* corelow.c (init_core_ops): Delete references to to_require_attach
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by John Gilmore.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #if !defined (TARGET_H)
24 #define TARGET_H
25
26 /* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45 #include "bfd.h"
46 #include "symtab.h"
47 #include "dcache.h"
48 #include "memattr.h"
49
50 enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
58 };
59
60 enum thread_control_capabilities
61 {
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
65 };
66
67 /* Stuff for target_wait. */
68
69 /* Generally, what has the program done? */
70 enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
74
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_STOPPED,
78
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
82
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
86
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
91 TARGET_WAITKIND_FORKED,
92
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
96 TARGET_WAITKIND_VFORKED,
97
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
101 TARGET_WAITKIND_EXECD,
102
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
109
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* An event has occured, but we should wait again.
116 Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
123 like for instance the user typing. */
124 TARGET_WAITKIND_IGNORE
125 };
126
127 struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
142
143 /* Possible types of events that the inferior handler will have to
144 deal with. */
145 enum inferior_event_type
146 {
147 /* There is a request to quit the inferior, abandon it. */
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
150 being called. */
151 INF_REG_EVENT,
152 /* Deal with an error on the inferior. */
153 INF_ERROR,
154 /* We are called because a timer went off. */
155 INF_TIMER,
156 /* We are called to do stuff after the inferior stops. */
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
161 'step n' like commands. */
162 INF_EXEC_CONTINUE
163 };
164
165 /* Return the string for a signal. */
166 extern char *target_signal_to_string (enum target_signal);
167
168 /* Return the name (SIGHUP, etc.) for a signal. */
169 extern char *target_signal_to_name (enum target_signal);
170
171 /* Given a name (SIGHUP, etc.), return its signal. */
172 enum target_signal target_signal_from_name (char *);
173 \f
174
175 /* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
178 on TARGET_ACTIVITY_FD. */
179 extern int target_activity_fd;
180 /* Returns zero to leave the inferior alone, one to interrupt it. */
181 extern int (*target_activity_function) (void);
182 \f
183 struct thread_info; /* fwd decl for parameter list below: */
184
185 struct target_ops
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
190 newline, and starts with a one-line descrip-
191 tion (probably similar to to_longname). */
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_detach) (char *, int);
197 void (*to_resume) (ptid_t, int, enum target_signal);
198 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
199 void (*to_post_wait) (ptid_t, int);
200 void (*to_fetch_registers) (int);
201 void (*to_store_registers) (int);
202 void (*to_prepare_to_store) (void);
203
204 /* Transfer LEN bytes of memory between GDB address MYADDR and
205 target address MEMADDR. If WRITE, transfer them to the target, else
206 transfer them from the target. TARGET is the target from which we
207 get this function.
208
209 Return value, N, is one of the following:
210
211 0 means that we can't handle this. If errno has been set, it is the
212 error which prevented us from doing it (FIXME: What about bfd_error?).
213
214 positive (call it N) means that we have transferred N bytes
215 starting at MEMADDR. We might be able to handle more bytes
216 beyond this length, but no promises.
217
218 negative (call its absolute value N) means that we cannot
219 transfer right at MEMADDR, but we could transfer at least
220 something at MEMADDR + N. */
221
222 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
223 int len, int write,
224 struct mem_attrib *attrib,
225 struct target_ops *target);
226
227 #if 0
228 /* Enable this after 4.12. */
229
230 /* Search target memory. Start at STARTADDR and take LEN bytes of
231 target memory, and them with MASK, and compare to DATA. If they
232 match, set *ADDR_FOUND to the address we found it at, store the data
233 we found at LEN bytes starting at DATA_FOUND, and return. If
234 not, add INCREMENT to the search address and keep trying until
235 the search address is outside of the range [LORANGE,HIRANGE).
236
237 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
238 return. */
239
240 void (*to_search) (int len, char *data, char *mask,
241 CORE_ADDR startaddr, int increment,
242 CORE_ADDR lorange, CORE_ADDR hirange,
243 CORE_ADDR * addr_found, char *data_found);
244
245 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
246 (*current_target.to_search) (len, data, mask, startaddr, increment, \
247 lorange, hirange, addr_found, data_found)
248 #endif /* 0 */
249
250 void (*to_files_info) (struct target_ops *);
251 int (*to_insert_breakpoint) (CORE_ADDR, char *);
252 int (*to_remove_breakpoint) (CORE_ADDR, char *);
253 int (*to_can_use_hw_breakpoint) (int, int, int);
254 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
255 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
256 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
257 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
258 int (*to_stopped_by_watchpoint) (void);
259 CORE_ADDR (*to_stopped_data_address) (void);
260 int (*to_region_size_ok_for_hw_watchpoint) (int);
261 void (*to_terminal_init) (void);
262 void (*to_terminal_inferior) (void);
263 void (*to_terminal_ours_for_output) (void);
264 void (*to_terminal_ours) (void);
265 void (*to_terminal_save_ours) (void);
266 void (*to_terminal_info) (char *, int);
267 void (*to_kill) (void);
268 void (*to_load) (char *, int);
269 int (*to_lookup_symbol) (char *, CORE_ADDR *);
270 void (*to_create_inferior) (char *, char *, char **);
271 void (*to_post_startup_inferior) (ptid_t);
272 void (*to_acknowledge_created_inferior) (int);
273 int (*to_insert_fork_catchpoint) (int);
274 int (*to_remove_fork_catchpoint) (int);
275 int (*to_insert_vfork_catchpoint) (int);
276 int (*to_remove_vfork_catchpoint) (int);
277 int (*to_follow_fork) (int);
278 int (*to_insert_exec_catchpoint) (int);
279 int (*to_remove_exec_catchpoint) (int);
280 int (*to_reported_exec_events_per_exec_call) (void);
281 int (*to_has_exited) (int, int, int *);
282 void (*to_mourn_inferior) (void);
283 int (*to_can_run) (void);
284 void (*to_notice_signals) (ptid_t ptid);
285 int (*to_thread_alive) (ptid_t ptid);
286 void (*to_find_new_threads) (void);
287 char *(*to_pid_to_str) (ptid_t);
288 char *(*to_extra_thread_info) (struct thread_info *);
289 void (*to_stop) (void);
290 int (*to_query) (int /*char */ , char *, char *, int *);
291 void (*to_rcmd) (char *command, struct ui_file *output);
292 struct symtab_and_line *(*to_enable_exception_callback) (enum
293 exception_event_kind,
294 int);
295 struct exception_event_record *(*to_get_current_exception_event) (void);
296 char *(*to_pid_to_exec_file) (int pid);
297 enum strata to_stratum;
298 struct target_ops
299 *DONT_USE; /* formerly to_next */
300 int to_has_all_memory;
301 int to_has_memory;
302 int to_has_stack;
303 int to_has_registers;
304 int to_has_execution;
305 int to_has_thread_control; /* control thread execution */
306 struct section_table
307 *to_sections;
308 struct section_table
309 *to_sections_end;
310 /* ASYNC target controls */
311 int (*to_can_async_p) (void);
312 int (*to_is_async_p) (void);
313 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
314 void *context);
315 int to_async_mask_value;
316 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
317 unsigned long,
318 int, int, int,
319 void *),
320 void *);
321 char * (*to_make_corefile_notes) (bfd *, int *);
322
323 /* Return the thread-local address at OFFSET in the
324 thread-local storage for the thread PTID and the shared library
325 or executable file given by OBJFILE. If that block of
326 thread-local storage hasn't been allocated yet, this function
327 may return an error. */
328 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
329 struct objfile *objfile,
330 CORE_ADDR offset);
331
332 int to_magic;
333 /* Need sub-structure for target machine related rather than comm related?
334 */
335 };
336
337 /* Magic number for checking ops size. If a struct doesn't end with this
338 number, somebody changed the declaration but didn't change all the
339 places that initialize one. */
340
341 #define OPS_MAGIC 3840
342
343 /* The ops structure for our "current" target process. This should
344 never be NULL. If there is no target, it points to the dummy_target. */
345
346 extern struct target_ops current_target;
347
348 /* An item on the target stack. */
349
350 struct target_stack_item
351 {
352 struct target_stack_item *next;
353 struct target_ops *target_ops;
354 };
355
356 /* The target stack. */
357
358 extern struct target_stack_item *target_stack;
359
360 /* Define easy words for doing these operations on our current target. */
361
362 #define target_shortname (current_target.to_shortname)
363 #define target_longname (current_target.to_longname)
364
365 /* The open routine takes the rest of the parameters from the command,
366 and (if successful) pushes a new target onto the stack.
367 Targets should supply this routine, if only to provide an error message. */
368
369 #define target_open(name, from_tty) \
370 do { \
371 dcache_invalidate (target_dcache); \
372 (*current_target.to_open) (name, from_tty); \
373 } while (0)
374
375 /* Does whatever cleanup is required for a target that we are no longer
376 going to be calling. Argument says whether we are quitting gdb and
377 should not get hung in case of errors, or whether we want a clean
378 termination even if it takes a while. This routine is automatically
379 always called just before a routine is popped off the target stack.
380 Closing file descriptors and freeing memory are typical things it should
381 do. */
382
383 #define target_close(quitting) \
384 (*current_target.to_close) (quitting)
385
386 /* Attaches to a process on the target side. Arguments are as passed
387 to the `attach' command by the user. This routine can be called
388 when the target is not on the target-stack, if the target_can_run
389 routine returns 1; in that case, it must push itself onto the stack.
390 Upon exit, the target should be ready for normal operations, and
391 should be ready to deliver the status of the process immediately
392 (without waiting) to an upcoming target_wait call. */
393
394 #define target_attach(args, from_tty) \
395 (*current_target.to_attach) (args, from_tty)
396
397 /* The target_attach operation places a process under debugger control,
398 and stops the process.
399
400 This operation provides a target-specific hook that allows the
401 necessary bookkeeping to be performed after an attach completes. */
402 #define target_post_attach(pid) \
403 (*current_target.to_post_attach) (pid)
404
405 /* Takes a program previously attached to and detaches it.
406 The program may resume execution (some targets do, some don't) and will
407 no longer stop on signals, etc. We better not have left any breakpoints
408 in the program or it'll die when it hits one. ARGS is arguments
409 typed by the user (e.g. a signal to send the process). FROM_TTY
410 says whether to be verbose or not. */
411
412 extern void target_detach (char *, int);
413
414 /* Resume execution of the target process PTID. STEP says whether to
415 single-step or to run free; SIGGNAL is the signal to be given to
416 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
417 pass TARGET_SIGNAL_DEFAULT. */
418
419 #define target_resume(ptid, step, siggnal) \
420 do { \
421 dcache_invalidate(target_dcache); \
422 (*current_target.to_resume) (ptid, step, siggnal); \
423 } while (0)
424
425 /* Wait for process pid to do something. PTID = -1 to wait for any
426 pid to do something. Return pid of child, or -1 in case of error;
427 store status through argument pointer STATUS. Note that it is
428 _NOT_ OK to throw_exception() out of target_wait() without popping
429 the debugging target from the stack; GDB isn't prepared to get back
430 to the prompt with a debugging target but without the frame cache,
431 stop_pc, etc., set up. */
432
433 #define target_wait(ptid, status) \
434 (*current_target.to_wait) (ptid, status)
435
436 /* The target_wait operation waits for a process event to occur, and
437 thereby stop the process.
438
439 On some targets, certain events may happen in sequences. gdb's
440 correct response to any single event of such a sequence may require
441 knowledge of what earlier events in the sequence have been seen.
442
443 This operation provides a target-specific hook that allows the
444 necessary bookkeeping to be performed to track such sequences. */
445
446 #define target_post_wait(ptid, status) \
447 (*current_target.to_post_wait) (ptid, status)
448
449 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
450
451 #define target_fetch_registers(regno) \
452 (*current_target.to_fetch_registers) (regno)
453
454 /* Store at least register REGNO, or all regs if REGNO == -1.
455 It can store as many registers as it wants to, so target_prepare_to_store
456 must have been previously called. Calls error() if there are problems. */
457
458 #define target_store_registers(regs) \
459 (*current_target.to_store_registers) (regs)
460
461 /* Get ready to modify the registers array. On machines which store
462 individual registers, this doesn't need to do anything. On machines
463 which store all the registers in one fell swoop, this makes sure
464 that REGISTERS contains all the registers from the program being
465 debugged. */
466
467 #define target_prepare_to_store() \
468 (*current_target.to_prepare_to_store) ()
469
470 extern DCACHE *target_dcache;
471
472 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
473 struct mem_attrib *attrib);
474
475 extern int target_read_string (CORE_ADDR, char **, int, int *);
476
477 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
478
479 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
480
481 extern int xfer_memory (CORE_ADDR, char *, int, int,
482 struct mem_attrib *, struct target_ops *);
483
484 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
485 struct mem_attrib *, struct target_ops *);
486
487 /* Make a single attempt at transfering LEN bytes. On a successful
488 transfer, the number of bytes actually transfered is returned and
489 ERR is set to 0. When a transfer fails, -1 is returned (the number
490 of bytes actually transfered is not defined) and ERR is set to a
491 non-zero error indication. */
492
493 extern int
494 target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
495
496 extern int
497 target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
498
499 extern char *child_pid_to_exec_file (int);
500
501 extern char *child_core_file_to_sym_file (char *);
502
503 #if defined(CHILD_POST_ATTACH)
504 extern void child_post_attach (int);
505 #endif
506
507 extern void child_post_wait (ptid_t, int);
508
509 extern void child_post_startup_inferior (ptid_t);
510
511 extern void child_acknowledge_created_inferior (int);
512
513 extern int child_insert_fork_catchpoint (int);
514
515 extern int child_remove_fork_catchpoint (int);
516
517 extern int child_insert_vfork_catchpoint (int);
518
519 extern int child_remove_vfork_catchpoint (int);
520
521 extern void child_acknowledge_created_inferior (int);
522
523 extern int child_follow_fork (int);
524
525 extern int child_insert_exec_catchpoint (int);
526
527 extern int child_remove_exec_catchpoint (int);
528
529 extern int child_reported_exec_events_per_exec_call (void);
530
531 extern int child_has_exited (int, int, int *);
532
533 extern int child_thread_alive (ptid_t);
534
535 /* From infrun.c. */
536
537 extern int inferior_has_forked (int pid, int *child_pid);
538
539 extern int inferior_has_vforked (int pid, int *child_pid);
540
541 extern int inferior_has_execd (int pid, char **execd_pathname);
542
543 /* From exec.c */
544
545 extern void print_section_info (struct target_ops *, bfd *);
546
547 /* Print a line about the current target. */
548
549 #define target_files_info() \
550 (*current_target.to_files_info) (&current_target)
551
552 /* Insert a breakpoint at address ADDR in the target machine.
553 SAVE is a pointer to memory allocated for saving the
554 target contents. It is guaranteed by the caller to be long enough
555 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
556 an errno value. */
557
558 #define target_insert_breakpoint(addr, save) \
559 (*current_target.to_insert_breakpoint) (addr, save)
560
561 /* Remove a breakpoint at address ADDR in the target machine.
562 SAVE is a pointer to the same save area
563 that was previously passed to target_insert_breakpoint.
564 Result is 0 for success, or an errno value. */
565
566 #define target_remove_breakpoint(addr, save) \
567 (*current_target.to_remove_breakpoint) (addr, save)
568
569 /* Initialize the terminal settings we record for the inferior,
570 before we actually run the inferior. */
571
572 #define target_terminal_init() \
573 (*current_target.to_terminal_init) ()
574
575 /* Put the inferior's terminal settings into effect.
576 This is preparation for starting or resuming the inferior. */
577
578 #define target_terminal_inferior() \
579 (*current_target.to_terminal_inferior) ()
580
581 /* Put some of our terminal settings into effect,
582 enough to get proper results from our output,
583 but do not change into or out of RAW mode
584 so that no input is discarded.
585
586 After doing this, either terminal_ours or terminal_inferior
587 should be called to get back to a normal state of affairs. */
588
589 #define target_terminal_ours_for_output() \
590 (*current_target.to_terminal_ours_for_output) ()
591
592 /* Put our terminal settings into effect.
593 First record the inferior's terminal settings
594 so they can be restored properly later. */
595
596 #define target_terminal_ours() \
597 (*current_target.to_terminal_ours) ()
598
599 /* Save our terminal settings.
600 This is called from TUI after entering or leaving the curses
601 mode. Since curses modifies our terminal this call is here
602 to take this change into account. */
603
604 #define target_terminal_save_ours() \
605 (*current_target.to_terminal_save_ours) ()
606
607 /* Print useful information about our terminal status, if such a thing
608 exists. */
609
610 #define target_terminal_info(arg, from_tty) \
611 (*current_target.to_terminal_info) (arg, from_tty)
612
613 /* Kill the inferior process. Make it go away. */
614
615 #define target_kill() \
616 (*current_target.to_kill) ()
617
618 /* Load an executable file into the target process. This is expected
619 to not only bring new code into the target process, but also to
620 update GDB's symbol tables to match. */
621
622 extern void target_load (char *arg, int from_tty);
623
624 /* Look up a symbol in the target's symbol table. NAME is the symbol
625 name. ADDRP is a CORE_ADDR * pointing to where the value of the
626 symbol should be returned. The result is 0 if successful, nonzero
627 if the symbol does not exist in the target environment. This
628 function should not call error() if communication with the target
629 is interrupted, since it is called from symbol reading, but should
630 return nonzero, possibly doing a complain(). */
631
632 #define target_lookup_symbol(name, addrp) \
633 (*current_target.to_lookup_symbol) (name, addrp)
634
635 /* Start an inferior process and set inferior_ptid to its pid.
636 EXEC_FILE is the file to run.
637 ALLARGS is a string containing the arguments to the program.
638 ENV is the environment vector to pass. Errors reported with error().
639 On VxWorks and various standalone systems, we ignore exec_file. */
640
641 #define target_create_inferior(exec_file, args, env) \
642 (*current_target.to_create_inferior) (exec_file, args, env)
643
644
645 /* Some targets (such as ttrace-based HPUX) don't allow us to request
646 notification of inferior events such as fork and vork immediately
647 after the inferior is created. (This because of how gdb gets an
648 inferior created via invoking a shell to do it. In such a scenario,
649 if the shell init file has commands in it, the shell will fork and
650 exec for each of those commands, and we will see each such fork
651 event. Very bad.)
652
653 Such targets will supply an appropriate definition for this function. */
654
655 #define target_post_startup_inferior(ptid) \
656 (*current_target.to_post_startup_inferior) (ptid)
657
658 /* On some targets, the sequence of starting up an inferior requires
659 some synchronization between gdb and the new inferior process, PID. */
660
661 #define target_acknowledge_created_inferior(pid) \
662 (*current_target.to_acknowledge_created_inferior) (pid)
663
664 /* On some targets, we can catch an inferior fork or vfork event when
665 it occurs. These functions insert/remove an already-created
666 catchpoint for such events. */
667
668 #define target_insert_fork_catchpoint(pid) \
669 (*current_target.to_insert_fork_catchpoint) (pid)
670
671 #define target_remove_fork_catchpoint(pid) \
672 (*current_target.to_remove_fork_catchpoint) (pid)
673
674 #define target_insert_vfork_catchpoint(pid) \
675 (*current_target.to_insert_vfork_catchpoint) (pid)
676
677 #define target_remove_vfork_catchpoint(pid) \
678 (*current_target.to_remove_vfork_catchpoint) (pid)
679
680 /* If the inferior forks or vforks, this function will be called at
681 the next resume in order to perform any bookkeeping and fiddling
682 necessary to continue debugging either the parent or child, as
683 requested, and releasing the other. Information about the fork
684 or vfork event is available via get_last_target_status ().
685 This function returns 1 if the inferior should not be resumed
686 (i.e. there is another event pending). */
687
688 #define target_follow_fork(follow_child) \
689 (*current_target.to_follow_fork) (follow_child)
690
691 /* On some targets, we can catch an inferior exec event when it
692 occurs. These functions insert/remove an already-created
693 catchpoint for such events. */
694
695 #define target_insert_exec_catchpoint(pid) \
696 (*current_target.to_insert_exec_catchpoint) (pid)
697
698 #define target_remove_exec_catchpoint(pid) \
699 (*current_target.to_remove_exec_catchpoint) (pid)
700
701 /* Returns the number of exec events that are reported when a process
702 invokes a flavor of the exec() system call on this target, if exec
703 events are being reported. */
704
705 #define target_reported_exec_events_per_exec_call() \
706 (*current_target.to_reported_exec_events_per_exec_call) ()
707
708 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
709 exit code of PID, if any. */
710
711 #define target_has_exited(pid,wait_status,exit_status) \
712 (*current_target.to_has_exited) (pid,wait_status,exit_status)
713
714 /* The debugger has completed a blocking wait() call. There is now
715 some process event that must be processed. This function should
716 be defined by those targets that require the debugger to perform
717 cleanup or internal state changes in response to the process event. */
718
719 /* The inferior process has died. Do what is right. */
720
721 #define target_mourn_inferior() \
722 (*current_target.to_mourn_inferior) ()
723
724 /* Does target have enough data to do a run or attach command? */
725
726 #define target_can_run(t) \
727 ((t)->to_can_run) ()
728
729 /* post process changes to signal handling in the inferior. */
730
731 #define target_notice_signals(ptid) \
732 (*current_target.to_notice_signals) (ptid)
733
734 /* Check to see if a thread is still alive. */
735
736 #define target_thread_alive(ptid) \
737 (*current_target.to_thread_alive) (ptid)
738
739 /* Query for new threads and add them to the thread list. */
740
741 #define target_find_new_threads() \
742 (*current_target.to_find_new_threads) (); \
743
744 /* Make target stop in a continuable fashion. (For instance, under
745 Unix, this should act like SIGSTOP). This function is normally
746 used by GUIs to implement a stop button. */
747
748 #define target_stop current_target.to_stop
749
750 /* Queries the target side for some information. The first argument is a
751 letter specifying the type of the query, which is used to determine who
752 should process it. The second argument is a string that specifies which
753 information is desired and the third is a buffer that carries back the
754 response from the target side. The fourth parameter is the size of the
755 output buffer supplied. */
756
757 #define target_query(query_type, query, resp_buffer, bufffer_size) \
758 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
759
760 /* Send the specified COMMAND to the target's monitor
761 (shell,interpreter) for execution. The result of the query is
762 placed in OUTBUF. */
763
764 #define target_rcmd(command, outbuf) \
765 (*current_target.to_rcmd) (command, outbuf)
766
767
768 /* Get the symbol information for a breakpointable routine called when
769 an exception event occurs.
770 Intended mainly for C++, and for those
771 platforms/implementations where such a callback mechanism is available,
772 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
773 different mechanisms for debugging exceptions. */
774
775 #define target_enable_exception_callback(kind, enable) \
776 (*current_target.to_enable_exception_callback) (kind, enable)
777
778 /* Get the current exception event kind -- throw or catch, etc. */
779
780 #define target_get_current_exception_event() \
781 (*current_target.to_get_current_exception_event) ()
782
783 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
784
785 #define target_next \
786 (current_target.to_next)
787
788 /* Does the target include all of memory, or only part of it? This
789 determines whether we look up the target chain for other parts of
790 memory if this target can't satisfy a request. */
791
792 #define target_has_all_memory \
793 (current_target.to_has_all_memory)
794
795 /* Does the target include memory? (Dummy targets don't.) */
796
797 #define target_has_memory \
798 (current_target.to_has_memory)
799
800 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
801 we start a process.) */
802
803 #define target_has_stack \
804 (current_target.to_has_stack)
805
806 /* Does the target have registers? (Exec files don't.) */
807
808 #define target_has_registers \
809 (current_target.to_has_registers)
810
811 /* Does the target have execution? Can we make it jump (through
812 hoops), or pop its stack a few times? FIXME: If this is to work that
813 way, it needs to check whether an inferior actually exists.
814 remote-udi.c and probably other targets can be the current target
815 when the inferior doesn't actually exist at the moment. Right now
816 this just tells us whether this target is *capable* of execution. */
817
818 #define target_has_execution \
819 (current_target.to_has_execution)
820
821 /* Can the target support the debugger control of thread execution?
822 a) Can it lock the thread scheduler?
823 b) Can it switch the currently running thread? */
824
825 #define target_can_lock_scheduler \
826 (current_target.to_has_thread_control & tc_schedlock)
827
828 #define target_can_switch_threads \
829 (current_target.to_has_thread_control & tc_switch)
830
831 /* Can the target support asynchronous execution? */
832 #define target_can_async_p() (current_target.to_can_async_p ())
833
834 /* Is the target in asynchronous execution mode? */
835 #define target_is_async_p() (current_target.to_is_async_p())
836
837 /* Put the target in async mode with the specified callback function. */
838 #define target_async(CALLBACK,CONTEXT) \
839 (current_target.to_async((CALLBACK), (CONTEXT)))
840
841 /* This is to be used ONLY within run_stack_dummy(). It
842 provides a workaround, to have inferior function calls done in
843 sychronous mode, even though the target is asynchronous. After
844 target_async_mask(0) is called, calls to target_can_async_p() will
845 return FALSE , so that target_resume() will not try to start the
846 target asynchronously. After the inferior stops, we IMMEDIATELY
847 restore the previous nature of the target, by calling
848 target_async_mask(1). After that, target_can_async_p() will return
849 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
850
851 FIXME ezannoni 1999-12-13: we won't need this once we move
852 the turning async on and off to the single execution commands,
853 from where it is done currently, in remote_resume(). */
854
855 #define target_async_mask_value \
856 (current_target.to_async_mask_value)
857
858 extern int target_async_mask (int mask);
859
860 extern void target_link (char *, CORE_ADDR *);
861
862 /* Converts a process id to a string. Usually, the string just contains
863 `process xyz', but on some systems it may contain
864 `process xyz thread abc'. */
865
866 #undef target_pid_to_str
867 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
868
869 #ifndef target_tid_to_str
870 #define target_tid_to_str(PID) \
871 target_pid_to_str (PID)
872 extern char *normal_pid_to_str (ptid_t ptid);
873 #endif
874
875 /* Return a short string describing extra information about PID,
876 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
877 is okay. */
878
879 #define target_extra_thread_info(TP) \
880 (current_target.to_extra_thread_info (TP))
881
882 /*
883 * New Objfile Event Hook:
884 *
885 * Sometimes a GDB component wants to get notified whenever a new
886 * objfile is loaded. Mainly this is used by thread-debugging
887 * implementations that need to know when symbols for the target
888 * thread implemenation are available.
889 *
890 * The old way of doing this is to define a macro 'target_new_objfile'
891 * that points to the function that you want to be called on every
892 * objfile/shlib load.
893 *
894 * The new way is to grab the function pointer, 'target_new_objfile_hook',
895 * and point it to the function that you want to be called on every
896 * objfile/shlib load.
897 *
898 * If multiple clients are willing to be cooperative, they can each
899 * save a pointer to the previous value of target_new_objfile_hook
900 * before modifying it, and arrange for their function to call the
901 * previous function in the chain. In that way, multiple clients
902 * can receive this notification (something like with signal handlers).
903 */
904
905 extern void (*target_new_objfile_hook) (struct objfile *);
906
907 #ifndef target_pid_or_tid_to_str
908 #define target_pid_or_tid_to_str(ID) \
909 target_pid_to_str (ID)
910 #endif
911
912 /* Attempts to find the pathname of the executable file
913 that was run to create a specified process.
914
915 The process PID must be stopped when this operation is used.
916
917 If the executable file cannot be determined, NULL is returned.
918
919 Else, a pointer to a character string containing the pathname
920 is returned. This string should be copied into a buffer by
921 the client if the string will not be immediately used, or if
922 it must persist. */
923
924 #define target_pid_to_exec_file(pid) \
925 (current_target.to_pid_to_exec_file) (pid)
926
927 /*
928 * Iterator function for target memory regions.
929 * Calls a callback function once for each memory region 'mapped'
930 * in the child process. Defined as a simple macro rather than
931 * as a function macro so that it can be tested for nullity.
932 */
933
934 #define target_find_memory_regions(FUNC, DATA) \
935 (current_target.to_find_memory_regions) (FUNC, DATA)
936
937 /*
938 * Compose corefile .note section.
939 */
940
941 #define target_make_corefile_notes(BFD, SIZE_P) \
942 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
943
944 /* Thread-local values. */
945 #define target_get_thread_local_address \
946 (current_target.to_get_thread_local_address)
947 #define target_get_thread_local_address_p() \
948 (target_get_thread_local_address != NULL)
949
950 /* Hook to call target-dependent code after reading in a new symbol table. */
951
952 #ifndef TARGET_SYMFILE_POSTREAD
953 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
954 #endif
955
956 /* Hook to call target dependent code just after inferior target process has
957 started. */
958
959 #ifndef TARGET_CREATE_INFERIOR_HOOK
960 #define TARGET_CREATE_INFERIOR_HOOK(PID)
961 #endif
962
963 /* Hardware watchpoint interfaces. */
964
965 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
966 write). */
967
968 #ifndef STOPPED_BY_WATCHPOINT
969 #define STOPPED_BY_WATCHPOINT(w) \
970 (*current_target.to_stopped_by_watchpoint) ()
971 #endif
972
973 /* HP-UX supplies these operations, which respectively disable and enable
974 the memory page-protections that are used to implement hardware watchpoints
975 on that platform. See wait_for_inferior's use of these. */
976
977 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
978 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
979 #endif
980
981 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
982 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
983 #endif
984
985 /* Provide defaults for hardware watchpoint functions. */
986
987 /* If the *_hw_beakpoint functions have not been defined
988 elsewhere use the definitions in the target vector. */
989
990 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
991 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
992 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
993 (including this one?). OTHERTYPE is who knows what... */
994
995 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
996 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
997 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
998 #endif
999
1000 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1001 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1002 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1003 #endif
1004
1005
1006 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1007 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1008 success, non-zero for failure. */
1009
1010 #ifndef target_insert_watchpoint
1011 #define target_insert_watchpoint(addr, len, type) \
1012 (*current_target.to_insert_watchpoint) (addr, len, type)
1013
1014 #define target_remove_watchpoint(addr, len, type) \
1015 (*current_target.to_remove_watchpoint) (addr, len, type)
1016 #endif
1017
1018 #ifndef target_insert_hw_breakpoint
1019 #define target_insert_hw_breakpoint(addr, save) \
1020 (*current_target.to_insert_hw_breakpoint) (addr, save)
1021
1022 #define target_remove_hw_breakpoint(addr, save) \
1023 (*current_target.to_remove_hw_breakpoint) (addr, save)
1024 #endif
1025
1026 #ifndef target_stopped_data_address
1027 #define target_stopped_data_address() \
1028 (*current_target.to_stopped_data_address) ()
1029 #endif
1030
1031 /* If defined, then we need to decr pc by this much after a hardware break-
1032 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1033
1034 #ifndef DECR_PC_AFTER_HW_BREAK
1035 #define DECR_PC_AFTER_HW_BREAK 0
1036 #endif
1037
1038 /* Sometimes gdb may pick up what appears to be a valid target address
1039 from a minimal symbol, but the value really means, essentially,
1040 "This is an index into a table which is populated when the inferior
1041 is run. Therefore, do not attempt to use this as a PC." */
1042
1043 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1044 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1045 #endif
1046
1047 /* This will only be defined by a target that supports catching vfork events,
1048 such as HP-UX.
1049
1050 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1051 child process after it has exec'd, causes the parent process to resume as
1052 well. To prevent the parent from running spontaneously, such targets should
1053 define this to a function that prevents that from happening. */
1054 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1055 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1056 #endif
1057
1058 /* This will only be defined by a target that supports catching vfork events,
1059 such as HP-UX.
1060
1061 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1062 process must be resumed when it delivers its exec event, before the parent
1063 vfork event will be delivered to us. */
1064
1065 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1066 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1067 #endif
1068
1069 /* Routines for maintenance of the target structures...
1070
1071 add_target: Add a target to the list of all possible targets.
1072
1073 push_target: Make this target the top of the stack of currently used
1074 targets, within its particular stratum of the stack. Result
1075 is 0 if now atop the stack, nonzero if not on top (maybe
1076 should warn user).
1077
1078 unpush_target: Remove this from the stack of currently used targets,
1079 no matter where it is on the list. Returns 0 if no
1080 change, 1 if removed from stack.
1081
1082 pop_target: Remove the top thing on the stack of current targets. */
1083
1084 extern void add_target (struct target_ops *);
1085
1086 extern int push_target (struct target_ops *);
1087
1088 extern int unpush_target (struct target_ops *);
1089
1090 extern void target_preopen (int);
1091
1092 extern void pop_target (void);
1093
1094 /* Struct section_table maps address ranges to file sections. It is
1095 mostly used with BFD files, but can be used without (e.g. for handling
1096 raw disks, or files not in formats handled by BFD). */
1097
1098 struct section_table
1099 {
1100 CORE_ADDR addr; /* Lowest address in section */
1101 CORE_ADDR endaddr; /* 1+highest address in section */
1102
1103 sec_ptr the_bfd_section;
1104
1105 bfd *bfd; /* BFD file pointer */
1106 };
1107
1108 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1109 Returns 0 if OK, 1 on error. */
1110
1111 extern int
1112 build_section_table (bfd *, struct section_table **, struct section_table **);
1113
1114 /* From mem-break.c */
1115
1116 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1117
1118 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1119
1120 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1121
1122 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1123
1124 extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1125 int *lenptr);
1126
1127
1128 /* From target.c */
1129
1130 extern void initialize_targets (void);
1131
1132 extern void noprocess (void);
1133
1134 extern void find_default_attach (char *, int);
1135
1136 extern void find_default_create_inferior (char *, char *, char **);
1137
1138 extern struct target_ops *find_run_target (void);
1139
1140 extern struct target_ops *find_core_target (void);
1141
1142 extern struct target_ops *find_target_beneath (struct target_ops *);
1143
1144 extern int
1145 target_resize_to_sections (struct target_ops *target, int num_added);
1146
1147 extern void remove_target_sections (bfd *abfd);
1148
1149 \f
1150 /* Stuff that should be shared among the various remote targets. */
1151
1152 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1153 information (higher values, more information). */
1154 extern int remote_debug;
1155
1156 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1157 extern int baud_rate;
1158 /* Timeout limit for response from target. */
1159 extern int remote_timeout;
1160
1161 \f
1162 /* Functions for helping to write a native target. */
1163
1164 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1165 extern void store_waitstatus (struct target_waitstatus *, int);
1166
1167 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1168 targ_signal SIGNO has an equivalent ``host'' representation. */
1169 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1170 to the shorter target_signal_p() because it is far less ambigious.
1171 In this context ``target_signal'' refers to GDB's internal
1172 representation of the target's set of signals while ``host signal''
1173 refers to the target operating system's signal. Confused? */
1174
1175 extern int target_signal_to_host_p (enum target_signal signo);
1176
1177 /* Convert between host signal numbers and enum target_signal's.
1178 target_signal_to_host() returns 0 and prints a warning() on GDB's
1179 console if SIGNO has no equivalent host representation. */
1180 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1181 refering to the target operating system's signal numbering.
1182 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1183 gdb_signal'' would probably be better as it is refering to GDB's
1184 internal representation of a target operating system's signal. */
1185
1186 extern enum target_signal target_signal_from_host (int);
1187 extern int target_signal_to_host (enum target_signal);
1188
1189 /* Convert from a number used in a GDB command to an enum target_signal. */
1190 extern enum target_signal target_signal_from_command (int);
1191
1192 /* Any target can call this to switch to remote protocol (in remote.c). */
1193 extern void push_remote_target (char *name, int from_tty);
1194 \f
1195 /* Imported from machine dependent code */
1196
1197 /* Blank target vector entries are initialized to target_ignore. */
1198 void target_ignore (void);
1199
1200 #endif /* !defined (TARGET_H) */