Revert previous change that inadvertently added reset_schedlock, and
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
121
122 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static void debug_to_terminal_init (void);
134
135 static void debug_to_terminal_inferior (void);
136
137 static void debug_to_terminal_ours_for_output (void);
138
139 static void debug_to_terminal_save_ours (void);
140
141 static void debug_to_terminal_ours (void);
142
143 static void debug_to_terminal_info (char *, int);
144
145 static void debug_to_load (char *, int);
146
147 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_notice_signals (ptid_t);
152
153 static void debug_to_stop (ptid_t);
154
155 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
156 wierd and mysterious ways. Putting the variable here lets those
157 wierd and mysterious ways keep building while they are being
158 converted to the inferior inheritance structure. */
159 struct target_ops deprecated_child_ops;
160
161 /* Pointer to array of target architecture structures; the size of the
162 array; the current index into the array; the allocated size of the
163 array. */
164 struct target_ops **target_structs;
165 unsigned target_struct_size;
166 unsigned target_struct_index;
167 unsigned target_struct_allocsize;
168 #define DEFAULT_ALLOCSIZE 10
169
170 /* The initial current target, so that there is always a semi-valid
171 current target. */
172
173 static struct target_ops dummy_target;
174
175 /* Top of target stack. */
176
177 static struct target_ops *target_stack;
178
179 /* The target structure we are currently using to talk to a process
180 or file or whatever "inferior" we have. */
181
182 struct target_ops current_target;
183
184 /* Command list for target. */
185
186 static struct cmd_list_element *targetlist = NULL;
187
188 /* Nonzero if we should trust readonly sections from the
189 executable when reading memory. */
190
191 static int trust_readonly = 0;
192
193 /* Nonzero if we should show true memory content including
194 memory breakpoint inserted by gdb. */
195
196 static int show_memory_breakpoints = 0;
197
198 /* Non-zero if we want to see trace of target level stuff. */
199
200 static int targetdebug = 0;
201 static void
202 show_targetdebug (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
206 }
207
208 static void setup_target_debug (void);
209
210 /* The option sets this. */
211 static int stack_cache_enabled_p_1 = 1;
212 /* And set_stack_cache_enabled_p updates this.
213 The reason for the separation is so that we don't flush the cache for
214 on->on transitions. */
215 static int stack_cache_enabled_p = 1;
216
217 /* This is called *after* the stack-cache has been set.
218 Flush the cache for off->on and on->off transitions.
219 There's no real need to flush the cache for on->off transitions,
220 except cleanliness. */
221
222 static void
223 set_stack_cache_enabled_p (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
227 target_dcache_invalidate ();
228
229 stack_cache_enabled_p = stack_cache_enabled_p_1;
230 }
231
232 static void
233 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
237 }
238
239 /* Cache of memory operations, to speed up remote access. */
240 static DCACHE *target_dcache;
241
242 /* Invalidate the target dcache. */
243
244 void
245 target_dcache_invalidate (void)
246 {
247 dcache_invalidate (target_dcache);
248 }
249
250 /* The user just typed 'target' without the name of a target. */
251
252 static void
253 target_command (char *arg, int from_tty)
254 {
255 fputs_filtered ("Argument required (target name). Try `help target'\n",
256 gdb_stdout);
257 }
258
259 /* Default target_has_* methods for process_stratum targets. */
260
261 int
262 default_child_has_all_memory (struct target_ops *ops)
263 {
264 /* If no inferior selected, then we can't read memory here. */
265 if (ptid_equal (inferior_ptid, null_ptid))
266 return 0;
267
268 return 1;
269 }
270
271 int
272 default_child_has_memory (struct target_ops *ops)
273 {
274 /* If no inferior selected, then we can't read memory here. */
275 if (ptid_equal (inferior_ptid, null_ptid))
276 return 0;
277
278 return 1;
279 }
280
281 int
282 default_child_has_stack (struct target_ops *ops)
283 {
284 /* If no inferior selected, there's no stack. */
285 if (ptid_equal (inferior_ptid, null_ptid))
286 return 0;
287
288 return 1;
289 }
290
291 int
292 default_child_has_registers (struct target_ops *ops)
293 {
294 /* Can't read registers from no inferior. */
295 if (ptid_equal (inferior_ptid, null_ptid))
296 return 0;
297
298 return 1;
299 }
300
301 int
302 default_child_has_execution (struct target_ops *ops)
303 {
304 /* If there's no thread selected, then we can't make it run through
305 hoops. */
306 if (ptid_equal (inferior_ptid, null_ptid))
307 return 0;
308
309 return 1;
310 }
311
312
313 int
314 target_has_all_memory_1 (void)
315 {
316 struct target_ops *t;
317
318 for (t = current_target.beneath; t != NULL; t = t->beneath)
319 if (t->to_has_all_memory (t))
320 return 1;
321
322 return 0;
323 }
324
325 int
326 target_has_memory_1 (void)
327 {
328 struct target_ops *t;
329
330 for (t = current_target.beneath; t != NULL; t = t->beneath)
331 if (t->to_has_memory (t))
332 return 1;
333
334 return 0;
335 }
336
337 int
338 target_has_stack_1 (void)
339 {
340 struct target_ops *t;
341
342 for (t = current_target.beneath; t != NULL; t = t->beneath)
343 if (t->to_has_stack (t))
344 return 1;
345
346 return 0;
347 }
348
349 int
350 target_has_registers_1 (void)
351 {
352 struct target_ops *t;
353
354 for (t = current_target.beneath; t != NULL; t = t->beneath)
355 if (t->to_has_registers (t))
356 return 1;
357
358 return 0;
359 }
360
361 int
362 target_has_execution_1 (void)
363 {
364 struct target_ops *t;
365
366 for (t = current_target.beneath; t != NULL; t = t->beneath)
367 if (t->to_has_execution (t))
368 return 1;
369
370 return 0;
371 }
372
373 /* Add a possible target architecture to the list. */
374
375 void
376 add_target (struct target_ops *t)
377 {
378 /* Provide default values for all "must have" methods. */
379 if (t->to_xfer_partial == NULL)
380 t->to_xfer_partial = default_xfer_partial;
381
382 if (t->to_has_all_memory == NULL)
383 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
384
385 if (t->to_has_memory == NULL)
386 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
387
388 if (t->to_has_stack == NULL)
389 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
390
391 if (t->to_has_registers == NULL)
392 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
393
394 if (t->to_has_execution == NULL)
395 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
421 }
422
423 /* Stub functions */
424
425 void
426 target_ignore (void)
427 {
428 }
429
430 void
431 target_kill (void)
432 {
433 struct target_ops *t;
434
435 for (t = current_target.beneath; t != NULL; t = t->beneath)
436 if (t->to_kill != NULL)
437 {
438 if (targetdebug)
439 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
440
441 t->to_kill (t);
442 return;
443 }
444
445 noprocess ();
446 }
447
448 void
449 target_load (char *arg, int from_tty)
450 {
451 target_dcache_invalidate ();
452 (*current_target.to_load) (arg, from_tty);
453 }
454
455 void
456 target_create_inferior (char *exec_file, char *args,
457 char **env, int from_tty)
458 {
459 struct target_ops *t;
460
461 for (t = current_target.beneath; t != NULL; t = t->beneath)
462 {
463 if (t->to_create_inferior != NULL)
464 {
465 t->to_create_inferior (t, exec_file, args, env, from_tty);
466 if (targetdebug)
467 fprintf_unfiltered (gdb_stdlog,
468 "target_create_inferior (%s, %s, xxx, %d)\n",
469 exec_file, args, from_tty);
470 return;
471 }
472 }
473
474 internal_error (__FILE__, __LINE__,
475 "could not find a target to create inferior");
476 }
477
478 void
479 target_terminal_inferior (void)
480 {
481 /* A background resume (``run&'') should leave GDB in control of the
482 terminal. Use target_can_async_p, not target_is_async_p, since at
483 this point the target is not async yet. However, if sync_execution
484 is not set, we know it will become async prior to resume. */
485 if (target_can_async_p () && !sync_execution)
486 return;
487
488 /* If GDB is resuming the inferior in the foreground, install
489 inferior's terminal modes. */
490 (*current_target.to_terminal_inferior) ();
491 }
492
493 static int
494 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
495 struct target_ops *t)
496 {
497 errno = EIO; /* Can't read/write this location */
498 return 0; /* No bytes handled */
499 }
500
501 static void
502 tcomplain (void)
503 {
504 error (_("You can't do that when your target is `%s'"),
505 current_target.to_shortname);
506 }
507
508 void
509 noprocess (void)
510 {
511 error (_("You can't do that without a process to debug."));
512 }
513
514 static int
515 nosymbol (char *name, CORE_ADDR *addrp)
516 {
517 return 1; /* Symbol does not exist in target env */
518 }
519
520 static void
521 default_terminal_info (char *args, int from_tty)
522 {
523 printf_unfiltered (_("No saved terminal information.\n"));
524 }
525
526 /* A default implementation for the to_get_ada_task_ptid target method.
527
528 This function builds the PTID by using both LWP and TID as part of
529 the PTID lwp and tid elements. The pid used is the pid of the
530 inferior_ptid. */
531
532 static ptid_t
533 default_get_ada_task_ptid (long lwp, long tid)
534 {
535 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
536 }
537
538 /* Go through the target stack from top to bottom, copying over zero
539 entries in current_target, then filling in still empty entries. In
540 effect, we are doing class inheritance through the pushed target
541 vectors.
542
543 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
544 is currently implemented, is that it discards any knowledge of
545 which target an inherited method originally belonged to.
546 Consequently, new new target methods should instead explicitly and
547 locally search the target stack for the target that can handle the
548 request. */
549
550 static void
551 update_current_target (void)
552 {
553 struct target_ops *t;
554
555 /* First, reset current's contents. */
556 memset (&current_target, 0, sizeof (current_target));
557
558 #define INHERIT(FIELD, TARGET) \
559 if (!current_target.FIELD) \
560 current_target.FIELD = (TARGET)->FIELD
561
562 for (t = target_stack; t; t = t->beneath)
563 {
564 INHERIT (to_shortname, t);
565 INHERIT (to_longname, t);
566 INHERIT (to_doc, t);
567 /* Do not inherit to_open. */
568 /* Do not inherit to_close. */
569 /* Do not inherit to_attach. */
570 INHERIT (to_post_attach, t);
571 INHERIT (to_attach_no_wait, t);
572 /* Do not inherit to_detach. */
573 /* Do not inherit to_disconnect. */
574 /* Do not inherit to_resume. */
575 /* Do not inherit to_wait. */
576 /* Do not inherit to_fetch_registers. */
577 /* Do not inherit to_store_registers. */
578 INHERIT (to_prepare_to_store, t);
579 INHERIT (deprecated_xfer_memory, t);
580 INHERIT (to_files_info, t);
581 INHERIT (to_insert_breakpoint, t);
582 INHERIT (to_remove_breakpoint, t);
583 INHERIT (to_can_use_hw_breakpoint, t);
584 INHERIT (to_insert_hw_breakpoint, t);
585 INHERIT (to_remove_hw_breakpoint, t);
586 INHERIT (to_insert_watchpoint, t);
587 INHERIT (to_remove_watchpoint, t);
588 INHERIT (to_stopped_data_address, t);
589 INHERIT (to_have_steppable_watchpoint, t);
590 INHERIT (to_have_continuable_watchpoint, t);
591 INHERIT (to_stopped_by_watchpoint, t);
592 INHERIT (to_watchpoint_addr_within_range, t);
593 INHERIT (to_region_ok_for_hw_watchpoint, t);
594 INHERIT (to_terminal_init, t);
595 INHERIT (to_terminal_inferior, t);
596 INHERIT (to_terminal_ours_for_output, t);
597 INHERIT (to_terminal_ours, t);
598 INHERIT (to_terminal_save_ours, t);
599 INHERIT (to_terminal_info, t);
600 /* Do not inherit to_kill. */
601 INHERIT (to_load, t);
602 INHERIT (to_lookup_symbol, t);
603 /* Do no inherit to_create_inferior. */
604 INHERIT (to_post_startup_inferior, t);
605 INHERIT (to_acknowledge_created_inferior, t);
606 INHERIT (to_insert_fork_catchpoint, t);
607 INHERIT (to_remove_fork_catchpoint, t);
608 INHERIT (to_insert_vfork_catchpoint, t);
609 INHERIT (to_remove_vfork_catchpoint, t);
610 /* Do not inherit to_follow_fork. */
611 INHERIT (to_insert_exec_catchpoint, t);
612 INHERIT (to_remove_exec_catchpoint, t);
613 INHERIT (to_set_syscall_catchpoint, t);
614 INHERIT (to_has_exited, t);
615 /* Do not inherit to_mourn_inferiour. */
616 INHERIT (to_can_run, t);
617 INHERIT (to_notice_signals, t);
618 /* Do not inherit to_thread_alive. */
619 /* Do not inherit to_find_new_threads. */
620 /* Do not inherit to_pid_to_str. */
621 INHERIT (to_extra_thread_info, t);
622 INHERIT (to_stop, t);
623 /* Do not inherit to_xfer_partial. */
624 INHERIT (to_rcmd, t);
625 INHERIT (to_pid_to_exec_file, t);
626 INHERIT (to_log_command, t);
627 INHERIT (to_stratum, t);
628 /* Do not inherit to_has_all_memory */
629 /* Do not inherit to_has_memory */
630 /* Do not inherit to_has_stack */
631 /* Do not inherit to_has_registers */
632 /* Do not inherit to_has_execution */
633 INHERIT (to_has_thread_control, t);
634 INHERIT (to_can_async_p, t);
635 INHERIT (to_is_async_p, t);
636 INHERIT (to_async, t);
637 INHERIT (to_async_mask, t);
638 INHERIT (to_find_memory_regions, t);
639 INHERIT (to_make_corefile_notes, t);
640 INHERIT (to_get_bookmark, t);
641 INHERIT (to_goto_bookmark, t);
642 /* Do not inherit to_get_thread_local_address. */
643 INHERIT (to_can_execute_reverse, t);
644 INHERIT (to_thread_architecture, t);
645 /* Do not inherit to_read_description. */
646 INHERIT (to_get_ada_task_ptid, t);
647 /* Do not inherit to_search_memory. */
648 INHERIT (to_supports_multi_process, t);
649 INHERIT (to_trace_init, t);
650 INHERIT (to_download_tracepoint, t);
651 INHERIT (to_download_trace_state_variable, t);
652 INHERIT (to_trace_set_readonly_regions, t);
653 INHERIT (to_trace_start, t);
654 INHERIT (to_get_trace_status, t);
655 INHERIT (to_trace_stop, t);
656 INHERIT (to_trace_find, t);
657 INHERIT (to_get_trace_state_variable_value, t);
658 INHERIT (to_save_trace_data, t);
659 INHERIT (to_upload_tracepoints, t);
660 INHERIT (to_upload_trace_state_variables, t);
661 INHERIT (to_get_raw_trace_data, t);
662 INHERIT (to_set_disconnected_tracing, t);
663 INHERIT (to_set_circular_trace_buffer, t);
664 INHERIT (to_get_tib_address, t);
665 INHERIT (to_magic, t);
666 /* Do not inherit to_memory_map. */
667 /* Do not inherit to_flash_erase. */
668 /* Do not inherit to_flash_done. */
669 }
670 #undef INHERIT
671
672 /* Clean up a target struct so it no longer has any zero pointers in
673 it. Some entries are defaulted to a method that print an error,
674 others are hard-wired to a standard recursive default. */
675
676 #define de_fault(field, value) \
677 if (!current_target.field) \
678 current_target.field = value
679
680 de_fault (to_open,
681 (void (*) (char *, int))
682 tcomplain);
683 de_fault (to_close,
684 (void (*) (int))
685 target_ignore);
686 de_fault (to_post_attach,
687 (void (*) (int))
688 target_ignore);
689 de_fault (to_prepare_to_store,
690 (void (*) (struct regcache *))
691 noprocess);
692 de_fault (deprecated_xfer_memory,
693 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
694 nomemory);
695 de_fault (to_files_info,
696 (void (*) (struct target_ops *))
697 target_ignore);
698 de_fault (to_insert_breakpoint,
699 memory_insert_breakpoint);
700 de_fault (to_remove_breakpoint,
701 memory_remove_breakpoint);
702 de_fault (to_can_use_hw_breakpoint,
703 (int (*) (int, int, int))
704 return_zero);
705 de_fault (to_insert_hw_breakpoint,
706 (int (*) (struct gdbarch *, struct bp_target_info *))
707 return_minus_one);
708 de_fault (to_remove_hw_breakpoint,
709 (int (*) (struct gdbarch *, struct bp_target_info *))
710 return_minus_one);
711 de_fault (to_insert_watchpoint,
712 (int (*) (CORE_ADDR, int, int))
713 return_minus_one);
714 de_fault (to_remove_watchpoint,
715 (int (*) (CORE_ADDR, int, int))
716 return_minus_one);
717 de_fault (to_stopped_by_watchpoint,
718 (int (*) (void))
719 return_zero);
720 de_fault (to_stopped_data_address,
721 (int (*) (struct target_ops *, CORE_ADDR *))
722 return_zero);
723 de_fault (to_watchpoint_addr_within_range,
724 default_watchpoint_addr_within_range);
725 de_fault (to_region_ok_for_hw_watchpoint,
726 default_region_ok_for_hw_watchpoint);
727 de_fault (to_terminal_init,
728 (void (*) (void))
729 target_ignore);
730 de_fault (to_terminal_inferior,
731 (void (*) (void))
732 target_ignore);
733 de_fault (to_terminal_ours_for_output,
734 (void (*) (void))
735 target_ignore);
736 de_fault (to_terminal_ours,
737 (void (*) (void))
738 target_ignore);
739 de_fault (to_terminal_save_ours,
740 (void (*) (void))
741 target_ignore);
742 de_fault (to_terminal_info,
743 default_terminal_info);
744 de_fault (to_load,
745 (void (*) (char *, int))
746 tcomplain);
747 de_fault (to_lookup_symbol,
748 (int (*) (char *, CORE_ADDR *))
749 nosymbol);
750 de_fault (to_post_startup_inferior,
751 (void (*) (ptid_t))
752 target_ignore);
753 de_fault (to_acknowledge_created_inferior,
754 (void (*) (int))
755 target_ignore);
756 de_fault (to_insert_fork_catchpoint,
757 (void (*) (int))
758 tcomplain);
759 de_fault (to_remove_fork_catchpoint,
760 (int (*) (int))
761 tcomplain);
762 de_fault (to_insert_vfork_catchpoint,
763 (void (*) (int))
764 tcomplain);
765 de_fault (to_remove_vfork_catchpoint,
766 (int (*) (int))
767 tcomplain);
768 de_fault (to_insert_exec_catchpoint,
769 (void (*) (int))
770 tcomplain);
771 de_fault (to_remove_exec_catchpoint,
772 (int (*) (int))
773 tcomplain);
774 de_fault (to_set_syscall_catchpoint,
775 (int (*) (int, int, int, int, int *))
776 tcomplain);
777 de_fault (to_has_exited,
778 (int (*) (int, int, int *))
779 return_zero);
780 de_fault (to_can_run,
781 return_zero);
782 de_fault (to_notice_signals,
783 (void (*) (ptid_t))
784 target_ignore);
785 de_fault (to_extra_thread_info,
786 (char *(*) (struct thread_info *))
787 return_zero);
788 de_fault (to_stop,
789 (void (*) (ptid_t))
790 target_ignore);
791 current_target.to_xfer_partial = current_xfer_partial;
792 de_fault (to_rcmd,
793 (void (*) (char *, struct ui_file *))
794 tcomplain);
795 de_fault (to_pid_to_exec_file,
796 (char *(*) (int))
797 return_zero);
798 de_fault (to_async,
799 (void (*) (void (*) (enum inferior_event_type, void*), void*))
800 tcomplain);
801 de_fault (to_async_mask,
802 (int (*) (int))
803 return_one);
804 de_fault (to_thread_architecture,
805 default_thread_architecture);
806 current_target.to_read_description = NULL;
807 de_fault (to_get_ada_task_ptid,
808 (ptid_t (*) (long, long))
809 default_get_ada_task_ptid);
810 de_fault (to_supports_multi_process,
811 (int (*) (void))
812 return_zero);
813 de_fault (to_trace_init,
814 (void (*) (void))
815 tcomplain);
816 de_fault (to_download_tracepoint,
817 (void (*) (struct breakpoint *))
818 tcomplain);
819 de_fault (to_download_trace_state_variable,
820 (void (*) (struct trace_state_variable *))
821 tcomplain);
822 de_fault (to_trace_set_readonly_regions,
823 (void (*) (void))
824 tcomplain);
825 de_fault (to_trace_start,
826 (void (*) (void))
827 tcomplain);
828 de_fault (to_get_trace_status,
829 (int (*) (struct trace_status *))
830 return_minus_one);
831 de_fault (to_trace_stop,
832 (void (*) (void))
833 tcomplain);
834 de_fault (to_trace_find,
835 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
836 return_minus_one);
837 de_fault (to_get_trace_state_variable_value,
838 (int (*) (int, LONGEST *))
839 return_zero);
840 de_fault (to_save_trace_data,
841 (int (*) (const char *))
842 tcomplain);
843 de_fault (to_upload_tracepoints,
844 (int (*) (struct uploaded_tp **))
845 return_zero);
846 de_fault (to_upload_trace_state_variables,
847 (int (*) (struct uploaded_tsv **))
848 return_zero);
849 de_fault (to_get_raw_trace_data,
850 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
851 tcomplain);
852 de_fault (to_set_disconnected_tracing,
853 (void (*) (int))
854 target_ignore);
855 de_fault (to_set_circular_trace_buffer,
856 (void (*) (int))
857 target_ignore);
858 de_fault (to_get_tib_address,
859 (int (*) (ptid_t, CORE_ADDR *))
860 tcomplain);
861 #undef de_fault
862
863 /* Finally, position the target-stack beneath the squashed
864 "current_target". That way code looking for a non-inherited
865 target method can quickly and simply find it. */
866 current_target.beneath = target_stack;
867
868 if (targetdebug)
869 setup_target_debug ();
870 }
871
872 /* Push a new target type into the stack of the existing target accessors,
873 possibly superseding some of the existing accessors.
874
875 Result is zero if the pushed target ended up on top of the stack,
876 nonzero if at least one target is on top of it.
877
878 Rather than allow an empty stack, we always have the dummy target at
879 the bottom stratum, so we can call the function vectors without
880 checking them. */
881
882 int
883 push_target (struct target_ops *t)
884 {
885 struct target_ops **cur;
886
887 /* Check magic number. If wrong, it probably means someone changed
888 the struct definition, but not all the places that initialize one. */
889 if (t->to_magic != OPS_MAGIC)
890 {
891 fprintf_unfiltered (gdb_stderr,
892 "Magic number of %s target struct wrong\n",
893 t->to_shortname);
894 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
895 }
896
897 /* Find the proper stratum to install this target in. */
898 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
899 {
900 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
901 break;
902 }
903
904 /* If there's already targets at this stratum, remove them. */
905 /* FIXME: cagney/2003-10-15: I think this should be popping all
906 targets to CUR, and not just those at this stratum level. */
907 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
908 {
909 /* There's already something at this stratum level. Close it,
910 and un-hook it from the stack. */
911 struct target_ops *tmp = (*cur);
912
913 (*cur) = (*cur)->beneath;
914 tmp->beneath = NULL;
915 target_close (tmp, 0);
916 }
917
918 /* We have removed all targets in our stratum, now add the new one. */
919 t->beneath = (*cur);
920 (*cur) = t;
921
922 update_current_target ();
923
924 /* Not on top? */
925 return (t != target_stack);
926 }
927
928 /* Remove a target_ops vector from the stack, wherever it may be.
929 Return how many times it was removed (0 or 1). */
930
931 int
932 unpush_target (struct target_ops *t)
933 {
934 struct target_ops **cur;
935 struct target_ops *tmp;
936
937 if (t->to_stratum == dummy_stratum)
938 internal_error (__FILE__, __LINE__,
939 "Attempt to unpush the dummy target");
940
941 /* Look for the specified target. Note that we assume that a target
942 can only occur once in the target stack. */
943
944 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
945 {
946 if ((*cur) == t)
947 break;
948 }
949
950 if ((*cur) == NULL)
951 return 0; /* Didn't find target_ops, quit now */
952
953 /* NOTE: cagney/2003-12-06: In '94 the close call was made
954 unconditional by moving it to before the above check that the
955 target was in the target stack (something about "Change the way
956 pushing and popping of targets work to support target overlays
957 and inheritance"). This doesn't make much sense - only open
958 targets should be closed. */
959 target_close (t, 0);
960
961 /* Unchain the target */
962 tmp = (*cur);
963 (*cur) = (*cur)->beneath;
964 tmp->beneath = NULL;
965
966 update_current_target ();
967
968 return 1;
969 }
970
971 void
972 pop_target (void)
973 {
974 target_close (target_stack, 0); /* Let it clean up */
975 if (unpush_target (target_stack) == 1)
976 return;
977
978 fprintf_unfiltered (gdb_stderr,
979 "pop_target couldn't find target %s\n",
980 current_target.to_shortname);
981 internal_error (__FILE__, __LINE__,
982 _("failed internal consistency check"));
983 }
984
985 void
986 pop_all_targets_above (enum strata above_stratum, int quitting)
987 {
988 while ((int) (current_target.to_stratum) > (int) above_stratum)
989 {
990 target_close (target_stack, quitting);
991 if (!unpush_target (target_stack))
992 {
993 fprintf_unfiltered (gdb_stderr,
994 "pop_all_targets couldn't find target %s\n",
995 target_stack->to_shortname);
996 internal_error (__FILE__, __LINE__,
997 _("failed internal consistency check"));
998 break;
999 }
1000 }
1001 }
1002
1003 void
1004 pop_all_targets (int quitting)
1005 {
1006 pop_all_targets_above (dummy_stratum, quitting);
1007 }
1008
1009 /* Using the objfile specified in OBJFILE, find the address for the
1010 current thread's thread-local storage with offset OFFSET. */
1011 CORE_ADDR
1012 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1013 {
1014 volatile CORE_ADDR addr = 0;
1015 struct target_ops *target;
1016
1017 for (target = current_target.beneath;
1018 target != NULL;
1019 target = target->beneath)
1020 {
1021 if (target->to_get_thread_local_address != NULL)
1022 break;
1023 }
1024
1025 if (target != NULL
1026 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1027 {
1028 ptid_t ptid = inferior_ptid;
1029 volatile struct gdb_exception ex;
1030
1031 TRY_CATCH (ex, RETURN_MASK_ALL)
1032 {
1033 CORE_ADDR lm_addr;
1034
1035 /* Fetch the load module address for this objfile. */
1036 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1037 objfile);
1038 /* If it's 0, throw the appropriate exception. */
1039 if (lm_addr == 0)
1040 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1041 _("TLS load module not found"));
1042
1043 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1044 }
1045 /* If an error occurred, print TLS related messages here. Otherwise,
1046 throw the error to some higher catcher. */
1047 if (ex.reason < 0)
1048 {
1049 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1050
1051 switch (ex.error)
1052 {
1053 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1054 error (_("Cannot find thread-local variables in this thread library."));
1055 break;
1056 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1057 if (objfile_is_library)
1058 error (_("Cannot find shared library `%s' in dynamic"
1059 " linker's load module list"), objfile->name);
1060 else
1061 error (_("Cannot find executable file `%s' in dynamic"
1062 " linker's load module list"), objfile->name);
1063 break;
1064 case TLS_NOT_ALLOCATED_YET_ERROR:
1065 if (objfile_is_library)
1066 error (_("The inferior has not yet allocated storage for"
1067 " thread-local variables in\n"
1068 "the shared library `%s'\n"
1069 "for %s"),
1070 objfile->name, target_pid_to_str (ptid));
1071 else
1072 error (_("The inferior has not yet allocated storage for"
1073 " thread-local variables in\n"
1074 "the executable `%s'\n"
1075 "for %s"),
1076 objfile->name, target_pid_to_str (ptid));
1077 break;
1078 case TLS_GENERIC_ERROR:
1079 if (objfile_is_library)
1080 error (_("Cannot find thread-local storage for %s, "
1081 "shared library %s:\n%s"),
1082 target_pid_to_str (ptid),
1083 objfile->name, ex.message);
1084 else
1085 error (_("Cannot find thread-local storage for %s, "
1086 "executable file %s:\n%s"),
1087 target_pid_to_str (ptid),
1088 objfile->name, ex.message);
1089 break;
1090 default:
1091 throw_exception (ex);
1092 break;
1093 }
1094 }
1095 }
1096 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1097 TLS is an ABI-specific thing. But we don't do that yet. */
1098 else
1099 error (_("Cannot find thread-local variables on this target"));
1100
1101 return addr;
1102 }
1103
1104 #undef MIN
1105 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1106
1107 /* target_read_string -- read a null terminated string, up to LEN bytes,
1108 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1109 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1110 is responsible for freeing it. Return the number of bytes successfully
1111 read. */
1112
1113 int
1114 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1115 {
1116 int tlen, origlen, offset, i;
1117 gdb_byte buf[4];
1118 int errcode = 0;
1119 char *buffer;
1120 int buffer_allocated;
1121 char *bufptr;
1122 unsigned int nbytes_read = 0;
1123
1124 gdb_assert (string);
1125
1126 /* Small for testing. */
1127 buffer_allocated = 4;
1128 buffer = xmalloc (buffer_allocated);
1129 bufptr = buffer;
1130
1131 origlen = len;
1132
1133 while (len > 0)
1134 {
1135 tlen = MIN (len, 4 - (memaddr & 3));
1136 offset = memaddr & 3;
1137
1138 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1139 if (errcode != 0)
1140 {
1141 /* The transfer request might have crossed the boundary to an
1142 unallocated region of memory. Retry the transfer, requesting
1143 a single byte. */
1144 tlen = 1;
1145 offset = 0;
1146 errcode = target_read_memory (memaddr, buf, 1);
1147 if (errcode != 0)
1148 goto done;
1149 }
1150
1151 if (bufptr - buffer + tlen > buffer_allocated)
1152 {
1153 unsigned int bytes;
1154
1155 bytes = bufptr - buffer;
1156 buffer_allocated *= 2;
1157 buffer = xrealloc (buffer, buffer_allocated);
1158 bufptr = buffer + bytes;
1159 }
1160
1161 for (i = 0; i < tlen; i++)
1162 {
1163 *bufptr++ = buf[i + offset];
1164 if (buf[i + offset] == '\000')
1165 {
1166 nbytes_read += i + 1;
1167 goto done;
1168 }
1169 }
1170
1171 memaddr += tlen;
1172 len -= tlen;
1173 nbytes_read += tlen;
1174 }
1175 done:
1176 *string = buffer;
1177 if (errnop != NULL)
1178 *errnop = errcode;
1179 return nbytes_read;
1180 }
1181
1182 struct target_section_table *
1183 target_get_section_table (struct target_ops *target)
1184 {
1185 struct target_ops *t;
1186
1187 if (targetdebug)
1188 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1189
1190 for (t = target; t != NULL; t = t->beneath)
1191 if (t->to_get_section_table != NULL)
1192 return (*t->to_get_section_table) (t);
1193
1194 return NULL;
1195 }
1196
1197 /* Find a section containing ADDR. */
1198
1199 struct target_section *
1200 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1201 {
1202 struct target_section_table *table = target_get_section_table (target);
1203 struct target_section *secp;
1204
1205 if (table == NULL)
1206 return NULL;
1207
1208 for (secp = table->sections; secp < table->sections_end; secp++)
1209 {
1210 if (addr >= secp->addr && addr < secp->endaddr)
1211 return secp;
1212 }
1213 return NULL;
1214 }
1215
1216 /* Perform a partial memory transfer.
1217 For docs see target.h, to_xfer_partial. */
1218
1219 static LONGEST
1220 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1221 void *readbuf, const void *writebuf, ULONGEST memaddr,
1222 LONGEST len)
1223 {
1224 LONGEST res;
1225 int reg_len;
1226 struct mem_region *region;
1227 struct inferior *inf;
1228
1229 /* Zero length requests are ok and require no work. */
1230 if (len == 0)
1231 return 0;
1232
1233 /* For accesses to unmapped overlay sections, read directly from
1234 files. Must do this first, as MEMADDR may need adjustment. */
1235 if (readbuf != NULL && overlay_debugging)
1236 {
1237 struct obj_section *section = find_pc_overlay (memaddr);
1238
1239 if (pc_in_unmapped_range (memaddr, section))
1240 {
1241 struct target_section_table *table
1242 = target_get_section_table (ops);
1243 const char *section_name = section->the_bfd_section->name;
1244
1245 memaddr = overlay_mapped_address (memaddr, section);
1246 return section_table_xfer_memory_partial (readbuf, writebuf,
1247 memaddr, len,
1248 table->sections,
1249 table->sections_end,
1250 section_name);
1251 }
1252 }
1253
1254 /* Try the executable files, if "trust-readonly-sections" is set. */
1255 if (readbuf != NULL && trust_readonly)
1256 {
1257 struct target_section *secp;
1258 struct target_section_table *table;
1259
1260 secp = target_section_by_addr (ops, memaddr);
1261 if (secp != NULL
1262 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1263 & SEC_READONLY))
1264 {
1265 table = target_get_section_table (ops);
1266 return section_table_xfer_memory_partial (readbuf, writebuf,
1267 memaddr, len,
1268 table->sections,
1269 table->sections_end,
1270 NULL);
1271 }
1272 }
1273
1274 /* Try GDB's internal data cache. */
1275 region = lookup_mem_region (memaddr);
1276 /* region->hi == 0 means there's no upper bound. */
1277 if (memaddr + len < region->hi || region->hi == 0)
1278 reg_len = len;
1279 else
1280 reg_len = region->hi - memaddr;
1281
1282 switch (region->attrib.mode)
1283 {
1284 case MEM_RO:
1285 if (writebuf != NULL)
1286 return -1;
1287 break;
1288
1289 case MEM_WO:
1290 if (readbuf != NULL)
1291 return -1;
1292 break;
1293
1294 case MEM_FLASH:
1295 /* We only support writing to flash during "load" for now. */
1296 if (writebuf != NULL)
1297 error (_("Writing to flash memory forbidden in this context"));
1298 break;
1299
1300 case MEM_NONE:
1301 return -1;
1302 }
1303
1304 if (!ptid_equal (inferior_ptid, null_ptid))
1305 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1306 else
1307 inf = NULL;
1308
1309 if (inf != NULL
1310 /* The dcache reads whole cache lines; that doesn't play well
1311 with reading from a trace buffer, because reading outside of
1312 the collected memory range fails. */
1313 && get_traceframe_number () == -1
1314 && (region->attrib.cache
1315 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1316 {
1317 if (readbuf != NULL)
1318 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1319 reg_len, 0);
1320 else
1321 /* FIXME drow/2006-08-09: If we're going to preserve const
1322 correctness dcache_xfer_memory should take readbuf and
1323 writebuf. */
1324 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1325 (void *) writebuf,
1326 reg_len, 1);
1327 if (res <= 0)
1328 return -1;
1329 else
1330 {
1331 if (readbuf && !show_memory_breakpoints)
1332 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1333 return res;
1334 }
1335 }
1336
1337 /* If none of those methods found the memory we wanted, fall back
1338 to a target partial transfer. Normally a single call to
1339 to_xfer_partial is enough; if it doesn't recognize an object
1340 it will call the to_xfer_partial of the next target down.
1341 But for memory this won't do. Memory is the only target
1342 object which can be read from more than one valid target.
1343 A core file, for instance, could have some of memory but
1344 delegate other bits to the target below it. So, we must
1345 manually try all targets. */
1346
1347 do
1348 {
1349 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1350 readbuf, writebuf, memaddr, reg_len);
1351 if (res > 0)
1352 break;
1353
1354 /* We want to continue past core files to executables, but not
1355 past a running target's memory. */
1356 if (ops->to_has_all_memory (ops))
1357 break;
1358
1359 ops = ops->beneath;
1360 }
1361 while (ops != NULL);
1362
1363 if (readbuf && !show_memory_breakpoints)
1364 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1365
1366 /* Make sure the cache gets updated no matter what - if we are writing
1367 to the stack. Even if this write is not tagged as such, we still need
1368 to update the cache. */
1369
1370 if (res > 0
1371 && inf != NULL
1372 && writebuf != NULL
1373 && !region->attrib.cache
1374 && stack_cache_enabled_p
1375 && object != TARGET_OBJECT_STACK_MEMORY)
1376 {
1377 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1378 }
1379
1380 /* If we still haven't got anything, return the last error. We
1381 give up. */
1382 return res;
1383 }
1384
1385 static void
1386 restore_show_memory_breakpoints (void *arg)
1387 {
1388 show_memory_breakpoints = (uintptr_t) arg;
1389 }
1390
1391 struct cleanup *
1392 make_show_memory_breakpoints_cleanup (int show)
1393 {
1394 int current = show_memory_breakpoints;
1395
1396 show_memory_breakpoints = show;
1397 return make_cleanup (restore_show_memory_breakpoints,
1398 (void *) (uintptr_t) current);
1399 }
1400
1401 /* For docs see target.h, to_xfer_partial. */
1402
1403 static LONGEST
1404 target_xfer_partial (struct target_ops *ops,
1405 enum target_object object, const char *annex,
1406 void *readbuf, const void *writebuf,
1407 ULONGEST offset, LONGEST len)
1408 {
1409 LONGEST retval;
1410
1411 gdb_assert (ops->to_xfer_partial != NULL);
1412
1413 /* If this is a memory transfer, let the memory-specific code
1414 have a look at it instead. Memory transfers are more
1415 complicated. */
1416 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1417 retval = memory_xfer_partial (ops, object, readbuf,
1418 writebuf, offset, len);
1419 else
1420 {
1421 enum target_object raw_object = object;
1422
1423 /* If this is a raw memory transfer, request the normal
1424 memory object from other layers. */
1425 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1426 raw_object = TARGET_OBJECT_MEMORY;
1427
1428 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1429 writebuf, offset, len);
1430 }
1431
1432 if (targetdebug)
1433 {
1434 const unsigned char *myaddr = NULL;
1435
1436 fprintf_unfiltered (gdb_stdlog,
1437 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1438 ops->to_shortname,
1439 (int) object,
1440 (annex ? annex : "(null)"),
1441 host_address_to_string (readbuf),
1442 host_address_to_string (writebuf),
1443 core_addr_to_string_nz (offset),
1444 plongest (len), plongest (retval));
1445
1446 if (readbuf)
1447 myaddr = readbuf;
1448 if (writebuf)
1449 myaddr = writebuf;
1450 if (retval > 0 && myaddr != NULL)
1451 {
1452 int i;
1453
1454 fputs_unfiltered (", bytes =", gdb_stdlog);
1455 for (i = 0; i < retval; i++)
1456 {
1457 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1458 {
1459 if (targetdebug < 2 && i > 0)
1460 {
1461 fprintf_unfiltered (gdb_stdlog, " ...");
1462 break;
1463 }
1464 fprintf_unfiltered (gdb_stdlog, "\n");
1465 }
1466
1467 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1468 }
1469 }
1470
1471 fputc_unfiltered ('\n', gdb_stdlog);
1472 }
1473 return retval;
1474 }
1475
1476 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1477 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1478 if any error occurs.
1479
1480 If an error occurs, no guarantee is made about the contents of the data at
1481 MYADDR. In particular, the caller should not depend upon partial reads
1482 filling the buffer with good data. There is no way for the caller to know
1483 how much good data might have been transfered anyway. Callers that can
1484 deal with partial reads should call target_read (which will retry until
1485 it makes no progress, and then return how much was transferred). */
1486
1487 int
1488 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1489 {
1490 /* Dispatch to the topmost target, not the flattened current_target.
1491 Memory accesses check target->to_has_(all_)memory, and the
1492 flattened target doesn't inherit those. */
1493 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1494 myaddr, memaddr, len) == len)
1495 return 0;
1496 else
1497 return EIO;
1498 }
1499
1500 /* Like target_read_memory, but specify explicitly that this is a read from
1501 the target's stack. This may trigger different cache behavior. */
1502
1503 int
1504 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1505 {
1506 /* Dispatch to the topmost target, not the flattened current_target.
1507 Memory accesses check target->to_has_(all_)memory, and the
1508 flattened target doesn't inherit those. */
1509
1510 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1511 myaddr, memaddr, len) == len)
1512 return 0;
1513 else
1514 return EIO;
1515 }
1516
1517 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1518 Returns either 0 for success or an errno value if any error occurs.
1519 If an error occurs, no guarantee is made about how much data got written.
1520 Callers that can deal with partial writes should call target_write. */
1521
1522 int
1523 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1524 {
1525 /* Dispatch to the topmost target, not the flattened current_target.
1526 Memory accesses check target->to_has_(all_)memory, and the
1527 flattened target doesn't inherit those. */
1528 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1529 myaddr, memaddr, len) == len)
1530 return 0;
1531 else
1532 return EIO;
1533 }
1534
1535 /* Fetch the target's memory map. */
1536
1537 VEC(mem_region_s) *
1538 target_memory_map (void)
1539 {
1540 VEC(mem_region_s) *result;
1541 struct mem_region *last_one, *this_one;
1542 int ix;
1543 struct target_ops *t;
1544
1545 if (targetdebug)
1546 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1547
1548 for (t = current_target.beneath; t != NULL; t = t->beneath)
1549 if (t->to_memory_map != NULL)
1550 break;
1551
1552 if (t == NULL)
1553 return NULL;
1554
1555 result = t->to_memory_map (t);
1556 if (result == NULL)
1557 return NULL;
1558
1559 qsort (VEC_address (mem_region_s, result),
1560 VEC_length (mem_region_s, result),
1561 sizeof (struct mem_region), mem_region_cmp);
1562
1563 /* Check that regions do not overlap. Simultaneously assign
1564 a numbering for the "mem" commands to use to refer to
1565 each region. */
1566 last_one = NULL;
1567 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1568 {
1569 this_one->number = ix;
1570
1571 if (last_one && last_one->hi > this_one->lo)
1572 {
1573 warning (_("Overlapping regions in memory map: ignoring"));
1574 VEC_free (mem_region_s, result);
1575 return NULL;
1576 }
1577 last_one = this_one;
1578 }
1579
1580 return result;
1581 }
1582
1583 void
1584 target_flash_erase (ULONGEST address, LONGEST length)
1585 {
1586 struct target_ops *t;
1587
1588 for (t = current_target.beneath; t != NULL; t = t->beneath)
1589 if (t->to_flash_erase != NULL)
1590 {
1591 if (targetdebug)
1592 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1593 hex_string (address), phex (length, 0));
1594 t->to_flash_erase (t, address, length);
1595 return;
1596 }
1597
1598 tcomplain ();
1599 }
1600
1601 void
1602 target_flash_done (void)
1603 {
1604 struct target_ops *t;
1605
1606 for (t = current_target.beneath; t != NULL; t = t->beneath)
1607 if (t->to_flash_done != NULL)
1608 {
1609 if (targetdebug)
1610 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1611 t->to_flash_done (t);
1612 return;
1613 }
1614
1615 tcomplain ();
1616 }
1617
1618 static void
1619 show_trust_readonly (struct ui_file *file, int from_tty,
1620 struct cmd_list_element *c, const char *value)
1621 {
1622 fprintf_filtered (file, _("\
1623 Mode for reading from readonly sections is %s.\n"),
1624 value);
1625 }
1626
1627 /* More generic transfers. */
1628
1629 static LONGEST
1630 default_xfer_partial (struct target_ops *ops, enum target_object object,
1631 const char *annex, gdb_byte *readbuf,
1632 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1633 {
1634 if (object == TARGET_OBJECT_MEMORY
1635 && ops->deprecated_xfer_memory != NULL)
1636 /* If available, fall back to the target's
1637 "deprecated_xfer_memory" method. */
1638 {
1639 int xfered = -1;
1640
1641 errno = 0;
1642 if (writebuf != NULL)
1643 {
1644 void *buffer = xmalloc (len);
1645 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1646
1647 memcpy (buffer, writebuf, len);
1648 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1649 1/*write*/, NULL, ops);
1650 do_cleanups (cleanup);
1651 }
1652 if (readbuf != NULL)
1653 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1654 0/*read*/, NULL, ops);
1655 if (xfered > 0)
1656 return xfered;
1657 else if (xfered == 0 && errno == 0)
1658 /* "deprecated_xfer_memory" uses 0, cross checked against
1659 ERRNO as one indication of an error. */
1660 return 0;
1661 else
1662 return -1;
1663 }
1664 else if (ops->beneath != NULL)
1665 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1666 readbuf, writebuf, offset, len);
1667 else
1668 return -1;
1669 }
1670
1671 /* The xfer_partial handler for the topmost target. Unlike the default,
1672 it does not need to handle memory specially; it just passes all
1673 requests down the stack. */
1674
1675 static LONGEST
1676 current_xfer_partial (struct target_ops *ops, enum target_object object,
1677 const char *annex, gdb_byte *readbuf,
1678 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1679 {
1680 if (ops->beneath != NULL)
1681 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1682 readbuf, writebuf, offset, len);
1683 else
1684 return -1;
1685 }
1686
1687 /* Target vector read/write partial wrapper functions. */
1688
1689 static LONGEST
1690 target_read_partial (struct target_ops *ops,
1691 enum target_object object,
1692 const char *annex, gdb_byte *buf,
1693 ULONGEST offset, LONGEST len)
1694 {
1695 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1696 }
1697
1698 static LONGEST
1699 target_write_partial (struct target_ops *ops,
1700 enum target_object object,
1701 const char *annex, const gdb_byte *buf,
1702 ULONGEST offset, LONGEST len)
1703 {
1704 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1705 }
1706
1707 /* Wrappers to perform the full transfer. */
1708
1709 /* For docs on target_read see target.h. */
1710
1711 LONGEST
1712 target_read (struct target_ops *ops,
1713 enum target_object object,
1714 const char *annex, gdb_byte *buf,
1715 ULONGEST offset, LONGEST len)
1716 {
1717 LONGEST xfered = 0;
1718
1719 while (xfered < len)
1720 {
1721 LONGEST xfer = target_read_partial (ops, object, annex,
1722 (gdb_byte *) buf + xfered,
1723 offset + xfered, len - xfered);
1724
1725 /* Call an observer, notifying them of the xfer progress? */
1726 if (xfer == 0)
1727 return xfered;
1728 if (xfer < 0)
1729 return -1;
1730 xfered += xfer;
1731 QUIT;
1732 }
1733 return len;
1734 }
1735
1736 LONGEST
1737 target_read_until_error (struct target_ops *ops,
1738 enum target_object object,
1739 const char *annex, gdb_byte *buf,
1740 ULONGEST offset, LONGEST len)
1741 {
1742 LONGEST xfered = 0;
1743
1744 while (xfered < len)
1745 {
1746 LONGEST xfer = target_read_partial (ops, object, annex,
1747 (gdb_byte *) buf + xfered,
1748 offset + xfered, len - xfered);
1749
1750 /* Call an observer, notifying them of the xfer progress? */
1751 if (xfer == 0)
1752 return xfered;
1753 if (xfer < 0)
1754 {
1755 /* We've got an error. Try to read in smaller blocks. */
1756 ULONGEST start = offset + xfered;
1757 ULONGEST remaining = len - xfered;
1758 ULONGEST half;
1759
1760 /* If an attempt was made to read a random memory address,
1761 it's likely that the very first byte is not accessible.
1762 Try reading the first byte, to avoid doing log N tries
1763 below. */
1764 xfer = target_read_partial (ops, object, annex,
1765 (gdb_byte *) buf + xfered, start, 1);
1766 if (xfer <= 0)
1767 return xfered;
1768 start += 1;
1769 remaining -= 1;
1770 half = remaining/2;
1771
1772 while (half > 0)
1773 {
1774 xfer = target_read_partial (ops, object, annex,
1775 (gdb_byte *) buf + xfered,
1776 start, half);
1777 if (xfer == 0)
1778 return xfered;
1779 if (xfer < 0)
1780 {
1781 remaining = half;
1782 }
1783 else
1784 {
1785 /* We have successfully read the first half. So, the
1786 error must be in the second half. Adjust start and
1787 remaining to point at the second half. */
1788 xfered += xfer;
1789 start += xfer;
1790 remaining -= xfer;
1791 }
1792 half = remaining/2;
1793 }
1794
1795 return xfered;
1796 }
1797 xfered += xfer;
1798 QUIT;
1799 }
1800 return len;
1801 }
1802
1803 /* An alternative to target_write with progress callbacks. */
1804
1805 LONGEST
1806 target_write_with_progress (struct target_ops *ops,
1807 enum target_object object,
1808 const char *annex, const gdb_byte *buf,
1809 ULONGEST offset, LONGEST len,
1810 void (*progress) (ULONGEST, void *), void *baton)
1811 {
1812 LONGEST xfered = 0;
1813
1814 /* Give the progress callback a chance to set up. */
1815 if (progress)
1816 (*progress) (0, baton);
1817
1818 while (xfered < len)
1819 {
1820 LONGEST xfer = target_write_partial (ops, object, annex,
1821 (gdb_byte *) buf + xfered,
1822 offset + xfered, len - xfered);
1823
1824 if (xfer == 0)
1825 return xfered;
1826 if (xfer < 0)
1827 return -1;
1828
1829 if (progress)
1830 (*progress) (xfer, baton);
1831
1832 xfered += xfer;
1833 QUIT;
1834 }
1835 return len;
1836 }
1837
1838 /* For docs on target_write see target.h. */
1839
1840 LONGEST
1841 target_write (struct target_ops *ops,
1842 enum target_object object,
1843 const char *annex, const gdb_byte *buf,
1844 ULONGEST offset, LONGEST len)
1845 {
1846 return target_write_with_progress (ops, object, annex, buf, offset, len,
1847 NULL, NULL);
1848 }
1849
1850 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1851 the size of the transferred data. PADDING additional bytes are
1852 available in *BUF_P. This is a helper function for
1853 target_read_alloc; see the declaration of that function for more
1854 information. */
1855
1856 static LONGEST
1857 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1858 const char *annex, gdb_byte **buf_p, int padding)
1859 {
1860 size_t buf_alloc, buf_pos;
1861 gdb_byte *buf;
1862 LONGEST n;
1863
1864 /* This function does not have a length parameter; it reads the
1865 entire OBJECT). Also, it doesn't support objects fetched partly
1866 from one target and partly from another (in a different stratum,
1867 e.g. a core file and an executable). Both reasons make it
1868 unsuitable for reading memory. */
1869 gdb_assert (object != TARGET_OBJECT_MEMORY);
1870
1871 /* Start by reading up to 4K at a time. The target will throttle
1872 this number down if necessary. */
1873 buf_alloc = 4096;
1874 buf = xmalloc (buf_alloc);
1875 buf_pos = 0;
1876 while (1)
1877 {
1878 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1879 buf_pos, buf_alloc - buf_pos - padding);
1880 if (n < 0)
1881 {
1882 /* An error occurred. */
1883 xfree (buf);
1884 return -1;
1885 }
1886 else if (n == 0)
1887 {
1888 /* Read all there was. */
1889 if (buf_pos == 0)
1890 xfree (buf);
1891 else
1892 *buf_p = buf;
1893 return buf_pos;
1894 }
1895
1896 buf_pos += n;
1897
1898 /* If the buffer is filling up, expand it. */
1899 if (buf_alloc < buf_pos * 2)
1900 {
1901 buf_alloc *= 2;
1902 buf = xrealloc (buf, buf_alloc);
1903 }
1904
1905 QUIT;
1906 }
1907 }
1908
1909 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1910 the size of the transferred data. See the declaration in "target.h"
1911 function for more information about the return value. */
1912
1913 LONGEST
1914 target_read_alloc (struct target_ops *ops, enum target_object object,
1915 const char *annex, gdb_byte **buf_p)
1916 {
1917 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1918 }
1919
1920 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1921 returned as a string, allocated using xmalloc. If an error occurs
1922 or the transfer is unsupported, NULL is returned. Empty objects
1923 are returned as allocated but empty strings. A warning is issued
1924 if the result contains any embedded NUL bytes. */
1925
1926 char *
1927 target_read_stralloc (struct target_ops *ops, enum target_object object,
1928 const char *annex)
1929 {
1930 gdb_byte *buffer;
1931 LONGEST transferred;
1932
1933 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1934
1935 if (transferred < 0)
1936 return NULL;
1937
1938 if (transferred == 0)
1939 return xstrdup ("");
1940
1941 buffer[transferred] = 0;
1942 if (strlen (buffer) < transferred)
1943 warning (_("target object %d, annex %s, "
1944 "contained unexpected null characters"),
1945 (int) object, annex ? annex : "(none)");
1946
1947 return (char *) buffer;
1948 }
1949
1950 /* Memory transfer methods. */
1951
1952 void
1953 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1954 LONGEST len)
1955 {
1956 /* This method is used to read from an alternate, non-current
1957 target. This read must bypass the overlay support (as symbols
1958 don't match this target), and GDB's internal cache (wrong cache
1959 for this target). */
1960 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1961 != len)
1962 memory_error (EIO, addr);
1963 }
1964
1965 ULONGEST
1966 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1967 int len, enum bfd_endian byte_order)
1968 {
1969 gdb_byte buf[sizeof (ULONGEST)];
1970
1971 gdb_assert (len <= sizeof (buf));
1972 get_target_memory (ops, addr, buf, len);
1973 return extract_unsigned_integer (buf, len, byte_order);
1974 }
1975
1976 static void
1977 target_info (char *args, int from_tty)
1978 {
1979 struct target_ops *t;
1980 int has_all_mem = 0;
1981
1982 if (symfile_objfile != NULL)
1983 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1984
1985 for (t = target_stack; t != NULL; t = t->beneath)
1986 {
1987 if (!(*t->to_has_memory) (t))
1988 continue;
1989
1990 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1991 continue;
1992 if (has_all_mem)
1993 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1994 printf_unfiltered ("%s:\n", t->to_longname);
1995 (t->to_files_info) (t);
1996 has_all_mem = (*t->to_has_all_memory) (t);
1997 }
1998 }
1999
2000 /* This function is called before any new inferior is created, e.g.
2001 by running a program, attaching, or connecting to a target.
2002 It cleans up any state from previous invocations which might
2003 change between runs. This is a subset of what target_preopen
2004 resets (things which might change between targets). */
2005
2006 void
2007 target_pre_inferior (int from_tty)
2008 {
2009 /* Clear out solib state. Otherwise the solib state of the previous
2010 inferior might have survived and is entirely wrong for the new
2011 target. This has been observed on GNU/Linux using glibc 2.3. How
2012 to reproduce:
2013
2014 bash$ ./foo&
2015 [1] 4711
2016 bash$ ./foo&
2017 [1] 4712
2018 bash$ gdb ./foo
2019 [...]
2020 (gdb) attach 4711
2021 (gdb) detach
2022 (gdb) attach 4712
2023 Cannot access memory at address 0xdeadbeef
2024 */
2025
2026 /* In some OSs, the shared library list is the same/global/shared
2027 across inferiors. If code is shared between processes, so are
2028 memory regions and features. */
2029 if (!gdbarch_has_global_solist (target_gdbarch))
2030 {
2031 no_shared_libraries (NULL, from_tty);
2032
2033 invalidate_target_mem_regions ();
2034
2035 target_clear_description ();
2036 }
2037 }
2038
2039 /* Callback for iterate_over_inferiors. Gets rid of the given
2040 inferior. */
2041
2042 static int
2043 dispose_inferior (struct inferior *inf, void *args)
2044 {
2045 struct thread_info *thread;
2046
2047 thread = any_thread_of_process (inf->pid);
2048 if (thread)
2049 {
2050 switch_to_thread (thread->ptid);
2051
2052 /* Core inferiors actually should be detached, not killed. */
2053 if (target_has_execution)
2054 target_kill ();
2055 else
2056 target_detach (NULL, 0);
2057 }
2058
2059 return 0;
2060 }
2061
2062 /* This is to be called by the open routine before it does
2063 anything. */
2064
2065 void
2066 target_preopen (int from_tty)
2067 {
2068 dont_repeat ();
2069
2070 if (have_inferiors ())
2071 {
2072 if (!from_tty
2073 || !have_live_inferiors ()
2074 || query (_("A program is being debugged already. Kill it? ")))
2075 iterate_over_inferiors (dispose_inferior, NULL);
2076 else
2077 error (_("Program not killed."));
2078 }
2079
2080 /* Calling target_kill may remove the target from the stack. But if
2081 it doesn't (which seems like a win for UDI), remove it now. */
2082 /* Leave the exec target, though. The user may be switching from a
2083 live process to a core of the same program. */
2084 pop_all_targets_above (file_stratum, 0);
2085
2086 target_pre_inferior (from_tty);
2087 }
2088
2089 /* Detach a target after doing deferred register stores. */
2090
2091 void
2092 target_detach (char *args, int from_tty)
2093 {
2094 struct target_ops* t;
2095
2096 if (gdbarch_has_global_breakpoints (target_gdbarch))
2097 /* Don't remove global breakpoints here. They're removed on
2098 disconnection from the target. */
2099 ;
2100 else
2101 /* If we're in breakpoints-always-inserted mode, have to remove
2102 them before detaching. */
2103 remove_breakpoints_pid (PIDGET (inferior_ptid));
2104
2105 prepare_for_detach ();
2106
2107 for (t = current_target.beneath; t != NULL; t = t->beneath)
2108 {
2109 if (t->to_detach != NULL)
2110 {
2111 t->to_detach (t, args, from_tty);
2112 if (targetdebug)
2113 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2114 args, from_tty);
2115 return;
2116 }
2117 }
2118
2119 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2120 }
2121
2122 void
2123 target_disconnect (char *args, int from_tty)
2124 {
2125 struct target_ops *t;
2126
2127 /* If we're in breakpoints-always-inserted mode or if breakpoints
2128 are global across processes, we have to remove them before
2129 disconnecting. */
2130 remove_breakpoints ();
2131
2132 for (t = current_target.beneath; t != NULL; t = t->beneath)
2133 if (t->to_disconnect != NULL)
2134 {
2135 if (targetdebug)
2136 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2137 args, from_tty);
2138 t->to_disconnect (t, args, from_tty);
2139 return;
2140 }
2141
2142 tcomplain ();
2143 }
2144
2145 ptid_t
2146 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2147 {
2148 struct target_ops *t;
2149
2150 for (t = current_target.beneath; t != NULL; t = t->beneath)
2151 {
2152 if (t->to_wait != NULL)
2153 {
2154 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2155
2156 if (targetdebug)
2157 {
2158 char *status_string;
2159
2160 status_string = target_waitstatus_to_string (status);
2161 fprintf_unfiltered (gdb_stdlog,
2162 "target_wait (%d, status) = %d, %s\n",
2163 PIDGET (ptid), PIDGET (retval),
2164 status_string);
2165 xfree (status_string);
2166 }
2167
2168 return retval;
2169 }
2170 }
2171
2172 noprocess ();
2173 }
2174
2175 char *
2176 target_pid_to_str (ptid_t ptid)
2177 {
2178 struct target_ops *t;
2179
2180 for (t = current_target.beneath; t != NULL; t = t->beneath)
2181 {
2182 if (t->to_pid_to_str != NULL)
2183 return (*t->to_pid_to_str) (t, ptid);
2184 }
2185
2186 return normal_pid_to_str (ptid);
2187 }
2188
2189 void
2190 target_resume (ptid_t ptid, int step, enum target_signal signal)
2191 {
2192 struct target_ops *t;
2193
2194 target_dcache_invalidate ();
2195
2196 for (t = current_target.beneath; t != NULL; t = t->beneath)
2197 {
2198 if (t->to_resume != NULL)
2199 {
2200 t->to_resume (t, ptid, step, signal);
2201 if (targetdebug)
2202 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2203 PIDGET (ptid),
2204 step ? "step" : "continue",
2205 target_signal_to_name (signal));
2206
2207 registers_changed_ptid (ptid);
2208 set_executing (ptid, 1);
2209 set_running (ptid, 1);
2210 clear_inline_frame_state (ptid);
2211 return;
2212 }
2213 }
2214
2215 noprocess ();
2216 }
2217 /* Look through the list of possible targets for a target that can
2218 follow forks. */
2219
2220 int
2221 target_follow_fork (int follow_child)
2222 {
2223 struct target_ops *t;
2224
2225 for (t = current_target.beneath; t != NULL; t = t->beneath)
2226 {
2227 if (t->to_follow_fork != NULL)
2228 {
2229 int retval = t->to_follow_fork (t, follow_child);
2230
2231 if (targetdebug)
2232 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2233 follow_child, retval);
2234 return retval;
2235 }
2236 }
2237
2238 /* Some target returned a fork event, but did not know how to follow it. */
2239 internal_error (__FILE__, __LINE__,
2240 "could not find a target to follow fork");
2241 }
2242
2243 void
2244 target_mourn_inferior (void)
2245 {
2246 struct target_ops *t;
2247
2248 for (t = current_target.beneath; t != NULL; t = t->beneath)
2249 {
2250 if (t->to_mourn_inferior != NULL)
2251 {
2252 t->to_mourn_inferior (t);
2253 if (targetdebug)
2254 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2255
2256 /* We no longer need to keep handles on any of the object files.
2257 Make sure to release them to avoid unnecessarily locking any
2258 of them while we're not actually debugging. */
2259 bfd_cache_close_all ();
2260
2261 return;
2262 }
2263 }
2264
2265 internal_error (__FILE__, __LINE__,
2266 "could not find a target to follow mourn inferiour");
2267 }
2268
2269 /* Look for a target which can describe architectural features, starting
2270 from TARGET. If we find one, return its description. */
2271
2272 const struct target_desc *
2273 target_read_description (struct target_ops *target)
2274 {
2275 struct target_ops *t;
2276
2277 for (t = target; t != NULL; t = t->beneath)
2278 if (t->to_read_description != NULL)
2279 {
2280 const struct target_desc *tdesc;
2281
2282 tdesc = t->to_read_description (t);
2283 if (tdesc)
2284 return tdesc;
2285 }
2286
2287 return NULL;
2288 }
2289
2290 /* The default implementation of to_search_memory.
2291 This implements a basic search of memory, reading target memory and
2292 performing the search here (as opposed to performing the search in on the
2293 target side with, for example, gdbserver). */
2294
2295 int
2296 simple_search_memory (struct target_ops *ops,
2297 CORE_ADDR start_addr, ULONGEST search_space_len,
2298 const gdb_byte *pattern, ULONGEST pattern_len,
2299 CORE_ADDR *found_addrp)
2300 {
2301 /* NOTE: also defined in find.c testcase. */
2302 #define SEARCH_CHUNK_SIZE 16000
2303 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2304 /* Buffer to hold memory contents for searching. */
2305 gdb_byte *search_buf;
2306 unsigned search_buf_size;
2307 struct cleanup *old_cleanups;
2308
2309 search_buf_size = chunk_size + pattern_len - 1;
2310
2311 /* No point in trying to allocate a buffer larger than the search space. */
2312 if (search_space_len < search_buf_size)
2313 search_buf_size = search_space_len;
2314
2315 search_buf = malloc (search_buf_size);
2316 if (search_buf == NULL)
2317 error (_("Unable to allocate memory to perform the search."));
2318 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2319
2320 /* Prime the search buffer. */
2321
2322 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2323 search_buf, start_addr, search_buf_size) != search_buf_size)
2324 {
2325 warning (_("Unable to access target memory at %s, halting search."),
2326 hex_string (start_addr));
2327 do_cleanups (old_cleanups);
2328 return -1;
2329 }
2330
2331 /* Perform the search.
2332
2333 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2334 When we've scanned N bytes we copy the trailing bytes to the start and
2335 read in another N bytes. */
2336
2337 while (search_space_len >= pattern_len)
2338 {
2339 gdb_byte *found_ptr;
2340 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2341
2342 found_ptr = memmem (search_buf, nr_search_bytes,
2343 pattern, pattern_len);
2344
2345 if (found_ptr != NULL)
2346 {
2347 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2348
2349 *found_addrp = found_addr;
2350 do_cleanups (old_cleanups);
2351 return 1;
2352 }
2353
2354 /* Not found in this chunk, skip to next chunk. */
2355
2356 /* Don't let search_space_len wrap here, it's unsigned. */
2357 if (search_space_len >= chunk_size)
2358 search_space_len -= chunk_size;
2359 else
2360 search_space_len = 0;
2361
2362 if (search_space_len >= pattern_len)
2363 {
2364 unsigned keep_len = search_buf_size - chunk_size;
2365 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2366 int nr_to_read;
2367
2368 /* Copy the trailing part of the previous iteration to the front
2369 of the buffer for the next iteration. */
2370 gdb_assert (keep_len == pattern_len - 1);
2371 memcpy (search_buf, search_buf + chunk_size, keep_len);
2372
2373 nr_to_read = min (search_space_len - keep_len, chunk_size);
2374
2375 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2376 search_buf + keep_len, read_addr,
2377 nr_to_read) != nr_to_read)
2378 {
2379 warning (_("Unable to access target memory at %s, halting search."),
2380 hex_string (read_addr));
2381 do_cleanups (old_cleanups);
2382 return -1;
2383 }
2384
2385 start_addr += chunk_size;
2386 }
2387 }
2388
2389 /* Not found. */
2390
2391 do_cleanups (old_cleanups);
2392 return 0;
2393 }
2394
2395 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2396 sequence of bytes in PATTERN with length PATTERN_LEN.
2397
2398 The result is 1 if found, 0 if not found, and -1 if there was an error
2399 requiring halting of the search (e.g. memory read error).
2400 If the pattern is found the address is recorded in FOUND_ADDRP. */
2401
2402 int
2403 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2404 const gdb_byte *pattern, ULONGEST pattern_len,
2405 CORE_ADDR *found_addrp)
2406 {
2407 struct target_ops *t;
2408 int found;
2409
2410 /* We don't use INHERIT to set current_target.to_search_memory,
2411 so we have to scan the target stack and handle targetdebug
2412 ourselves. */
2413
2414 if (targetdebug)
2415 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2416 hex_string (start_addr));
2417
2418 for (t = current_target.beneath; t != NULL; t = t->beneath)
2419 if (t->to_search_memory != NULL)
2420 break;
2421
2422 if (t != NULL)
2423 {
2424 found = t->to_search_memory (t, start_addr, search_space_len,
2425 pattern, pattern_len, found_addrp);
2426 }
2427 else
2428 {
2429 /* If a special version of to_search_memory isn't available, use the
2430 simple version. */
2431 found = simple_search_memory (current_target.beneath,
2432 start_addr, search_space_len,
2433 pattern, pattern_len, found_addrp);
2434 }
2435
2436 if (targetdebug)
2437 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2438
2439 return found;
2440 }
2441
2442 /* Look through the currently pushed targets. If none of them will
2443 be able to restart the currently running process, issue an error
2444 message. */
2445
2446 void
2447 target_require_runnable (void)
2448 {
2449 struct target_ops *t;
2450
2451 for (t = target_stack; t != NULL; t = t->beneath)
2452 {
2453 /* If this target knows how to create a new program, then
2454 assume we will still be able to after killing the current
2455 one. Either killing and mourning will not pop T, or else
2456 find_default_run_target will find it again. */
2457 if (t->to_create_inferior != NULL)
2458 return;
2459
2460 /* Do not worry about thread_stratum targets that can not
2461 create inferiors. Assume they will be pushed again if
2462 necessary, and continue to the process_stratum. */
2463 if (t->to_stratum == thread_stratum
2464 || t->to_stratum == arch_stratum)
2465 continue;
2466
2467 error (_("\
2468 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2469 t->to_shortname);
2470 }
2471
2472 /* This function is only called if the target is running. In that
2473 case there should have been a process_stratum target and it
2474 should either know how to create inferiors, or not... */
2475 internal_error (__FILE__, __LINE__, "No targets found");
2476 }
2477
2478 /* Look through the list of possible targets for a target that can
2479 execute a run or attach command without any other data. This is
2480 used to locate the default process stratum.
2481
2482 If DO_MESG is not NULL, the result is always valid (error() is
2483 called for errors); else, return NULL on error. */
2484
2485 static struct target_ops *
2486 find_default_run_target (char *do_mesg)
2487 {
2488 struct target_ops **t;
2489 struct target_ops *runable = NULL;
2490 int count;
2491
2492 count = 0;
2493
2494 for (t = target_structs; t < target_structs + target_struct_size;
2495 ++t)
2496 {
2497 if ((*t)->to_can_run && target_can_run (*t))
2498 {
2499 runable = *t;
2500 ++count;
2501 }
2502 }
2503
2504 if (count != 1)
2505 {
2506 if (do_mesg)
2507 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2508 else
2509 return NULL;
2510 }
2511
2512 return runable;
2513 }
2514
2515 void
2516 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2517 {
2518 struct target_ops *t;
2519
2520 t = find_default_run_target ("attach");
2521 (t->to_attach) (t, args, from_tty);
2522 return;
2523 }
2524
2525 void
2526 find_default_create_inferior (struct target_ops *ops,
2527 char *exec_file, char *allargs, char **env,
2528 int from_tty)
2529 {
2530 struct target_ops *t;
2531
2532 t = find_default_run_target ("run");
2533 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2534 return;
2535 }
2536
2537 static int
2538 find_default_can_async_p (void)
2539 {
2540 struct target_ops *t;
2541
2542 /* This may be called before the target is pushed on the stack;
2543 look for the default process stratum. If there's none, gdb isn't
2544 configured with a native debugger, and target remote isn't
2545 connected yet. */
2546 t = find_default_run_target (NULL);
2547 if (t && t->to_can_async_p)
2548 return (t->to_can_async_p) ();
2549 return 0;
2550 }
2551
2552 static int
2553 find_default_is_async_p (void)
2554 {
2555 struct target_ops *t;
2556
2557 /* This may be called before the target is pushed on the stack;
2558 look for the default process stratum. If there's none, gdb isn't
2559 configured with a native debugger, and target remote isn't
2560 connected yet. */
2561 t = find_default_run_target (NULL);
2562 if (t && t->to_is_async_p)
2563 return (t->to_is_async_p) ();
2564 return 0;
2565 }
2566
2567 static int
2568 find_default_supports_non_stop (void)
2569 {
2570 struct target_ops *t;
2571
2572 t = find_default_run_target (NULL);
2573 if (t && t->to_supports_non_stop)
2574 return (t->to_supports_non_stop) ();
2575 return 0;
2576 }
2577
2578 int
2579 target_supports_non_stop (void)
2580 {
2581 struct target_ops *t;
2582
2583 for (t = &current_target; t != NULL; t = t->beneath)
2584 if (t->to_supports_non_stop)
2585 return t->to_supports_non_stop ();
2586
2587 return 0;
2588 }
2589
2590
2591 char *
2592 target_get_osdata (const char *type)
2593 {
2594 struct target_ops *t;
2595
2596 /* If we're already connected to something that can get us OS
2597 related data, use it. Otherwise, try using the native
2598 target. */
2599 if (current_target.to_stratum >= process_stratum)
2600 t = current_target.beneath;
2601 else
2602 t = find_default_run_target ("get OS data");
2603
2604 if (!t)
2605 return NULL;
2606
2607 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2608 }
2609
2610 /* Determine the current address space of thread PTID. */
2611
2612 struct address_space *
2613 target_thread_address_space (ptid_t ptid)
2614 {
2615 struct address_space *aspace;
2616 struct inferior *inf;
2617 struct target_ops *t;
2618
2619 for (t = current_target.beneath; t != NULL; t = t->beneath)
2620 {
2621 if (t->to_thread_address_space != NULL)
2622 {
2623 aspace = t->to_thread_address_space (t, ptid);
2624 gdb_assert (aspace);
2625
2626 if (targetdebug)
2627 fprintf_unfiltered (gdb_stdlog,
2628 "target_thread_address_space (%s) = %d\n",
2629 target_pid_to_str (ptid),
2630 address_space_num (aspace));
2631 return aspace;
2632 }
2633 }
2634
2635 /* Fall-back to the "main" address space of the inferior. */
2636 inf = find_inferior_pid (ptid_get_pid (ptid));
2637
2638 if (inf == NULL || inf->aspace == NULL)
2639 internal_error (__FILE__, __LINE__, "\
2640 Can't determine the current address space of thread %s\n",
2641 target_pid_to_str (ptid));
2642
2643 return inf->aspace;
2644 }
2645
2646 static int
2647 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2648 {
2649 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2650 }
2651
2652 static int
2653 default_watchpoint_addr_within_range (struct target_ops *target,
2654 CORE_ADDR addr,
2655 CORE_ADDR start, int length)
2656 {
2657 return addr >= start && addr < start + length;
2658 }
2659
2660 static struct gdbarch *
2661 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2662 {
2663 return target_gdbarch;
2664 }
2665
2666 static int
2667 return_zero (void)
2668 {
2669 return 0;
2670 }
2671
2672 static int
2673 return_one (void)
2674 {
2675 return 1;
2676 }
2677
2678 static int
2679 return_minus_one (void)
2680 {
2681 return -1;
2682 }
2683
2684 /* Find a single runnable target in the stack and return it. If for
2685 some reason there is more than one, return NULL. */
2686
2687 struct target_ops *
2688 find_run_target (void)
2689 {
2690 struct target_ops **t;
2691 struct target_ops *runable = NULL;
2692 int count;
2693
2694 count = 0;
2695
2696 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2697 {
2698 if ((*t)->to_can_run && target_can_run (*t))
2699 {
2700 runable = *t;
2701 ++count;
2702 }
2703 }
2704
2705 return (count == 1 ? runable : NULL);
2706 }
2707
2708 /* Find a single core_stratum target in the list of targets and return it.
2709 If for some reason there is more than one, return NULL. */
2710
2711 struct target_ops *
2712 find_core_target (void)
2713 {
2714 struct target_ops **t;
2715 struct target_ops *runable = NULL;
2716 int count;
2717
2718 count = 0;
2719
2720 for (t = target_structs; t < target_structs + target_struct_size;
2721 ++t)
2722 {
2723 if ((*t)->to_stratum == core_stratum)
2724 {
2725 runable = *t;
2726 ++count;
2727 }
2728 }
2729
2730 return (count == 1 ? runable : NULL);
2731 }
2732
2733 /*
2734 * Find the next target down the stack from the specified target.
2735 */
2736
2737 struct target_ops *
2738 find_target_beneath (struct target_ops *t)
2739 {
2740 return t->beneath;
2741 }
2742
2743 \f
2744 /* The inferior process has died. Long live the inferior! */
2745
2746 void
2747 generic_mourn_inferior (void)
2748 {
2749 ptid_t ptid;
2750
2751 ptid = inferior_ptid;
2752 inferior_ptid = null_ptid;
2753
2754 if (!ptid_equal (ptid, null_ptid))
2755 {
2756 int pid = ptid_get_pid (ptid);
2757 exit_inferior (pid);
2758 }
2759
2760 breakpoint_init_inferior (inf_exited);
2761 registers_changed ();
2762
2763 reopen_exec_file ();
2764 reinit_frame_cache ();
2765
2766 if (deprecated_detach_hook)
2767 deprecated_detach_hook ();
2768 }
2769 \f
2770 /* Helper function for child_wait and the derivatives of child_wait.
2771 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2772 translation of that in OURSTATUS. */
2773 void
2774 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2775 {
2776 if (WIFEXITED (hoststatus))
2777 {
2778 ourstatus->kind = TARGET_WAITKIND_EXITED;
2779 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2780 }
2781 else if (!WIFSTOPPED (hoststatus))
2782 {
2783 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2784 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2785 }
2786 else
2787 {
2788 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2789 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2790 }
2791 }
2792 \f
2793 /* Convert a normal process ID to a string. Returns the string in a
2794 static buffer. */
2795
2796 char *
2797 normal_pid_to_str (ptid_t ptid)
2798 {
2799 static char buf[32];
2800
2801 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2802 return buf;
2803 }
2804
2805 static char *
2806 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2807 {
2808 return normal_pid_to_str (ptid);
2809 }
2810
2811 /* Error-catcher for target_find_memory_regions. */
2812 static int
2813 dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2814 {
2815 error (_("Command not implemented for this target."));
2816 return 0;
2817 }
2818
2819 /* Error-catcher for target_make_corefile_notes. */
2820 static char *
2821 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2822 {
2823 error (_("Command not implemented for this target."));
2824 return NULL;
2825 }
2826
2827 /* Error-catcher for target_get_bookmark. */
2828 static gdb_byte *
2829 dummy_get_bookmark (char *ignore1, int ignore2)
2830 {
2831 tcomplain ();
2832 return NULL;
2833 }
2834
2835 /* Error-catcher for target_goto_bookmark. */
2836 static void
2837 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
2838 {
2839 tcomplain ();
2840 }
2841
2842 /* Set up the handful of non-empty slots needed by the dummy target
2843 vector. */
2844
2845 static void
2846 init_dummy_target (void)
2847 {
2848 dummy_target.to_shortname = "None";
2849 dummy_target.to_longname = "None";
2850 dummy_target.to_doc = "";
2851 dummy_target.to_attach = find_default_attach;
2852 dummy_target.to_detach =
2853 (void (*)(struct target_ops *, char *, int))target_ignore;
2854 dummy_target.to_create_inferior = find_default_create_inferior;
2855 dummy_target.to_can_async_p = find_default_can_async_p;
2856 dummy_target.to_is_async_p = find_default_is_async_p;
2857 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2858 dummy_target.to_pid_to_str = dummy_pid_to_str;
2859 dummy_target.to_stratum = dummy_stratum;
2860 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2861 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2862 dummy_target.to_get_bookmark = dummy_get_bookmark;
2863 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
2864 dummy_target.to_xfer_partial = default_xfer_partial;
2865 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2866 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2867 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2868 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2869 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2870 dummy_target.to_stopped_by_watchpoint = return_zero;
2871 dummy_target.to_stopped_data_address =
2872 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
2873 dummy_target.to_magic = OPS_MAGIC;
2874 }
2875 \f
2876 static void
2877 debug_to_open (char *args, int from_tty)
2878 {
2879 debug_target.to_open (args, from_tty);
2880
2881 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2882 }
2883
2884 void
2885 target_close (struct target_ops *targ, int quitting)
2886 {
2887 if (targ->to_xclose != NULL)
2888 targ->to_xclose (targ, quitting);
2889 else if (targ->to_close != NULL)
2890 targ->to_close (quitting);
2891
2892 if (targetdebug)
2893 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2894 }
2895
2896 void
2897 target_attach (char *args, int from_tty)
2898 {
2899 struct target_ops *t;
2900
2901 for (t = current_target.beneath; t != NULL; t = t->beneath)
2902 {
2903 if (t->to_attach != NULL)
2904 {
2905 t->to_attach (t, args, from_tty);
2906 if (targetdebug)
2907 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2908 args, from_tty);
2909 return;
2910 }
2911 }
2912
2913 internal_error (__FILE__, __LINE__,
2914 "could not find a target to attach");
2915 }
2916
2917 int
2918 target_thread_alive (ptid_t ptid)
2919 {
2920 struct target_ops *t;
2921
2922 for (t = current_target.beneath; t != NULL; t = t->beneath)
2923 {
2924 if (t->to_thread_alive != NULL)
2925 {
2926 int retval;
2927
2928 retval = t->to_thread_alive (t, ptid);
2929 if (targetdebug)
2930 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2931 PIDGET (ptid), retval);
2932
2933 return retval;
2934 }
2935 }
2936
2937 return 0;
2938 }
2939
2940 void
2941 target_find_new_threads (void)
2942 {
2943 struct target_ops *t;
2944
2945 for (t = current_target.beneath; t != NULL; t = t->beneath)
2946 {
2947 if (t->to_find_new_threads != NULL)
2948 {
2949 t->to_find_new_threads (t);
2950 if (targetdebug)
2951 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2952
2953 return;
2954 }
2955 }
2956 }
2957
2958 static void
2959 debug_to_post_attach (int pid)
2960 {
2961 debug_target.to_post_attach (pid);
2962
2963 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2964 }
2965
2966 /* Return a pretty printed form of target_waitstatus.
2967 Space for the result is malloc'd, caller must free. */
2968
2969 char *
2970 target_waitstatus_to_string (const struct target_waitstatus *ws)
2971 {
2972 const char *kind_str = "status->kind = ";
2973
2974 switch (ws->kind)
2975 {
2976 case TARGET_WAITKIND_EXITED:
2977 return xstrprintf ("%sexited, status = %d",
2978 kind_str, ws->value.integer);
2979 case TARGET_WAITKIND_STOPPED:
2980 return xstrprintf ("%sstopped, signal = %s",
2981 kind_str, target_signal_to_name (ws->value.sig));
2982 case TARGET_WAITKIND_SIGNALLED:
2983 return xstrprintf ("%ssignalled, signal = %s",
2984 kind_str, target_signal_to_name (ws->value.sig));
2985 case TARGET_WAITKIND_LOADED:
2986 return xstrprintf ("%sloaded", kind_str);
2987 case TARGET_WAITKIND_FORKED:
2988 return xstrprintf ("%sforked", kind_str);
2989 case TARGET_WAITKIND_VFORKED:
2990 return xstrprintf ("%svforked", kind_str);
2991 case TARGET_WAITKIND_EXECD:
2992 return xstrprintf ("%sexecd", kind_str);
2993 case TARGET_WAITKIND_SYSCALL_ENTRY:
2994 return xstrprintf ("%sentered syscall", kind_str);
2995 case TARGET_WAITKIND_SYSCALL_RETURN:
2996 return xstrprintf ("%sexited syscall", kind_str);
2997 case TARGET_WAITKIND_SPURIOUS:
2998 return xstrprintf ("%sspurious", kind_str);
2999 case TARGET_WAITKIND_IGNORE:
3000 return xstrprintf ("%signore", kind_str);
3001 case TARGET_WAITKIND_NO_HISTORY:
3002 return xstrprintf ("%sno-history", kind_str);
3003 default:
3004 return xstrprintf ("%sunknown???", kind_str);
3005 }
3006 }
3007
3008 static void
3009 debug_print_register (const char * func,
3010 struct regcache *regcache, int regno)
3011 {
3012 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3013
3014 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3015 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3016 && gdbarch_register_name (gdbarch, regno) != NULL
3017 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3018 fprintf_unfiltered (gdb_stdlog, "(%s)",
3019 gdbarch_register_name (gdbarch, regno));
3020 else
3021 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3022 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3023 {
3024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3025 int i, size = register_size (gdbarch, regno);
3026 unsigned char buf[MAX_REGISTER_SIZE];
3027
3028 regcache_raw_collect (regcache, regno, buf);
3029 fprintf_unfiltered (gdb_stdlog, " = ");
3030 for (i = 0; i < size; i++)
3031 {
3032 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3033 }
3034 if (size <= sizeof (LONGEST))
3035 {
3036 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3037
3038 fprintf_unfiltered (gdb_stdlog, " %s %s",
3039 core_addr_to_string_nz (val), plongest (val));
3040 }
3041 }
3042 fprintf_unfiltered (gdb_stdlog, "\n");
3043 }
3044
3045 void
3046 target_fetch_registers (struct regcache *regcache, int regno)
3047 {
3048 struct target_ops *t;
3049
3050 for (t = current_target.beneath; t != NULL; t = t->beneath)
3051 {
3052 if (t->to_fetch_registers != NULL)
3053 {
3054 t->to_fetch_registers (t, regcache, regno);
3055 if (targetdebug)
3056 debug_print_register ("target_fetch_registers", regcache, regno);
3057 return;
3058 }
3059 }
3060 }
3061
3062 void
3063 target_store_registers (struct regcache *regcache, int regno)
3064 {
3065 struct target_ops *t;
3066
3067 for (t = current_target.beneath; t != NULL; t = t->beneath)
3068 {
3069 if (t->to_store_registers != NULL)
3070 {
3071 t->to_store_registers (t, regcache, regno);
3072 if (targetdebug)
3073 {
3074 debug_print_register ("target_store_registers", regcache, regno);
3075 }
3076 return;
3077 }
3078 }
3079
3080 noprocess ();
3081 }
3082
3083 int
3084 target_core_of_thread (ptid_t ptid)
3085 {
3086 struct target_ops *t;
3087
3088 for (t = current_target.beneath; t != NULL; t = t->beneath)
3089 {
3090 if (t->to_core_of_thread != NULL)
3091 {
3092 int retval = t->to_core_of_thread (t, ptid);
3093
3094 if (targetdebug)
3095 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3096 PIDGET (ptid), retval);
3097 return retval;
3098 }
3099 }
3100
3101 return -1;
3102 }
3103
3104 int
3105 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3106 {
3107 struct target_ops *t;
3108
3109 for (t = current_target.beneath; t != NULL; t = t->beneath)
3110 {
3111 if (t->to_verify_memory != NULL)
3112 {
3113 int retval = t->to_verify_memory (t, data, memaddr, size);
3114
3115 if (targetdebug)
3116 fprintf_unfiltered (gdb_stdlog, "target_verify_memory (%s, %s) = %d\n",
3117 paddress (target_gdbarch, memaddr),
3118 pulongest (size),
3119 retval);
3120 return retval;
3121 }
3122 }
3123
3124 tcomplain ();
3125 }
3126
3127 static void
3128 debug_to_prepare_to_store (struct regcache *regcache)
3129 {
3130 debug_target.to_prepare_to_store (regcache);
3131
3132 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3133 }
3134
3135 static int
3136 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3137 int write, struct mem_attrib *attrib,
3138 struct target_ops *target)
3139 {
3140 int retval;
3141
3142 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3143 attrib, target);
3144
3145 fprintf_unfiltered (gdb_stdlog,
3146 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3147 paddress (target_gdbarch, memaddr), len,
3148 write ? "write" : "read", retval);
3149
3150 if (retval > 0)
3151 {
3152 int i;
3153
3154 fputs_unfiltered (", bytes =", gdb_stdlog);
3155 for (i = 0; i < retval; i++)
3156 {
3157 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3158 {
3159 if (targetdebug < 2 && i > 0)
3160 {
3161 fprintf_unfiltered (gdb_stdlog, " ...");
3162 break;
3163 }
3164 fprintf_unfiltered (gdb_stdlog, "\n");
3165 }
3166
3167 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3168 }
3169 }
3170
3171 fputc_unfiltered ('\n', gdb_stdlog);
3172
3173 return retval;
3174 }
3175
3176 static void
3177 debug_to_files_info (struct target_ops *target)
3178 {
3179 debug_target.to_files_info (target);
3180
3181 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3182 }
3183
3184 static int
3185 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3186 struct bp_target_info *bp_tgt)
3187 {
3188 int retval;
3189
3190 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3191
3192 fprintf_unfiltered (gdb_stdlog,
3193 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
3194 (unsigned long) bp_tgt->placed_address,
3195 (unsigned long) retval);
3196 return retval;
3197 }
3198
3199 static int
3200 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3201 struct bp_target_info *bp_tgt)
3202 {
3203 int retval;
3204
3205 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3206
3207 fprintf_unfiltered (gdb_stdlog,
3208 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
3209 (unsigned long) bp_tgt->placed_address,
3210 (unsigned long) retval);
3211 return retval;
3212 }
3213
3214 static int
3215 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3216 {
3217 int retval;
3218
3219 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3220
3221 fprintf_unfiltered (gdb_stdlog,
3222 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3223 (unsigned long) type,
3224 (unsigned long) cnt,
3225 (unsigned long) from_tty,
3226 (unsigned long) retval);
3227 return retval;
3228 }
3229
3230 static int
3231 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3232 {
3233 CORE_ADDR retval;
3234
3235 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3236
3237 fprintf_unfiltered (gdb_stdlog,
3238 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
3239 (unsigned long) addr,
3240 (unsigned long) len,
3241 (unsigned long) retval);
3242 return retval;
3243 }
3244
3245 static int
3246 debug_to_stopped_by_watchpoint (void)
3247 {
3248 int retval;
3249
3250 retval = debug_target.to_stopped_by_watchpoint ();
3251
3252 fprintf_unfiltered (gdb_stdlog,
3253 "target_stopped_by_watchpoint () = %ld\n",
3254 (unsigned long) retval);
3255 return retval;
3256 }
3257
3258 static int
3259 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3260 {
3261 int retval;
3262
3263 retval = debug_target.to_stopped_data_address (target, addr);
3264
3265 fprintf_unfiltered (gdb_stdlog,
3266 "target_stopped_data_address ([0x%lx]) = %ld\n",
3267 (unsigned long)*addr,
3268 (unsigned long)retval);
3269 return retval;
3270 }
3271
3272 static int
3273 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3274 CORE_ADDR addr,
3275 CORE_ADDR start, int length)
3276 {
3277 int retval;
3278
3279 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3280 start, length);
3281
3282 fprintf_filtered (gdb_stdlog,
3283 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
3284 (unsigned long) addr, (unsigned long) start, length,
3285 retval);
3286 return retval;
3287 }
3288
3289 static int
3290 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3291 struct bp_target_info *bp_tgt)
3292 {
3293 int retval;
3294
3295 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3296
3297 fprintf_unfiltered (gdb_stdlog,
3298 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
3299 (unsigned long) bp_tgt->placed_address,
3300 (unsigned long) retval);
3301 return retval;
3302 }
3303
3304 static int
3305 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3306 struct bp_target_info *bp_tgt)
3307 {
3308 int retval;
3309
3310 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3311
3312 fprintf_unfiltered (gdb_stdlog,
3313 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
3314 (unsigned long) bp_tgt->placed_address,
3315 (unsigned long) retval);
3316 return retval;
3317 }
3318
3319 static int
3320 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
3321 {
3322 int retval;
3323
3324 retval = debug_target.to_insert_watchpoint (addr, len, type);
3325
3326 fprintf_unfiltered (gdb_stdlog,
3327 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
3328 (unsigned long) addr, len, type, (unsigned long) retval);
3329 return retval;
3330 }
3331
3332 static int
3333 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
3334 {
3335 int retval;
3336
3337 retval = debug_target.to_remove_watchpoint (addr, len, type);
3338
3339 fprintf_unfiltered (gdb_stdlog,
3340 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
3341 (unsigned long) addr, len, type, (unsigned long) retval);
3342 return retval;
3343 }
3344
3345 static void
3346 debug_to_terminal_init (void)
3347 {
3348 debug_target.to_terminal_init ();
3349
3350 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3351 }
3352
3353 static void
3354 debug_to_terminal_inferior (void)
3355 {
3356 debug_target.to_terminal_inferior ();
3357
3358 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3359 }
3360
3361 static void
3362 debug_to_terminal_ours_for_output (void)
3363 {
3364 debug_target.to_terminal_ours_for_output ();
3365
3366 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3367 }
3368
3369 static void
3370 debug_to_terminal_ours (void)
3371 {
3372 debug_target.to_terminal_ours ();
3373
3374 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3375 }
3376
3377 static void
3378 debug_to_terminal_save_ours (void)
3379 {
3380 debug_target.to_terminal_save_ours ();
3381
3382 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3383 }
3384
3385 static void
3386 debug_to_terminal_info (char *arg, int from_tty)
3387 {
3388 debug_target.to_terminal_info (arg, from_tty);
3389
3390 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3391 from_tty);
3392 }
3393
3394 static void
3395 debug_to_load (char *args, int from_tty)
3396 {
3397 debug_target.to_load (args, from_tty);
3398
3399 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3400 }
3401
3402 static int
3403 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3404 {
3405 int retval;
3406
3407 retval = debug_target.to_lookup_symbol (name, addrp);
3408
3409 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3410
3411 return retval;
3412 }
3413
3414 static void
3415 debug_to_post_startup_inferior (ptid_t ptid)
3416 {
3417 debug_target.to_post_startup_inferior (ptid);
3418
3419 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3420 PIDGET (ptid));
3421 }
3422
3423 static void
3424 debug_to_acknowledge_created_inferior (int pid)
3425 {
3426 debug_target.to_acknowledge_created_inferior (pid);
3427
3428 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3429 pid);
3430 }
3431
3432 static void
3433 debug_to_insert_fork_catchpoint (int pid)
3434 {
3435 debug_target.to_insert_fork_catchpoint (pid);
3436
3437 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3438 pid);
3439 }
3440
3441 static int
3442 debug_to_remove_fork_catchpoint (int pid)
3443 {
3444 int retval;
3445
3446 retval = debug_target.to_remove_fork_catchpoint (pid);
3447
3448 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3449 pid, retval);
3450
3451 return retval;
3452 }
3453
3454 static void
3455 debug_to_insert_vfork_catchpoint (int pid)
3456 {
3457 debug_target.to_insert_vfork_catchpoint (pid);
3458
3459 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3460 pid);
3461 }
3462
3463 static int
3464 debug_to_remove_vfork_catchpoint (int pid)
3465 {
3466 int retval;
3467
3468 retval = debug_target.to_remove_vfork_catchpoint (pid);
3469
3470 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3471 pid, retval);
3472
3473 return retval;
3474 }
3475
3476 static void
3477 debug_to_insert_exec_catchpoint (int pid)
3478 {
3479 debug_target.to_insert_exec_catchpoint (pid);
3480
3481 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3482 pid);
3483 }
3484
3485 static int
3486 debug_to_remove_exec_catchpoint (int pid)
3487 {
3488 int retval;
3489
3490 retval = debug_target.to_remove_exec_catchpoint (pid);
3491
3492 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3493 pid, retval);
3494
3495 return retval;
3496 }
3497
3498 static int
3499 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3500 {
3501 int has_exited;
3502
3503 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3504
3505 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3506 pid, wait_status, *exit_status, has_exited);
3507
3508 return has_exited;
3509 }
3510
3511 static int
3512 debug_to_can_run (void)
3513 {
3514 int retval;
3515
3516 retval = debug_target.to_can_run ();
3517
3518 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3519
3520 return retval;
3521 }
3522
3523 static void
3524 debug_to_notice_signals (ptid_t ptid)
3525 {
3526 debug_target.to_notice_signals (ptid);
3527
3528 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3529 PIDGET (ptid));
3530 }
3531
3532 static struct gdbarch *
3533 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3534 {
3535 struct gdbarch *retval;
3536
3537 retval = debug_target.to_thread_architecture (ops, ptid);
3538
3539 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3540 target_pid_to_str (ptid), host_address_to_string (retval),
3541 gdbarch_bfd_arch_info (retval)->printable_name);
3542 return retval;
3543 }
3544
3545 static void
3546 debug_to_stop (ptid_t ptid)
3547 {
3548 debug_target.to_stop (ptid);
3549
3550 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3551 target_pid_to_str (ptid));
3552 }
3553
3554 static void
3555 debug_to_rcmd (char *command,
3556 struct ui_file *outbuf)
3557 {
3558 debug_target.to_rcmd (command, outbuf);
3559 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3560 }
3561
3562 static char *
3563 debug_to_pid_to_exec_file (int pid)
3564 {
3565 char *exec_file;
3566
3567 exec_file = debug_target.to_pid_to_exec_file (pid);
3568
3569 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3570 pid, exec_file);
3571
3572 return exec_file;
3573 }
3574
3575 static void
3576 setup_target_debug (void)
3577 {
3578 memcpy (&debug_target, &current_target, sizeof debug_target);
3579
3580 current_target.to_open = debug_to_open;
3581 current_target.to_post_attach = debug_to_post_attach;
3582 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3583 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3584 current_target.to_files_info = debug_to_files_info;
3585 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3586 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3587 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3588 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3589 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3590 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3591 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3592 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3593 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3594 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3595 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3596 current_target.to_terminal_init = debug_to_terminal_init;
3597 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3598 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3599 current_target.to_terminal_ours = debug_to_terminal_ours;
3600 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3601 current_target.to_terminal_info = debug_to_terminal_info;
3602 current_target.to_load = debug_to_load;
3603 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3604 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3605 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3606 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3607 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3608 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3609 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3610 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3611 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3612 current_target.to_has_exited = debug_to_has_exited;
3613 current_target.to_can_run = debug_to_can_run;
3614 current_target.to_notice_signals = debug_to_notice_signals;
3615 current_target.to_stop = debug_to_stop;
3616 current_target.to_rcmd = debug_to_rcmd;
3617 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3618 current_target.to_thread_architecture = debug_to_thread_architecture;
3619 }
3620 \f
3621
3622 static char targ_desc[] =
3623 "Names of targets and files being debugged.\n\
3624 Shows the entire stack of targets currently in use (including the exec-file,\n\
3625 core-file, and process, if any), as well as the symbol file name.";
3626
3627 static void
3628 do_monitor_command (char *cmd,
3629 int from_tty)
3630 {
3631 if ((current_target.to_rcmd
3632 == (void (*) (char *, struct ui_file *)) tcomplain)
3633 || (current_target.to_rcmd == debug_to_rcmd
3634 && (debug_target.to_rcmd
3635 == (void (*) (char *, struct ui_file *)) tcomplain)))
3636 error (_("\"monitor\" command not supported by this target."));
3637 target_rcmd (cmd, gdb_stdtarg);
3638 }
3639
3640 /* Print the name of each layers of our target stack. */
3641
3642 static void
3643 maintenance_print_target_stack (char *cmd, int from_tty)
3644 {
3645 struct target_ops *t;
3646
3647 printf_filtered (_("The current target stack is:\n"));
3648
3649 for (t = target_stack; t != NULL; t = t->beneath)
3650 {
3651 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3652 }
3653 }
3654
3655 /* Controls if async mode is permitted. */
3656 int target_async_permitted = 0;
3657
3658 /* The set command writes to this variable. If the inferior is
3659 executing, linux_nat_async_permitted is *not* updated. */
3660 static int target_async_permitted_1 = 0;
3661
3662 static void
3663 set_maintenance_target_async_permitted (char *args, int from_tty,
3664 struct cmd_list_element *c)
3665 {
3666 if (have_live_inferiors ())
3667 {
3668 target_async_permitted_1 = target_async_permitted;
3669 error (_("Cannot change this setting while the inferior is running."));
3670 }
3671
3672 target_async_permitted = target_async_permitted_1;
3673 }
3674
3675 static void
3676 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3677 struct cmd_list_element *c,
3678 const char *value)
3679 {
3680 fprintf_filtered (file, _("\
3681 Controlling the inferior in asynchronous mode is %s.\n"), value);
3682 }
3683
3684 void
3685 initialize_targets (void)
3686 {
3687 init_dummy_target ();
3688 push_target (&dummy_target);
3689
3690 add_info ("target", target_info, targ_desc);
3691 add_info ("files", target_info, targ_desc);
3692
3693 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3694 Set target debugging."), _("\
3695 Show target debugging."), _("\
3696 When non-zero, target debugging is enabled. Higher numbers are more\n\
3697 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3698 command."),
3699 NULL,
3700 show_targetdebug,
3701 &setdebuglist, &showdebuglist);
3702
3703 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3704 &trust_readonly, _("\
3705 Set mode for reading from readonly sections."), _("\
3706 Show mode for reading from readonly sections."), _("\
3707 When this mode is on, memory reads from readonly sections (such as .text)\n\
3708 will be read from the object file instead of from the target. This will\n\
3709 result in significant performance improvement for remote targets."),
3710 NULL,
3711 show_trust_readonly,
3712 &setlist, &showlist);
3713
3714 add_com ("monitor", class_obscure, do_monitor_command,
3715 _("Send a command to the remote monitor (remote targets only)."));
3716
3717 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3718 _("Print the name of each layer of the internal target stack."),
3719 &maintenanceprintlist);
3720
3721 add_setshow_boolean_cmd ("target-async", no_class,
3722 &target_async_permitted_1, _("\
3723 Set whether gdb controls the inferior in asynchronous mode."), _("\
3724 Show whether gdb controls the inferior in asynchronous mode."), _("\
3725 Tells gdb whether to control the inferior in asynchronous mode."),
3726 set_maintenance_target_async_permitted,
3727 show_maintenance_target_async_permitted,
3728 &setlist,
3729 &showlist);
3730
3731 add_setshow_boolean_cmd ("stack-cache", class_support,
3732 &stack_cache_enabled_p_1, _("\
3733 Set cache use for stack access."), _("\
3734 Show cache use for stack access."), _("\
3735 When on, use the data cache for all stack access, regardless of any\n\
3736 configured memory regions. This improves remote performance significantly.\n\
3737 By default, caching for stack access is on."),
3738 set_stack_cache_enabled_p,
3739 show_stack_cache_enabled_p,
3740 &setlist, &showlist);
3741
3742 target_dcache = dcache_init ();
3743 }