* target.h (deprecated_child_ops): Delete declaration.
[binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
124 struct expression *);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
131 CORE_ADDR, CORE_ADDR, int);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
136 struct expression *);
137
138 static void debug_to_terminal_init (void);
139
140 static void debug_to_terminal_inferior (void);
141
142 static void debug_to_terminal_ours_for_output (void);
143
144 static void debug_to_terminal_save_ours (void);
145
146 static void debug_to_terminal_ours (void);
147
148 static void debug_to_terminal_info (char *, int);
149
150 static void debug_to_load (char *, int);
151
152 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static void debug_to_stop (ptid_t);
159
160 /* Pointer to array of target architecture structures; the size of the
161 array; the current index into the array; the allocated size of the
162 array. */
163 struct target_ops **target_structs;
164 unsigned target_struct_size;
165 unsigned target_struct_index;
166 unsigned target_struct_allocsize;
167 #define DEFAULT_ALLOCSIZE 10
168
169 /* The initial current target, so that there is always a semi-valid
170 current target. */
171
172 static struct target_ops dummy_target;
173
174 /* Top of target stack. */
175
176 static struct target_ops *target_stack;
177
178 /* The target structure we are currently using to talk to a process
179 or file or whatever "inferior" we have. */
180
181 struct target_ops current_target;
182
183 /* Command list for target. */
184
185 static struct cmd_list_element *targetlist = NULL;
186
187 /* Nonzero if we should trust readonly sections from the
188 executable when reading memory. */
189
190 static int trust_readonly = 0;
191
192 /* Nonzero if we should show true memory content including
193 memory breakpoint inserted by gdb. */
194
195 static int show_memory_breakpoints = 0;
196
197 /* These globals control whether GDB attempts to perform these
198 operations; they are useful for targets that need to prevent
199 inadvertant disruption, such as in non-stop mode. */
200
201 int may_write_registers = 1;
202
203 int may_write_memory = 1;
204
205 int may_insert_breakpoints = 1;
206
207 int may_insert_tracepoints = 1;
208
209 int may_insert_fast_tracepoints = 1;
210
211 int may_stop = 1;
212
213 /* Non-zero if we want to see trace of target level stuff. */
214
215 static int targetdebug = 0;
216 static void
217 show_targetdebug (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
221 }
222
223 static void setup_target_debug (void);
224
225 /* The option sets this. */
226 static int stack_cache_enabled_p_1 = 1;
227 /* And set_stack_cache_enabled_p updates this.
228 The reason for the separation is so that we don't flush the cache for
229 on->on transitions. */
230 static int stack_cache_enabled_p = 1;
231
232 /* This is called *after* the stack-cache has been set.
233 Flush the cache for off->on and on->off transitions.
234 There's no real need to flush the cache for on->off transitions,
235 except cleanliness. */
236
237 static void
238 set_stack_cache_enabled_p (char *args, int from_tty,
239 struct cmd_list_element *c)
240 {
241 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
242 target_dcache_invalidate ();
243
244 stack_cache_enabled_p = stack_cache_enabled_p_1;
245 }
246
247 static void
248 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
252 }
253
254 /* Cache of memory operations, to speed up remote access. */
255 static DCACHE *target_dcache;
256
257 /* Invalidate the target dcache. */
258
259 void
260 target_dcache_invalidate (void)
261 {
262 dcache_invalidate (target_dcache);
263 }
264
265 /* The user just typed 'target' without the name of a target. */
266
267 static void
268 target_command (char *arg, int from_tty)
269 {
270 fputs_filtered ("Argument required (target name). Try `help target'\n",
271 gdb_stdout);
272 }
273
274 /* Default target_has_* methods for process_stratum targets. */
275
276 int
277 default_child_has_all_memory (struct target_ops *ops)
278 {
279 /* If no inferior selected, then we can't read memory here. */
280 if (ptid_equal (inferior_ptid, null_ptid))
281 return 0;
282
283 return 1;
284 }
285
286 int
287 default_child_has_memory (struct target_ops *ops)
288 {
289 /* If no inferior selected, then we can't read memory here. */
290 if (ptid_equal (inferior_ptid, null_ptid))
291 return 0;
292
293 return 1;
294 }
295
296 int
297 default_child_has_stack (struct target_ops *ops)
298 {
299 /* If no inferior selected, there's no stack. */
300 if (ptid_equal (inferior_ptid, null_ptid))
301 return 0;
302
303 return 1;
304 }
305
306 int
307 default_child_has_registers (struct target_ops *ops)
308 {
309 /* Can't read registers from no inferior. */
310 if (ptid_equal (inferior_ptid, null_ptid))
311 return 0;
312
313 return 1;
314 }
315
316 int
317 default_child_has_execution (struct target_ops *ops)
318 {
319 /* If there's no thread selected, then we can't make it run through
320 hoops. */
321 if (ptid_equal (inferior_ptid, null_ptid))
322 return 0;
323
324 return 1;
325 }
326
327
328 int
329 target_has_all_memory_1 (void)
330 {
331 struct target_ops *t;
332
333 for (t = current_target.beneath; t != NULL; t = t->beneath)
334 if (t->to_has_all_memory (t))
335 return 1;
336
337 return 0;
338 }
339
340 int
341 target_has_memory_1 (void)
342 {
343 struct target_ops *t;
344
345 for (t = current_target.beneath; t != NULL; t = t->beneath)
346 if (t->to_has_memory (t))
347 return 1;
348
349 return 0;
350 }
351
352 int
353 target_has_stack_1 (void)
354 {
355 struct target_ops *t;
356
357 for (t = current_target.beneath; t != NULL; t = t->beneath)
358 if (t->to_has_stack (t))
359 return 1;
360
361 return 0;
362 }
363
364 int
365 target_has_registers_1 (void)
366 {
367 struct target_ops *t;
368
369 for (t = current_target.beneath; t != NULL; t = t->beneath)
370 if (t->to_has_registers (t))
371 return 1;
372
373 return 0;
374 }
375
376 int
377 target_has_execution_1 (void)
378 {
379 struct target_ops *t;
380
381 for (t = current_target.beneath; t != NULL; t = t->beneath)
382 if (t->to_has_execution (t))
383 return 1;
384
385 return 0;
386 }
387
388 /* Add a possible target architecture to the list. */
389
390 void
391 add_target (struct target_ops *t)
392 {
393 /* Provide default values for all "must have" methods. */
394 if (t->to_xfer_partial == NULL)
395 t->to_xfer_partial = default_xfer_partial;
396
397 if (t->to_has_all_memory == NULL)
398 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
399
400 if (t->to_has_memory == NULL)
401 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
402
403 if (t->to_has_stack == NULL)
404 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_registers == NULL)
407 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_execution == NULL)
410 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
411
412 if (!target_structs)
413 {
414 target_struct_allocsize = DEFAULT_ALLOCSIZE;
415 target_structs = (struct target_ops **) xmalloc
416 (target_struct_allocsize * sizeof (*target_structs));
417 }
418 if (target_struct_size >= target_struct_allocsize)
419 {
420 target_struct_allocsize *= 2;
421 target_structs = (struct target_ops **)
422 xrealloc ((char *) target_structs,
423 target_struct_allocsize * sizeof (*target_structs));
424 }
425 target_structs[target_struct_size++] = t;
426
427 if (targetlist == NULL)
428 add_prefix_cmd ("target", class_run, target_command, _("\
429 Connect to a target machine or process.\n\
430 The first argument is the type or protocol of the target machine.\n\
431 Remaining arguments are interpreted by the target protocol. For more\n\
432 information on the arguments for a particular protocol, type\n\
433 `help target ' followed by the protocol name."),
434 &targetlist, "target ", 0, &cmdlist);
435 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
436 }
437
438 /* Stub functions */
439
440 void
441 target_ignore (void)
442 {
443 }
444
445 void
446 target_kill (void)
447 {
448 struct target_ops *t;
449
450 for (t = current_target.beneath; t != NULL; t = t->beneath)
451 if (t->to_kill != NULL)
452 {
453 if (targetdebug)
454 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
455
456 t->to_kill (t);
457 return;
458 }
459
460 noprocess ();
461 }
462
463 void
464 target_load (char *arg, int from_tty)
465 {
466 target_dcache_invalidate ();
467 (*current_target.to_load) (arg, from_tty);
468 }
469
470 void
471 target_create_inferior (char *exec_file, char *args,
472 char **env, int from_tty)
473 {
474 struct target_ops *t;
475
476 for (t = current_target.beneath; t != NULL; t = t->beneath)
477 {
478 if (t->to_create_inferior != NULL)
479 {
480 t->to_create_inferior (t, exec_file, args, env, from_tty);
481 if (targetdebug)
482 fprintf_unfiltered (gdb_stdlog,
483 "target_create_inferior (%s, %s, xxx, %d)\n",
484 exec_file, args, from_tty);
485 return;
486 }
487 }
488
489 internal_error (__FILE__, __LINE__,
490 _("could not find a target to create inferior"));
491 }
492
493 void
494 target_terminal_inferior (void)
495 {
496 /* A background resume (``run&'') should leave GDB in control of the
497 terminal. Use target_can_async_p, not target_is_async_p, since at
498 this point the target is not async yet. However, if sync_execution
499 is not set, we know it will become async prior to resume. */
500 if (target_can_async_p () && !sync_execution)
501 return;
502
503 /* If GDB is resuming the inferior in the foreground, install
504 inferior's terminal modes. */
505 (*current_target.to_terminal_inferior) ();
506 }
507
508 static int
509 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
510 struct target_ops *t)
511 {
512 errno = EIO; /* Can't read/write this location. */
513 return 0; /* No bytes handled. */
514 }
515
516 static void
517 tcomplain (void)
518 {
519 error (_("You can't do that when your target is `%s'"),
520 current_target.to_shortname);
521 }
522
523 void
524 noprocess (void)
525 {
526 error (_("You can't do that without a process to debug."));
527 }
528
529 static int
530 nosymbol (char *name, CORE_ADDR *addrp)
531 {
532 return 1; /* Symbol does not exist in target env. */
533 }
534
535 static void
536 default_terminal_info (char *args, int from_tty)
537 {
538 printf_unfiltered (_("No saved terminal information.\n"));
539 }
540
541 /* A default implementation for the to_get_ada_task_ptid target method.
542
543 This function builds the PTID by using both LWP and TID as part of
544 the PTID lwp and tid elements. The pid used is the pid of the
545 inferior_ptid. */
546
547 static ptid_t
548 default_get_ada_task_ptid (long lwp, long tid)
549 {
550 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
551 }
552
553 /* Go through the target stack from top to bottom, copying over zero
554 entries in current_target, then filling in still empty entries. In
555 effect, we are doing class inheritance through the pushed target
556 vectors.
557
558 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
559 is currently implemented, is that it discards any knowledge of
560 which target an inherited method originally belonged to.
561 Consequently, new new target methods should instead explicitly and
562 locally search the target stack for the target that can handle the
563 request. */
564
565 static void
566 update_current_target (void)
567 {
568 struct target_ops *t;
569
570 /* First, reset current's contents. */
571 memset (&current_target, 0, sizeof (current_target));
572
573 #define INHERIT(FIELD, TARGET) \
574 if (!current_target.FIELD) \
575 current_target.FIELD = (TARGET)->FIELD
576
577 for (t = target_stack; t; t = t->beneath)
578 {
579 INHERIT (to_shortname, t);
580 INHERIT (to_longname, t);
581 INHERIT (to_doc, t);
582 /* Do not inherit to_open. */
583 /* Do not inherit to_close. */
584 /* Do not inherit to_attach. */
585 INHERIT (to_post_attach, t);
586 INHERIT (to_attach_no_wait, t);
587 /* Do not inherit to_detach. */
588 /* Do not inherit to_disconnect. */
589 /* Do not inherit to_resume. */
590 /* Do not inherit to_wait. */
591 /* Do not inherit to_fetch_registers. */
592 /* Do not inherit to_store_registers. */
593 INHERIT (to_prepare_to_store, t);
594 INHERIT (deprecated_xfer_memory, t);
595 INHERIT (to_files_info, t);
596 INHERIT (to_insert_breakpoint, t);
597 INHERIT (to_remove_breakpoint, t);
598 INHERIT (to_can_use_hw_breakpoint, t);
599 INHERIT (to_insert_hw_breakpoint, t);
600 INHERIT (to_remove_hw_breakpoint, t);
601 INHERIT (to_insert_watchpoint, t);
602 INHERIT (to_remove_watchpoint, t);
603 INHERIT (to_stopped_data_address, t);
604 INHERIT (to_have_steppable_watchpoint, t);
605 INHERIT (to_have_continuable_watchpoint, t);
606 INHERIT (to_stopped_by_watchpoint, t);
607 INHERIT (to_watchpoint_addr_within_range, t);
608 INHERIT (to_region_ok_for_hw_watchpoint, t);
609 INHERIT (to_can_accel_watchpoint_condition, t);
610 INHERIT (to_terminal_init, t);
611 INHERIT (to_terminal_inferior, t);
612 INHERIT (to_terminal_ours_for_output, t);
613 INHERIT (to_terminal_ours, t);
614 INHERIT (to_terminal_save_ours, t);
615 INHERIT (to_terminal_info, t);
616 /* Do not inherit to_kill. */
617 INHERIT (to_load, t);
618 INHERIT (to_lookup_symbol, t);
619 /* Do no inherit to_create_inferior. */
620 INHERIT (to_post_startup_inferior, t);
621 INHERIT (to_insert_fork_catchpoint, t);
622 INHERIT (to_remove_fork_catchpoint, t);
623 INHERIT (to_insert_vfork_catchpoint, t);
624 INHERIT (to_remove_vfork_catchpoint, t);
625 /* Do not inherit to_follow_fork. */
626 INHERIT (to_insert_exec_catchpoint, t);
627 INHERIT (to_remove_exec_catchpoint, t);
628 INHERIT (to_set_syscall_catchpoint, t);
629 INHERIT (to_has_exited, t);
630 /* Do not inherit to_mourn_inferior. */
631 INHERIT (to_can_run, t);
632 INHERIT (to_notice_signals, t);
633 /* Do not inherit to_thread_alive. */
634 /* Do not inherit to_find_new_threads. */
635 /* Do not inherit to_pid_to_str. */
636 INHERIT (to_extra_thread_info, t);
637 INHERIT (to_stop, t);
638 /* Do not inherit to_xfer_partial. */
639 INHERIT (to_rcmd, t);
640 INHERIT (to_pid_to_exec_file, t);
641 INHERIT (to_log_command, t);
642 INHERIT (to_stratum, t);
643 /* Do not inherit to_has_all_memory. */
644 /* Do not inherit to_has_memory. */
645 /* Do not inherit to_has_stack. */
646 /* Do not inherit to_has_registers. */
647 /* Do not inherit to_has_execution. */
648 INHERIT (to_has_thread_control, t);
649 INHERIT (to_can_async_p, t);
650 INHERIT (to_is_async_p, t);
651 INHERIT (to_async, t);
652 INHERIT (to_async_mask, t);
653 INHERIT (to_find_memory_regions, t);
654 INHERIT (to_make_corefile_notes, t);
655 INHERIT (to_get_bookmark, t);
656 INHERIT (to_goto_bookmark, t);
657 /* Do not inherit to_get_thread_local_address. */
658 INHERIT (to_can_execute_reverse, t);
659 INHERIT (to_thread_architecture, t);
660 /* Do not inherit to_read_description. */
661 INHERIT (to_get_ada_task_ptid, t);
662 /* Do not inherit to_search_memory. */
663 INHERIT (to_supports_multi_process, t);
664 INHERIT (to_trace_init, t);
665 INHERIT (to_download_tracepoint, t);
666 INHERIT (to_download_trace_state_variable, t);
667 INHERIT (to_trace_set_readonly_regions, t);
668 INHERIT (to_trace_start, t);
669 INHERIT (to_get_trace_status, t);
670 INHERIT (to_trace_stop, t);
671 INHERIT (to_trace_find, t);
672 INHERIT (to_get_trace_state_variable_value, t);
673 INHERIT (to_save_trace_data, t);
674 INHERIT (to_upload_tracepoints, t);
675 INHERIT (to_upload_trace_state_variables, t);
676 INHERIT (to_get_raw_trace_data, t);
677 INHERIT (to_set_disconnected_tracing, t);
678 INHERIT (to_set_circular_trace_buffer, t);
679 INHERIT (to_get_tib_address, t);
680 INHERIT (to_set_permissions, t);
681 INHERIT (to_static_tracepoint_marker_at, t);
682 INHERIT (to_static_tracepoint_markers_by_strid, t);
683 INHERIT (to_magic, t);
684 /* Do not inherit to_memory_map. */
685 /* Do not inherit to_flash_erase. */
686 /* Do not inherit to_flash_done. */
687 }
688 #undef INHERIT
689
690 /* Clean up a target struct so it no longer has any zero pointers in
691 it. Some entries are defaulted to a method that print an error,
692 others are hard-wired to a standard recursive default. */
693
694 #define de_fault(field, value) \
695 if (!current_target.field) \
696 current_target.field = value
697
698 de_fault (to_open,
699 (void (*) (char *, int))
700 tcomplain);
701 de_fault (to_close,
702 (void (*) (int))
703 target_ignore);
704 de_fault (to_post_attach,
705 (void (*) (int))
706 target_ignore);
707 de_fault (to_prepare_to_store,
708 (void (*) (struct regcache *))
709 noprocess);
710 de_fault (deprecated_xfer_memory,
711 (int (*) (CORE_ADDR, gdb_byte *, int, int,
712 struct mem_attrib *, struct target_ops *))
713 nomemory);
714 de_fault (to_files_info,
715 (void (*) (struct target_ops *))
716 target_ignore);
717 de_fault (to_insert_breakpoint,
718 memory_insert_breakpoint);
719 de_fault (to_remove_breakpoint,
720 memory_remove_breakpoint);
721 de_fault (to_can_use_hw_breakpoint,
722 (int (*) (int, int, int))
723 return_zero);
724 de_fault (to_insert_hw_breakpoint,
725 (int (*) (struct gdbarch *, struct bp_target_info *))
726 return_minus_one);
727 de_fault (to_remove_hw_breakpoint,
728 (int (*) (struct gdbarch *, struct bp_target_info *))
729 return_minus_one);
730 de_fault (to_insert_watchpoint,
731 (int (*) (CORE_ADDR, int, int, struct expression *))
732 return_minus_one);
733 de_fault (to_remove_watchpoint,
734 (int (*) (CORE_ADDR, int, int, struct expression *))
735 return_minus_one);
736 de_fault (to_stopped_by_watchpoint,
737 (int (*) (void))
738 return_zero);
739 de_fault (to_stopped_data_address,
740 (int (*) (struct target_ops *, CORE_ADDR *))
741 return_zero);
742 de_fault (to_watchpoint_addr_within_range,
743 default_watchpoint_addr_within_range);
744 de_fault (to_region_ok_for_hw_watchpoint,
745 default_region_ok_for_hw_watchpoint);
746 de_fault (to_can_accel_watchpoint_condition,
747 (int (*) (CORE_ADDR, int, int, struct expression *))
748 return_zero);
749 de_fault (to_terminal_init,
750 (void (*) (void))
751 target_ignore);
752 de_fault (to_terminal_inferior,
753 (void (*) (void))
754 target_ignore);
755 de_fault (to_terminal_ours_for_output,
756 (void (*) (void))
757 target_ignore);
758 de_fault (to_terminal_ours,
759 (void (*) (void))
760 target_ignore);
761 de_fault (to_terminal_save_ours,
762 (void (*) (void))
763 target_ignore);
764 de_fault (to_terminal_info,
765 default_terminal_info);
766 de_fault (to_load,
767 (void (*) (char *, int))
768 tcomplain);
769 de_fault (to_lookup_symbol,
770 (int (*) (char *, CORE_ADDR *))
771 nosymbol);
772 de_fault (to_post_startup_inferior,
773 (void (*) (ptid_t))
774 target_ignore);
775 de_fault (to_insert_fork_catchpoint,
776 (int (*) (int))
777 return_one);
778 de_fault (to_remove_fork_catchpoint,
779 (int (*) (int))
780 return_one);
781 de_fault (to_insert_vfork_catchpoint,
782 (int (*) (int))
783 return_one);
784 de_fault (to_remove_vfork_catchpoint,
785 (int (*) (int))
786 return_one);
787 de_fault (to_insert_exec_catchpoint,
788 (int (*) (int))
789 return_one);
790 de_fault (to_remove_exec_catchpoint,
791 (int (*) (int))
792 return_one);
793 de_fault (to_set_syscall_catchpoint,
794 (int (*) (int, int, int, int, int *))
795 return_one);
796 de_fault (to_has_exited,
797 (int (*) (int, int, int *))
798 return_zero);
799 de_fault (to_can_run,
800 return_zero);
801 de_fault (to_notice_signals,
802 (void (*) (ptid_t))
803 target_ignore);
804 de_fault (to_extra_thread_info,
805 (char *(*) (struct thread_info *))
806 return_zero);
807 de_fault (to_stop,
808 (void (*) (ptid_t))
809 target_ignore);
810 current_target.to_xfer_partial = current_xfer_partial;
811 de_fault (to_rcmd,
812 (void (*) (char *, struct ui_file *))
813 tcomplain);
814 de_fault (to_pid_to_exec_file,
815 (char *(*) (int))
816 return_zero);
817 de_fault (to_async,
818 (void (*) (void (*) (enum inferior_event_type, void*), void*))
819 tcomplain);
820 de_fault (to_async_mask,
821 (int (*) (int))
822 return_one);
823 de_fault (to_thread_architecture,
824 default_thread_architecture);
825 current_target.to_read_description = NULL;
826 de_fault (to_get_ada_task_ptid,
827 (ptid_t (*) (long, long))
828 default_get_ada_task_ptid);
829 de_fault (to_supports_multi_process,
830 (int (*) (void))
831 return_zero);
832 de_fault (to_trace_init,
833 (void (*) (void))
834 tcomplain);
835 de_fault (to_download_tracepoint,
836 (void (*) (struct breakpoint *))
837 tcomplain);
838 de_fault (to_download_trace_state_variable,
839 (void (*) (struct trace_state_variable *))
840 tcomplain);
841 de_fault (to_trace_set_readonly_regions,
842 (void (*) (void))
843 tcomplain);
844 de_fault (to_trace_start,
845 (void (*) (void))
846 tcomplain);
847 de_fault (to_get_trace_status,
848 (int (*) (struct trace_status *))
849 return_minus_one);
850 de_fault (to_trace_stop,
851 (void (*) (void))
852 tcomplain);
853 de_fault (to_trace_find,
854 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
855 return_minus_one);
856 de_fault (to_get_trace_state_variable_value,
857 (int (*) (int, LONGEST *))
858 return_zero);
859 de_fault (to_save_trace_data,
860 (int (*) (const char *))
861 tcomplain);
862 de_fault (to_upload_tracepoints,
863 (int (*) (struct uploaded_tp **))
864 return_zero);
865 de_fault (to_upload_trace_state_variables,
866 (int (*) (struct uploaded_tsv **))
867 return_zero);
868 de_fault (to_get_raw_trace_data,
869 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
870 tcomplain);
871 de_fault (to_set_disconnected_tracing,
872 (void (*) (int))
873 target_ignore);
874 de_fault (to_set_circular_trace_buffer,
875 (void (*) (int))
876 target_ignore);
877 de_fault (to_get_tib_address,
878 (int (*) (ptid_t, CORE_ADDR *))
879 tcomplain);
880 de_fault (to_set_permissions,
881 (void (*) (void))
882 target_ignore);
883 de_fault (to_static_tracepoint_marker_at,
884 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
885 return_zero);
886 de_fault (to_static_tracepoint_markers_by_strid,
887 (VEC(static_tracepoint_marker_p) * (*) (const char *))
888 tcomplain);
889 #undef de_fault
890
891 /* Finally, position the target-stack beneath the squashed
892 "current_target". That way code looking for a non-inherited
893 target method can quickly and simply find it. */
894 current_target.beneath = target_stack;
895
896 if (targetdebug)
897 setup_target_debug ();
898 }
899
900 /* Push a new target type into the stack of the existing target accessors,
901 possibly superseding some of the existing accessors.
902
903 Rather than allow an empty stack, we always have the dummy target at
904 the bottom stratum, so we can call the function vectors without
905 checking them. */
906
907 void
908 push_target (struct target_ops *t)
909 {
910 struct target_ops **cur;
911
912 /* Check magic number. If wrong, it probably means someone changed
913 the struct definition, but not all the places that initialize one. */
914 if (t->to_magic != OPS_MAGIC)
915 {
916 fprintf_unfiltered (gdb_stderr,
917 "Magic number of %s target struct wrong\n",
918 t->to_shortname);
919 internal_error (__FILE__, __LINE__,
920 _("failed internal consistency check"));
921 }
922
923 /* Find the proper stratum to install this target in. */
924 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
925 {
926 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
927 break;
928 }
929
930 /* If there's already targets at this stratum, remove them. */
931 /* FIXME: cagney/2003-10-15: I think this should be popping all
932 targets to CUR, and not just those at this stratum level. */
933 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
934 {
935 /* There's already something at this stratum level. Close it,
936 and un-hook it from the stack. */
937 struct target_ops *tmp = (*cur);
938
939 (*cur) = (*cur)->beneath;
940 tmp->beneath = NULL;
941 target_close (tmp, 0);
942 }
943
944 /* We have removed all targets in our stratum, now add the new one. */
945 t->beneath = (*cur);
946 (*cur) = t;
947
948 update_current_target ();
949 }
950
951 /* Remove a target_ops vector from the stack, wherever it may be.
952 Return how many times it was removed (0 or 1). */
953
954 int
955 unpush_target (struct target_ops *t)
956 {
957 struct target_ops **cur;
958 struct target_ops *tmp;
959
960 if (t->to_stratum == dummy_stratum)
961 internal_error (__FILE__, __LINE__,
962 _("Attempt to unpush the dummy target"));
963
964 /* Look for the specified target. Note that we assume that a target
965 can only occur once in the target stack. */
966
967 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
968 {
969 if ((*cur) == t)
970 break;
971 }
972
973 if ((*cur) == NULL)
974 return 0; /* Didn't find target_ops, quit now. */
975
976 /* NOTE: cagney/2003-12-06: In '94 the close call was made
977 unconditional by moving it to before the above check that the
978 target was in the target stack (something about "Change the way
979 pushing and popping of targets work to support target overlays
980 and inheritance"). This doesn't make much sense - only open
981 targets should be closed. */
982 target_close (t, 0);
983
984 /* Unchain the target. */
985 tmp = (*cur);
986 (*cur) = (*cur)->beneath;
987 tmp->beneath = NULL;
988
989 update_current_target ();
990
991 return 1;
992 }
993
994 void
995 pop_target (void)
996 {
997 target_close (target_stack, 0); /* Let it clean up. */
998 if (unpush_target (target_stack) == 1)
999 return;
1000
1001 fprintf_unfiltered (gdb_stderr,
1002 "pop_target couldn't find target %s\n",
1003 current_target.to_shortname);
1004 internal_error (__FILE__, __LINE__,
1005 _("failed internal consistency check"));
1006 }
1007
1008 void
1009 pop_all_targets_above (enum strata above_stratum, int quitting)
1010 {
1011 while ((int) (current_target.to_stratum) > (int) above_stratum)
1012 {
1013 target_close (target_stack, quitting);
1014 if (!unpush_target (target_stack))
1015 {
1016 fprintf_unfiltered (gdb_stderr,
1017 "pop_all_targets couldn't find target %s\n",
1018 target_stack->to_shortname);
1019 internal_error (__FILE__, __LINE__,
1020 _("failed internal consistency check"));
1021 break;
1022 }
1023 }
1024 }
1025
1026 void
1027 pop_all_targets (int quitting)
1028 {
1029 pop_all_targets_above (dummy_stratum, quitting);
1030 }
1031
1032 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1033
1034 int
1035 target_is_pushed (struct target_ops *t)
1036 {
1037 struct target_ops **cur;
1038
1039 /* Check magic number. If wrong, it probably means someone changed
1040 the struct definition, but not all the places that initialize one. */
1041 if (t->to_magic != OPS_MAGIC)
1042 {
1043 fprintf_unfiltered (gdb_stderr,
1044 "Magic number of %s target struct wrong\n",
1045 t->to_shortname);
1046 internal_error (__FILE__, __LINE__,
1047 _("failed internal consistency check"));
1048 }
1049
1050 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1051 if (*cur == t)
1052 return 1;
1053
1054 return 0;
1055 }
1056
1057 /* Using the objfile specified in OBJFILE, find the address for the
1058 current thread's thread-local storage with offset OFFSET. */
1059 CORE_ADDR
1060 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1061 {
1062 volatile CORE_ADDR addr = 0;
1063 struct target_ops *target;
1064
1065 for (target = current_target.beneath;
1066 target != NULL;
1067 target = target->beneath)
1068 {
1069 if (target->to_get_thread_local_address != NULL)
1070 break;
1071 }
1072
1073 if (target != NULL
1074 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1075 {
1076 ptid_t ptid = inferior_ptid;
1077 volatile struct gdb_exception ex;
1078
1079 TRY_CATCH (ex, RETURN_MASK_ALL)
1080 {
1081 CORE_ADDR lm_addr;
1082
1083 /* Fetch the load module address for this objfile. */
1084 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1085 objfile);
1086 /* If it's 0, throw the appropriate exception. */
1087 if (lm_addr == 0)
1088 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1089 _("TLS load module not found"));
1090
1091 addr = target->to_get_thread_local_address (target, ptid,
1092 lm_addr, offset);
1093 }
1094 /* If an error occurred, print TLS related messages here. Otherwise,
1095 throw the error to some higher catcher. */
1096 if (ex.reason < 0)
1097 {
1098 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1099
1100 switch (ex.error)
1101 {
1102 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1103 error (_("Cannot find thread-local variables "
1104 "in this thread library."));
1105 break;
1106 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1107 if (objfile_is_library)
1108 error (_("Cannot find shared library `%s' in dynamic"
1109 " linker's load module list"), objfile->name);
1110 else
1111 error (_("Cannot find executable file `%s' in dynamic"
1112 " linker's load module list"), objfile->name);
1113 break;
1114 case TLS_NOT_ALLOCATED_YET_ERROR:
1115 if (objfile_is_library)
1116 error (_("The inferior has not yet allocated storage for"
1117 " thread-local variables in\n"
1118 "the shared library `%s'\n"
1119 "for %s"),
1120 objfile->name, target_pid_to_str (ptid));
1121 else
1122 error (_("The inferior has not yet allocated storage for"
1123 " thread-local variables in\n"
1124 "the executable `%s'\n"
1125 "for %s"),
1126 objfile->name, target_pid_to_str (ptid));
1127 break;
1128 case TLS_GENERIC_ERROR:
1129 if (objfile_is_library)
1130 error (_("Cannot find thread-local storage for %s, "
1131 "shared library %s:\n%s"),
1132 target_pid_to_str (ptid),
1133 objfile->name, ex.message);
1134 else
1135 error (_("Cannot find thread-local storage for %s, "
1136 "executable file %s:\n%s"),
1137 target_pid_to_str (ptid),
1138 objfile->name, ex.message);
1139 break;
1140 default:
1141 throw_exception (ex);
1142 break;
1143 }
1144 }
1145 }
1146 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1147 TLS is an ABI-specific thing. But we don't do that yet. */
1148 else
1149 error (_("Cannot find thread-local variables on this target"));
1150
1151 return addr;
1152 }
1153
1154 #undef MIN
1155 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1156
1157 /* target_read_string -- read a null terminated string, up to LEN bytes,
1158 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1159 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1160 is responsible for freeing it. Return the number of bytes successfully
1161 read. */
1162
1163 int
1164 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1165 {
1166 int tlen, origlen, offset, i;
1167 gdb_byte buf[4];
1168 int errcode = 0;
1169 char *buffer;
1170 int buffer_allocated;
1171 char *bufptr;
1172 unsigned int nbytes_read = 0;
1173
1174 gdb_assert (string);
1175
1176 /* Small for testing. */
1177 buffer_allocated = 4;
1178 buffer = xmalloc (buffer_allocated);
1179 bufptr = buffer;
1180
1181 origlen = len;
1182
1183 while (len > 0)
1184 {
1185 tlen = MIN (len, 4 - (memaddr & 3));
1186 offset = memaddr & 3;
1187
1188 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1189 if (errcode != 0)
1190 {
1191 /* The transfer request might have crossed the boundary to an
1192 unallocated region of memory. Retry the transfer, requesting
1193 a single byte. */
1194 tlen = 1;
1195 offset = 0;
1196 errcode = target_read_memory (memaddr, buf, 1);
1197 if (errcode != 0)
1198 goto done;
1199 }
1200
1201 if (bufptr - buffer + tlen > buffer_allocated)
1202 {
1203 unsigned int bytes;
1204
1205 bytes = bufptr - buffer;
1206 buffer_allocated *= 2;
1207 buffer = xrealloc (buffer, buffer_allocated);
1208 bufptr = buffer + bytes;
1209 }
1210
1211 for (i = 0; i < tlen; i++)
1212 {
1213 *bufptr++ = buf[i + offset];
1214 if (buf[i + offset] == '\000')
1215 {
1216 nbytes_read += i + 1;
1217 goto done;
1218 }
1219 }
1220
1221 memaddr += tlen;
1222 len -= tlen;
1223 nbytes_read += tlen;
1224 }
1225 done:
1226 *string = buffer;
1227 if (errnop != NULL)
1228 *errnop = errcode;
1229 return nbytes_read;
1230 }
1231
1232 struct target_section_table *
1233 target_get_section_table (struct target_ops *target)
1234 {
1235 struct target_ops *t;
1236
1237 if (targetdebug)
1238 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1239
1240 for (t = target; t != NULL; t = t->beneath)
1241 if (t->to_get_section_table != NULL)
1242 return (*t->to_get_section_table) (t);
1243
1244 return NULL;
1245 }
1246
1247 /* Find a section containing ADDR. */
1248
1249 struct target_section *
1250 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1251 {
1252 struct target_section_table *table = target_get_section_table (target);
1253 struct target_section *secp;
1254
1255 if (table == NULL)
1256 return NULL;
1257
1258 for (secp = table->sections; secp < table->sections_end; secp++)
1259 {
1260 if (addr >= secp->addr && addr < secp->endaddr)
1261 return secp;
1262 }
1263 return NULL;
1264 }
1265
1266 /* Perform a partial memory transfer.
1267 For docs see target.h, to_xfer_partial. */
1268
1269 static LONGEST
1270 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1271 void *readbuf, const void *writebuf, ULONGEST memaddr,
1272 LONGEST len)
1273 {
1274 LONGEST res;
1275 int reg_len;
1276 struct mem_region *region;
1277 struct inferior *inf;
1278
1279 /* Zero length requests are ok and require no work. */
1280 if (len == 0)
1281 return 0;
1282
1283 /* For accesses to unmapped overlay sections, read directly from
1284 files. Must do this first, as MEMADDR may need adjustment. */
1285 if (readbuf != NULL && overlay_debugging)
1286 {
1287 struct obj_section *section = find_pc_overlay (memaddr);
1288
1289 if (pc_in_unmapped_range (memaddr, section))
1290 {
1291 struct target_section_table *table
1292 = target_get_section_table (ops);
1293 const char *section_name = section->the_bfd_section->name;
1294
1295 memaddr = overlay_mapped_address (memaddr, section);
1296 return section_table_xfer_memory_partial (readbuf, writebuf,
1297 memaddr, len,
1298 table->sections,
1299 table->sections_end,
1300 section_name);
1301 }
1302 }
1303
1304 /* Try the executable files, if "trust-readonly-sections" is set. */
1305 if (readbuf != NULL && trust_readonly)
1306 {
1307 struct target_section *secp;
1308 struct target_section_table *table;
1309
1310 secp = target_section_by_addr (ops, memaddr);
1311 if (secp != NULL
1312 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1313 & SEC_READONLY))
1314 {
1315 table = target_get_section_table (ops);
1316 return section_table_xfer_memory_partial (readbuf, writebuf,
1317 memaddr, len,
1318 table->sections,
1319 table->sections_end,
1320 NULL);
1321 }
1322 }
1323
1324 /* Try GDB's internal data cache. */
1325 region = lookup_mem_region (memaddr);
1326 /* region->hi == 0 means there's no upper bound. */
1327 if (memaddr + len < region->hi || region->hi == 0)
1328 reg_len = len;
1329 else
1330 reg_len = region->hi - memaddr;
1331
1332 switch (region->attrib.mode)
1333 {
1334 case MEM_RO:
1335 if (writebuf != NULL)
1336 return -1;
1337 break;
1338
1339 case MEM_WO:
1340 if (readbuf != NULL)
1341 return -1;
1342 break;
1343
1344 case MEM_FLASH:
1345 /* We only support writing to flash during "load" for now. */
1346 if (writebuf != NULL)
1347 error (_("Writing to flash memory forbidden in this context"));
1348 break;
1349
1350 case MEM_NONE:
1351 return -1;
1352 }
1353
1354 if (!ptid_equal (inferior_ptid, null_ptid))
1355 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1356 else
1357 inf = NULL;
1358
1359 if (inf != NULL
1360 /* The dcache reads whole cache lines; that doesn't play well
1361 with reading from a trace buffer, because reading outside of
1362 the collected memory range fails. */
1363 && get_traceframe_number () == -1
1364 && (region->attrib.cache
1365 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1366 {
1367 if (readbuf != NULL)
1368 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1369 reg_len, 0);
1370 else
1371 /* FIXME drow/2006-08-09: If we're going to preserve const
1372 correctness dcache_xfer_memory should take readbuf and
1373 writebuf. */
1374 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1375 (void *) writebuf,
1376 reg_len, 1);
1377 if (res <= 0)
1378 return -1;
1379 else
1380 {
1381 if (readbuf && !show_memory_breakpoints)
1382 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1383 return res;
1384 }
1385 }
1386
1387 /* If none of those methods found the memory we wanted, fall back
1388 to a target partial transfer. Normally a single call to
1389 to_xfer_partial is enough; if it doesn't recognize an object
1390 it will call the to_xfer_partial of the next target down.
1391 But for memory this won't do. Memory is the only target
1392 object which can be read from more than one valid target.
1393 A core file, for instance, could have some of memory but
1394 delegate other bits to the target below it. So, we must
1395 manually try all targets. */
1396
1397 do
1398 {
1399 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1400 readbuf, writebuf, memaddr, reg_len);
1401 if (res > 0)
1402 break;
1403
1404 /* We want to continue past core files to executables, but not
1405 past a running target's memory. */
1406 if (ops->to_has_all_memory (ops))
1407 break;
1408
1409 ops = ops->beneath;
1410 }
1411 while (ops != NULL);
1412
1413 if (readbuf && !show_memory_breakpoints)
1414 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1415
1416 /* Make sure the cache gets updated no matter what - if we are writing
1417 to the stack. Even if this write is not tagged as such, we still need
1418 to update the cache. */
1419
1420 if (res > 0
1421 && inf != NULL
1422 && writebuf != NULL
1423 && !region->attrib.cache
1424 && stack_cache_enabled_p
1425 && object != TARGET_OBJECT_STACK_MEMORY)
1426 {
1427 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1428 }
1429
1430 /* If we still haven't got anything, return the last error. We
1431 give up. */
1432 return res;
1433 }
1434
1435 static void
1436 restore_show_memory_breakpoints (void *arg)
1437 {
1438 show_memory_breakpoints = (uintptr_t) arg;
1439 }
1440
1441 struct cleanup *
1442 make_show_memory_breakpoints_cleanup (int show)
1443 {
1444 int current = show_memory_breakpoints;
1445
1446 show_memory_breakpoints = show;
1447 return make_cleanup (restore_show_memory_breakpoints,
1448 (void *) (uintptr_t) current);
1449 }
1450
1451 /* For docs see target.h, to_xfer_partial. */
1452
1453 static LONGEST
1454 target_xfer_partial (struct target_ops *ops,
1455 enum target_object object, const char *annex,
1456 void *readbuf, const void *writebuf,
1457 ULONGEST offset, LONGEST len)
1458 {
1459 LONGEST retval;
1460
1461 gdb_assert (ops->to_xfer_partial != NULL);
1462
1463 if (writebuf && !may_write_memory)
1464 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1465 core_addr_to_string_nz (offset), plongest (len));
1466
1467 /* If this is a memory transfer, let the memory-specific code
1468 have a look at it instead. Memory transfers are more
1469 complicated. */
1470 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1471 retval = memory_xfer_partial (ops, object, readbuf,
1472 writebuf, offset, len);
1473 else
1474 {
1475 enum target_object raw_object = object;
1476
1477 /* If this is a raw memory transfer, request the normal
1478 memory object from other layers. */
1479 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1480 raw_object = TARGET_OBJECT_MEMORY;
1481
1482 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1483 writebuf, offset, len);
1484 }
1485
1486 if (targetdebug)
1487 {
1488 const unsigned char *myaddr = NULL;
1489
1490 fprintf_unfiltered (gdb_stdlog,
1491 "%s:target_xfer_partial "
1492 "(%d, %s, %s, %s, %s, %s) = %s",
1493 ops->to_shortname,
1494 (int) object,
1495 (annex ? annex : "(null)"),
1496 host_address_to_string (readbuf),
1497 host_address_to_string (writebuf),
1498 core_addr_to_string_nz (offset),
1499 plongest (len), plongest (retval));
1500
1501 if (readbuf)
1502 myaddr = readbuf;
1503 if (writebuf)
1504 myaddr = writebuf;
1505 if (retval > 0 && myaddr != NULL)
1506 {
1507 int i;
1508
1509 fputs_unfiltered (", bytes =", gdb_stdlog);
1510 for (i = 0; i < retval; i++)
1511 {
1512 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1513 {
1514 if (targetdebug < 2 && i > 0)
1515 {
1516 fprintf_unfiltered (gdb_stdlog, " ...");
1517 break;
1518 }
1519 fprintf_unfiltered (gdb_stdlog, "\n");
1520 }
1521
1522 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1523 }
1524 }
1525
1526 fputc_unfiltered ('\n', gdb_stdlog);
1527 }
1528 return retval;
1529 }
1530
1531 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1532 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1533 if any error occurs.
1534
1535 If an error occurs, no guarantee is made about the contents of the data at
1536 MYADDR. In particular, the caller should not depend upon partial reads
1537 filling the buffer with good data. There is no way for the caller to know
1538 how much good data might have been transfered anyway. Callers that can
1539 deal with partial reads should call target_read (which will retry until
1540 it makes no progress, and then return how much was transferred). */
1541
1542 int
1543 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1544 {
1545 /* Dispatch to the topmost target, not the flattened current_target.
1546 Memory accesses check target->to_has_(all_)memory, and the
1547 flattened target doesn't inherit those. */
1548 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1549 myaddr, memaddr, len) == len)
1550 return 0;
1551 else
1552 return EIO;
1553 }
1554
1555 /* Like target_read_memory, but specify explicitly that this is a read from
1556 the target's stack. This may trigger different cache behavior. */
1557
1558 int
1559 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1560 {
1561 /* Dispatch to the topmost target, not the flattened current_target.
1562 Memory accesses check target->to_has_(all_)memory, and the
1563 flattened target doesn't inherit those. */
1564
1565 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1566 myaddr, memaddr, len) == len)
1567 return 0;
1568 else
1569 return EIO;
1570 }
1571
1572 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1573 Returns either 0 for success or an errno value if any error occurs.
1574 If an error occurs, no guarantee is made about how much data got written.
1575 Callers that can deal with partial writes should call target_write. */
1576
1577 int
1578 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1579 {
1580 /* Dispatch to the topmost target, not the flattened current_target.
1581 Memory accesses check target->to_has_(all_)memory, and the
1582 flattened target doesn't inherit those. */
1583 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1584 myaddr, memaddr, len) == len)
1585 return 0;
1586 else
1587 return EIO;
1588 }
1589
1590 /* Fetch the target's memory map. */
1591
1592 VEC(mem_region_s) *
1593 target_memory_map (void)
1594 {
1595 VEC(mem_region_s) *result;
1596 struct mem_region *last_one, *this_one;
1597 int ix;
1598 struct target_ops *t;
1599
1600 if (targetdebug)
1601 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1602
1603 for (t = current_target.beneath; t != NULL; t = t->beneath)
1604 if (t->to_memory_map != NULL)
1605 break;
1606
1607 if (t == NULL)
1608 return NULL;
1609
1610 result = t->to_memory_map (t);
1611 if (result == NULL)
1612 return NULL;
1613
1614 qsort (VEC_address (mem_region_s, result),
1615 VEC_length (mem_region_s, result),
1616 sizeof (struct mem_region), mem_region_cmp);
1617
1618 /* Check that regions do not overlap. Simultaneously assign
1619 a numbering for the "mem" commands to use to refer to
1620 each region. */
1621 last_one = NULL;
1622 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1623 {
1624 this_one->number = ix;
1625
1626 if (last_one && last_one->hi > this_one->lo)
1627 {
1628 warning (_("Overlapping regions in memory map: ignoring"));
1629 VEC_free (mem_region_s, result);
1630 return NULL;
1631 }
1632 last_one = this_one;
1633 }
1634
1635 return result;
1636 }
1637
1638 void
1639 target_flash_erase (ULONGEST address, LONGEST length)
1640 {
1641 struct target_ops *t;
1642
1643 for (t = current_target.beneath; t != NULL; t = t->beneath)
1644 if (t->to_flash_erase != NULL)
1645 {
1646 if (targetdebug)
1647 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1648 hex_string (address), phex (length, 0));
1649 t->to_flash_erase (t, address, length);
1650 return;
1651 }
1652
1653 tcomplain ();
1654 }
1655
1656 void
1657 target_flash_done (void)
1658 {
1659 struct target_ops *t;
1660
1661 for (t = current_target.beneath; t != NULL; t = t->beneath)
1662 if (t->to_flash_done != NULL)
1663 {
1664 if (targetdebug)
1665 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1666 t->to_flash_done (t);
1667 return;
1668 }
1669
1670 tcomplain ();
1671 }
1672
1673 static void
1674 show_trust_readonly (struct ui_file *file, int from_tty,
1675 struct cmd_list_element *c, const char *value)
1676 {
1677 fprintf_filtered (file,
1678 _("Mode for reading from readonly sections is %s.\n"),
1679 value);
1680 }
1681
1682 /* More generic transfers. */
1683
1684 static LONGEST
1685 default_xfer_partial (struct target_ops *ops, enum target_object object,
1686 const char *annex, gdb_byte *readbuf,
1687 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1688 {
1689 if (object == TARGET_OBJECT_MEMORY
1690 && ops->deprecated_xfer_memory != NULL)
1691 /* If available, fall back to the target's
1692 "deprecated_xfer_memory" method. */
1693 {
1694 int xfered = -1;
1695
1696 errno = 0;
1697 if (writebuf != NULL)
1698 {
1699 void *buffer = xmalloc (len);
1700 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1701
1702 memcpy (buffer, writebuf, len);
1703 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1704 1/*write*/, NULL, ops);
1705 do_cleanups (cleanup);
1706 }
1707 if (readbuf != NULL)
1708 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1709 0/*read*/, NULL, ops);
1710 if (xfered > 0)
1711 return xfered;
1712 else if (xfered == 0 && errno == 0)
1713 /* "deprecated_xfer_memory" uses 0, cross checked against
1714 ERRNO as one indication of an error. */
1715 return 0;
1716 else
1717 return -1;
1718 }
1719 else if (ops->beneath != NULL)
1720 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1721 readbuf, writebuf, offset, len);
1722 else
1723 return -1;
1724 }
1725
1726 /* The xfer_partial handler for the topmost target. Unlike the default,
1727 it does not need to handle memory specially; it just passes all
1728 requests down the stack. */
1729
1730 static LONGEST
1731 current_xfer_partial (struct target_ops *ops, enum target_object object,
1732 const char *annex, gdb_byte *readbuf,
1733 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1734 {
1735 if (ops->beneath != NULL)
1736 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1737 readbuf, writebuf, offset, len);
1738 else
1739 return -1;
1740 }
1741
1742 /* Target vector read/write partial wrapper functions. */
1743
1744 static LONGEST
1745 target_read_partial (struct target_ops *ops,
1746 enum target_object object,
1747 const char *annex, gdb_byte *buf,
1748 ULONGEST offset, LONGEST len)
1749 {
1750 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1751 }
1752
1753 static LONGEST
1754 target_write_partial (struct target_ops *ops,
1755 enum target_object object,
1756 const char *annex, const gdb_byte *buf,
1757 ULONGEST offset, LONGEST len)
1758 {
1759 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1760 }
1761
1762 /* Wrappers to perform the full transfer. */
1763
1764 /* For docs on target_read see target.h. */
1765
1766 LONGEST
1767 target_read (struct target_ops *ops,
1768 enum target_object object,
1769 const char *annex, gdb_byte *buf,
1770 ULONGEST offset, LONGEST len)
1771 {
1772 LONGEST xfered = 0;
1773
1774 while (xfered < len)
1775 {
1776 LONGEST xfer = target_read_partial (ops, object, annex,
1777 (gdb_byte *) buf + xfered,
1778 offset + xfered, len - xfered);
1779
1780 /* Call an observer, notifying them of the xfer progress? */
1781 if (xfer == 0)
1782 return xfered;
1783 if (xfer < 0)
1784 return -1;
1785 xfered += xfer;
1786 QUIT;
1787 }
1788 return len;
1789 }
1790
1791 /** Assuming that the entire [begin, end) range of memory cannot be read,
1792 try to read whatever subrange is possible to read.
1793
1794 The function results, in RESULT, either zero or one memory block.
1795 If there's a readable subrange at the beginning, it is completely
1796 read and returned. Any further readable subrange will not be read.
1797 Otherwise, if there's a readable subrange at the end, it will be
1798 completely read and returned. Any readable subranges before it (obviously,
1799 not starting at the beginning), will be ignored. In other cases --
1800 either no readable subrange, or readable subrange (s) that is neither
1801 at the beginning, or end, nothing is returned.
1802
1803 The purpose of this function is to handle a read across a boundary of
1804 accessible memory in a case when memory map is not available. The above
1805 restrictions are fine for this case, but will give incorrect results if
1806 the memory is 'patchy'. However, supporting 'patchy' memory would require
1807 trying to read every single byte, and it seems unacceptable solution.
1808 Explicit memory map is recommended for this case -- and
1809 target_read_memory_robust will take care of reading multiple ranges
1810 then. */
1811
1812 static void
1813 read_whatever_is_readable (struct target_ops *ops,
1814 ULONGEST begin, ULONGEST end,
1815 VEC(memory_read_result_s) **result)
1816 {
1817 gdb_byte *buf = xmalloc (end-begin);
1818 ULONGEST current_begin = begin;
1819 ULONGEST current_end = end;
1820 int forward;
1821 memory_read_result_s r;
1822
1823 /* If we previously failed to read 1 byte, nothing can be done here. */
1824 if (end - begin <= 1)
1825 return;
1826
1827 /* Check that either first or the last byte is readable, and give up
1828 if not. This heuristic is meant to permit reading accessible memory
1829 at the boundary of accessible region. */
1830 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1831 buf, begin, 1) == 1)
1832 {
1833 forward = 1;
1834 ++current_begin;
1835 }
1836 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1837 buf + (end-begin) - 1, end - 1, 1) == 1)
1838 {
1839 forward = 0;
1840 --current_end;
1841 }
1842 else
1843 {
1844 return;
1845 }
1846
1847 /* Loop invariant is that the [current_begin, current_end) was previously
1848 found to be not readable as a whole.
1849
1850 Note loop condition -- if the range has 1 byte, we can't divide the range
1851 so there's no point trying further. */
1852 while (current_end - current_begin > 1)
1853 {
1854 ULONGEST first_half_begin, first_half_end;
1855 ULONGEST second_half_begin, second_half_end;
1856 LONGEST xfer;
1857
1858 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1859 if (forward)
1860 {
1861 first_half_begin = current_begin;
1862 first_half_end = middle;
1863 second_half_begin = middle;
1864 second_half_end = current_end;
1865 }
1866 else
1867 {
1868 first_half_begin = middle;
1869 first_half_end = current_end;
1870 second_half_begin = current_begin;
1871 second_half_end = middle;
1872 }
1873
1874 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1875 buf + (first_half_begin - begin),
1876 first_half_begin,
1877 first_half_end - first_half_begin);
1878
1879 if (xfer == first_half_end - first_half_begin)
1880 {
1881 /* This half reads up fine. So, the error must be in the
1882 other half. */
1883 current_begin = second_half_begin;
1884 current_end = second_half_end;
1885 }
1886 else
1887 {
1888 /* This half is not readable. Because we've tried one byte, we
1889 know some part of this half if actually redable. Go to the next
1890 iteration to divide again and try to read.
1891
1892 We don't handle the other half, because this function only tries
1893 to read a single readable subrange. */
1894 current_begin = first_half_begin;
1895 current_end = first_half_end;
1896 }
1897 }
1898
1899 if (forward)
1900 {
1901 /* The [begin, current_begin) range has been read. */
1902 r.begin = begin;
1903 r.end = current_begin;
1904 r.data = buf;
1905 }
1906 else
1907 {
1908 /* The [current_end, end) range has been read. */
1909 LONGEST rlen = end - current_end;
1910 r.data = xmalloc (rlen);
1911 memcpy (r.data, buf + current_end - begin, rlen);
1912 r.begin = current_end;
1913 r.end = end;
1914 xfree (buf);
1915 }
1916 VEC_safe_push(memory_read_result_s, (*result), &r);
1917 }
1918
1919 void
1920 free_memory_read_result_vector (void *x)
1921 {
1922 VEC(memory_read_result_s) *v = x;
1923 memory_read_result_s *current;
1924 int ix;
1925
1926 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1927 {
1928 xfree (current->data);
1929 }
1930 VEC_free (memory_read_result_s, v);
1931 }
1932
1933 VEC(memory_read_result_s) *
1934 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1935 {
1936 VEC(memory_read_result_s) *result = 0;
1937
1938 LONGEST xfered = 0;
1939 while (xfered < len)
1940 {
1941 struct mem_region *region = lookup_mem_region (offset + xfered);
1942 LONGEST rlen;
1943
1944 /* If there is no explicit region, a fake one should be created. */
1945 gdb_assert (region);
1946
1947 if (region->hi == 0)
1948 rlen = len - xfered;
1949 else
1950 rlen = region->hi - offset;
1951
1952 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1953 {
1954 /* Cannot read this region. Note that we can end up here only
1955 if the region is explicitly marked inaccessible, or
1956 'inaccessible-by-default' is in effect. */
1957 xfered += rlen;
1958 }
1959 else
1960 {
1961 LONGEST to_read = min (len - xfered, rlen);
1962 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1963
1964 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1965 (gdb_byte *) buffer,
1966 offset + xfered, to_read);
1967 /* Call an observer, notifying them of the xfer progress? */
1968 if (xfer <= 0)
1969 {
1970 /* Got an error reading full chunk. See if maybe we can read
1971 some subrange. */
1972 xfree (buffer);
1973 read_whatever_is_readable (ops, offset + xfered,
1974 offset + xfered + to_read, &result);
1975 xfered += to_read;
1976 }
1977 else
1978 {
1979 struct memory_read_result r;
1980 r.data = buffer;
1981 r.begin = offset + xfered;
1982 r.end = r.begin + xfer;
1983 VEC_safe_push (memory_read_result_s, result, &r);
1984 xfered += xfer;
1985 }
1986 QUIT;
1987 }
1988 }
1989 return result;
1990 }
1991
1992
1993 /* An alternative to target_write with progress callbacks. */
1994
1995 LONGEST
1996 target_write_with_progress (struct target_ops *ops,
1997 enum target_object object,
1998 const char *annex, const gdb_byte *buf,
1999 ULONGEST offset, LONGEST len,
2000 void (*progress) (ULONGEST, void *), void *baton)
2001 {
2002 LONGEST xfered = 0;
2003
2004 /* Give the progress callback a chance to set up. */
2005 if (progress)
2006 (*progress) (0, baton);
2007
2008 while (xfered < len)
2009 {
2010 LONGEST xfer = target_write_partial (ops, object, annex,
2011 (gdb_byte *) buf + xfered,
2012 offset + xfered, len - xfered);
2013
2014 if (xfer == 0)
2015 return xfered;
2016 if (xfer < 0)
2017 return -1;
2018
2019 if (progress)
2020 (*progress) (xfer, baton);
2021
2022 xfered += xfer;
2023 QUIT;
2024 }
2025 return len;
2026 }
2027
2028 /* For docs on target_write see target.h. */
2029
2030 LONGEST
2031 target_write (struct target_ops *ops,
2032 enum target_object object,
2033 const char *annex, const gdb_byte *buf,
2034 ULONGEST offset, LONGEST len)
2035 {
2036 return target_write_with_progress (ops, object, annex, buf, offset, len,
2037 NULL, NULL);
2038 }
2039
2040 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2041 the size of the transferred data. PADDING additional bytes are
2042 available in *BUF_P. This is a helper function for
2043 target_read_alloc; see the declaration of that function for more
2044 information. */
2045
2046 static LONGEST
2047 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2048 const char *annex, gdb_byte **buf_p, int padding)
2049 {
2050 size_t buf_alloc, buf_pos;
2051 gdb_byte *buf;
2052 LONGEST n;
2053
2054 /* This function does not have a length parameter; it reads the
2055 entire OBJECT). Also, it doesn't support objects fetched partly
2056 from one target and partly from another (in a different stratum,
2057 e.g. a core file and an executable). Both reasons make it
2058 unsuitable for reading memory. */
2059 gdb_assert (object != TARGET_OBJECT_MEMORY);
2060
2061 /* Start by reading up to 4K at a time. The target will throttle
2062 this number down if necessary. */
2063 buf_alloc = 4096;
2064 buf = xmalloc (buf_alloc);
2065 buf_pos = 0;
2066 while (1)
2067 {
2068 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2069 buf_pos, buf_alloc - buf_pos - padding);
2070 if (n < 0)
2071 {
2072 /* An error occurred. */
2073 xfree (buf);
2074 return -1;
2075 }
2076 else if (n == 0)
2077 {
2078 /* Read all there was. */
2079 if (buf_pos == 0)
2080 xfree (buf);
2081 else
2082 *buf_p = buf;
2083 return buf_pos;
2084 }
2085
2086 buf_pos += n;
2087
2088 /* If the buffer is filling up, expand it. */
2089 if (buf_alloc < buf_pos * 2)
2090 {
2091 buf_alloc *= 2;
2092 buf = xrealloc (buf, buf_alloc);
2093 }
2094
2095 QUIT;
2096 }
2097 }
2098
2099 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2100 the size of the transferred data. See the declaration in "target.h"
2101 function for more information about the return value. */
2102
2103 LONGEST
2104 target_read_alloc (struct target_ops *ops, enum target_object object,
2105 const char *annex, gdb_byte **buf_p)
2106 {
2107 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2108 }
2109
2110 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2111 returned as a string, allocated using xmalloc. If an error occurs
2112 or the transfer is unsupported, NULL is returned. Empty objects
2113 are returned as allocated but empty strings. A warning is issued
2114 if the result contains any embedded NUL bytes. */
2115
2116 char *
2117 target_read_stralloc (struct target_ops *ops, enum target_object object,
2118 const char *annex)
2119 {
2120 gdb_byte *buffer;
2121 LONGEST transferred;
2122
2123 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2124
2125 if (transferred < 0)
2126 return NULL;
2127
2128 if (transferred == 0)
2129 return xstrdup ("");
2130
2131 buffer[transferred] = 0;
2132 if (strlen (buffer) < transferred)
2133 warning (_("target object %d, annex %s, "
2134 "contained unexpected null characters"),
2135 (int) object, annex ? annex : "(none)");
2136
2137 return (char *) buffer;
2138 }
2139
2140 /* Memory transfer methods. */
2141
2142 void
2143 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2144 LONGEST len)
2145 {
2146 /* This method is used to read from an alternate, non-current
2147 target. This read must bypass the overlay support (as symbols
2148 don't match this target), and GDB's internal cache (wrong cache
2149 for this target). */
2150 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2151 != len)
2152 memory_error (EIO, addr);
2153 }
2154
2155 ULONGEST
2156 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2157 int len, enum bfd_endian byte_order)
2158 {
2159 gdb_byte buf[sizeof (ULONGEST)];
2160
2161 gdb_assert (len <= sizeof (buf));
2162 get_target_memory (ops, addr, buf, len);
2163 return extract_unsigned_integer (buf, len, byte_order);
2164 }
2165
2166 int
2167 target_insert_breakpoint (struct gdbarch *gdbarch,
2168 struct bp_target_info *bp_tgt)
2169 {
2170 if (!may_insert_breakpoints)
2171 {
2172 warning (_("May not insert breakpoints"));
2173 return 1;
2174 }
2175
2176 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2177 }
2178
2179 int
2180 target_remove_breakpoint (struct gdbarch *gdbarch,
2181 struct bp_target_info *bp_tgt)
2182 {
2183 /* This is kind of a weird case to handle, but the permission might
2184 have been changed after breakpoints were inserted - in which case
2185 we should just take the user literally and assume that any
2186 breakpoints should be left in place. */
2187 if (!may_insert_breakpoints)
2188 {
2189 warning (_("May not remove breakpoints"));
2190 return 1;
2191 }
2192
2193 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2194 }
2195
2196 static void
2197 target_info (char *args, int from_tty)
2198 {
2199 struct target_ops *t;
2200 int has_all_mem = 0;
2201
2202 if (symfile_objfile != NULL)
2203 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2204
2205 for (t = target_stack; t != NULL; t = t->beneath)
2206 {
2207 if (!(*t->to_has_memory) (t))
2208 continue;
2209
2210 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2211 continue;
2212 if (has_all_mem)
2213 printf_unfiltered (_("\tWhile running this, "
2214 "GDB does not access memory from...\n"));
2215 printf_unfiltered ("%s:\n", t->to_longname);
2216 (t->to_files_info) (t);
2217 has_all_mem = (*t->to_has_all_memory) (t);
2218 }
2219 }
2220
2221 /* This function is called before any new inferior is created, e.g.
2222 by running a program, attaching, or connecting to a target.
2223 It cleans up any state from previous invocations which might
2224 change between runs. This is a subset of what target_preopen
2225 resets (things which might change between targets). */
2226
2227 void
2228 target_pre_inferior (int from_tty)
2229 {
2230 /* Clear out solib state. Otherwise the solib state of the previous
2231 inferior might have survived and is entirely wrong for the new
2232 target. This has been observed on GNU/Linux using glibc 2.3. How
2233 to reproduce:
2234
2235 bash$ ./foo&
2236 [1] 4711
2237 bash$ ./foo&
2238 [1] 4712
2239 bash$ gdb ./foo
2240 [...]
2241 (gdb) attach 4711
2242 (gdb) detach
2243 (gdb) attach 4712
2244 Cannot access memory at address 0xdeadbeef
2245 */
2246
2247 /* In some OSs, the shared library list is the same/global/shared
2248 across inferiors. If code is shared between processes, so are
2249 memory regions and features. */
2250 if (!gdbarch_has_global_solist (target_gdbarch))
2251 {
2252 no_shared_libraries (NULL, from_tty);
2253
2254 invalidate_target_mem_regions ();
2255
2256 target_clear_description ();
2257 }
2258 }
2259
2260 /* Callback for iterate_over_inferiors. Gets rid of the given
2261 inferior. */
2262
2263 static int
2264 dispose_inferior (struct inferior *inf, void *args)
2265 {
2266 struct thread_info *thread;
2267
2268 thread = any_thread_of_process (inf->pid);
2269 if (thread)
2270 {
2271 switch_to_thread (thread->ptid);
2272
2273 /* Core inferiors actually should be detached, not killed. */
2274 if (target_has_execution)
2275 target_kill ();
2276 else
2277 target_detach (NULL, 0);
2278 }
2279
2280 return 0;
2281 }
2282
2283 /* This is to be called by the open routine before it does
2284 anything. */
2285
2286 void
2287 target_preopen (int from_tty)
2288 {
2289 dont_repeat ();
2290
2291 if (have_inferiors ())
2292 {
2293 if (!from_tty
2294 || !have_live_inferiors ()
2295 || query (_("A program is being debugged already. Kill it? ")))
2296 iterate_over_inferiors (dispose_inferior, NULL);
2297 else
2298 error (_("Program not killed."));
2299 }
2300
2301 /* Calling target_kill may remove the target from the stack. But if
2302 it doesn't (which seems like a win for UDI), remove it now. */
2303 /* Leave the exec target, though. The user may be switching from a
2304 live process to a core of the same program. */
2305 pop_all_targets_above (file_stratum, 0);
2306
2307 target_pre_inferior (from_tty);
2308 }
2309
2310 /* Detach a target after doing deferred register stores. */
2311
2312 void
2313 target_detach (char *args, int from_tty)
2314 {
2315 struct target_ops* t;
2316
2317 if (gdbarch_has_global_breakpoints (target_gdbarch))
2318 /* Don't remove global breakpoints here. They're removed on
2319 disconnection from the target. */
2320 ;
2321 else
2322 /* If we're in breakpoints-always-inserted mode, have to remove
2323 them before detaching. */
2324 remove_breakpoints_pid (PIDGET (inferior_ptid));
2325
2326 prepare_for_detach ();
2327
2328 for (t = current_target.beneath; t != NULL; t = t->beneath)
2329 {
2330 if (t->to_detach != NULL)
2331 {
2332 t->to_detach (t, args, from_tty);
2333 if (targetdebug)
2334 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2335 args, from_tty);
2336 return;
2337 }
2338 }
2339
2340 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2341 }
2342
2343 void
2344 target_disconnect (char *args, int from_tty)
2345 {
2346 struct target_ops *t;
2347
2348 /* If we're in breakpoints-always-inserted mode or if breakpoints
2349 are global across processes, we have to remove them before
2350 disconnecting. */
2351 remove_breakpoints ();
2352
2353 for (t = current_target.beneath; t != NULL; t = t->beneath)
2354 if (t->to_disconnect != NULL)
2355 {
2356 if (targetdebug)
2357 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2358 args, from_tty);
2359 t->to_disconnect (t, args, from_tty);
2360 return;
2361 }
2362
2363 tcomplain ();
2364 }
2365
2366 ptid_t
2367 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2368 {
2369 struct target_ops *t;
2370
2371 for (t = current_target.beneath; t != NULL; t = t->beneath)
2372 {
2373 if (t->to_wait != NULL)
2374 {
2375 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2376
2377 if (targetdebug)
2378 {
2379 char *status_string;
2380
2381 status_string = target_waitstatus_to_string (status);
2382 fprintf_unfiltered (gdb_stdlog,
2383 "target_wait (%d, status) = %d, %s\n",
2384 PIDGET (ptid), PIDGET (retval),
2385 status_string);
2386 xfree (status_string);
2387 }
2388
2389 return retval;
2390 }
2391 }
2392
2393 noprocess ();
2394 }
2395
2396 char *
2397 target_pid_to_str (ptid_t ptid)
2398 {
2399 struct target_ops *t;
2400
2401 for (t = current_target.beneath; t != NULL; t = t->beneath)
2402 {
2403 if (t->to_pid_to_str != NULL)
2404 return (*t->to_pid_to_str) (t, ptid);
2405 }
2406
2407 return normal_pid_to_str (ptid);
2408 }
2409
2410 void
2411 target_resume (ptid_t ptid, int step, enum target_signal signal)
2412 {
2413 struct target_ops *t;
2414
2415 target_dcache_invalidate ();
2416
2417 for (t = current_target.beneath; t != NULL; t = t->beneath)
2418 {
2419 if (t->to_resume != NULL)
2420 {
2421 t->to_resume (t, ptid, step, signal);
2422 if (targetdebug)
2423 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2424 PIDGET (ptid),
2425 step ? "step" : "continue",
2426 target_signal_to_name (signal));
2427
2428 registers_changed_ptid (ptid);
2429 set_executing (ptid, 1);
2430 set_running (ptid, 1);
2431 clear_inline_frame_state (ptid);
2432 return;
2433 }
2434 }
2435
2436 noprocess ();
2437 }
2438 /* Look through the list of possible targets for a target that can
2439 follow forks. */
2440
2441 int
2442 target_follow_fork (int follow_child)
2443 {
2444 struct target_ops *t;
2445
2446 for (t = current_target.beneath; t != NULL; t = t->beneath)
2447 {
2448 if (t->to_follow_fork != NULL)
2449 {
2450 int retval = t->to_follow_fork (t, follow_child);
2451
2452 if (targetdebug)
2453 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2454 follow_child, retval);
2455 return retval;
2456 }
2457 }
2458
2459 /* Some target returned a fork event, but did not know how to follow it. */
2460 internal_error (__FILE__, __LINE__,
2461 _("could not find a target to follow fork"));
2462 }
2463
2464 void
2465 target_mourn_inferior (void)
2466 {
2467 struct target_ops *t;
2468
2469 for (t = current_target.beneath; t != NULL; t = t->beneath)
2470 {
2471 if (t->to_mourn_inferior != NULL)
2472 {
2473 t->to_mourn_inferior (t);
2474 if (targetdebug)
2475 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2476
2477 /* We no longer need to keep handles on any of the object files.
2478 Make sure to release them to avoid unnecessarily locking any
2479 of them while we're not actually debugging. */
2480 bfd_cache_close_all ();
2481
2482 return;
2483 }
2484 }
2485
2486 internal_error (__FILE__, __LINE__,
2487 _("could not find a target to follow mourn inferior"));
2488 }
2489
2490 /* Look for a target which can describe architectural features, starting
2491 from TARGET. If we find one, return its description. */
2492
2493 const struct target_desc *
2494 target_read_description (struct target_ops *target)
2495 {
2496 struct target_ops *t;
2497
2498 for (t = target; t != NULL; t = t->beneath)
2499 if (t->to_read_description != NULL)
2500 {
2501 const struct target_desc *tdesc;
2502
2503 tdesc = t->to_read_description (t);
2504 if (tdesc)
2505 return tdesc;
2506 }
2507
2508 return NULL;
2509 }
2510
2511 /* The default implementation of to_search_memory.
2512 This implements a basic search of memory, reading target memory and
2513 performing the search here (as opposed to performing the search in on the
2514 target side with, for example, gdbserver). */
2515
2516 int
2517 simple_search_memory (struct target_ops *ops,
2518 CORE_ADDR start_addr, ULONGEST search_space_len,
2519 const gdb_byte *pattern, ULONGEST pattern_len,
2520 CORE_ADDR *found_addrp)
2521 {
2522 /* NOTE: also defined in find.c testcase. */
2523 #define SEARCH_CHUNK_SIZE 16000
2524 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2525 /* Buffer to hold memory contents for searching. */
2526 gdb_byte *search_buf;
2527 unsigned search_buf_size;
2528 struct cleanup *old_cleanups;
2529
2530 search_buf_size = chunk_size + pattern_len - 1;
2531
2532 /* No point in trying to allocate a buffer larger than the search space. */
2533 if (search_space_len < search_buf_size)
2534 search_buf_size = search_space_len;
2535
2536 search_buf = malloc (search_buf_size);
2537 if (search_buf == NULL)
2538 error (_("Unable to allocate memory to perform the search."));
2539 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2540
2541 /* Prime the search buffer. */
2542
2543 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2544 search_buf, start_addr, search_buf_size) != search_buf_size)
2545 {
2546 warning (_("Unable to access target memory at %s, halting search."),
2547 hex_string (start_addr));
2548 do_cleanups (old_cleanups);
2549 return -1;
2550 }
2551
2552 /* Perform the search.
2553
2554 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2555 When we've scanned N bytes we copy the trailing bytes to the start and
2556 read in another N bytes. */
2557
2558 while (search_space_len >= pattern_len)
2559 {
2560 gdb_byte *found_ptr;
2561 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2562
2563 found_ptr = memmem (search_buf, nr_search_bytes,
2564 pattern, pattern_len);
2565
2566 if (found_ptr != NULL)
2567 {
2568 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2569
2570 *found_addrp = found_addr;
2571 do_cleanups (old_cleanups);
2572 return 1;
2573 }
2574
2575 /* Not found in this chunk, skip to next chunk. */
2576
2577 /* Don't let search_space_len wrap here, it's unsigned. */
2578 if (search_space_len >= chunk_size)
2579 search_space_len -= chunk_size;
2580 else
2581 search_space_len = 0;
2582
2583 if (search_space_len >= pattern_len)
2584 {
2585 unsigned keep_len = search_buf_size - chunk_size;
2586 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2587 int nr_to_read;
2588
2589 /* Copy the trailing part of the previous iteration to the front
2590 of the buffer for the next iteration. */
2591 gdb_assert (keep_len == pattern_len - 1);
2592 memcpy (search_buf, search_buf + chunk_size, keep_len);
2593
2594 nr_to_read = min (search_space_len - keep_len, chunk_size);
2595
2596 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2597 search_buf + keep_len, read_addr,
2598 nr_to_read) != nr_to_read)
2599 {
2600 warning (_("Unable to access target "
2601 "memory at %s, halting search."),
2602 hex_string (read_addr));
2603 do_cleanups (old_cleanups);
2604 return -1;
2605 }
2606
2607 start_addr += chunk_size;
2608 }
2609 }
2610
2611 /* Not found. */
2612
2613 do_cleanups (old_cleanups);
2614 return 0;
2615 }
2616
2617 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2618 sequence of bytes in PATTERN with length PATTERN_LEN.
2619
2620 The result is 1 if found, 0 if not found, and -1 if there was an error
2621 requiring halting of the search (e.g. memory read error).
2622 If the pattern is found the address is recorded in FOUND_ADDRP. */
2623
2624 int
2625 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2626 const gdb_byte *pattern, ULONGEST pattern_len,
2627 CORE_ADDR *found_addrp)
2628 {
2629 struct target_ops *t;
2630 int found;
2631
2632 /* We don't use INHERIT to set current_target.to_search_memory,
2633 so we have to scan the target stack and handle targetdebug
2634 ourselves. */
2635
2636 if (targetdebug)
2637 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2638 hex_string (start_addr));
2639
2640 for (t = current_target.beneath; t != NULL; t = t->beneath)
2641 if (t->to_search_memory != NULL)
2642 break;
2643
2644 if (t != NULL)
2645 {
2646 found = t->to_search_memory (t, start_addr, search_space_len,
2647 pattern, pattern_len, found_addrp);
2648 }
2649 else
2650 {
2651 /* If a special version of to_search_memory isn't available, use the
2652 simple version. */
2653 found = simple_search_memory (current_target.beneath,
2654 start_addr, search_space_len,
2655 pattern, pattern_len, found_addrp);
2656 }
2657
2658 if (targetdebug)
2659 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2660
2661 return found;
2662 }
2663
2664 /* Look through the currently pushed targets. If none of them will
2665 be able to restart the currently running process, issue an error
2666 message. */
2667
2668 void
2669 target_require_runnable (void)
2670 {
2671 struct target_ops *t;
2672
2673 for (t = target_stack; t != NULL; t = t->beneath)
2674 {
2675 /* If this target knows how to create a new program, then
2676 assume we will still be able to after killing the current
2677 one. Either killing and mourning will not pop T, or else
2678 find_default_run_target will find it again. */
2679 if (t->to_create_inferior != NULL)
2680 return;
2681
2682 /* Do not worry about thread_stratum targets that can not
2683 create inferiors. Assume they will be pushed again if
2684 necessary, and continue to the process_stratum. */
2685 if (t->to_stratum == thread_stratum
2686 || t->to_stratum == arch_stratum)
2687 continue;
2688
2689 error (_("The \"%s\" target does not support \"run\". "
2690 "Try \"help target\" or \"continue\"."),
2691 t->to_shortname);
2692 }
2693
2694 /* This function is only called if the target is running. In that
2695 case there should have been a process_stratum target and it
2696 should either know how to create inferiors, or not... */
2697 internal_error (__FILE__, __LINE__, _("No targets found"));
2698 }
2699
2700 /* Look through the list of possible targets for a target that can
2701 execute a run or attach command without any other data. This is
2702 used to locate the default process stratum.
2703
2704 If DO_MESG is not NULL, the result is always valid (error() is
2705 called for errors); else, return NULL on error. */
2706
2707 static struct target_ops *
2708 find_default_run_target (char *do_mesg)
2709 {
2710 struct target_ops **t;
2711 struct target_ops *runable = NULL;
2712 int count;
2713
2714 count = 0;
2715
2716 for (t = target_structs; t < target_structs + target_struct_size;
2717 ++t)
2718 {
2719 if ((*t)->to_can_run && target_can_run (*t))
2720 {
2721 runable = *t;
2722 ++count;
2723 }
2724 }
2725
2726 if (count != 1)
2727 {
2728 if (do_mesg)
2729 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2730 else
2731 return NULL;
2732 }
2733
2734 return runable;
2735 }
2736
2737 void
2738 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2739 {
2740 struct target_ops *t;
2741
2742 t = find_default_run_target ("attach");
2743 (t->to_attach) (t, args, from_tty);
2744 return;
2745 }
2746
2747 void
2748 find_default_create_inferior (struct target_ops *ops,
2749 char *exec_file, char *allargs, char **env,
2750 int from_tty)
2751 {
2752 struct target_ops *t;
2753
2754 t = find_default_run_target ("run");
2755 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2756 return;
2757 }
2758
2759 static int
2760 find_default_can_async_p (void)
2761 {
2762 struct target_ops *t;
2763
2764 /* This may be called before the target is pushed on the stack;
2765 look for the default process stratum. If there's none, gdb isn't
2766 configured with a native debugger, and target remote isn't
2767 connected yet. */
2768 t = find_default_run_target (NULL);
2769 if (t && t->to_can_async_p)
2770 return (t->to_can_async_p) ();
2771 return 0;
2772 }
2773
2774 static int
2775 find_default_is_async_p (void)
2776 {
2777 struct target_ops *t;
2778
2779 /* This may be called before the target is pushed on the stack;
2780 look for the default process stratum. If there's none, gdb isn't
2781 configured with a native debugger, and target remote isn't
2782 connected yet. */
2783 t = find_default_run_target (NULL);
2784 if (t && t->to_is_async_p)
2785 return (t->to_is_async_p) ();
2786 return 0;
2787 }
2788
2789 static int
2790 find_default_supports_non_stop (void)
2791 {
2792 struct target_ops *t;
2793
2794 t = find_default_run_target (NULL);
2795 if (t && t->to_supports_non_stop)
2796 return (t->to_supports_non_stop) ();
2797 return 0;
2798 }
2799
2800 int
2801 target_supports_non_stop (void)
2802 {
2803 struct target_ops *t;
2804
2805 for (t = &current_target; t != NULL; t = t->beneath)
2806 if (t->to_supports_non_stop)
2807 return t->to_supports_non_stop ();
2808
2809 return 0;
2810 }
2811
2812
2813 char *
2814 target_get_osdata (const char *type)
2815 {
2816 struct target_ops *t;
2817
2818 /* If we're already connected to something that can get us OS
2819 related data, use it. Otherwise, try using the native
2820 target. */
2821 if (current_target.to_stratum >= process_stratum)
2822 t = current_target.beneath;
2823 else
2824 t = find_default_run_target ("get OS data");
2825
2826 if (!t)
2827 return NULL;
2828
2829 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2830 }
2831
2832 /* Determine the current address space of thread PTID. */
2833
2834 struct address_space *
2835 target_thread_address_space (ptid_t ptid)
2836 {
2837 struct address_space *aspace;
2838 struct inferior *inf;
2839 struct target_ops *t;
2840
2841 for (t = current_target.beneath; t != NULL; t = t->beneath)
2842 {
2843 if (t->to_thread_address_space != NULL)
2844 {
2845 aspace = t->to_thread_address_space (t, ptid);
2846 gdb_assert (aspace);
2847
2848 if (targetdebug)
2849 fprintf_unfiltered (gdb_stdlog,
2850 "target_thread_address_space (%s) = %d\n",
2851 target_pid_to_str (ptid),
2852 address_space_num (aspace));
2853 return aspace;
2854 }
2855 }
2856
2857 /* Fall-back to the "main" address space of the inferior. */
2858 inf = find_inferior_pid (ptid_get_pid (ptid));
2859
2860 if (inf == NULL || inf->aspace == NULL)
2861 internal_error (__FILE__, __LINE__,
2862 _("Can't determine the current "
2863 "address space of thread %s\n"),
2864 target_pid_to_str (ptid));
2865
2866 return inf->aspace;
2867 }
2868
2869 static int
2870 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2871 {
2872 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2873 }
2874
2875 static int
2876 default_watchpoint_addr_within_range (struct target_ops *target,
2877 CORE_ADDR addr,
2878 CORE_ADDR start, int length)
2879 {
2880 return addr >= start && addr < start + length;
2881 }
2882
2883 static struct gdbarch *
2884 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2885 {
2886 return target_gdbarch;
2887 }
2888
2889 static int
2890 return_zero (void)
2891 {
2892 return 0;
2893 }
2894
2895 static int
2896 return_one (void)
2897 {
2898 return 1;
2899 }
2900
2901 static int
2902 return_minus_one (void)
2903 {
2904 return -1;
2905 }
2906
2907 /* Find a single runnable target in the stack and return it. If for
2908 some reason there is more than one, return NULL. */
2909
2910 struct target_ops *
2911 find_run_target (void)
2912 {
2913 struct target_ops **t;
2914 struct target_ops *runable = NULL;
2915 int count;
2916
2917 count = 0;
2918
2919 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2920 {
2921 if ((*t)->to_can_run && target_can_run (*t))
2922 {
2923 runable = *t;
2924 ++count;
2925 }
2926 }
2927
2928 return (count == 1 ? runable : NULL);
2929 }
2930
2931 /*
2932 * Find the next target down the stack from the specified target.
2933 */
2934
2935 struct target_ops *
2936 find_target_beneath (struct target_ops *t)
2937 {
2938 return t->beneath;
2939 }
2940
2941 \f
2942 /* The inferior process has died. Long live the inferior! */
2943
2944 void
2945 generic_mourn_inferior (void)
2946 {
2947 ptid_t ptid;
2948
2949 ptid = inferior_ptid;
2950 inferior_ptid = null_ptid;
2951
2952 if (!ptid_equal (ptid, null_ptid))
2953 {
2954 int pid = ptid_get_pid (ptid);
2955 exit_inferior (pid);
2956 }
2957
2958 breakpoint_init_inferior (inf_exited);
2959 registers_changed ();
2960
2961 reopen_exec_file ();
2962 reinit_frame_cache ();
2963
2964 if (deprecated_detach_hook)
2965 deprecated_detach_hook ();
2966 }
2967 \f
2968 /* Helper function for child_wait and the derivatives of child_wait.
2969 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2970 translation of that in OURSTATUS. */
2971 void
2972 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2973 {
2974 if (WIFEXITED (hoststatus))
2975 {
2976 ourstatus->kind = TARGET_WAITKIND_EXITED;
2977 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2978 }
2979 else if (!WIFSTOPPED (hoststatus))
2980 {
2981 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2982 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2983 }
2984 else
2985 {
2986 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2987 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2988 }
2989 }
2990 \f
2991 /* Convert a normal process ID to a string. Returns the string in a
2992 static buffer. */
2993
2994 char *
2995 normal_pid_to_str (ptid_t ptid)
2996 {
2997 static char buf[32];
2998
2999 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3000 return buf;
3001 }
3002
3003 static char *
3004 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3005 {
3006 return normal_pid_to_str (ptid);
3007 }
3008
3009 /* Error-catcher for target_find_memory_regions. */
3010 static int
3011 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3012 {
3013 error (_("Command not implemented for this target."));
3014 return 0;
3015 }
3016
3017 /* Error-catcher for target_make_corefile_notes. */
3018 static char *
3019 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3020 {
3021 error (_("Command not implemented for this target."));
3022 return NULL;
3023 }
3024
3025 /* Error-catcher for target_get_bookmark. */
3026 static gdb_byte *
3027 dummy_get_bookmark (char *ignore1, int ignore2)
3028 {
3029 tcomplain ();
3030 return NULL;
3031 }
3032
3033 /* Error-catcher for target_goto_bookmark. */
3034 static void
3035 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3036 {
3037 tcomplain ();
3038 }
3039
3040 /* Set up the handful of non-empty slots needed by the dummy target
3041 vector. */
3042
3043 static void
3044 init_dummy_target (void)
3045 {
3046 dummy_target.to_shortname = "None";
3047 dummy_target.to_longname = "None";
3048 dummy_target.to_doc = "";
3049 dummy_target.to_attach = find_default_attach;
3050 dummy_target.to_detach =
3051 (void (*)(struct target_ops *, char *, int))target_ignore;
3052 dummy_target.to_create_inferior = find_default_create_inferior;
3053 dummy_target.to_can_async_p = find_default_can_async_p;
3054 dummy_target.to_is_async_p = find_default_is_async_p;
3055 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3056 dummy_target.to_pid_to_str = dummy_pid_to_str;
3057 dummy_target.to_stratum = dummy_stratum;
3058 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3059 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3060 dummy_target.to_get_bookmark = dummy_get_bookmark;
3061 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3062 dummy_target.to_xfer_partial = default_xfer_partial;
3063 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3064 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3065 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3066 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3067 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
3068 dummy_target.to_stopped_by_watchpoint = return_zero;
3069 dummy_target.to_stopped_data_address =
3070 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3071 dummy_target.to_magic = OPS_MAGIC;
3072 }
3073 \f
3074 static void
3075 debug_to_open (char *args, int from_tty)
3076 {
3077 debug_target.to_open (args, from_tty);
3078
3079 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3080 }
3081
3082 void
3083 target_close (struct target_ops *targ, int quitting)
3084 {
3085 if (targ->to_xclose != NULL)
3086 targ->to_xclose (targ, quitting);
3087 else if (targ->to_close != NULL)
3088 targ->to_close (quitting);
3089
3090 if (targetdebug)
3091 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3092 }
3093
3094 void
3095 target_attach (char *args, int from_tty)
3096 {
3097 struct target_ops *t;
3098
3099 for (t = current_target.beneath; t != NULL; t = t->beneath)
3100 {
3101 if (t->to_attach != NULL)
3102 {
3103 t->to_attach (t, args, from_tty);
3104 if (targetdebug)
3105 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3106 args, from_tty);
3107 return;
3108 }
3109 }
3110
3111 internal_error (__FILE__, __LINE__,
3112 _("could not find a target to attach"));
3113 }
3114
3115 int
3116 target_thread_alive (ptid_t ptid)
3117 {
3118 struct target_ops *t;
3119
3120 for (t = current_target.beneath; t != NULL; t = t->beneath)
3121 {
3122 if (t->to_thread_alive != NULL)
3123 {
3124 int retval;
3125
3126 retval = t->to_thread_alive (t, ptid);
3127 if (targetdebug)
3128 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3129 PIDGET (ptid), retval);
3130
3131 return retval;
3132 }
3133 }
3134
3135 return 0;
3136 }
3137
3138 void
3139 target_find_new_threads (void)
3140 {
3141 struct target_ops *t;
3142
3143 for (t = current_target.beneath; t != NULL; t = t->beneath)
3144 {
3145 if (t->to_find_new_threads != NULL)
3146 {
3147 t->to_find_new_threads (t);
3148 if (targetdebug)
3149 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3150
3151 return;
3152 }
3153 }
3154 }
3155
3156 void
3157 target_stop (ptid_t ptid)
3158 {
3159 if (!may_stop)
3160 {
3161 warning (_("May not interrupt or stop the target, ignoring attempt"));
3162 return;
3163 }
3164
3165 (*current_target.to_stop) (ptid);
3166 }
3167
3168 static void
3169 debug_to_post_attach (int pid)
3170 {
3171 debug_target.to_post_attach (pid);
3172
3173 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3174 }
3175
3176 /* Return a pretty printed form of target_waitstatus.
3177 Space for the result is malloc'd, caller must free. */
3178
3179 char *
3180 target_waitstatus_to_string (const struct target_waitstatus *ws)
3181 {
3182 const char *kind_str = "status->kind = ";
3183
3184 switch (ws->kind)
3185 {
3186 case TARGET_WAITKIND_EXITED:
3187 return xstrprintf ("%sexited, status = %d",
3188 kind_str, ws->value.integer);
3189 case TARGET_WAITKIND_STOPPED:
3190 return xstrprintf ("%sstopped, signal = %s",
3191 kind_str, target_signal_to_name (ws->value.sig));
3192 case TARGET_WAITKIND_SIGNALLED:
3193 return xstrprintf ("%ssignalled, signal = %s",
3194 kind_str, target_signal_to_name (ws->value.sig));
3195 case TARGET_WAITKIND_LOADED:
3196 return xstrprintf ("%sloaded", kind_str);
3197 case TARGET_WAITKIND_FORKED:
3198 return xstrprintf ("%sforked", kind_str);
3199 case TARGET_WAITKIND_VFORKED:
3200 return xstrprintf ("%svforked", kind_str);
3201 case TARGET_WAITKIND_EXECD:
3202 return xstrprintf ("%sexecd", kind_str);
3203 case TARGET_WAITKIND_SYSCALL_ENTRY:
3204 return xstrprintf ("%sentered syscall", kind_str);
3205 case TARGET_WAITKIND_SYSCALL_RETURN:
3206 return xstrprintf ("%sexited syscall", kind_str);
3207 case TARGET_WAITKIND_SPURIOUS:
3208 return xstrprintf ("%sspurious", kind_str);
3209 case TARGET_WAITKIND_IGNORE:
3210 return xstrprintf ("%signore", kind_str);
3211 case TARGET_WAITKIND_NO_HISTORY:
3212 return xstrprintf ("%sno-history", kind_str);
3213 default:
3214 return xstrprintf ("%sunknown???", kind_str);
3215 }
3216 }
3217
3218 static void
3219 debug_print_register (const char * func,
3220 struct regcache *regcache, int regno)
3221 {
3222 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3223
3224 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3225 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3226 && gdbarch_register_name (gdbarch, regno) != NULL
3227 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3228 fprintf_unfiltered (gdb_stdlog, "(%s)",
3229 gdbarch_register_name (gdbarch, regno));
3230 else
3231 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3232 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3233 {
3234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3235 int i, size = register_size (gdbarch, regno);
3236 unsigned char buf[MAX_REGISTER_SIZE];
3237
3238 regcache_raw_collect (regcache, regno, buf);
3239 fprintf_unfiltered (gdb_stdlog, " = ");
3240 for (i = 0; i < size; i++)
3241 {
3242 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3243 }
3244 if (size <= sizeof (LONGEST))
3245 {
3246 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3247
3248 fprintf_unfiltered (gdb_stdlog, " %s %s",
3249 core_addr_to_string_nz (val), plongest (val));
3250 }
3251 }
3252 fprintf_unfiltered (gdb_stdlog, "\n");
3253 }
3254
3255 void
3256 target_fetch_registers (struct regcache *regcache, int regno)
3257 {
3258 struct target_ops *t;
3259
3260 for (t = current_target.beneath; t != NULL; t = t->beneath)
3261 {
3262 if (t->to_fetch_registers != NULL)
3263 {
3264 t->to_fetch_registers (t, regcache, regno);
3265 if (targetdebug)
3266 debug_print_register ("target_fetch_registers", regcache, regno);
3267 return;
3268 }
3269 }
3270 }
3271
3272 void
3273 target_store_registers (struct regcache *regcache, int regno)
3274 {
3275 struct target_ops *t;
3276
3277 if (!may_write_registers)
3278 error (_("Writing to registers is not allowed (regno %d)"), regno);
3279
3280 for (t = current_target.beneath; t != NULL; t = t->beneath)
3281 {
3282 if (t->to_store_registers != NULL)
3283 {
3284 t->to_store_registers (t, regcache, regno);
3285 if (targetdebug)
3286 {
3287 debug_print_register ("target_store_registers", regcache, regno);
3288 }
3289 return;
3290 }
3291 }
3292
3293 noprocess ();
3294 }
3295
3296 int
3297 target_core_of_thread (ptid_t ptid)
3298 {
3299 struct target_ops *t;
3300
3301 for (t = current_target.beneath; t != NULL; t = t->beneath)
3302 {
3303 if (t->to_core_of_thread != NULL)
3304 {
3305 int retval = t->to_core_of_thread (t, ptid);
3306
3307 if (targetdebug)
3308 fprintf_unfiltered (gdb_stdlog,
3309 "target_core_of_thread (%d) = %d\n",
3310 PIDGET (ptid), retval);
3311 return retval;
3312 }
3313 }
3314
3315 return -1;
3316 }
3317
3318 int
3319 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3320 {
3321 struct target_ops *t;
3322
3323 for (t = current_target.beneath; t != NULL; t = t->beneath)
3324 {
3325 if (t->to_verify_memory != NULL)
3326 {
3327 int retval = t->to_verify_memory (t, data, memaddr, size);
3328
3329 if (targetdebug)
3330 fprintf_unfiltered (gdb_stdlog,
3331 "target_verify_memory (%s, %s) = %d\n",
3332 paddress (target_gdbarch, memaddr),
3333 pulongest (size),
3334 retval);
3335 return retval;
3336 }
3337 }
3338
3339 tcomplain ();
3340 }
3341
3342 static void
3343 debug_to_prepare_to_store (struct regcache *regcache)
3344 {
3345 debug_target.to_prepare_to_store (regcache);
3346
3347 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3348 }
3349
3350 static int
3351 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3352 int write, struct mem_attrib *attrib,
3353 struct target_ops *target)
3354 {
3355 int retval;
3356
3357 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3358 attrib, target);
3359
3360 fprintf_unfiltered (gdb_stdlog,
3361 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3362 paddress (target_gdbarch, memaddr), len,
3363 write ? "write" : "read", retval);
3364
3365 if (retval > 0)
3366 {
3367 int i;
3368
3369 fputs_unfiltered (", bytes =", gdb_stdlog);
3370 for (i = 0; i < retval; i++)
3371 {
3372 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3373 {
3374 if (targetdebug < 2 && i > 0)
3375 {
3376 fprintf_unfiltered (gdb_stdlog, " ...");
3377 break;
3378 }
3379 fprintf_unfiltered (gdb_stdlog, "\n");
3380 }
3381
3382 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3383 }
3384 }
3385
3386 fputc_unfiltered ('\n', gdb_stdlog);
3387
3388 return retval;
3389 }
3390
3391 static void
3392 debug_to_files_info (struct target_ops *target)
3393 {
3394 debug_target.to_files_info (target);
3395
3396 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3397 }
3398
3399 static int
3400 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3401 struct bp_target_info *bp_tgt)
3402 {
3403 int retval;
3404
3405 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3406
3407 fprintf_unfiltered (gdb_stdlog,
3408 "target_insert_breakpoint (%s, xxx) = %ld\n",
3409 core_addr_to_string (bp_tgt->placed_address),
3410 (unsigned long) retval);
3411 return retval;
3412 }
3413
3414 static int
3415 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3416 struct bp_target_info *bp_tgt)
3417 {
3418 int retval;
3419
3420 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3421
3422 fprintf_unfiltered (gdb_stdlog,
3423 "target_remove_breakpoint (%s, xxx) = %ld\n",
3424 core_addr_to_string (bp_tgt->placed_address),
3425 (unsigned long) retval);
3426 return retval;
3427 }
3428
3429 static int
3430 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3431 {
3432 int retval;
3433
3434 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3435
3436 fprintf_unfiltered (gdb_stdlog,
3437 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3438 (unsigned long) type,
3439 (unsigned long) cnt,
3440 (unsigned long) from_tty,
3441 (unsigned long) retval);
3442 return retval;
3443 }
3444
3445 static int
3446 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3447 {
3448 CORE_ADDR retval;
3449
3450 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3451
3452 fprintf_unfiltered (gdb_stdlog,
3453 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3454 core_addr_to_string (addr), (unsigned long) len,
3455 core_addr_to_string (retval));
3456 return retval;
3457 }
3458
3459 static int
3460 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3461 struct expression *cond)
3462 {
3463 int retval;
3464
3465 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
3466 rw, cond);
3467
3468 fprintf_unfiltered (gdb_stdlog,
3469 "target_can_accel_watchpoint_condition "
3470 "(%s, %d, %d, %s) = %ld\n",
3471 core_addr_to_string (addr), len, rw,
3472 host_address_to_string (cond), (unsigned long) retval);
3473 return retval;
3474 }
3475
3476 static int
3477 debug_to_stopped_by_watchpoint (void)
3478 {
3479 int retval;
3480
3481 retval = debug_target.to_stopped_by_watchpoint ();
3482
3483 fprintf_unfiltered (gdb_stdlog,
3484 "target_stopped_by_watchpoint () = %ld\n",
3485 (unsigned long) retval);
3486 return retval;
3487 }
3488
3489 static int
3490 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3491 {
3492 int retval;
3493
3494 retval = debug_target.to_stopped_data_address (target, addr);
3495
3496 fprintf_unfiltered (gdb_stdlog,
3497 "target_stopped_data_address ([%s]) = %ld\n",
3498 core_addr_to_string (*addr),
3499 (unsigned long)retval);
3500 return retval;
3501 }
3502
3503 static int
3504 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3505 CORE_ADDR addr,
3506 CORE_ADDR start, int length)
3507 {
3508 int retval;
3509
3510 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3511 start, length);
3512
3513 fprintf_filtered (gdb_stdlog,
3514 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3515 core_addr_to_string (addr), core_addr_to_string (start),
3516 length, retval);
3517 return retval;
3518 }
3519
3520 static int
3521 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3522 struct bp_target_info *bp_tgt)
3523 {
3524 int retval;
3525
3526 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3527
3528 fprintf_unfiltered (gdb_stdlog,
3529 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3530 core_addr_to_string (bp_tgt->placed_address),
3531 (unsigned long) retval);
3532 return retval;
3533 }
3534
3535 static int
3536 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3537 struct bp_target_info *bp_tgt)
3538 {
3539 int retval;
3540
3541 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3542
3543 fprintf_unfiltered (gdb_stdlog,
3544 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3545 core_addr_to_string (bp_tgt->placed_address),
3546 (unsigned long) retval);
3547 return retval;
3548 }
3549
3550 static int
3551 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3552 struct expression *cond)
3553 {
3554 int retval;
3555
3556 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3557
3558 fprintf_unfiltered (gdb_stdlog,
3559 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3560 core_addr_to_string (addr), len, type,
3561 host_address_to_string (cond), (unsigned long) retval);
3562 return retval;
3563 }
3564
3565 static int
3566 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3567 struct expression *cond)
3568 {
3569 int retval;
3570
3571 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3572
3573 fprintf_unfiltered (gdb_stdlog,
3574 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3575 core_addr_to_string (addr), len, type,
3576 host_address_to_string (cond), (unsigned long) retval);
3577 return retval;
3578 }
3579
3580 static void
3581 debug_to_terminal_init (void)
3582 {
3583 debug_target.to_terminal_init ();
3584
3585 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3586 }
3587
3588 static void
3589 debug_to_terminal_inferior (void)
3590 {
3591 debug_target.to_terminal_inferior ();
3592
3593 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3594 }
3595
3596 static void
3597 debug_to_terminal_ours_for_output (void)
3598 {
3599 debug_target.to_terminal_ours_for_output ();
3600
3601 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3602 }
3603
3604 static void
3605 debug_to_terminal_ours (void)
3606 {
3607 debug_target.to_terminal_ours ();
3608
3609 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3610 }
3611
3612 static void
3613 debug_to_terminal_save_ours (void)
3614 {
3615 debug_target.to_terminal_save_ours ();
3616
3617 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3618 }
3619
3620 static void
3621 debug_to_terminal_info (char *arg, int from_tty)
3622 {
3623 debug_target.to_terminal_info (arg, from_tty);
3624
3625 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3626 from_tty);
3627 }
3628
3629 static void
3630 debug_to_load (char *args, int from_tty)
3631 {
3632 debug_target.to_load (args, from_tty);
3633
3634 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3635 }
3636
3637 static int
3638 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3639 {
3640 int retval;
3641
3642 retval = debug_target.to_lookup_symbol (name, addrp);
3643
3644 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3645
3646 return retval;
3647 }
3648
3649 static void
3650 debug_to_post_startup_inferior (ptid_t ptid)
3651 {
3652 debug_target.to_post_startup_inferior (ptid);
3653
3654 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3655 PIDGET (ptid));
3656 }
3657
3658 static int
3659 debug_to_insert_fork_catchpoint (int pid)
3660 {
3661 int retval;
3662
3663 retval = debug_target.to_insert_fork_catchpoint (pid);
3664
3665 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3666 pid, retval);
3667
3668 return retval;
3669 }
3670
3671 static int
3672 debug_to_remove_fork_catchpoint (int pid)
3673 {
3674 int retval;
3675
3676 retval = debug_target.to_remove_fork_catchpoint (pid);
3677
3678 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3679 pid, retval);
3680
3681 return retval;
3682 }
3683
3684 static int
3685 debug_to_insert_vfork_catchpoint (int pid)
3686 {
3687 int retval;
3688
3689 retval = debug_target.to_insert_vfork_catchpoint (pid);
3690
3691 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3692 pid, retval);
3693
3694 return retval;
3695 }
3696
3697 static int
3698 debug_to_remove_vfork_catchpoint (int pid)
3699 {
3700 int retval;
3701
3702 retval = debug_target.to_remove_vfork_catchpoint (pid);
3703
3704 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3705 pid, retval);
3706
3707 return retval;
3708 }
3709
3710 static int
3711 debug_to_insert_exec_catchpoint (int pid)
3712 {
3713 int retval;
3714
3715 retval = debug_target.to_insert_exec_catchpoint (pid);
3716
3717 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3718 pid, retval);
3719
3720 return retval;
3721 }
3722
3723 static int
3724 debug_to_remove_exec_catchpoint (int pid)
3725 {
3726 int retval;
3727
3728 retval = debug_target.to_remove_exec_catchpoint (pid);
3729
3730 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3731 pid, retval);
3732
3733 return retval;
3734 }
3735
3736 static int
3737 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3738 {
3739 int has_exited;
3740
3741 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3742
3743 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3744 pid, wait_status, *exit_status, has_exited);
3745
3746 return has_exited;
3747 }
3748
3749 static int
3750 debug_to_can_run (void)
3751 {
3752 int retval;
3753
3754 retval = debug_target.to_can_run ();
3755
3756 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3757
3758 return retval;
3759 }
3760
3761 static void
3762 debug_to_notice_signals (ptid_t ptid)
3763 {
3764 debug_target.to_notice_signals (ptid);
3765
3766 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3767 PIDGET (ptid));
3768 }
3769
3770 static struct gdbarch *
3771 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3772 {
3773 struct gdbarch *retval;
3774
3775 retval = debug_target.to_thread_architecture (ops, ptid);
3776
3777 fprintf_unfiltered (gdb_stdlog,
3778 "target_thread_architecture (%s) = %s [%s]\n",
3779 target_pid_to_str (ptid),
3780 host_address_to_string (retval),
3781 gdbarch_bfd_arch_info (retval)->printable_name);
3782 return retval;
3783 }
3784
3785 static void
3786 debug_to_stop (ptid_t ptid)
3787 {
3788 debug_target.to_stop (ptid);
3789
3790 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3791 target_pid_to_str (ptid));
3792 }
3793
3794 static void
3795 debug_to_rcmd (char *command,
3796 struct ui_file *outbuf)
3797 {
3798 debug_target.to_rcmd (command, outbuf);
3799 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3800 }
3801
3802 static char *
3803 debug_to_pid_to_exec_file (int pid)
3804 {
3805 char *exec_file;
3806
3807 exec_file = debug_target.to_pid_to_exec_file (pid);
3808
3809 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3810 pid, exec_file);
3811
3812 return exec_file;
3813 }
3814
3815 static void
3816 setup_target_debug (void)
3817 {
3818 memcpy (&debug_target, &current_target, sizeof debug_target);
3819
3820 current_target.to_open = debug_to_open;
3821 current_target.to_post_attach = debug_to_post_attach;
3822 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3823 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3824 current_target.to_files_info = debug_to_files_info;
3825 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3826 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3827 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3828 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3829 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3830 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3831 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3832 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3833 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3834 current_target.to_watchpoint_addr_within_range
3835 = debug_to_watchpoint_addr_within_range;
3836 current_target.to_region_ok_for_hw_watchpoint
3837 = debug_to_region_ok_for_hw_watchpoint;
3838 current_target.to_can_accel_watchpoint_condition
3839 = debug_to_can_accel_watchpoint_condition;
3840 current_target.to_terminal_init = debug_to_terminal_init;
3841 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3842 current_target.to_terminal_ours_for_output
3843 = debug_to_terminal_ours_for_output;
3844 current_target.to_terminal_ours = debug_to_terminal_ours;
3845 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3846 current_target.to_terminal_info = debug_to_terminal_info;
3847 current_target.to_load = debug_to_load;
3848 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3849 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3850 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3851 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3852 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3853 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3854 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3855 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3856 current_target.to_has_exited = debug_to_has_exited;
3857 current_target.to_can_run = debug_to_can_run;
3858 current_target.to_notice_signals = debug_to_notice_signals;
3859 current_target.to_stop = debug_to_stop;
3860 current_target.to_rcmd = debug_to_rcmd;
3861 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3862 current_target.to_thread_architecture = debug_to_thread_architecture;
3863 }
3864 \f
3865
3866 static char targ_desc[] =
3867 "Names of targets and files being debugged.\nShows the entire \
3868 stack of targets currently in use (including the exec-file,\n\
3869 core-file, and process, if any), as well as the symbol file name.";
3870
3871 static void
3872 do_monitor_command (char *cmd,
3873 int from_tty)
3874 {
3875 if ((current_target.to_rcmd
3876 == (void (*) (char *, struct ui_file *)) tcomplain)
3877 || (current_target.to_rcmd == debug_to_rcmd
3878 && (debug_target.to_rcmd
3879 == (void (*) (char *, struct ui_file *)) tcomplain)))
3880 error (_("\"monitor\" command not supported by this target."));
3881 target_rcmd (cmd, gdb_stdtarg);
3882 }
3883
3884 /* Print the name of each layers of our target stack. */
3885
3886 static void
3887 maintenance_print_target_stack (char *cmd, int from_tty)
3888 {
3889 struct target_ops *t;
3890
3891 printf_filtered (_("The current target stack is:\n"));
3892
3893 for (t = target_stack; t != NULL; t = t->beneath)
3894 {
3895 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3896 }
3897 }
3898
3899 /* Controls if async mode is permitted. */
3900 int target_async_permitted = 0;
3901
3902 /* The set command writes to this variable. If the inferior is
3903 executing, linux_nat_async_permitted is *not* updated. */
3904 static int target_async_permitted_1 = 0;
3905
3906 static void
3907 set_maintenance_target_async_permitted (char *args, int from_tty,
3908 struct cmd_list_element *c)
3909 {
3910 if (have_live_inferiors ())
3911 {
3912 target_async_permitted_1 = target_async_permitted;
3913 error (_("Cannot change this setting while the inferior is running."));
3914 }
3915
3916 target_async_permitted = target_async_permitted_1;
3917 }
3918
3919 static void
3920 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3921 struct cmd_list_element *c,
3922 const char *value)
3923 {
3924 fprintf_filtered (file,
3925 _("Controlling the inferior in "
3926 "asynchronous mode is %s.\n"), value);
3927 }
3928
3929 /* Temporary copies of permission settings. */
3930
3931 static int may_write_registers_1 = 1;
3932 static int may_write_memory_1 = 1;
3933 static int may_insert_breakpoints_1 = 1;
3934 static int may_insert_tracepoints_1 = 1;
3935 static int may_insert_fast_tracepoints_1 = 1;
3936 static int may_stop_1 = 1;
3937
3938 /* Make the user-set values match the real values again. */
3939
3940 void
3941 update_target_permissions (void)
3942 {
3943 may_write_registers_1 = may_write_registers;
3944 may_write_memory_1 = may_write_memory;
3945 may_insert_breakpoints_1 = may_insert_breakpoints;
3946 may_insert_tracepoints_1 = may_insert_tracepoints;
3947 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3948 may_stop_1 = may_stop;
3949 }
3950
3951 /* The one function handles (most of) the permission flags in the same
3952 way. */
3953
3954 static void
3955 set_target_permissions (char *args, int from_tty,
3956 struct cmd_list_element *c)
3957 {
3958 if (target_has_execution)
3959 {
3960 update_target_permissions ();
3961 error (_("Cannot change this setting while the inferior is running."));
3962 }
3963
3964 /* Make the real values match the user-changed values. */
3965 may_write_registers = may_write_registers_1;
3966 may_insert_breakpoints = may_insert_breakpoints_1;
3967 may_insert_tracepoints = may_insert_tracepoints_1;
3968 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3969 may_stop = may_stop_1;
3970 update_observer_mode ();
3971 }
3972
3973 /* Set memory write permission independently of observer mode. */
3974
3975 static void
3976 set_write_memory_permission (char *args, int from_tty,
3977 struct cmd_list_element *c)
3978 {
3979 /* Make the real values match the user-changed values. */
3980 may_write_memory = may_write_memory_1;
3981 update_observer_mode ();
3982 }
3983
3984
3985 void
3986 initialize_targets (void)
3987 {
3988 init_dummy_target ();
3989 push_target (&dummy_target);
3990
3991 add_info ("target", target_info, targ_desc);
3992 add_info ("files", target_info, targ_desc);
3993
3994 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3995 Set target debugging."), _("\
3996 Show target debugging."), _("\
3997 When non-zero, target debugging is enabled. Higher numbers are more\n\
3998 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3999 command."),
4000 NULL,
4001 show_targetdebug,
4002 &setdebuglist, &showdebuglist);
4003
4004 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4005 &trust_readonly, _("\
4006 Set mode for reading from readonly sections."), _("\
4007 Show mode for reading from readonly sections."), _("\
4008 When this mode is on, memory reads from readonly sections (such as .text)\n\
4009 will be read from the object file instead of from the target. This will\n\
4010 result in significant performance improvement for remote targets."),
4011 NULL,
4012 show_trust_readonly,
4013 &setlist, &showlist);
4014
4015 add_com ("monitor", class_obscure, do_monitor_command,
4016 _("Send a command to the remote monitor (remote targets only)."));
4017
4018 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4019 _("Print the name of each layer of the internal target stack."),
4020 &maintenanceprintlist);
4021
4022 add_setshow_boolean_cmd ("target-async", no_class,
4023 &target_async_permitted_1, _("\
4024 Set whether gdb controls the inferior in asynchronous mode."), _("\
4025 Show whether gdb controls the inferior in asynchronous mode."), _("\
4026 Tells gdb whether to control the inferior in asynchronous mode."),
4027 set_maintenance_target_async_permitted,
4028 show_maintenance_target_async_permitted,
4029 &setlist,
4030 &showlist);
4031
4032 add_setshow_boolean_cmd ("stack-cache", class_support,
4033 &stack_cache_enabled_p_1, _("\
4034 Set cache use for stack access."), _("\
4035 Show cache use for stack access."), _("\
4036 When on, use the data cache for all stack access, regardless of any\n\
4037 configured memory regions. This improves remote performance significantly.\n\
4038 By default, caching for stack access is on."),
4039 set_stack_cache_enabled_p,
4040 show_stack_cache_enabled_p,
4041 &setlist, &showlist);
4042
4043 add_setshow_boolean_cmd ("may-write-registers", class_support,
4044 &may_write_registers_1, _("\
4045 Set permission to write into registers."), _("\
4046 Show permission to write into registers."), _("\
4047 When this permission is on, GDB may write into the target's registers.\n\
4048 Otherwise, any sort of write attempt will result in an error."),
4049 set_target_permissions, NULL,
4050 &setlist, &showlist);
4051
4052 add_setshow_boolean_cmd ("may-write-memory", class_support,
4053 &may_write_memory_1, _("\
4054 Set permission to write into target memory."), _("\
4055 Show permission to write into target memory."), _("\
4056 When this permission is on, GDB may write into the target's memory.\n\
4057 Otherwise, any sort of write attempt will result in an error."),
4058 set_write_memory_permission, NULL,
4059 &setlist, &showlist);
4060
4061 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4062 &may_insert_breakpoints_1, _("\
4063 Set permission to insert breakpoints in the target."), _("\
4064 Show permission to insert breakpoints in the target."), _("\
4065 When this permission is on, GDB may insert breakpoints in the program.\n\
4066 Otherwise, any sort of insertion attempt will result in an error."),
4067 set_target_permissions, NULL,
4068 &setlist, &showlist);
4069
4070 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4071 &may_insert_tracepoints_1, _("\
4072 Set permission to insert tracepoints in the target."), _("\
4073 Show permission to insert tracepoints in the target."), _("\
4074 When this permission is on, GDB may insert tracepoints in the program.\n\
4075 Otherwise, any sort of insertion attempt will result in an error."),
4076 set_target_permissions, NULL,
4077 &setlist, &showlist);
4078
4079 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4080 &may_insert_fast_tracepoints_1, _("\
4081 Set permission to insert fast tracepoints in the target."), _("\
4082 Show permission to insert fast tracepoints in the target."), _("\
4083 When this permission is on, GDB may insert fast tracepoints.\n\
4084 Otherwise, any sort of insertion attempt will result in an error."),
4085 set_target_permissions, NULL,
4086 &setlist, &showlist);
4087
4088 add_setshow_boolean_cmd ("may-interrupt", class_support,
4089 &may_stop_1, _("\
4090 Set permission to interrupt or signal the target."), _("\
4091 Show permission to interrupt or signal the target."), _("\
4092 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4093 Otherwise, any attempt to interrupt or stop will be ignored."),
4094 set_target_permissions, NULL,
4095 &setlist, &showlist);
4096
4097
4098 target_dcache = dcache_init ();
4099 }