convert to_pid_to_str
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *)
521 TARGET_DEFAULT_NORETURN (noprocess ());
522 void (*to_load) (struct target_ops *, char *, int)
523 TARGET_DEFAULT_NORETURN (tcomplain ());
524 void (*to_create_inferior) (struct target_ops *,
525 char *, char *, char **, int);
526 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
527 TARGET_DEFAULT_IGNORE ();
528 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_follow_fork) (struct target_ops *, int, int)
537 TARGET_DEFAULT_FUNC (default_follow_fork);
538 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_set_syscall_catchpoint) (struct target_ops *,
543 int, int, int, int, int *)
544 TARGET_DEFAULT_RETURN (1);
545 int (*to_has_exited) (struct target_ops *, int, int, int *)
546 TARGET_DEFAULT_RETURN (0);
547 void (*to_mourn_inferior) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (default_mourn_inferior);
549 int (*to_can_run) (struct target_ops *);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
554 TARGET_DEFAULT_IGNORE ();
555
556 /* Documentation of this routine is provided with the
557 corresponding target_* function. */
558 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
559 TARGET_DEFAULT_IGNORE ();
560
561 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
562 void (*to_find_new_threads) (struct target_ops *)
563 TARGET_DEFAULT_IGNORE ();
564 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
565 TARGET_DEFAULT_FUNC (default_pid_to_str);
566 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
567 TARGET_DEFAULT_RETURN (0);
568 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
569 TARGET_DEFAULT_RETURN (0);
570 void (*to_stop) (struct target_ops *, ptid_t)
571 TARGET_DEFAULT_IGNORE ();
572 void (*to_rcmd) (struct target_ops *,
573 char *command, struct ui_file *output)
574 TARGET_DEFAULT_FUNC (default_rcmd);
575 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
576 TARGET_DEFAULT_RETURN (0);
577 void (*to_log_command) (struct target_ops *, const char *)
578 TARGET_DEFAULT_IGNORE ();
579 struct target_section_table *(*to_get_section_table) (struct target_ops *);
580 enum strata to_stratum;
581 int (*to_has_all_memory) (struct target_ops *);
582 int (*to_has_memory) (struct target_ops *);
583 int (*to_has_stack) (struct target_ops *);
584 int (*to_has_registers) (struct target_ops *);
585 int (*to_has_execution) (struct target_ops *, ptid_t);
586 int to_has_thread_control; /* control thread execution */
587 int to_attach_no_wait;
588 /* ASYNC target controls */
589 int (*to_can_async_p) (struct target_ops *)
590 TARGET_DEFAULT_FUNC (find_default_can_async_p);
591 int (*to_is_async_p) (struct target_ops *)
592 TARGET_DEFAULT_FUNC (find_default_is_async_p);
593 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
594 TARGET_DEFAULT_NORETURN (tcomplain ());
595 int (*to_supports_non_stop) (struct target_ops *);
596 /* find_memory_regions support method for gcore */
597 int (*to_find_memory_regions) (struct target_ops *,
598 find_memory_region_ftype func, void *data)
599 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
600 /* make_corefile_notes support method for gcore */
601 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
602 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
603 /* get_bookmark support method for bookmarks */
604 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
605 TARGET_DEFAULT_NORETURN (tcomplain ());
606 /* goto_bookmark support method for bookmarks */
607 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
608 TARGET_DEFAULT_NORETURN (tcomplain ());
609 /* Return the thread-local address at OFFSET in the
610 thread-local storage for the thread PTID and the shared library
611 or executable file given by OBJFILE. If that block of
612 thread-local storage hasn't been allocated yet, this function
613 may return an error. */
614 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
615 ptid_t ptid,
616 CORE_ADDR load_module_addr,
617 CORE_ADDR offset);
618
619 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
620 OBJECT. The OFFSET, for a seekable object, specifies the
621 starting point. The ANNEX can be used to provide additional
622 data-specific information to the target.
623
624 Return the transferred status, error or OK (an
625 'enum target_xfer_status' value). Save the number of bytes
626 actually transferred in *XFERED_LEN if transfer is successful
627 (TARGET_XFER_OK) or the number unavailable bytes if the requested
628 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
629 smaller than LEN does not indicate the end of the object, only
630 the end of the transfer; higher level code should continue
631 transferring if desired. This is handled in target.c.
632
633 The interface does not support a "retry" mechanism. Instead it
634 assumes that at least one byte will be transfered on each
635 successful call.
636
637 NOTE: cagney/2003-10-17: The current interface can lead to
638 fragmented transfers. Lower target levels should not implement
639 hacks, such as enlarging the transfer, in an attempt to
640 compensate for this. Instead, the target stack should be
641 extended so that it implements supply/collect methods and a
642 look-aside object cache. With that available, the lowest
643 target can safely and freely "push" data up the stack.
644
645 See target_read and target_write for more information. One,
646 and only one, of readbuf or writebuf must be non-NULL. */
647
648 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
649 enum target_object object,
650 const char *annex,
651 gdb_byte *readbuf,
652 const gdb_byte *writebuf,
653 ULONGEST offset, ULONGEST len,
654 ULONGEST *xfered_len)
655 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
656
657 /* Returns the memory map for the target. A return value of NULL
658 means that no memory map is available. If a memory address
659 does not fall within any returned regions, it's assumed to be
660 RAM. The returned memory regions should not overlap.
661
662 The order of regions does not matter; target_memory_map will
663 sort regions by starting address. For that reason, this
664 function should not be called directly except via
665 target_memory_map.
666
667 This method should not cache data; if the memory map could
668 change unexpectedly, it should be invalidated, and higher
669 layers will re-fetch it. */
670 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
671
672 /* Erases the region of flash memory starting at ADDRESS, of
673 length LENGTH.
674
675 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
676 on flash block boundaries, as reported by 'to_memory_map'. */
677 void (*to_flash_erase) (struct target_ops *,
678 ULONGEST address, LONGEST length);
679
680 /* Finishes a flash memory write sequence. After this operation
681 all flash memory should be available for writing and the result
682 of reading from areas written by 'to_flash_write' should be
683 equal to what was written. */
684 void (*to_flash_done) (struct target_ops *);
685
686 /* Describe the architecture-specific features of this target.
687 Returns the description found, or NULL if no description
688 was available. */
689 const struct target_desc *(*to_read_description) (struct target_ops *ops);
690
691 /* Build the PTID of the thread on which a given task is running,
692 based on LWP and THREAD. These values are extracted from the
693 task Private_Data section of the Ada Task Control Block, and
694 their interpretation depends on the target. */
695 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
696 long lwp, long thread)
697 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
698
699 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
700 Return 0 if *READPTR is already at the end of the buffer.
701 Return -1 if there is insufficient buffer for a whole entry.
702 Return 1 if an entry was read into *TYPEP and *VALP. */
703 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
704 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
705
706 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
707 sequence of bytes in PATTERN with length PATTERN_LEN.
708
709 The result is 1 if found, 0 if not found, and -1 if there was an error
710 requiring halting of the search (e.g. memory read error).
711 If the pattern is found the address is recorded in FOUND_ADDRP. */
712 int (*to_search_memory) (struct target_ops *ops,
713 CORE_ADDR start_addr, ULONGEST search_space_len,
714 const gdb_byte *pattern, ULONGEST pattern_len,
715 CORE_ADDR *found_addrp);
716
717 /* Can target execute in reverse? */
718 int (*to_can_execute_reverse) (struct target_ops *)
719 TARGET_DEFAULT_RETURN (0);
720
721 /* The direction the target is currently executing. Must be
722 implemented on targets that support reverse execution and async
723 mode. The default simply returns forward execution. */
724 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
725 TARGET_DEFAULT_FUNC (default_execution_direction);
726
727 /* Does this target support debugging multiple processes
728 simultaneously? */
729 int (*to_supports_multi_process) (struct target_ops *)
730 TARGET_DEFAULT_RETURN (0);
731
732 /* Does this target support enabling and disabling tracepoints while a trace
733 experiment is running? */
734 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
735 TARGET_DEFAULT_RETURN (0);
736
737 /* Does this target support disabling address space randomization? */
738 int (*to_supports_disable_randomization) (struct target_ops *);
739
740 /* Does this target support the tracenz bytecode for string collection? */
741 int (*to_supports_string_tracing) (struct target_ops *)
742 TARGET_DEFAULT_RETURN (0);
743
744 /* Does this target support evaluation of breakpoint conditions on its
745 end? */
746 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
747 TARGET_DEFAULT_RETURN (0);
748
749 /* Does this target support evaluation of breakpoint commands on its
750 end? */
751 int (*to_can_run_breakpoint_commands) (struct target_ops *)
752 TARGET_DEFAULT_RETURN (0);
753
754 /* Determine current architecture of thread PTID.
755
756 The target is supposed to determine the architecture of the code where
757 the target is currently stopped at (on Cell, if a target is in spu_run,
758 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
759 This is architecture used to perform decr_pc_after_break adjustment,
760 and also determines the frame architecture of the innermost frame.
761 ptrace operations need to operate according to target_gdbarch ().
762
763 The default implementation always returns target_gdbarch (). */
764 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
765 TARGET_DEFAULT_FUNC (default_thread_architecture);
766
767 /* Determine current address space of thread PTID.
768
769 The default implementation always returns the inferior's
770 address space. */
771 struct address_space *(*to_thread_address_space) (struct target_ops *,
772 ptid_t);
773
774 /* Target file operations. */
775
776 /* Open FILENAME on the target, using FLAGS and MODE. Return a
777 target file descriptor, or -1 if an error occurs (and set
778 *TARGET_ERRNO). */
779 int (*to_fileio_open) (struct target_ops *,
780 const char *filename, int flags, int mode,
781 int *target_errno);
782
783 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
784 Return the number of bytes written, or -1 if an error occurs
785 (and set *TARGET_ERRNO). */
786 int (*to_fileio_pwrite) (struct target_ops *,
787 int fd, const gdb_byte *write_buf, int len,
788 ULONGEST offset, int *target_errno);
789
790 /* Read up to LEN bytes FD on the target into READ_BUF.
791 Return the number of bytes read, or -1 if an error occurs
792 (and set *TARGET_ERRNO). */
793 int (*to_fileio_pread) (struct target_ops *,
794 int fd, gdb_byte *read_buf, int len,
795 ULONGEST offset, int *target_errno);
796
797 /* Close FD on the target. Return 0, or -1 if an error occurs
798 (and set *TARGET_ERRNO). */
799 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
800
801 /* Unlink FILENAME on the target. Return 0, or -1 if an error
802 occurs (and set *TARGET_ERRNO). */
803 int (*to_fileio_unlink) (struct target_ops *,
804 const char *filename, int *target_errno);
805
806 /* Read value of symbolic link FILENAME on the target. Return a
807 null-terminated string allocated via xmalloc, or NULL if an error
808 occurs (and set *TARGET_ERRNO). */
809 char *(*to_fileio_readlink) (struct target_ops *,
810 const char *filename, int *target_errno);
811
812
813 /* Implement the "info proc" command. */
814 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
815
816 /* Tracepoint-related operations. */
817
818 /* Prepare the target for a tracing run. */
819 void (*to_trace_init) (struct target_ops *)
820 TARGET_DEFAULT_NORETURN (tcomplain ());
821
822 /* Send full details of a tracepoint location to the target. */
823 void (*to_download_tracepoint) (struct target_ops *,
824 struct bp_location *location)
825 TARGET_DEFAULT_NORETURN (tcomplain ());
826
827 /* Is the target able to download tracepoint locations in current
828 state? */
829 int (*to_can_download_tracepoint) (struct target_ops *)
830 TARGET_DEFAULT_RETURN (0);
831
832 /* Send full details of a trace state variable to the target. */
833 void (*to_download_trace_state_variable) (struct target_ops *,
834 struct trace_state_variable *tsv)
835 TARGET_DEFAULT_NORETURN (tcomplain ());
836
837 /* Enable a tracepoint on the target. */
838 void (*to_enable_tracepoint) (struct target_ops *,
839 struct bp_location *location)
840 TARGET_DEFAULT_NORETURN (tcomplain ());
841
842 /* Disable a tracepoint on the target. */
843 void (*to_disable_tracepoint) (struct target_ops *,
844 struct bp_location *location)
845 TARGET_DEFAULT_NORETURN (tcomplain ());
846
847 /* Inform the target info of memory regions that are readonly
848 (such as text sections), and so it should return data from
849 those rather than look in the trace buffer. */
850 void (*to_trace_set_readonly_regions) (struct target_ops *)
851 TARGET_DEFAULT_NORETURN (tcomplain ());
852
853 /* Start a trace run. */
854 void (*to_trace_start) (struct target_ops *)
855 TARGET_DEFAULT_NORETURN (tcomplain ());
856
857 /* Get the current status of a tracing run. */
858 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
859 TARGET_DEFAULT_RETURN (-1);
860
861 void (*to_get_tracepoint_status) (struct target_ops *,
862 struct breakpoint *tp,
863 struct uploaded_tp *utp)
864 TARGET_DEFAULT_NORETURN (tcomplain ());
865
866 /* Stop a trace run. */
867 void (*to_trace_stop) (struct target_ops *)
868 TARGET_DEFAULT_NORETURN (tcomplain ());
869
870 /* Ask the target to find a trace frame of the given type TYPE,
871 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
872 number of the trace frame, and also the tracepoint number at
873 TPP. If no trace frame matches, return -1. May throw if the
874 operation fails. */
875 int (*to_trace_find) (struct target_ops *,
876 enum trace_find_type type, int num,
877 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
878 TARGET_DEFAULT_RETURN (-1);
879
880 /* Get the value of the trace state variable number TSV, returning
881 1 if the value is known and writing the value itself into the
882 location pointed to by VAL, else returning 0. */
883 int (*to_get_trace_state_variable_value) (struct target_ops *,
884 int tsv, LONGEST *val)
885 TARGET_DEFAULT_RETURN (0);
886
887 int (*to_save_trace_data) (struct target_ops *, const char *filename)
888 TARGET_DEFAULT_NORETURN (tcomplain ());
889
890 int (*to_upload_tracepoints) (struct target_ops *,
891 struct uploaded_tp **utpp)
892 TARGET_DEFAULT_RETURN (0);
893
894 int (*to_upload_trace_state_variables) (struct target_ops *,
895 struct uploaded_tsv **utsvp)
896 TARGET_DEFAULT_RETURN (0);
897
898 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
899 ULONGEST offset, LONGEST len)
900 TARGET_DEFAULT_NORETURN (tcomplain ());
901
902 /* Get the minimum length of instruction on which a fast tracepoint
903 may be set on the target. If this operation is unsupported,
904 return -1. If for some reason the minimum length cannot be
905 determined, return 0. */
906 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
907 TARGET_DEFAULT_RETURN (-1);
908
909 /* Set the target's tracing behavior in response to unexpected
910 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
911 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
912 TARGET_DEFAULT_IGNORE ();
913 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
914 TARGET_DEFAULT_IGNORE ();
915 /* Set the size of trace buffer in the target. */
916 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
917 TARGET_DEFAULT_IGNORE ();
918
919 /* Add/change textual notes about the trace run, returning 1 if
920 successful, 0 otherwise. */
921 int (*to_set_trace_notes) (struct target_ops *,
922 const char *user, const char *notes,
923 const char *stopnotes)
924 TARGET_DEFAULT_RETURN (0);
925
926 /* Return the processor core that thread PTID was last seen on.
927 This information is updated only when:
928 - update_thread_list is called
929 - thread stops
930 If the core cannot be determined -- either for the specified
931 thread, or right now, or in this debug session, or for this
932 target -- return -1. */
933 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
934
935 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
936 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
937 a match, 0 if there's a mismatch, and -1 if an error is
938 encountered while reading memory. */
939 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
940 CORE_ADDR memaddr, ULONGEST size);
941
942 /* Return the address of the start of the Thread Information Block
943 a Windows OS specific feature. */
944 int (*to_get_tib_address) (struct target_ops *,
945 ptid_t ptid, CORE_ADDR *addr)
946 TARGET_DEFAULT_NORETURN (tcomplain ());
947
948 /* Send the new settings of write permission variables. */
949 void (*to_set_permissions) (struct target_ops *)
950 TARGET_DEFAULT_IGNORE ();
951
952 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
953 with its details. Return 1 on success, 0 on failure. */
954 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
955 struct static_tracepoint_marker *marker)
956 TARGET_DEFAULT_RETURN (0);
957
958 /* Return a vector of all tracepoints markers string id ID, or all
959 markers if ID is NULL. */
960 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
961 TARGET_DEFAULT_NORETURN (tcomplain ());
962
963 /* Return a traceframe info object describing the current
964 traceframe's contents. If the target doesn't support
965 traceframe info, return NULL. If the current traceframe is not
966 selected (the current traceframe number is -1), the target can
967 choose to return either NULL or an empty traceframe info. If
968 NULL is returned, for example in remote target, GDB will read
969 from the live inferior. If an empty traceframe info is
970 returned, for example in tfile target, which means the
971 traceframe info is available, but the requested memory is not
972 available in it. GDB will try to see if the requested memory
973 is available in the read-only sections. This method should not
974 cache data; higher layers take care of caching, invalidating,
975 and re-fetching when necessary. */
976 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
977 TARGET_DEFAULT_RETURN (0);
978
979 /* Ask the target to use or not to use agent according to USE. Return 1
980 successful, 0 otherwise. */
981 int (*to_use_agent) (struct target_ops *, int use)
982 TARGET_DEFAULT_NORETURN (tcomplain ());
983
984 /* Is the target able to use agent in current state? */
985 int (*to_can_use_agent) (struct target_ops *)
986 TARGET_DEFAULT_RETURN (0);
987
988 /* Check whether the target supports branch tracing. */
989 int (*to_supports_btrace) (struct target_ops *)
990 TARGET_DEFAULT_RETURN (0);
991
992 /* Enable branch tracing for PTID and allocate a branch trace target
993 information struct for reading and for disabling branch trace. */
994 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
995 ptid_t ptid);
996
997 /* Disable branch tracing and deallocate TINFO. */
998 void (*to_disable_btrace) (struct target_ops *,
999 struct btrace_target_info *tinfo);
1000
1001 /* Disable branch tracing and deallocate TINFO. This function is similar
1002 to to_disable_btrace, except that it is called during teardown and is
1003 only allowed to perform actions that are safe. A counter-example would
1004 be attempting to talk to a remote target. */
1005 void (*to_teardown_btrace) (struct target_ops *,
1006 struct btrace_target_info *tinfo);
1007
1008 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1009 DATA is cleared before new trace is added.
1010 The branch trace will start with the most recent block and continue
1011 towards older blocks. */
1012 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1013 VEC (btrace_block_s) **data,
1014 struct btrace_target_info *btinfo,
1015 enum btrace_read_type type);
1016
1017 /* Stop trace recording. */
1018 void (*to_stop_recording) (struct target_ops *);
1019
1020 /* Print information about the recording. */
1021 void (*to_info_record) (struct target_ops *);
1022
1023 /* Save the recorded execution trace into a file. */
1024 void (*to_save_record) (struct target_ops *, const char *filename);
1025
1026 /* Delete the recorded execution trace from the current position onwards. */
1027 void (*to_delete_record) (struct target_ops *);
1028
1029 /* Query if the record target is currently replaying. */
1030 int (*to_record_is_replaying) (struct target_ops *);
1031
1032 /* Go to the begin of the execution trace. */
1033 void (*to_goto_record_begin) (struct target_ops *);
1034
1035 /* Go to the end of the execution trace. */
1036 void (*to_goto_record_end) (struct target_ops *);
1037
1038 /* Go to a specific location in the recorded execution trace. */
1039 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1040
1041 /* Disassemble SIZE instructions in the recorded execution trace from
1042 the current position.
1043 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1044 disassemble SIZE succeeding instructions. */
1045 void (*to_insn_history) (struct target_ops *, int size, int flags);
1046
1047 /* Disassemble SIZE instructions in the recorded execution trace around
1048 FROM.
1049 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1050 disassemble SIZE instructions after FROM. */
1051 void (*to_insn_history_from) (struct target_ops *,
1052 ULONGEST from, int size, int flags);
1053
1054 /* Disassemble a section of the recorded execution trace from instruction
1055 BEGIN (inclusive) to instruction END (inclusive). */
1056 void (*to_insn_history_range) (struct target_ops *,
1057 ULONGEST begin, ULONGEST end, int flags);
1058
1059 /* Print a function trace of the recorded execution trace.
1060 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1061 succeeding functions. */
1062 void (*to_call_history) (struct target_ops *, int size, int flags);
1063
1064 /* Print a function trace of the recorded execution trace starting
1065 at function FROM.
1066 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1067 SIZE functions after FROM. */
1068 void (*to_call_history_from) (struct target_ops *,
1069 ULONGEST begin, int size, int flags);
1070
1071 /* Print a function trace of an execution trace section from function BEGIN
1072 (inclusive) to function END (inclusive). */
1073 void (*to_call_history_range) (struct target_ops *,
1074 ULONGEST begin, ULONGEST end, int flags);
1075
1076 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1077 non-empty annex. */
1078 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1079 TARGET_DEFAULT_RETURN (0);
1080
1081 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1082 it is not used. */
1083 const struct frame_unwind *to_get_unwinder;
1084 const struct frame_unwind *to_get_tailcall_unwinder;
1085
1086 /* Return the number of bytes by which the PC needs to be decremented
1087 after executing a breakpoint instruction.
1088 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1089 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1090 struct gdbarch *gdbarch);
1091
1092 int to_magic;
1093 /* Need sub-structure for target machine related rather than comm related?
1094 */
1095 };
1096
1097 /* Magic number for checking ops size. If a struct doesn't end with this
1098 number, somebody changed the declaration but didn't change all the
1099 places that initialize one. */
1100
1101 #define OPS_MAGIC 3840
1102
1103 /* The ops structure for our "current" target process. This should
1104 never be NULL. If there is no target, it points to the dummy_target. */
1105
1106 extern struct target_ops current_target;
1107
1108 /* Define easy words for doing these operations on our current target. */
1109
1110 #define target_shortname (current_target.to_shortname)
1111 #define target_longname (current_target.to_longname)
1112
1113 /* Does whatever cleanup is required for a target that we are no
1114 longer going to be calling. This routine is automatically always
1115 called after popping the target off the target stack - the target's
1116 own methods are no longer available through the target vector.
1117 Closing file descriptors and freeing all memory allocated memory are
1118 typical things it should do. */
1119
1120 void target_close (struct target_ops *targ);
1121
1122 /* Attaches to a process on the target side. Arguments are as passed
1123 to the `attach' command by the user. This routine can be called
1124 when the target is not on the target-stack, if the target_can_run
1125 routine returns 1; in that case, it must push itself onto the stack.
1126 Upon exit, the target should be ready for normal operations, and
1127 should be ready to deliver the status of the process immediately
1128 (without waiting) to an upcoming target_wait call. */
1129
1130 void target_attach (char *, int);
1131
1132 /* Some targets don't generate traps when attaching to the inferior,
1133 or their target_attach implementation takes care of the waiting.
1134 These targets must set to_attach_no_wait. */
1135
1136 #define target_attach_no_wait \
1137 (current_target.to_attach_no_wait)
1138
1139 /* The target_attach operation places a process under debugger control,
1140 and stops the process.
1141
1142 This operation provides a target-specific hook that allows the
1143 necessary bookkeeping to be performed after an attach completes. */
1144 #define target_post_attach(pid) \
1145 (*current_target.to_post_attach) (&current_target, pid)
1146
1147 /* Takes a program previously attached to and detaches it.
1148 The program may resume execution (some targets do, some don't) and will
1149 no longer stop on signals, etc. We better not have left any breakpoints
1150 in the program or it'll die when it hits one. ARGS is arguments
1151 typed by the user (e.g. a signal to send the process). FROM_TTY
1152 says whether to be verbose or not. */
1153
1154 extern void target_detach (const char *, int);
1155
1156 /* Disconnect from the current target without resuming it (leaving it
1157 waiting for a debugger). */
1158
1159 extern void target_disconnect (char *, int);
1160
1161 /* Resume execution of the target process PTID (or a group of
1162 threads). STEP says whether to single-step or to run free; SIGGNAL
1163 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1164 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1165 PTID means `step/resume only this process id'. A wildcard PTID
1166 (all threads, or all threads of process) means `step/resume
1167 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1168 matches) resume with their 'thread->suspend.stop_signal' signal
1169 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1170 if in "no pass" state. */
1171
1172 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1173
1174 /* Wait for process pid to do something. PTID = -1 to wait for any
1175 pid to do something. Return pid of child, or -1 in case of error;
1176 store status through argument pointer STATUS. Note that it is
1177 _NOT_ OK to throw_exception() out of target_wait() without popping
1178 the debugging target from the stack; GDB isn't prepared to get back
1179 to the prompt with a debugging target but without the frame cache,
1180 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1181 options. */
1182
1183 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1184 int options);
1185
1186 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1187
1188 extern void target_fetch_registers (struct regcache *regcache, int regno);
1189
1190 /* Store at least register REGNO, or all regs if REGNO == -1.
1191 It can store as many registers as it wants to, so target_prepare_to_store
1192 must have been previously called. Calls error() if there are problems. */
1193
1194 extern void target_store_registers (struct regcache *regcache, int regs);
1195
1196 /* Get ready to modify the registers array. On machines which store
1197 individual registers, this doesn't need to do anything. On machines
1198 which store all the registers in one fell swoop, this makes sure
1199 that REGISTERS contains all the registers from the program being
1200 debugged. */
1201
1202 #define target_prepare_to_store(regcache) \
1203 (*current_target.to_prepare_to_store) (&current_target, regcache)
1204
1205 /* Determine current address space of thread PTID. */
1206
1207 struct address_space *target_thread_address_space (ptid_t);
1208
1209 /* Implement the "info proc" command. This returns one if the request
1210 was handled, and zero otherwise. It can also throw an exception if
1211 an error was encountered while attempting to handle the
1212 request. */
1213
1214 int target_info_proc (char *, enum info_proc_what);
1215
1216 /* Returns true if this target can debug multiple processes
1217 simultaneously. */
1218
1219 #define target_supports_multi_process() \
1220 (*current_target.to_supports_multi_process) (&current_target)
1221
1222 /* Returns true if this target can disable address space randomization. */
1223
1224 int target_supports_disable_randomization (void);
1225
1226 /* Returns true if this target can enable and disable tracepoints
1227 while a trace experiment is running. */
1228
1229 #define target_supports_enable_disable_tracepoint() \
1230 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1231
1232 #define target_supports_string_tracing() \
1233 (*current_target.to_supports_string_tracing) (&current_target)
1234
1235 /* Returns true if this target can handle breakpoint conditions
1236 on its end. */
1237
1238 #define target_supports_evaluation_of_breakpoint_conditions() \
1239 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1240
1241 /* Returns true if this target can handle breakpoint commands
1242 on its end. */
1243
1244 #define target_can_run_breakpoint_commands() \
1245 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1246
1247 extern int target_read_string (CORE_ADDR, char **, int, int *);
1248
1249 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1250 ssize_t len);
1251
1252 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1253 ssize_t len);
1254
1255 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1256
1257 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1258
1259 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1260 ssize_t len);
1261
1262 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1263 ssize_t len);
1264
1265 /* Fetches the target's memory map. If one is found it is sorted
1266 and returned, after some consistency checking. Otherwise, NULL
1267 is returned. */
1268 VEC(mem_region_s) *target_memory_map (void);
1269
1270 /* Erase the specified flash region. */
1271 void target_flash_erase (ULONGEST address, LONGEST length);
1272
1273 /* Finish a sequence of flash operations. */
1274 void target_flash_done (void);
1275
1276 /* Describes a request for a memory write operation. */
1277 struct memory_write_request
1278 {
1279 /* Begining address that must be written. */
1280 ULONGEST begin;
1281 /* Past-the-end address. */
1282 ULONGEST end;
1283 /* The data to write. */
1284 gdb_byte *data;
1285 /* A callback baton for progress reporting for this request. */
1286 void *baton;
1287 };
1288 typedef struct memory_write_request memory_write_request_s;
1289 DEF_VEC_O(memory_write_request_s);
1290
1291 /* Enumeration specifying different flash preservation behaviour. */
1292 enum flash_preserve_mode
1293 {
1294 flash_preserve,
1295 flash_discard
1296 };
1297
1298 /* Write several memory blocks at once. This version can be more
1299 efficient than making several calls to target_write_memory, in
1300 particular because it can optimize accesses to flash memory.
1301
1302 Moreover, this is currently the only memory access function in gdb
1303 that supports writing to flash memory, and it should be used for
1304 all cases where access to flash memory is desirable.
1305
1306 REQUESTS is the vector (see vec.h) of memory_write_request.
1307 PRESERVE_FLASH_P indicates what to do with blocks which must be
1308 erased, but not completely rewritten.
1309 PROGRESS_CB is a function that will be periodically called to provide
1310 feedback to user. It will be called with the baton corresponding
1311 to the request currently being written. It may also be called
1312 with a NULL baton, when preserved flash sectors are being rewritten.
1313
1314 The function returns 0 on success, and error otherwise. */
1315 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1316 enum flash_preserve_mode preserve_flash_p,
1317 void (*progress_cb) (ULONGEST, void *));
1318
1319 /* Print a line about the current target. */
1320
1321 #define target_files_info() \
1322 (*current_target.to_files_info) (&current_target)
1323
1324 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1325 the target machine. Returns 0 for success, and returns non-zero or
1326 throws an error (with a detailed failure reason error code and
1327 message) otherwise. */
1328
1329 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1330 struct bp_target_info *bp_tgt);
1331
1332 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1333 machine. Result is 0 for success, non-zero for error. */
1334
1335 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1336 struct bp_target_info *bp_tgt);
1337
1338 /* Initialize the terminal settings we record for the inferior,
1339 before we actually run the inferior. */
1340
1341 #define target_terminal_init() \
1342 (*current_target.to_terminal_init) (&current_target)
1343
1344 /* Put the inferior's terminal settings into effect.
1345 This is preparation for starting or resuming the inferior. */
1346
1347 extern void target_terminal_inferior (void);
1348
1349 /* Put some of our terminal settings into effect,
1350 enough to get proper results from our output,
1351 but do not change into or out of RAW mode
1352 so that no input is discarded.
1353
1354 After doing this, either terminal_ours or terminal_inferior
1355 should be called to get back to a normal state of affairs. */
1356
1357 #define target_terminal_ours_for_output() \
1358 (*current_target.to_terminal_ours_for_output) (&current_target)
1359
1360 /* Put our terminal settings into effect.
1361 First record the inferior's terminal settings
1362 so they can be restored properly later. */
1363
1364 #define target_terminal_ours() \
1365 (*current_target.to_terminal_ours) (&current_target)
1366
1367 /* Save our terminal settings.
1368 This is called from TUI after entering or leaving the curses
1369 mode. Since curses modifies our terminal this call is here
1370 to take this change into account. */
1371
1372 #define target_terminal_save_ours() \
1373 (*current_target.to_terminal_save_ours) (&current_target)
1374
1375 /* Print useful information about our terminal status, if such a thing
1376 exists. */
1377
1378 #define target_terminal_info(arg, from_tty) \
1379 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1380
1381 /* Kill the inferior process. Make it go away. */
1382
1383 extern void target_kill (void);
1384
1385 /* Load an executable file into the target process. This is expected
1386 to not only bring new code into the target process, but also to
1387 update GDB's symbol tables to match.
1388
1389 ARG contains command-line arguments, to be broken down with
1390 buildargv (). The first non-switch argument is the filename to
1391 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1392 0)), which is an offset to apply to the load addresses of FILE's
1393 sections. The target may define switches, or other non-switch
1394 arguments, as it pleases. */
1395
1396 extern void target_load (char *arg, int from_tty);
1397
1398 /* Start an inferior process and set inferior_ptid to its pid.
1399 EXEC_FILE is the file to run.
1400 ALLARGS is a string containing the arguments to the program.
1401 ENV is the environment vector to pass. Errors reported with error().
1402 On VxWorks and various standalone systems, we ignore exec_file. */
1403
1404 void target_create_inferior (char *exec_file, char *args,
1405 char **env, int from_tty);
1406
1407 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1408 notification of inferior events such as fork and vork immediately
1409 after the inferior is created. (This because of how gdb gets an
1410 inferior created via invoking a shell to do it. In such a scenario,
1411 if the shell init file has commands in it, the shell will fork and
1412 exec for each of those commands, and we will see each such fork
1413 event. Very bad.)
1414
1415 Such targets will supply an appropriate definition for this function. */
1416
1417 #define target_post_startup_inferior(ptid) \
1418 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1419
1420 /* On some targets, we can catch an inferior fork or vfork event when
1421 it occurs. These functions insert/remove an already-created
1422 catchpoint for such events. They return 0 for success, 1 if the
1423 catchpoint type is not supported and -1 for failure. */
1424
1425 #define target_insert_fork_catchpoint(pid) \
1426 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1427
1428 #define target_remove_fork_catchpoint(pid) \
1429 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1430
1431 #define target_insert_vfork_catchpoint(pid) \
1432 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1433
1434 #define target_remove_vfork_catchpoint(pid) \
1435 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1436
1437 /* If the inferior forks or vforks, this function will be called at
1438 the next resume in order to perform any bookkeeping and fiddling
1439 necessary to continue debugging either the parent or child, as
1440 requested, and releasing the other. Information about the fork
1441 or vfork event is available via get_last_target_status ().
1442 This function returns 1 if the inferior should not be resumed
1443 (i.e. there is another event pending). */
1444
1445 int target_follow_fork (int follow_child, int detach_fork);
1446
1447 /* On some targets, we can catch an inferior exec event when it
1448 occurs. These functions insert/remove an already-created
1449 catchpoint for such events. They return 0 for success, 1 if the
1450 catchpoint type is not supported and -1 for failure. */
1451
1452 #define target_insert_exec_catchpoint(pid) \
1453 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1454
1455 #define target_remove_exec_catchpoint(pid) \
1456 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1457
1458 /* Syscall catch.
1459
1460 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1461 If NEEDED is zero, it means the target can disable the mechanism to
1462 catch system calls because there are no more catchpoints of this type.
1463
1464 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1465 being requested. In this case, both TABLE_SIZE and TABLE should
1466 be ignored.
1467
1468 TABLE_SIZE is the number of elements in TABLE. It only matters if
1469 ANY_COUNT is zero.
1470
1471 TABLE is an array of ints, indexed by syscall number. An element in
1472 this array is nonzero if that syscall should be caught. This argument
1473 only matters if ANY_COUNT is zero.
1474
1475 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1476 for failure. */
1477
1478 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1479 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1480 pid, needed, any_count, \
1481 table_size, table)
1482
1483 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1484 exit code of PID, if any. */
1485
1486 #define target_has_exited(pid,wait_status,exit_status) \
1487 (*current_target.to_has_exited) (&current_target, \
1488 pid,wait_status,exit_status)
1489
1490 /* The debugger has completed a blocking wait() call. There is now
1491 some process event that must be processed. This function should
1492 be defined by those targets that require the debugger to perform
1493 cleanup or internal state changes in response to the process event. */
1494
1495 /* The inferior process has died. Do what is right. */
1496
1497 void target_mourn_inferior (void);
1498
1499 /* Does target have enough data to do a run or attach command? */
1500
1501 #define target_can_run(t) \
1502 ((t)->to_can_run) (t)
1503
1504 /* Set list of signals to be handled in the target.
1505
1506 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1507 (enum gdb_signal). For every signal whose entry in this array is
1508 non-zero, the target is allowed -but not required- to skip reporting
1509 arrival of the signal to the GDB core by returning from target_wait,
1510 and to pass the signal directly to the inferior instead.
1511
1512 However, if the target is hardware single-stepping a thread that is
1513 about to receive a signal, it needs to be reported in any case, even
1514 if mentioned in a previous target_pass_signals call. */
1515
1516 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1517
1518 /* Set list of signals the target may pass to the inferior. This
1519 directly maps to the "handle SIGNAL pass/nopass" setting.
1520
1521 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1522 number (enum gdb_signal). For every signal whose entry in this
1523 array is non-zero, the target is allowed to pass the signal to the
1524 inferior. Signals not present in the array shall be silently
1525 discarded. This does not influence whether to pass signals to the
1526 inferior as a result of a target_resume call. This is useful in
1527 scenarios where the target needs to decide whether to pass or not a
1528 signal to the inferior without GDB core involvement, such as for
1529 example, when detaching (as threads may have been suspended with
1530 pending signals not reported to GDB). */
1531
1532 extern void target_program_signals (int nsig, unsigned char *program_signals);
1533
1534 /* Check to see if a thread is still alive. */
1535
1536 extern int target_thread_alive (ptid_t ptid);
1537
1538 /* Query for new threads and add them to the thread list. */
1539
1540 extern void target_find_new_threads (void);
1541
1542 /* Make target stop in a continuable fashion. (For instance, under
1543 Unix, this should act like SIGSTOP). This function is normally
1544 used by GUIs to implement a stop button. */
1545
1546 extern void target_stop (ptid_t ptid);
1547
1548 /* Send the specified COMMAND to the target's monitor
1549 (shell,interpreter) for execution. The result of the query is
1550 placed in OUTBUF. */
1551
1552 #define target_rcmd(command, outbuf) \
1553 (*current_target.to_rcmd) (&current_target, command, outbuf)
1554
1555
1556 /* Does the target include all of memory, or only part of it? This
1557 determines whether we look up the target chain for other parts of
1558 memory if this target can't satisfy a request. */
1559
1560 extern int target_has_all_memory_1 (void);
1561 #define target_has_all_memory target_has_all_memory_1 ()
1562
1563 /* Does the target include memory? (Dummy targets don't.) */
1564
1565 extern int target_has_memory_1 (void);
1566 #define target_has_memory target_has_memory_1 ()
1567
1568 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1569 we start a process.) */
1570
1571 extern int target_has_stack_1 (void);
1572 #define target_has_stack target_has_stack_1 ()
1573
1574 /* Does the target have registers? (Exec files don't.) */
1575
1576 extern int target_has_registers_1 (void);
1577 #define target_has_registers target_has_registers_1 ()
1578
1579 /* Does the target have execution? Can we make it jump (through
1580 hoops), or pop its stack a few times? This means that the current
1581 target is currently executing; for some targets, that's the same as
1582 whether or not the target is capable of execution, but there are
1583 also targets which can be current while not executing. In that
1584 case this will become true after target_create_inferior or
1585 target_attach. */
1586
1587 extern int target_has_execution_1 (ptid_t);
1588
1589 /* Like target_has_execution_1, but always passes inferior_ptid. */
1590
1591 extern int target_has_execution_current (void);
1592
1593 #define target_has_execution target_has_execution_current ()
1594
1595 /* Default implementations for process_stratum targets. Return true
1596 if there's a selected inferior, false otherwise. */
1597
1598 extern int default_child_has_all_memory (struct target_ops *ops);
1599 extern int default_child_has_memory (struct target_ops *ops);
1600 extern int default_child_has_stack (struct target_ops *ops);
1601 extern int default_child_has_registers (struct target_ops *ops);
1602 extern int default_child_has_execution (struct target_ops *ops,
1603 ptid_t the_ptid);
1604
1605 /* Can the target support the debugger control of thread execution?
1606 Can it lock the thread scheduler? */
1607
1608 #define target_can_lock_scheduler \
1609 (current_target.to_has_thread_control & tc_schedlock)
1610
1611 /* Should the target enable async mode if it is supported? Temporary
1612 cludge until async mode is a strict superset of sync mode. */
1613 extern int target_async_permitted;
1614
1615 /* Can the target support asynchronous execution? */
1616 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1617
1618 /* Is the target in asynchronous execution mode? */
1619 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1620
1621 int target_supports_non_stop (void);
1622
1623 /* Put the target in async mode with the specified callback function. */
1624 #define target_async(CALLBACK,CONTEXT) \
1625 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1626
1627 #define target_execution_direction() \
1628 (current_target.to_execution_direction (&current_target))
1629
1630 /* Converts a process id to a string. Usually, the string just contains
1631 `process xyz', but on some systems it may contain
1632 `process xyz thread abc'. */
1633
1634 extern char *target_pid_to_str (ptid_t ptid);
1635
1636 extern char *normal_pid_to_str (ptid_t ptid);
1637
1638 /* Return a short string describing extra information about PID,
1639 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1640 is okay. */
1641
1642 #define target_extra_thread_info(TP) \
1643 (current_target.to_extra_thread_info (&current_target, TP))
1644
1645 /* Return the thread's name. A NULL result means that the target
1646 could not determine this thread's name. */
1647
1648 extern char *target_thread_name (struct thread_info *);
1649
1650 /* Attempts to find the pathname of the executable file
1651 that was run to create a specified process.
1652
1653 The process PID must be stopped when this operation is used.
1654
1655 If the executable file cannot be determined, NULL is returned.
1656
1657 Else, a pointer to a character string containing the pathname
1658 is returned. This string should be copied into a buffer by
1659 the client if the string will not be immediately used, or if
1660 it must persist. */
1661
1662 #define target_pid_to_exec_file(pid) \
1663 (current_target.to_pid_to_exec_file) (&current_target, pid)
1664
1665 /* See the to_thread_architecture description in struct target_ops. */
1666
1667 #define target_thread_architecture(ptid) \
1668 (current_target.to_thread_architecture (&current_target, ptid))
1669
1670 /*
1671 * Iterator function for target memory regions.
1672 * Calls a callback function once for each memory region 'mapped'
1673 * in the child process. Defined as a simple macro rather than
1674 * as a function macro so that it can be tested for nullity.
1675 */
1676
1677 #define target_find_memory_regions(FUNC, DATA) \
1678 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1679
1680 /*
1681 * Compose corefile .note section.
1682 */
1683
1684 #define target_make_corefile_notes(BFD, SIZE_P) \
1685 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1686
1687 /* Bookmark interfaces. */
1688 #define target_get_bookmark(ARGS, FROM_TTY) \
1689 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1690
1691 #define target_goto_bookmark(ARG, FROM_TTY) \
1692 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1693
1694 /* Hardware watchpoint interfaces. */
1695
1696 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1697 write). Only the INFERIOR_PTID task is being queried. */
1698
1699 #define target_stopped_by_watchpoint() \
1700 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1701
1702 /* Non-zero if we have steppable watchpoints */
1703
1704 #define target_have_steppable_watchpoint \
1705 (current_target.to_have_steppable_watchpoint)
1706
1707 /* Non-zero if we have continuable watchpoints */
1708
1709 #define target_have_continuable_watchpoint \
1710 (current_target.to_have_continuable_watchpoint)
1711
1712 /* Provide defaults for hardware watchpoint functions. */
1713
1714 /* If the *_hw_beakpoint functions have not been defined
1715 elsewhere use the definitions in the target vector. */
1716
1717 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1718 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1719 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1720 (including this one?). OTHERTYPE is who knows what... */
1721
1722 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1723 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1724 TYPE, CNT, OTHERTYPE);
1725
1726 /* Returns the number of debug registers needed to watch the given
1727 memory region, or zero if not supported. */
1728
1729 #define target_region_ok_for_hw_watchpoint(addr, len) \
1730 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1731 addr, len)
1732
1733
1734 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1735 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1736 COND is the expression for its condition, or NULL if there's none.
1737 Returns 0 for success, 1 if the watchpoint type is not supported,
1738 -1 for failure. */
1739
1740 #define target_insert_watchpoint(addr, len, type, cond) \
1741 (*current_target.to_insert_watchpoint) (&current_target, \
1742 addr, len, type, cond)
1743
1744 #define target_remove_watchpoint(addr, len, type, cond) \
1745 (*current_target.to_remove_watchpoint) (&current_target, \
1746 addr, len, type, cond)
1747
1748 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1749 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1750 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1751 masked watchpoints are not supported, -1 for failure. */
1752
1753 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1754
1755 /* Remove a masked watchpoint at ADDR with the mask MASK.
1756 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1757 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1758 for failure. */
1759
1760 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1761
1762 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1763 the target machine. Returns 0 for success, and returns non-zero or
1764 throws an error (with a detailed failure reason error code and
1765 message) otherwise. */
1766
1767 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1768 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1769 gdbarch, bp_tgt)
1770
1771 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1772 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1773 gdbarch, bp_tgt)
1774
1775 /* Return number of debug registers needed for a ranged breakpoint,
1776 or -1 if ranged breakpoints are not supported. */
1777
1778 extern int target_ranged_break_num_registers (void);
1779
1780 /* Return non-zero if target knows the data address which triggered this
1781 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1782 INFERIOR_PTID task is being queried. */
1783 #define target_stopped_data_address(target, addr_p) \
1784 (*target.to_stopped_data_address) (target, addr_p)
1785
1786 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1787 LENGTH bytes beginning at START. */
1788 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1789 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1790
1791 /* Return non-zero if the target is capable of using hardware to evaluate
1792 the condition expression. In this case, if the condition is false when
1793 the watched memory location changes, execution may continue without the
1794 debugger being notified.
1795
1796 Due to limitations in the hardware implementation, it may be capable of
1797 avoiding triggering the watchpoint in some cases where the condition
1798 expression is false, but may report some false positives as well.
1799 For this reason, GDB will still evaluate the condition expression when
1800 the watchpoint triggers. */
1801 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1802 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1803 addr, len, type, cond)
1804
1805 /* Return number of debug registers needed for a masked watchpoint,
1806 -1 if masked watchpoints are not supported or -2 if the given address
1807 and mask combination cannot be used. */
1808
1809 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1810
1811 /* Target can execute in reverse? */
1812 #define target_can_execute_reverse \
1813 current_target.to_can_execute_reverse (&current_target)
1814
1815 extern const struct target_desc *target_read_description (struct target_ops *);
1816
1817 #define target_get_ada_task_ptid(lwp, tid) \
1818 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1819
1820 /* Utility implementation of searching memory. */
1821 extern int simple_search_memory (struct target_ops* ops,
1822 CORE_ADDR start_addr,
1823 ULONGEST search_space_len,
1824 const gdb_byte *pattern,
1825 ULONGEST pattern_len,
1826 CORE_ADDR *found_addrp);
1827
1828 /* Main entry point for searching memory. */
1829 extern int target_search_memory (CORE_ADDR start_addr,
1830 ULONGEST search_space_len,
1831 const gdb_byte *pattern,
1832 ULONGEST pattern_len,
1833 CORE_ADDR *found_addrp);
1834
1835 /* Target file operations. */
1836
1837 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1838 target file descriptor, or -1 if an error occurs (and set
1839 *TARGET_ERRNO). */
1840 extern int target_fileio_open (const char *filename, int flags, int mode,
1841 int *target_errno);
1842
1843 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1844 Return the number of bytes written, or -1 if an error occurs
1845 (and set *TARGET_ERRNO). */
1846 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1847 ULONGEST offset, int *target_errno);
1848
1849 /* Read up to LEN bytes FD on the target into READ_BUF.
1850 Return the number of bytes read, or -1 if an error occurs
1851 (and set *TARGET_ERRNO). */
1852 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1853 ULONGEST offset, int *target_errno);
1854
1855 /* Close FD on the target. Return 0, or -1 if an error occurs
1856 (and set *TARGET_ERRNO). */
1857 extern int target_fileio_close (int fd, int *target_errno);
1858
1859 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1860 occurs (and set *TARGET_ERRNO). */
1861 extern int target_fileio_unlink (const char *filename, int *target_errno);
1862
1863 /* Read value of symbolic link FILENAME on the target. Return a
1864 null-terminated string allocated via xmalloc, or NULL if an error
1865 occurs (and set *TARGET_ERRNO). */
1866 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1867
1868 /* Read target file FILENAME. The return value will be -1 if the transfer
1869 fails or is not supported; 0 if the object is empty; or the length
1870 of the object otherwise. If a positive value is returned, a
1871 sufficiently large buffer will be allocated using xmalloc and
1872 returned in *BUF_P containing the contents of the object.
1873
1874 This method should be used for objects sufficiently small to store
1875 in a single xmalloc'd buffer, when no fixed bound on the object's
1876 size is known in advance. */
1877 extern LONGEST target_fileio_read_alloc (const char *filename,
1878 gdb_byte **buf_p);
1879
1880 /* Read target file FILENAME. The result is NUL-terminated and
1881 returned as a string, allocated using xmalloc. If an error occurs
1882 or the transfer is unsupported, NULL is returned. Empty objects
1883 are returned as allocated but empty strings. A warning is issued
1884 if the result contains any embedded NUL bytes. */
1885 extern char *target_fileio_read_stralloc (const char *filename);
1886
1887
1888 /* Tracepoint-related operations. */
1889
1890 #define target_trace_init() \
1891 (*current_target.to_trace_init) (&current_target)
1892
1893 #define target_download_tracepoint(t) \
1894 (*current_target.to_download_tracepoint) (&current_target, t)
1895
1896 #define target_can_download_tracepoint() \
1897 (*current_target.to_can_download_tracepoint) (&current_target)
1898
1899 #define target_download_trace_state_variable(tsv) \
1900 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1901
1902 #define target_enable_tracepoint(loc) \
1903 (*current_target.to_enable_tracepoint) (&current_target, loc)
1904
1905 #define target_disable_tracepoint(loc) \
1906 (*current_target.to_disable_tracepoint) (&current_target, loc)
1907
1908 #define target_trace_start() \
1909 (*current_target.to_trace_start) (&current_target)
1910
1911 #define target_trace_set_readonly_regions() \
1912 (*current_target.to_trace_set_readonly_regions) (&current_target)
1913
1914 #define target_get_trace_status(ts) \
1915 (*current_target.to_get_trace_status) (&current_target, ts)
1916
1917 #define target_get_tracepoint_status(tp,utp) \
1918 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1919
1920 #define target_trace_stop() \
1921 (*current_target.to_trace_stop) (&current_target)
1922
1923 #define target_trace_find(type,num,addr1,addr2,tpp) \
1924 (*current_target.to_trace_find) (&current_target, \
1925 (type), (num), (addr1), (addr2), (tpp))
1926
1927 #define target_get_trace_state_variable_value(tsv,val) \
1928 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1929 (tsv), (val))
1930
1931 #define target_save_trace_data(filename) \
1932 (*current_target.to_save_trace_data) (&current_target, filename)
1933
1934 #define target_upload_tracepoints(utpp) \
1935 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1936
1937 #define target_upload_trace_state_variables(utsvp) \
1938 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1939
1940 #define target_get_raw_trace_data(buf,offset,len) \
1941 (*current_target.to_get_raw_trace_data) (&current_target, \
1942 (buf), (offset), (len))
1943
1944 #define target_get_min_fast_tracepoint_insn_len() \
1945 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1946
1947 #define target_set_disconnected_tracing(val) \
1948 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1949
1950 #define target_set_circular_trace_buffer(val) \
1951 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1952
1953 #define target_set_trace_buffer_size(val) \
1954 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1955
1956 #define target_set_trace_notes(user,notes,stopnotes) \
1957 (*current_target.to_set_trace_notes) (&current_target, \
1958 (user), (notes), (stopnotes))
1959
1960 #define target_get_tib_address(ptid, addr) \
1961 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1962
1963 #define target_set_permissions() \
1964 (*current_target.to_set_permissions) (&current_target)
1965
1966 #define target_static_tracepoint_marker_at(addr, marker) \
1967 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1968 addr, marker)
1969
1970 #define target_static_tracepoint_markers_by_strid(marker_id) \
1971 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1972 marker_id)
1973
1974 #define target_traceframe_info() \
1975 (*current_target.to_traceframe_info) (&current_target)
1976
1977 #define target_use_agent(use) \
1978 (*current_target.to_use_agent) (&current_target, use)
1979
1980 #define target_can_use_agent() \
1981 (*current_target.to_can_use_agent) (&current_target)
1982
1983 #define target_augmented_libraries_svr4_read() \
1984 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1985
1986 /* Command logging facility. */
1987
1988 #define target_log_command(p) \
1989 (*current_target.to_log_command) (&current_target, p)
1990
1991
1992 extern int target_core_of_thread (ptid_t ptid);
1993
1994 /* See to_get_unwinder in struct target_ops. */
1995 extern const struct frame_unwind *target_get_unwinder (void);
1996
1997 /* See to_get_tailcall_unwinder in struct target_ops. */
1998 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1999
2000 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2001 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2002 if there's a mismatch, and -1 if an error is encountered while
2003 reading memory. Throws an error if the functionality is found not
2004 to be supported by the current target. */
2005 int target_verify_memory (const gdb_byte *data,
2006 CORE_ADDR memaddr, ULONGEST size);
2007
2008 /* Routines for maintenance of the target structures...
2009
2010 complete_target_initialization: Finalize a target_ops by filling in
2011 any fields needed by the target implementation.
2012
2013 add_target: Add a target to the list of all possible targets.
2014
2015 push_target: Make this target the top of the stack of currently used
2016 targets, within its particular stratum of the stack. Result
2017 is 0 if now atop the stack, nonzero if not on top (maybe
2018 should warn user).
2019
2020 unpush_target: Remove this from the stack of currently used targets,
2021 no matter where it is on the list. Returns 0 if no
2022 change, 1 if removed from stack. */
2023
2024 extern void add_target (struct target_ops *);
2025
2026 extern void add_target_with_completer (struct target_ops *t,
2027 completer_ftype *completer);
2028
2029 extern void complete_target_initialization (struct target_ops *t);
2030
2031 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2032 for maintaining backwards compatibility when renaming targets. */
2033
2034 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2035
2036 extern void push_target (struct target_ops *);
2037
2038 extern int unpush_target (struct target_ops *);
2039
2040 extern void target_pre_inferior (int);
2041
2042 extern void target_preopen (int);
2043
2044 /* Does whatever cleanup is required to get rid of all pushed targets. */
2045 extern void pop_all_targets (void);
2046
2047 /* Like pop_all_targets, but pops only targets whose stratum is
2048 strictly above ABOVE_STRATUM. */
2049 extern void pop_all_targets_above (enum strata above_stratum);
2050
2051 extern int target_is_pushed (struct target_ops *t);
2052
2053 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2054 CORE_ADDR offset);
2055
2056 /* Struct target_section maps address ranges to file sections. It is
2057 mostly used with BFD files, but can be used without (e.g. for handling
2058 raw disks, or files not in formats handled by BFD). */
2059
2060 struct target_section
2061 {
2062 CORE_ADDR addr; /* Lowest address in section */
2063 CORE_ADDR endaddr; /* 1+highest address in section */
2064
2065 struct bfd_section *the_bfd_section;
2066
2067 /* The "owner" of the section.
2068 It can be any unique value. It is set by add_target_sections
2069 and used by remove_target_sections.
2070 For example, for executables it is a pointer to exec_bfd and
2071 for shlibs it is the so_list pointer. */
2072 void *owner;
2073 };
2074
2075 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2076
2077 struct target_section_table
2078 {
2079 struct target_section *sections;
2080 struct target_section *sections_end;
2081 };
2082
2083 /* Return the "section" containing the specified address. */
2084 struct target_section *target_section_by_addr (struct target_ops *target,
2085 CORE_ADDR addr);
2086
2087 /* Return the target section table this target (or the targets
2088 beneath) currently manipulate. */
2089
2090 extern struct target_section_table *target_get_section_table
2091 (struct target_ops *target);
2092
2093 /* From mem-break.c */
2094
2095 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2096 struct bp_target_info *);
2097
2098 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2099 struct bp_target_info *);
2100
2101 extern int default_memory_remove_breakpoint (struct gdbarch *,
2102 struct bp_target_info *);
2103
2104 extern int default_memory_insert_breakpoint (struct gdbarch *,
2105 struct bp_target_info *);
2106
2107
2108 /* From target.c */
2109
2110 extern void initialize_targets (void);
2111
2112 extern void noprocess (void) ATTRIBUTE_NORETURN;
2113
2114 extern void target_require_runnable (void);
2115
2116 extern void find_default_attach (struct target_ops *, char *, int);
2117
2118 extern void find_default_create_inferior (struct target_ops *,
2119 char *, char *, char **, int);
2120
2121 extern struct target_ops *find_target_beneath (struct target_ops *);
2122
2123 /* Find the target at STRATUM. If no target is at that stratum,
2124 return NULL. */
2125
2126 struct target_ops *find_target_at (enum strata stratum);
2127
2128 /* Read OS data object of type TYPE from the target, and return it in
2129 XML format. The result is NUL-terminated and returned as a string,
2130 allocated using xmalloc. If an error occurs or the transfer is
2131 unsupported, NULL is returned. Empty objects are returned as
2132 allocated but empty strings. */
2133
2134 extern char *target_get_osdata (const char *type);
2135
2136 \f
2137 /* Stuff that should be shared among the various remote targets. */
2138
2139 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2140 information (higher values, more information). */
2141 extern int remote_debug;
2142
2143 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2144 extern int baud_rate;
2145 /* Timeout limit for response from target. */
2146 extern int remote_timeout;
2147
2148 \f
2149
2150 /* Set the show memory breakpoints mode to show, and installs a cleanup
2151 to restore it back to the current value. */
2152 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2153
2154 extern int may_write_registers;
2155 extern int may_write_memory;
2156 extern int may_insert_breakpoints;
2157 extern int may_insert_tracepoints;
2158 extern int may_insert_fast_tracepoints;
2159 extern int may_stop;
2160
2161 extern void update_target_permissions (void);
2162
2163 \f
2164 /* Imported from machine dependent code. */
2165
2166 /* Blank target vector entries are initialized to target_ignore. */
2167 void target_ignore (void);
2168
2169 /* See to_supports_btrace in struct target_ops. */
2170 #define target_supports_btrace() \
2171 (current_target.to_supports_btrace (&current_target))
2172
2173 /* See to_enable_btrace in struct target_ops. */
2174 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2175
2176 /* See to_disable_btrace in struct target_ops. */
2177 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2178
2179 /* See to_teardown_btrace in struct target_ops. */
2180 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2181
2182 /* See to_read_btrace in struct target_ops. */
2183 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2184 struct btrace_target_info *,
2185 enum btrace_read_type);
2186
2187 /* See to_stop_recording in struct target_ops. */
2188 extern void target_stop_recording (void);
2189
2190 /* See to_info_record in struct target_ops. */
2191 extern void target_info_record (void);
2192
2193 /* See to_save_record in struct target_ops. */
2194 extern void target_save_record (const char *filename);
2195
2196 /* Query if the target supports deleting the execution log. */
2197 extern int target_supports_delete_record (void);
2198
2199 /* See to_delete_record in struct target_ops. */
2200 extern void target_delete_record (void);
2201
2202 /* See to_record_is_replaying in struct target_ops. */
2203 extern int target_record_is_replaying (void);
2204
2205 /* See to_goto_record_begin in struct target_ops. */
2206 extern void target_goto_record_begin (void);
2207
2208 /* See to_goto_record_end in struct target_ops. */
2209 extern void target_goto_record_end (void);
2210
2211 /* See to_goto_record in struct target_ops. */
2212 extern void target_goto_record (ULONGEST insn);
2213
2214 /* See to_insn_history. */
2215 extern void target_insn_history (int size, int flags);
2216
2217 /* See to_insn_history_from. */
2218 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2219
2220 /* See to_insn_history_range. */
2221 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2222
2223 /* See to_call_history. */
2224 extern void target_call_history (int size, int flags);
2225
2226 /* See to_call_history_from. */
2227 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2228
2229 /* See to_call_history_range. */
2230 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2231
2232 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2233 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2234 struct gdbarch *gdbarch);
2235
2236 /* See to_decr_pc_after_break. */
2237 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2238
2239 #endif /* !defined (TARGET_H) */