d6de52af333a0a97fe1342347d16ee03c4d9cb4e
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible error codes returned by target_xfer_partial, etc. */
207
208 enum target_xfer_error
209 {
210 /* Generic I/O error. Note that it's important that this is '-1',
211 as we still have target_xfer-related code returning hardcoded
212 '-1' on error. */
213 TARGET_XFER_E_IO = -1,
214
215 /* Transfer failed because the piece of the object requested is
216 unavailable. */
217 TARGET_XFER_E_UNAVAILABLE = -2,
218
219 /* Keep list in sync with target_xfer_error_to_string. */
220 };
221
222 /* Return the string form of ERR. */
223
224 extern const char *target_xfer_error_to_string (enum target_xfer_error err);
225
226 /* Enumeration of the kinds of traceframe searches that a target may
227 be able to perform. */
228
229 enum trace_find_type
230 {
231 tfind_number,
232 tfind_pc,
233 tfind_tp,
234 tfind_range,
235 tfind_outside,
236 };
237
238 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
239 DEF_VEC_P(static_tracepoint_marker_p);
240
241 typedef LONGEST
242 target_xfer_partial_ftype (struct target_ops *ops,
243 enum target_object object,
244 const char *annex,
245 gdb_byte *readbuf,
246 const gdb_byte *writebuf,
247 ULONGEST offset,
248 ULONGEST len);
249
250 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
251 OBJECT. The OFFSET, for a seekable object, specifies the
252 starting point. The ANNEX can be used to provide additional
253 data-specific information to the target.
254
255 Return the number of bytes actually transfered, or a negative error
256 code (an 'enum target_xfer_error' value) if the transfer is not
257 supported or otherwise fails. Return of a positive value less than
258 LEN indicates that no further transfer is possible. Unlike the raw
259 to_xfer_partial interface, callers of these functions do not need
260 to retry partial transfers. */
261
262 extern LONGEST target_read (struct target_ops *ops,
263 enum target_object object,
264 const char *annex, gdb_byte *buf,
265 ULONGEST offset, LONGEST len);
266
267 struct memory_read_result
268 {
269 /* First address that was read. */
270 ULONGEST begin;
271 /* Past-the-end address. */
272 ULONGEST end;
273 /* The data. */
274 gdb_byte *data;
275 };
276 typedef struct memory_read_result memory_read_result_s;
277 DEF_VEC_O(memory_read_result_s);
278
279 extern void free_memory_read_result_vector (void *);
280
281 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
282 ULONGEST offset,
283 LONGEST len);
284
285 extern LONGEST target_write (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, const gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 /* Similar to target_write, except that it also calls PROGRESS with
291 the number of bytes written and the opaque BATON after every
292 successful partial write (and before the first write). This is
293 useful for progress reporting and user interaction while writing
294 data. To abort the transfer, the progress callback can throw an
295 exception. */
296
297 LONGEST target_write_with_progress (struct target_ops *ops,
298 enum target_object object,
299 const char *annex, const gdb_byte *buf,
300 ULONGEST offset, LONGEST len,
301 void (*progress) (ULONGEST, void *),
302 void *baton);
303
304 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
305 be read using OPS. The return value will be -1 if the transfer
306 fails or is not supported; 0 if the object is empty; or the length
307 of the object otherwise. If a positive value is returned, a
308 sufficiently large buffer will be allocated using xmalloc and
309 returned in *BUF_P containing the contents of the object.
310
311 This method should be used for objects sufficiently small to store
312 in a single xmalloc'd buffer, when no fixed bound on the object's
313 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
314 through this function. */
315
316 extern LONGEST target_read_alloc (struct target_ops *ops,
317 enum target_object object,
318 const char *annex, gdb_byte **buf_p);
319
320 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
321 returned as a string, allocated using xmalloc. If an error occurs
322 or the transfer is unsupported, NULL is returned. Empty objects
323 are returned as allocated but empty strings. A warning is issued
324 if the result contains any embedded NUL bytes. */
325
326 extern char *target_read_stralloc (struct target_ops *ops,
327 enum target_object object,
328 const char *annex);
329
330 /* See target_ops->to_xfer_partial. */
331 extern target_xfer_partial_ftype target_xfer_partial;
332
333 /* Wrappers to target read/write that perform memory transfers. They
334 throw an error if the memory transfer fails.
335
336 NOTE: cagney/2003-10-23: The naming schema is lifted from
337 "frame.h". The parameter order is lifted from get_frame_memory,
338 which in turn lifted it from read_memory. */
339
340 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
341 gdb_byte *buf, LONGEST len);
342 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
343 CORE_ADDR addr, int len,
344 enum bfd_endian byte_order);
345 \f
346 struct thread_info; /* fwd decl for parameter list below: */
347
348 /* The type of the callback to the to_async method. */
349
350 typedef void async_callback_ftype (enum inferior_event_type event_type,
351 void *context);
352
353 struct target_ops
354 {
355 struct target_ops *beneath; /* To the target under this one. */
356 char *to_shortname; /* Name this target type */
357 char *to_longname; /* Name for printing */
358 char *to_doc; /* Documentation. Does not include trailing
359 newline, and starts with a one-line descrip-
360 tion (probably similar to to_longname). */
361 /* Per-target scratch pad. */
362 void *to_data;
363 /* The open routine takes the rest of the parameters from the
364 command, and (if successful) pushes a new target onto the
365 stack. Targets should supply this routine, if only to provide
366 an error message. */
367 void (*to_open) (char *, int);
368 /* Old targets with a static target vector provide "to_close".
369 New re-entrant targets provide "to_xclose" and that is expected
370 to xfree everything (including the "struct target_ops"). */
371 void (*to_xclose) (struct target_ops *targ);
372 void (*to_close) (void);
373 void (*to_attach) (struct target_ops *ops, char *, int);
374 void (*to_post_attach) (int);
375 void (*to_detach) (struct target_ops *ops, const char *, int);
376 void (*to_disconnect) (struct target_ops *, char *, int);
377 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
378 ptid_t (*to_wait) (struct target_ops *,
379 ptid_t, struct target_waitstatus *, int);
380 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
381 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
382 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
383
384 /* Transfer LEN bytes of memory between GDB address MYADDR and
385 target address MEMADDR. If WRITE, transfer them to the target, else
386 transfer them from the target. TARGET is the target from which we
387 get this function.
388
389 Return value, N, is one of the following:
390
391 0 means that we can't handle this. If errno has been set, it is the
392 error which prevented us from doing it (FIXME: What about bfd_error?).
393
394 positive (call it N) means that we have transferred N bytes
395 starting at MEMADDR. We might be able to handle more bytes
396 beyond this length, but no promises.
397
398 negative (call its absolute value N) means that we cannot
399 transfer right at MEMADDR, but we could transfer at least
400 something at MEMADDR + N.
401
402 NOTE: cagney/2004-10-01: This has been entirely superseeded by
403 to_xfer_partial and inferior inheritance. */
404
405 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
406 int len, int write,
407 struct mem_attrib *attrib,
408 struct target_ops *target);
409
410 void (*to_files_info) (struct target_ops *);
411 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
412 struct bp_target_info *);
413 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
414 struct bp_target_info *);
415 int (*to_can_use_hw_breakpoint) (int, int, int);
416 int (*to_ranged_break_num_registers) (struct target_ops *);
417 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
418 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
419
420 /* Documentation of what the two routines below are expected to do is
421 provided with the corresponding target_* macros. */
422 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
423 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
424
425 int (*to_insert_mask_watchpoint) (struct target_ops *,
426 CORE_ADDR, CORE_ADDR, int);
427 int (*to_remove_mask_watchpoint) (struct target_ops *,
428 CORE_ADDR, CORE_ADDR, int);
429 int (*to_stopped_by_watchpoint) (void);
430 int to_have_steppable_watchpoint;
431 int to_have_continuable_watchpoint;
432 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
433 int (*to_watchpoint_addr_within_range) (struct target_ops *,
434 CORE_ADDR, CORE_ADDR, int);
435
436 /* Documentation of this routine is provided with the corresponding
437 target_* macro. */
438 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
439
440 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
441 struct expression *);
442 int (*to_masked_watch_num_registers) (struct target_ops *,
443 CORE_ADDR, CORE_ADDR);
444 void (*to_terminal_init) (void);
445 void (*to_terminal_inferior) (void);
446 void (*to_terminal_ours_for_output) (void);
447 void (*to_terminal_ours) (void);
448 void (*to_terminal_save_ours) (void);
449 void (*to_terminal_info) (const char *, int);
450 void (*to_kill) (struct target_ops *);
451 void (*to_load) (char *, int);
452 void (*to_create_inferior) (struct target_ops *,
453 char *, char *, char **, int);
454 void (*to_post_startup_inferior) (ptid_t);
455 int (*to_insert_fork_catchpoint) (int);
456 int (*to_remove_fork_catchpoint) (int);
457 int (*to_insert_vfork_catchpoint) (int);
458 int (*to_remove_vfork_catchpoint) (int);
459 int (*to_follow_fork) (struct target_ops *, int, int);
460 int (*to_insert_exec_catchpoint) (int);
461 int (*to_remove_exec_catchpoint) (int);
462 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
463 int (*to_has_exited) (int, int, int *);
464 void (*to_mourn_inferior) (struct target_ops *);
465 int (*to_can_run) (void);
466
467 /* Documentation of this routine is provided with the corresponding
468 target_* macro. */
469 void (*to_pass_signals) (int, unsigned char *);
470
471 /* Documentation of this routine is provided with the
472 corresponding target_* function. */
473 void (*to_program_signals) (int, unsigned char *);
474
475 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
476 void (*to_find_new_threads) (struct target_ops *);
477 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
478 char *(*to_extra_thread_info) (struct thread_info *);
479 char *(*to_thread_name) (struct thread_info *);
480 void (*to_stop) (ptid_t);
481 void (*to_rcmd) (char *command, struct ui_file *output);
482 char *(*to_pid_to_exec_file) (int pid);
483 void (*to_log_command) (const char *);
484 struct target_section_table *(*to_get_section_table) (struct target_ops *);
485 enum strata to_stratum;
486 int (*to_has_all_memory) (struct target_ops *);
487 int (*to_has_memory) (struct target_ops *);
488 int (*to_has_stack) (struct target_ops *);
489 int (*to_has_registers) (struct target_ops *);
490 int (*to_has_execution) (struct target_ops *, ptid_t);
491 int to_has_thread_control; /* control thread execution */
492 int to_attach_no_wait;
493 /* ASYNC target controls */
494 int (*to_can_async_p) (void);
495 int (*to_is_async_p) (void);
496 void (*to_async) (async_callback_ftype *, void *);
497 int (*to_supports_non_stop) (void);
498 /* find_memory_regions support method for gcore */
499 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
500 /* make_corefile_notes support method for gcore */
501 char * (*to_make_corefile_notes) (bfd *, int *);
502 /* get_bookmark support method for bookmarks */
503 gdb_byte * (*to_get_bookmark) (char *, int);
504 /* goto_bookmark support method for bookmarks */
505 void (*to_goto_bookmark) (gdb_byte *, int);
506 /* Return the thread-local address at OFFSET in the
507 thread-local storage for the thread PTID and the shared library
508 or executable file given by OBJFILE. If that block of
509 thread-local storage hasn't been allocated yet, this function
510 may return an error. */
511 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
512 ptid_t ptid,
513 CORE_ADDR load_module_addr,
514 CORE_ADDR offset);
515
516 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
517 OBJECT. The OFFSET, for a seekable object, specifies the
518 starting point. The ANNEX can be used to provide additional
519 data-specific information to the target.
520
521 Return the number of bytes actually transfered, zero when no
522 further transfer is possible, and a negative error code (really
523 an 'enum target_xfer_error' value) when the transfer is not
524 supported. Return of a positive value smaller than LEN does
525 not indicate the end of the object, only the end of the
526 transfer; higher level code should continue transferring if
527 desired. This is handled in target.c.
528
529 The interface does not support a "retry" mechanism. Instead it
530 assumes that at least one byte will be transfered on each
531 successful call.
532
533 NOTE: cagney/2003-10-17: The current interface can lead to
534 fragmented transfers. Lower target levels should not implement
535 hacks, such as enlarging the transfer, in an attempt to
536 compensate for this. Instead, the target stack should be
537 extended so that it implements supply/collect methods and a
538 look-aside object cache. With that available, the lowest
539 target can safely and freely "push" data up the stack.
540
541 See target_read and target_write for more information. One,
542 and only one, of readbuf or writebuf must be non-NULL. */
543
544 LONGEST (*to_xfer_partial) (struct target_ops *ops,
545 enum target_object object, const char *annex,
546 gdb_byte *readbuf, const gdb_byte *writebuf,
547 ULONGEST offset, ULONGEST len);
548
549 /* Returns the memory map for the target. A return value of NULL
550 means that no memory map is available. If a memory address
551 does not fall within any returned regions, it's assumed to be
552 RAM. The returned memory regions should not overlap.
553
554 The order of regions does not matter; target_memory_map will
555 sort regions by starting address. For that reason, this
556 function should not be called directly except via
557 target_memory_map.
558
559 This method should not cache data; if the memory map could
560 change unexpectedly, it should be invalidated, and higher
561 layers will re-fetch it. */
562 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
563
564 /* Erases the region of flash memory starting at ADDRESS, of
565 length LENGTH.
566
567 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
568 on flash block boundaries, as reported by 'to_memory_map'. */
569 void (*to_flash_erase) (struct target_ops *,
570 ULONGEST address, LONGEST length);
571
572 /* Finishes a flash memory write sequence. After this operation
573 all flash memory should be available for writing and the result
574 of reading from areas written by 'to_flash_write' should be
575 equal to what was written. */
576 void (*to_flash_done) (struct target_ops *);
577
578 /* Describe the architecture-specific features of this target.
579 Returns the description found, or NULL if no description
580 was available. */
581 const struct target_desc *(*to_read_description) (struct target_ops *ops);
582
583 /* Build the PTID of the thread on which a given task is running,
584 based on LWP and THREAD. These values are extracted from the
585 task Private_Data section of the Ada Task Control Block, and
586 their interpretation depends on the target. */
587 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
588
589 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
590 Return 0 if *READPTR is already at the end of the buffer.
591 Return -1 if there is insufficient buffer for a whole entry.
592 Return 1 if an entry was read into *TYPEP and *VALP. */
593 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
594 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
595
596 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
597 sequence of bytes in PATTERN with length PATTERN_LEN.
598
599 The result is 1 if found, 0 if not found, and -1 if there was an error
600 requiring halting of the search (e.g. memory read error).
601 If the pattern is found the address is recorded in FOUND_ADDRP. */
602 int (*to_search_memory) (struct target_ops *ops,
603 CORE_ADDR start_addr, ULONGEST search_space_len,
604 const gdb_byte *pattern, ULONGEST pattern_len,
605 CORE_ADDR *found_addrp);
606
607 /* Can target execute in reverse? */
608 int (*to_can_execute_reverse) (void);
609
610 /* The direction the target is currently executing. Must be
611 implemented on targets that support reverse execution and async
612 mode. The default simply returns forward execution. */
613 enum exec_direction_kind (*to_execution_direction) (void);
614
615 /* Does this target support debugging multiple processes
616 simultaneously? */
617 int (*to_supports_multi_process) (void);
618
619 /* Does this target support enabling and disabling tracepoints while a trace
620 experiment is running? */
621 int (*to_supports_enable_disable_tracepoint) (void);
622
623 /* Does this target support disabling address space randomization? */
624 int (*to_supports_disable_randomization) (void);
625
626 /* Does this target support the tracenz bytecode for string collection? */
627 int (*to_supports_string_tracing) (void);
628
629 /* Does this target support evaluation of breakpoint conditions on its
630 end? */
631 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
632
633 /* Does this target support evaluation of breakpoint commands on its
634 end? */
635 int (*to_can_run_breakpoint_commands) (void);
636
637 /* Determine current architecture of thread PTID.
638
639 The target is supposed to determine the architecture of the code where
640 the target is currently stopped at (on Cell, if a target is in spu_run,
641 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
642 This is architecture used to perform decr_pc_after_break adjustment,
643 and also determines the frame architecture of the innermost frame.
644 ptrace operations need to operate according to target_gdbarch ().
645
646 The default implementation always returns target_gdbarch (). */
647 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
648
649 /* Determine current address space of thread PTID.
650
651 The default implementation always returns the inferior's
652 address space. */
653 struct address_space *(*to_thread_address_space) (struct target_ops *,
654 ptid_t);
655
656 /* Target file operations. */
657
658 /* Open FILENAME on the target, using FLAGS and MODE. Return a
659 target file descriptor, or -1 if an error occurs (and set
660 *TARGET_ERRNO). */
661 int (*to_fileio_open) (const char *filename, int flags, int mode,
662 int *target_errno);
663
664 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
665 Return the number of bytes written, or -1 if an error occurs
666 (and set *TARGET_ERRNO). */
667 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
668 ULONGEST offset, int *target_errno);
669
670 /* Read up to LEN bytes FD on the target into READ_BUF.
671 Return the number of bytes read, or -1 if an error occurs
672 (and set *TARGET_ERRNO). */
673 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
674 ULONGEST offset, int *target_errno);
675
676 /* Close FD on the target. Return 0, or -1 if an error occurs
677 (and set *TARGET_ERRNO). */
678 int (*to_fileio_close) (int fd, int *target_errno);
679
680 /* Unlink FILENAME on the target. Return 0, or -1 if an error
681 occurs (and set *TARGET_ERRNO). */
682 int (*to_fileio_unlink) (const char *filename, int *target_errno);
683
684 /* Read value of symbolic link FILENAME on the target. Return a
685 null-terminated string allocated via xmalloc, or NULL if an error
686 occurs (and set *TARGET_ERRNO). */
687 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
688
689
690 /* Implement the "info proc" command. */
691 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
692
693 /* Tracepoint-related operations. */
694
695 /* Prepare the target for a tracing run. */
696 void (*to_trace_init) (void);
697
698 /* Send full details of a tracepoint location to the target. */
699 void (*to_download_tracepoint) (struct bp_location *location);
700
701 /* Is the target able to download tracepoint locations in current
702 state? */
703 int (*to_can_download_tracepoint) (void);
704
705 /* Send full details of a trace state variable to the target. */
706 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
707
708 /* Enable a tracepoint on the target. */
709 void (*to_enable_tracepoint) (struct bp_location *location);
710
711 /* Disable a tracepoint on the target. */
712 void (*to_disable_tracepoint) (struct bp_location *location);
713
714 /* Inform the target info of memory regions that are readonly
715 (such as text sections), and so it should return data from
716 those rather than look in the trace buffer. */
717 void (*to_trace_set_readonly_regions) (void);
718
719 /* Start a trace run. */
720 void (*to_trace_start) (void);
721
722 /* Get the current status of a tracing run. */
723 int (*to_get_trace_status) (struct trace_status *ts);
724
725 void (*to_get_tracepoint_status) (struct breakpoint *tp,
726 struct uploaded_tp *utp);
727
728 /* Stop a trace run. */
729 void (*to_trace_stop) (void);
730
731 /* Ask the target to find a trace frame of the given type TYPE,
732 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
733 number of the trace frame, and also the tracepoint number at
734 TPP. If no trace frame matches, return -1. May throw if the
735 operation fails. */
736 int (*to_trace_find) (enum trace_find_type type, int num,
737 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
738
739 /* Get the value of the trace state variable number TSV, returning
740 1 if the value is known and writing the value itself into the
741 location pointed to by VAL, else returning 0. */
742 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
743
744 int (*to_save_trace_data) (const char *filename);
745
746 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
747
748 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
749
750 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
751 ULONGEST offset, LONGEST len);
752
753 /* Get the minimum length of instruction on which a fast tracepoint
754 may be set on the target. If this operation is unsupported,
755 return -1. If for some reason the minimum length cannot be
756 determined, return 0. */
757 int (*to_get_min_fast_tracepoint_insn_len) (void);
758
759 /* Set the target's tracing behavior in response to unexpected
760 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
761 void (*to_set_disconnected_tracing) (int val);
762 void (*to_set_circular_trace_buffer) (int val);
763 /* Set the size of trace buffer in the target. */
764 void (*to_set_trace_buffer_size) (LONGEST val);
765
766 /* Add/change textual notes about the trace run, returning 1 if
767 successful, 0 otherwise. */
768 int (*to_set_trace_notes) (const char *user, const char *notes,
769 const char *stopnotes);
770
771 /* Return the processor core that thread PTID was last seen on.
772 This information is updated only when:
773 - update_thread_list is called
774 - thread stops
775 If the core cannot be determined -- either for the specified
776 thread, or right now, or in this debug session, or for this
777 target -- return -1. */
778 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
779
780 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
781 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
782 a match, 0 if there's a mismatch, and -1 if an error is
783 encountered while reading memory. */
784 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
785 CORE_ADDR memaddr, ULONGEST size);
786
787 /* Return the address of the start of the Thread Information Block
788 a Windows OS specific feature. */
789 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
790
791 /* Send the new settings of write permission variables. */
792 void (*to_set_permissions) (void);
793
794 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
795 with its details. Return 1 on success, 0 on failure. */
796 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
797 struct static_tracepoint_marker *marker);
798
799 /* Return a vector of all tracepoints markers string id ID, or all
800 markers if ID is NULL. */
801 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
802 (const char *id);
803
804 /* Return a traceframe info object describing the current
805 traceframe's contents. If the target doesn't support
806 traceframe info, return NULL. If the current traceframe is not
807 selected (the current traceframe number is -1), the target can
808 choose to return either NULL or an empty traceframe info. If
809 NULL is returned, for example in remote target, GDB will read
810 from the live inferior. If an empty traceframe info is
811 returned, for example in tfile target, which means the
812 traceframe info is available, but the requested memory is not
813 available in it. GDB will try to see if the requested memory
814 is available in the read-only sections. This method should not
815 cache data; higher layers take care of caching, invalidating,
816 and re-fetching when necessary. */
817 struct traceframe_info *(*to_traceframe_info) (void);
818
819 /* Ask the target to use or not to use agent according to USE. Return 1
820 successful, 0 otherwise. */
821 int (*to_use_agent) (int use);
822
823 /* Is the target able to use agent in current state? */
824 int (*to_can_use_agent) (void);
825
826 /* Check whether the target supports branch tracing. */
827 int (*to_supports_btrace) (void);
828
829 /* Enable branch tracing for PTID and allocate a branch trace target
830 information struct for reading and for disabling branch trace. */
831 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
832
833 /* Disable branch tracing and deallocate TINFO. */
834 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
835
836 /* Disable branch tracing and deallocate TINFO. This function is similar
837 to to_disable_btrace, except that it is called during teardown and is
838 only allowed to perform actions that are safe. A counter-example would
839 be attempting to talk to a remote target. */
840 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
841
842 /* Read branch trace data for the thread indicated by BTINFO into DATA.
843 DATA is cleared before new trace is added.
844 The branch trace will start with the most recent block and continue
845 towards older blocks. */
846 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
847 struct btrace_target_info *btinfo,
848 enum btrace_read_type type);
849
850 /* Stop trace recording. */
851 void (*to_stop_recording) (void);
852
853 /* Print information about the recording. */
854 void (*to_info_record) (void);
855
856 /* Save the recorded execution trace into a file. */
857 void (*to_save_record) (const char *filename);
858
859 /* Delete the recorded execution trace from the current position onwards. */
860 void (*to_delete_record) (void);
861
862 /* Query if the record target is currently replaying. */
863 int (*to_record_is_replaying) (void);
864
865 /* Go to the begin of the execution trace. */
866 void (*to_goto_record_begin) (void);
867
868 /* Go to the end of the execution trace. */
869 void (*to_goto_record_end) (void);
870
871 /* Go to a specific location in the recorded execution trace. */
872 void (*to_goto_record) (ULONGEST insn);
873
874 /* Disassemble SIZE instructions in the recorded execution trace from
875 the current position.
876 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
877 disassemble SIZE succeeding instructions. */
878 void (*to_insn_history) (int size, int flags);
879
880 /* Disassemble SIZE instructions in the recorded execution trace around
881 FROM.
882 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
883 disassemble SIZE instructions after FROM. */
884 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
885
886 /* Disassemble a section of the recorded execution trace from instruction
887 BEGIN (inclusive) to instruction END (inclusive). */
888 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
889
890 /* Print a function trace of the recorded execution trace.
891 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
892 succeeding functions. */
893 void (*to_call_history) (int size, int flags);
894
895 /* Print a function trace of the recorded execution trace starting
896 at function FROM.
897 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
898 SIZE functions after FROM. */
899 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
900
901 /* Print a function trace of an execution trace section from function BEGIN
902 (inclusive) to function END (inclusive). */
903 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
904
905 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
906 non-empty annex. */
907 int (*to_augmented_libraries_svr4_read) (void);
908
909 /* Those unwinders are tried before any other arch unwinders. Use NULL if
910 it is not used. */
911 const struct frame_unwind *to_get_unwinder;
912 const struct frame_unwind *to_get_tailcall_unwinder;
913
914 int to_magic;
915 /* Need sub-structure for target machine related rather than comm related?
916 */
917 };
918
919 /* Magic number for checking ops size. If a struct doesn't end with this
920 number, somebody changed the declaration but didn't change all the
921 places that initialize one. */
922
923 #define OPS_MAGIC 3840
924
925 /* The ops structure for our "current" target process. This should
926 never be NULL. If there is no target, it points to the dummy_target. */
927
928 extern struct target_ops current_target;
929
930 /* Define easy words for doing these operations on our current target. */
931
932 #define target_shortname (current_target.to_shortname)
933 #define target_longname (current_target.to_longname)
934
935 /* Does whatever cleanup is required for a target that we are no
936 longer going to be calling. This routine is automatically always
937 called after popping the target off the target stack - the target's
938 own methods are no longer available through the target vector.
939 Closing file descriptors and freeing all memory allocated memory are
940 typical things it should do. */
941
942 void target_close (struct target_ops *targ);
943
944 /* Attaches to a process on the target side. Arguments are as passed
945 to the `attach' command by the user. This routine can be called
946 when the target is not on the target-stack, if the target_can_run
947 routine returns 1; in that case, it must push itself onto the stack.
948 Upon exit, the target should be ready for normal operations, and
949 should be ready to deliver the status of the process immediately
950 (without waiting) to an upcoming target_wait call. */
951
952 void target_attach (char *, int);
953
954 /* Some targets don't generate traps when attaching to the inferior,
955 or their target_attach implementation takes care of the waiting.
956 These targets must set to_attach_no_wait. */
957
958 #define target_attach_no_wait \
959 (current_target.to_attach_no_wait)
960
961 /* The target_attach operation places a process under debugger control,
962 and stops the process.
963
964 This operation provides a target-specific hook that allows the
965 necessary bookkeeping to be performed after an attach completes. */
966 #define target_post_attach(pid) \
967 (*current_target.to_post_attach) (pid)
968
969 /* Takes a program previously attached to and detaches it.
970 The program may resume execution (some targets do, some don't) and will
971 no longer stop on signals, etc. We better not have left any breakpoints
972 in the program or it'll die when it hits one. ARGS is arguments
973 typed by the user (e.g. a signal to send the process). FROM_TTY
974 says whether to be verbose or not. */
975
976 extern void target_detach (const char *, int);
977
978 /* Disconnect from the current target without resuming it (leaving it
979 waiting for a debugger). */
980
981 extern void target_disconnect (char *, int);
982
983 /* Resume execution of the target process PTID (or a group of
984 threads). STEP says whether to single-step or to run free; SIGGNAL
985 is the signal to be given to the target, or GDB_SIGNAL_0 for no
986 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
987 PTID means `step/resume only this process id'. A wildcard PTID
988 (all threads, or all threads of process) means `step/resume
989 INFERIOR_PTID, and let other threads (for which the wildcard PTID
990 matches) resume with their 'thread->suspend.stop_signal' signal
991 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
992 if in "no pass" state. */
993
994 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
995
996 /* Wait for process pid to do something. PTID = -1 to wait for any
997 pid to do something. Return pid of child, or -1 in case of error;
998 store status through argument pointer STATUS. Note that it is
999 _NOT_ OK to throw_exception() out of target_wait() without popping
1000 the debugging target from the stack; GDB isn't prepared to get back
1001 to the prompt with a debugging target but without the frame cache,
1002 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1003 options. */
1004
1005 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1006 int options);
1007
1008 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1009
1010 extern void target_fetch_registers (struct regcache *regcache, int regno);
1011
1012 /* Store at least register REGNO, or all regs if REGNO == -1.
1013 It can store as many registers as it wants to, so target_prepare_to_store
1014 must have been previously called. Calls error() if there are problems. */
1015
1016 extern void target_store_registers (struct regcache *regcache, int regs);
1017
1018 /* Get ready to modify the registers array. On machines which store
1019 individual registers, this doesn't need to do anything. On machines
1020 which store all the registers in one fell swoop, this makes sure
1021 that REGISTERS contains all the registers from the program being
1022 debugged. */
1023
1024 #define target_prepare_to_store(regcache) \
1025 (*current_target.to_prepare_to_store) (&current_target, regcache)
1026
1027 /* Determine current address space of thread PTID. */
1028
1029 struct address_space *target_thread_address_space (ptid_t);
1030
1031 /* Implement the "info proc" command. This returns one if the request
1032 was handled, and zero otherwise. It can also throw an exception if
1033 an error was encountered while attempting to handle the
1034 request. */
1035
1036 int target_info_proc (char *, enum info_proc_what);
1037
1038 /* Returns true if this target can debug multiple processes
1039 simultaneously. */
1040
1041 #define target_supports_multi_process() \
1042 (*current_target.to_supports_multi_process) ()
1043
1044 /* Returns true if this target can disable address space randomization. */
1045
1046 int target_supports_disable_randomization (void);
1047
1048 /* Returns true if this target can enable and disable tracepoints
1049 while a trace experiment is running. */
1050
1051 #define target_supports_enable_disable_tracepoint() \
1052 (*current_target.to_supports_enable_disable_tracepoint) ()
1053
1054 #define target_supports_string_tracing() \
1055 (*current_target.to_supports_string_tracing) ()
1056
1057 /* Returns true if this target can handle breakpoint conditions
1058 on its end. */
1059
1060 #define target_supports_evaluation_of_breakpoint_conditions() \
1061 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1062
1063 /* Returns true if this target can handle breakpoint commands
1064 on its end. */
1065
1066 #define target_can_run_breakpoint_commands() \
1067 (*current_target.to_can_run_breakpoint_commands) ()
1068
1069 extern int target_read_string (CORE_ADDR, char **, int, int *);
1070
1071 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1072 ssize_t len);
1073
1074 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1075 ssize_t len);
1076
1077 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1078
1079 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1080
1081 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1082 ssize_t len);
1083
1084 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1085 ssize_t len);
1086
1087 /* Fetches the target's memory map. If one is found it is sorted
1088 and returned, after some consistency checking. Otherwise, NULL
1089 is returned. */
1090 VEC(mem_region_s) *target_memory_map (void);
1091
1092 /* Erase the specified flash region. */
1093 void target_flash_erase (ULONGEST address, LONGEST length);
1094
1095 /* Finish a sequence of flash operations. */
1096 void target_flash_done (void);
1097
1098 /* Describes a request for a memory write operation. */
1099 struct memory_write_request
1100 {
1101 /* Begining address that must be written. */
1102 ULONGEST begin;
1103 /* Past-the-end address. */
1104 ULONGEST end;
1105 /* The data to write. */
1106 gdb_byte *data;
1107 /* A callback baton for progress reporting for this request. */
1108 void *baton;
1109 };
1110 typedef struct memory_write_request memory_write_request_s;
1111 DEF_VEC_O(memory_write_request_s);
1112
1113 /* Enumeration specifying different flash preservation behaviour. */
1114 enum flash_preserve_mode
1115 {
1116 flash_preserve,
1117 flash_discard
1118 };
1119
1120 /* Write several memory blocks at once. This version can be more
1121 efficient than making several calls to target_write_memory, in
1122 particular because it can optimize accesses to flash memory.
1123
1124 Moreover, this is currently the only memory access function in gdb
1125 that supports writing to flash memory, and it should be used for
1126 all cases where access to flash memory is desirable.
1127
1128 REQUESTS is the vector (see vec.h) of memory_write_request.
1129 PRESERVE_FLASH_P indicates what to do with blocks which must be
1130 erased, but not completely rewritten.
1131 PROGRESS_CB is a function that will be periodically called to provide
1132 feedback to user. It will be called with the baton corresponding
1133 to the request currently being written. It may also be called
1134 with a NULL baton, when preserved flash sectors are being rewritten.
1135
1136 The function returns 0 on success, and error otherwise. */
1137 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1138 enum flash_preserve_mode preserve_flash_p,
1139 void (*progress_cb) (ULONGEST, void *));
1140
1141 /* Print a line about the current target. */
1142
1143 #define target_files_info() \
1144 (*current_target.to_files_info) (&current_target)
1145
1146 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1147 the target machine. Returns 0 for success, and returns non-zero or
1148 throws an error (with a detailed failure reason error code and
1149 message) otherwise.
1150 Start the target search at OPS. */
1151
1152 extern int forward_target_insert_breakpoint (struct target_ops *ops,
1153 struct gdbarch *gdbarch,
1154 struct bp_target_info *bp_tgt);
1155
1156 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1157 the target machine. Returns 0 for success, and returns non-zero or
1158 throws an error (with a detailed failure reason error code and
1159 message) otherwise. */
1160
1161 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1162 struct bp_target_info *bp_tgt);
1163
1164 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1165 machine. Result is 0 for success, non-zero for error.
1166 Start the target search at OPS. */
1167
1168 extern int forward_target_remove_breakpoint (struct target_ops *ops,
1169 struct gdbarch *gdbarch,
1170 struct bp_target_info *bp_tgt);
1171 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1172 machine. Result is 0 for success, non-zero for error. */
1173
1174 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1175 struct bp_target_info *bp_tgt);
1176
1177 /* Initialize the terminal settings we record for the inferior,
1178 before we actually run the inferior. */
1179
1180 #define target_terminal_init() \
1181 (*current_target.to_terminal_init) ()
1182
1183 /* Put the inferior's terminal settings into effect.
1184 This is preparation for starting or resuming the inferior. */
1185
1186 extern void target_terminal_inferior (void);
1187
1188 /* Put some of our terminal settings into effect,
1189 enough to get proper results from our output,
1190 but do not change into or out of RAW mode
1191 so that no input is discarded.
1192
1193 After doing this, either terminal_ours or terminal_inferior
1194 should be called to get back to a normal state of affairs. */
1195
1196 #define target_terminal_ours_for_output() \
1197 (*current_target.to_terminal_ours_for_output) ()
1198
1199 /* Put our terminal settings into effect.
1200 First record the inferior's terminal settings
1201 so they can be restored properly later. */
1202
1203 #define target_terminal_ours() \
1204 (*current_target.to_terminal_ours) ()
1205
1206 /* Save our terminal settings.
1207 This is called from TUI after entering or leaving the curses
1208 mode. Since curses modifies our terminal this call is here
1209 to take this change into account. */
1210
1211 #define target_terminal_save_ours() \
1212 (*current_target.to_terminal_save_ours) ()
1213
1214 /* Print useful information about our terminal status, if such a thing
1215 exists. */
1216
1217 #define target_terminal_info(arg, from_tty) \
1218 (*current_target.to_terminal_info) (arg, from_tty)
1219
1220 /* Kill the inferior process. Make it go away. */
1221
1222 extern void target_kill (void);
1223
1224 /* Load an executable file into the target process. This is expected
1225 to not only bring new code into the target process, but also to
1226 update GDB's symbol tables to match.
1227
1228 ARG contains command-line arguments, to be broken down with
1229 buildargv (). The first non-switch argument is the filename to
1230 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1231 0)), which is an offset to apply to the load addresses of FILE's
1232 sections. The target may define switches, or other non-switch
1233 arguments, as it pleases. */
1234
1235 extern void target_load (char *arg, int from_tty);
1236
1237 /* Start an inferior process and set inferior_ptid to its pid.
1238 EXEC_FILE is the file to run.
1239 ALLARGS is a string containing the arguments to the program.
1240 ENV is the environment vector to pass. Errors reported with error().
1241 On VxWorks and various standalone systems, we ignore exec_file. */
1242
1243 void target_create_inferior (char *exec_file, char *args,
1244 char **env, int from_tty);
1245
1246 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1247 notification of inferior events such as fork and vork immediately
1248 after the inferior is created. (This because of how gdb gets an
1249 inferior created via invoking a shell to do it. In such a scenario,
1250 if the shell init file has commands in it, the shell will fork and
1251 exec for each of those commands, and we will see each such fork
1252 event. Very bad.)
1253
1254 Such targets will supply an appropriate definition for this function. */
1255
1256 #define target_post_startup_inferior(ptid) \
1257 (*current_target.to_post_startup_inferior) (ptid)
1258
1259 /* On some targets, we can catch an inferior fork or vfork event when
1260 it occurs. These functions insert/remove an already-created
1261 catchpoint for such events. They return 0 for success, 1 if the
1262 catchpoint type is not supported and -1 for failure. */
1263
1264 #define target_insert_fork_catchpoint(pid) \
1265 (*current_target.to_insert_fork_catchpoint) (pid)
1266
1267 #define target_remove_fork_catchpoint(pid) \
1268 (*current_target.to_remove_fork_catchpoint) (pid)
1269
1270 #define target_insert_vfork_catchpoint(pid) \
1271 (*current_target.to_insert_vfork_catchpoint) (pid)
1272
1273 #define target_remove_vfork_catchpoint(pid) \
1274 (*current_target.to_remove_vfork_catchpoint) (pid)
1275
1276 /* If the inferior forks or vforks, this function will be called at
1277 the next resume in order to perform any bookkeeping and fiddling
1278 necessary to continue debugging either the parent or child, as
1279 requested, and releasing the other. Information about the fork
1280 or vfork event is available via get_last_target_status ().
1281 This function returns 1 if the inferior should not be resumed
1282 (i.e. there is another event pending). */
1283
1284 int target_follow_fork (int follow_child, int detach_fork);
1285
1286 /* On some targets, we can catch an inferior exec event when it
1287 occurs. These functions insert/remove an already-created
1288 catchpoint for such events. They return 0 for success, 1 if the
1289 catchpoint type is not supported and -1 for failure. */
1290
1291 #define target_insert_exec_catchpoint(pid) \
1292 (*current_target.to_insert_exec_catchpoint) (pid)
1293
1294 #define target_remove_exec_catchpoint(pid) \
1295 (*current_target.to_remove_exec_catchpoint) (pid)
1296
1297 /* Syscall catch.
1298
1299 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1300 If NEEDED is zero, it means the target can disable the mechanism to
1301 catch system calls because there are no more catchpoints of this type.
1302
1303 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1304 being requested. In this case, both TABLE_SIZE and TABLE should
1305 be ignored.
1306
1307 TABLE_SIZE is the number of elements in TABLE. It only matters if
1308 ANY_COUNT is zero.
1309
1310 TABLE is an array of ints, indexed by syscall number. An element in
1311 this array is nonzero if that syscall should be caught. This argument
1312 only matters if ANY_COUNT is zero.
1313
1314 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1315 for failure. */
1316
1317 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1318 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1319 table_size, table)
1320
1321 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1322 exit code of PID, if any. */
1323
1324 #define target_has_exited(pid,wait_status,exit_status) \
1325 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1326
1327 /* The debugger has completed a blocking wait() call. There is now
1328 some process event that must be processed. This function should
1329 be defined by those targets that require the debugger to perform
1330 cleanup or internal state changes in response to the process event. */
1331
1332 /* The inferior process has died. Do what is right. */
1333
1334 void target_mourn_inferior (void);
1335
1336 /* Does target have enough data to do a run or attach command? */
1337
1338 #define target_can_run(t) \
1339 ((t)->to_can_run) ()
1340
1341 /* Set list of signals to be handled in the target.
1342
1343 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1344 (enum gdb_signal). For every signal whose entry in this array is
1345 non-zero, the target is allowed -but not required- to skip reporting
1346 arrival of the signal to the GDB core by returning from target_wait,
1347 and to pass the signal directly to the inferior instead.
1348
1349 However, if the target is hardware single-stepping a thread that is
1350 about to receive a signal, it needs to be reported in any case, even
1351 if mentioned in a previous target_pass_signals call. */
1352
1353 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1354
1355 /* Set list of signals the target may pass to the inferior. This
1356 directly maps to the "handle SIGNAL pass/nopass" setting.
1357
1358 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1359 number (enum gdb_signal). For every signal whose entry in this
1360 array is non-zero, the target is allowed to pass the signal to the
1361 inferior. Signals not present in the array shall be silently
1362 discarded. This does not influence whether to pass signals to the
1363 inferior as a result of a target_resume call. This is useful in
1364 scenarios where the target needs to decide whether to pass or not a
1365 signal to the inferior without GDB core involvement, such as for
1366 example, when detaching (as threads may have been suspended with
1367 pending signals not reported to GDB). */
1368
1369 extern void target_program_signals (int nsig, unsigned char *program_signals);
1370
1371 /* Check to see if a thread is still alive. */
1372
1373 extern int target_thread_alive (ptid_t ptid);
1374
1375 /* Query for new threads and add them to the thread list. */
1376
1377 extern void target_find_new_threads (void);
1378
1379 /* Make target stop in a continuable fashion. (For instance, under
1380 Unix, this should act like SIGSTOP). This function is normally
1381 used by GUIs to implement a stop button. */
1382
1383 extern void target_stop (ptid_t ptid);
1384
1385 /* Send the specified COMMAND to the target's monitor
1386 (shell,interpreter) for execution. The result of the query is
1387 placed in OUTBUF. */
1388
1389 #define target_rcmd(command, outbuf) \
1390 (*current_target.to_rcmd) (command, outbuf)
1391
1392
1393 /* Does the target include all of memory, or only part of it? This
1394 determines whether we look up the target chain for other parts of
1395 memory if this target can't satisfy a request. */
1396
1397 extern int target_has_all_memory_1 (void);
1398 #define target_has_all_memory target_has_all_memory_1 ()
1399
1400 /* Does the target include memory? (Dummy targets don't.) */
1401
1402 extern int target_has_memory_1 (void);
1403 #define target_has_memory target_has_memory_1 ()
1404
1405 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1406 we start a process.) */
1407
1408 extern int target_has_stack_1 (void);
1409 #define target_has_stack target_has_stack_1 ()
1410
1411 /* Does the target have registers? (Exec files don't.) */
1412
1413 extern int target_has_registers_1 (void);
1414 #define target_has_registers target_has_registers_1 ()
1415
1416 /* Does the target have execution? Can we make it jump (through
1417 hoops), or pop its stack a few times? This means that the current
1418 target is currently executing; for some targets, that's the same as
1419 whether or not the target is capable of execution, but there are
1420 also targets which can be current while not executing. In that
1421 case this will become true after target_create_inferior or
1422 target_attach. */
1423
1424 extern int target_has_execution_1 (ptid_t);
1425
1426 /* Like target_has_execution_1, but always passes inferior_ptid. */
1427
1428 extern int target_has_execution_current (void);
1429
1430 #define target_has_execution target_has_execution_current ()
1431
1432 /* Default implementations for process_stratum targets. Return true
1433 if there's a selected inferior, false otherwise. */
1434
1435 extern int default_child_has_all_memory (struct target_ops *ops);
1436 extern int default_child_has_memory (struct target_ops *ops);
1437 extern int default_child_has_stack (struct target_ops *ops);
1438 extern int default_child_has_registers (struct target_ops *ops);
1439 extern int default_child_has_execution (struct target_ops *ops,
1440 ptid_t the_ptid);
1441
1442 /* Can the target support the debugger control of thread execution?
1443 Can it lock the thread scheduler? */
1444
1445 #define target_can_lock_scheduler \
1446 (current_target.to_has_thread_control & tc_schedlock)
1447
1448 /* Should the target enable async mode if it is supported? Temporary
1449 cludge until async mode is a strict superset of sync mode. */
1450 extern int target_async_permitted;
1451
1452 /* Can the target support asynchronous execution? */
1453 #define target_can_async_p() (current_target.to_can_async_p ())
1454
1455 /* Is the target in asynchronous execution mode? */
1456 #define target_is_async_p() (current_target.to_is_async_p ())
1457
1458 int target_supports_non_stop (void);
1459
1460 /* Put the target in async mode with the specified callback function. */
1461 #define target_async(CALLBACK,CONTEXT) \
1462 (current_target.to_async ((CALLBACK), (CONTEXT)))
1463
1464 #define target_execution_direction() \
1465 (current_target.to_execution_direction ())
1466
1467 /* Converts a process id to a string. Usually, the string just contains
1468 `process xyz', but on some systems it may contain
1469 `process xyz thread abc'. */
1470
1471 extern char *target_pid_to_str (ptid_t ptid);
1472
1473 extern char *normal_pid_to_str (ptid_t ptid);
1474
1475 /* Return a short string describing extra information about PID,
1476 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1477 is okay. */
1478
1479 #define target_extra_thread_info(TP) \
1480 (current_target.to_extra_thread_info (TP))
1481
1482 /* Return the thread's name. A NULL result means that the target
1483 could not determine this thread's name. */
1484
1485 extern char *target_thread_name (struct thread_info *);
1486
1487 /* Attempts to find the pathname of the executable file
1488 that was run to create a specified process.
1489
1490 The process PID must be stopped when this operation is used.
1491
1492 If the executable file cannot be determined, NULL is returned.
1493
1494 Else, a pointer to a character string containing the pathname
1495 is returned. This string should be copied into a buffer by
1496 the client if the string will not be immediately used, or if
1497 it must persist. */
1498
1499 #define target_pid_to_exec_file(pid) \
1500 (current_target.to_pid_to_exec_file) (pid)
1501
1502 /* See the to_thread_architecture description in struct target_ops. */
1503
1504 #define target_thread_architecture(ptid) \
1505 (current_target.to_thread_architecture (&current_target, ptid))
1506
1507 /*
1508 * Iterator function for target memory regions.
1509 * Calls a callback function once for each memory region 'mapped'
1510 * in the child process. Defined as a simple macro rather than
1511 * as a function macro so that it can be tested for nullity.
1512 */
1513
1514 #define target_find_memory_regions(FUNC, DATA) \
1515 (current_target.to_find_memory_regions) (FUNC, DATA)
1516
1517 /*
1518 * Compose corefile .note section.
1519 */
1520
1521 #define target_make_corefile_notes(BFD, SIZE_P) \
1522 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1523
1524 /* Bookmark interfaces. */
1525 #define target_get_bookmark(ARGS, FROM_TTY) \
1526 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1527
1528 #define target_goto_bookmark(ARG, FROM_TTY) \
1529 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1530
1531 /* Hardware watchpoint interfaces. */
1532
1533 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1534 write). Only the INFERIOR_PTID task is being queried. */
1535
1536 #define target_stopped_by_watchpoint \
1537 (*current_target.to_stopped_by_watchpoint)
1538
1539 /* Non-zero if we have steppable watchpoints */
1540
1541 #define target_have_steppable_watchpoint \
1542 (current_target.to_have_steppable_watchpoint)
1543
1544 /* Non-zero if we have continuable watchpoints */
1545
1546 #define target_have_continuable_watchpoint \
1547 (current_target.to_have_continuable_watchpoint)
1548
1549 /* Provide defaults for hardware watchpoint functions. */
1550
1551 /* If the *_hw_beakpoint functions have not been defined
1552 elsewhere use the definitions in the target vector. */
1553
1554 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1555 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1556 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1557 (including this one?). OTHERTYPE is who knows what... */
1558
1559 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1560 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1561
1562 /* Returns the number of debug registers needed to watch the given
1563 memory region, or zero if not supported. */
1564
1565 #define target_region_ok_for_hw_watchpoint(addr, len) \
1566 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1567
1568
1569 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1570 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1571 COND is the expression for its condition, or NULL if there's none.
1572 Returns 0 for success, 1 if the watchpoint type is not supported,
1573 -1 for failure. */
1574
1575 #define target_insert_watchpoint(addr, len, type, cond) \
1576 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1577
1578 #define target_remove_watchpoint(addr, len, type, cond) \
1579 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1580
1581 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1582 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1583 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1584 masked watchpoints are not supported, -1 for failure. */
1585
1586 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1587
1588 /* Remove a masked watchpoint at ADDR with the mask MASK.
1589 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1590 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1591 for failure. */
1592
1593 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1594
1595 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1596 the target machine. Returns 0 for success, and returns non-zero or
1597 throws an error (with a detailed failure reason error code and
1598 message) otherwise. */
1599
1600 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1601 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1602
1603 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1604 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1605
1606 /* Return number of debug registers needed for a ranged breakpoint,
1607 or -1 if ranged breakpoints are not supported. */
1608
1609 extern int target_ranged_break_num_registers (void);
1610
1611 /* Return non-zero if target knows the data address which triggered this
1612 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1613 INFERIOR_PTID task is being queried. */
1614 #define target_stopped_data_address(target, addr_p) \
1615 (*target.to_stopped_data_address) (target, addr_p)
1616
1617 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1618 LENGTH bytes beginning at START. */
1619 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1620 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1621
1622 /* Return non-zero if the target is capable of using hardware to evaluate
1623 the condition expression. In this case, if the condition is false when
1624 the watched memory location changes, execution may continue without the
1625 debugger being notified.
1626
1627 Due to limitations in the hardware implementation, it may be capable of
1628 avoiding triggering the watchpoint in some cases where the condition
1629 expression is false, but may report some false positives as well.
1630 For this reason, GDB will still evaluate the condition expression when
1631 the watchpoint triggers. */
1632 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1633 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1634
1635 /* Return number of debug registers needed for a masked watchpoint,
1636 -1 if masked watchpoints are not supported or -2 if the given address
1637 and mask combination cannot be used. */
1638
1639 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1640
1641 /* Target can execute in reverse? */
1642 #define target_can_execute_reverse \
1643 (current_target.to_can_execute_reverse ? \
1644 current_target.to_can_execute_reverse () : 0)
1645
1646 extern const struct target_desc *target_read_description (struct target_ops *);
1647
1648 #define target_get_ada_task_ptid(lwp, tid) \
1649 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1650
1651 /* Utility implementation of searching memory. */
1652 extern int simple_search_memory (struct target_ops* ops,
1653 CORE_ADDR start_addr,
1654 ULONGEST search_space_len,
1655 const gdb_byte *pattern,
1656 ULONGEST pattern_len,
1657 CORE_ADDR *found_addrp);
1658
1659 /* Main entry point for searching memory. */
1660 extern int target_search_memory (CORE_ADDR start_addr,
1661 ULONGEST search_space_len,
1662 const gdb_byte *pattern,
1663 ULONGEST pattern_len,
1664 CORE_ADDR *found_addrp);
1665
1666 /* Target file operations. */
1667
1668 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1669 target file descriptor, or -1 if an error occurs (and set
1670 *TARGET_ERRNO). */
1671 extern int target_fileio_open (const char *filename, int flags, int mode,
1672 int *target_errno);
1673
1674 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1675 Return the number of bytes written, or -1 if an error occurs
1676 (and set *TARGET_ERRNO). */
1677 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1678 ULONGEST offset, int *target_errno);
1679
1680 /* Read up to LEN bytes FD on the target into READ_BUF.
1681 Return the number of bytes read, or -1 if an error occurs
1682 (and set *TARGET_ERRNO). */
1683 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1684 ULONGEST offset, int *target_errno);
1685
1686 /* Close FD on the target. Return 0, or -1 if an error occurs
1687 (and set *TARGET_ERRNO). */
1688 extern int target_fileio_close (int fd, int *target_errno);
1689
1690 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1691 occurs (and set *TARGET_ERRNO). */
1692 extern int target_fileio_unlink (const char *filename, int *target_errno);
1693
1694 /* Read value of symbolic link FILENAME on the target. Return a
1695 null-terminated string allocated via xmalloc, or NULL if an error
1696 occurs (and set *TARGET_ERRNO). */
1697 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1698
1699 /* Read target file FILENAME. The return value will be -1 if the transfer
1700 fails or is not supported; 0 if the object is empty; or the length
1701 of the object otherwise. If a positive value is returned, a
1702 sufficiently large buffer will be allocated using xmalloc and
1703 returned in *BUF_P containing the contents of the object.
1704
1705 This method should be used for objects sufficiently small to store
1706 in a single xmalloc'd buffer, when no fixed bound on the object's
1707 size is known in advance. */
1708 extern LONGEST target_fileio_read_alloc (const char *filename,
1709 gdb_byte **buf_p);
1710
1711 /* Read target file FILENAME. The result is NUL-terminated and
1712 returned as a string, allocated using xmalloc. If an error occurs
1713 or the transfer is unsupported, NULL is returned. Empty objects
1714 are returned as allocated but empty strings. A warning is issued
1715 if the result contains any embedded NUL bytes. */
1716 extern char *target_fileio_read_stralloc (const char *filename);
1717
1718
1719 /* Tracepoint-related operations. */
1720
1721 #define target_trace_init() \
1722 (*current_target.to_trace_init) ()
1723
1724 #define target_download_tracepoint(t) \
1725 (*current_target.to_download_tracepoint) (t)
1726
1727 #define target_can_download_tracepoint() \
1728 (*current_target.to_can_download_tracepoint) ()
1729
1730 #define target_download_trace_state_variable(tsv) \
1731 (*current_target.to_download_trace_state_variable) (tsv)
1732
1733 #define target_enable_tracepoint(loc) \
1734 (*current_target.to_enable_tracepoint) (loc)
1735
1736 #define target_disable_tracepoint(loc) \
1737 (*current_target.to_disable_tracepoint) (loc)
1738
1739 #define target_trace_start() \
1740 (*current_target.to_trace_start) ()
1741
1742 #define target_trace_set_readonly_regions() \
1743 (*current_target.to_trace_set_readonly_regions) ()
1744
1745 #define target_get_trace_status(ts) \
1746 (*current_target.to_get_trace_status) (ts)
1747
1748 #define target_get_tracepoint_status(tp,utp) \
1749 (*current_target.to_get_tracepoint_status) (tp, utp)
1750
1751 #define target_trace_stop() \
1752 (*current_target.to_trace_stop) ()
1753
1754 #define target_trace_find(type,num,addr1,addr2,tpp) \
1755 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1756
1757 #define target_get_trace_state_variable_value(tsv,val) \
1758 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1759
1760 #define target_save_trace_data(filename) \
1761 (*current_target.to_save_trace_data) (filename)
1762
1763 #define target_upload_tracepoints(utpp) \
1764 (*current_target.to_upload_tracepoints) (utpp)
1765
1766 #define target_upload_trace_state_variables(utsvp) \
1767 (*current_target.to_upload_trace_state_variables) (utsvp)
1768
1769 #define target_get_raw_trace_data(buf,offset,len) \
1770 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1771
1772 #define target_get_min_fast_tracepoint_insn_len() \
1773 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1774
1775 #define target_set_disconnected_tracing(val) \
1776 (*current_target.to_set_disconnected_tracing) (val)
1777
1778 #define target_set_circular_trace_buffer(val) \
1779 (*current_target.to_set_circular_trace_buffer) (val)
1780
1781 #define target_set_trace_buffer_size(val) \
1782 (*current_target.to_set_trace_buffer_size) (val)
1783
1784 #define target_set_trace_notes(user,notes,stopnotes) \
1785 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1786
1787 #define target_get_tib_address(ptid, addr) \
1788 (*current_target.to_get_tib_address) ((ptid), (addr))
1789
1790 #define target_set_permissions() \
1791 (*current_target.to_set_permissions) ()
1792
1793 #define target_static_tracepoint_marker_at(addr, marker) \
1794 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1795
1796 #define target_static_tracepoint_markers_by_strid(marker_id) \
1797 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1798
1799 #define target_traceframe_info() \
1800 (*current_target.to_traceframe_info) ()
1801
1802 #define target_use_agent(use) \
1803 (*current_target.to_use_agent) (use)
1804
1805 #define target_can_use_agent() \
1806 (*current_target.to_can_use_agent) ()
1807
1808 #define target_augmented_libraries_svr4_read() \
1809 (*current_target.to_augmented_libraries_svr4_read) ()
1810
1811 /* Command logging facility. */
1812
1813 #define target_log_command(p) \
1814 do \
1815 if (current_target.to_log_command) \
1816 (*current_target.to_log_command) (p); \
1817 while (0)
1818
1819
1820 extern int target_core_of_thread (ptid_t ptid);
1821
1822 /* See to_get_unwinder in struct target_ops. */
1823 extern const struct frame_unwind *target_get_unwinder (void);
1824
1825 /* See to_get_tailcall_unwinder in struct target_ops. */
1826 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1827
1828 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1829 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1830 if there's a mismatch, and -1 if an error is encountered while
1831 reading memory. Throws an error if the functionality is found not
1832 to be supported by the current target. */
1833 int target_verify_memory (const gdb_byte *data,
1834 CORE_ADDR memaddr, ULONGEST size);
1835
1836 /* Routines for maintenance of the target structures...
1837
1838 complete_target_initialization: Finalize a target_ops by filling in
1839 any fields needed by the target implementation.
1840
1841 add_target: Add a target to the list of all possible targets.
1842
1843 push_target: Make this target the top of the stack of currently used
1844 targets, within its particular stratum of the stack. Result
1845 is 0 if now atop the stack, nonzero if not on top (maybe
1846 should warn user).
1847
1848 unpush_target: Remove this from the stack of currently used targets,
1849 no matter where it is on the list. Returns 0 if no
1850 change, 1 if removed from stack. */
1851
1852 extern void add_target (struct target_ops *);
1853
1854 extern void add_target_with_completer (struct target_ops *t,
1855 completer_ftype *completer);
1856
1857 extern void complete_target_initialization (struct target_ops *t);
1858
1859 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1860 for maintaining backwards compatibility when renaming targets. */
1861
1862 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1863
1864 extern void push_target (struct target_ops *);
1865
1866 extern int unpush_target (struct target_ops *);
1867
1868 extern void target_pre_inferior (int);
1869
1870 extern void target_preopen (int);
1871
1872 /* Does whatever cleanup is required to get rid of all pushed targets. */
1873 extern void pop_all_targets (void);
1874
1875 /* Like pop_all_targets, but pops only targets whose stratum is
1876 strictly above ABOVE_STRATUM. */
1877 extern void pop_all_targets_above (enum strata above_stratum);
1878
1879 extern int target_is_pushed (struct target_ops *t);
1880
1881 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1882 CORE_ADDR offset);
1883
1884 /* Struct target_section maps address ranges to file sections. It is
1885 mostly used with BFD files, but can be used without (e.g. for handling
1886 raw disks, or files not in formats handled by BFD). */
1887
1888 struct target_section
1889 {
1890 CORE_ADDR addr; /* Lowest address in section */
1891 CORE_ADDR endaddr; /* 1+highest address in section */
1892
1893 struct bfd_section *the_bfd_section;
1894
1895 /* The "owner" of the section.
1896 It can be any unique value. It is set by add_target_sections
1897 and used by remove_target_sections.
1898 For example, for executables it is a pointer to exec_bfd and
1899 for shlibs it is the so_list pointer. */
1900 void *owner;
1901 };
1902
1903 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1904
1905 struct target_section_table
1906 {
1907 struct target_section *sections;
1908 struct target_section *sections_end;
1909 };
1910
1911 /* Return the "section" containing the specified address. */
1912 struct target_section *target_section_by_addr (struct target_ops *target,
1913 CORE_ADDR addr);
1914
1915 /* Return the target section table this target (or the targets
1916 beneath) currently manipulate. */
1917
1918 extern struct target_section_table *target_get_section_table
1919 (struct target_ops *target);
1920
1921 /* From mem-break.c */
1922
1923 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1924 struct bp_target_info *);
1925
1926 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1927 struct bp_target_info *);
1928
1929 extern int default_memory_remove_breakpoint (struct gdbarch *,
1930 struct bp_target_info *);
1931
1932 extern int default_memory_insert_breakpoint (struct gdbarch *,
1933 struct bp_target_info *);
1934
1935
1936 /* From target.c */
1937
1938 extern void initialize_targets (void);
1939
1940 extern void noprocess (void) ATTRIBUTE_NORETURN;
1941
1942 extern void target_require_runnable (void);
1943
1944 extern void find_default_attach (struct target_ops *, char *, int);
1945
1946 extern void find_default_create_inferior (struct target_ops *,
1947 char *, char *, char **, int);
1948
1949 extern struct target_ops *find_target_beneath (struct target_ops *);
1950
1951 /* Read OS data object of type TYPE from the target, and return it in
1952 XML format. The result is NUL-terminated and returned as a string,
1953 allocated using xmalloc. If an error occurs or the transfer is
1954 unsupported, NULL is returned. Empty objects are returned as
1955 allocated but empty strings. */
1956
1957 extern char *target_get_osdata (const char *type);
1958
1959 \f
1960 /* Stuff that should be shared among the various remote targets. */
1961
1962 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1963 information (higher values, more information). */
1964 extern int remote_debug;
1965
1966 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1967 extern int baud_rate;
1968 /* Timeout limit for response from target. */
1969 extern int remote_timeout;
1970
1971 \f
1972
1973 /* Set the show memory breakpoints mode to show, and installs a cleanup
1974 to restore it back to the current value. */
1975 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1976
1977 extern int may_write_registers;
1978 extern int may_write_memory;
1979 extern int may_insert_breakpoints;
1980 extern int may_insert_tracepoints;
1981 extern int may_insert_fast_tracepoints;
1982 extern int may_stop;
1983
1984 extern void update_target_permissions (void);
1985
1986 \f
1987 /* Imported from machine dependent code. */
1988
1989 /* Blank target vector entries are initialized to target_ignore. */
1990 void target_ignore (void);
1991
1992 /* See to_supports_btrace in struct target_ops. */
1993 extern int target_supports_btrace (void);
1994
1995 /* See to_enable_btrace in struct target_ops. */
1996 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1997
1998 /* See to_disable_btrace in struct target_ops. */
1999 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2000
2001 /* See to_teardown_btrace in struct target_ops. */
2002 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2003
2004 /* See to_read_btrace in struct target_ops. */
2005 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2006 struct btrace_target_info *,
2007 enum btrace_read_type);
2008
2009 /* See to_stop_recording in struct target_ops. */
2010 extern void target_stop_recording (void);
2011
2012 /* See to_info_record in struct target_ops. */
2013 extern void target_info_record (void);
2014
2015 /* See to_save_record in struct target_ops. */
2016 extern void target_save_record (const char *filename);
2017
2018 /* Query if the target supports deleting the execution log. */
2019 extern int target_supports_delete_record (void);
2020
2021 /* See to_delete_record in struct target_ops. */
2022 extern void target_delete_record (void);
2023
2024 /* See to_record_is_replaying in struct target_ops. */
2025 extern int target_record_is_replaying (void);
2026
2027 /* See to_goto_record_begin in struct target_ops. */
2028 extern void target_goto_record_begin (void);
2029
2030 /* See to_goto_record_end in struct target_ops. */
2031 extern void target_goto_record_end (void);
2032
2033 /* See to_goto_record in struct target_ops. */
2034 extern void target_goto_record (ULONGEST insn);
2035
2036 /* See to_insn_history. */
2037 extern void target_insn_history (int size, int flags);
2038
2039 /* See to_insn_history_from. */
2040 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2041
2042 /* See to_insn_history_range. */
2043 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2044
2045 /* See to_call_history. */
2046 extern void target_call_history (int size, int flags);
2047
2048 /* See to_call_history_from. */
2049 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2050
2051 /* See to_call_history_range. */
2052 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2053
2054 #endif /* !defined (TARGET_H) */