* solib-som.h (hpux_major_release): Declare variable here.
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38 struct static_tracepoint_marker;
39
40 struct expression;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "bfd.h"
62 #include "symtab.h"
63 #include "memattr.h"
64 #include "vec.h"
65 #include "gdb_signals.h"
66
67 enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77 enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83 /* Stuff for target_wait. */
84
85 /* Generally, what has the program done? */
86 enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id. */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. sThis way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY
154 };
155
156 struct target_waitstatus
157 {
158 enum target_waitkind kind;
159
160 /* Forked child pid, execd pathname, exit status, signal number or
161 syscall number. */
162 union
163 {
164 int integer;
165 enum target_signal sig;
166 ptid_t related_pid;
167 char *execd_pathname;
168 int syscall_number;
169 }
170 value;
171 };
172
173 /* Options that can be passed to target_wait. */
174
175 /* Return immediately if there's no event already queued. If this
176 options is not requested, target_wait blocks waiting for an
177 event. */
178 #define TARGET_WNOHANG 1
179
180 /* The structure below stores information about a system call.
181 It is basically used in the "catch syscall" command, and in
182 every function that gives information about a system call.
183
184 It's also good to mention that its fields represent everything
185 that we currently know about a syscall in GDB. */
186 struct syscall
187 {
188 /* The syscall number. */
189 int number;
190
191 /* The syscall name. */
192 const char *name;
193 };
194
195 /* Return a pretty printed form of target_waitstatus.
196 Space for the result is malloc'd, caller must free. */
197 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199 /* Possible types of events that the inferior handler will have to
200 deal with. */
201 enum inferior_event_type
202 {
203 /* There is a request to quit the inferior, abandon it. */
204 INF_QUIT_REQ,
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* Deal with an error on the inferior. */
209 INF_ERROR,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220 \f
221 /* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224 enum target_object
225 {
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* The HP-UX registers (those that can be obtained or modified by using
270 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
271 TARGET_OBJECT_HPUX_UREGS,
272 /* The HP-UX shared library linkage pointer. ANNEX should be a string
273 image of the code address whose linkage pointer we are looking for.
274
275 The size of the data transfered is always 8 bytes (the size of an
276 address on ia64). */
277 TARGET_OBJECT_HPUX_SOLIB_GOT,
278 /* Possible future objects: TARGET_OBJECT_FILE, ... */
279 };
280
281 /* Enumeration of the kinds of traceframe searches that a target may
282 be able to perform. */
283
284 enum trace_find_type
285 {
286 tfind_number,
287 tfind_pc,
288 tfind_tp,
289 tfind_range,
290 tfind_outside,
291 };
292
293 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
294 DEF_VEC_P(static_tracepoint_marker_p);
295
296 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
297 OBJECT. The OFFSET, for a seekable object, specifies the
298 starting point. The ANNEX can be used to provide additional
299 data-specific information to the target.
300
301 Return the number of bytes actually transfered, or -1 if the
302 transfer is not supported or otherwise fails. Return of a positive
303 value less than LEN indicates that no further transfer is possible.
304 Unlike the raw to_xfer_partial interface, callers of these
305 functions do not need to retry partial transfers. */
306
307 extern LONGEST target_read (struct target_ops *ops,
308 enum target_object object,
309 const char *annex, gdb_byte *buf,
310 ULONGEST offset, LONGEST len);
311
312 struct memory_read_result
313 {
314 /* First address that was read. */
315 ULONGEST begin;
316 /* Past-the-end address. */
317 ULONGEST end;
318 /* The data. */
319 gdb_byte *data;
320 };
321 typedef struct memory_read_result memory_read_result_s;
322 DEF_VEC_O(memory_read_result_s);
323
324 extern void free_memory_read_result_vector (void *);
325
326 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
327 ULONGEST offset,
328 LONGEST len);
329
330 extern LONGEST target_write (struct target_ops *ops,
331 enum target_object object,
332 const char *annex, const gdb_byte *buf,
333 ULONGEST offset, LONGEST len);
334
335 /* Similar to target_write, except that it also calls PROGRESS with
336 the number of bytes written and the opaque BATON after every
337 successful partial write (and before the first write). This is
338 useful for progress reporting and user interaction while writing
339 data. To abort the transfer, the progress callback can throw an
340 exception. */
341
342 LONGEST target_write_with_progress (struct target_ops *ops,
343 enum target_object object,
344 const char *annex, const gdb_byte *buf,
345 ULONGEST offset, LONGEST len,
346 void (*progress) (ULONGEST, void *),
347 void *baton);
348
349 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
350 be read using OPS. The return value will be -1 if the transfer
351 fails or is not supported; 0 if the object is empty; or the length
352 of the object otherwise. If a positive value is returned, a
353 sufficiently large buffer will be allocated using xmalloc and
354 returned in *BUF_P containing the contents of the object.
355
356 This method should be used for objects sufficiently small to store
357 in a single xmalloc'd buffer, when no fixed bound on the object's
358 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
359 through this function. */
360
361 extern LONGEST target_read_alloc (struct target_ops *ops,
362 enum target_object object,
363 const char *annex, gdb_byte **buf_p);
364
365 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
366 returned as a string, allocated using xmalloc. If an error occurs
367 or the transfer is unsupported, NULL is returned. Empty objects
368 are returned as allocated but empty strings. A warning is issued
369 if the result contains any embedded NUL bytes. */
370
371 extern char *target_read_stralloc (struct target_ops *ops,
372 enum target_object object,
373 const char *annex);
374
375 /* Wrappers to target read/write that perform memory transfers. They
376 throw an error if the memory transfer fails.
377
378 NOTE: cagney/2003-10-23: The naming schema is lifted from
379 "frame.h". The parameter order is lifted from get_frame_memory,
380 which in turn lifted it from read_memory. */
381
382 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
383 gdb_byte *buf, LONGEST len);
384 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
385 CORE_ADDR addr, int len,
386 enum bfd_endian byte_order);
387 \f
388 struct thread_info; /* fwd decl for parameter list below: */
389
390 struct target_ops
391 {
392 struct target_ops *beneath; /* To the target under this one. */
393 char *to_shortname; /* Name this target type */
394 char *to_longname; /* Name for printing */
395 char *to_doc; /* Documentation. Does not include trailing
396 newline, and starts with a one-line descrip-
397 tion (probably similar to to_longname). */
398 /* Per-target scratch pad. */
399 void *to_data;
400 /* The open routine takes the rest of the parameters from the
401 command, and (if successful) pushes a new target onto the
402 stack. Targets should supply this routine, if only to provide
403 an error message. */
404 void (*to_open) (char *, int);
405 /* Old targets with a static target vector provide "to_close".
406 New re-entrant targets provide "to_xclose" and that is expected
407 to xfree everything (including the "struct target_ops"). */
408 void (*to_xclose) (struct target_ops *targ, int quitting);
409 void (*to_close) (int);
410 void (*to_attach) (struct target_ops *ops, char *, int);
411 void (*to_post_attach) (int);
412 void (*to_detach) (struct target_ops *ops, char *, int);
413 void (*to_disconnect) (struct target_ops *, char *, int);
414 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int);
417 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
418 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_prepare_to_store) (struct regcache *);
420
421 /* Transfer LEN bytes of memory between GDB address MYADDR and
422 target address MEMADDR. If WRITE, transfer them to the target, else
423 transfer them from the target. TARGET is the target from which we
424 get this function.
425
426 Return value, N, is one of the following:
427
428 0 means that we can't handle this. If errno has been set, it is the
429 error which prevented us from doing it (FIXME: What about bfd_error?).
430
431 positive (call it N) means that we have transferred N bytes
432 starting at MEMADDR. We might be able to handle more bytes
433 beyond this length, but no promises.
434
435 negative (call its absolute value N) means that we cannot
436 transfer right at MEMADDR, but we could transfer at least
437 something at MEMADDR + N.
438
439 NOTE: cagney/2004-10-01: This has been entirely superseeded by
440 to_xfer_partial and inferior inheritance. */
441
442 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
443 int len, int write,
444 struct mem_attrib *attrib,
445 struct target_ops *target);
446
447 void (*to_files_info) (struct target_ops *);
448 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
449 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
450 int (*to_can_use_hw_breakpoint) (int, int, int);
451 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
452 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
453
454 /* Documentation of what the two routines below are expected to do is
455 provided with the corresponding target_* macros. */
456 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
457 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
458
459 int (*to_stopped_by_watchpoint) (void);
460 int to_have_steppable_watchpoint;
461 int to_have_continuable_watchpoint;
462 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
463 int (*to_watchpoint_addr_within_range) (struct target_ops *,
464 CORE_ADDR, CORE_ADDR, int);
465
466 /* Documentation of this routine is provided with the corresponding
467 target_* macro. */
468 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
469
470 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
471 struct expression *);
472 void (*to_terminal_init) (void);
473 void (*to_terminal_inferior) (void);
474 void (*to_terminal_ours_for_output) (void);
475 void (*to_terminal_ours) (void);
476 void (*to_terminal_save_ours) (void);
477 void (*to_terminal_info) (char *, int);
478 void (*to_kill) (struct target_ops *);
479 void (*to_load) (char *, int);
480 int (*to_lookup_symbol) (char *, CORE_ADDR *);
481 void (*to_create_inferior) (struct target_ops *,
482 char *, char *, char **, int);
483 void (*to_post_startup_inferior) (ptid_t);
484 int (*to_insert_fork_catchpoint) (int);
485 int (*to_remove_fork_catchpoint) (int);
486 int (*to_insert_vfork_catchpoint) (int);
487 int (*to_remove_vfork_catchpoint) (int);
488 int (*to_follow_fork) (struct target_ops *, int);
489 int (*to_insert_exec_catchpoint) (int);
490 int (*to_remove_exec_catchpoint) (int);
491 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
492 int (*to_has_exited) (int, int, int *);
493 void (*to_mourn_inferior) (struct target_ops *);
494 int (*to_can_run) (void);
495 void (*to_notice_signals) (ptid_t ptid);
496 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
497 void (*to_find_new_threads) (struct target_ops *);
498 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
499 char *(*to_extra_thread_info) (struct thread_info *);
500 void (*to_stop) (ptid_t);
501 void (*to_rcmd) (char *command, struct ui_file *output);
502 char *(*to_pid_to_exec_file) (int pid);
503 void (*to_log_command) (const char *);
504 struct target_section_table *(*to_get_section_table) (struct target_ops *);
505 enum strata to_stratum;
506 int (*to_has_all_memory) (struct target_ops *);
507 int (*to_has_memory) (struct target_ops *);
508 int (*to_has_stack) (struct target_ops *);
509 int (*to_has_registers) (struct target_ops *);
510 int (*to_has_execution) (struct target_ops *);
511 int to_has_thread_control; /* control thread execution */
512 int to_attach_no_wait;
513 /* ASYNC target controls */
514 int (*to_can_async_p) (void);
515 int (*to_is_async_p) (void);
516 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
517 int (*to_async_mask) (int);
518 int (*to_supports_non_stop) (void);
519 /* find_memory_regions support method for gcore */
520 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
521 /* make_corefile_notes support method for gcore */
522 char * (*to_make_corefile_notes) (bfd *, int *);
523 /* get_bookmark support method for bookmarks */
524 gdb_byte * (*to_get_bookmark) (char *, int);
525 /* goto_bookmark support method for bookmarks */
526 void (*to_goto_bookmark) (gdb_byte *, int);
527 /* Return the thread-local address at OFFSET in the
528 thread-local storage for the thread PTID and the shared library
529 or executable file given by OBJFILE. If that block of
530 thread-local storage hasn't been allocated yet, this function
531 may return an error. */
532 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
533 ptid_t ptid,
534 CORE_ADDR load_module_addr,
535 CORE_ADDR offset);
536
537 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
538 OBJECT. The OFFSET, for a seekable object, specifies the
539 starting point. The ANNEX can be used to provide additional
540 data-specific information to the target.
541
542 Return the number of bytes actually transfered, zero when no
543 further transfer is possible, and -1 when the transfer is not
544 supported. Return of a positive value smaller than LEN does
545 not indicate the end of the object, only the end of the
546 transfer; higher level code should continue transferring if
547 desired. This is handled in target.c.
548
549 The interface does not support a "retry" mechanism. Instead it
550 assumes that at least one byte will be transfered on each
551 successful call.
552
553 NOTE: cagney/2003-10-17: The current interface can lead to
554 fragmented transfers. Lower target levels should not implement
555 hacks, such as enlarging the transfer, in an attempt to
556 compensate for this. Instead, the target stack should be
557 extended so that it implements supply/collect methods and a
558 look-aside object cache. With that available, the lowest
559 target can safely and freely "push" data up the stack.
560
561 See target_read and target_write for more information. One,
562 and only one, of readbuf or writebuf must be non-NULL. */
563
564 LONGEST (*to_xfer_partial) (struct target_ops *ops,
565 enum target_object object, const char *annex,
566 gdb_byte *readbuf, const gdb_byte *writebuf,
567 ULONGEST offset, LONGEST len);
568
569 /* Returns the memory map for the target. A return value of NULL
570 means that no memory map is available. If a memory address
571 does not fall within any returned regions, it's assumed to be
572 RAM. The returned memory regions should not overlap.
573
574 The order of regions does not matter; target_memory_map will
575 sort regions by starting address. For that reason, this
576 function should not be called directly except via
577 target_memory_map.
578
579 This method should not cache data; if the memory map could
580 change unexpectedly, it should be invalidated, and higher
581 layers will re-fetch it. */
582 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
583
584 /* Erases the region of flash memory starting at ADDRESS, of
585 length LENGTH.
586
587 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
588 on flash block boundaries, as reported by 'to_memory_map'. */
589 void (*to_flash_erase) (struct target_ops *,
590 ULONGEST address, LONGEST length);
591
592 /* Finishes a flash memory write sequence. After this operation
593 all flash memory should be available for writing and the result
594 of reading from areas written by 'to_flash_write' should be
595 equal to what was written. */
596 void (*to_flash_done) (struct target_ops *);
597
598 /* Describe the architecture-specific features of this target.
599 Returns the description found, or NULL if no description
600 was available. */
601 const struct target_desc *(*to_read_description) (struct target_ops *ops);
602
603 /* Build the PTID of the thread on which a given task is running,
604 based on LWP and THREAD. These values are extracted from the
605 task Private_Data section of the Ada Task Control Block, and
606 their interpretation depends on the target. */
607 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
608
609 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
610 Return 0 if *READPTR is already at the end of the buffer.
611 Return -1 if there is insufficient buffer for a whole entry.
612 Return 1 if an entry was read into *TYPEP and *VALP. */
613 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
614 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
615
616 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
617 sequence of bytes in PATTERN with length PATTERN_LEN.
618
619 The result is 1 if found, 0 if not found, and -1 if there was an error
620 requiring halting of the search (e.g. memory read error).
621 If the pattern is found the address is recorded in FOUND_ADDRP. */
622 int (*to_search_memory) (struct target_ops *ops,
623 CORE_ADDR start_addr, ULONGEST search_space_len,
624 const gdb_byte *pattern, ULONGEST pattern_len,
625 CORE_ADDR *found_addrp);
626
627 /* Can target execute in reverse? */
628 int (*to_can_execute_reverse) (void);
629
630 /* Does this target support debugging multiple processes
631 simultaneously? */
632 int (*to_supports_multi_process) (void);
633
634 /* Determine current architecture of thread PTID.
635
636 The target is supposed to determine the architecture of the code where
637 the target is currently stopped at (on Cell, if a target is in spu_run,
638 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
639 This is architecture used to perform decr_pc_after_break adjustment,
640 and also determines the frame architecture of the innermost frame.
641 ptrace operations need to operate according to target_gdbarch.
642
643 The default implementation always returns target_gdbarch. */
644 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
645
646 /* Determine current address space of thread PTID.
647
648 The default implementation always returns the inferior's
649 address space. */
650 struct address_space *(*to_thread_address_space) (struct target_ops *,
651 ptid_t);
652
653 /* Tracepoint-related operations. */
654
655 /* Prepare the target for a tracing run. */
656 void (*to_trace_init) (void);
657
658 /* Send full details of a tracepoint to the target. */
659 void (*to_download_tracepoint) (struct breakpoint *t);
660
661 /* Send full details of a trace state variable to the target. */
662 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
663
664 /* Inform the target info of memory regions that are readonly
665 (such as text sections), and so it should return data from
666 those rather than look in the trace buffer. */
667 void (*to_trace_set_readonly_regions) (void);
668
669 /* Start a trace run. */
670 void (*to_trace_start) (void);
671
672 /* Get the current status of a tracing run. */
673 int (*to_get_trace_status) (struct trace_status *ts);
674
675 /* Stop a trace run. */
676 void (*to_trace_stop) (void);
677
678 /* Ask the target to find a trace frame of the given type TYPE,
679 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
680 number of the trace frame, and also the tracepoint number at
681 TPP. If no trace frame matches, return -1. May throw if the
682 operation fails. */
683 int (*to_trace_find) (enum trace_find_type type, int num,
684 ULONGEST addr1, ULONGEST addr2, int *tpp);
685
686 /* Get the value of the trace state variable number TSV, returning
687 1 if the value is known and writing the value itself into the
688 location pointed to by VAL, else returning 0. */
689 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
690
691 int (*to_save_trace_data) (const char *filename);
692
693 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
694
695 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
696
697 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
698 ULONGEST offset, LONGEST len);
699
700 /* Set the target's tracing behavior in response to unexpected
701 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
702 void (*to_set_disconnected_tracing) (int val);
703 void (*to_set_circular_trace_buffer) (int val);
704
705 /* Return the processor core that thread PTID was last seen on.
706 This information is updated only when:
707 - update_thread_list is called
708 - thread stops
709 If the core cannot be determined -- either for the specified
710 thread, or right now, or in this debug session, or for this
711 target -- return -1. */
712 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
713
714 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
715 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
716 a match, 0 if there's a mismatch, and -1 if an error is
717 encountered while reading memory. */
718 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
719 CORE_ADDR memaddr, ULONGEST size);
720
721 /* Return the address of the start of the Thread Information Block
722 a Windows OS specific feature. */
723 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
724
725 /* Send the new settings of write permission variables. */
726 void (*to_set_permissions) (void);
727
728 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
729 with its details. Return 1 on success, 0 on failure. */
730 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
731 struct static_tracepoint_marker *marker);
732
733 /* Return a vector of all tracepoints markers string id ID, or all
734 markers if ID is NULL. */
735 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
736 (const char *id);
737
738 int to_magic;
739 /* Need sub-structure for target machine related rather than comm related?
740 */
741 };
742
743 /* Magic number for checking ops size. If a struct doesn't end with this
744 number, somebody changed the declaration but didn't change all the
745 places that initialize one. */
746
747 #define OPS_MAGIC 3840
748
749 /* The ops structure for our "current" target process. This should
750 never be NULL. If there is no target, it points to the dummy_target. */
751
752 extern struct target_ops current_target;
753
754 /* Define easy words for doing these operations on our current target. */
755
756 #define target_shortname (current_target.to_shortname)
757 #define target_longname (current_target.to_longname)
758
759 /* Does whatever cleanup is required for a target that we are no
760 longer going to be calling. QUITTING indicates that GDB is exiting
761 and should not get hung on an error (otherwise it is important to
762 perform clean termination, even if it takes a while). This routine
763 is automatically always called when popping the target off the
764 target stack (to_beneath is undefined). Closing file descriptors
765 and freeing all memory allocated memory are typical things it
766 should do. */
767
768 void target_close (struct target_ops *targ, int quitting);
769
770 /* Attaches to a process on the target side. Arguments are as passed
771 to the `attach' command by the user. This routine can be called
772 when the target is not on the target-stack, if the target_can_run
773 routine returns 1; in that case, it must push itself onto the stack.
774 Upon exit, the target should be ready for normal operations, and
775 should be ready to deliver the status of the process immediately
776 (without waiting) to an upcoming target_wait call. */
777
778 void target_attach (char *, int);
779
780 /* Some targets don't generate traps when attaching to the inferior,
781 or their target_attach implementation takes care of the waiting.
782 These targets must set to_attach_no_wait. */
783
784 #define target_attach_no_wait \
785 (current_target.to_attach_no_wait)
786
787 /* The target_attach operation places a process under debugger control,
788 and stops the process.
789
790 This operation provides a target-specific hook that allows the
791 necessary bookkeeping to be performed after an attach completes. */
792 #define target_post_attach(pid) \
793 (*current_target.to_post_attach) (pid)
794
795 /* Takes a program previously attached to and detaches it.
796 The program may resume execution (some targets do, some don't) and will
797 no longer stop on signals, etc. We better not have left any breakpoints
798 in the program or it'll die when it hits one. ARGS is arguments
799 typed by the user (e.g. a signal to send the process). FROM_TTY
800 says whether to be verbose or not. */
801
802 extern void target_detach (char *, int);
803
804 /* Disconnect from the current target without resuming it (leaving it
805 waiting for a debugger). */
806
807 extern void target_disconnect (char *, int);
808
809 /* Resume execution of the target process PTID. STEP says whether to
810 single-step or to run free; SIGGNAL is the signal to be given to
811 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
812 pass TARGET_SIGNAL_DEFAULT. */
813
814 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
815
816 /* Wait for process pid to do something. PTID = -1 to wait for any
817 pid to do something. Return pid of child, or -1 in case of error;
818 store status through argument pointer STATUS. Note that it is
819 _NOT_ OK to throw_exception() out of target_wait() without popping
820 the debugging target from the stack; GDB isn't prepared to get back
821 to the prompt with a debugging target but without the frame cache,
822 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
823 options. */
824
825 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
826 int options);
827
828 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
829
830 extern void target_fetch_registers (struct regcache *regcache, int regno);
831
832 /* Store at least register REGNO, or all regs if REGNO == -1.
833 It can store as many registers as it wants to, so target_prepare_to_store
834 must have been previously called. Calls error() if there are problems. */
835
836 extern void target_store_registers (struct regcache *regcache, int regs);
837
838 /* Get ready to modify the registers array. On machines which store
839 individual registers, this doesn't need to do anything. On machines
840 which store all the registers in one fell swoop, this makes sure
841 that REGISTERS contains all the registers from the program being
842 debugged. */
843
844 #define target_prepare_to_store(regcache) \
845 (*current_target.to_prepare_to_store) (regcache)
846
847 /* Determine current address space of thread PTID. */
848
849 struct address_space *target_thread_address_space (ptid_t);
850
851 /* Returns true if this target can debug multiple processes
852 simultaneously. */
853
854 #define target_supports_multi_process() \
855 (*current_target.to_supports_multi_process) ()
856
857 /* Invalidate all target dcaches. */
858 extern void target_dcache_invalidate (void);
859
860 extern int target_read_string (CORE_ADDR, char **, int, int *);
861
862 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
863
864 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
865
866 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
867 int len);
868
869 /* Fetches the target's memory map. If one is found it is sorted
870 and returned, after some consistency checking. Otherwise, NULL
871 is returned. */
872 VEC(mem_region_s) *target_memory_map (void);
873
874 /* Erase the specified flash region. */
875 void target_flash_erase (ULONGEST address, LONGEST length);
876
877 /* Finish a sequence of flash operations. */
878 void target_flash_done (void);
879
880 /* Describes a request for a memory write operation. */
881 struct memory_write_request
882 {
883 /* Begining address that must be written. */
884 ULONGEST begin;
885 /* Past-the-end address. */
886 ULONGEST end;
887 /* The data to write. */
888 gdb_byte *data;
889 /* A callback baton for progress reporting for this request. */
890 void *baton;
891 };
892 typedef struct memory_write_request memory_write_request_s;
893 DEF_VEC_O(memory_write_request_s);
894
895 /* Enumeration specifying different flash preservation behaviour. */
896 enum flash_preserve_mode
897 {
898 flash_preserve,
899 flash_discard
900 };
901
902 /* Write several memory blocks at once. This version can be more
903 efficient than making several calls to target_write_memory, in
904 particular because it can optimize accesses to flash memory.
905
906 Moreover, this is currently the only memory access function in gdb
907 that supports writing to flash memory, and it should be used for
908 all cases where access to flash memory is desirable.
909
910 REQUESTS is the vector (see vec.h) of memory_write_request.
911 PRESERVE_FLASH_P indicates what to do with blocks which must be
912 erased, but not completely rewritten.
913 PROGRESS_CB is a function that will be periodically called to provide
914 feedback to user. It will be called with the baton corresponding
915 to the request currently being written. It may also be called
916 with a NULL baton, when preserved flash sectors are being rewritten.
917
918 The function returns 0 on success, and error otherwise. */
919 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
920 enum flash_preserve_mode preserve_flash_p,
921 void (*progress_cb) (ULONGEST, void *));
922
923 /* From infrun.c. */
924
925 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
926
927 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
928
929 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
930
931 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
932
933 /* Print a line about the current target. */
934
935 #define target_files_info() \
936 (*current_target.to_files_info) (&current_target)
937
938 /* Insert a breakpoint at address BP_TGT->placed_address in the target
939 machine. Result is 0 for success, or an errno value. */
940
941 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
942 struct bp_target_info *bp_tgt);
943
944 /* Remove a breakpoint at address BP_TGT->placed_address in the target
945 machine. Result is 0 for success, or an errno value. */
946
947 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
948 struct bp_target_info *bp_tgt);
949
950 /* Initialize the terminal settings we record for the inferior,
951 before we actually run the inferior. */
952
953 #define target_terminal_init() \
954 (*current_target.to_terminal_init) ()
955
956 /* Put the inferior's terminal settings into effect.
957 This is preparation for starting or resuming the inferior. */
958
959 extern void target_terminal_inferior (void);
960
961 /* Put some of our terminal settings into effect,
962 enough to get proper results from our output,
963 but do not change into or out of RAW mode
964 so that no input is discarded.
965
966 After doing this, either terminal_ours or terminal_inferior
967 should be called to get back to a normal state of affairs. */
968
969 #define target_terminal_ours_for_output() \
970 (*current_target.to_terminal_ours_for_output) ()
971
972 /* Put our terminal settings into effect.
973 First record the inferior's terminal settings
974 so they can be restored properly later. */
975
976 #define target_terminal_ours() \
977 (*current_target.to_terminal_ours) ()
978
979 /* Save our terminal settings.
980 This is called from TUI after entering or leaving the curses
981 mode. Since curses modifies our terminal this call is here
982 to take this change into account. */
983
984 #define target_terminal_save_ours() \
985 (*current_target.to_terminal_save_ours) ()
986
987 /* Print useful information about our terminal status, if such a thing
988 exists. */
989
990 #define target_terminal_info(arg, from_tty) \
991 (*current_target.to_terminal_info) (arg, from_tty)
992
993 /* Kill the inferior process. Make it go away. */
994
995 extern void target_kill (void);
996
997 /* Load an executable file into the target process. This is expected
998 to not only bring new code into the target process, but also to
999 update GDB's symbol tables to match.
1000
1001 ARG contains command-line arguments, to be broken down with
1002 buildargv (). The first non-switch argument is the filename to
1003 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1004 0)), which is an offset to apply to the load addresses of FILE's
1005 sections. The target may define switches, or other non-switch
1006 arguments, as it pleases. */
1007
1008 extern void target_load (char *arg, int from_tty);
1009
1010 /* Look up a symbol in the target's symbol table. NAME is the symbol
1011 name. ADDRP is a CORE_ADDR * pointing to where the value of the
1012 symbol should be returned. The result is 0 if successful, nonzero
1013 if the symbol does not exist in the target environment. This
1014 function should not call error() if communication with the target
1015 is interrupted, since it is called from symbol reading, but should
1016 return nonzero, possibly doing a complain(). */
1017
1018 #define target_lookup_symbol(name, addrp) \
1019 (*current_target.to_lookup_symbol) (name, addrp)
1020
1021 /* Start an inferior process and set inferior_ptid to its pid.
1022 EXEC_FILE is the file to run.
1023 ALLARGS is a string containing the arguments to the program.
1024 ENV is the environment vector to pass. Errors reported with error().
1025 On VxWorks and various standalone systems, we ignore exec_file. */
1026
1027 void target_create_inferior (char *exec_file, char *args,
1028 char **env, int from_tty);
1029
1030 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1031 notification of inferior events such as fork and vork immediately
1032 after the inferior is created. (This because of how gdb gets an
1033 inferior created via invoking a shell to do it. In such a scenario,
1034 if the shell init file has commands in it, the shell will fork and
1035 exec for each of those commands, and we will see each such fork
1036 event. Very bad.)
1037
1038 Such targets will supply an appropriate definition for this function. */
1039
1040 #define target_post_startup_inferior(ptid) \
1041 (*current_target.to_post_startup_inferior) (ptid)
1042
1043 /* On some targets, we can catch an inferior fork or vfork event when
1044 it occurs. These functions insert/remove an already-created
1045 catchpoint for such events. They return 0 for success, 1 if the
1046 catchpoint type is not supported and -1 for failure. */
1047
1048 #define target_insert_fork_catchpoint(pid) \
1049 (*current_target.to_insert_fork_catchpoint) (pid)
1050
1051 #define target_remove_fork_catchpoint(pid) \
1052 (*current_target.to_remove_fork_catchpoint) (pid)
1053
1054 #define target_insert_vfork_catchpoint(pid) \
1055 (*current_target.to_insert_vfork_catchpoint) (pid)
1056
1057 #define target_remove_vfork_catchpoint(pid) \
1058 (*current_target.to_remove_vfork_catchpoint) (pid)
1059
1060 /* If the inferior forks or vforks, this function will be called at
1061 the next resume in order to perform any bookkeeping and fiddling
1062 necessary to continue debugging either the parent or child, as
1063 requested, and releasing the other. Information about the fork
1064 or vfork event is available via get_last_target_status ().
1065 This function returns 1 if the inferior should not be resumed
1066 (i.e. there is another event pending). */
1067
1068 int target_follow_fork (int follow_child);
1069
1070 /* On some targets, we can catch an inferior exec event when it
1071 occurs. These functions insert/remove an already-created
1072 catchpoint for such events. They return 0 for success, 1 if the
1073 catchpoint type is not supported and -1 for failure. */
1074
1075 #define target_insert_exec_catchpoint(pid) \
1076 (*current_target.to_insert_exec_catchpoint) (pid)
1077
1078 #define target_remove_exec_catchpoint(pid) \
1079 (*current_target.to_remove_exec_catchpoint) (pid)
1080
1081 /* Syscall catch.
1082
1083 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1084 If NEEDED is zero, it means the target can disable the mechanism to
1085 catch system calls because there are no more catchpoints of this type.
1086
1087 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1088 being requested. In this case, both TABLE_SIZE and TABLE should
1089 be ignored.
1090
1091 TABLE_SIZE is the number of elements in TABLE. It only matters if
1092 ANY_COUNT is zero.
1093
1094 TABLE is an array of ints, indexed by syscall number. An element in
1095 this array is nonzero if that syscall should be caught. This argument
1096 only matters if ANY_COUNT is zero.
1097
1098 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1099 for failure. */
1100
1101 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1102 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1103 table_size, table)
1104
1105 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1106 exit code of PID, if any. */
1107
1108 #define target_has_exited(pid,wait_status,exit_status) \
1109 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1110
1111 /* The debugger has completed a blocking wait() call. There is now
1112 some process event that must be processed. This function should
1113 be defined by those targets that require the debugger to perform
1114 cleanup or internal state changes in response to the process event. */
1115
1116 /* The inferior process has died. Do what is right. */
1117
1118 void target_mourn_inferior (void);
1119
1120 /* Does target have enough data to do a run or attach command? */
1121
1122 #define target_can_run(t) \
1123 ((t)->to_can_run) ()
1124
1125 /* post process changes to signal handling in the inferior. */
1126
1127 #define target_notice_signals(ptid) \
1128 (*current_target.to_notice_signals) (ptid)
1129
1130 /* Check to see if a thread is still alive. */
1131
1132 extern int target_thread_alive (ptid_t ptid);
1133
1134 /* Query for new threads and add them to the thread list. */
1135
1136 extern void target_find_new_threads (void);
1137
1138 /* Make target stop in a continuable fashion. (For instance, under
1139 Unix, this should act like SIGSTOP). This function is normally
1140 used by GUIs to implement a stop button. */
1141
1142 extern void target_stop (ptid_t ptid);
1143
1144 /* Send the specified COMMAND to the target's monitor
1145 (shell,interpreter) for execution. The result of the query is
1146 placed in OUTBUF. */
1147
1148 #define target_rcmd(command, outbuf) \
1149 (*current_target.to_rcmd) (command, outbuf)
1150
1151
1152 /* Does the target include all of memory, or only part of it? This
1153 determines whether we look up the target chain for other parts of
1154 memory if this target can't satisfy a request. */
1155
1156 extern int target_has_all_memory_1 (void);
1157 #define target_has_all_memory target_has_all_memory_1 ()
1158
1159 /* Does the target include memory? (Dummy targets don't.) */
1160
1161 extern int target_has_memory_1 (void);
1162 #define target_has_memory target_has_memory_1 ()
1163
1164 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1165 we start a process.) */
1166
1167 extern int target_has_stack_1 (void);
1168 #define target_has_stack target_has_stack_1 ()
1169
1170 /* Does the target have registers? (Exec files don't.) */
1171
1172 extern int target_has_registers_1 (void);
1173 #define target_has_registers target_has_registers_1 ()
1174
1175 /* Does the target have execution? Can we make it jump (through
1176 hoops), or pop its stack a few times? This means that the current
1177 target is currently executing; for some targets, that's the same as
1178 whether or not the target is capable of execution, but there are
1179 also targets which can be current while not executing. In that
1180 case this will become true after target_create_inferior or
1181 target_attach. */
1182
1183 extern int target_has_execution_1 (void);
1184 #define target_has_execution target_has_execution_1 ()
1185
1186 /* Default implementations for process_stratum targets. Return true
1187 if there's a selected inferior, false otherwise. */
1188
1189 extern int default_child_has_all_memory (struct target_ops *ops);
1190 extern int default_child_has_memory (struct target_ops *ops);
1191 extern int default_child_has_stack (struct target_ops *ops);
1192 extern int default_child_has_registers (struct target_ops *ops);
1193 extern int default_child_has_execution (struct target_ops *ops);
1194
1195 /* Can the target support the debugger control of thread execution?
1196 Can it lock the thread scheduler? */
1197
1198 #define target_can_lock_scheduler \
1199 (current_target.to_has_thread_control & tc_schedlock)
1200
1201 /* Should the target enable async mode if it is supported? Temporary
1202 cludge until async mode is a strict superset of sync mode. */
1203 extern int target_async_permitted;
1204
1205 /* Can the target support asynchronous execution? */
1206 #define target_can_async_p() (current_target.to_can_async_p ())
1207
1208 /* Is the target in asynchronous execution mode? */
1209 #define target_is_async_p() (current_target.to_is_async_p ())
1210
1211 int target_supports_non_stop (void);
1212
1213 /* Put the target in async mode with the specified callback function. */
1214 #define target_async(CALLBACK,CONTEXT) \
1215 (current_target.to_async ((CALLBACK), (CONTEXT)))
1216
1217 /* This is to be used ONLY within call_function_by_hand(). It provides
1218 a workaround, to have inferior function calls done in sychronous
1219 mode, even though the target is asynchronous. After
1220 target_async_mask(0) is called, calls to target_can_async_p() will
1221 return FALSE , so that target_resume() will not try to start the
1222 target asynchronously. After the inferior stops, we IMMEDIATELY
1223 restore the previous nature of the target, by calling
1224 target_async_mask(1). After that, target_can_async_p() will return
1225 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1226
1227 FIXME ezannoni 1999-12-13: we won't need this once we move
1228 the turning async on and off to the single execution commands,
1229 from where it is done currently, in remote_resume(). */
1230
1231 #define target_async_mask(MASK) \
1232 (current_target.to_async_mask (MASK))
1233
1234 /* Converts a process id to a string. Usually, the string just contains
1235 `process xyz', but on some systems it may contain
1236 `process xyz thread abc'. */
1237
1238 extern char *target_pid_to_str (ptid_t ptid);
1239
1240 extern char *normal_pid_to_str (ptid_t ptid);
1241
1242 /* Return a short string describing extra information about PID,
1243 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1244 is okay. */
1245
1246 #define target_extra_thread_info(TP) \
1247 (current_target.to_extra_thread_info (TP))
1248
1249 /* Attempts to find the pathname of the executable file
1250 that was run to create a specified process.
1251
1252 The process PID must be stopped when this operation is used.
1253
1254 If the executable file cannot be determined, NULL is returned.
1255
1256 Else, a pointer to a character string containing the pathname
1257 is returned. This string should be copied into a buffer by
1258 the client if the string will not be immediately used, or if
1259 it must persist. */
1260
1261 #define target_pid_to_exec_file(pid) \
1262 (current_target.to_pid_to_exec_file) (pid)
1263
1264 /* See the to_thread_architecture description in struct target_ops. */
1265
1266 #define target_thread_architecture(ptid) \
1267 (current_target.to_thread_architecture (&current_target, ptid))
1268
1269 /*
1270 * Iterator function for target memory regions.
1271 * Calls a callback function once for each memory region 'mapped'
1272 * in the child process. Defined as a simple macro rather than
1273 * as a function macro so that it can be tested for nullity.
1274 */
1275
1276 #define target_find_memory_regions(FUNC, DATA) \
1277 (current_target.to_find_memory_regions) (FUNC, DATA)
1278
1279 /*
1280 * Compose corefile .note section.
1281 */
1282
1283 #define target_make_corefile_notes(BFD, SIZE_P) \
1284 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1285
1286 /* Bookmark interfaces. */
1287 #define target_get_bookmark(ARGS, FROM_TTY) \
1288 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1289
1290 #define target_goto_bookmark(ARG, FROM_TTY) \
1291 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1292
1293 /* Hardware watchpoint interfaces. */
1294
1295 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1296 write). Only the INFERIOR_PTID task is being queried. */
1297
1298 #define target_stopped_by_watchpoint \
1299 (*current_target.to_stopped_by_watchpoint)
1300
1301 /* Non-zero if we have steppable watchpoints */
1302
1303 #define target_have_steppable_watchpoint \
1304 (current_target.to_have_steppable_watchpoint)
1305
1306 /* Non-zero if we have continuable watchpoints */
1307
1308 #define target_have_continuable_watchpoint \
1309 (current_target.to_have_continuable_watchpoint)
1310
1311 /* Provide defaults for hardware watchpoint functions. */
1312
1313 /* If the *_hw_beakpoint functions have not been defined
1314 elsewhere use the definitions in the target vector. */
1315
1316 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1317 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1318 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1319 (including this one?). OTHERTYPE is who knows what... */
1320
1321 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1322 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1323
1324 /* Returns the number of debug registers needed to watch the given
1325 memory region, or zero if not supported. */
1326
1327 #define target_region_ok_for_hw_watchpoint(addr, len) \
1328 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1329
1330
1331 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1332 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1333 COND is the expression for its condition, or NULL if there's none.
1334 Returns 0 for success, 1 if the watchpoint type is not supported,
1335 -1 for failure. */
1336
1337 #define target_insert_watchpoint(addr, len, type, cond) \
1338 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1339
1340 #define target_remove_watchpoint(addr, len, type, cond) \
1341 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1342
1343 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1344 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1345
1346 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1347 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1348
1349 /* Return non-zero if target knows the data address which triggered this
1350 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1351 INFERIOR_PTID task is being queried. */
1352 #define target_stopped_data_address(target, addr_p) \
1353 (*target.to_stopped_data_address) (target, addr_p)
1354
1355 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1356 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1357
1358 /* Return non-zero if the target is capable of using hardware to evaluate
1359 the condition expression. In this case, if the condition is false when
1360 the watched memory location changes, execution may continue without the
1361 debugger being notified.
1362
1363 Due to limitations in the hardware implementation, it may be capable of
1364 avoiding triggering the watchpoint in some cases where the condition
1365 expression is false, but may report some false positives as well.
1366 For this reason, GDB will still evaluate the condition expression when
1367 the watchpoint triggers. */
1368 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1369 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1370
1371 /* Target can execute in reverse? */
1372 #define target_can_execute_reverse \
1373 (current_target.to_can_execute_reverse ? \
1374 current_target.to_can_execute_reverse () : 0)
1375
1376 extern const struct target_desc *target_read_description (struct target_ops *);
1377
1378 #define target_get_ada_task_ptid(lwp, tid) \
1379 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1380
1381 /* Utility implementation of searching memory. */
1382 extern int simple_search_memory (struct target_ops* ops,
1383 CORE_ADDR start_addr,
1384 ULONGEST search_space_len,
1385 const gdb_byte *pattern,
1386 ULONGEST pattern_len,
1387 CORE_ADDR *found_addrp);
1388
1389 /* Main entry point for searching memory. */
1390 extern int target_search_memory (CORE_ADDR start_addr,
1391 ULONGEST search_space_len,
1392 const gdb_byte *pattern,
1393 ULONGEST pattern_len,
1394 CORE_ADDR *found_addrp);
1395
1396 /* Tracepoint-related operations. */
1397
1398 #define target_trace_init() \
1399 (*current_target.to_trace_init) ()
1400
1401 #define target_download_tracepoint(t) \
1402 (*current_target.to_download_tracepoint) (t)
1403
1404 #define target_download_trace_state_variable(tsv) \
1405 (*current_target.to_download_trace_state_variable) (tsv)
1406
1407 #define target_trace_start() \
1408 (*current_target.to_trace_start) ()
1409
1410 #define target_trace_set_readonly_regions() \
1411 (*current_target.to_trace_set_readonly_regions) ()
1412
1413 #define target_get_trace_status(ts) \
1414 (*current_target.to_get_trace_status) (ts)
1415
1416 #define target_trace_stop() \
1417 (*current_target.to_trace_stop) ()
1418
1419 #define target_trace_find(type,num,addr1,addr2,tpp) \
1420 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1421
1422 #define target_get_trace_state_variable_value(tsv,val) \
1423 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1424
1425 #define target_save_trace_data(filename) \
1426 (*current_target.to_save_trace_data) (filename)
1427
1428 #define target_upload_tracepoints(utpp) \
1429 (*current_target.to_upload_tracepoints) (utpp)
1430
1431 #define target_upload_trace_state_variables(utsvp) \
1432 (*current_target.to_upload_trace_state_variables) (utsvp)
1433
1434 #define target_get_raw_trace_data(buf,offset,len) \
1435 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1436
1437 #define target_set_disconnected_tracing(val) \
1438 (*current_target.to_set_disconnected_tracing) (val)
1439
1440 #define target_set_circular_trace_buffer(val) \
1441 (*current_target.to_set_circular_trace_buffer) (val)
1442
1443 #define target_get_tib_address(ptid, addr) \
1444 (*current_target.to_get_tib_address) ((ptid), (addr))
1445
1446 #define target_set_permissions() \
1447 (*current_target.to_set_permissions) ()
1448
1449 #define target_static_tracepoint_marker_at(addr, marker) \
1450 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1451
1452 #define target_static_tracepoint_markers_by_strid(marker_id) \
1453 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1454
1455 /* Command logging facility. */
1456
1457 #define target_log_command(p) \
1458 do \
1459 if (current_target.to_log_command) \
1460 (*current_target.to_log_command) (p); \
1461 while (0)
1462
1463
1464 extern int target_core_of_thread (ptid_t ptid);
1465
1466 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1467 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1468 if there's a mismatch, and -1 if an error is encountered while
1469 reading memory. Throws an error if the functionality is found not
1470 to be supported by the current target. */
1471 int target_verify_memory (const gdb_byte *data,
1472 CORE_ADDR memaddr, ULONGEST size);
1473
1474 /* Routines for maintenance of the target structures...
1475
1476 add_target: Add a target to the list of all possible targets.
1477
1478 push_target: Make this target the top of the stack of currently used
1479 targets, within its particular stratum of the stack. Result
1480 is 0 if now atop the stack, nonzero if not on top (maybe
1481 should warn user).
1482
1483 unpush_target: Remove this from the stack of currently used targets,
1484 no matter where it is on the list. Returns 0 if no
1485 change, 1 if removed from stack.
1486
1487 pop_target: Remove the top thing on the stack of current targets. */
1488
1489 extern void add_target (struct target_ops *);
1490
1491 extern void push_target (struct target_ops *);
1492
1493 extern int unpush_target (struct target_ops *);
1494
1495 extern void target_pre_inferior (int);
1496
1497 extern void target_preopen (int);
1498
1499 extern void pop_target (void);
1500
1501 /* Does whatever cleanup is required to get rid of all pushed targets.
1502 QUITTING is propagated to target_close; it indicates that GDB is
1503 exiting and should not get hung on an error (otherwise it is
1504 important to perform clean termination, even if it takes a
1505 while). */
1506 extern void pop_all_targets (int quitting);
1507
1508 /* Like pop_all_targets, but pops only targets whose stratum is
1509 strictly above ABOVE_STRATUM. */
1510 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1511
1512 extern int target_is_pushed (struct target_ops *t);
1513
1514 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1515 CORE_ADDR offset);
1516
1517 /* Struct target_section maps address ranges to file sections. It is
1518 mostly used with BFD files, but can be used without (e.g. for handling
1519 raw disks, or files not in formats handled by BFD). */
1520
1521 struct target_section
1522 {
1523 CORE_ADDR addr; /* Lowest address in section */
1524 CORE_ADDR endaddr; /* 1+highest address in section */
1525
1526 struct bfd_section *the_bfd_section;
1527
1528 bfd *bfd; /* BFD file pointer */
1529 };
1530
1531 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1532
1533 struct target_section_table
1534 {
1535 struct target_section *sections;
1536 struct target_section *sections_end;
1537 };
1538
1539 /* Return the "section" containing the specified address. */
1540 struct target_section *target_section_by_addr (struct target_ops *target,
1541 CORE_ADDR addr);
1542
1543 /* Return the target section table this target (or the targets
1544 beneath) currently manipulate. */
1545
1546 extern struct target_section_table *target_get_section_table
1547 (struct target_ops *target);
1548
1549 /* From mem-break.c */
1550
1551 extern int memory_remove_breakpoint (struct gdbarch *,
1552 struct bp_target_info *);
1553
1554 extern int memory_insert_breakpoint (struct gdbarch *,
1555 struct bp_target_info *);
1556
1557 extern int default_memory_remove_breakpoint (struct gdbarch *,
1558 struct bp_target_info *);
1559
1560 extern int default_memory_insert_breakpoint (struct gdbarch *,
1561 struct bp_target_info *);
1562
1563
1564 /* From target.c */
1565
1566 extern void initialize_targets (void);
1567
1568 extern void noprocess (void) ATTRIBUTE_NORETURN;
1569
1570 extern void target_require_runnable (void);
1571
1572 extern void find_default_attach (struct target_ops *, char *, int);
1573
1574 extern void find_default_create_inferior (struct target_ops *,
1575 char *, char *, char **, int);
1576
1577 extern struct target_ops *find_run_target (void);
1578
1579 extern struct target_ops *find_target_beneath (struct target_ops *);
1580
1581 /* Read OS data object of type TYPE from the target, and return it in
1582 XML format. The result is NUL-terminated and returned as a string,
1583 allocated using xmalloc. If an error occurs or the transfer is
1584 unsupported, NULL is returned. Empty objects are returned as
1585 allocated but empty strings. */
1586
1587 extern char *target_get_osdata (const char *type);
1588
1589 \f
1590 /* Stuff that should be shared among the various remote targets. */
1591
1592 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1593 information (higher values, more information). */
1594 extern int remote_debug;
1595
1596 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1597 extern int baud_rate;
1598 /* Timeout limit for response from target. */
1599 extern int remote_timeout;
1600
1601 \f
1602 /* Functions for helping to write a native target. */
1603
1604 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1605 extern void store_waitstatus (struct target_waitstatus *, int);
1606
1607 /* These are in common/signals.c, but they're only used by gdb. */
1608 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1609 int);
1610 extern int default_target_signal_to_host (struct gdbarch *,
1611 enum target_signal);
1612
1613 /* Convert from a number used in a GDB command to an enum target_signal. */
1614 extern enum target_signal target_signal_from_command (int);
1615 /* End of files in common/signals.c. */
1616
1617 /* Set the show memory breakpoints mode to show, and installs a cleanup
1618 to restore it back to the current value. */
1619 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1620
1621 extern int may_write_registers;
1622 extern int may_write_memory;
1623 extern int may_insert_breakpoints;
1624 extern int may_insert_tracepoints;
1625 extern int may_insert_fast_tracepoints;
1626 extern int may_stop;
1627
1628 extern void update_target_permissions (void);
1629
1630 \f
1631 /* Imported from machine dependent code. */
1632
1633 /* Blank target vector entries are initialized to target_ignore. */
1634 void target_ignore (void);
1635
1636 #endif /* !defined (TARGET_H) */