return -1;
1286 break;
1287
1288 case MEM_FLASH:
1289 /* We only support writing to flash during "load" for now. */
1290 if (writebuf != NULL)
1291 error (_("Writing to flash memory forbidden in this context"));
1292 break;
1293
1294 case MEM_NONE:
1295 return -1;
1296 }
1297
1298 if (!ptid_equal (inferior_ptid, null_ptid))
1299 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1300 else
1301 inf = NULL;
1302
1303 if (inf != NULL
1304 /* The dcache reads whole cache lines; that doesn't play well
1305 with reading from a trace buffer, because reading outside of
1306 the collected memory range fails. */
1307 && get_traceframe_number () == -1
1308 && (region->attrib.cache
1309 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1310 {
1311 if (readbuf != NULL)
1312 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1313 reg_len, 0);
1314 else
1315 /* FIXME drow/2006-08-09: If we're going to preserve const
1316 correctness dcache_xfer_memory should take readbuf and
1317 writebuf. */
1318 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1319 (void *) writebuf,
1320 reg_len, 1);
1321 if (res <= 0)
1322 return -1;
1323 else
1324 {
1325 if (readbuf && !show_memory_breakpoints)
1326 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1327 return res;
1328 }
1329 }
1330
1331 /* If none of those methods found the memory we wanted, fall back
1332 to a target partial transfer. Normally a single call to
1333 to_xfer_partial is enough; if it doesn't recognize an object
1334 it will call the to_xfer_partial of the next target down.
1335 But for memory this won't do. Memory is the only target
1336 object which can be read from more than one valid target.
1337 A core file, for instance, could have some of memory but
1338 delegate other bits to the target below it. So, we must
1339 manually try all targets. */
1340
1341 do
1342 {
1343 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1344 readbuf, writebuf, memaddr, reg_len);
1345 if (res > 0)
1346 break;
1347
1348 /* We want to continue past core files to executables, but not
1349 past a running target's memory. */
1350 if (ops->to_has_all_memory (ops))
1351 break;
1352
1353 ops = ops->beneath;
1354 }
1355 while (ops != NULL);
1356
1357 if (readbuf && !show_memory_breakpoints)
1358 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1359
1360 /* Make sure the cache gets updated no matter what - if we are writing
1361 to the stack. Even if this write is not tagged as such, we still need
1362 to update the cache. */
1363
1364 if (res > 0
1365 && inf != NULL
1366 && writebuf != NULL
1367 && !region->attrib.cache
1368 && stack_cache_enabled_p
1369 && object != TARGET_OBJECT_STACK_MEMORY)
1370 {
1371 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1372 }
1373
1374 /* If we still haven't got anything, return the last error. We
1375 give up. */
1376 return res;
1377 }
1378
1379 static void
1380 restore_show_memory_breakpoints (void *arg)
1381 {
1382 show_memory_breakpoints = (uintptr_t) arg;
1383 }
1384
1385 struct cleanup *
1386 make_show_memory_breakpoints_cleanup (int show)
1387 {
1388 int current = show_memory_breakpoints;
1389 show_memory_breakpoints = show;
1390
1391 return make_cleanup (restore_show_memory_breakpoints,
1392 (void *) (uintptr_t) current);
1393 }
1394
1395 /* For docs see target.h, to_xfer_partial. */
1396
1397 static LONGEST
1398 target_xfer_partial (struct target_ops *ops,
1399 enum target_object object, const char *annex,
1400 void *readbuf, const void *writebuf,
1401 ULONGEST offset, LONGEST len)
1402 {
1403 LONGEST retval;
1404
1405 gdb_assert (ops->to_xfer_partial != NULL);
1406
1407 /* If this is a memory transfer, let the memory-specific code
1408 have a look at it instead. Memory transfers are more
1409 complicated. */
1410 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1411 retval = memory_xfer_partial (ops, object, readbuf,
1412 writebuf, offset, len);
1413 else
1414 {
1415 enum target_object raw_object = object;
1416
1417 /* If this is a raw memory transfer, request the normal
1418 memory object from other layers. */
1419 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1420 raw_object = TARGET_OBJECT_MEMORY;
1421
1422 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1423 writebuf, offset, len);
1424 }
1425
1426 if (targetdebug)
1427 {
1428 const unsigned char *myaddr = NULL;
1429
1430 fprintf_unfiltered (gdb_stdlog,
1431 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1432 ops->to_shortname,
1433 (int) object,
1434 (annex ? annex : "(null)"),
1435 host_address_to_string (readbuf),
1436 host_address_to_string (writebuf),
1437 core_addr_to_string_nz (offset),
1438 plongest (len), plongest (retval));
1439
1440 if (readbuf)
1441 myaddr = readbuf;
1442 if (writebuf)
1443 myaddr = writebuf;
1444 if (retval > 0 && myaddr != NULL)
1445 {
1446 int i;
1447
1448 fputs_unfiltered (", bytes =", gdb_stdlog);
1449 for (i = 0; i < retval; i++)
1450 {
1451 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1452 {
1453 if (targetdebug < 2 && i > 0)
1454 {
1455 fprintf_unfiltered (gdb_stdlog, " ...");
1456 break;
1457 }
1458 fprintf_unfiltered (gdb_stdlog, "\n");
1459 }
1460
1461 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1462 }
1463 }
1464
1465 fputc_unfiltered ('\n', gdb_stdlog);
1466 }
1467 return retval;
1468 }
1469
1470 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1471 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1472 if any error occurs.
1473
1474 If an error occurs, no guarantee is made about the contents of the data at
1475 MYADDR. In particular, the caller should not depend upon partial reads
1476 filling the buffer with good data. There is no way for the caller to know
1477 how much good data might have been transfered anyway. Callers that can
1478 deal with partial reads should call target_read (which will retry until
1479 it makes no progress, and then return how much was transferred). */
1480
1481 int
1482 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1483 {
1484 /* Dispatch to the topmost target, not the flattened current_target.
1485 Memory accesses check target->to_has_(all_)memory, and the
1486 flattened target doesn't inherit those. */
1487 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1488 myaddr, memaddr, len) == len)
1489 return 0;
1490 else
1491 return EIO;
1492 }
1493
1494 /* Like target_read_memory, but specify explicitly that this is a read from
1495 the target's stack. This may trigger different cache behavior. */
1496
1497 int
1498 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1499 {
1500 /* Dispatch to the topmost target, not the flattened current_target.
1501 Memory accesses check target->to_has_(all_)memory, and the
1502 flattened target doesn't inherit those. */
1503
1504 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1505 myaddr, memaddr, len) == len)
1506 return 0;
1507 else
1508 return EIO;
1509 }
1510
1511 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1512 Returns either 0 for success or an errno value if any error occurs.
1513 If an error occurs, no guarantee is made about how much data got written.
1514 Callers that can deal with partial writes should call target_write. */
1515
1516 int
1517 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1518 {
1519 /* Dispatch to the topmost target, not the flattened current_target.
1520 Memory accesses check target->to_has_(all_)memory, and the
1521 flattened target doesn't inherit those. */
1522 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1523 myaddr, memaddr, len) == len)
1524 return 0;
1525 else
1526 return EIO;
1527 }
1528
1529 /* Fetch the target's memory map. */
1530
1531 VEC(mem_region_s) *
1532 target_memory_map (void)
1533 {
1534 VEC(mem_region_s) *result;
1535 struct mem_region *last_one, *this_one;
1536 int ix;
1537 struct target_ops *t;
1538
1539 if (targetdebug)
1540 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1541
1542 for (t = current_target.beneath; t != NULL; t = t->beneath)
1543 if (t->to_memory_map != NULL)
1544 break;
1545
1546 if (t == NULL)
1547 return NULL;
1548
1549 result = t->to_memory_map (t);
1550 if (result == NULL)
1551 return NULL;
1552
1553 qsort (VEC_address (mem_region_s, result),
1554 VEC_length (mem_region_s, result),
1555 sizeof (struct mem_region), mem_region_cmp);
1556
1557 /* Check that regions do not overlap. Simultaneously assign
1558 a numbering for the "mem" commands to use to refer to
1559 each region. */
1560 last_one = NULL;
1561 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1562 {
1563 this_one->number = ix;
1564
1565 if (last_one && last_one->hi > this_one->lo)
1566 {
1567 warning (_("Overlapping regions in memory map: ignoring"));
1568 VEC_free (mem_region_s, result);
1569 return NULL;
1570 }
1571 last_one = this_one;
1572 }
1573
1574 return result;
1575 }
1576
1577 void
1578 target_flash_erase (ULONGEST address, LONGEST length)
1579 {
1580 struct target_ops *t;
1581
1582 for (t = current_target.beneath; t != NULL; t = t->beneath)
1583 if (t->to_flash_erase != NULL)
1584 {
1585 if (targetdebug)
1586 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1587 hex_string (address), phex (length, 0));
1588 t->to_flash_erase (t, address, length);
1589 return;
1590 }
1591
1592 tcomplain ();
1593 }
1594
1595 void
1596 target_flash_done (void)
1597 {
1598 struct target_ops *t;
1599
1600 for (t = current_target.beneath; t != NULL; t = t->beneath)
1601 if (t->to_flash_done != NULL)
1602 {
1603 if (targetdebug)
1604 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1605 t->to_flash_done (t);
1606 return;
1607 }
1608
1609 tcomplain ();
1610 }
1611
1612 static void
1613 show_trust_readonly (struct ui_file *file, int from_tty,
1614 struct cmd_list_element *c, const char *value)
1615 {
1616 fprintf_filtered (file, _("\
1617 Mode for reading from readonly sections is %s.\n"),
1618 value);
1619 }
1620
1621 /* More generic transfers. */
1622
1623 static LONGEST
1624 default_xfer_partial (struct target_ops *ops, enum target_object object,
1625 const char *annex, gdb_byte *readbuf,
1626 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1627 {
1628 if (object == TARGET_OBJECT_MEMORY
1629 && ops->deprecated_xfer_memory != NULL)
1630 /* If available, fall back to the target's
1631 "deprecated_xfer_memory" method. */
1632 {
1633 int xfered = -1;
1634 errno = 0;
1635 if (writebuf != NULL)
1636 {
1637 void *buffer = xmalloc (len);
1638 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1639 memcpy (buffer, writebuf, len);
1640 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1641 1/*write*/, NULL, ops);
1642 do_cleanups (cleanup);
1643 }
1644 if (readbuf != NULL)
1645 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1646 0/*read*/, NULL, ops);
1647 if (xfered > 0)
1648 return xfered;
1649 else if (xfered == 0 && errno == 0)
1650 /* "deprecated_xfer_memory" uses 0, cross checked against
1651 ERRNO as one indication of an error. */
1652 return 0;
1653 else
1654 return -1;
1655 }
1656 else if (ops->beneath != NULL)
1657 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1658 readbuf, writebuf, offset, len);
1659 else
1660 return -1;
1661 }
1662
1663 /* The xfer_partial handler for the topmost target. Unlike the default,
1664 it does not need to handle memory specially; it just passes all
1665 requests down the stack. */
1666
1667 static LONGEST
1668 current_xfer_partial (struct target_ops *ops, enum target_object object,
1669 const char *annex, gdb_byte *readbuf,
1670 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1671 {
1672 if (ops->beneath != NULL)
1673 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1674 readbuf, writebuf, offset, len);
1675 else
1676 return -1;
1677 }
1678
1679 /* Target vector read/write partial wrapper functions. */
1680
1681 static LONGEST
1682 target_read_partial (struct target_ops *ops,
1683 enum target_object object,
1684 const char *annex, gdb_byte *buf,
1685 ULONGEST offset, LONGEST len)
1686 {
1687 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1688 }
1689
1690 static LONGEST
1691 target_write_partial (struct target_ops *ops,
1692 enum target_object object,
1693 const char *annex, const gdb_byte *buf,
1694 ULONGEST offset, LONGEST len)
1695 {
1696 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1697 }
1698
1699 /* Wrappers to perform the full transfer. */
1700
1701 /* For docs on target_read see target.h. */
1702
1703 LONGEST
1704 target_read (struct target_ops *ops,
1705 enum target_object object,
1706 const char *annex, gdb_byte *buf,
1707 ULONGEST offset, LONGEST len)
1708 {
1709 LONGEST xfered = 0;
1710 while (xfered < len)
1711 {
1712 LONGEST xfer = target_read_partial (ops, object, annex,
1713 (gdb_byte *) buf + xfered,
1714 offset + xfered, len - xfered);
1715 /* Call an observer, notifying them of the xfer progress? */
1716 if (xfer == 0)
1717 return xfered;
1718 if (xfer < 0)
1719 return -1;
1720 xfered += xfer;
1721 QUIT;
1722 }
1723 return len;
1724 }
1725
1726 LONGEST
1727 target_read_until_error (struct target_ops *ops,
1728 enum target_object object,
1729 const char *annex, gdb_byte *buf,
1730 ULONGEST offset, LONGEST len)
1731 {
1732 LONGEST xfered = 0;
1733 while (xfered < len)
1734 {
1735 LONGEST xfer = target_read_partial (ops, object, annex,
1736 (gdb_byte *) buf + xfered,
1737 offset + xfered, len - xfered);
1738 /* Call an observer, notifying them of the xfer progress? */
1739 if (xfer == 0)
1740 return xfered;
1741 if (xfer < 0)
1742 {
1743 /* We've got an error. Try to read in smaller blocks. */
1744 ULONGEST start = offset + xfered;
1745 ULONGEST remaining = len - xfered;
1746 ULONGEST half;
1747
1748 /* If an attempt was made to read a random memory address,
1749 it's likely that the very first byte is not accessible.
1750 Try reading the first byte, to avoid doing log N tries
1751 below. */
1752 xfer = target_read_partial (ops, object, annex,
1753 (gdb_byte *) buf + xfered, start, 1);
1754 if (xfer <= 0)
1755 return xfered;
1756 start += 1;
1757 remaining -= 1;
1758 half = remaining/2;
1759
1760 while (half > 0)
1761 {
1762 xfer = target_read_partial (ops, object, annex,
1763 (gdb_byte *) buf + xfered,
1764 start, half);
1765 if (xfer == 0)
1766 return xfered;
1767 if (xfer < 0)
1768 {
1769 remaining = half;
1770 }
1771 else
1772 {
1773 /* We have successfully read the first half. So, the
1774 error must be in the second half. Adjust start and
1775 remaining to point at the second half. */
1776 xfered += xfer;
1777 start += xfer;
1778 remaining -= xfer;
1779 }
1780 half = remaining/2;
1781 }
1782
1783 return xfered;
1784 }
1785 xfered += xfer;
1786 QUIT;
1787 }
1788 return len;
1789 }
1790
1791 /* An alternative to target_write with progress callbacks. */
1792
1793 LONGEST
1794 target_write_with_progress (struct target_ops *ops,
1795 enum target_object object,
1796 const char *annex, const gdb_byte *buf,
1797 ULONGEST offset, LONGEST len,
1798 void (*progress) (ULONGEST, void *), void *baton)
1799 {
1800 LONGEST xfered = 0;
1801
1802 /* Give the progress callback a chance to set up. */
1803 if (progress)
1804 (*progress) (0, baton);
1805
1806 while (xfered < len)
1807 {
1808 LONGEST xfer = target_write_partial (ops, object, annex,
1809 (gdb_byte *) buf + xfered,
1810 offset + xfered, len - xfered);
1811
1812 if (xfer == 0)
1813 return xfered;
1814 if (xfer < 0)
1815 return -1;
1816
1817 if (progress)
1818 (*progress) (xfer, baton);
1819
1820 xfered += xfer;
1821 QUIT;
1822 }
1823 return len;
1824 }
1825
1826 /* For docs on target_write see target.h. */
1827
1828 LONGEST
1829 target_write (struct target_ops *ops,
1830 enum target_object object,
1831 const char *annex, const gdb_byte *buf,
1832 ULONGEST offset, LONGEST len)
1833 {
1834 return target_write_with_progress (ops, object, annex, buf, offset, len,
1835 NULL, NULL);
1836 }
1837
1838 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1839 the size of the transferred data. PADDING additional bytes are
1840 available in *BUF_P. This is a helper function for
1841 target_read_alloc; see the declaration of that function for more
1842 information. */
1843
1844 static LONGEST
1845 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1846 const char *annex, gdb_byte **buf_p, int padding)
1847 {
1848 size_t buf_alloc, buf_pos;
1849 gdb_byte *buf;
1850 LONGEST n;
1851
1852 /* This function does not have a length parameter; it reads the
1853 entire OBJECT). Also, it doesn't support objects fetched partly
1854 from one target and partly from another (in a different stratum,
1855 e.g. a core file and an executable). Both reasons make it
1856 unsuitable for reading memory. */
1857 gdb_assert (object != TARGET_OBJECT_MEMORY);
1858
1859 /* Start by reading up to 4K at a time. The target will throttle
1860 this number down if necessary. */
1861 buf_alloc = 4096;
1862 buf = xmalloc (buf_alloc);
1863 buf_pos = 0;
1864 while (1)
1865 {
1866 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1867 buf_pos, buf_alloc - buf_pos - padding);
1868 if (n < 0)
1869 {
1870 /* An error occurred. */
1871 xfree (buf);
1872 return -1;
1873 }
1874 else if (n == 0)
1875 {
1876 /* Read all there was. */
1877 if (buf_pos == 0)
1878 xfree (buf);
1879 else
1880 *buf_p = buf;
1881 return buf_pos;
1882 }
1883
1884 buf_pos += n;
1885
1886 /* If the buffer is filling up, expand it. */
1887 if (buf_alloc < buf_pos * 2)
1888 {
1889 buf_alloc *= 2;
1890 buf = xrealloc (buf, buf_alloc);
1891 }
1892
1893 QUIT;
1894 }
1895 }
1896
1897 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1898 the size of the transferred data. See the declaration in "target.h"
1899 function for more information about the return value. */
1900
1901 LONGEST
1902 target_read_alloc (struct target_ops *ops, enum target_object object,
1903 const char *annex, gdb_byte **buf_p)
1904 {
1905 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1906 }
1907
1908 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1909 returned as a string, allocated using xmalloc. If an error occurs
1910 or the transfer is unsupported, NULL is returned. Empty objects
1911 are returned as allocated but empty strings. A warning is issued
1912 if the result contains any embedded NUL bytes. */
1913
1914 char *
1915 target_read_stralloc (struct target_ops *ops, enum target_object object,
1916 const char *annex)
1917 {
1918 gdb_byte *buffer;
1919 LONGEST transferred;
1920
1921 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1922
1923 if (transferred < 0)
1924 return NULL;
1925
1926 if (transferred == 0)
1927 return xstrdup ("");
1928
1929 buffer[transferred] = 0;
1930 if (strlen (buffer) < transferred)
1931 warning (_("target object %d, annex %s, "
1932 "contained unexpected null characters"),
1933 (int) object, annex ? annex : "(none)");
1934
1935 return (char *) buffer;
1936 }
1937
1938 /* Memory transfer methods. */
1939
1940 void
1941 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1942 LONGEST len)
1943 {
1944 /* This method is used to read from an alternate, non-current
1945 target. This read must bypass the overlay support (as symbols
1946 don't match this target), and GDB's internal cache (wrong cache
1947 for this target). */
1948 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1949 != len)
1950 memory_error (EIO, addr);
1951 }
1952
1953 ULONGEST
1954 get_target_memory_unsigned (struct target_ops *ops,
1955 CORE_ADDR addr, int len, enum bfd_endian byte_order)
1956 {
1957 gdb_byte buf[sizeof (ULONGEST)];
1958
1959 gdb_assert (len <= sizeof (buf));
1960 get_target_memory (ops, addr, buf, len);
1961 return extract_unsigned_integer (buf, len, byte_order);
1962 }
1963
1964 static void
1965 target_info (char *args, int from_tty)
1966 {
1967 struct target_ops *t;
1968 int has_all_mem = 0;
1969
1970 if (symfile_objfile != NULL)
1971 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1972
1973 for (t = target_stack; t != NULL; t = t->beneath)
1974 {
1975 if (!(*t->to_has_memory) (t))
1976 continue;
1977
1978 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1979 continue;
1980 if (has_all_mem)
1981 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1982 printf_unfiltered ("%s:\n", t->to_longname);
1983 (t->to_files_info) (t);
1984 has_all_mem = (*t->to_has_all_memory) (t);
1985 }
1986 }
1987
1988 /* This function is called before any new inferior is created, e.g.
1989 by running a program, attaching, or connecting to a target.
1990 It cleans up any state from previous invocations which might
1991 change between runs. This is a subset of what target_preopen
1992 resets (things which might change between targets). */
1993
1994 void
1995 target_pre_inferior (int from_tty)
1996 {
1997 /* Clear out solib state. Otherwise the solib state of the previous
1998 inferior might have survived and is entirely wrong for the new
1999 target. This has been observed on GNU/Linux using glibc 2.3. How
2000 to reproduce:
2001
2002 bash$ ./foo&
2003 [1] 4711
2004 bash$ ./foo&
2005 [1] 4712
2006 bash$ gdb ./foo
2007 [...]
2008 (gdb) attach 4711
2009 (gdb) detach
2010 (gdb) attach 4712
2011 Cannot access memory at address 0xdeadbeef
2012 */
2013
2014 /* In some OSs, the shared library list is the same/global/shared
2015 across inferiors. If code is shared between processes, so are
2016 memory regions and features. */
2017 if (!gdbarch_has_global_solist (target_gdbarch))
2018 {
2019 no_shared_libraries (NULL, from_tty);
2020
2021 invalidate_target_mem_regions ();
2022
2023 target_clear_description ();
2024 }
2025 }
2026
2027 /* Callback for iterate_over_inferiors. Gets rid of the given
2028 inferior. */
2029
2030 static int
2031 dispose_inferior (struct inferior *inf, void *args)
2032 {
2033 struct thread_info *thread;
2034
2035 thread = any_thread_of_process (inf->pid);
2036 if (thread)
2037 {
2038 switch_to_thread (thread->ptid);
2039
2040 /* Core inferiors actually should be detached, not killed. */
2041 if (target_has_execution)
2042 target_kill ();
2043 else
2044 target_detach (NULL, 0);
2045 }
2046
2047 return 0;
2048 }
2049
2050 /* This is to be called by the open routine before it does
2051 anything. */
2052
2053 void
2054 target_preopen (int from_tty)
2055 {
2056 dont_repeat ();
2057
2058 if (have_inferiors ())
2059 {
2060 if (!from_tty
2061 || !have_live_inferiors ()
2062 || query (_("A program is being debugged already. Kill it? ")))
2063 iterate_over_inferiors (dispose_inferior, NULL);
2064 else
2065 error (_("Program not killed."));
2066 }
2067
2068 /* Calling target_kill may remove the target from the stack. But if
2069 it doesn't (which seems like a win for UDI), remove it now. */
2070 /* Leave the exec target, though. The user may be switching from a
2071 live process to a core of the same program. */
2072 pop_all_targets_above (file_stratum, 0);
2073
2074 target_pre_inferior (from_tty);
2075 }
2076
2077 /* Detach a target after doing deferred register stores. */
2078
2079 void
2080 target_detach (char *args, int from_tty)
2081 {
2082 struct target_ops* t;
2083
2084 if (gdbarch_has_global_breakpoints (target_gdbarch))
2085 /* Don't remove global breakpoints here. They're removed on
2086 disconnection from the target. */
2087 ;
2088 else
2089 /* If we're in breakpoints-always-inserted mode, have to remove
2090 them before detaching. */
2091 remove_breakpoints_pid (PIDGET (inferior_ptid));
2092
2093 prepare_for_detach ();
2094
2095 for (t = current_target.beneath; t != NULL; t = t->beneath)
2096 {
2097 if (t->to_detach != NULL)
2098 {
2099 t->to_detach (t, args, from_tty);
2100 if (targetdebug)
2101 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2102 args, from_tty);
2103 return;
2104 }
2105 }
2106
2107 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2108 }
2109
2110 void
2111 target_disconnect (char *args, int from_tty)
2112 {
2113 struct target_ops *t;
2114
2115 /* If we're in breakpoints-always-inserted mode or if breakpoints
2116 are global across processes, we have to remove them before
2117 disconnecting. */
2118 remove_breakpoints ();
2119
2120 for (t = current_target.beneath; t != NULL; t = t->beneath)
2121 if (t->to_disconnect != NULL)
2122 {
2123 if (targetdebug)
2124 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2125 args, from_tty);
2126 t->to_disconnect (t, args, from_tty);
2127 return;
2128 }
2129
2130 tcomplain ();
2131 }
2132
2133 ptid_t
2134 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2135 {
2136 struct target_ops *t;
2137
2138 for (t = current_target.beneath; t != NULL; t = t->beneath)
2139 {
2140 if (t->to_wait != NULL)
2141 {
2142 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2143
2144 if (targetdebug)
2145 {
2146 char *status_string;
2147
2148 status_string = target_waitstatus_to_string (status);
2149 fprintf_unfiltered (gdb_stdlog,
2150 "target_wait (%d, status) = %d, %s\n",
2151 PIDGET (ptid), PIDGET (retval),
2152 status_string);
2153 xfree (status_string);
2154 }
2155
2156 return retval;
2157 }
2158 }
2159
2160 noprocess ();
2161 }
2162
2163 char *
2164 target_pid_to_str (ptid_t ptid)
2165 {
2166 struct target_ops *t;
2167
2168 for (t = current_target.beneath; t != NULL; t = t->beneath)
2169 {
2170 if (t->to_pid_to_str != NULL)
2171 return (*t->to_pid_to_str) (t, ptid);
2172 }
2173
2174 return normal_pid_to_str (ptid);
2175 }
2176
2177 void
2178 target_resume (ptid_t ptid, int step, enum target_signal signal)
2179 {
2180 struct target_ops *t;
2181
2182 target_dcache_invalidate ();
2183
2184 for (t = current_target.beneath; t != NULL; t = t->beneath)
2185 {
2186 if (t->to_resume != NULL)
2187 {
2188 t->to_resume (t, ptid, step, signal);
2189 if (targetdebug)
2190 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2191 PIDGET (ptid),
2192 step ? "step" : "continue",
2193 target_signal_to_name (signal));
2194
2195 registers_changed_ptid (ptid);
2196 set_executing (ptid, 1);
2197 set_running (ptid, 1);
2198 clear_inline_frame_state (ptid);
2199 return;
2200 }
2201 }
2202
2203 noprocess ();
2204 }
2205 /* Look through the list of possible targets for a target that can
2206 follow forks. */
2207
2208 int
2209 target_follow_fork (int follow_child)
2210 {
2211 struct target_ops *t;
2212
2213 for (t = current_target.beneath; t != NULL; t = t->beneath)
2214 {
2215 if (t->to_follow_fork != NULL)
2216 {
2217 int retval = t->to_follow_fork (t, follow_child);
2218 if (targetdebug)
2219 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2220 follow_child, retval);
2221 return retval;
2222 }
2223 }
2224
2225 /* Some target returned a fork event, but did not know how to follow it. */
2226 internal_error (__FILE__, __LINE__,
2227 "could not find a target to follow fork");
2228 }
2229
2230 void
2231 target_mourn_inferior (void)
2232 {
2233 struct target_ops *t;
2234 for (t = current_target.beneath; t != NULL; t = t->beneath)
2235 {
2236 if (t->to_mourn_inferior != NULL)
2237 {
2238 t->to_mourn_inferior (t);
2239 if (targetdebug)
2240 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2241
2242 /* We no longer need to keep handles on any of the object files.
2243 Make sure to release them to avoid unnecessarily locking any
2244 of them while we're not actually debugging. */
2245 bfd_cache_close_all ();
2246
2247 return;
2248 }
2249 }
2250
2251 internal_error (__FILE__, __LINE__,
2252 "could not find a target to follow mourn inferiour");
2253 }
2254
2255 /* Look for a target which can describe architectural features, starting
2256 from TARGET. If we find one, return its description. */
2257
2258 const struct target_desc *
2259 target_read_description (struct target_ops *target)
2260 {
2261 struct target_ops *t;
2262
2263 for (t = target; t != NULL; t = t->beneath)
2264 if (t->to_read_description != NULL)
2265 {
2266 const struct target_desc *tdesc;
2267
2268 tdesc = t->to_read_description (t);
2269 if (tdesc)
2270 return tdesc;
2271 }
2272
2273 return NULL;
2274 }
2275
2276 /* The default implementation of to_search_memory.
2277 This implements a basic search of memory, reading target memory and
2278 performing the search here (as opposed to performing the search in on the
2279 target side with, for example, gdbserver). */
2280
2281 int
2282 simple_search_memory (struct target_ops *ops,
2283 CORE_ADDR start_addr, ULONGEST search_space_len,
2284 const gdb_byte *pattern, ULONGEST pattern_len,
2285 CORE_ADDR *found_addrp)
2286 {
2287 /* NOTE: also defined in find.c testcase. */
2288 #define SEARCH_CHUNK_SIZE 16000
2289 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2290 /* Buffer to hold memory contents for searching. */
2291 gdb_byte *search_buf;
2292 unsigned search_buf_size;
2293 struct cleanup *old_cleanups;
2294
2295 search_buf_size = chunk_size + pattern_len - 1;
2296
2297 /* No point in trying to allocate a buffer larger than the search space. */
2298 if (search_space_len < search_buf_size)
2299 search_buf_size = search_space_len;
2300
2301 search_buf = malloc (search_buf_size);
2302 if (search_buf == NULL)
2303 error (_("Unable to allocate memory to perform the search."));
2304 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2305
2306 /* Prime the search buffer. */
2307
2308 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2309 search_buf, start_addr, search_buf_size) != search_buf_size)
2310 {
2311 warning (_("Unable to access target memory at %s, halting search."),
2312 hex_string (start_addr));
2313 do_cleanups (old_cleanups);
2314 return -1;
2315 }
2316
2317 /* Perform the search.
2318
2319 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2320 When we've scanned N bytes we copy the trailing bytes to the start and
2321 read in another N bytes. */
2322
2323 while (search_space_len >= pattern_len)
2324 {
2325 gdb_byte *found_ptr;
2326 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2327
2328 found_ptr = memmem (search_buf, nr_search_bytes,
2329 pattern, pattern_len);
2330
2331 if (found_ptr != NULL)
2332 {
2333 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2334 *found_addrp = found_addr;
2335 do_cleanups (old_cleanups);
2336 return 1;
2337 }
2338
2339 /* Not found in this chunk, skip to next chunk. */
2340
2341 /* Don't let search_space_len wrap here, it's unsigned. */
2342 if (search_space_len >= chunk_size)
2343 search_space_len -= chunk_size;
2344 else
2345 search_space_len = 0;
2346
2347 if (search_space_len >= pattern_len)
2348 {
2349 unsigned keep_len = search_buf_size - chunk_size;
2350 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2351 int nr_to_read;
2352
2353 /* Copy the trailing part of the previous iteration to the front
2354 of the buffer for the next iteration. */
2355 gdb_assert (keep_len == pattern_len - 1);
2356 memcpy (search_buf, search_buf + chunk_size, keep_len);
2357
2358 nr_to_read = min (search_space_len - keep_len, chunk_size);
2359
2360 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2361 search_buf + keep_len, read_addr,
2362 nr_to_read) != nr_to_read)
2363 {
2364 warning (_("Unable to access target memory at %s, halting search."),
2365 hex_string (read_addr));
2366 do_cleanups (old_cleanups);
2367 return -1;
2368 }
2369
2370 start_addr += chunk_size;
2371 }
2372 }
2373
2374 /* Not found. */
2375
2376 do_cleanups (old_cleanups);
2377 return 0;
2378 }
2379
2380 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2381 sequence of bytes in PATTERN with length PATTERN_LEN.
2382
2383 The result is 1 if found, 0 if not found, and -1 if there was an error
2384 requiring halting of the search (e.g. memory read error).
2385 If the pattern is found the address is recorded in FOUND_ADDRP. */
2386
2387 int
2388 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2389 const gdb_byte *pattern, ULONGEST pattern_len,
2390 CORE_ADDR *found_addrp)
2391 {
2392 struct target_ops *t;
2393 int found;
2394
2395 /* We don't use INHERIT to set current_target.to_search_memory,
2396 so we have to scan the target stack and handle targetdebug
2397 ourselves. */
2398
2399 if (targetdebug)
2400 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2401 hex_string (start_addr));
2402
2403 for (t = current_target.beneath; t != NULL; t = t->beneath)
2404 if (t->to_search_memory != NULL)
2405 break;
2406
2407 if (t != NULL)
2408 {
2409 found = t->to_search_memory (t, start_addr, search_space_len,
2410 pattern, pattern_len, found_addrp);
2411 }
2412 else
2413 {
2414 /* If a special version of to_search_memory isn't available, use the
2415 simple version. */
2416 found = simple_search_memory (current_target.beneath,
2417 start_addr, search_space_len,
2418 pattern, pattern_len, found_addrp);
2419 }
2420
2421 if (targetdebug)
2422 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2423
2424 return found;
2425 }
2426
2427 /* Look through the currently pushed targets. If none of them will
2428 be able to restart the currently running process, issue an error
2429 message. */
2430
2431 void
2432 target_require_runnable (void)
2433 {
2434 struct target_ops *t;
2435
2436 for (t = target_stack; t != NULL; t = t->beneath)
2437 {
2438 /* If this target knows how to create a new program, then
2439 assume we will still be able to after killing the current
2440 one. Either killing and mourning will not pop T, or else
2441 find_default_run_target will find it again. */
2442 if (t->to_create_inferior != NULL)
2443 return;
2444
2445 /* Do not worry about thread_stratum targets that can not
2446 create inferiors. Assume they will be pushed again if
2447 necessary, and continue to the process_stratum. */
2448 if (t->to_stratum == thread_stratum
2449 || t->to_stratum == arch_stratum)
2450 continue;
2451
2452 error (_("\
2453 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2454 t->to_shortname);
2455 }
2456
2457 /* This function is only called if the target is running. In that
2458 case there should have been a process_stratum target and it
2459 should either know how to create inferiors, or not... */
2460 internal_error (__FILE__, __LINE__, "No targets found");
2461 }
2462
2463 /* Look through the list of possible targets for a target that can
2464 execute a run or attach command without any other data. This is
2465 used to locate the default process stratum.
2466
2467 If DO_MESG is not NULL, the result is always valid (error() is
2468 called for errors); else, return NULL on error. */
2469
2470 static struct target_ops *
2471 find_default_run_target (char *do_mesg)
2472 {
2473 struct target_ops **t;
2474 struct target_ops *runable = NULL;
2475 int count;
2476
2477 count = 0;
2478
2479 for (t = target_structs; t < target_structs + target_struct_size;
2480 ++t)
2481 {
2482 if ((*t)->to_can_run && target_can_run (*t))
2483 {
2484 runable = *t;
2485 ++count;
2486 }
2487 }
2488
2489 if (count != 1)
2490 {
2491 if (do_mesg)
2492 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2493 else
2494 return NULL;
2495 }
2496
2497 return runable;
2498 }
2499
2500 void
2501 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2502 {
2503 struct target_ops *t;
2504
2505 t = find_default_run_target ("attach");
2506 (t->to_attach) (t, args, from_tty);
2507 return;
2508 }
2509
2510 void
2511 find_default_create_inferior (struct target_ops *ops,
2512 char *exec_file, char *allargs, char **env,
2513 int from_tty)
2514 {
2515 struct target_ops *t;
2516
2517 t = find_default_run_target ("run");
2518 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2519 return;
2520 }
2521
2522 static int
2523 find_default_can_async_p (void)
2524 {
2525 struct target_ops *t;
2526
2527 /* This may be called before the target is pushed on the stack;
2528 look for the default process stratum. If there's none, gdb isn't
2529 configured with a native debugger, and target remote isn't
2530 connected yet. */
2531 t = find_default_run_target (NULL);
2532 if (t && t->to_can_async_p)
2533 return (t->to_can_async_p) ();
2534 return 0;
2535 }
2536
2537 static int
2538 find_default_is_async_p (void)
2539 {
2540 struct target_ops *t;
2541
2542 /* This may be called before the target is pushed on the stack;
2543 look for the default process stratum. If there's none, gdb isn't
2544 configured with a native debugger, and target remote isn't
2545 connected yet. */
2546 t = find_default_run_target (NULL);
2547 if (t && t->to_is_async_p)
2548 return (t->to_is_async_p) ();
2549 return 0;
2550 }
2551
2552 static int
2553 find_default_supports_non_stop (void)
2554 {
2555 struct target_ops *t;
2556
2557 t = find_default_run_target (NULL);
2558 if (t && t->to_supports_non_stop)
2559 return (t->to_supports_non_stop) ();
2560 return 0;
2561 }
2562
2563 int
2564 target_supports_non_stop (void)
2565 {
2566 struct target_ops *t;
2567 for (t = &current_target; t != NULL; t = t->beneath)
2568 if (t->to_supports_non_stop)
2569 return t->to_supports_non_stop ();
2570
2571 return 0;
2572 }
2573
2574
2575 char *
2576 target_get_osdata (const char *type)
2577 {
2578 char *document;
2579 struct target_ops *t;
2580
2581 /* If we're already connected to something that can get us OS
2582 related data, use it. Otherwise, try using the native
2583 target. */
2584 if (current_target.to_stratum >= process_stratum)
2585 t = current_target.beneath;
2586 else
2587 t = find_default_run_target ("get OS data");
2588
2589 if (!t)
2590 return NULL;
2591
2592 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2593 }
2594
2595 /* Determine the current address space of thread PTID. */
2596
2597 struct address_space *
2598 target_thread_address_space (ptid_t ptid)
2599 {
2600 struct address_space *aspace;
2601 struct inferior *inf;
2602 struct target_ops *t;
2603
2604 for (t = current_target.beneath; t != NULL; t = t->beneath)
2605 {
2606 if (t->to_thread_address_space != NULL)
2607 {
2608 aspace = t->to_thread_address_space (t, ptid);
2609 gdb_assert (aspace);
2610
2611 if (targetdebug)
2612 fprintf_unfiltered (gdb_stdlog,
2613 "target_thread_address_space (%s) = %d\n",
2614 target_pid_to_str (ptid),
2615 address_space_num (aspace));
2616 return aspace;
2617 }
2618 }
2619
2620 /* Fall-back to the "main" address space of the inferior. */
2621 inf = find_inferior_pid (ptid_get_pid (ptid));
2622
2623 if (inf == NULL || inf->aspace == NULL)
2624 internal_error (__FILE__, __LINE__, "\
2625 Can't determine the current address space of thread %s\n",
2626 target_pid_to_str (ptid));
2627
2628 return inf->aspace;
2629 }
2630
2631 static int
2632 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2633 {
2634 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2635 }
2636
2637 static int
2638 default_watchpoint_addr_within_range (struct target_ops *target,
2639 CORE_ADDR addr,
2640 CORE_ADDR start, int length)
2641 {
2642 return addr >= start && addr < start + length;
2643 }
2644
2645 static struct gdbarch *
2646 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2647 {
2648 return target_gdbarch;
2649 }
2650
2651 static int
2652 return_zero (void)
2653 {
2654 return 0;
2655 }
2656
2657 static int
2658 return_one (void)
2659 {
2660 return 1;
2661 }
2662
2663 static int
2664 return_minus_one (void)
2665 {
2666 return -1;
2667 }
2668
2669 /* Find a single runnable target in the stack and return it. If for
2670 some reason there is more than one, return NULL. */
2671
2672 struct target_ops *
2673 find_run_target (void)
2674 {
2675 struct target_ops **t;
2676 struct target_ops *runable = NULL;
2677 int count;
2678
2679 count = 0;
2680
2681 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2682 {
2683 if ((*t)->to_can_run && target_can_run (*t))
2684 {
2685 runable = *t;
2686 ++count;
2687 }
2688 }
2689
2690 return (count == 1 ? runable : NULL);
2691 }
2692
2693 /* Find a single core_stratum target in the list of targets and return it.
2694 If for some reason there is more than one, return NULL. */
2695
2696 struct target_ops *
2697 find_core_target (void)
2698 {
2699 struct target_ops **t;
2700 struct target_ops *runable = NULL;
2701 int count;
2702
2703 count = 0;
2704
2705 for (t = target_structs; t < target_structs + target_struct_size;
2706 ++t)
2707 {
2708 if ((*t)->to_stratum == core_stratum)
2709 {
2710 runable = *t;
2711 ++count;
2712 }
2713 }
2714
2715 return (count == 1 ? runable : NULL);
2716 }
2717
2718 /*
2719 * Find the next target down the stack from the specified target.
2720 */
2721
2722 struct target_ops *
2723 find_target_beneath (struct target_ops *t)
2724 {
2725 return t->beneath;
2726 }
2727
2728 \f
2729 /* The inferior process has died. Long live the inferior! */
2730
2731 void
2732 generic_mourn_inferior (void)
2733 {
2734 ptid_t ptid;
2735
2736 ptid = inferior_ptid;
2737 inferior_ptid = null_ptid;
2738
2739 if (!ptid_equal (ptid, null_ptid))
2740 {
2741 int pid = ptid_get_pid (ptid);
2742 exit_inferior (pid);
2743 }
2744
2745 breakpoint_init_inferior (inf_exited);
2746 registers_changed ();
2747
2748 reopen_exec_file ();
2749 reinit_frame_cache ();
2750
2751 if (deprecated_detach_hook)
2752 deprecated_detach_hook ();
2753 }
2754 \f
2755 /* Helper function for child_wait and the derivatives of child_wait.
2756 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2757 translation of that in OURSTATUS. */
2758 void
2759 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2760 {
2761 if (WIFEXITED (hoststatus))
2762 {
2763 ourstatus->kind = TARGET_WAITKIND_EXITED;
2764 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2765 }
2766 else if (!WIFSTOPPED (hoststatus))
2767 {
2768 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2769 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2770 }
2771 else
2772 {
2773 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2774 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2775 }
2776 }
2777 \f
2778 /* Convert a normal process ID to a string. Returns the string in a
2779 static buffer. */
2780
2781 char *
2782 normal_pid_to_str (ptid_t ptid)
2783 {
2784 static char buf[32];
2785
2786 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2787 return buf;
2788 }
2789
2790 static char *
2791 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2792 {
2793 return normal_pid_to_str (ptid);
2794 }
2795
2796 /* Error-catcher for target_find_memory_regions. */
2797 static int
2798 dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2799 {
2800 error (_("Command not implemented for this target."));
2801 return 0;
2802 }
2803
2804 /* Error-catcher for target_make_corefile_notes. */
2805 static char *
2806 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2807 {
2808 error (_("Command not implemented for this target."));
2809 return NULL;
2810 }
2811
2812 /* Error-catcher for target_get_bookmark. */
2813 static gdb_byte *
2814 dummy_get_bookmark (char *ignore1, int ignore2)
2815 {
2816 tcomplain ();
2817 return NULL;
2818 }
2819
2820 /* Error-catcher for target_goto_bookmark. */
2821 static void
2822 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
2823 {
2824 tcomplain ();
2825 }
2826
2827 /* Set up the handful of non-empty slots needed by the dummy target
2828 vector. */
2829
2830 static void
2831 init_dummy_target (void)
2832 {
2833 dummy_target.to_shortname = "None";
2834 dummy_target.to_longname = "None";
2835 dummy_target.to_doc = "";
2836 dummy_target.to_attach = find_default_attach;
2837 dummy_target.to_detach =
2838 (void (*)(struct target_ops *, char *, int))target_ignore;
2839 dummy_target.to_create_inferior = find_default_create_inferior;
2840 dummy_target.to_can_async_p = find_default_can_async_p;
2841 dummy_target.to_is_async_p = find_default_is_async_p;
2842 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2843 dummy_target.to_pid_to_str = dummy_pid_to_str;
2844 dummy_target.to_stratum = dummy_stratum;
2845 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2846 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2847 dummy_target.to_get_bookmark = dummy_get_bookmark;
2848 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
2849 dummy_target.to_xfer_partial = default_xfer_partial;
2850 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2851 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2852 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2853 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2854 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2855 dummy_target.to_stopped_by_watchpoint = return_zero;
2856 dummy_target.to_stopped_data_address =
2857 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
2858 dummy_target.to_magic = OPS_MAGIC;
2859 }
2860 \f
2861 static void
2862 debug_to_open (char *args, int from_tty)
2863 {
2864 debug_target.to_open (args, from_tty);
2865
2866 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2867 }
2868
2869 void
2870 target_close (struct target_ops *targ, int quitting)
2871 {
2872 if (targ->to_xclose != NULL)
2873 targ->to_xclose (targ, quitting);
2874 else if (targ->to_close != NULL)
2875 targ->to_close (quitting);
2876
2877 if (targetdebug)
2878 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2879 }
2880
2881 void
2882 target_attach (char *args, int from_tty)
2883 {
2884 struct target_ops *t;
2885 for (t = current_target.beneath; t != NULL; t = t->beneath)
2886 {
2887 if (t->to_attach != NULL)
2888 {
2889 t->to_attach (t, args, from_tty);
2890 if (targetdebug)
2891 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2892 args, from_tty);
2893 return;
2894 }
2895 }
2896
2897 internal_error (__FILE__, __LINE__,
2898 "could not find a target to attach");
2899 }
2900
2901 int
2902 target_thread_alive (ptid_t ptid)
2903 {
2904 struct target_ops *t;
2905 for (t = current_target.beneath; t != NULL; t = t->beneath)
2906 {
2907 if (t->to_thread_alive != NULL)
2908 {
2909 int retval;
2910
2911 retval = t->to_thread_alive (t, ptid);
2912 if (targetdebug)
2913 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2914 PIDGET (ptid), retval);
2915
2916 return retval;
2917 }
2918 }
2919
2920 return 0;
2921 }
2922
2923 void
2924 target_find_new_threads (void)
2925 {
2926 struct target_ops *t;
2927 for (t = current_target.beneath; t != NULL; t = t->beneath)
2928 {
2929 if (t->to_find_new_threads != NULL)
2930 {
2931 t->to_find_new_threads (t);
2932 if (targetdebug)
2933 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2934
2935 return;
2936 }
2937 }
2938 }
2939
2940 static void
2941 debug_to_post_attach (int pid)
2942 {
2943 debug_target.to_post_attach (pid);
2944
2945 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2946 }
2947
2948 /* Return a pretty printed form of target_waitstatus.
2949 Space for the result is malloc'd, caller must free. */
2950
2951 char *
2952 target_waitstatus_to_string (const struct target_waitstatus *ws)
2953 {
2954 const char *kind_str = "status->kind = ";
2955
2956 switch (ws->kind)
2957 {
2958 case TARGET_WAITKIND_EXITED:
2959 return xstrprintf ("%sexited, status = %d",
2960 kind_str, ws->value.integer);
2961 case TARGET_WAITKIND_STOPPED:
2962 return xstrprintf ("%sstopped, signal = %s",
2963 kind_str, target_signal_to_name (ws->value.sig));
2964 case TARGET_WAITKIND_SIGNALLED:
2965 return xstrprintf ("%ssignalled, signal = %s",
2966 kind_str, target_signal_to_name (ws->value.sig));
2967 case TARGET_WAITKIND_LOADED:
2968 return xstrprintf ("%sloaded", kind_str);
2969 case TARGET_WAITKIND_FORKED:
2970 return xstrprintf ("%sforked", kind_str);
2971 case TARGET_WAITKIND_VFORKED:
2972 return xstrprintf ("%svforked", kind_str);
2973 case TARGET_WAITKIND_EXECD:
2974 return xstrprintf ("%sexecd", kind_str);
2975 case TARGET_WAITKIND_SYSCALL_ENTRY:
2976 return xstrprintf ("%sentered syscall", kind_str);
2977 case TARGET_WAITKIND_SYSCALL_RETURN:
2978 return xstrprintf ("%sexited syscall", kind_str);
2979 case TARGET_WAITKIND_SPURIOUS:
2980 return xstrprintf ("%sspurious", kind_str);
2981 case TARGET_WAITKIND_IGNORE:
2982 return xstrprintf ("%signore", kind_str);
2983 case TARGET_WAITKIND_NO_HISTORY:
2984 return xstrprintf ("%sno-history", kind_str);
2985 default:
2986 return xstrprintf ("%sunknown???", kind_str);
2987 }
2988 }
2989
2990 static void
2991 debug_print_register (const char * func,
2992 struct regcache *regcache, int regno)
2993 {
2994 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2995 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2996 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2997 && gdbarch_register_name (gdbarch, regno) != NULL
2998 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2999 fprintf_unfiltered (gdb_stdlog, "(%s)",
3000 gdbarch_register_name (gdbarch, regno));
3001 else
3002 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3003 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3004 {
3005 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3006 int i, size = register_size (gdbarch, regno);
3007 unsigned char buf[MAX_REGISTER_SIZE];
3008 regcache_raw_collect (regcache, regno, buf);
3009 fprintf_unfiltered (gdb_stdlog, " = ");
3010 for (i = 0; i < size; i++)
3011 {
3012 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3013 }
3014 if (size <= sizeof (LONGEST))
3015 {
3016 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3017 fprintf_unfiltered (gdb_stdlog, " %s %s",
3018 core_addr_to_string_nz (val), plongest (val));
3019 }
3020 }
3021 fprintf_unfiltered (gdb_stdlog, "\n");
3022 }
3023
3024 void
3025 target_fetch_registers (struct regcache *regcache, int regno)
3026 {
3027 struct target_ops *t;
3028 for (t = current_target.beneath; t != NULL; t = t->beneath)
3029 {
3030 if (t->to_fetch_registers != NULL)
3031 {
3032 t->to_fetch_registers (t, regcache, regno);
3033 if (targetdebug)
3034 debug_print_register ("target_fetch_registers", regcache, regno);
3035 return;
3036 }
3037 }
3038 }
3039
3040 void
3041 target_store_registers (struct regcache *regcache, int regno)
3042 {
3043
3044 struct target_ops *t;
3045 for (t = current_target.beneath; t != NULL; t = t->beneath)
3046 {
3047 if (t->to_store_registers != NULL)
3048 {
3049 t->to_store_registers (t, regcache, regno);
3050 if (targetdebug)
3051 {
3052 debug_print_register ("target_store_registers", regcache, regno);
3053 }
3054 return;
3055 }
3056 }
3057
3058 noprocess ();
3059 }
3060
3061 int
3062 target_core_of_thread (ptid_t ptid)
3063 {
3064 struct target_ops *t;
3065
3066 for (t = current_target.beneath; t != NULL; t = t->beneath)
3067 {
3068 if (t->to_core_of_thread != NULL)
3069 {
3070 int retval = t->to_core_of_thread (t, ptid);
3071 if (targetdebug)
3072 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3073 PIDGET (ptid), retval);
3074 return retval;
3075 }
3076 }
3077
3078 return -1;
3079 }
3080
3081 int
3082 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3083 {
3084 struct target_ops *t;
3085
3086 for (t = current_target.beneath; t != NULL; t = t->beneath)
3087 {
3088 if (t->to_verify_memory != NULL)
3089 {
3090 int retval = t->to_verify_memory (t, data, memaddr, size);
3091 if (targetdebug)
3092 fprintf_unfiltered (gdb_stdlog, "target_verify_memory (%s, %s) = %d\n",
3093 paddress (target_gdbarch, memaddr),
3094 pulongest (size),
3095 retval);
3096 return retval;
3097 }
3098 }
3099
3100 tcomplain ();
3101 }
3102
3103 static void
3104 debug_to_prepare_to_store (struct regcache *regcache)
3105 {
3106 debug_target.to_prepare_to_store (regcache);
3107
3108 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3109 }
3110
3111 static int
3112 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3113 int write, struct mem_attrib *attrib,
3114 struct target_ops *target)
3115 {
3116 int retval;
3117
3118 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3119 attrib, target);
3120
3121 fprintf_unfiltered (gdb_stdlog,
3122 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3123 paddress (target_gdbarch, memaddr), len,
3124 write ? "write" : "read", retval);
3125
3126 if (retval > 0)
3127 {
3128 int i;
3129
3130 fputs_unfiltered (", bytes =", gdb_stdlog);
3131 for (i = 0; i < retval; i++)
3132 {
3133 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3134 {
3135 if (targetdebug < 2 && i > 0)
3136 {
3137 fprintf_unfiltered (gdb_stdlog, " ...");
3138 break;
3139 }
3140 fprintf_unfiltered (gdb_stdlog, "\n");
3141 }
3142
3143 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3144 }
3145 }
3146
3147 fputc_unfiltered ('\n', gdb_stdlog);
3148
3149 return retval;
3150 }
3151
3152 static void
3153 debug_to_files_info (struct target_ops *target)
3154 {
3155 debug_target.to_files_info (target);
3156
3157 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3158 }
3159
3160 static int
3161 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3162 struct bp_target_info *bp_tgt)
3163 {
3164 int retval;
3165
3166 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3167
3168 fprintf_unfiltered (gdb_stdlog,
3169 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
3170 (unsigned long) bp_tgt->placed_address,
3171 (unsigned long) retval);
3172 return retval;
3173 }
3174
3175 static int
3176 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3177 struct bp_target_info *bp_tgt)
3178 {
3179 int retval;
3180
3181 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3182
3183 fprintf_unfiltered (gdb_stdlog,
3184 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
3185 (unsigned long) bp_tgt->placed_address,
3186 (unsigned long) retval);
3187 return retval;
3188 }
3189
3190 static int
3191 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3192 {
3193 int retval;
3194
3195 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3196
3197 fprintf_unfiltered (gdb_stdlog,
3198 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3199 (unsigned long) type,
3200 (unsigned long) cnt,
3201 (unsigned long) from_tty,
3202 (unsigned long) retval);
3203 return retval;
3204 }
3205
3206 static int
3207 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3208 {
3209 CORE_ADDR retval;
3210
3211 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3212
3213 fprintf_unfiltered (gdb_stdlog,
3214 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
3215 (unsigned long) addr,
3216 (unsigned long) len,
3217 (unsigned long) retval);
3218 return retval;
3219 }
3220
3221 static int
3222 debug_to_stopped_by_watchpoint (void)
3223 {
3224 int retval;
3225
3226 retval = debug_target.to_stopped_by_watchpoint ();
3227
3228 fprintf_unfiltered (gdb_stdlog,
3229 "target_stopped_by_watchpoint () = %ld\n",
3230 (unsigned long) retval);
3231 return retval;
3232 }
3233
3234 static int
3235 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3236 {
3237 int retval;
3238
3239 retval = debug_target.to_stopped_data_address (target, addr);
3240
3241 fprintf_unfiltered (gdb_stdlog,
3242 "target_stopped_data_address ([0x%lx]) = %ld\n",
3243 (unsigned long)*addr,
3244 (unsigned long)retval);
3245 return retval;
3246 }
3247
3248 static int
3249 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3250 CORE_ADDR addr,
3251 CORE_ADDR start, int length)
3252 {
3253 int retval;
3254
3255 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3256 start, length);
3257
3258 fprintf_filtered (gdb_stdlog,
3259 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
3260 (unsigned long) addr, (unsigned long) start, length,
3261 retval);
3262 return retval;
3263 }
3264
3265 static int
3266 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3267 struct bp_target_info *bp_tgt)
3268 {
3269 int retval;
3270
3271 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3272
3273 fprintf_unfiltered (gdb_stdlog,
3274 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
3275 (unsigned long) bp_tgt->placed_address,
3276 (unsigned long) retval);
3277 return retval;
3278 }
3279
3280 static int
3281 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3282 struct bp_target_info *bp_tgt)
3283 {
3284 int retval;
3285
3286 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3287
3288 fprintf_unfiltered (gdb_stdlog,
3289 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
3290 (unsigned long) bp_tgt->placed_address,
3291 (unsigned long) retval);
3292 return retval;
3293 }
3294
3295 static int
3296 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
3297 {
3298 int retval;
3299
3300 retval = debug_target.to_insert_watchpoint (addr, len, type);
3301
3302 fprintf_unfiltered (gdb_stdlog,
3303 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
3304 (unsigned long) addr, len, type, (unsigned long) retval);
3305 return retval;
3306 }
3307
3308 static int
3309 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
3310 {
3311 int retval;
3312
3313 retval = debug_target.to_remove_watchpoint (addr, len, type);
3314
3315 fprintf_unfiltered (gdb_stdlog,
3316 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
3317 (unsigned long) addr, len, type, (unsigned long) retval);
3318 return retval;
3319 }
3320
3321 static void
3322 debug_to_terminal_init (void)
3323 {
3324 debug_target.to_terminal_init ();
3325
3326 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3327 }
3328
3329 static void
3330 debug_to_terminal_inferior (void)
3331 {
3332 debug_target.to_terminal_inferior ();
3333
3334 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3335 }
3336
3337 static void
3338 debug_to_terminal_ours_for_output (void)
3339 {
3340 debug_target.to_terminal_ours_for_output ();
3341
3342 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3343 }
3344
3345 static void
3346 debug_to_terminal_ours (void)
3347 {
3348 debug_target.to_terminal_ours ();
3349
3350 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3351 }
3352
3353 static void
3354 debug_to_terminal_save_ours (void)
3355 {
3356 debug_target.to_terminal_save_ours ();
3357
3358 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3359 }
3360
3361 static void
3362 debug_to_terminal_info (char *arg, int from_tty)
3363 {
3364 debug_target.to_terminal_info (arg, from_tty);
3365
3366 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3367 from_tty);
3368 }
3369
3370 static void
3371 debug_to_load (char *args, int from_tty)
3372 {
3373 debug_target.to_load (args, from_tty);
3374
3375 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3376 }
3377
3378 static int
3379 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3380 {
3381 int retval;
3382
3383 retval = debug_target.to_lookup_symbol (name, addrp);
3384
3385 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3386
3387 return retval;
3388 }
3389
3390 static void
3391 debug_to_post_startup_inferior (ptid_t ptid)
3392 {
3393 debug_target.to_post_startup_inferior (ptid);
3394
3395 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3396 PIDGET (ptid));
3397 }
3398
3399 static void
3400 debug_to_acknowledge_created_inferior (int pid)
3401 {
3402 debug_target.to_acknowledge_created_inferior (pid);
3403
3404 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3405 pid);
3406 }
3407
3408 static void
3409 debug_to_insert_fork_catchpoint (int pid)
3410 {
3411 debug_target.to_insert_fork_catchpoint (pid);
3412
3413 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3414 pid);
3415 }
3416
3417 static int
3418 debug_to_remove_fork_catchpoint (int pid)
3419 {
3420 int retval;
3421
3422 retval = debug_target.to_remove_fork_catchpoint (pid);
3423
3424 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3425 pid, retval);
3426
3427 return retval;
3428 }
3429
3430 static void
3431 debug_to_insert_vfork_catchpoint (int pid)
3432 {
3433 debug_target.to_insert_vfork_catchpoint (pid);
3434
3435 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3436 pid);
3437 }
3438
3439 static int
3440 debug_to_remove_vfork_catchpoint (int pid)
3441 {
3442 int retval;
3443
3444 retval = debug_target.to_remove_vfork_catchpoint (pid);
3445
3446 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3447 pid, retval);
3448
3449 return retval;
3450 }
3451
3452 static void
3453 debug_to_insert_exec_catchpoint (int pid)
3454 {
3455 debug_target.to_insert_exec_catchpoint (pid);
3456
3457 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3458 pid);
3459 }
3460
3461 static int
3462 debug_to_remove_exec_catchpoint (int pid)
3463 {
3464 int retval;
3465
3466 retval = debug_target.to_remove_exec_catchpoint (pid);
3467
3468 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3469 pid, retval);
3470
3471 return retval;
3472 }
3473
3474 static int
3475 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3476 {
3477 int has_exited;
3478
3479 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3480
3481 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3482 pid, wait_status, *exit_status, has_exited);
3483
3484 return has_exited;
3485 }
3486
3487 static int
3488 debug_to_can_run (void)
3489 {
3490 int retval;
3491
3492 retval = debug_target.to_can_run ();
3493
3494 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3495
3496 return retval;
3497 }
3498
3499 static void
3500 debug_to_notice_signals (ptid_t ptid)
3501 {
3502 debug_target.to_notice_signals (ptid);
3503
3504 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3505 PIDGET (ptid));
3506 }
3507
3508 static struct gdbarch *
3509 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3510 {
3511 struct gdbarch *retval;
3512
3513 retval = debug_target.to_thread_architecture (ops, ptid);
3514
3515 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3516 target_pid_to_str (ptid), host_address_to_string (retval),
3517 gdbarch_bfd_arch_info (retval)->printable_name);
3518 return retval;
3519 }
3520
3521 static void
3522 debug_to_stop (ptid_t ptid)
3523 {
3524 debug_target.to_stop (ptid);
3525
3526 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3527 target_pid_to_str (ptid));
3528 }
3529
3530 static void
3531 debug_to_rcmd (char *command,
3532 struct ui_file *outbuf)
3533 {
3534 debug_target.to_rcmd (command, outbuf);
3535 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3536 }
3537
3538 static char *
3539 debug_to_pid_to_exec_file (int pid)
3540 {
3541 char *exec_file;
3542
3543 exec_file = debug_target.to_pid_to_exec_file (pid);
3544
3545 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3546 pid, exec_file);
3547
3548 return exec_file;
3549 }
3550
3551 static void
3552 setup_target_debug (void)
3553 {
3554 memcpy (&debug_target, &current_target, sizeof debug_target);
3555
3556 current_target.to_open = debug_to_open;
3557 current_target.to_post_attach = debug_to_post_attach;
3558 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3559 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3560 current_target.to_files_info = debug_to_files_info;
3561 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3562 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3563 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3564 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3565 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3566 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3567 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3568 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3569 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3570 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3571 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3572 current_target.to_terminal_init = debug_to_terminal_init;
3573 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3574 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3575 current_target.to_terminal_ours = debug_to_terminal_ours;
3576 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3577 current_target.to_terminal_info = debug_to_terminal_info;
3578 current_target.to_load = debug_to_load;
3579 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3580 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3581 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3582 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3583 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3584 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3585 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3586 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3587 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3588 current_target.to_has_exited = debug_to_has_exited;
3589 current_target.to_can_run = debug_to_can_run;
3590 current_target.to_notice_signals = debug_to_notice_signals;
3591 current_target.to_stop = debug_to_stop;
3592 current_target.to_rcmd = debug_to_rcmd;
3593 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3594 current_target.to_thread_architecture = debug_to_thread_architecture;
3595 }
3596 \f
3597
3598 static char targ_desc[] =
3599 "Names of targets and files being debugged.\n\
3600 Shows the entire stack of targets currently in use (including the exec-file,\n\
3601 core-file, and process, if any), as well as the symbol file name.";
3602
3603 static void
3604 do_monitor_command (char *cmd,
3605 int from_tty)
3606 {
3607 if ((current_target.to_rcmd
3608 == (void (*) (char *, struct ui_file *)) tcomplain)
3609 || (current_target.to_rcmd == debug_to_rcmd
3610 && (debug_target.to_rcmd
3611 == (void (*) (char *, struct ui_file *)) tcomplain)))
3612 error (_("\"monitor\" command not supported by this target."));
3613 target_rcmd (cmd, gdb_stdtarg);
3614 }
3615
3616 /* Print the name of each layers of our target stack. */
3617
3618 static void
3619 maintenance_print_target_stack (char *cmd, int from_tty)
3620 {
3621 struct target_ops *t;
3622
3623 printf_filtered (_("The current target stack is:\n"));
3624
3625 for (t = target_stack; t != NULL; t = t->beneath)
3626 {
3627 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3628 }
3629 }
3630
3631 /* Controls if async mode is permitted. */
3632 int target_async_permitted = 0;
3633
3634 /* The set command writes to this variable. If the inferior is
3635 executing, linux_nat_async_permitted is *not* updated. */
3636 static int target_async_permitted_1 = 0;
3637
3638 static void
3639 set_maintenance_target_async_permitted (char *args, int from_tty,
3640 struct cmd_list_element *c)
3641 {
3642 if (have_live_inferiors ())
3643 {
3644 target_async_permitted_1 = target_async_permitted;
3645 error (_("Cannot change this setting while the inferior is running."));
3646 }
3647
3648 target_async_permitted = target_async_permitted_1;
3649 }
3650
3651 static void
3652 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3653 struct cmd_list_element *c,
3654 const char *value)
3655 {
3656 fprintf_filtered (file, _("\
3657 Controlling the inferior in asynchronous mode is %s.\n"), value);
3658 }
3659
3660 void
3661 initialize_targets (void)
3662 {
3663 init_dummy_target ();
3664 push_target (&dummy_target);
3665
3666 add_info ("target", target_info, targ_desc);
3667 add_info ("files", target_info, targ_desc);
3668
3669 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3670 Set target debugging."), _("\
3671 Show target debugging."), _("\
3672 When non-zero, target debugging is enabled. Higher numbers are more\n\
3673 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3674 command."),
3675 NULL,
3676 show_targetdebug,
3677 &setdebuglist, &showdebuglist);
3678
3679 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3680 &trust_readonly, _("\
3681 Set mode for reading from readonly sections."), _("\
3682 Show mode for reading from readonly sections."), _("\
3683 When this mode is on, memory reads from readonly sections (such as .text)\n\
3684 will be read from the object file instead of from the target. This will\n\
3685 result in significant performance improvement for remote targets."),
3686 NULL,
3687 show_trust_readonly,
3688 &setlist, &showlist);
3689
3690 add_com ("monitor", class_obscure, do_monitor_command,
3691 _("Send a command to the remote monitor (remote targets only)."));
3692
3693 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3694 _("Print the name of each layer of the internal target stack."),
3695 &maintenanceprintlist);
3696
3697 add_setshow_boolean_cmd ("target-async", no_class,
3698 &target_async_permitted_1, _("\
3699 Set whether gdb controls the inferior in asynchronous mode."), _("\
3700 Show whether gdb controls the inferior in asynchronous mode."), _("\
3701 Tells gdb whether to control the inferior in asynchronous mode."),
3702 set_maintenance_target_async_permitted,
3703 show_maintenance_target_async_permitted,
3704 &setlist,
3705 &showlist);
3706
3707 add_setshow_boolean_cmd ("stack-cache", class_support,
3708 &stack_cache_enabled_p_1, _("\
3709 Set cache use for stack access."), _("\
3710 Show cache use for stack access."), _("\
3711 When on, use the data cache for all stack access, regardless of any\n\
3712 configured memory regions. This improves remote performance significantly.\n\
3713 By default, caching for stack access is on."),
3714 set_stack_cache_enabled_p,
3715 show_stack_cache_enabled_p,
3716 &setlist, &showlist);
3717
3718 target_dcache = dcache_init ();
3719 }