gdb: improve reuse of value contents when fetching array elements
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct trace_state_variable;
33 struct trace_status;
34 struct uploaded_tsv;
35 struct uploaded_tp;
36 struct static_tracepoint_marker;
37 struct traceframe_info;
38 struct expression;
39 struct dcache_struct;
40 struct inferior;
41
42 #include "infrun.h" /* For enum exec_direction_kind. */
43 #include "breakpoint.h" /* For enum bptype. */
44 #include "gdbsupport/scoped_restore.h"
45 #include "gdbsupport/refcounted-object.h"
46 #include "target-section.h"
47
48 /* This include file defines the interface between the main part
49 of the debugger, and the part which is target-specific, or
50 specific to the communications interface between us and the
51 target.
52
53 A TARGET is an interface between the debugger and a particular
54 kind of file or process. Targets can be STACKED in STRATA,
55 so that more than one target can potentially respond to a request.
56 In particular, memory accesses will walk down the stack of targets
57 until they find a target that is interested in handling that particular
58 address. STRATA are artificial boundaries on the stack, within
59 which particular kinds of targets live. Strata exist so that
60 people don't get confused by pushing e.g. a process target and then
61 a file target, and wondering why they can't see the current values
62 of variables any more (the file target is handling them and they
63 never get to the process target). So when you push a file target,
64 it goes into the file stratum, which is always below the process
65 stratum.
66
67 Note that rather than allow an empty stack, we always have the
68 dummy target at the bottom stratum, so we can call the target
69 methods without checking them. */
70
71 #include "target/target.h"
72 #include "target/resume.h"
73 #include "target/wait.h"
74 #include "target/waitstatus.h"
75 #include "bfd.h"
76 #include "symtab.h"
77 #include "memattr.h"
78 #include "gdbsupport/gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (target_wait_flags target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
141 TARGET_OBJECT_MEMORY,
142 /* Memory, avoiding GDB's data cache and trusting the executable.
143 Target implementations of to_xfer_partial never need to handle
144 this object, and most callers should not use it. */
145 TARGET_OBJECT_RAW_MEMORY,
146 /* Memory known to be part of the target's stack. This is cached even
147 if it is not in a region marked as such, since it is known to be
148 "normal" RAM. */
149 TARGET_OBJECT_STACK_MEMORY,
150 /* Memory known to be part of the target code. This is cached even
151 if it is not in a region marked as such. */
152 TARGET_OBJECT_CODE_MEMORY,
153 /* Kernel Unwind Table. See "ia64-tdep.c". */
154 TARGET_OBJECT_UNWIND_TABLE,
155 /* Transfer auxilliary vector. */
156 TARGET_OBJECT_AUXV,
157 /* StackGhost cookie. See "sparc-tdep.c". */
158 TARGET_OBJECT_WCOOKIE,
159 /* Target memory map in XML format. */
160 TARGET_OBJECT_MEMORY_MAP,
161 /* Flash memory. This object can be used to write contents to
162 a previously erased flash memory. Using it without erasing
163 flash can have unexpected results. Addresses are physical
164 address on target, and not relative to flash start. */
165 TARGET_OBJECT_FLASH,
166 /* Available target-specific features, e.g. registers and coprocessors.
167 See "target-descriptions.c". ANNEX should never be empty. */
168 TARGET_OBJECT_AVAILABLE_FEATURES,
169 /* Currently loaded libraries, in XML format. */
170 TARGET_OBJECT_LIBRARIES,
171 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_SVR4,
173 /* Currently loaded libraries specific to AIX systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_AIX,
175 /* Get OS specific data. The ANNEX specifies the type (running
176 processes, etc.). The data being transfered is expected to follow
177 the DTD specified in features/osdata.dtd. */
178 TARGET_OBJECT_OSDATA,
179 /* Extra signal info. Usually the contents of `siginfo_t' on unix
180 platforms. */
181 TARGET_OBJECT_SIGNAL_INFO,
182 /* The list of threads that are being debugged. */
183 TARGET_OBJECT_THREADS,
184 /* Collected static trace data. */
185 TARGET_OBJECT_STATIC_TRACE_DATA,
186 /* Traceframe info, in XML format. */
187 TARGET_OBJECT_TRACEFRAME_INFO,
188 /* Load maps for FDPIC systems. */
189 TARGET_OBJECT_FDPIC,
190 /* Darwin dynamic linker info data. */
191 TARGET_OBJECT_DARWIN_DYLD_INFO,
192 /* OpenVMS Unwind Information Block. */
193 TARGET_OBJECT_OPENVMS_UIB,
194 /* Branch trace data, in XML format. */
195 TARGET_OBJECT_BTRACE,
196 /* Branch trace configuration, in XML format. */
197 TARGET_OBJECT_BTRACE_CONF,
198 /* The pathname of the executable file that was run to create
199 a specified process. ANNEX should be a string representation
200 of the process ID of the process in question, in hexadecimal
201 format. */
202 TARGET_OBJECT_EXEC_FILE,
203 /* FreeBSD virtual memory mappings. */
204 TARGET_OBJECT_FREEBSD_VMMAP,
205 /* FreeBSD process strings. */
206 TARGET_OBJECT_FREEBSD_PS_STRINGS,
207 /* Possible future objects: TARGET_OBJECT_FILE, ... */
208 };
209
210 /* Possible values returned by target_xfer_partial, etc. */
211
212 enum target_xfer_status
213 {
214 /* Some bytes are transferred. */
215 TARGET_XFER_OK = 1,
216
217 /* No further transfer is possible. */
218 TARGET_XFER_EOF = 0,
219
220 /* The piece of the object requested is unavailable. */
221 TARGET_XFER_UNAVAILABLE = 2,
222
223 /* Generic I/O error. Note that it's important that this is '-1',
224 as we still have target_xfer-related code returning hardcoded
225 '-1' on error. */
226 TARGET_XFER_E_IO = -1,
227
228 /* Keep list in sync with target_xfer_status_to_string. */
229 };
230
231 /* Return the string form of STATUS. */
232
233 extern const char *
234 target_xfer_status_to_string (enum target_xfer_status status);
235
236 typedef enum target_xfer_status
237 target_xfer_partial_ftype (struct target_ops *ops,
238 enum target_object object,
239 const char *annex,
240 gdb_byte *readbuf,
241 const gdb_byte *writebuf,
242 ULONGEST offset,
243 ULONGEST len,
244 ULONGEST *xfered_len);
245
246 enum target_xfer_status
247 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
248 const gdb_byte *writebuf, ULONGEST memaddr,
249 LONGEST len, ULONGEST *xfered_len);
250
251 /* Request that OPS transfer up to LEN addressable units of the target's
252 OBJECT. When reading from a memory object, the size of an addressable unit
253 is architecture dependent and can be found using
254 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
255 byte long. BUF should point to a buffer large enough to hold the read data,
256 taking into account the addressable unit size. The OFFSET, for a seekable
257 object, specifies the starting point. The ANNEX can be used to provide
258 additional data-specific information to the target.
259
260 Return the number of addressable units actually transferred, or a negative
261 error code (an 'enum target_xfer_error' value) if the transfer is not
262 supported or otherwise fails. Return of a positive value less than
263 LEN indicates that no further transfer is possible. Unlike the raw
264 to_xfer_partial interface, callers of these functions do not need
265 to retry partial transfers. */
266
267 extern LONGEST target_read (struct target_ops *ops,
268 enum target_object object,
269 const char *annex, gdb_byte *buf,
270 ULONGEST offset, LONGEST len);
271
272 struct memory_read_result
273 {
274 memory_read_result (ULONGEST begin_, ULONGEST end_,
275 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
276 : begin (begin_),
277 end (end_),
278 data (std::move (data_))
279 {
280 }
281
282 ~memory_read_result () = default;
283
284 memory_read_result (memory_read_result &&other) = default;
285
286 DISABLE_COPY_AND_ASSIGN (memory_read_result);
287
288 /* First address that was read. */
289 ULONGEST begin;
290 /* Past-the-end address. */
291 ULONGEST end;
292 /* The data. */
293 gdb::unique_xmalloc_ptr<gdb_byte> data;
294 };
295
296 extern std::vector<memory_read_result> read_memory_robust
297 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
298
299 /* Request that OPS transfer up to LEN addressable units from BUF to the
300 target's OBJECT. When writing to a memory object, the addressable unit
301 size is architecture dependent and can be found using
302 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
303 byte long. The OFFSET, for a seekable object, specifies the starting point.
304 The ANNEX can be used to provide additional data-specific information to
305 the target.
306
307 Return the number of addressable units actually transferred, or a negative
308 error code (an 'enum target_xfer_status' value) if the transfer is not
309 supported or otherwise fails. Return of a positive value less than
310 LEN indicates that no further transfer is possible. Unlike the raw
311 to_xfer_partial interface, callers of these functions do not need to
312 retry partial transfers. */
313
314 extern LONGEST target_write (struct target_ops *ops,
315 enum target_object object,
316 const char *annex, const gdb_byte *buf,
317 ULONGEST offset, LONGEST len);
318
319 /* Similar to target_write, except that it also calls PROGRESS with
320 the number of bytes written and the opaque BATON after every
321 successful partial write (and before the first write). This is
322 useful for progress reporting and user interaction while writing
323 data. To abort the transfer, the progress callback can throw an
324 exception. */
325
326 LONGEST target_write_with_progress (struct target_ops *ops,
327 enum target_object object,
328 const char *annex, const gdb_byte *buf,
329 ULONGEST offset, LONGEST len,
330 void (*progress) (ULONGEST, void *),
331 void *baton);
332
333 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
334 using OPS. The return value will be uninstantiated if the transfer fails or
335 is not supported.
336
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
341
342 extern gdb::optional<gdb::byte_vector> target_read_alloc
343 (struct target_ops *ops, enum target_object object, const char *annex);
344
345 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
346 (therefore usable as a NUL-terminated string). If an error occurs or the
347 transfer is unsupported, the return value will be uninstantiated. Empty
348 objects are returned as allocated but empty strings. Therefore, on success,
349 the returned vector is guaranteed to have at least one element. A warning is
350 issued if the result contains any embedded NUL bytes. */
351
352 extern gdb::optional<gdb::char_vector> target_read_stralloc
353 (struct target_ops *ops, enum target_object object, const char *annex);
354
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial;
357
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
360
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
364
365 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
366 gdb_byte *buf, LONGEST len);
367 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
368 CORE_ADDR addr, int len,
369 enum bfd_endian byte_order);
370 \f
371 struct thread_info; /* fwd decl for parameter list below: */
372
373 /* The type of the callback to the to_async method. */
374
375 typedef void async_callback_ftype (enum inferior_event_type event_type,
376 void *context);
377
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
385
386 #define TARGET_DEBUG_PRINTER(FUNC)
387
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
391
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
394 'void'.
395
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
399
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
402
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
406
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
411
412 /* Each target that can be activated with "target TARGET_NAME" passes
413 the address of one of these objects to add_target, which uses the
414 object's address as unique identifier, and registers the "target
415 TARGET_NAME" command using SHORTNAME as target name. */
416
417 struct target_info
418 {
419 /* Name of this target. */
420 const char *shortname;
421
422 /* Name for printing. */
423 const char *longname;
424
425 /* Documentation. Does not include trailing newline, and starts
426 with a one-line description (probably similar to longname). */
427 const char *doc;
428 };
429
430 struct target_ops
431 : public refcounted_object
432 {
433 /* Return this target's stratum. */
434 virtual strata stratum () const = 0;
435
436 /* To the target under this one. */
437 target_ops *beneath () const;
438
439 /* Free resources associated with the target. Note that singleton
440 targets, like e.g., native targets, are global objects, not
441 heap allocated, and are thus only deleted on GDB exit. The
442 main teardown entry point is the "close" method, below. */
443 virtual ~target_ops () {}
444
445 /* Return a reference to this target's unique target_info
446 object. */
447 virtual const target_info &info () const = 0;
448
449 /* Name this target type. */
450 const char *shortname () const
451 { return info ().shortname; }
452
453 const char *longname () const
454 { return info ().longname; }
455
456 /* Close the target. This is where the target can handle
457 teardown. Heap-allocated targets should delete themselves
458 before returning. */
459 virtual void close ();
460
461 /* Attaches to a process on the target side. Arguments are as
462 passed to the `attach' command by the user. This routine can
463 be called when the target is not on the target-stack, if the
464 target_ops::can_run method returns 1; in that case, it must push
465 itself onto the stack. Upon exit, the target should be ready
466 for normal operations, and should be ready to deliver the
467 status of the process immediately (without waiting) to an
468 upcoming target_wait call. */
469 virtual bool can_attach ();
470 virtual void attach (const char *, int);
471 virtual void post_attach (int)
472 TARGET_DEFAULT_IGNORE ();
473
474 /* Detaches from the inferior. Note that on targets that support
475 async execution (i.e., targets where it is possible to detach
476 from programs with threads running), the target is responsible
477 for removing breakpoints from the program before the actual
478 detach, otherwise the program dies when it hits one. */
479 virtual void detach (inferior *, int)
480 TARGET_DEFAULT_IGNORE ();
481
482 virtual void disconnect (const char *, int)
483 TARGET_DEFAULT_NORETURN (tcomplain ());
484 virtual void resume (ptid_t,
485 int TARGET_DEBUG_PRINTER (target_debug_print_step),
486 enum gdb_signal)
487 TARGET_DEFAULT_NORETURN (noprocess ());
488
489 /* Ensure that all resumed threads are committed to the target.
490
491 See the description of
492 process_stratum_target::commit_resumed_state for more
493 details. */
494 virtual void commit_resumed ()
495 TARGET_DEFAULT_IGNORE ();
496
497 /* See target_wait's description. Note that implementations of
498 this method must not assume that inferior_ptid on entry is
499 pointing at the thread or inferior that ends up reporting an
500 event. The reported event could be for some other thread in
501 the current inferior or even for a different process of the
502 current target. inferior_ptid may also be null_ptid on
503 entry. */
504 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
505 target_wait_flags options)
506 TARGET_DEFAULT_FUNC (default_target_wait);
507 virtual void fetch_registers (struct regcache *, int)
508 TARGET_DEFAULT_IGNORE ();
509 virtual void store_registers (struct regcache *, int)
510 TARGET_DEFAULT_NORETURN (noprocess ());
511 virtual void prepare_to_store (struct regcache *)
512 TARGET_DEFAULT_NORETURN (noprocess ());
513
514 virtual void files_info ()
515 TARGET_DEFAULT_IGNORE ();
516 virtual int insert_breakpoint (struct gdbarch *,
517 struct bp_target_info *)
518 TARGET_DEFAULT_NORETURN (noprocess ());
519 virtual int remove_breakpoint (struct gdbarch *,
520 struct bp_target_info *,
521 enum remove_bp_reason)
522 TARGET_DEFAULT_NORETURN (noprocess ());
523
524 /* Returns true if the target stopped because it executed a
525 software breakpoint. This is necessary for correct background
526 execution / non-stop mode operation, and for correct PC
527 adjustment on targets where the PC needs to be adjusted when a
528 software breakpoint triggers. In these modes, by the time GDB
529 processes a breakpoint event, the breakpoint may already be
530 done from the target, so GDB needs to be able to tell whether
531 it should ignore the event and whether it should adjust the PC.
532 See adjust_pc_after_break. */
533 virtual bool stopped_by_sw_breakpoint ()
534 TARGET_DEFAULT_RETURN (false);
535 /* Returns true if the above method is supported. */
536 virtual bool supports_stopped_by_sw_breakpoint ()
537 TARGET_DEFAULT_RETURN (false);
538
539 /* Returns true if the target stopped for a hardware breakpoint.
540 Likewise, if the target supports hardware breakpoints, this
541 method is necessary for correct background execution / non-stop
542 mode operation. Even though hardware breakpoints do not
543 require PC adjustment, GDB needs to be able to tell whether the
544 hardware breakpoint event is a delayed event for a breakpoint
545 that is already gone and should thus be ignored. */
546 virtual bool stopped_by_hw_breakpoint ()
547 TARGET_DEFAULT_RETURN (false);
548 /* Returns true if the above method is supported. */
549 virtual bool supports_stopped_by_hw_breakpoint ()
550 TARGET_DEFAULT_RETURN (false);
551
552 virtual int can_use_hw_breakpoint (enum bptype, int, int)
553 TARGET_DEFAULT_RETURN (0);
554 virtual int ranged_break_num_registers ()
555 TARGET_DEFAULT_RETURN (-1);
556 virtual int insert_hw_breakpoint (struct gdbarch *,
557 struct bp_target_info *)
558 TARGET_DEFAULT_RETURN (-1);
559 virtual int remove_hw_breakpoint (struct gdbarch *,
560 struct bp_target_info *)
561 TARGET_DEFAULT_RETURN (-1);
562
563 /* Documentation of what the two routines below are expected to do is
564 provided with the corresponding target_* macros. */
565 virtual int remove_watchpoint (CORE_ADDR, int,
566 enum target_hw_bp_type, struct expression *)
567 TARGET_DEFAULT_RETURN (-1);
568 virtual int insert_watchpoint (CORE_ADDR, int,
569 enum target_hw_bp_type, struct expression *)
570 TARGET_DEFAULT_RETURN (-1);
571
572 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
573 enum target_hw_bp_type)
574 TARGET_DEFAULT_RETURN (1);
575 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
576 enum target_hw_bp_type)
577 TARGET_DEFAULT_RETURN (1);
578 virtual bool stopped_by_watchpoint ()
579 TARGET_DEFAULT_RETURN (false);
580 virtual bool have_steppable_watchpoint ()
581 TARGET_DEFAULT_RETURN (false);
582 virtual bool stopped_data_address (CORE_ADDR *)
583 TARGET_DEFAULT_RETURN (false);
584 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
585 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
586
587 /* Documentation of this routine is provided with the corresponding
588 target_* macro. */
589 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
590 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
591
592 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
593 struct expression *)
594 TARGET_DEFAULT_RETURN (false);
595 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
596 TARGET_DEFAULT_RETURN (-1);
597
598 /* Return 1 for sure target can do single step. Return -1 for
599 unknown. Return 0 for target can't do. */
600 virtual int can_do_single_step ()
601 TARGET_DEFAULT_RETURN (-1);
602
603 virtual bool supports_terminal_ours ()
604 TARGET_DEFAULT_RETURN (false);
605 virtual void terminal_init ()
606 TARGET_DEFAULT_IGNORE ();
607 virtual void terminal_inferior ()
608 TARGET_DEFAULT_IGNORE ();
609 virtual void terminal_save_inferior ()
610 TARGET_DEFAULT_IGNORE ();
611 virtual void terminal_ours_for_output ()
612 TARGET_DEFAULT_IGNORE ();
613 virtual void terminal_ours ()
614 TARGET_DEFAULT_IGNORE ();
615 virtual void terminal_info (const char *, int)
616 TARGET_DEFAULT_FUNC (default_terminal_info);
617 virtual void kill ()
618 TARGET_DEFAULT_NORETURN (noprocess ());
619 virtual void load (const char *, int)
620 TARGET_DEFAULT_NORETURN (tcomplain ());
621 /* Start an inferior process and set inferior_ptid to its pid.
622 EXEC_FILE is the file to run.
623 ALLARGS is a string containing the arguments to the program.
624 ENV is the environment vector to pass. Errors reported with error().
625 On VxWorks and various standalone systems, we ignore exec_file. */
626 virtual bool can_create_inferior ();
627 virtual void create_inferior (const char *, const std::string &,
628 char **, int);
629 virtual int insert_fork_catchpoint (int)
630 TARGET_DEFAULT_RETURN (1);
631 virtual int remove_fork_catchpoint (int)
632 TARGET_DEFAULT_RETURN (1);
633 virtual int insert_vfork_catchpoint (int)
634 TARGET_DEFAULT_RETURN (1);
635 virtual int remove_vfork_catchpoint (int)
636 TARGET_DEFAULT_RETURN (1);
637 virtual void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool)
638 TARGET_DEFAULT_FUNC (default_follow_fork);
639 virtual int insert_exec_catchpoint (int)
640 TARGET_DEFAULT_RETURN (1);
641 virtual int remove_exec_catchpoint (int)
642 TARGET_DEFAULT_RETURN (1);
643 virtual void follow_exec (inferior *, ptid_t, const char *)
644 TARGET_DEFAULT_IGNORE ();
645 virtual int set_syscall_catchpoint (int, bool, int,
646 gdb::array_view<const int>)
647 TARGET_DEFAULT_RETURN (1);
648 virtual void mourn_inferior ()
649 TARGET_DEFAULT_FUNC (default_mourn_inferior);
650
651 /* Note that can_run is special and can be invoked on an unpushed
652 target. Targets defining this method must also define
653 to_can_async_p and to_supports_non_stop. */
654 virtual bool can_run ();
655
656 /* Documentation of this routine is provided with the corresponding
657 target_* macro. */
658 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
659 TARGET_DEFAULT_IGNORE ();
660
661 /* Documentation of this routine is provided with the
662 corresponding target_* function. */
663 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
664 TARGET_DEFAULT_IGNORE ();
665
666 virtual bool thread_alive (ptid_t ptid)
667 TARGET_DEFAULT_RETURN (false);
668 virtual void update_thread_list ()
669 TARGET_DEFAULT_IGNORE ();
670 virtual std::string pid_to_str (ptid_t)
671 TARGET_DEFAULT_FUNC (default_pid_to_str);
672 virtual const char *extra_thread_info (thread_info *)
673 TARGET_DEFAULT_RETURN (NULL);
674 virtual const char *thread_name (thread_info *)
675 TARGET_DEFAULT_RETURN (NULL);
676 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
677 int,
678 inferior *inf)
679 TARGET_DEFAULT_RETURN (NULL);
680 /* See target_thread_info_to_thread_handle. */
681 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
682 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
683 virtual void stop (ptid_t)
684 TARGET_DEFAULT_IGNORE ();
685 virtual void interrupt ()
686 TARGET_DEFAULT_IGNORE ();
687 virtual void pass_ctrlc ()
688 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
689 virtual void rcmd (const char *command, struct ui_file *output)
690 TARGET_DEFAULT_FUNC (default_rcmd);
691 virtual char *pid_to_exec_file (int pid)
692 TARGET_DEFAULT_RETURN (NULL);
693 virtual void log_command (const char *)
694 TARGET_DEFAULT_IGNORE ();
695 virtual const target_section_table *get_section_table ()
696 TARGET_DEFAULT_RETURN (default_get_section_table ());
697
698 /* Provide default values for all "must have" methods. */
699 virtual bool has_all_memory () { return false; }
700 virtual bool has_memory () { return false; }
701 virtual bool has_stack () { return false; }
702 virtual bool has_registers () { return false; }
703 virtual bool has_execution (inferior *inf) { return false; }
704
705 /* Control thread execution. */
706 virtual thread_control_capabilities get_thread_control_capabilities ()
707 TARGET_DEFAULT_RETURN (tc_none);
708 virtual bool attach_no_wait ()
709 TARGET_DEFAULT_RETURN (0);
710 /* This method must be implemented in some situations. See the
711 comment on 'can_run'. */
712 virtual bool can_async_p ()
713 TARGET_DEFAULT_RETURN (false);
714 virtual bool is_async_p ()
715 TARGET_DEFAULT_RETURN (false);
716 virtual void async (int)
717 TARGET_DEFAULT_NORETURN (tcomplain ());
718 virtual int async_wait_fd ()
719 TARGET_DEFAULT_NORETURN (noprocess ());
720 /* Return true if the target has pending events to report to the
721 core. If true, then GDB avoids resuming the target until all
722 pending events are consumed, so that multiple resumptions can
723 be coalesced as an optimization. Most targets can't tell
724 whether they have pending events without calling target_wait,
725 so we default to returning false. The only downside is that a
726 potential optimization is missed. */
727 virtual bool has_pending_events ()
728 TARGET_DEFAULT_RETURN (false);
729 virtual void thread_events (int)
730 TARGET_DEFAULT_IGNORE ();
731 /* This method must be implemented in some situations. See the
732 comment on 'can_run'. */
733 virtual bool supports_non_stop ()
734 TARGET_DEFAULT_RETURN (false);
735 /* Return true if the target operates in non-stop mode even with
736 "set non-stop off". */
737 virtual bool always_non_stop_p ()
738 TARGET_DEFAULT_RETURN (false);
739 /* find_memory_regions support method for gcore */
740 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
741 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
742 /* make_corefile_notes support method for gcore */
743 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
744 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
745 /* get_bookmark support method for bookmarks */
746 virtual gdb_byte *get_bookmark (const char *, int)
747 TARGET_DEFAULT_NORETURN (tcomplain ());
748 /* goto_bookmark support method for bookmarks */
749 virtual void goto_bookmark (const gdb_byte *, int)
750 TARGET_DEFAULT_NORETURN (tcomplain ());
751 /* Return the thread-local address at OFFSET in the
752 thread-local storage for the thread PTID and the shared library
753 or executable file given by LOAD_MODULE_ADDR. If that block of
754 thread-local storage hasn't been allocated yet, this function
755 may throw an error. LOAD_MODULE_ADDR may be zero for statically
756 linked multithreaded inferiors. */
757 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
758 CORE_ADDR load_module_addr,
759 CORE_ADDR offset)
760 TARGET_DEFAULT_NORETURN (generic_tls_error ());
761
762 /* Request that OPS transfer up to LEN addressable units of the target's
763 OBJECT. When reading from a memory object, the size of an addressable
764 unit is architecture dependent and can be found using
765 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
766 1 byte long. The OFFSET, for a seekable object, specifies the
767 starting point. The ANNEX can be used to provide additional
768 data-specific information to the target.
769
770 Return the transferred status, error or OK (an
771 'enum target_xfer_status' value). Save the number of addressable units
772 actually transferred in *XFERED_LEN if transfer is successful
773 (TARGET_XFER_OK) or the number unavailable units if the requested
774 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
775 smaller than LEN does not indicate the end of the object, only
776 the end of the transfer; higher level code should continue
777 transferring if desired. This is handled in target.c.
778
779 The interface does not support a "retry" mechanism. Instead it
780 assumes that at least one addressable unit will be transfered on each
781 successful call.
782
783 NOTE: cagney/2003-10-17: The current interface can lead to
784 fragmented transfers. Lower target levels should not implement
785 hacks, such as enlarging the transfer, in an attempt to
786 compensate for this. Instead, the target stack should be
787 extended so that it implements supply/collect methods and a
788 look-aside object cache. With that available, the lowest
789 target can safely and freely "push" data up the stack.
790
791 See target_read and target_write for more information. One,
792 and only one, of readbuf or writebuf must be non-NULL. */
793
794 virtual enum target_xfer_status xfer_partial (enum target_object object,
795 const char *annex,
796 gdb_byte *readbuf,
797 const gdb_byte *writebuf,
798 ULONGEST offset, ULONGEST len,
799 ULONGEST *xfered_len)
800 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
801
802 /* Return the limit on the size of any single memory transfer
803 for the target. */
804
805 virtual ULONGEST get_memory_xfer_limit ()
806 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
807
808 /* Returns the memory map for the target. A return value of NULL
809 means that no memory map is available. If a memory address
810 does not fall within any returned regions, it's assumed to be
811 RAM. The returned memory regions should not overlap.
812
813 The order of regions does not matter; target_memory_map will
814 sort regions by starting address. For that reason, this
815 function should not be called directly except via
816 target_memory_map.
817
818 This method should not cache data; if the memory map could
819 change unexpectedly, it should be invalidated, and higher
820 layers will re-fetch it. */
821 virtual std::vector<mem_region> memory_map ()
822 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
823
824 /* Erases the region of flash memory starting at ADDRESS, of
825 length LENGTH.
826
827 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
828 on flash block boundaries, as reported by 'to_memory_map'. */
829 virtual void flash_erase (ULONGEST address, LONGEST length)
830 TARGET_DEFAULT_NORETURN (tcomplain ());
831
832 /* Finishes a flash memory write sequence. After this operation
833 all flash memory should be available for writing and the result
834 of reading from areas written by 'to_flash_write' should be
835 equal to what was written. */
836 virtual void flash_done ()
837 TARGET_DEFAULT_NORETURN (tcomplain ());
838
839 /* Describe the architecture-specific features of the current
840 inferior.
841
842 Returns the description found, or nullptr if no description was
843 available.
844
845 If some target features differ between threads, the description
846 returned by read_description (and the resulting gdbarch) won't
847 accurately describe all threads. In this case, the
848 thread_architecture method can be used to obtain gdbarches that
849 accurately describe each thread. */
850 virtual const struct target_desc *read_description ()
851 TARGET_DEFAULT_RETURN (NULL);
852
853 /* Build the PTID of the thread on which a given task is running,
854 based on LWP and THREAD. These values are extracted from the
855 task Private_Data section of the Ada Task Control Block, and
856 their interpretation depends on the target. */
857 virtual ptid_t get_ada_task_ptid (long lwp, ULONGEST thread)
858 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
859
860 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
861 Return 0 if *READPTR is already at the end of the buffer.
862 Return -1 if there is insufficient buffer for a whole entry.
863 Return 1 if an entry was read into *TYPEP and *VALP. */
864 virtual int auxv_parse (gdb_byte **readptr,
865 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
866 TARGET_DEFAULT_FUNC (default_auxv_parse);
867
868 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
869 sequence of bytes in PATTERN with length PATTERN_LEN.
870
871 The result is 1 if found, 0 if not found, and -1 if there was an error
872 requiring halting of the search (e.g. memory read error).
873 If the pattern is found the address is recorded in FOUND_ADDRP. */
874 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
875 const gdb_byte *pattern, ULONGEST pattern_len,
876 CORE_ADDR *found_addrp)
877 TARGET_DEFAULT_FUNC (default_search_memory);
878
879 /* Can target execute in reverse? */
880 virtual bool can_execute_reverse ()
881 TARGET_DEFAULT_RETURN (false);
882
883 /* The direction the target is currently executing. Must be
884 implemented on targets that support reverse execution and async
885 mode. The default simply returns forward execution. */
886 virtual enum exec_direction_kind execution_direction ()
887 TARGET_DEFAULT_FUNC (default_execution_direction);
888
889 /* Does this target support debugging multiple processes
890 simultaneously? */
891 virtual bool supports_multi_process ()
892 TARGET_DEFAULT_RETURN (false);
893
894 /* Does this target support enabling and disabling tracepoints while a trace
895 experiment is running? */
896 virtual bool supports_enable_disable_tracepoint ()
897 TARGET_DEFAULT_RETURN (false);
898
899 /* Does this target support disabling address space randomization? */
900 virtual bool supports_disable_randomization ()
901 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
902
903 /* Does this target support the tracenz bytecode for string collection? */
904 virtual bool supports_string_tracing ()
905 TARGET_DEFAULT_RETURN (false);
906
907 /* Does this target support evaluation of breakpoint conditions on its
908 end? */
909 virtual bool supports_evaluation_of_breakpoint_conditions ()
910 TARGET_DEFAULT_RETURN (false);
911
912 /* Does this target support native dumpcore API? */
913 virtual bool supports_dumpcore ()
914 TARGET_DEFAULT_RETURN (false);
915
916 /* Generate the core file with native target API. */
917 virtual void dumpcore (const char *filename)
918 TARGET_DEFAULT_IGNORE ();
919
920 /* Does this target support evaluation of breakpoint commands on its
921 end? */
922 virtual bool can_run_breakpoint_commands ()
923 TARGET_DEFAULT_RETURN (false);
924
925 /* Determine current architecture of thread PTID.
926
927 The target is supposed to determine the architecture of the code where
928 the target is currently stopped at. The architecture information is
929 used to perform decr_pc_after_break adjustment, and also to determine
930 the frame architecture of the innermost frame. ptrace operations need to
931 operate according to target_gdbarch (). */
932 virtual struct gdbarch *thread_architecture (ptid_t)
933 TARGET_DEFAULT_RETURN (NULL);
934
935 /* Determine current address space of thread PTID. */
936 virtual struct address_space *thread_address_space (ptid_t)
937 TARGET_DEFAULT_RETURN (NULL);
938
939 /* Target file operations. */
940
941 /* Return true if the filesystem seen by the current inferior
942 is the local filesystem, false otherwise. */
943 virtual bool filesystem_is_local ()
944 TARGET_DEFAULT_RETURN (true);
945
946 /* Open FILENAME on the target, in the filesystem as seen by INF,
947 using FLAGS and MODE. If INF is NULL, use the filesystem seen
948 by the debugger (GDB or, for remote targets, the remote stub).
949 If WARN_IF_SLOW is nonzero, print a warning message if the file
950 is being accessed over a link that may be slow. Return a
951 target file descriptor, or -1 if an error occurs (and set
952 *TARGET_ERRNO). */
953 virtual int fileio_open (struct inferior *inf, const char *filename,
954 int flags, int mode, int warn_if_slow,
955 int *target_errno);
956
957 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
958 Return the number of bytes written, or -1 if an error occurs
959 (and set *TARGET_ERRNO). */
960 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
961 ULONGEST offset, int *target_errno);
962
963 /* Read up to LEN bytes FD on the target into READ_BUF.
964 Return the number of bytes read, or -1 if an error occurs
965 (and set *TARGET_ERRNO). */
966 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
967 ULONGEST offset, int *target_errno);
968
969 /* Get information about the file opened as FD and put it in
970 SB. Return 0 on success, or -1 if an error occurs (and set
971 *TARGET_ERRNO). */
972 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
973
974 /* Close FD on the target. Return 0, or -1 if an error occurs
975 (and set *TARGET_ERRNO). */
976 virtual int fileio_close (int fd, int *target_errno);
977
978 /* Unlink FILENAME on the target, in the filesystem as seen by
979 INF. If INF is NULL, use the filesystem seen by the debugger
980 (GDB or, for remote targets, the remote stub). Return 0, or
981 -1 if an error occurs (and set *TARGET_ERRNO). */
982 virtual int fileio_unlink (struct inferior *inf,
983 const char *filename,
984 int *target_errno);
985
986 /* Read value of symbolic link FILENAME on the target, in the
987 filesystem as seen by INF. If INF is NULL, use the filesystem
988 seen by the debugger (GDB or, for remote targets, the remote
989 stub). Return a string, or an empty optional if an error
990 occurs (and set *TARGET_ERRNO). */
991 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
992 const char *filename,
993 int *target_errno);
994
995 /* Implement the "info proc" command. Returns true if the target
996 actually implemented the command, false otherwise. */
997 virtual bool info_proc (const char *, enum info_proc_what);
998
999 /* Tracepoint-related operations. */
1000
1001 /* Prepare the target for a tracing run. */
1002 virtual void trace_init ()
1003 TARGET_DEFAULT_NORETURN (tcomplain ());
1004
1005 /* Send full details of a tracepoint location to the target. */
1006 virtual void download_tracepoint (struct bp_location *location)
1007 TARGET_DEFAULT_NORETURN (tcomplain ());
1008
1009 /* Is the target able to download tracepoint locations in current
1010 state? */
1011 virtual bool can_download_tracepoint ()
1012 TARGET_DEFAULT_RETURN (false);
1013
1014 /* Send full details of a trace state variable to the target. */
1015 virtual void download_trace_state_variable (const trace_state_variable &tsv)
1016 TARGET_DEFAULT_NORETURN (tcomplain ());
1017
1018 /* Enable a tracepoint on the target. */
1019 virtual void enable_tracepoint (struct bp_location *location)
1020 TARGET_DEFAULT_NORETURN (tcomplain ());
1021
1022 /* Disable a tracepoint on the target. */
1023 virtual void disable_tracepoint (struct bp_location *location)
1024 TARGET_DEFAULT_NORETURN (tcomplain ());
1025
1026 /* Inform the target info of memory regions that are readonly
1027 (such as text sections), and so it should return data from
1028 those rather than look in the trace buffer. */
1029 virtual void trace_set_readonly_regions ()
1030 TARGET_DEFAULT_NORETURN (tcomplain ());
1031
1032 /* Start a trace run. */
1033 virtual void trace_start ()
1034 TARGET_DEFAULT_NORETURN (tcomplain ());
1035
1036 /* Get the current status of a tracing run. */
1037 virtual int get_trace_status (struct trace_status *ts)
1038 TARGET_DEFAULT_RETURN (-1);
1039
1040 virtual void get_tracepoint_status (struct breakpoint *tp,
1041 struct uploaded_tp *utp)
1042 TARGET_DEFAULT_NORETURN (tcomplain ());
1043
1044 /* Stop a trace run. */
1045 virtual void trace_stop ()
1046 TARGET_DEFAULT_NORETURN (tcomplain ());
1047
1048 /* Ask the target to find a trace frame of the given type TYPE,
1049 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1050 number of the trace frame, and also the tracepoint number at
1051 TPP. If no trace frame matches, return -1. May throw if the
1052 operation fails. */
1053 virtual int trace_find (enum trace_find_type type, int num,
1054 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1055 TARGET_DEFAULT_RETURN (-1);
1056
1057 /* Get the value of the trace state variable number TSV, returning
1058 1 if the value is known and writing the value itself into the
1059 location pointed to by VAL, else returning 0. */
1060 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1061 TARGET_DEFAULT_RETURN (false);
1062
1063 virtual int save_trace_data (const char *filename)
1064 TARGET_DEFAULT_NORETURN (tcomplain ());
1065
1066 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1067 TARGET_DEFAULT_RETURN (0);
1068
1069 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1070 TARGET_DEFAULT_RETURN (0);
1071
1072 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1073 ULONGEST offset, LONGEST len)
1074 TARGET_DEFAULT_NORETURN (tcomplain ());
1075
1076 /* Get the minimum length of instruction on which a fast tracepoint
1077 may be set on the target. If this operation is unsupported,
1078 return -1. If for some reason the minimum length cannot be
1079 determined, return 0. */
1080 virtual int get_min_fast_tracepoint_insn_len ()
1081 TARGET_DEFAULT_RETURN (-1);
1082
1083 /* Set the target's tracing behavior in response to unexpected
1084 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1085 virtual void set_disconnected_tracing (int val)
1086 TARGET_DEFAULT_IGNORE ();
1087 virtual void set_circular_trace_buffer (int val)
1088 TARGET_DEFAULT_IGNORE ();
1089 /* Set the size of trace buffer in the target. */
1090 virtual void set_trace_buffer_size (LONGEST val)
1091 TARGET_DEFAULT_IGNORE ();
1092
1093 /* Add/change textual notes about the trace run, returning true if
1094 successful, false otherwise. */
1095 virtual bool set_trace_notes (const char *user, const char *notes,
1096 const char *stopnotes)
1097 TARGET_DEFAULT_RETURN (false);
1098
1099 /* Return the processor core that thread PTID was last seen on.
1100 This information is updated only when:
1101 - update_thread_list is called
1102 - thread stops
1103 If the core cannot be determined -- either for the specified
1104 thread, or right now, or in this debug session, or for this
1105 target -- return -1. */
1106 virtual int core_of_thread (ptid_t ptid)
1107 TARGET_DEFAULT_RETURN (-1);
1108
1109 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1110 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1111 a match, 0 if there's a mismatch, and -1 if an error is
1112 encountered while reading memory. */
1113 virtual int verify_memory (const gdb_byte *data,
1114 CORE_ADDR memaddr, ULONGEST size)
1115 TARGET_DEFAULT_FUNC (default_verify_memory);
1116
1117 /* Return the address of the start of the Thread Information Block
1118 a Windows OS specific feature. */
1119 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1120 TARGET_DEFAULT_NORETURN (tcomplain ());
1121
1122 /* Send the new settings of write permission variables. */
1123 virtual void set_permissions ()
1124 TARGET_DEFAULT_IGNORE ();
1125
1126 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1127 with its details. Return true on success, false on failure. */
1128 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1129 static_tracepoint_marker *marker)
1130 TARGET_DEFAULT_RETURN (false);
1131
1132 /* Return a vector of all tracepoints markers string id ID, or all
1133 markers if ID is NULL. */
1134 virtual std::vector<static_tracepoint_marker>
1135 static_tracepoint_markers_by_strid (const char *id)
1136 TARGET_DEFAULT_NORETURN (tcomplain ());
1137
1138 /* Return a traceframe info object describing the current
1139 traceframe's contents. This method should not cache data;
1140 higher layers take care of caching, invalidating, and
1141 re-fetching when necessary. */
1142 virtual traceframe_info_up traceframe_info ()
1143 TARGET_DEFAULT_NORETURN (tcomplain ());
1144
1145 /* Ask the target to use or not to use agent according to USE.
1146 Return true if successful, false otherwise. */
1147 virtual bool use_agent (bool use)
1148 TARGET_DEFAULT_NORETURN (tcomplain ());
1149
1150 /* Is the target able to use agent in current state? */
1151 virtual bool can_use_agent ()
1152 TARGET_DEFAULT_RETURN (false);
1153
1154 /* Enable branch tracing for PTID using CONF configuration.
1155 Return a branch trace target information struct for reading and for
1156 disabling branch trace. */
1157 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1158 const struct btrace_config *conf)
1159 TARGET_DEFAULT_NORETURN (tcomplain ());
1160
1161 /* Disable branch tracing and deallocate TINFO. */
1162 virtual void disable_btrace (struct btrace_target_info *tinfo)
1163 TARGET_DEFAULT_NORETURN (tcomplain ());
1164
1165 /* Disable branch tracing and deallocate TINFO. This function is similar
1166 to to_disable_btrace, except that it is called during teardown and is
1167 only allowed to perform actions that are safe. A counter-example would
1168 be attempting to talk to a remote target. */
1169 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1170 TARGET_DEFAULT_NORETURN (tcomplain ());
1171
1172 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1173 DATA is cleared before new trace is added. */
1174 virtual enum btrace_error read_btrace (struct btrace_data *data,
1175 struct btrace_target_info *btinfo,
1176 enum btrace_read_type type)
1177 TARGET_DEFAULT_NORETURN (tcomplain ());
1178
1179 /* Get the branch trace configuration. */
1180 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1181 TARGET_DEFAULT_RETURN (NULL);
1182
1183 /* Current recording method. */
1184 virtual enum record_method record_method (ptid_t ptid)
1185 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1186
1187 /* Stop trace recording. */
1188 virtual void stop_recording ()
1189 TARGET_DEFAULT_IGNORE ();
1190
1191 /* Print information about the recording. */
1192 virtual void info_record ()
1193 TARGET_DEFAULT_IGNORE ();
1194
1195 /* Save the recorded execution trace into a file. */
1196 virtual void save_record (const char *filename)
1197 TARGET_DEFAULT_NORETURN (tcomplain ());
1198
1199 /* Delete the recorded execution trace from the current position
1200 onwards. */
1201 virtual bool supports_delete_record ()
1202 TARGET_DEFAULT_RETURN (false);
1203 virtual void delete_record ()
1204 TARGET_DEFAULT_NORETURN (tcomplain ());
1205
1206 /* Query if the record target is currently replaying PTID. */
1207 virtual bool record_is_replaying (ptid_t ptid)
1208 TARGET_DEFAULT_RETURN (false);
1209
1210 /* Query if the record target will replay PTID if it were resumed in
1211 execution direction DIR. */
1212 virtual bool record_will_replay (ptid_t ptid, int dir)
1213 TARGET_DEFAULT_RETURN (false);
1214
1215 /* Stop replaying. */
1216 virtual void record_stop_replaying ()
1217 TARGET_DEFAULT_IGNORE ();
1218
1219 /* Go to the begin of the execution trace. */
1220 virtual void goto_record_begin ()
1221 TARGET_DEFAULT_NORETURN (tcomplain ());
1222
1223 /* Go to the end of the execution trace. */
1224 virtual void goto_record_end ()
1225 TARGET_DEFAULT_NORETURN (tcomplain ());
1226
1227 /* Go to a specific location in the recorded execution trace. */
1228 virtual void goto_record (ULONGEST insn)
1229 TARGET_DEFAULT_NORETURN (tcomplain ());
1230
1231 /* Disassemble SIZE instructions in the recorded execution trace from
1232 the current position.
1233 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1234 disassemble SIZE succeeding instructions. */
1235 virtual void insn_history (int size, gdb_disassembly_flags flags)
1236 TARGET_DEFAULT_NORETURN (tcomplain ());
1237
1238 /* Disassemble SIZE instructions in the recorded execution trace around
1239 FROM.
1240 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1241 disassemble SIZE instructions after FROM. */
1242 virtual void insn_history_from (ULONGEST from, int size,
1243 gdb_disassembly_flags flags)
1244 TARGET_DEFAULT_NORETURN (tcomplain ());
1245
1246 /* Disassemble a section of the recorded execution trace from instruction
1247 BEGIN (inclusive) to instruction END (inclusive). */
1248 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1249 gdb_disassembly_flags flags)
1250 TARGET_DEFAULT_NORETURN (tcomplain ());
1251
1252 /* Print a function trace of the recorded execution trace.
1253 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1254 succeeding functions. */
1255 virtual void call_history (int size, record_print_flags flags)
1256 TARGET_DEFAULT_NORETURN (tcomplain ());
1257
1258 /* Print a function trace of the recorded execution trace starting
1259 at function FROM.
1260 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1261 SIZE functions after FROM. */
1262 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1263 TARGET_DEFAULT_NORETURN (tcomplain ());
1264
1265 /* Print a function trace of an execution trace section from function BEGIN
1266 (inclusive) to function END (inclusive). */
1267 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1268 TARGET_DEFAULT_NORETURN (tcomplain ());
1269
1270 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1271 non-empty annex. */
1272 virtual bool augmented_libraries_svr4_read ()
1273 TARGET_DEFAULT_RETURN (false);
1274
1275 /* Those unwinders are tried before any other arch unwinders. If
1276 SELF doesn't have unwinders, it should delegate to the
1277 "beneath" target. */
1278 virtual const struct frame_unwind *get_unwinder ()
1279 TARGET_DEFAULT_RETURN (NULL);
1280
1281 virtual const struct frame_unwind *get_tailcall_unwinder ()
1282 TARGET_DEFAULT_RETURN (NULL);
1283
1284 /* Prepare to generate a core file. */
1285 virtual void prepare_to_generate_core ()
1286 TARGET_DEFAULT_IGNORE ();
1287
1288 /* Cleanup after generating a core file. */
1289 virtual void done_generating_core ()
1290 TARGET_DEFAULT_IGNORE ();
1291
1292 /* Returns true if the target supports memory tagging, false otherwise. */
1293 virtual bool supports_memory_tagging ()
1294 TARGET_DEFAULT_RETURN (false);
1295
1296 /* Return the allocated memory tags of type TYPE associated with
1297 [ADDRESS, ADDRESS + LEN) in TAGS.
1298
1299 LEN is the number of bytes in the memory range. TAGS is a vector of
1300 bytes containing the tags found in the above memory range.
1301
1302 It is up to the architecture/target to interpret the bytes in the TAGS
1303 vector and read the tags appropriately.
1304
1305 Returns true if fetching the tags succeeded and false otherwise. */
1306 virtual bool fetch_memtags (CORE_ADDR address, size_t len,
1307 gdb::byte_vector &tags, int type)
1308 TARGET_DEFAULT_NORETURN (tcomplain ());
1309
1310 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1311 range [ADDRESS, ADDRESS + LEN).
1312
1313 LEN is the number of bytes in the memory range. TAGS is a vector of
1314 bytes containing the tags to be stored to the memory range.
1315
1316 It is up to the architecture/target to interpret the bytes in the TAGS
1317 vector and store them appropriately.
1318
1319 Returns true if storing the tags succeeded and false otherwise. */
1320 virtual bool store_memtags (CORE_ADDR address, size_t len,
1321 const gdb::byte_vector &tags, int type)
1322 TARGET_DEFAULT_NORETURN (tcomplain ());
1323 };
1324
1325 /* Deleter for std::unique_ptr. See comments in
1326 target_ops::~target_ops and target_ops::close about heap-allocated
1327 targets. */
1328 struct target_ops_deleter
1329 {
1330 void operator() (target_ops *target)
1331 {
1332 target->close ();
1333 }
1334 };
1335
1336 /* A unique pointer for target_ops. */
1337 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1338
1339 /* Decref a target and close if, if there are no references left. */
1340 extern void decref_target (target_ops *t);
1341
1342 /* A policy class to interface gdb::ref_ptr with target_ops. */
1343
1344 struct target_ops_ref_policy
1345 {
1346 static void incref (target_ops *t)
1347 {
1348 t->incref ();
1349 }
1350
1351 static void decref (target_ops *t)
1352 {
1353 decref_target (t);
1354 }
1355 };
1356
1357 /* A gdb::ref_ptr pointer to a target_ops. */
1358 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1359
1360 /* Native target backends call this once at initialization time to
1361 inform the core about which is the target that can respond to "run"
1362 or "attach". Note: native targets are always singletons. */
1363 extern void set_native_target (target_ops *target);
1364
1365 /* Get the registered native target, if there's one. Otherwise return
1366 NULL. */
1367 extern target_ops *get_native_target ();
1368
1369 /* Type that manages a target stack. See description of target stacks
1370 and strata at the top of the file. */
1371
1372 class target_stack
1373 {
1374 public:
1375 target_stack () = default;
1376 DISABLE_COPY_AND_ASSIGN (target_stack);
1377
1378 /* Push a new target into the stack of the existing target
1379 accessors, possibly superseding some existing accessor. */
1380 void push (target_ops *t);
1381
1382 /* Remove a target from the stack, wherever it may be. Return true
1383 if it was removed, false otherwise. */
1384 bool unpush (target_ops *t);
1385
1386 /* Returns true if T is pushed on the target stack. */
1387 bool is_pushed (target_ops *t) const
1388 { return at (t->stratum ()) == t; }
1389
1390 /* Return the target at STRATUM. */
1391 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1392
1393 /* Return the target at the top of the stack. */
1394 target_ops *top () const { return at (m_top); }
1395
1396 /* Find the next target down the stack from the specified target. */
1397 target_ops *find_beneath (const target_ops *t) const;
1398
1399 private:
1400 /* The stratum of the top target. */
1401 enum strata m_top {};
1402
1403 /* The stack, represented as an array, with one slot per stratum.
1404 If no target is pushed at some stratum, the corresponding slot is
1405 null. */
1406 target_ops *m_stack[(int) debug_stratum + 1] {};
1407 };
1408
1409 /* Return the dummy target. */
1410 extern target_ops *get_dummy_target ();
1411
1412 /* Define easy words for doing these operations on our current target. */
1413
1414 extern const char *target_shortname ();
1415
1416 /* Does whatever cleanup is required for a target that we are no
1417 longer going to be calling. This routine is automatically always
1418 called after popping the target off the target stack - the target's
1419 own methods are no longer available through the target vector.
1420 Closing file descriptors and freeing all memory allocated memory are
1421 typical things it should do. */
1422
1423 void target_close (struct target_ops *targ);
1424
1425 /* Find the correct target to use for "attach". If a target on the
1426 current stack supports attaching, then it is returned. Otherwise,
1427 the default run target is returned. */
1428
1429 extern struct target_ops *find_attach_target (void);
1430
1431 /* Find the correct target to use for "run". If a target on the
1432 current stack supports creating a new inferior, then it is
1433 returned. Otherwise, the default run target is returned. */
1434
1435 extern struct target_ops *find_run_target (void);
1436
1437 /* Some targets don't generate traps when attaching to the inferior,
1438 or their target_attach implementation takes care of the waiting.
1439 These targets must set to_attach_no_wait. */
1440
1441 extern bool target_attach_no_wait ();
1442
1443 /* The target_attach operation places a process under debugger control,
1444 and stops the process.
1445
1446 This operation provides a target-specific hook that allows the
1447 necessary bookkeeping to be performed after an attach completes. */
1448
1449 extern void target_post_attach (int pid);
1450
1451 /* Display a message indicating we're about to detach from the current
1452 inferior process. */
1453
1454 extern void target_announce_detach (int from_tty);
1455
1456 /* Takes a program previously attached to and detaches it.
1457 The program may resume execution (some targets do, some don't) and will
1458 no longer stop on signals, etc. We better not have left any breakpoints
1459 in the program or it'll die when it hits one. FROM_TTY says whether to be
1460 verbose or not. */
1461
1462 extern void target_detach (inferior *inf, int from_tty);
1463
1464 /* Disconnect from the current target without resuming it (leaving it
1465 waiting for a debugger). */
1466
1467 extern void target_disconnect (const char *, int);
1468
1469 /* Resume execution (or prepare for execution) of a target thread,
1470 process or all processes. STEP says whether to hardware
1471 single-step or to run free; SIGGNAL is the signal to be given to
1472 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1473 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1474 process id'. A wildcard PTID (all threads, or all threads of
1475 process) means `step/resume INFERIOR_PTID, and let other threads
1476 (for which the wildcard PTID matches) resume with their
1477 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1478 is in "pass" state, or with no signal if in "no pass" state.
1479
1480 In order to efficiently handle batches of resumption requests,
1481 targets may implement this method such that it records the
1482 resumption request, but defers the actual resumption to the
1483 target_commit_resume method implementation. See
1484 target_commit_resume below. */
1485 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1486
1487 /* Ensure that all resumed threads are committed to the target.
1488
1489 See the description of process_stratum_target::commit_resumed_state
1490 for more details. */
1491 extern void target_commit_resumed ();
1492
1493 /* For target_read_memory see target/target.h. */
1494
1495 /* The default target_ops::to_wait implementation. */
1496
1497 extern ptid_t default_target_wait (struct target_ops *ops,
1498 ptid_t ptid,
1499 struct target_waitstatus *status,
1500 target_wait_flags options);
1501
1502 /* Return true if the target has pending events to report to the core.
1503 See target_ops::has_pending_events(). */
1504
1505 extern bool target_has_pending_events ();
1506
1507 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1508
1509 extern void target_fetch_registers (struct regcache *regcache, int regno);
1510
1511 /* Store at least register REGNO, or all regs if REGNO == -1.
1512 It can store as many registers as it wants to, so target_prepare_to_store
1513 must have been previously called. Calls error() if there are problems. */
1514
1515 extern void target_store_registers (struct regcache *regcache, int regs);
1516
1517 /* Get ready to modify the registers array. On machines which store
1518 individual registers, this doesn't need to do anything. On machines
1519 which store all the registers in one fell swoop, this makes sure
1520 that REGISTERS contains all the registers from the program being
1521 debugged. */
1522
1523 extern void target_prepare_to_store (regcache *regcache);
1524
1525 /* Determine current address space of thread PTID. */
1526
1527 struct address_space *target_thread_address_space (ptid_t);
1528
1529 /* Implement the "info proc" command. This returns one if the request
1530 was handled, and zero otherwise. It can also throw an exception if
1531 an error was encountered while attempting to handle the
1532 request. */
1533
1534 int target_info_proc (const char *, enum info_proc_what);
1535
1536 /* Returns true if this target can disable address space randomization. */
1537
1538 int target_supports_disable_randomization (void);
1539
1540 /* Returns true if this target can enable and disable tracepoints
1541 while a trace experiment is running. */
1542
1543 extern bool target_supports_enable_disable_tracepoint ();
1544
1545 extern bool target_supports_string_tracing ();
1546
1547 /* Returns true if this target can handle breakpoint conditions
1548 on its end. */
1549
1550 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1551
1552 /* Does this target support dumpcore API? */
1553
1554 extern bool target_supports_dumpcore ();
1555
1556 /* Generate the core file with target API. */
1557
1558 extern void target_dumpcore (const char *filename);
1559
1560 /* Returns true if this target can handle breakpoint commands
1561 on its end. */
1562
1563 extern bool target_can_run_breakpoint_commands ();
1564
1565 /* Read a string from target memory at address MEMADDR. The string
1566 will be at most LEN bytes long (note that excess bytes may be read
1567 in some cases -- but these will not be returned). Returns nullptr
1568 on error. */
1569
1570 extern gdb::unique_xmalloc_ptr<char> target_read_string
1571 (CORE_ADDR memaddr, int len, int *bytes_read = nullptr);
1572
1573 /* For target_read_memory see target/target.h. */
1574
1575 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1576 ssize_t len);
1577
1578 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1579
1580 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1581
1582 /* For target_write_memory see target/target.h. */
1583
1584 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1585 ssize_t len);
1586
1587 /* Fetches the target's memory map. If one is found it is sorted
1588 and returned, after some consistency checking. Otherwise, NULL
1589 is returned. */
1590 std::vector<mem_region> target_memory_map (void);
1591
1592 /* Erases all flash memory regions on the target. */
1593 void flash_erase_command (const char *cmd, int from_tty);
1594
1595 /* Erase the specified flash region. */
1596 void target_flash_erase (ULONGEST address, LONGEST length);
1597
1598 /* Finish a sequence of flash operations. */
1599 void target_flash_done (void);
1600
1601 /* Describes a request for a memory write operation. */
1602 struct memory_write_request
1603 {
1604 memory_write_request (ULONGEST begin_, ULONGEST end_,
1605 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1606 : begin (begin_), end (end_), data (data_), baton (baton_)
1607 {}
1608
1609 /* Begining address that must be written. */
1610 ULONGEST begin;
1611 /* Past-the-end address. */
1612 ULONGEST end;
1613 /* The data to write. */
1614 gdb_byte *data;
1615 /* A callback baton for progress reporting for this request. */
1616 void *baton;
1617 };
1618
1619 /* Enumeration specifying different flash preservation behaviour. */
1620 enum flash_preserve_mode
1621 {
1622 flash_preserve,
1623 flash_discard
1624 };
1625
1626 /* Write several memory blocks at once. This version can be more
1627 efficient than making several calls to target_write_memory, in
1628 particular because it can optimize accesses to flash memory.
1629
1630 Moreover, this is currently the only memory access function in gdb
1631 that supports writing to flash memory, and it should be used for
1632 all cases where access to flash memory is desirable.
1633
1634 REQUESTS is the vector of memory_write_request.
1635 PRESERVE_FLASH_P indicates what to do with blocks which must be
1636 erased, but not completely rewritten.
1637 PROGRESS_CB is a function that will be periodically called to provide
1638 feedback to user. It will be called with the baton corresponding
1639 to the request currently being written. It may also be called
1640 with a NULL baton, when preserved flash sectors are being rewritten.
1641
1642 The function returns 0 on success, and error otherwise. */
1643 int target_write_memory_blocks
1644 (const std::vector<memory_write_request> &requests,
1645 enum flash_preserve_mode preserve_flash_p,
1646 void (*progress_cb) (ULONGEST, void *));
1647
1648 /* Print a line about the current target. */
1649
1650 extern void target_files_info ();
1651
1652 /* Insert a breakpoint at address BP_TGT->placed_address in
1653 the target machine. Returns 0 for success, and returns non-zero or
1654 throws an error (with a detailed failure reason error code and
1655 message) otherwise. */
1656
1657 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1658 struct bp_target_info *bp_tgt);
1659
1660 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1661 machine. Result is 0 for success, non-zero for error. */
1662
1663 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1664 struct bp_target_info *bp_tgt,
1665 enum remove_bp_reason reason);
1666
1667 /* Return true if the target stack has a non-default
1668 "terminal_ours" method. */
1669
1670 extern bool target_supports_terminal_ours (void);
1671
1672 /* Kill the inferior process. Make it go away. */
1673
1674 extern void target_kill (void);
1675
1676 /* Load an executable file into the target process. This is expected
1677 to not only bring new code into the target process, but also to
1678 update GDB's symbol tables to match.
1679
1680 ARG contains command-line arguments, to be broken down with
1681 buildargv (). The first non-switch argument is the filename to
1682 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1683 0)), which is an offset to apply to the load addresses of FILE's
1684 sections. The target may define switches, or other non-switch
1685 arguments, as it pleases. */
1686
1687 extern void target_load (const char *arg, int from_tty);
1688
1689 /* On some targets, we can catch an inferior fork or vfork event when
1690 it occurs. These functions insert/remove an already-created
1691 catchpoint for such events. They return 0 for success, 1 if the
1692 catchpoint type is not supported and -1 for failure. */
1693
1694 extern int target_insert_fork_catchpoint (int pid);
1695
1696 extern int target_remove_fork_catchpoint (int pid);
1697
1698 extern int target_insert_vfork_catchpoint (int pid);
1699
1700 extern int target_remove_vfork_catchpoint (int pid);
1701
1702 /* Call the follow_fork method on the current target stack.
1703
1704 This function is called when the inferior forks or vforks, to perform any
1705 bookkeeping and fiddling necessary to continue debugging either the parent,
1706 the child or both. */
1707
1708 void target_follow_fork (inferior *inf, ptid_t child_ptid,
1709 target_waitkind fork_kind, bool follow_child,
1710 bool detach_fork);
1711
1712 /* Handle the target-specific bookkeeping required when the inferior makes an
1713 exec call.
1714
1715 The current inferior at the time of the call is the inferior that did the
1716 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1717 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1718 inferior, meaning that execution continues with the same inferior. If
1719 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1720 that execution continues in a new inferior.
1721
1722 On exit, the target must leave FOLLOW_INF as the current inferior. */
1723
1724 void target_follow_exec (inferior *follow_inf, ptid_t ptid,
1725 const char *execd_pathname);
1726
1727 /* On some targets, we can catch an inferior exec event when it
1728 occurs. These functions insert/remove an already-created
1729 catchpoint for such events. They return 0 for success, 1 if the
1730 catchpoint type is not supported and -1 for failure. */
1731
1732 extern int target_insert_exec_catchpoint (int pid);
1733
1734 extern int target_remove_exec_catchpoint (int pid);
1735
1736 /* Syscall catch.
1737
1738 NEEDED is true if any syscall catch (of any kind) is requested.
1739 If NEEDED is false, it means the target can disable the mechanism to
1740 catch system calls because there are no more catchpoints of this type.
1741
1742 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1743 being requested. In this case, SYSCALL_COUNTS should be ignored.
1744
1745 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1746 element in this array is nonzero if that syscall should be caught.
1747 This argument only matters if ANY_COUNT is zero.
1748
1749 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1750 for failure. */
1751
1752 extern int target_set_syscall_catchpoint
1753 (int pid, bool needed, int any_count,
1754 gdb::array_view<const int> syscall_counts);
1755
1756 /* The debugger has completed a blocking wait() call. There is now
1757 some process event that must be processed. This function should
1758 be defined by those targets that require the debugger to perform
1759 cleanup or internal state changes in response to the process event. */
1760
1761 /* For target_mourn_inferior see target/target.h. */
1762
1763 /* Does target have enough data to do a run or attach command? */
1764
1765 extern int target_can_run ();
1766
1767 /* Set list of signals to be handled in the target.
1768
1769 PASS_SIGNALS is an array indexed by target signal number
1770 (enum gdb_signal). For every signal whose entry in this array is
1771 non-zero, the target is allowed -but not required- to skip reporting
1772 arrival of the signal to the GDB core by returning from target_wait,
1773 and to pass the signal directly to the inferior instead.
1774
1775 However, if the target is hardware single-stepping a thread that is
1776 about to receive a signal, it needs to be reported in any case, even
1777 if mentioned in a previous target_pass_signals call. */
1778
1779 extern void target_pass_signals
1780 (gdb::array_view<const unsigned char> pass_signals);
1781
1782 /* Set list of signals the target may pass to the inferior. This
1783 directly maps to the "handle SIGNAL pass/nopass" setting.
1784
1785 PROGRAM_SIGNALS is an array indexed by target signal
1786 number (enum gdb_signal). For every signal whose entry in this
1787 array is non-zero, the target is allowed to pass the signal to the
1788 inferior. Signals not present in the array shall be silently
1789 discarded. This does not influence whether to pass signals to the
1790 inferior as a result of a target_resume call. This is useful in
1791 scenarios where the target needs to decide whether to pass or not a
1792 signal to the inferior without GDB core involvement, such as for
1793 example, when detaching (as threads may have been suspended with
1794 pending signals not reported to GDB). */
1795
1796 extern void target_program_signals
1797 (gdb::array_view<const unsigned char> program_signals);
1798
1799 /* Check to see if a thread is still alive. */
1800
1801 extern int target_thread_alive (ptid_t ptid);
1802
1803 /* Sync the target's threads with GDB's thread list. */
1804
1805 extern void target_update_thread_list (void);
1806
1807 /* Make target stop in a continuable fashion. (For instance, under
1808 Unix, this should act like SIGSTOP). Note that this function is
1809 asynchronous: it does not wait for the target to become stopped
1810 before returning. If this is the behavior you want please use
1811 target_stop_and_wait. */
1812
1813 extern void target_stop (ptid_t ptid);
1814
1815 /* Interrupt the target. Unlike target_stop, this does not specify
1816 which thread/process reports the stop. For most target this acts
1817 like raising a SIGINT, though that's not absolutely required. This
1818 function is asynchronous. */
1819
1820 extern void target_interrupt ();
1821
1822 /* Pass a ^C, as determined to have been pressed by checking the quit
1823 flag, to the target, as if the user had typed the ^C on the
1824 inferior's controlling terminal while the inferior was in the
1825 foreground. Remote targets may take the opportunity to detect the
1826 remote side is not responding and offer to disconnect. */
1827
1828 extern void target_pass_ctrlc (void);
1829
1830 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1831 target_interrupt. */
1832 extern void default_target_pass_ctrlc (struct target_ops *ops);
1833
1834 /* Send the specified COMMAND to the target's monitor
1835 (shell,interpreter) for execution. The result of the query is
1836 placed in OUTBUF. */
1837
1838 extern void target_rcmd (const char *command, struct ui_file *outbuf);
1839
1840 /* Does the target include memory? (Dummy targets don't.) */
1841
1842 extern int target_has_memory ();
1843
1844 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1845 we start a process.) */
1846
1847 extern int target_has_stack ();
1848
1849 /* Does the target have registers? (Exec files don't.) */
1850
1851 extern int target_has_registers ();
1852
1853 /* Does the target have execution? Can we make it jump (through
1854 hoops), or pop its stack a few times? This means that the current
1855 target is currently executing; for some targets, that's the same as
1856 whether or not the target is capable of execution, but there are
1857 also targets which can be current while not executing. In that
1858 case this will become true after to_create_inferior or
1859 to_attach. INF is the inferior to use; nullptr means to use the
1860 current inferior. */
1861
1862 extern bool target_has_execution (inferior *inf = nullptr);
1863
1864 /* Can the target support the debugger control of thread execution?
1865 Can it lock the thread scheduler? */
1866
1867 extern bool target_can_lock_scheduler ();
1868
1869 /* Controls whether async mode is permitted. */
1870 extern bool target_async_permitted;
1871
1872 /* Can the target support asynchronous execution? */
1873 extern bool target_can_async_p ();
1874
1875 /* An overload of the above that can be called when the target is not yet
1876 pushed, this calls TARGET::can_async_p directly. */
1877 extern bool target_can_async_p (struct target_ops *target);
1878
1879 /* Is the target in asynchronous execution mode? */
1880 extern bool target_is_async_p ();
1881
1882 /* Enables/disabled async target events. */
1883 extern void target_async (int enable);
1884
1885 /* Enables/disables thread create and exit events. */
1886 extern void target_thread_events (int enable);
1887
1888 /* Whether support for controlling the target backends always in
1889 non-stop mode is enabled. */
1890 extern enum auto_boolean target_non_stop_enabled;
1891
1892 /* Is the target in non-stop mode? Some targets control the inferior
1893 in non-stop mode even with "set non-stop off". Always true if "set
1894 non-stop" is on. */
1895 extern bool target_is_non_stop_p ();
1896
1897 /* Return true if at least one inferior has a non-stop target. */
1898 extern bool exists_non_stop_target ();
1899
1900 extern exec_direction_kind target_execution_direction ();
1901
1902 /* Converts a process id to a string. Usually, the string just contains
1903 `process xyz', but on some systems it may contain
1904 `process xyz thread abc'. */
1905
1906 extern std::string target_pid_to_str (ptid_t ptid);
1907
1908 extern std::string normal_pid_to_str (ptid_t ptid);
1909
1910 /* Return a short string describing extra information about PID,
1911 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1912 is okay. */
1913
1914 extern const char *target_extra_thread_info (thread_info *tp);
1915
1916 /* Return the thread's name, or NULL if the target is unable to determine it.
1917 The returned value must not be freed by the caller.
1918
1919 You likely don't want to call this function, but use the thread_name
1920 function instead, which prefers the user-given thread name, if set. */
1921
1922 extern const char *target_thread_name (struct thread_info *);
1923
1924 /* Given a pointer to a thread library specific thread handle and
1925 its length, return a pointer to the corresponding thread_info struct. */
1926
1927 extern struct thread_info *target_thread_handle_to_thread_info
1928 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1929
1930 /* Given a thread, return the thread handle, a target-specific sequence of
1931 bytes which serves as a thread identifier within the program being
1932 debugged. */
1933 extern gdb::byte_vector target_thread_info_to_thread_handle
1934 (struct thread_info *);
1935
1936 /* Attempts to find the pathname of the executable file
1937 that was run to create a specified process.
1938
1939 The process PID must be stopped when this operation is used.
1940
1941 If the executable file cannot be determined, NULL is returned.
1942
1943 Else, a pointer to a character string containing the pathname
1944 is returned. This string should be copied into a buffer by
1945 the client if the string will not be immediately used, or if
1946 it must persist. */
1947
1948 extern char *target_pid_to_exec_file (int pid);
1949
1950 /* See the to_thread_architecture description in struct target_ops. */
1951
1952 extern gdbarch *target_thread_architecture (ptid_t ptid);
1953
1954 /*
1955 * Iterator function for target memory regions.
1956 * Calls a callback function once for each memory region 'mapped'
1957 * in the child process. Defined as a simple macro rather than
1958 * as a function macro so that it can be tested for nullity.
1959 */
1960
1961 extern int target_find_memory_regions (find_memory_region_ftype func,
1962 void *data);
1963
1964 /*
1965 * Compose corefile .note section.
1966 */
1967
1968 extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
1969 int *size_p);
1970
1971 /* Bookmark interfaces. */
1972 extern gdb_byte *target_get_bookmark (const char *args, int from_tty);
1973
1974 extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);
1975
1976 /* Hardware watchpoint interfaces. */
1977
1978 /* GDB's current model is that there are three "kinds" of watchpoints,
1979 with respect to when they trigger and how you can move past them.
1980
1981 Those are: continuable, steppable, and non-steppable.
1982
1983 Continuable watchpoints are like x86's -- those trigger after the
1984 memory access's side effects are fully committed to memory. I.e.,
1985 they trap with the PC pointing at the next instruction already.
1986 Continuing past such a watchpoint is doable by just normally
1987 continuing, hence the name.
1988
1989 Both steppable and non-steppable watchpoints trap before the memory
1990 access. I.e, the PC points at the instruction that is accessing
1991 the memory. So GDB needs to single-step once past the current
1992 instruction in order to make the access effective and check whether
1993 the instruction's side effects change the watched expression.
1994
1995 Now, in order to step past that instruction, depending on
1996 architecture and target, you can have two situations:
1997
1998 - steppable watchpoints: you can single-step with the watchpoint
1999 still armed, and the watchpoint won't trigger again.
2000
2001 - non-steppable watchpoints: if you try to single-step with the
2002 watchpoint still armed, you'd trap the watchpoint again and the
2003 thread wouldn't make any progress. So GDB needs to temporarily
2004 remove the watchpoint in order to step past it.
2005
2006 If your target/architecture does not signal that it has either
2007 steppable or non-steppable watchpoints via either
2008 target_have_steppable_watchpoint or
2009 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2010 watchpoints. */
2011
2012 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2013 write). Only the INFERIOR_PTID task is being queried. */
2014
2015 extern bool target_stopped_by_watchpoint ();
2016
2017 /* Returns true if the target stopped because it executed a
2018 software breakpoint instruction. */
2019
2020 extern bool target_stopped_by_sw_breakpoint ();
2021
2022 extern bool target_supports_stopped_by_sw_breakpoint ();
2023
2024 extern bool target_stopped_by_hw_breakpoint ();
2025
2026 extern bool target_supports_stopped_by_hw_breakpoint ();
2027
2028 /* True if we have steppable watchpoints */
2029
2030 extern bool target_have_steppable_watchpoint ();
2031
2032 /* Provide defaults for hardware watchpoint functions. */
2033
2034 /* If the *_hw_beakpoint functions have not been defined
2035 elsewhere use the definitions in the target vector. */
2036
2037 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2038 Returns negative if the target doesn't have enough hardware debug
2039 registers available. Return zero if hardware watchpoint of type
2040 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2041 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2042 CNT is the number of such watchpoints used so far, including this
2043 one. OTHERTYPE is the number of watchpoints of other types than
2044 this one used so far. */
2045
2046 extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
2047 int othertype);
2048
2049 /* Returns the number of debug registers needed to watch the given
2050 memory region, or zero if not supported. */
2051
2052 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);
2053
2054 extern int target_can_do_single_step ();
2055
2056 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2057 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2058 COND is the expression for its condition, or NULL if there's none.
2059 Returns 0 for success, 1 if the watchpoint type is not supported,
2060 -1 for failure. */
2061
2062 extern int target_insert_watchpoint (CORE_ADDR addr, int len,
2063 target_hw_bp_type type, expression *cond);
2064
2065 extern int target_remove_watchpoint (CORE_ADDR addr, int len,
2066 target_hw_bp_type type, expression *cond);
2067
2068 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2069 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2070 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2071 masked watchpoints are not supported, -1 for failure. */
2072
2073 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2074 enum target_hw_bp_type);
2075
2076 /* Remove a masked watchpoint at ADDR with the mask MASK.
2077 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2078 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2079 for failure. */
2080
2081 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2082 enum target_hw_bp_type);
2083
2084 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2085 the target machine. Returns 0 for success, and returns non-zero or
2086 throws an error (with a detailed failure reason error code and
2087 message) otherwise. */
2088
2089 extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
2090 bp_target_info *bp_tgt);
2091
2092 extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
2093 bp_target_info *bp_tgt);
2094
2095 /* Return number of debug registers needed for a ranged breakpoint,
2096 or -1 if ranged breakpoints are not supported. */
2097
2098 extern int target_ranged_break_num_registers (void);
2099
2100 /* Return non-zero if target knows the data address which triggered this
2101 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2102 INFERIOR_PTID task is being queried. */
2103 #define target_stopped_data_address(target, addr_p) \
2104 (target)->stopped_data_address (addr_p)
2105
2106 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2107 LENGTH bytes beginning at START. */
2108 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2109 (target)->watchpoint_addr_within_range (addr, start, length)
2110
2111 /* Return non-zero if the target is capable of using hardware to evaluate
2112 the condition expression. In this case, if the condition is false when
2113 the watched memory location changes, execution may continue without the
2114 debugger being notified.
2115
2116 Due to limitations in the hardware implementation, it may be capable of
2117 avoiding triggering the watchpoint in some cases where the condition
2118 expression is false, but may report some false positives as well.
2119 For this reason, GDB will still evaluate the condition expression when
2120 the watchpoint triggers. */
2121
2122 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
2123 int type, expression *cond);
2124
2125 /* Return number of debug registers needed for a masked watchpoint,
2126 -1 if masked watchpoints are not supported or -2 if the given address
2127 and mask combination cannot be used. */
2128
2129 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2130
2131 /* Target can execute in reverse? */
2132
2133 extern bool target_can_execute_reverse ();
2134
2135 extern const struct target_desc *target_read_description (struct target_ops *);
2136
2137 extern ptid_t target_get_ada_task_ptid (long lwp, ULONGEST tid);
2138
2139 /* Main entry point for searching memory. */
2140 extern int target_search_memory (CORE_ADDR start_addr,
2141 ULONGEST search_space_len,
2142 const gdb_byte *pattern,
2143 ULONGEST pattern_len,
2144 CORE_ADDR *found_addrp);
2145
2146 /* Target file operations. */
2147
2148 /* Return true if the filesystem seen by the current inferior
2149 is the local filesystem, zero otherwise. */
2150
2151 extern bool target_filesystem_is_local ();
2152
2153 /* Open FILENAME on the target, in the filesystem as seen by INF,
2154 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2155 the debugger (GDB or, for remote targets, the remote stub). Return
2156 a target file descriptor, or -1 if an error occurs (and set
2157 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2158 if the file is being accessed over a link that may be slow. */
2159 extern int target_fileio_open (struct inferior *inf,
2160 const char *filename, int flags,
2161 int mode, bool warn_if_slow,
2162 int *target_errno);
2163
2164 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2165 Return the number of bytes written, or -1 if an error occurs
2166 (and set *TARGET_ERRNO). */
2167 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2168 ULONGEST offset, int *target_errno);
2169
2170 /* Read up to LEN bytes FD on the target into READ_BUF.
2171 Return the number of bytes read, or -1 if an error occurs
2172 (and set *TARGET_ERRNO). */
2173 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2174 ULONGEST offset, int *target_errno);
2175
2176 /* Get information about the file opened as FD on the target
2177 and put it in SB. Return 0 on success, or -1 if an error
2178 occurs (and set *TARGET_ERRNO). */
2179 extern int target_fileio_fstat (int fd, struct stat *sb,
2180 int *target_errno);
2181
2182 /* Close FD on the target. Return 0, or -1 if an error occurs
2183 (and set *TARGET_ERRNO). */
2184 extern int target_fileio_close (int fd, int *target_errno);
2185
2186 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2187 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2188 for remote targets, the remote stub). Return 0, or -1 if an error
2189 occurs (and set *TARGET_ERRNO). */
2190 extern int target_fileio_unlink (struct inferior *inf,
2191 const char *filename,
2192 int *target_errno);
2193
2194 /* Read value of symbolic link FILENAME on the target, in the
2195 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2196 by the debugger (GDB or, for remote targets, the remote stub).
2197 Return a null-terminated string allocated via xmalloc, or NULL if
2198 an error occurs (and set *TARGET_ERRNO). */
2199 extern gdb::optional<std::string> target_fileio_readlink
2200 (struct inferior *inf, const char *filename, int *target_errno);
2201
2202 /* Read target file FILENAME, in the filesystem as seen by INF. If
2203 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2204 remote targets, the remote stub). The return value will be -1 if
2205 the transfer fails or is not supported; 0 if the object is empty;
2206 or the length of the object otherwise. If a positive value is
2207 returned, a sufficiently large buffer will be allocated using
2208 xmalloc and returned in *BUF_P containing the contents of the
2209 object.
2210
2211 This method should be used for objects sufficiently small to store
2212 in a single xmalloc'd buffer, when no fixed bound on the object's
2213 size is known in advance. */
2214 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2215 const char *filename,
2216 gdb_byte **buf_p);
2217
2218 /* Read target file FILENAME, in the filesystem as seen by INF. If
2219 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2220 remote targets, the remote stub). The result is NUL-terminated and
2221 returned as a string, allocated using xmalloc. If an error occurs
2222 or the transfer is unsupported, NULL is returned. Empty objects
2223 are returned as allocated but empty strings. A warning is issued
2224 if the result contains any embedded NUL bytes. */
2225 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2226 (struct inferior *inf, const char *filename);
2227
2228 /* Invalidate the target associated with open handles that were open
2229 on target TARG, since we're about to close (and maybe destroy) the
2230 target. The handles remain open from the client's perspective, but
2231 trying to do anything with them other than closing them will fail
2232 with EIO. */
2233 extern void fileio_handles_invalidate_target (target_ops *targ);
2234
2235 /* Tracepoint-related operations. */
2236
2237 extern void target_trace_init ();
2238
2239 extern void target_download_tracepoint (bp_location *location);
2240
2241 extern bool target_can_download_tracepoint ();
2242
2243 extern void target_download_trace_state_variable (const trace_state_variable &tsv);
2244
2245 extern void target_enable_tracepoint (bp_location *loc);
2246
2247 extern void target_disable_tracepoint (bp_location *loc);
2248
2249 extern void target_trace_start ();
2250
2251 extern void target_trace_set_readonly_regions ();
2252
2253 extern int target_get_trace_status (trace_status *ts);
2254
2255 extern void target_get_tracepoint_status (breakpoint *tp, uploaded_tp *utp);
2256
2257 extern void target_trace_stop ();
2258
2259 extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
2260 CORE_ADDR addr2, int *tpp);
2261
2262 extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);
2263
2264 extern int target_save_trace_data (const char *filename);
2265
2266 extern int target_upload_tracepoints (uploaded_tp **utpp);
2267
2268 extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);
2269
2270 extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
2271 LONGEST len);
2272
2273 extern int target_get_min_fast_tracepoint_insn_len ();
2274
2275 extern void target_set_disconnected_tracing (int val);
2276
2277 extern void target_set_circular_trace_buffer (int val);
2278
2279 extern void target_set_trace_buffer_size (LONGEST val);
2280
2281 extern bool target_set_trace_notes (const char *user, const char *notes,
2282 const char *stopnotes);
2283
2284 extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);
2285
2286 extern void target_set_permissions ();
2287
2288 extern bool target_static_tracepoint_marker_at
2289 (CORE_ADDR addr, static_tracepoint_marker *marker);
2290
2291 extern std::vector<static_tracepoint_marker>
2292 target_static_tracepoint_markers_by_strid (const char *marker_id);
2293
2294 extern traceframe_info_up target_traceframe_info ();
2295
2296 extern bool target_use_agent (bool use);
2297
2298 extern bool target_can_use_agent ();
2299
2300 extern bool target_augmented_libraries_svr4_read ();
2301
2302 extern bool target_supports_memory_tagging ();
2303
2304 extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
2305 gdb::byte_vector &tags, int type);
2306
2307 extern bool target_store_memtags (CORE_ADDR address, size_t len,
2308 const gdb::byte_vector &tags, int type);
2309
2310 /* Command logging facility. */
2311
2312 extern void target_log_command (const char *p);
2313
2314 extern int target_core_of_thread (ptid_t ptid);
2315
2316 /* See to_get_unwinder in struct target_ops. */
2317 extern const struct frame_unwind *target_get_unwinder (void);
2318
2319 /* See to_get_tailcall_unwinder in struct target_ops. */
2320 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2321
2322 /* This implements basic memory verification, reading target memory
2323 and performing the comparison here (as opposed to accelerated
2324 verification making use of the qCRC packet, for example). */
2325
2326 extern int simple_verify_memory (struct target_ops* ops,
2327 const gdb_byte *data,
2328 CORE_ADDR memaddr, ULONGEST size);
2329
2330 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2331 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2332 if there's a mismatch, and -1 if an error is encountered while
2333 reading memory. Throws an error if the functionality is found not
2334 to be supported by the current target. */
2335 int target_verify_memory (const gdb_byte *data,
2336 CORE_ADDR memaddr, ULONGEST size);
2337
2338 /* Routines for maintenance of the target structures...
2339
2340 add_target: Add a target to the list of all possible targets.
2341 This only makes sense for targets that should be activated using
2342 the "target TARGET_NAME ..." command.
2343
2344 push_target: Make this target the top of the stack of currently used
2345 targets, within its particular stratum of the stack. Result
2346 is 0 if now atop the stack, nonzero if not on top (maybe
2347 should warn user).
2348
2349 unpush_target: Remove this from the stack of currently used targets,
2350 no matter where it is on the list. Returns 0 if no
2351 change, 1 if removed from stack. */
2352
2353 /* Type of callback called when the user activates a target with
2354 "target TARGET_NAME". The callback routine takes the rest of the
2355 parameters from the command, and (if successful) pushes a new
2356 target onto the stack. */
2357 typedef void target_open_ftype (const char *args, int from_tty);
2358
2359 /* Add the target described by INFO to the list of possible targets
2360 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2361 as the command's completer if not NULL. */
2362
2363 extern void add_target (const target_info &info,
2364 target_open_ftype *func,
2365 completer_ftype *completer = NULL);
2366
2367 /* Adds a command ALIAS for the target described by INFO and marks it
2368 deprecated. This is useful for maintaining backwards compatibility
2369 when renaming targets. */
2370
2371 extern void add_deprecated_target_alias (const target_info &info,
2372 const char *alias);
2373
2374 /* A unique_ptr helper to unpush a target. */
2375
2376 struct target_unpusher
2377 {
2378 void operator() (struct target_ops *ops) const;
2379 };
2380
2381 /* A unique_ptr that unpushes a target on destruction. */
2382
2383 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2384
2385 extern void target_pre_inferior (int);
2386
2387 extern void target_preopen (int);
2388
2389 /* Does whatever cleanup is required to get rid of all pushed targets. */
2390 extern void pop_all_targets (void);
2391
2392 /* Like pop_all_targets, but pops only targets whose stratum is at or
2393 above STRATUM. */
2394 extern void pop_all_targets_at_and_above (enum strata stratum);
2395
2396 /* Like pop_all_targets, but pops only targets whose stratum is
2397 strictly above ABOVE_STRATUM. */
2398 extern void pop_all_targets_above (enum strata above_stratum);
2399
2400 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2401 CORE_ADDR offset);
2402
2403 /* Return the "section" containing the specified address. */
2404 const struct target_section *target_section_by_addr (struct target_ops *target,
2405 CORE_ADDR addr);
2406
2407 /* Return the target section table this target (or the targets
2408 beneath) currently manipulate. */
2409
2410 extern const target_section_table *target_get_section_table
2411 (struct target_ops *target);
2412
2413 /* Default implementation of get_section_table for dummy_target. */
2414
2415 extern const target_section_table *default_get_section_table ();
2416
2417 /* From mem-break.c */
2418
2419 extern int memory_remove_breakpoint (struct target_ops *,
2420 struct gdbarch *, struct bp_target_info *,
2421 enum remove_bp_reason);
2422
2423 extern int memory_insert_breakpoint (struct target_ops *,
2424 struct gdbarch *, struct bp_target_info *);
2425
2426 /* Convenience template use to add memory breakpoints support to a
2427 target. */
2428
2429 template <typename BaseTarget>
2430 struct memory_breakpoint_target : public BaseTarget
2431 {
2432 int insert_breakpoint (struct gdbarch *gdbarch,
2433 struct bp_target_info *bp_tgt) override
2434 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2435
2436 int remove_breakpoint (struct gdbarch *gdbarch,
2437 struct bp_target_info *bp_tgt,
2438 enum remove_bp_reason reason) override
2439 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2440 };
2441
2442 /* Check whether the memory at the breakpoint's placed address still
2443 contains the expected breakpoint instruction. */
2444
2445 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2446 struct bp_target_info *bp_tgt);
2447
2448 extern int default_memory_remove_breakpoint (struct gdbarch *,
2449 struct bp_target_info *);
2450
2451 extern int default_memory_insert_breakpoint (struct gdbarch *,
2452 struct bp_target_info *);
2453
2454
2455 /* From target.c */
2456
2457 extern void initialize_targets (void);
2458
2459 extern void noprocess (void) ATTRIBUTE_NORETURN;
2460
2461 extern void target_require_runnable (void);
2462
2463 /* Find the target at STRATUM. If no target is at that stratum,
2464 return NULL. */
2465
2466 struct target_ops *find_target_at (enum strata stratum);
2467
2468 /* Read OS data object of type TYPE from the target, and return it in XML
2469 format. The return value follows the same rules as target_read_stralloc. */
2470
2471 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2472
2473 /* Stuff that should be shared among the various remote targets. */
2474
2475
2476 /* Timeout limit for response from target. */
2477 extern int remote_timeout;
2478
2479 \f
2480
2481 /* Set the show memory breakpoints mode to show, and return a
2482 scoped_restore to restore it back to the current value. */
2483 extern scoped_restore_tmpl<int>
2484 make_scoped_restore_show_memory_breakpoints (int show);
2485
2486 extern bool may_write_registers;
2487 extern bool may_write_memory;
2488 extern bool may_insert_breakpoints;
2489 extern bool may_insert_tracepoints;
2490 extern bool may_insert_fast_tracepoints;
2491 extern bool may_stop;
2492
2493 extern void update_target_permissions (void);
2494
2495 \f
2496 /* Imported from machine dependent code. */
2497
2498 /* See to_enable_btrace in struct target_ops. */
2499 extern struct btrace_target_info *
2500 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2501
2502 /* See to_disable_btrace in struct target_ops. */
2503 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2504
2505 /* See to_teardown_btrace in struct target_ops. */
2506 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2507
2508 /* See to_read_btrace in struct target_ops. */
2509 extern enum btrace_error target_read_btrace (struct btrace_data *,
2510 struct btrace_target_info *,
2511 enum btrace_read_type);
2512
2513 /* See to_btrace_conf in struct target_ops. */
2514 extern const struct btrace_config *
2515 target_btrace_conf (const struct btrace_target_info *);
2516
2517 /* See to_stop_recording in struct target_ops. */
2518 extern void target_stop_recording (void);
2519
2520 /* See to_save_record in struct target_ops. */
2521 extern void target_save_record (const char *filename);
2522
2523 /* Query if the target supports deleting the execution log. */
2524 extern int target_supports_delete_record (void);
2525
2526 /* See to_delete_record in struct target_ops. */
2527 extern void target_delete_record (void);
2528
2529 /* See to_record_method. */
2530 extern enum record_method target_record_method (ptid_t ptid);
2531
2532 /* See to_record_is_replaying in struct target_ops. */
2533 extern int target_record_is_replaying (ptid_t ptid);
2534
2535 /* See to_record_will_replay in struct target_ops. */
2536 extern int target_record_will_replay (ptid_t ptid, int dir);
2537
2538 /* See to_record_stop_replaying in struct target_ops. */
2539 extern void target_record_stop_replaying (void);
2540
2541 /* See to_goto_record_begin in struct target_ops. */
2542 extern void target_goto_record_begin (void);
2543
2544 /* See to_goto_record_end in struct target_ops. */
2545 extern void target_goto_record_end (void);
2546
2547 /* See to_goto_record in struct target_ops. */
2548 extern void target_goto_record (ULONGEST insn);
2549
2550 /* See to_insn_history. */
2551 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2552
2553 /* See to_insn_history_from. */
2554 extern void target_insn_history_from (ULONGEST from, int size,
2555 gdb_disassembly_flags flags);
2556
2557 /* See to_insn_history_range. */
2558 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2559 gdb_disassembly_flags flags);
2560
2561 /* See to_call_history. */
2562 extern void target_call_history (int size, record_print_flags flags);
2563
2564 /* See to_call_history_from. */
2565 extern void target_call_history_from (ULONGEST begin, int size,
2566 record_print_flags flags);
2567
2568 /* See to_call_history_range. */
2569 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2570 record_print_flags flags);
2571
2572 /* See to_prepare_to_generate_core. */
2573 extern void target_prepare_to_generate_core (void);
2574
2575 /* See to_done_generating_core. */
2576 extern void target_done_generating_core (void);
2577
2578 #endif /* !defined (TARGET_H) */