record-btrace: start counting at one
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible error codes returned by target_xfer_partial, etc. */
207
208 enum target_xfer_error
209 {
210 /* Generic I/O error. Note that it's important that this is '-1',
211 as we still have target_xfer-related code returning hardcoded
212 '-1' on error. */
213 TARGET_XFER_E_IO = -1,
214
215 /* Transfer failed because the piece of the object requested is
216 unavailable. */
217 TARGET_XFER_E_UNAVAILABLE = -2,
218
219 /* Keep list in sync with target_xfer_error_to_string. */
220 };
221
222 /* Return the string form of ERR. */
223
224 extern const char *target_xfer_error_to_string (enum target_xfer_error err);
225
226 /* Enumeration of the kinds of traceframe searches that a target may
227 be able to perform. */
228
229 enum trace_find_type
230 {
231 tfind_number,
232 tfind_pc,
233 tfind_tp,
234 tfind_range,
235 tfind_outside,
236 };
237
238 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
239 DEF_VEC_P(static_tracepoint_marker_p);
240
241 typedef LONGEST
242 target_xfer_partial_ftype (struct target_ops *ops,
243 enum target_object object,
244 const char *annex,
245 gdb_byte *readbuf,
246 const gdb_byte *writebuf,
247 ULONGEST offset,
248 ULONGEST len);
249
250 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
251 OBJECT. The OFFSET, for a seekable object, specifies the
252 starting point. The ANNEX can be used to provide additional
253 data-specific information to the target.
254
255 Return the number of bytes actually transfered, or a negative error
256 code (an 'enum target_xfer_error' value) if the transfer is not
257 supported or otherwise fails. Return of a positive value less than
258 LEN indicates that no further transfer is possible. Unlike the raw
259 to_xfer_partial interface, callers of these functions do not need
260 to retry partial transfers. */
261
262 extern LONGEST target_read (struct target_ops *ops,
263 enum target_object object,
264 const char *annex, gdb_byte *buf,
265 ULONGEST offset, LONGEST len);
266
267 struct memory_read_result
268 {
269 /* First address that was read. */
270 ULONGEST begin;
271 /* Past-the-end address. */
272 ULONGEST end;
273 /* The data. */
274 gdb_byte *data;
275 };
276 typedef struct memory_read_result memory_read_result_s;
277 DEF_VEC_O(memory_read_result_s);
278
279 extern void free_memory_read_result_vector (void *);
280
281 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
282 ULONGEST offset,
283 LONGEST len);
284
285 extern LONGEST target_write (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, const gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 /* Similar to target_write, except that it also calls PROGRESS with
291 the number of bytes written and the opaque BATON after every
292 successful partial write (and before the first write). This is
293 useful for progress reporting and user interaction while writing
294 data. To abort the transfer, the progress callback can throw an
295 exception. */
296
297 LONGEST target_write_with_progress (struct target_ops *ops,
298 enum target_object object,
299 const char *annex, const gdb_byte *buf,
300 ULONGEST offset, LONGEST len,
301 void (*progress) (ULONGEST, void *),
302 void *baton);
303
304 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
305 be read using OPS. The return value will be -1 if the transfer
306 fails or is not supported; 0 if the object is empty; or the length
307 of the object otherwise. If a positive value is returned, a
308 sufficiently large buffer will be allocated using xmalloc and
309 returned in *BUF_P containing the contents of the object.
310
311 This method should be used for objects sufficiently small to store
312 in a single xmalloc'd buffer, when no fixed bound on the object's
313 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
314 through this function. */
315
316 extern LONGEST target_read_alloc (struct target_ops *ops,
317 enum target_object object,
318 const char *annex, gdb_byte **buf_p);
319
320 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
321 returned as a string, allocated using xmalloc. If an error occurs
322 or the transfer is unsupported, NULL is returned. Empty objects
323 are returned as allocated but empty strings. A warning is issued
324 if the result contains any embedded NUL bytes. */
325
326 extern char *target_read_stralloc (struct target_ops *ops,
327 enum target_object object,
328 const char *annex);
329
330 /* See target_ops->to_xfer_partial. */
331 extern target_xfer_partial_ftype target_xfer_partial;
332
333 /* Wrappers to target read/write that perform memory transfers. They
334 throw an error if the memory transfer fails.
335
336 NOTE: cagney/2003-10-23: The naming schema is lifted from
337 "frame.h". The parameter order is lifted from get_frame_memory,
338 which in turn lifted it from read_memory. */
339
340 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
341 gdb_byte *buf, LONGEST len);
342 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
343 CORE_ADDR addr, int len,
344 enum bfd_endian byte_order);
345 \f
346 struct thread_info; /* fwd decl for parameter list below: */
347
348 /* The type of the callback to the to_async method. */
349
350 typedef void async_callback_ftype (enum inferior_event_type event_type,
351 void *context);
352
353 struct target_ops
354 {
355 struct target_ops *beneath; /* To the target under this one. */
356 char *to_shortname; /* Name this target type */
357 char *to_longname; /* Name for printing */
358 char *to_doc; /* Documentation. Does not include trailing
359 newline, and starts with a one-line descrip-
360 tion (probably similar to to_longname). */
361 /* Per-target scratch pad. */
362 void *to_data;
363 /* The open routine takes the rest of the parameters from the
364 command, and (if successful) pushes a new target onto the
365 stack. Targets should supply this routine, if only to provide
366 an error message. */
367 void (*to_open) (char *, int);
368 /* Old targets with a static target vector provide "to_close".
369 New re-entrant targets provide "to_xclose" and that is expected
370 to xfree everything (including the "struct target_ops"). */
371 void (*to_xclose) (struct target_ops *targ);
372 void (*to_close) (void);
373 void (*to_attach) (struct target_ops *ops, char *, int);
374 void (*to_post_attach) (int);
375 void (*to_detach) (struct target_ops *ops, const char *, int);
376 void (*to_disconnect) (struct target_ops *, char *, int);
377 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
378 ptid_t (*to_wait) (struct target_ops *,
379 ptid_t, struct target_waitstatus *, int);
380 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
381 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
382 void (*to_prepare_to_store) (struct regcache *);
383
384 /* Transfer LEN bytes of memory between GDB address MYADDR and
385 target address MEMADDR. If WRITE, transfer them to the target, else
386 transfer them from the target. TARGET is the target from which we
387 get this function.
388
389 Return value, N, is one of the following:
390
391 0 means that we can't handle this. If errno has been set, it is the
392 error which prevented us from doing it (FIXME: What about bfd_error?).
393
394 positive (call it N) means that we have transferred N bytes
395 starting at MEMADDR. We might be able to handle more bytes
396 beyond this length, but no promises.
397
398 negative (call its absolute value N) means that we cannot
399 transfer right at MEMADDR, but we could transfer at least
400 something at MEMADDR + N.
401
402 NOTE: cagney/2004-10-01: This has been entirely superseeded by
403 to_xfer_partial and inferior inheritance. */
404
405 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
406 int len, int write,
407 struct mem_attrib *attrib,
408 struct target_ops *target);
409
410 void (*to_files_info) (struct target_ops *);
411 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
412 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
413 int (*to_can_use_hw_breakpoint) (int, int, int);
414 int (*to_ranged_break_num_registers) (struct target_ops *);
415 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
416 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
417
418 /* Documentation of what the two routines below are expected to do is
419 provided with the corresponding target_* macros. */
420 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
421 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
422
423 int (*to_insert_mask_watchpoint) (struct target_ops *,
424 CORE_ADDR, CORE_ADDR, int);
425 int (*to_remove_mask_watchpoint) (struct target_ops *,
426 CORE_ADDR, CORE_ADDR, int);
427 int (*to_stopped_by_watchpoint) (void);
428 int to_have_steppable_watchpoint;
429 int to_have_continuable_watchpoint;
430 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
431 int (*to_watchpoint_addr_within_range) (struct target_ops *,
432 CORE_ADDR, CORE_ADDR, int);
433
434 /* Documentation of this routine is provided with the corresponding
435 target_* macro. */
436 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
437
438 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
439 struct expression *);
440 int (*to_masked_watch_num_registers) (struct target_ops *,
441 CORE_ADDR, CORE_ADDR);
442 void (*to_terminal_init) (void);
443 void (*to_terminal_inferior) (void);
444 void (*to_terminal_ours_for_output) (void);
445 void (*to_terminal_ours) (void);
446 void (*to_terminal_save_ours) (void);
447 void (*to_terminal_info) (const char *, int);
448 void (*to_kill) (struct target_ops *);
449 void (*to_load) (char *, int);
450 void (*to_create_inferior) (struct target_ops *,
451 char *, char *, char **, int);
452 void (*to_post_startup_inferior) (ptid_t);
453 int (*to_insert_fork_catchpoint) (int);
454 int (*to_remove_fork_catchpoint) (int);
455 int (*to_insert_vfork_catchpoint) (int);
456 int (*to_remove_vfork_catchpoint) (int);
457 int (*to_follow_fork) (struct target_ops *, int, int);
458 int (*to_insert_exec_catchpoint) (int);
459 int (*to_remove_exec_catchpoint) (int);
460 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
461 int (*to_has_exited) (int, int, int *);
462 void (*to_mourn_inferior) (struct target_ops *);
463 int (*to_can_run) (void);
464
465 /* Documentation of this routine is provided with the corresponding
466 target_* macro. */
467 void (*to_pass_signals) (int, unsigned char *);
468
469 /* Documentation of this routine is provided with the
470 corresponding target_* function. */
471 void (*to_program_signals) (int, unsigned char *);
472
473 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
474 void (*to_find_new_threads) (struct target_ops *);
475 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
476 char *(*to_extra_thread_info) (struct thread_info *);
477 char *(*to_thread_name) (struct thread_info *);
478 void (*to_stop) (ptid_t);
479 void (*to_rcmd) (char *command, struct ui_file *output);
480 char *(*to_pid_to_exec_file) (int pid);
481 void (*to_log_command) (const char *);
482 struct target_section_table *(*to_get_section_table) (struct target_ops *);
483 enum strata to_stratum;
484 int (*to_has_all_memory) (struct target_ops *);
485 int (*to_has_memory) (struct target_ops *);
486 int (*to_has_stack) (struct target_ops *);
487 int (*to_has_registers) (struct target_ops *);
488 int (*to_has_execution) (struct target_ops *, ptid_t);
489 int to_has_thread_control; /* control thread execution */
490 int to_attach_no_wait;
491 /* ASYNC target controls */
492 int (*to_can_async_p) (void);
493 int (*to_is_async_p) (void);
494 void (*to_async) (async_callback_ftype *, void *);
495 int (*to_supports_non_stop) (void);
496 /* find_memory_regions support method for gcore */
497 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
498 /* make_corefile_notes support method for gcore */
499 char * (*to_make_corefile_notes) (bfd *, int *);
500 /* get_bookmark support method for bookmarks */
501 gdb_byte * (*to_get_bookmark) (char *, int);
502 /* goto_bookmark support method for bookmarks */
503 void (*to_goto_bookmark) (gdb_byte *, int);
504 /* Return the thread-local address at OFFSET in the
505 thread-local storage for the thread PTID and the shared library
506 or executable file given by OBJFILE. If that block of
507 thread-local storage hasn't been allocated yet, this function
508 may return an error. */
509 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
510 ptid_t ptid,
511 CORE_ADDR load_module_addr,
512 CORE_ADDR offset);
513
514 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
515 OBJECT. The OFFSET, for a seekable object, specifies the
516 starting point. The ANNEX can be used to provide additional
517 data-specific information to the target.
518
519 Return the number of bytes actually transfered, zero when no
520 further transfer is possible, and a negative error code (really
521 an 'enum target_xfer_error' value) when the transfer is not
522 supported. Return of a positive value smaller than LEN does
523 not indicate the end of the object, only the end of the
524 transfer; higher level code should continue transferring if
525 desired. This is handled in target.c.
526
527 The interface does not support a "retry" mechanism. Instead it
528 assumes that at least one byte will be transfered on each
529 successful call.
530
531 NOTE: cagney/2003-10-17: The current interface can lead to
532 fragmented transfers. Lower target levels should not implement
533 hacks, such as enlarging the transfer, in an attempt to
534 compensate for this. Instead, the target stack should be
535 extended so that it implements supply/collect methods and a
536 look-aside object cache. With that available, the lowest
537 target can safely and freely "push" data up the stack.
538
539 See target_read and target_write for more information. One,
540 and only one, of readbuf or writebuf must be non-NULL. */
541
542 LONGEST (*to_xfer_partial) (struct target_ops *ops,
543 enum target_object object, const char *annex,
544 gdb_byte *readbuf, const gdb_byte *writebuf,
545 ULONGEST offset, ULONGEST len);
546
547 /* Returns the memory map for the target. A return value of NULL
548 means that no memory map is available. If a memory address
549 does not fall within any returned regions, it's assumed to be
550 RAM. The returned memory regions should not overlap.
551
552 The order of regions does not matter; target_memory_map will
553 sort regions by starting address. For that reason, this
554 function should not be called directly except via
555 target_memory_map.
556
557 This method should not cache data; if the memory map could
558 change unexpectedly, it should be invalidated, and higher
559 layers will re-fetch it. */
560 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
561
562 /* Erases the region of flash memory starting at ADDRESS, of
563 length LENGTH.
564
565 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
566 on flash block boundaries, as reported by 'to_memory_map'. */
567 void (*to_flash_erase) (struct target_ops *,
568 ULONGEST address, LONGEST length);
569
570 /* Finishes a flash memory write sequence. After this operation
571 all flash memory should be available for writing and the result
572 of reading from areas written by 'to_flash_write' should be
573 equal to what was written. */
574 void (*to_flash_done) (struct target_ops *);
575
576 /* Describe the architecture-specific features of this target.
577 Returns the description found, or NULL if no description
578 was available. */
579 const struct target_desc *(*to_read_description) (struct target_ops *ops);
580
581 /* Build the PTID of the thread on which a given task is running,
582 based on LWP and THREAD. These values are extracted from the
583 task Private_Data section of the Ada Task Control Block, and
584 their interpretation depends on the target. */
585 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
586
587 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
588 Return 0 if *READPTR is already at the end of the buffer.
589 Return -1 if there is insufficient buffer for a whole entry.
590 Return 1 if an entry was read into *TYPEP and *VALP. */
591 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
592 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
593
594 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
595 sequence of bytes in PATTERN with length PATTERN_LEN.
596
597 The result is 1 if found, 0 if not found, and -1 if there was an error
598 requiring halting of the search (e.g. memory read error).
599 If the pattern is found the address is recorded in FOUND_ADDRP. */
600 int (*to_search_memory) (struct target_ops *ops,
601 CORE_ADDR start_addr, ULONGEST search_space_len,
602 const gdb_byte *pattern, ULONGEST pattern_len,
603 CORE_ADDR *found_addrp);
604
605 /* Can target execute in reverse? */
606 int (*to_can_execute_reverse) (void);
607
608 /* The direction the target is currently executing. Must be
609 implemented on targets that support reverse execution and async
610 mode. The default simply returns forward execution. */
611 enum exec_direction_kind (*to_execution_direction) (void);
612
613 /* Does this target support debugging multiple processes
614 simultaneously? */
615 int (*to_supports_multi_process) (void);
616
617 /* Does this target support enabling and disabling tracepoints while a trace
618 experiment is running? */
619 int (*to_supports_enable_disable_tracepoint) (void);
620
621 /* Does this target support disabling address space randomization? */
622 int (*to_supports_disable_randomization) (void);
623
624 /* Does this target support the tracenz bytecode for string collection? */
625 int (*to_supports_string_tracing) (void);
626
627 /* Does this target support evaluation of breakpoint conditions on its
628 end? */
629 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
630
631 /* Does this target support evaluation of breakpoint commands on its
632 end? */
633 int (*to_can_run_breakpoint_commands) (void);
634
635 /* Determine current architecture of thread PTID.
636
637 The target is supposed to determine the architecture of the code where
638 the target is currently stopped at (on Cell, if a target is in spu_run,
639 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
640 This is architecture used to perform decr_pc_after_break adjustment,
641 and also determines the frame architecture of the innermost frame.
642 ptrace operations need to operate according to target_gdbarch ().
643
644 The default implementation always returns target_gdbarch (). */
645 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
646
647 /* Determine current address space of thread PTID.
648
649 The default implementation always returns the inferior's
650 address space. */
651 struct address_space *(*to_thread_address_space) (struct target_ops *,
652 ptid_t);
653
654 /* Target file operations. */
655
656 /* Open FILENAME on the target, using FLAGS and MODE. Return a
657 target file descriptor, or -1 if an error occurs (and set
658 *TARGET_ERRNO). */
659 int (*to_fileio_open) (const char *filename, int flags, int mode,
660 int *target_errno);
661
662 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
663 Return the number of bytes written, or -1 if an error occurs
664 (and set *TARGET_ERRNO). */
665 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
666 ULONGEST offset, int *target_errno);
667
668 /* Read up to LEN bytes FD on the target into READ_BUF.
669 Return the number of bytes read, or -1 if an error occurs
670 (and set *TARGET_ERRNO). */
671 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
672 ULONGEST offset, int *target_errno);
673
674 /* Close FD on the target. Return 0, or -1 if an error occurs
675 (and set *TARGET_ERRNO). */
676 int (*to_fileio_close) (int fd, int *target_errno);
677
678 /* Unlink FILENAME on the target. Return 0, or -1 if an error
679 occurs (and set *TARGET_ERRNO). */
680 int (*to_fileio_unlink) (const char *filename, int *target_errno);
681
682 /* Read value of symbolic link FILENAME on the target. Return a
683 null-terminated string allocated via xmalloc, or NULL if an error
684 occurs (and set *TARGET_ERRNO). */
685 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
686
687
688 /* Implement the "info proc" command. */
689 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
690
691 /* Tracepoint-related operations. */
692
693 /* Prepare the target for a tracing run. */
694 void (*to_trace_init) (void);
695
696 /* Send full details of a tracepoint location to the target. */
697 void (*to_download_tracepoint) (struct bp_location *location);
698
699 /* Is the target able to download tracepoint locations in current
700 state? */
701 int (*to_can_download_tracepoint) (void);
702
703 /* Send full details of a trace state variable to the target. */
704 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
705
706 /* Enable a tracepoint on the target. */
707 void (*to_enable_tracepoint) (struct bp_location *location);
708
709 /* Disable a tracepoint on the target. */
710 void (*to_disable_tracepoint) (struct bp_location *location);
711
712 /* Inform the target info of memory regions that are readonly
713 (such as text sections), and so it should return data from
714 those rather than look in the trace buffer. */
715 void (*to_trace_set_readonly_regions) (void);
716
717 /* Start a trace run. */
718 void (*to_trace_start) (void);
719
720 /* Get the current status of a tracing run. */
721 int (*to_get_trace_status) (struct trace_status *ts);
722
723 void (*to_get_tracepoint_status) (struct breakpoint *tp,
724 struct uploaded_tp *utp);
725
726 /* Stop a trace run. */
727 void (*to_trace_stop) (void);
728
729 /* Ask the target to find a trace frame of the given type TYPE,
730 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
731 number of the trace frame, and also the tracepoint number at
732 TPP. If no trace frame matches, return -1. May throw if the
733 operation fails. */
734 int (*to_trace_find) (enum trace_find_type type, int num,
735 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
736
737 /* Get the value of the trace state variable number TSV, returning
738 1 if the value is known and writing the value itself into the
739 location pointed to by VAL, else returning 0. */
740 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
741
742 int (*to_save_trace_data) (const char *filename);
743
744 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
745
746 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
747
748 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
749 ULONGEST offset, LONGEST len);
750
751 /* Get the minimum length of instruction on which a fast tracepoint
752 may be set on the target. If this operation is unsupported,
753 return -1. If for some reason the minimum length cannot be
754 determined, return 0. */
755 int (*to_get_min_fast_tracepoint_insn_len) (void);
756
757 /* Set the target's tracing behavior in response to unexpected
758 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
759 void (*to_set_disconnected_tracing) (int val);
760 void (*to_set_circular_trace_buffer) (int val);
761 /* Set the size of trace buffer in the target. */
762 void (*to_set_trace_buffer_size) (LONGEST val);
763
764 /* Add/change textual notes about the trace run, returning 1 if
765 successful, 0 otherwise. */
766 int (*to_set_trace_notes) (const char *user, const char *notes,
767 const char *stopnotes);
768
769 /* Return the processor core that thread PTID was last seen on.
770 This information is updated only when:
771 - update_thread_list is called
772 - thread stops
773 If the core cannot be determined -- either for the specified
774 thread, or right now, or in this debug session, or for this
775 target -- return -1. */
776 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
777
778 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
779 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
780 a match, 0 if there's a mismatch, and -1 if an error is
781 encountered while reading memory. */
782 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
783 CORE_ADDR memaddr, ULONGEST size);
784
785 /* Return the address of the start of the Thread Information Block
786 a Windows OS specific feature. */
787 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
788
789 /* Send the new settings of write permission variables. */
790 void (*to_set_permissions) (void);
791
792 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
793 with its details. Return 1 on success, 0 on failure. */
794 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
795 struct static_tracepoint_marker *marker);
796
797 /* Return a vector of all tracepoints markers string id ID, or all
798 markers if ID is NULL. */
799 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
800 (const char *id);
801
802 /* Return a traceframe info object describing the current
803 traceframe's contents. If the target doesn't support
804 traceframe info, return NULL. If the current traceframe is not
805 selected (the current traceframe number is -1), the target can
806 choose to return either NULL or an empty traceframe info. If
807 NULL is returned, for example in remote target, GDB will read
808 from the live inferior. If an empty traceframe info is
809 returned, for example in tfile target, which means the
810 traceframe info is available, but the requested memory is not
811 available in it. GDB will try to see if the requested memory
812 is available in the read-only sections. This method should not
813 cache data; higher layers take care of caching, invalidating,
814 and re-fetching when necessary. */
815 struct traceframe_info *(*to_traceframe_info) (void);
816
817 /* Ask the target to use or not to use agent according to USE. Return 1
818 successful, 0 otherwise. */
819 int (*to_use_agent) (int use);
820
821 /* Is the target able to use agent in current state? */
822 int (*to_can_use_agent) (void);
823
824 /* Check whether the target supports branch tracing. */
825 int (*to_supports_btrace) (void);
826
827 /* Enable branch tracing for PTID and allocate a branch trace target
828 information struct for reading and for disabling branch trace. */
829 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
830
831 /* Disable branch tracing and deallocate TINFO. */
832 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
833
834 /* Disable branch tracing and deallocate TINFO. This function is similar
835 to to_disable_btrace, except that it is called during teardown and is
836 only allowed to perform actions that are safe. A counter-example would
837 be attempting to talk to a remote target. */
838 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
839
840 /* Read branch trace data. */
841 VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
842 enum btrace_read_type);
843
844 /* Stop trace recording. */
845 void (*to_stop_recording) (void);
846
847 /* Print information about the recording. */
848 void (*to_info_record) (void);
849
850 /* Save the recorded execution trace into a file. */
851 void (*to_save_record) (const char *filename);
852
853 /* Delete the recorded execution trace from the current position onwards. */
854 void (*to_delete_record) (void);
855
856 /* Query if the record target is currently replaying. */
857 int (*to_record_is_replaying) (void);
858
859 /* Go to the begin of the execution trace. */
860 void (*to_goto_record_begin) (void);
861
862 /* Go to the end of the execution trace. */
863 void (*to_goto_record_end) (void);
864
865 /* Go to a specific location in the recorded execution trace. */
866 void (*to_goto_record) (ULONGEST insn);
867
868 /* Disassemble SIZE instructions in the recorded execution trace from
869 the current position.
870 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
871 disassemble SIZE succeeding instructions. */
872 void (*to_insn_history) (int size, int flags);
873
874 /* Disassemble SIZE instructions in the recorded execution trace around
875 FROM.
876 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
877 disassemble SIZE instructions after FROM. */
878 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
879
880 /* Disassemble a section of the recorded execution trace from instruction
881 BEGIN (inclusive) to instruction END (exclusive). */
882 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
883
884 /* Print a function trace of the recorded execution trace.
885 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
886 succeeding functions. */
887 void (*to_call_history) (int size, int flags);
888
889 /* Print a function trace of the recorded execution trace starting
890 at function FROM.
891 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
892 SIZE functions after FROM. */
893 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
894
895 /* Print a function trace of an execution trace section from function BEGIN
896 (inclusive) to function END (exclusive). */
897 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
898
899 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
900 non-empty annex. */
901 int (*to_augmented_libraries_svr4_read) (void);
902
903 int to_magic;
904 /* Need sub-structure for target machine related rather than comm related?
905 */
906 };
907
908 /* Magic number for checking ops size. If a struct doesn't end with this
909 number, somebody changed the declaration but didn't change all the
910 places that initialize one. */
911
912 #define OPS_MAGIC 3840
913
914 /* The ops structure for our "current" target process. This should
915 never be NULL. If there is no target, it points to the dummy_target. */
916
917 extern struct target_ops current_target;
918
919 /* Define easy words for doing these operations on our current target. */
920
921 #define target_shortname (current_target.to_shortname)
922 #define target_longname (current_target.to_longname)
923
924 /* Does whatever cleanup is required for a target that we are no
925 longer going to be calling. This routine is automatically always
926 called after popping the target off the target stack - the target's
927 own methods are no longer available through the target vector.
928 Closing file descriptors and freeing all memory allocated memory are
929 typical things it should do. */
930
931 void target_close (struct target_ops *targ);
932
933 /* Attaches to a process on the target side. Arguments are as passed
934 to the `attach' command by the user. This routine can be called
935 when the target is not on the target-stack, if the target_can_run
936 routine returns 1; in that case, it must push itself onto the stack.
937 Upon exit, the target should be ready for normal operations, and
938 should be ready to deliver the status of the process immediately
939 (without waiting) to an upcoming target_wait call. */
940
941 void target_attach (char *, int);
942
943 /* Some targets don't generate traps when attaching to the inferior,
944 or their target_attach implementation takes care of the waiting.
945 These targets must set to_attach_no_wait. */
946
947 #define target_attach_no_wait \
948 (current_target.to_attach_no_wait)
949
950 /* The target_attach operation places a process under debugger control,
951 and stops the process.
952
953 This operation provides a target-specific hook that allows the
954 necessary bookkeeping to be performed after an attach completes. */
955 #define target_post_attach(pid) \
956 (*current_target.to_post_attach) (pid)
957
958 /* Takes a program previously attached to and detaches it.
959 The program may resume execution (some targets do, some don't) and will
960 no longer stop on signals, etc. We better not have left any breakpoints
961 in the program or it'll die when it hits one. ARGS is arguments
962 typed by the user (e.g. a signal to send the process). FROM_TTY
963 says whether to be verbose or not. */
964
965 extern void target_detach (const char *, int);
966
967 /* Disconnect from the current target without resuming it (leaving it
968 waiting for a debugger). */
969
970 extern void target_disconnect (char *, int);
971
972 /* Resume execution of the target process PTID (or a group of
973 threads). STEP says whether to single-step or to run free; SIGGNAL
974 is the signal to be given to the target, or GDB_SIGNAL_0 for no
975 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
976 PTID means `step/resume only this process id'. A wildcard PTID
977 (all threads, or all threads of process) means `step/resume
978 INFERIOR_PTID, and let other threads (for which the wildcard PTID
979 matches) resume with their 'thread->suspend.stop_signal' signal
980 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
981 if in "no pass" state. */
982
983 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
984
985 /* Wait for process pid to do something. PTID = -1 to wait for any
986 pid to do something. Return pid of child, or -1 in case of error;
987 store status through argument pointer STATUS. Note that it is
988 _NOT_ OK to throw_exception() out of target_wait() without popping
989 the debugging target from the stack; GDB isn't prepared to get back
990 to the prompt with a debugging target but without the frame cache,
991 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
992 options. */
993
994 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
995 int options);
996
997 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
998
999 extern void target_fetch_registers (struct regcache *regcache, int regno);
1000
1001 /* Store at least register REGNO, or all regs if REGNO == -1.
1002 It can store as many registers as it wants to, so target_prepare_to_store
1003 must have been previously called. Calls error() if there are problems. */
1004
1005 extern void target_store_registers (struct regcache *regcache, int regs);
1006
1007 /* Get ready to modify the registers array. On machines which store
1008 individual registers, this doesn't need to do anything. On machines
1009 which store all the registers in one fell swoop, this makes sure
1010 that REGISTERS contains all the registers from the program being
1011 debugged. */
1012
1013 #define target_prepare_to_store(regcache) \
1014 (*current_target.to_prepare_to_store) (regcache)
1015
1016 /* Determine current address space of thread PTID. */
1017
1018 struct address_space *target_thread_address_space (ptid_t);
1019
1020 /* Implement the "info proc" command. This returns one if the request
1021 was handled, and zero otherwise. It can also throw an exception if
1022 an error was encountered while attempting to handle the
1023 request. */
1024
1025 int target_info_proc (char *, enum info_proc_what);
1026
1027 /* Returns true if this target can debug multiple processes
1028 simultaneously. */
1029
1030 #define target_supports_multi_process() \
1031 (*current_target.to_supports_multi_process) ()
1032
1033 /* Returns true if this target can disable address space randomization. */
1034
1035 int target_supports_disable_randomization (void);
1036
1037 /* Returns true if this target can enable and disable tracepoints
1038 while a trace experiment is running. */
1039
1040 #define target_supports_enable_disable_tracepoint() \
1041 (*current_target.to_supports_enable_disable_tracepoint) ()
1042
1043 #define target_supports_string_tracing() \
1044 (*current_target.to_supports_string_tracing) ()
1045
1046 /* Returns true if this target can handle breakpoint conditions
1047 on its end. */
1048
1049 #define target_supports_evaluation_of_breakpoint_conditions() \
1050 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1051
1052 /* Returns true if this target can handle breakpoint commands
1053 on its end. */
1054
1055 #define target_can_run_breakpoint_commands() \
1056 (*current_target.to_can_run_breakpoint_commands) ()
1057
1058 extern int target_read_string (CORE_ADDR, char **, int, int *);
1059
1060 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1061 ssize_t len);
1062
1063 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1064 ssize_t len);
1065
1066 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1067
1068 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1069
1070 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1071 ssize_t len);
1072
1073 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1074 ssize_t len);
1075
1076 /* Fetches the target's memory map. If one is found it is sorted
1077 and returned, after some consistency checking. Otherwise, NULL
1078 is returned. */
1079 VEC(mem_region_s) *target_memory_map (void);
1080
1081 /* Erase the specified flash region. */
1082 void target_flash_erase (ULONGEST address, LONGEST length);
1083
1084 /* Finish a sequence of flash operations. */
1085 void target_flash_done (void);
1086
1087 /* Describes a request for a memory write operation. */
1088 struct memory_write_request
1089 {
1090 /* Begining address that must be written. */
1091 ULONGEST begin;
1092 /* Past-the-end address. */
1093 ULONGEST end;
1094 /* The data to write. */
1095 gdb_byte *data;
1096 /* A callback baton for progress reporting for this request. */
1097 void *baton;
1098 };
1099 typedef struct memory_write_request memory_write_request_s;
1100 DEF_VEC_O(memory_write_request_s);
1101
1102 /* Enumeration specifying different flash preservation behaviour. */
1103 enum flash_preserve_mode
1104 {
1105 flash_preserve,
1106 flash_discard
1107 };
1108
1109 /* Write several memory blocks at once. This version can be more
1110 efficient than making several calls to target_write_memory, in
1111 particular because it can optimize accesses to flash memory.
1112
1113 Moreover, this is currently the only memory access function in gdb
1114 that supports writing to flash memory, and it should be used for
1115 all cases where access to flash memory is desirable.
1116
1117 REQUESTS is the vector (see vec.h) of memory_write_request.
1118 PRESERVE_FLASH_P indicates what to do with blocks which must be
1119 erased, but not completely rewritten.
1120 PROGRESS_CB is a function that will be periodically called to provide
1121 feedback to user. It will be called with the baton corresponding
1122 to the request currently being written. It may also be called
1123 with a NULL baton, when preserved flash sectors are being rewritten.
1124
1125 The function returns 0 on success, and error otherwise. */
1126 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1127 enum flash_preserve_mode preserve_flash_p,
1128 void (*progress_cb) (ULONGEST, void *));
1129
1130 /* Print a line about the current target. */
1131
1132 #define target_files_info() \
1133 (*current_target.to_files_info) (&current_target)
1134
1135 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1136 the target machine. Returns 0 for success, and returns non-zero or
1137 throws an error (with a detailed failure reason error code and
1138 message) otherwise. */
1139
1140 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1141 struct bp_target_info *bp_tgt);
1142
1143 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1144 machine. Result is 0 for success, non-zero for error. */
1145
1146 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1147 struct bp_target_info *bp_tgt);
1148
1149 /* Initialize the terminal settings we record for the inferior,
1150 before we actually run the inferior. */
1151
1152 #define target_terminal_init() \
1153 (*current_target.to_terminal_init) ()
1154
1155 /* Put the inferior's terminal settings into effect.
1156 This is preparation for starting or resuming the inferior. */
1157
1158 extern void target_terminal_inferior (void);
1159
1160 /* Put some of our terminal settings into effect,
1161 enough to get proper results from our output,
1162 but do not change into or out of RAW mode
1163 so that no input is discarded.
1164
1165 After doing this, either terminal_ours or terminal_inferior
1166 should be called to get back to a normal state of affairs. */
1167
1168 #define target_terminal_ours_for_output() \
1169 (*current_target.to_terminal_ours_for_output) ()
1170
1171 /* Put our terminal settings into effect.
1172 First record the inferior's terminal settings
1173 so they can be restored properly later. */
1174
1175 #define target_terminal_ours() \
1176 (*current_target.to_terminal_ours) ()
1177
1178 /* Save our terminal settings.
1179 This is called from TUI after entering or leaving the curses
1180 mode. Since curses modifies our terminal this call is here
1181 to take this change into account. */
1182
1183 #define target_terminal_save_ours() \
1184 (*current_target.to_terminal_save_ours) ()
1185
1186 /* Print useful information about our terminal status, if such a thing
1187 exists. */
1188
1189 #define target_terminal_info(arg, from_tty) \
1190 (*current_target.to_terminal_info) (arg, from_tty)
1191
1192 /* Kill the inferior process. Make it go away. */
1193
1194 extern void target_kill (void);
1195
1196 /* Load an executable file into the target process. This is expected
1197 to not only bring new code into the target process, but also to
1198 update GDB's symbol tables to match.
1199
1200 ARG contains command-line arguments, to be broken down with
1201 buildargv (). The first non-switch argument is the filename to
1202 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1203 0)), which is an offset to apply to the load addresses of FILE's
1204 sections. The target may define switches, or other non-switch
1205 arguments, as it pleases. */
1206
1207 extern void target_load (char *arg, int from_tty);
1208
1209 /* Start an inferior process and set inferior_ptid to its pid.
1210 EXEC_FILE is the file to run.
1211 ALLARGS is a string containing the arguments to the program.
1212 ENV is the environment vector to pass. Errors reported with error().
1213 On VxWorks and various standalone systems, we ignore exec_file. */
1214
1215 void target_create_inferior (char *exec_file, char *args,
1216 char **env, int from_tty);
1217
1218 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1219 notification of inferior events such as fork and vork immediately
1220 after the inferior is created. (This because of how gdb gets an
1221 inferior created via invoking a shell to do it. In such a scenario,
1222 if the shell init file has commands in it, the shell will fork and
1223 exec for each of those commands, and we will see each such fork
1224 event. Very bad.)
1225
1226 Such targets will supply an appropriate definition for this function. */
1227
1228 #define target_post_startup_inferior(ptid) \
1229 (*current_target.to_post_startup_inferior) (ptid)
1230
1231 /* On some targets, we can catch an inferior fork or vfork event when
1232 it occurs. These functions insert/remove an already-created
1233 catchpoint for such events. They return 0 for success, 1 if the
1234 catchpoint type is not supported and -1 for failure. */
1235
1236 #define target_insert_fork_catchpoint(pid) \
1237 (*current_target.to_insert_fork_catchpoint) (pid)
1238
1239 #define target_remove_fork_catchpoint(pid) \
1240 (*current_target.to_remove_fork_catchpoint) (pid)
1241
1242 #define target_insert_vfork_catchpoint(pid) \
1243 (*current_target.to_insert_vfork_catchpoint) (pid)
1244
1245 #define target_remove_vfork_catchpoint(pid) \
1246 (*current_target.to_remove_vfork_catchpoint) (pid)
1247
1248 /* If the inferior forks or vforks, this function will be called at
1249 the next resume in order to perform any bookkeeping and fiddling
1250 necessary to continue debugging either the parent or child, as
1251 requested, and releasing the other. Information about the fork
1252 or vfork event is available via get_last_target_status ().
1253 This function returns 1 if the inferior should not be resumed
1254 (i.e. there is another event pending). */
1255
1256 int target_follow_fork (int follow_child, int detach_fork);
1257
1258 /* On some targets, we can catch an inferior exec event when it
1259 occurs. These functions insert/remove an already-created
1260 catchpoint for such events. They return 0 for success, 1 if the
1261 catchpoint type is not supported and -1 for failure. */
1262
1263 #define target_insert_exec_catchpoint(pid) \
1264 (*current_target.to_insert_exec_catchpoint) (pid)
1265
1266 #define target_remove_exec_catchpoint(pid) \
1267 (*current_target.to_remove_exec_catchpoint) (pid)
1268
1269 /* Syscall catch.
1270
1271 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1272 If NEEDED is zero, it means the target can disable the mechanism to
1273 catch system calls because there are no more catchpoints of this type.
1274
1275 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1276 being requested. In this case, both TABLE_SIZE and TABLE should
1277 be ignored.
1278
1279 TABLE_SIZE is the number of elements in TABLE. It only matters if
1280 ANY_COUNT is zero.
1281
1282 TABLE is an array of ints, indexed by syscall number. An element in
1283 this array is nonzero if that syscall should be caught. This argument
1284 only matters if ANY_COUNT is zero.
1285
1286 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1287 for failure. */
1288
1289 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1290 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1291 table_size, table)
1292
1293 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1294 exit code of PID, if any. */
1295
1296 #define target_has_exited(pid,wait_status,exit_status) \
1297 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1298
1299 /* The debugger has completed a blocking wait() call. There is now
1300 some process event that must be processed. This function should
1301 be defined by those targets that require the debugger to perform
1302 cleanup or internal state changes in response to the process event. */
1303
1304 /* The inferior process has died. Do what is right. */
1305
1306 void target_mourn_inferior (void);
1307
1308 /* Does target have enough data to do a run or attach command? */
1309
1310 #define target_can_run(t) \
1311 ((t)->to_can_run) ()
1312
1313 /* Set list of signals to be handled in the target.
1314
1315 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1316 (enum gdb_signal). For every signal whose entry in this array is
1317 non-zero, the target is allowed -but not required- to skip reporting
1318 arrival of the signal to the GDB core by returning from target_wait,
1319 and to pass the signal directly to the inferior instead.
1320
1321 However, if the target is hardware single-stepping a thread that is
1322 about to receive a signal, it needs to be reported in any case, even
1323 if mentioned in a previous target_pass_signals call. */
1324
1325 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1326
1327 /* Set list of signals the target may pass to the inferior. This
1328 directly maps to the "handle SIGNAL pass/nopass" setting.
1329
1330 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1331 number (enum gdb_signal). For every signal whose entry in this
1332 array is non-zero, the target is allowed to pass the signal to the
1333 inferior. Signals not present in the array shall be silently
1334 discarded. This does not influence whether to pass signals to the
1335 inferior as a result of a target_resume call. This is useful in
1336 scenarios where the target needs to decide whether to pass or not a
1337 signal to the inferior without GDB core involvement, such as for
1338 example, when detaching (as threads may have been suspended with
1339 pending signals not reported to GDB). */
1340
1341 extern void target_program_signals (int nsig, unsigned char *program_signals);
1342
1343 /* Check to see if a thread is still alive. */
1344
1345 extern int target_thread_alive (ptid_t ptid);
1346
1347 /* Query for new threads and add them to the thread list. */
1348
1349 extern void target_find_new_threads (void);
1350
1351 /* Make target stop in a continuable fashion. (For instance, under
1352 Unix, this should act like SIGSTOP). This function is normally
1353 used by GUIs to implement a stop button. */
1354
1355 extern void target_stop (ptid_t ptid);
1356
1357 /* Send the specified COMMAND to the target's monitor
1358 (shell,interpreter) for execution. The result of the query is
1359 placed in OUTBUF. */
1360
1361 #define target_rcmd(command, outbuf) \
1362 (*current_target.to_rcmd) (command, outbuf)
1363
1364
1365 /* Does the target include all of memory, or only part of it? This
1366 determines whether we look up the target chain for other parts of
1367 memory if this target can't satisfy a request. */
1368
1369 extern int target_has_all_memory_1 (void);
1370 #define target_has_all_memory target_has_all_memory_1 ()
1371
1372 /* Does the target include memory? (Dummy targets don't.) */
1373
1374 extern int target_has_memory_1 (void);
1375 #define target_has_memory target_has_memory_1 ()
1376
1377 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1378 we start a process.) */
1379
1380 extern int target_has_stack_1 (void);
1381 #define target_has_stack target_has_stack_1 ()
1382
1383 /* Does the target have registers? (Exec files don't.) */
1384
1385 extern int target_has_registers_1 (void);
1386 #define target_has_registers target_has_registers_1 ()
1387
1388 /* Does the target have execution? Can we make it jump (through
1389 hoops), or pop its stack a few times? This means that the current
1390 target is currently executing; for some targets, that's the same as
1391 whether or not the target is capable of execution, but there are
1392 also targets which can be current while not executing. In that
1393 case this will become true after target_create_inferior or
1394 target_attach. */
1395
1396 extern int target_has_execution_1 (ptid_t);
1397
1398 /* Like target_has_execution_1, but always passes inferior_ptid. */
1399
1400 extern int target_has_execution_current (void);
1401
1402 #define target_has_execution target_has_execution_current ()
1403
1404 /* Default implementations for process_stratum targets. Return true
1405 if there's a selected inferior, false otherwise. */
1406
1407 extern int default_child_has_all_memory (struct target_ops *ops);
1408 extern int default_child_has_memory (struct target_ops *ops);
1409 extern int default_child_has_stack (struct target_ops *ops);
1410 extern int default_child_has_registers (struct target_ops *ops);
1411 extern int default_child_has_execution (struct target_ops *ops,
1412 ptid_t the_ptid);
1413
1414 /* Can the target support the debugger control of thread execution?
1415 Can it lock the thread scheduler? */
1416
1417 #define target_can_lock_scheduler \
1418 (current_target.to_has_thread_control & tc_schedlock)
1419
1420 /* Should the target enable async mode if it is supported? Temporary
1421 cludge until async mode is a strict superset of sync mode. */
1422 extern int target_async_permitted;
1423
1424 /* Can the target support asynchronous execution? */
1425 #define target_can_async_p() (current_target.to_can_async_p ())
1426
1427 /* Is the target in asynchronous execution mode? */
1428 #define target_is_async_p() (current_target.to_is_async_p ())
1429
1430 int target_supports_non_stop (void);
1431
1432 /* Put the target in async mode with the specified callback function. */
1433 #define target_async(CALLBACK,CONTEXT) \
1434 (current_target.to_async ((CALLBACK), (CONTEXT)))
1435
1436 #define target_execution_direction() \
1437 (current_target.to_execution_direction ())
1438
1439 /* Converts a process id to a string. Usually, the string just contains
1440 `process xyz', but on some systems it may contain
1441 `process xyz thread abc'. */
1442
1443 extern char *target_pid_to_str (ptid_t ptid);
1444
1445 extern char *normal_pid_to_str (ptid_t ptid);
1446
1447 /* Return a short string describing extra information about PID,
1448 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1449 is okay. */
1450
1451 #define target_extra_thread_info(TP) \
1452 (current_target.to_extra_thread_info (TP))
1453
1454 /* Return the thread's name. A NULL result means that the target
1455 could not determine this thread's name. */
1456
1457 extern char *target_thread_name (struct thread_info *);
1458
1459 /* Attempts to find the pathname of the executable file
1460 that was run to create a specified process.
1461
1462 The process PID must be stopped when this operation is used.
1463
1464 If the executable file cannot be determined, NULL is returned.
1465
1466 Else, a pointer to a character string containing the pathname
1467 is returned. This string should be copied into a buffer by
1468 the client if the string will not be immediately used, or if
1469 it must persist. */
1470
1471 #define target_pid_to_exec_file(pid) \
1472 (current_target.to_pid_to_exec_file) (pid)
1473
1474 /* See the to_thread_architecture description in struct target_ops. */
1475
1476 #define target_thread_architecture(ptid) \
1477 (current_target.to_thread_architecture (&current_target, ptid))
1478
1479 /*
1480 * Iterator function for target memory regions.
1481 * Calls a callback function once for each memory region 'mapped'
1482 * in the child process. Defined as a simple macro rather than
1483 * as a function macro so that it can be tested for nullity.
1484 */
1485
1486 #define target_find_memory_regions(FUNC, DATA) \
1487 (current_target.to_find_memory_regions) (FUNC, DATA)
1488
1489 /*
1490 * Compose corefile .note section.
1491 */
1492
1493 #define target_make_corefile_notes(BFD, SIZE_P) \
1494 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1495
1496 /* Bookmark interfaces. */
1497 #define target_get_bookmark(ARGS, FROM_TTY) \
1498 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1499
1500 #define target_goto_bookmark(ARG, FROM_TTY) \
1501 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1502
1503 /* Hardware watchpoint interfaces. */
1504
1505 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1506 write). Only the INFERIOR_PTID task is being queried. */
1507
1508 #define target_stopped_by_watchpoint \
1509 (*current_target.to_stopped_by_watchpoint)
1510
1511 /* Non-zero if we have steppable watchpoints */
1512
1513 #define target_have_steppable_watchpoint \
1514 (current_target.to_have_steppable_watchpoint)
1515
1516 /* Non-zero if we have continuable watchpoints */
1517
1518 #define target_have_continuable_watchpoint \
1519 (current_target.to_have_continuable_watchpoint)
1520
1521 /* Provide defaults for hardware watchpoint functions. */
1522
1523 /* If the *_hw_beakpoint functions have not been defined
1524 elsewhere use the definitions in the target vector. */
1525
1526 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1527 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1528 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1529 (including this one?). OTHERTYPE is who knows what... */
1530
1531 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1532 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1533
1534 /* Returns the number of debug registers needed to watch the given
1535 memory region, or zero if not supported. */
1536
1537 #define target_region_ok_for_hw_watchpoint(addr, len) \
1538 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1539
1540
1541 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1542 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1543 COND is the expression for its condition, or NULL if there's none.
1544 Returns 0 for success, 1 if the watchpoint type is not supported,
1545 -1 for failure. */
1546
1547 #define target_insert_watchpoint(addr, len, type, cond) \
1548 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1549
1550 #define target_remove_watchpoint(addr, len, type, cond) \
1551 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1552
1553 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1554 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1555 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1556 masked watchpoints are not supported, -1 for failure. */
1557
1558 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1559
1560 /* Remove a masked watchpoint at ADDR with the mask MASK.
1561 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1562 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1563 for failure. */
1564
1565 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1566
1567 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1568 the target machine. Returns 0 for success, and returns non-zero or
1569 throws an error (with a detailed failure reason error code and
1570 message) otherwise. */
1571
1572 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1573 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1574
1575 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1576 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1577
1578 /* Return number of debug registers needed for a ranged breakpoint,
1579 or -1 if ranged breakpoints are not supported. */
1580
1581 extern int target_ranged_break_num_registers (void);
1582
1583 /* Return non-zero if target knows the data address which triggered this
1584 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1585 INFERIOR_PTID task is being queried. */
1586 #define target_stopped_data_address(target, addr_p) \
1587 (*target.to_stopped_data_address) (target, addr_p)
1588
1589 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1590 LENGTH bytes beginning at START. */
1591 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1592 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1593
1594 /* Return non-zero if the target is capable of using hardware to evaluate
1595 the condition expression. In this case, if the condition is false when
1596 the watched memory location changes, execution may continue without the
1597 debugger being notified.
1598
1599 Due to limitations in the hardware implementation, it may be capable of
1600 avoiding triggering the watchpoint in some cases where the condition
1601 expression is false, but may report some false positives as well.
1602 For this reason, GDB will still evaluate the condition expression when
1603 the watchpoint triggers. */
1604 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1605 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1606
1607 /* Return number of debug registers needed for a masked watchpoint,
1608 -1 if masked watchpoints are not supported or -2 if the given address
1609 and mask combination cannot be used. */
1610
1611 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1612
1613 /* Target can execute in reverse? */
1614 #define target_can_execute_reverse \
1615 (current_target.to_can_execute_reverse ? \
1616 current_target.to_can_execute_reverse () : 0)
1617
1618 extern const struct target_desc *target_read_description (struct target_ops *);
1619
1620 #define target_get_ada_task_ptid(lwp, tid) \
1621 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1622
1623 /* Utility implementation of searching memory. */
1624 extern int simple_search_memory (struct target_ops* ops,
1625 CORE_ADDR start_addr,
1626 ULONGEST search_space_len,
1627 const gdb_byte *pattern,
1628 ULONGEST pattern_len,
1629 CORE_ADDR *found_addrp);
1630
1631 /* Main entry point for searching memory. */
1632 extern int target_search_memory (CORE_ADDR start_addr,
1633 ULONGEST search_space_len,
1634 const gdb_byte *pattern,
1635 ULONGEST pattern_len,
1636 CORE_ADDR *found_addrp);
1637
1638 /* Target file operations. */
1639
1640 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1641 target file descriptor, or -1 if an error occurs (and set
1642 *TARGET_ERRNO). */
1643 extern int target_fileio_open (const char *filename, int flags, int mode,
1644 int *target_errno);
1645
1646 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1647 Return the number of bytes written, or -1 if an error occurs
1648 (and set *TARGET_ERRNO). */
1649 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1650 ULONGEST offset, int *target_errno);
1651
1652 /* Read up to LEN bytes FD on the target into READ_BUF.
1653 Return the number of bytes read, or -1 if an error occurs
1654 (and set *TARGET_ERRNO). */
1655 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1656 ULONGEST offset, int *target_errno);
1657
1658 /* Close FD on the target. Return 0, or -1 if an error occurs
1659 (and set *TARGET_ERRNO). */
1660 extern int target_fileio_close (int fd, int *target_errno);
1661
1662 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1663 occurs (and set *TARGET_ERRNO). */
1664 extern int target_fileio_unlink (const char *filename, int *target_errno);
1665
1666 /* Read value of symbolic link FILENAME on the target. Return a
1667 null-terminated string allocated via xmalloc, or NULL if an error
1668 occurs (and set *TARGET_ERRNO). */
1669 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1670
1671 /* Read target file FILENAME. The return value will be -1 if the transfer
1672 fails or is not supported; 0 if the object is empty; or the length
1673 of the object otherwise. If a positive value is returned, a
1674 sufficiently large buffer will be allocated using xmalloc and
1675 returned in *BUF_P containing the contents of the object.
1676
1677 This method should be used for objects sufficiently small to store
1678 in a single xmalloc'd buffer, when no fixed bound on the object's
1679 size is known in advance. */
1680 extern LONGEST target_fileio_read_alloc (const char *filename,
1681 gdb_byte **buf_p);
1682
1683 /* Read target file FILENAME. The result is NUL-terminated and
1684 returned as a string, allocated using xmalloc. If an error occurs
1685 or the transfer is unsupported, NULL is returned. Empty objects
1686 are returned as allocated but empty strings. A warning is issued
1687 if the result contains any embedded NUL bytes. */
1688 extern char *target_fileio_read_stralloc (const char *filename);
1689
1690
1691 /* Tracepoint-related operations. */
1692
1693 #define target_trace_init() \
1694 (*current_target.to_trace_init) ()
1695
1696 #define target_download_tracepoint(t) \
1697 (*current_target.to_download_tracepoint) (t)
1698
1699 #define target_can_download_tracepoint() \
1700 (*current_target.to_can_download_tracepoint) ()
1701
1702 #define target_download_trace_state_variable(tsv) \
1703 (*current_target.to_download_trace_state_variable) (tsv)
1704
1705 #define target_enable_tracepoint(loc) \
1706 (*current_target.to_enable_tracepoint) (loc)
1707
1708 #define target_disable_tracepoint(loc) \
1709 (*current_target.to_disable_tracepoint) (loc)
1710
1711 #define target_trace_start() \
1712 (*current_target.to_trace_start) ()
1713
1714 #define target_trace_set_readonly_regions() \
1715 (*current_target.to_trace_set_readonly_regions) ()
1716
1717 #define target_get_trace_status(ts) \
1718 (*current_target.to_get_trace_status) (ts)
1719
1720 #define target_get_tracepoint_status(tp,utp) \
1721 (*current_target.to_get_tracepoint_status) (tp, utp)
1722
1723 #define target_trace_stop() \
1724 (*current_target.to_trace_stop) ()
1725
1726 #define target_trace_find(type,num,addr1,addr2,tpp) \
1727 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1728
1729 #define target_get_trace_state_variable_value(tsv,val) \
1730 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1731
1732 #define target_save_trace_data(filename) \
1733 (*current_target.to_save_trace_data) (filename)
1734
1735 #define target_upload_tracepoints(utpp) \
1736 (*current_target.to_upload_tracepoints) (utpp)
1737
1738 #define target_upload_trace_state_variables(utsvp) \
1739 (*current_target.to_upload_trace_state_variables) (utsvp)
1740
1741 #define target_get_raw_trace_data(buf,offset,len) \
1742 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1743
1744 #define target_get_min_fast_tracepoint_insn_len() \
1745 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1746
1747 #define target_set_disconnected_tracing(val) \
1748 (*current_target.to_set_disconnected_tracing) (val)
1749
1750 #define target_set_circular_trace_buffer(val) \
1751 (*current_target.to_set_circular_trace_buffer) (val)
1752
1753 #define target_set_trace_buffer_size(val) \
1754 (*current_target.to_set_trace_buffer_size) (val)
1755
1756 #define target_set_trace_notes(user,notes,stopnotes) \
1757 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1758
1759 #define target_get_tib_address(ptid, addr) \
1760 (*current_target.to_get_tib_address) ((ptid), (addr))
1761
1762 #define target_set_permissions() \
1763 (*current_target.to_set_permissions) ()
1764
1765 #define target_static_tracepoint_marker_at(addr, marker) \
1766 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1767
1768 #define target_static_tracepoint_markers_by_strid(marker_id) \
1769 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1770
1771 #define target_traceframe_info() \
1772 (*current_target.to_traceframe_info) ()
1773
1774 #define target_use_agent(use) \
1775 (*current_target.to_use_agent) (use)
1776
1777 #define target_can_use_agent() \
1778 (*current_target.to_can_use_agent) ()
1779
1780 #define target_augmented_libraries_svr4_read() \
1781 (*current_target.to_augmented_libraries_svr4_read) ()
1782
1783 /* Command logging facility. */
1784
1785 #define target_log_command(p) \
1786 do \
1787 if (current_target.to_log_command) \
1788 (*current_target.to_log_command) (p); \
1789 while (0)
1790
1791
1792 extern int target_core_of_thread (ptid_t ptid);
1793
1794 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1795 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1796 if there's a mismatch, and -1 if an error is encountered while
1797 reading memory. Throws an error if the functionality is found not
1798 to be supported by the current target. */
1799 int target_verify_memory (const gdb_byte *data,
1800 CORE_ADDR memaddr, ULONGEST size);
1801
1802 /* Routines for maintenance of the target structures...
1803
1804 complete_target_initialization: Finalize a target_ops by filling in
1805 any fields needed by the target implementation.
1806
1807 add_target: Add a target to the list of all possible targets.
1808
1809 push_target: Make this target the top of the stack of currently used
1810 targets, within its particular stratum of the stack. Result
1811 is 0 if now atop the stack, nonzero if not on top (maybe
1812 should warn user).
1813
1814 unpush_target: Remove this from the stack of currently used targets,
1815 no matter where it is on the list. Returns 0 if no
1816 change, 1 if removed from stack. */
1817
1818 extern void add_target (struct target_ops *);
1819
1820 extern void add_target_with_completer (struct target_ops *t,
1821 completer_ftype *completer);
1822
1823 extern void complete_target_initialization (struct target_ops *t);
1824
1825 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1826 for maintaining backwards compatibility when renaming targets. */
1827
1828 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1829
1830 extern void push_target (struct target_ops *);
1831
1832 extern int unpush_target (struct target_ops *);
1833
1834 extern void target_pre_inferior (int);
1835
1836 extern void target_preopen (int);
1837
1838 /* Does whatever cleanup is required to get rid of all pushed targets. */
1839 extern void pop_all_targets (void);
1840
1841 /* Like pop_all_targets, but pops only targets whose stratum is
1842 strictly above ABOVE_STRATUM. */
1843 extern void pop_all_targets_above (enum strata above_stratum);
1844
1845 extern int target_is_pushed (struct target_ops *t);
1846
1847 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1848 CORE_ADDR offset);
1849
1850 /* Struct target_section maps address ranges to file sections. It is
1851 mostly used with BFD files, but can be used without (e.g. for handling
1852 raw disks, or files not in formats handled by BFD). */
1853
1854 struct target_section
1855 {
1856 CORE_ADDR addr; /* Lowest address in section */
1857 CORE_ADDR endaddr; /* 1+highest address in section */
1858
1859 struct bfd_section *the_bfd_section;
1860
1861 /* The "owner" of the section.
1862 It can be any unique value. It is set by add_target_sections
1863 and used by remove_target_sections.
1864 For example, for executables it is a pointer to exec_bfd and
1865 for shlibs it is the so_list pointer. */
1866 void *owner;
1867 };
1868
1869 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1870
1871 struct target_section_table
1872 {
1873 struct target_section *sections;
1874 struct target_section *sections_end;
1875 };
1876
1877 /* Return the "section" containing the specified address. */
1878 struct target_section *target_section_by_addr (struct target_ops *target,
1879 CORE_ADDR addr);
1880
1881 /* Return the target section table this target (or the targets
1882 beneath) currently manipulate. */
1883
1884 extern struct target_section_table *target_get_section_table
1885 (struct target_ops *target);
1886
1887 /* From mem-break.c */
1888
1889 extern int memory_remove_breakpoint (struct gdbarch *,
1890 struct bp_target_info *);
1891
1892 extern int memory_insert_breakpoint (struct gdbarch *,
1893 struct bp_target_info *);
1894
1895 extern int default_memory_remove_breakpoint (struct gdbarch *,
1896 struct bp_target_info *);
1897
1898 extern int default_memory_insert_breakpoint (struct gdbarch *,
1899 struct bp_target_info *);
1900
1901
1902 /* From target.c */
1903
1904 extern void initialize_targets (void);
1905
1906 extern void noprocess (void) ATTRIBUTE_NORETURN;
1907
1908 extern void target_require_runnable (void);
1909
1910 extern void find_default_attach (struct target_ops *, char *, int);
1911
1912 extern void find_default_create_inferior (struct target_ops *,
1913 char *, char *, char **, int);
1914
1915 extern struct target_ops *find_target_beneath (struct target_ops *);
1916
1917 /* Read OS data object of type TYPE from the target, and return it in
1918 XML format. The result is NUL-terminated and returned as a string,
1919 allocated using xmalloc. If an error occurs or the transfer is
1920 unsupported, NULL is returned. Empty objects are returned as
1921 allocated but empty strings. */
1922
1923 extern char *target_get_osdata (const char *type);
1924
1925 \f
1926 /* Stuff that should be shared among the various remote targets. */
1927
1928 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1929 information (higher values, more information). */
1930 extern int remote_debug;
1931
1932 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1933 extern int baud_rate;
1934 /* Timeout limit for response from target. */
1935 extern int remote_timeout;
1936
1937 \f
1938
1939 /* Set the show memory breakpoints mode to show, and installs a cleanup
1940 to restore it back to the current value. */
1941 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1942
1943 extern int may_write_registers;
1944 extern int may_write_memory;
1945 extern int may_insert_breakpoints;
1946 extern int may_insert_tracepoints;
1947 extern int may_insert_fast_tracepoints;
1948 extern int may_stop;
1949
1950 extern void update_target_permissions (void);
1951
1952 \f
1953 /* Imported from machine dependent code. */
1954
1955 /* Blank target vector entries are initialized to target_ignore. */
1956 void target_ignore (void);
1957
1958 /* See to_supports_btrace in struct target_ops. */
1959 extern int target_supports_btrace (void);
1960
1961 /* See to_enable_btrace in struct target_ops. */
1962 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1963
1964 /* See to_disable_btrace in struct target_ops. */
1965 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1966
1967 /* See to_teardown_btrace in struct target_ops. */
1968 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1969
1970 /* See to_read_btrace in struct target_ops. */
1971 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
1972 enum btrace_read_type);
1973
1974 /* See to_stop_recording in struct target_ops. */
1975 extern void target_stop_recording (void);
1976
1977 /* See to_info_record in struct target_ops. */
1978 extern void target_info_record (void);
1979
1980 /* See to_save_record in struct target_ops. */
1981 extern void target_save_record (const char *filename);
1982
1983 /* Query if the target supports deleting the execution log. */
1984 extern int target_supports_delete_record (void);
1985
1986 /* See to_delete_record in struct target_ops. */
1987 extern void target_delete_record (void);
1988
1989 /* See to_record_is_replaying in struct target_ops. */
1990 extern int target_record_is_replaying (void);
1991
1992 /* See to_goto_record_begin in struct target_ops. */
1993 extern void target_goto_record_begin (void);
1994
1995 /* See to_goto_record_end in struct target_ops. */
1996 extern void target_goto_record_end (void);
1997
1998 /* See to_goto_record in struct target_ops. */
1999 extern void target_goto_record (ULONGEST insn);
2000
2001 /* See to_insn_history. */
2002 extern void target_insn_history (int size, int flags);
2003
2004 /* See to_insn_history_from. */
2005 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2006
2007 /* See to_insn_history_range. */
2008 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2009
2010 /* See to_call_history. */
2011 extern void target_call_history (int size, int flags);
2012
2013 /* See to_call_history_from. */
2014 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2015
2016 /* See to_call_history_range. */
2017 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2018
2019 #endif /* !defined (TARGET_H) */