convert to_find_memory_regions
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *)
565 TARGET_DEFAULT_IGNORE ();
566 struct target_section_table *(*to_get_section_table) (struct target_ops *);
567 enum strata to_stratum;
568 int (*to_has_all_memory) (struct target_ops *);
569 int (*to_has_memory) (struct target_ops *);
570 int (*to_has_stack) (struct target_ops *);
571 int (*to_has_registers) (struct target_ops *);
572 int (*to_has_execution) (struct target_ops *, ptid_t);
573 int to_has_thread_control; /* control thread execution */
574 int to_attach_no_wait;
575 /* ASYNC target controls */
576 int (*to_can_async_p) (struct target_ops *)
577 TARGET_DEFAULT_FUNC (find_default_can_async_p);
578 int (*to_is_async_p) (struct target_ops *)
579 TARGET_DEFAULT_FUNC (find_default_is_async_p);
580 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 int (*to_supports_non_stop) (struct target_ops *);
583 /* find_memory_regions support method for gcore */
584 int (*to_find_memory_regions) (struct target_ops *,
585 find_memory_region_ftype func, void *data)
586 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
587 /* make_corefile_notes support method for gcore */
588 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
589 /* get_bookmark support method for bookmarks */
590 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
591 /* goto_bookmark support method for bookmarks */
592 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
593 /* Return the thread-local address at OFFSET in the
594 thread-local storage for the thread PTID and the shared library
595 or executable file given by OBJFILE. If that block of
596 thread-local storage hasn't been allocated yet, this function
597 may return an error. */
598 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
599 ptid_t ptid,
600 CORE_ADDR load_module_addr,
601 CORE_ADDR offset);
602
603 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
604 OBJECT. The OFFSET, for a seekable object, specifies the
605 starting point. The ANNEX can be used to provide additional
606 data-specific information to the target.
607
608 Return the transferred status, error or OK (an
609 'enum target_xfer_status' value). Save the number of bytes
610 actually transferred in *XFERED_LEN if transfer is successful
611 (TARGET_XFER_OK) or the number unavailable bytes if the requested
612 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
613 smaller than LEN does not indicate the end of the object, only
614 the end of the transfer; higher level code should continue
615 transferring if desired. This is handled in target.c.
616
617 The interface does not support a "retry" mechanism. Instead it
618 assumes that at least one byte will be transfered on each
619 successful call.
620
621 NOTE: cagney/2003-10-17: The current interface can lead to
622 fragmented transfers. Lower target levels should not implement
623 hacks, such as enlarging the transfer, in an attempt to
624 compensate for this. Instead, the target stack should be
625 extended so that it implements supply/collect methods and a
626 look-aside object cache. With that available, the lowest
627 target can safely and freely "push" data up the stack.
628
629 See target_read and target_write for more information. One,
630 and only one, of readbuf or writebuf must be non-NULL. */
631
632 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
633 enum target_object object,
634 const char *annex,
635 gdb_byte *readbuf,
636 const gdb_byte *writebuf,
637 ULONGEST offset, ULONGEST len,
638 ULONGEST *xfered_len)
639 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
640
641 /* Returns the memory map for the target. A return value of NULL
642 means that no memory map is available. If a memory address
643 does not fall within any returned regions, it's assumed to be
644 RAM. The returned memory regions should not overlap.
645
646 The order of regions does not matter; target_memory_map will
647 sort regions by starting address. For that reason, this
648 function should not be called directly except via
649 target_memory_map.
650
651 This method should not cache data; if the memory map could
652 change unexpectedly, it should be invalidated, and higher
653 layers will re-fetch it. */
654 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
655
656 /* Erases the region of flash memory starting at ADDRESS, of
657 length LENGTH.
658
659 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
660 on flash block boundaries, as reported by 'to_memory_map'. */
661 void (*to_flash_erase) (struct target_ops *,
662 ULONGEST address, LONGEST length);
663
664 /* Finishes a flash memory write sequence. After this operation
665 all flash memory should be available for writing and the result
666 of reading from areas written by 'to_flash_write' should be
667 equal to what was written. */
668 void (*to_flash_done) (struct target_ops *);
669
670 /* Describe the architecture-specific features of this target.
671 Returns the description found, or NULL if no description
672 was available. */
673 const struct target_desc *(*to_read_description) (struct target_ops *ops);
674
675 /* Build the PTID of the thread on which a given task is running,
676 based on LWP and THREAD. These values are extracted from the
677 task Private_Data section of the Ada Task Control Block, and
678 their interpretation depends on the target. */
679 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
680 long lwp, long thread);
681
682 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
683 Return 0 if *READPTR is already at the end of the buffer.
684 Return -1 if there is insufficient buffer for a whole entry.
685 Return 1 if an entry was read into *TYPEP and *VALP. */
686 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
687 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
688
689 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
690 sequence of bytes in PATTERN with length PATTERN_LEN.
691
692 The result is 1 if found, 0 if not found, and -1 if there was an error
693 requiring halting of the search (e.g. memory read error).
694 If the pattern is found the address is recorded in FOUND_ADDRP. */
695 int (*to_search_memory) (struct target_ops *ops,
696 CORE_ADDR start_addr, ULONGEST search_space_len,
697 const gdb_byte *pattern, ULONGEST pattern_len,
698 CORE_ADDR *found_addrp);
699
700 /* Can target execute in reverse? */
701 int (*to_can_execute_reverse) (struct target_ops *);
702
703 /* The direction the target is currently executing. Must be
704 implemented on targets that support reverse execution and async
705 mode. The default simply returns forward execution. */
706 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
707
708 /* Does this target support debugging multiple processes
709 simultaneously? */
710 int (*to_supports_multi_process) (struct target_ops *);
711
712 /* Does this target support enabling and disabling tracepoints while a trace
713 experiment is running? */
714 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
715
716 /* Does this target support disabling address space randomization? */
717 int (*to_supports_disable_randomization) (struct target_ops *);
718
719 /* Does this target support the tracenz bytecode for string collection? */
720 int (*to_supports_string_tracing) (struct target_ops *);
721
722 /* Does this target support evaluation of breakpoint conditions on its
723 end? */
724 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
725
726 /* Does this target support evaluation of breakpoint commands on its
727 end? */
728 int (*to_can_run_breakpoint_commands) (struct target_ops *);
729
730 /* Determine current architecture of thread PTID.
731
732 The target is supposed to determine the architecture of the code where
733 the target is currently stopped at (on Cell, if a target is in spu_run,
734 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
735 This is architecture used to perform decr_pc_after_break adjustment,
736 and also determines the frame architecture of the innermost frame.
737 ptrace operations need to operate according to target_gdbarch ().
738
739 The default implementation always returns target_gdbarch (). */
740 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
741
742 /* Determine current address space of thread PTID.
743
744 The default implementation always returns the inferior's
745 address space. */
746 struct address_space *(*to_thread_address_space) (struct target_ops *,
747 ptid_t);
748
749 /* Target file operations. */
750
751 /* Open FILENAME on the target, using FLAGS and MODE. Return a
752 target file descriptor, or -1 if an error occurs (and set
753 *TARGET_ERRNO). */
754 int (*to_fileio_open) (struct target_ops *,
755 const char *filename, int flags, int mode,
756 int *target_errno);
757
758 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
759 Return the number of bytes written, or -1 if an error occurs
760 (and set *TARGET_ERRNO). */
761 int (*to_fileio_pwrite) (struct target_ops *,
762 int fd, const gdb_byte *write_buf, int len,
763 ULONGEST offset, int *target_errno);
764
765 /* Read up to LEN bytes FD on the target into READ_BUF.
766 Return the number of bytes read, or -1 if an error occurs
767 (and set *TARGET_ERRNO). */
768 int (*to_fileio_pread) (struct target_ops *,
769 int fd, gdb_byte *read_buf, int len,
770 ULONGEST offset, int *target_errno);
771
772 /* Close FD on the target. Return 0, or -1 if an error occurs
773 (and set *TARGET_ERRNO). */
774 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
775
776 /* Unlink FILENAME on the target. Return 0, or -1 if an error
777 occurs (and set *TARGET_ERRNO). */
778 int (*to_fileio_unlink) (struct target_ops *,
779 const char *filename, int *target_errno);
780
781 /* Read value of symbolic link FILENAME on the target. Return a
782 null-terminated string allocated via xmalloc, or NULL if an error
783 occurs (and set *TARGET_ERRNO). */
784 char *(*to_fileio_readlink) (struct target_ops *,
785 const char *filename, int *target_errno);
786
787
788 /* Implement the "info proc" command. */
789 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
790
791 /* Tracepoint-related operations. */
792
793 /* Prepare the target for a tracing run. */
794 void (*to_trace_init) (struct target_ops *);
795
796 /* Send full details of a tracepoint location to the target. */
797 void (*to_download_tracepoint) (struct target_ops *,
798 struct bp_location *location);
799
800 /* Is the target able to download tracepoint locations in current
801 state? */
802 int (*to_can_download_tracepoint) (struct target_ops *);
803
804 /* Send full details of a trace state variable to the target. */
805 void (*to_download_trace_state_variable) (struct target_ops *,
806 struct trace_state_variable *tsv);
807
808 /* Enable a tracepoint on the target. */
809 void (*to_enable_tracepoint) (struct target_ops *,
810 struct bp_location *location);
811
812 /* Disable a tracepoint on the target. */
813 void (*to_disable_tracepoint) (struct target_ops *,
814 struct bp_location *location);
815
816 /* Inform the target info of memory regions that are readonly
817 (such as text sections), and so it should return data from
818 those rather than look in the trace buffer. */
819 void (*to_trace_set_readonly_regions) (struct target_ops *);
820
821 /* Start a trace run. */
822 void (*to_trace_start) (struct target_ops *);
823
824 /* Get the current status of a tracing run. */
825 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
826
827 void (*to_get_tracepoint_status) (struct target_ops *,
828 struct breakpoint *tp,
829 struct uploaded_tp *utp);
830
831 /* Stop a trace run. */
832 void (*to_trace_stop) (struct target_ops *);
833
834 /* Ask the target to find a trace frame of the given type TYPE,
835 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
836 number of the trace frame, and also the tracepoint number at
837 TPP. If no trace frame matches, return -1. May throw if the
838 operation fails. */
839 int (*to_trace_find) (struct target_ops *,
840 enum trace_find_type type, int num,
841 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
842
843 /* Get the value of the trace state variable number TSV, returning
844 1 if the value is known and writing the value itself into the
845 location pointed to by VAL, else returning 0. */
846 int (*to_get_trace_state_variable_value) (struct target_ops *,
847 int tsv, LONGEST *val);
848
849 int (*to_save_trace_data) (struct target_ops *, const char *filename);
850
851 int (*to_upload_tracepoints) (struct target_ops *,
852 struct uploaded_tp **utpp);
853
854 int (*to_upload_trace_state_variables) (struct target_ops *,
855 struct uploaded_tsv **utsvp);
856
857 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
858 ULONGEST offset, LONGEST len);
859
860 /* Get the minimum length of instruction on which a fast tracepoint
861 may be set on the target. If this operation is unsupported,
862 return -1. If for some reason the minimum length cannot be
863 determined, return 0. */
864 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
865
866 /* Set the target's tracing behavior in response to unexpected
867 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
868 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
869 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
870 /* Set the size of trace buffer in the target. */
871 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
872
873 /* Add/change textual notes about the trace run, returning 1 if
874 successful, 0 otherwise. */
875 int (*to_set_trace_notes) (struct target_ops *,
876 const char *user, const char *notes,
877 const char *stopnotes);
878
879 /* Return the processor core that thread PTID was last seen on.
880 This information is updated only when:
881 - update_thread_list is called
882 - thread stops
883 If the core cannot be determined -- either for the specified
884 thread, or right now, or in this debug session, or for this
885 target -- return -1. */
886 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
887
888 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
889 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
890 a match, 0 if there's a mismatch, and -1 if an error is
891 encountered while reading memory. */
892 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
893 CORE_ADDR memaddr, ULONGEST size);
894
895 /* Return the address of the start of the Thread Information Block
896 a Windows OS specific feature. */
897 int (*to_get_tib_address) (struct target_ops *,
898 ptid_t ptid, CORE_ADDR *addr);
899
900 /* Send the new settings of write permission variables. */
901 void (*to_set_permissions) (struct target_ops *);
902
903 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
904 with its details. Return 1 on success, 0 on failure. */
905 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
906 struct static_tracepoint_marker *marker);
907
908 /* Return a vector of all tracepoints markers string id ID, or all
909 markers if ID is NULL. */
910 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
911 (struct target_ops *, const char *id);
912
913 /* Return a traceframe info object describing the current
914 traceframe's contents. If the target doesn't support
915 traceframe info, return NULL. If the current traceframe is not
916 selected (the current traceframe number is -1), the target can
917 choose to return either NULL or an empty traceframe info. If
918 NULL is returned, for example in remote target, GDB will read
919 from the live inferior. If an empty traceframe info is
920 returned, for example in tfile target, which means the
921 traceframe info is available, but the requested memory is not
922 available in it. GDB will try to see if the requested memory
923 is available in the read-only sections. This method should not
924 cache data; higher layers take care of caching, invalidating,
925 and re-fetching when necessary. */
926 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
927
928 /* Ask the target to use or not to use agent according to USE. Return 1
929 successful, 0 otherwise. */
930 int (*to_use_agent) (struct target_ops *, int use);
931
932 /* Is the target able to use agent in current state? */
933 int (*to_can_use_agent) (struct target_ops *);
934
935 /* Check whether the target supports branch tracing. */
936 int (*to_supports_btrace) (struct target_ops *)
937 TARGET_DEFAULT_RETURN (0);
938
939 /* Enable branch tracing for PTID and allocate a branch trace target
940 information struct for reading and for disabling branch trace. */
941 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
942 ptid_t ptid);
943
944 /* Disable branch tracing and deallocate TINFO. */
945 void (*to_disable_btrace) (struct target_ops *,
946 struct btrace_target_info *tinfo);
947
948 /* Disable branch tracing and deallocate TINFO. This function is similar
949 to to_disable_btrace, except that it is called during teardown and is
950 only allowed to perform actions that are safe. A counter-example would
951 be attempting to talk to a remote target. */
952 void (*to_teardown_btrace) (struct target_ops *,
953 struct btrace_target_info *tinfo);
954
955 /* Read branch trace data for the thread indicated by BTINFO into DATA.
956 DATA is cleared before new trace is added.
957 The branch trace will start with the most recent block and continue
958 towards older blocks. */
959 enum btrace_error (*to_read_btrace) (struct target_ops *self,
960 VEC (btrace_block_s) **data,
961 struct btrace_target_info *btinfo,
962 enum btrace_read_type type);
963
964 /* Stop trace recording. */
965 void (*to_stop_recording) (struct target_ops *);
966
967 /* Print information about the recording. */
968 void (*to_info_record) (struct target_ops *);
969
970 /* Save the recorded execution trace into a file. */
971 void (*to_save_record) (struct target_ops *, const char *filename);
972
973 /* Delete the recorded execution trace from the current position onwards. */
974 void (*to_delete_record) (struct target_ops *);
975
976 /* Query if the record target is currently replaying. */
977 int (*to_record_is_replaying) (struct target_ops *);
978
979 /* Go to the begin of the execution trace. */
980 void (*to_goto_record_begin) (struct target_ops *);
981
982 /* Go to the end of the execution trace. */
983 void (*to_goto_record_end) (struct target_ops *);
984
985 /* Go to a specific location in the recorded execution trace. */
986 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
987
988 /* Disassemble SIZE instructions in the recorded execution trace from
989 the current position.
990 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
991 disassemble SIZE succeeding instructions. */
992 void (*to_insn_history) (struct target_ops *, int size, int flags);
993
994 /* Disassemble SIZE instructions in the recorded execution trace around
995 FROM.
996 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
997 disassemble SIZE instructions after FROM. */
998 void (*to_insn_history_from) (struct target_ops *,
999 ULONGEST from, int size, int flags);
1000
1001 /* Disassemble a section of the recorded execution trace from instruction
1002 BEGIN (inclusive) to instruction END (inclusive). */
1003 void (*to_insn_history_range) (struct target_ops *,
1004 ULONGEST begin, ULONGEST end, int flags);
1005
1006 /* Print a function trace of the recorded execution trace.
1007 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1008 succeeding functions. */
1009 void (*to_call_history) (struct target_ops *, int size, int flags);
1010
1011 /* Print a function trace of the recorded execution trace starting
1012 at function FROM.
1013 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1014 SIZE functions after FROM. */
1015 void (*to_call_history_from) (struct target_ops *,
1016 ULONGEST begin, int size, int flags);
1017
1018 /* Print a function trace of an execution trace section from function BEGIN
1019 (inclusive) to function END (inclusive). */
1020 void (*to_call_history_range) (struct target_ops *,
1021 ULONGEST begin, ULONGEST end, int flags);
1022
1023 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1024 non-empty annex. */
1025 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1026
1027 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1028 it is not used. */
1029 const struct frame_unwind *to_get_unwinder;
1030 const struct frame_unwind *to_get_tailcall_unwinder;
1031
1032 /* Return the number of bytes by which the PC needs to be decremented
1033 after executing a breakpoint instruction.
1034 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1035 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1036 struct gdbarch *gdbarch);
1037
1038 int to_magic;
1039 /* Need sub-structure for target machine related rather than comm related?
1040 */
1041 };
1042
1043 /* Magic number for checking ops size. If a struct doesn't end with this
1044 number, somebody changed the declaration but didn't change all the
1045 places that initialize one. */
1046
1047 #define OPS_MAGIC 3840
1048
1049 /* The ops structure for our "current" target process. This should
1050 never be NULL. If there is no target, it points to the dummy_target. */
1051
1052 extern struct target_ops current_target;
1053
1054 /* Define easy words for doing these operations on our current target. */
1055
1056 #define target_shortname (current_target.to_shortname)
1057 #define target_longname (current_target.to_longname)
1058
1059 /* Does whatever cleanup is required for a target that we are no
1060 longer going to be calling. This routine is automatically always
1061 called after popping the target off the target stack - the target's
1062 own methods are no longer available through the target vector.
1063 Closing file descriptors and freeing all memory allocated memory are
1064 typical things it should do. */
1065
1066 void target_close (struct target_ops *targ);
1067
1068 /* Attaches to a process on the target side. Arguments are as passed
1069 to the `attach' command by the user. This routine can be called
1070 when the target is not on the target-stack, if the target_can_run
1071 routine returns 1; in that case, it must push itself onto the stack.
1072 Upon exit, the target should be ready for normal operations, and
1073 should be ready to deliver the status of the process immediately
1074 (without waiting) to an upcoming target_wait call. */
1075
1076 void target_attach (char *, int);
1077
1078 /* Some targets don't generate traps when attaching to the inferior,
1079 or their target_attach implementation takes care of the waiting.
1080 These targets must set to_attach_no_wait. */
1081
1082 #define target_attach_no_wait \
1083 (current_target.to_attach_no_wait)
1084
1085 /* The target_attach operation places a process under debugger control,
1086 and stops the process.
1087
1088 This operation provides a target-specific hook that allows the
1089 necessary bookkeeping to be performed after an attach completes. */
1090 #define target_post_attach(pid) \
1091 (*current_target.to_post_attach) (&current_target, pid)
1092
1093 /* Takes a program previously attached to and detaches it.
1094 The program may resume execution (some targets do, some don't) and will
1095 no longer stop on signals, etc. We better not have left any breakpoints
1096 in the program or it'll die when it hits one. ARGS is arguments
1097 typed by the user (e.g. a signal to send the process). FROM_TTY
1098 says whether to be verbose or not. */
1099
1100 extern void target_detach (const char *, int);
1101
1102 /* Disconnect from the current target without resuming it (leaving it
1103 waiting for a debugger). */
1104
1105 extern void target_disconnect (char *, int);
1106
1107 /* Resume execution of the target process PTID (or a group of
1108 threads). STEP says whether to single-step or to run free; SIGGNAL
1109 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1110 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1111 PTID means `step/resume only this process id'. A wildcard PTID
1112 (all threads, or all threads of process) means `step/resume
1113 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1114 matches) resume with their 'thread->suspend.stop_signal' signal
1115 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1116 if in "no pass" state. */
1117
1118 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1119
1120 /* Wait for process pid to do something. PTID = -1 to wait for any
1121 pid to do something. Return pid of child, or -1 in case of error;
1122 store status through argument pointer STATUS. Note that it is
1123 _NOT_ OK to throw_exception() out of target_wait() without popping
1124 the debugging target from the stack; GDB isn't prepared to get back
1125 to the prompt with a debugging target but without the frame cache,
1126 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1127 options. */
1128
1129 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1130 int options);
1131
1132 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1133
1134 extern void target_fetch_registers (struct regcache *regcache, int regno);
1135
1136 /* Store at least register REGNO, or all regs if REGNO == -1.
1137 It can store as many registers as it wants to, so target_prepare_to_store
1138 must have been previously called. Calls error() if there are problems. */
1139
1140 extern void target_store_registers (struct regcache *regcache, int regs);
1141
1142 /* Get ready to modify the registers array. On machines which store
1143 individual registers, this doesn't need to do anything. On machines
1144 which store all the registers in one fell swoop, this makes sure
1145 that REGISTERS contains all the registers from the program being
1146 debugged. */
1147
1148 #define target_prepare_to_store(regcache) \
1149 (*current_target.to_prepare_to_store) (&current_target, regcache)
1150
1151 /* Determine current address space of thread PTID. */
1152
1153 struct address_space *target_thread_address_space (ptid_t);
1154
1155 /* Implement the "info proc" command. This returns one if the request
1156 was handled, and zero otherwise. It can also throw an exception if
1157 an error was encountered while attempting to handle the
1158 request. */
1159
1160 int target_info_proc (char *, enum info_proc_what);
1161
1162 /* Returns true if this target can debug multiple processes
1163 simultaneously. */
1164
1165 #define target_supports_multi_process() \
1166 (*current_target.to_supports_multi_process) (&current_target)
1167
1168 /* Returns true if this target can disable address space randomization. */
1169
1170 int target_supports_disable_randomization (void);
1171
1172 /* Returns true if this target can enable and disable tracepoints
1173 while a trace experiment is running. */
1174
1175 #define target_supports_enable_disable_tracepoint() \
1176 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1177
1178 #define target_supports_string_tracing() \
1179 (*current_target.to_supports_string_tracing) (&current_target)
1180
1181 /* Returns true if this target can handle breakpoint conditions
1182 on its end. */
1183
1184 #define target_supports_evaluation_of_breakpoint_conditions() \
1185 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1186
1187 /* Returns true if this target can handle breakpoint commands
1188 on its end. */
1189
1190 #define target_can_run_breakpoint_commands() \
1191 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1192
1193 extern int target_read_string (CORE_ADDR, char **, int, int *);
1194
1195 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1196 ssize_t len);
1197
1198 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1199 ssize_t len);
1200
1201 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1202
1203 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1204
1205 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1206 ssize_t len);
1207
1208 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1209 ssize_t len);
1210
1211 /* Fetches the target's memory map. If one is found it is sorted
1212 and returned, after some consistency checking. Otherwise, NULL
1213 is returned. */
1214 VEC(mem_region_s) *target_memory_map (void);
1215
1216 /* Erase the specified flash region. */
1217 void target_flash_erase (ULONGEST address, LONGEST length);
1218
1219 /* Finish a sequence of flash operations. */
1220 void target_flash_done (void);
1221
1222 /* Describes a request for a memory write operation. */
1223 struct memory_write_request
1224 {
1225 /* Begining address that must be written. */
1226 ULONGEST begin;
1227 /* Past-the-end address. */
1228 ULONGEST end;
1229 /* The data to write. */
1230 gdb_byte *data;
1231 /* A callback baton for progress reporting for this request. */
1232 void *baton;
1233 };
1234 typedef struct memory_write_request memory_write_request_s;
1235 DEF_VEC_O(memory_write_request_s);
1236
1237 /* Enumeration specifying different flash preservation behaviour. */
1238 enum flash_preserve_mode
1239 {
1240 flash_preserve,
1241 flash_discard
1242 };
1243
1244 /* Write several memory blocks at once. This version can be more
1245 efficient than making several calls to target_write_memory, in
1246 particular because it can optimize accesses to flash memory.
1247
1248 Moreover, this is currently the only memory access function in gdb
1249 that supports writing to flash memory, and it should be used for
1250 all cases where access to flash memory is desirable.
1251
1252 REQUESTS is the vector (see vec.h) of memory_write_request.
1253 PRESERVE_FLASH_P indicates what to do with blocks which must be
1254 erased, but not completely rewritten.
1255 PROGRESS_CB is a function that will be periodically called to provide
1256 feedback to user. It will be called with the baton corresponding
1257 to the request currently being written. It may also be called
1258 with a NULL baton, when preserved flash sectors are being rewritten.
1259
1260 The function returns 0 on success, and error otherwise. */
1261 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1262 enum flash_preserve_mode preserve_flash_p,
1263 void (*progress_cb) (ULONGEST, void *));
1264
1265 /* Print a line about the current target. */
1266
1267 #define target_files_info() \
1268 (*current_target.to_files_info) (&current_target)
1269
1270 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1271 the target machine. Returns 0 for success, and returns non-zero or
1272 throws an error (with a detailed failure reason error code and
1273 message) otherwise. */
1274
1275 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1276 struct bp_target_info *bp_tgt);
1277
1278 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1279 machine. Result is 0 for success, non-zero for error. */
1280
1281 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1282 struct bp_target_info *bp_tgt);
1283
1284 /* Initialize the terminal settings we record for the inferior,
1285 before we actually run the inferior. */
1286
1287 #define target_terminal_init() \
1288 (*current_target.to_terminal_init) (&current_target)
1289
1290 /* Put the inferior's terminal settings into effect.
1291 This is preparation for starting or resuming the inferior. */
1292
1293 extern void target_terminal_inferior (void);
1294
1295 /* Put some of our terminal settings into effect,
1296 enough to get proper results from our output,
1297 but do not change into or out of RAW mode
1298 so that no input is discarded.
1299
1300 After doing this, either terminal_ours or terminal_inferior
1301 should be called to get back to a normal state of affairs. */
1302
1303 #define target_terminal_ours_for_output() \
1304 (*current_target.to_terminal_ours_for_output) (&current_target)
1305
1306 /* Put our terminal settings into effect.
1307 First record the inferior's terminal settings
1308 so they can be restored properly later. */
1309
1310 #define target_terminal_ours() \
1311 (*current_target.to_terminal_ours) (&current_target)
1312
1313 /* Save our terminal settings.
1314 This is called from TUI after entering or leaving the curses
1315 mode. Since curses modifies our terminal this call is here
1316 to take this change into account. */
1317
1318 #define target_terminal_save_ours() \
1319 (*current_target.to_terminal_save_ours) (&current_target)
1320
1321 /* Print useful information about our terminal status, if such a thing
1322 exists. */
1323
1324 #define target_terminal_info(arg, from_tty) \
1325 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1326
1327 /* Kill the inferior process. Make it go away. */
1328
1329 extern void target_kill (void);
1330
1331 /* Load an executable file into the target process. This is expected
1332 to not only bring new code into the target process, but also to
1333 update GDB's symbol tables to match.
1334
1335 ARG contains command-line arguments, to be broken down with
1336 buildargv (). The first non-switch argument is the filename to
1337 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1338 0)), which is an offset to apply to the load addresses of FILE's
1339 sections. The target may define switches, or other non-switch
1340 arguments, as it pleases. */
1341
1342 extern void target_load (char *arg, int from_tty);
1343
1344 /* Start an inferior process and set inferior_ptid to its pid.
1345 EXEC_FILE is the file to run.
1346 ALLARGS is a string containing the arguments to the program.
1347 ENV is the environment vector to pass. Errors reported with error().
1348 On VxWorks and various standalone systems, we ignore exec_file. */
1349
1350 void target_create_inferior (char *exec_file, char *args,
1351 char **env, int from_tty);
1352
1353 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1354 notification of inferior events such as fork and vork immediately
1355 after the inferior is created. (This because of how gdb gets an
1356 inferior created via invoking a shell to do it. In such a scenario,
1357 if the shell init file has commands in it, the shell will fork and
1358 exec for each of those commands, and we will see each such fork
1359 event. Very bad.)
1360
1361 Such targets will supply an appropriate definition for this function. */
1362
1363 #define target_post_startup_inferior(ptid) \
1364 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1365
1366 /* On some targets, we can catch an inferior fork or vfork event when
1367 it occurs. These functions insert/remove an already-created
1368 catchpoint for such events. They return 0 for success, 1 if the
1369 catchpoint type is not supported and -1 for failure. */
1370
1371 #define target_insert_fork_catchpoint(pid) \
1372 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1373
1374 #define target_remove_fork_catchpoint(pid) \
1375 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1376
1377 #define target_insert_vfork_catchpoint(pid) \
1378 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1379
1380 #define target_remove_vfork_catchpoint(pid) \
1381 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1382
1383 /* If the inferior forks or vforks, this function will be called at
1384 the next resume in order to perform any bookkeeping and fiddling
1385 necessary to continue debugging either the parent or child, as
1386 requested, and releasing the other. Information about the fork
1387 or vfork event is available via get_last_target_status ().
1388 This function returns 1 if the inferior should not be resumed
1389 (i.e. there is another event pending). */
1390
1391 int target_follow_fork (int follow_child, int detach_fork);
1392
1393 /* On some targets, we can catch an inferior exec event when it
1394 occurs. These functions insert/remove an already-created
1395 catchpoint for such events. They return 0 for success, 1 if the
1396 catchpoint type is not supported and -1 for failure. */
1397
1398 #define target_insert_exec_catchpoint(pid) \
1399 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1400
1401 #define target_remove_exec_catchpoint(pid) \
1402 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1403
1404 /* Syscall catch.
1405
1406 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1407 If NEEDED is zero, it means the target can disable the mechanism to
1408 catch system calls because there are no more catchpoints of this type.
1409
1410 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1411 being requested. In this case, both TABLE_SIZE and TABLE should
1412 be ignored.
1413
1414 TABLE_SIZE is the number of elements in TABLE. It only matters if
1415 ANY_COUNT is zero.
1416
1417 TABLE is an array of ints, indexed by syscall number. An element in
1418 this array is nonzero if that syscall should be caught. This argument
1419 only matters if ANY_COUNT is zero.
1420
1421 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1422 for failure. */
1423
1424 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1425 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1426 pid, needed, any_count, \
1427 table_size, table)
1428
1429 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1430 exit code of PID, if any. */
1431
1432 #define target_has_exited(pid,wait_status,exit_status) \
1433 (*current_target.to_has_exited) (&current_target, \
1434 pid,wait_status,exit_status)
1435
1436 /* The debugger has completed a blocking wait() call. There is now
1437 some process event that must be processed. This function should
1438 be defined by those targets that require the debugger to perform
1439 cleanup or internal state changes in response to the process event. */
1440
1441 /* The inferior process has died. Do what is right. */
1442
1443 void target_mourn_inferior (void);
1444
1445 /* Does target have enough data to do a run or attach command? */
1446
1447 #define target_can_run(t) \
1448 ((t)->to_can_run) (t)
1449
1450 /* Set list of signals to be handled in the target.
1451
1452 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1453 (enum gdb_signal). For every signal whose entry in this array is
1454 non-zero, the target is allowed -but not required- to skip reporting
1455 arrival of the signal to the GDB core by returning from target_wait,
1456 and to pass the signal directly to the inferior instead.
1457
1458 However, if the target is hardware single-stepping a thread that is
1459 about to receive a signal, it needs to be reported in any case, even
1460 if mentioned in a previous target_pass_signals call. */
1461
1462 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1463
1464 /* Set list of signals the target may pass to the inferior. This
1465 directly maps to the "handle SIGNAL pass/nopass" setting.
1466
1467 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1468 number (enum gdb_signal). For every signal whose entry in this
1469 array is non-zero, the target is allowed to pass the signal to the
1470 inferior. Signals not present in the array shall be silently
1471 discarded. This does not influence whether to pass signals to the
1472 inferior as a result of a target_resume call. This is useful in
1473 scenarios where the target needs to decide whether to pass or not a
1474 signal to the inferior without GDB core involvement, such as for
1475 example, when detaching (as threads may have been suspended with
1476 pending signals not reported to GDB). */
1477
1478 extern void target_program_signals (int nsig, unsigned char *program_signals);
1479
1480 /* Check to see if a thread is still alive. */
1481
1482 extern int target_thread_alive (ptid_t ptid);
1483
1484 /* Query for new threads and add them to the thread list. */
1485
1486 extern void target_find_new_threads (void);
1487
1488 /* Make target stop in a continuable fashion. (For instance, under
1489 Unix, this should act like SIGSTOP). This function is normally
1490 used by GUIs to implement a stop button. */
1491
1492 extern void target_stop (ptid_t ptid);
1493
1494 /* Send the specified COMMAND to the target's monitor
1495 (shell,interpreter) for execution. The result of the query is
1496 placed in OUTBUF. */
1497
1498 #define target_rcmd(command, outbuf) \
1499 (*current_target.to_rcmd) (&current_target, command, outbuf)
1500
1501
1502 /* Does the target include all of memory, or only part of it? This
1503 determines whether we look up the target chain for other parts of
1504 memory if this target can't satisfy a request. */
1505
1506 extern int target_has_all_memory_1 (void);
1507 #define target_has_all_memory target_has_all_memory_1 ()
1508
1509 /* Does the target include memory? (Dummy targets don't.) */
1510
1511 extern int target_has_memory_1 (void);
1512 #define target_has_memory target_has_memory_1 ()
1513
1514 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1515 we start a process.) */
1516
1517 extern int target_has_stack_1 (void);
1518 #define target_has_stack target_has_stack_1 ()
1519
1520 /* Does the target have registers? (Exec files don't.) */
1521
1522 extern int target_has_registers_1 (void);
1523 #define target_has_registers target_has_registers_1 ()
1524
1525 /* Does the target have execution? Can we make it jump (through
1526 hoops), or pop its stack a few times? This means that the current
1527 target is currently executing; for some targets, that's the same as
1528 whether or not the target is capable of execution, but there are
1529 also targets which can be current while not executing. In that
1530 case this will become true after target_create_inferior or
1531 target_attach. */
1532
1533 extern int target_has_execution_1 (ptid_t);
1534
1535 /* Like target_has_execution_1, but always passes inferior_ptid. */
1536
1537 extern int target_has_execution_current (void);
1538
1539 #define target_has_execution target_has_execution_current ()
1540
1541 /* Default implementations for process_stratum targets. Return true
1542 if there's a selected inferior, false otherwise. */
1543
1544 extern int default_child_has_all_memory (struct target_ops *ops);
1545 extern int default_child_has_memory (struct target_ops *ops);
1546 extern int default_child_has_stack (struct target_ops *ops);
1547 extern int default_child_has_registers (struct target_ops *ops);
1548 extern int default_child_has_execution (struct target_ops *ops,
1549 ptid_t the_ptid);
1550
1551 /* Can the target support the debugger control of thread execution?
1552 Can it lock the thread scheduler? */
1553
1554 #define target_can_lock_scheduler \
1555 (current_target.to_has_thread_control & tc_schedlock)
1556
1557 /* Should the target enable async mode if it is supported? Temporary
1558 cludge until async mode is a strict superset of sync mode. */
1559 extern int target_async_permitted;
1560
1561 /* Can the target support asynchronous execution? */
1562 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1563
1564 /* Is the target in asynchronous execution mode? */
1565 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1566
1567 int target_supports_non_stop (void);
1568
1569 /* Put the target in async mode with the specified callback function. */
1570 #define target_async(CALLBACK,CONTEXT) \
1571 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1572
1573 #define target_execution_direction() \
1574 (current_target.to_execution_direction (&current_target))
1575
1576 /* Converts a process id to a string. Usually, the string just contains
1577 `process xyz', but on some systems it may contain
1578 `process xyz thread abc'. */
1579
1580 extern char *target_pid_to_str (ptid_t ptid);
1581
1582 extern char *normal_pid_to_str (ptid_t ptid);
1583
1584 /* Return a short string describing extra information about PID,
1585 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1586 is okay. */
1587
1588 #define target_extra_thread_info(TP) \
1589 (current_target.to_extra_thread_info (&current_target, TP))
1590
1591 /* Return the thread's name. A NULL result means that the target
1592 could not determine this thread's name. */
1593
1594 extern char *target_thread_name (struct thread_info *);
1595
1596 /* Attempts to find the pathname of the executable file
1597 that was run to create a specified process.
1598
1599 The process PID must be stopped when this operation is used.
1600
1601 If the executable file cannot be determined, NULL is returned.
1602
1603 Else, a pointer to a character string containing the pathname
1604 is returned. This string should be copied into a buffer by
1605 the client if the string will not be immediately used, or if
1606 it must persist. */
1607
1608 #define target_pid_to_exec_file(pid) \
1609 (current_target.to_pid_to_exec_file) (&current_target, pid)
1610
1611 /* See the to_thread_architecture description in struct target_ops. */
1612
1613 #define target_thread_architecture(ptid) \
1614 (current_target.to_thread_architecture (&current_target, ptid))
1615
1616 /*
1617 * Iterator function for target memory regions.
1618 * Calls a callback function once for each memory region 'mapped'
1619 * in the child process. Defined as a simple macro rather than
1620 * as a function macro so that it can be tested for nullity.
1621 */
1622
1623 #define target_find_memory_regions(FUNC, DATA) \
1624 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1625
1626 /*
1627 * Compose corefile .note section.
1628 */
1629
1630 #define target_make_corefile_notes(BFD, SIZE_P) \
1631 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1632
1633 /* Bookmark interfaces. */
1634 #define target_get_bookmark(ARGS, FROM_TTY) \
1635 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1636
1637 #define target_goto_bookmark(ARG, FROM_TTY) \
1638 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1639
1640 /* Hardware watchpoint interfaces. */
1641
1642 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1643 write). Only the INFERIOR_PTID task is being queried. */
1644
1645 #define target_stopped_by_watchpoint() \
1646 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1647
1648 /* Non-zero if we have steppable watchpoints */
1649
1650 #define target_have_steppable_watchpoint \
1651 (current_target.to_have_steppable_watchpoint)
1652
1653 /* Non-zero if we have continuable watchpoints */
1654
1655 #define target_have_continuable_watchpoint \
1656 (current_target.to_have_continuable_watchpoint)
1657
1658 /* Provide defaults for hardware watchpoint functions. */
1659
1660 /* If the *_hw_beakpoint functions have not been defined
1661 elsewhere use the definitions in the target vector. */
1662
1663 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1664 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1665 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1666 (including this one?). OTHERTYPE is who knows what... */
1667
1668 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1669 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1670 TYPE, CNT, OTHERTYPE);
1671
1672 /* Returns the number of debug registers needed to watch the given
1673 memory region, or zero if not supported. */
1674
1675 #define target_region_ok_for_hw_watchpoint(addr, len) \
1676 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1677 addr, len)
1678
1679
1680 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1681 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1682 COND is the expression for its condition, or NULL if there's none.
1683 Returns 0 for success, 1 if the watchpoint type is not supported,
1684 -1 for failure. */
1685
1686 #define target_insert_watchpoint(addr, len, type, cond) \
1687 (*current_target.to_insert_watchpoint) (&current_target, \
1688 addr, len, type, cond)
1689
1690 #define target_remove_watchpoint(addr, len, type, cond) \
1691 (*current_target.to_remove_watchpoint) (&current_target, \
1692 addr, len, type, cond)
1693
1694 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1695 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1696 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1697 masked watchpoints are not supported, -1 for failure. */
1698
1699 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1700
1701 /* Remove a masked watchpoint at ADDR with the mask MASK.
1702 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1703 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1704 for failure. */
1705
1706 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1707
1708 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1709 the target machine. Returns 0 for success, and returns non-zero or
1710 throws an error (with a detailed failure reason error code and
1711 message) otherwise. */
1712
1713 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1714 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1715 gdbarch, bp_tgt)
1716
1717 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1718 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1719 gdbarch, bp_tgt)
1720
1721 /* Return number of debug registers needed for a ranged breakpoint,
1722 or -1 if ranged breakpoints are not supported. */
1723
1724 extern int target_ranged_break_num_registers (void);
1725
1726 /* Return non-zero if target knows the data address which triggered this
1727 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1728 INFERIOR_PTID task is being queried. */
1729 #define target_stopped_data_address(target, addr_p) \
1730 (*target.to_stopped_data_address) (target, addr_p)
1731
1732 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1733 LENGTH bytes beginning at START. */
1734 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1735 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1736
1737 /* Return non-zero if the target is capable of using hardware to evaluate
1738 the condition expression. In this case, if the condition is false when
1739 the watched memory location changes, execution may continue without the
1740 debugger being notified.
1741
1742 Due to limitations in the hardware implementation, it may be capable of
1743 avoiding triggering the watchpoint in some cases where the condition
1744 expression is false, but may report some false positives as well.
1745 For this reason, GDB will still evaluate the condition expression when
1746 the watchpoint triggers. */
1747 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1748 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1749 addr, len, type, cond)
1750
1751 /* Return number of debug registers needed for a masked watchpoint,
1752 -1 if masked watchpoints are not supported or -2 if the given address
1753 and mask combination cannot be used. */
1754
1755 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1756
1757 /* Target can execute in reverse? */
1758 #define target_can_execute_reverse \
1759 (current_target.to_can_execute_reverse ? \
1760 current_target.to_can_execute_reverse (&current_target) : 0)
1761
1762 extern const struct target_desc *target_read_description (struct target_ops *);
1763
1764 #define target_get_ada_task_ptid(lwp, tid) \
1765 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1766
1767 /* Utility implementation of searching memory. */
1768 extern int simple_search_memory (struct target_ops* ops,
1769 CORE_ADDR start_addr,
1770 ULONGEST search_space_len,
1771 const gdb_byte *pattern,
1772 ULONGEST pattern_len,
1773 CORE_ADDR *found_addrp);
1774
1775 /* Main entry point for searching memory. */
1776 extern int target_search_memory (CORE_ADDR start_addr,
1777 ULONGEST search_space_len,
1778 const gdb_byte *pattern,
1779 ULONGEST pattern_len,
1780 CORE_ADDR *found_addrp);
1781
1782 /* Target file operations. */
1783
1784 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1785 target file descriptor, or -1 if an error occurs (and set
1786 *TARGET_ERRNO). */
1787 extern int target_fileio_open (const char *filename, int flags, int mode,
1788 int *target_errno);
1789
1790 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1791 Return the number of bytes written, or -1 if an error occurs
1792 (and set *TARGET_ERRNO). */
1793 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1794 ULONGEST offset, int *target_errno);
1795
1796 /* Read up to LEN bytes FD on the target into READ_BUF.
1797 Return the number of bytes read, or -1 if an error occurs
1798 (and set *TARGET_ERRNO). */
1799 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1800 ULONGEST offset, int *target_errno);
1801
1802 /* Close FD on the target. Return 0, or -1 if an error occurs
1803 (and set *TARGET_ERRNO). */
1804 extern int target_fileio_close (int fd, int *target_errno);
1805
1806 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1807 occurs (and set *TARGET_ERRNO). */
1808 extern int target_fileio_unlink (const char *filename, int *target_errno);
1809
1810 /* Read value of symbolic link FILENAME on the target. Return a
1811 null-terminated string allocated via xmalloc, or NULL if an error
1812 occurs (and set *TARGET_ERRNO). */
1813 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1814
1815 /* Read target file FILENAME. The return value will be -1 if the transfer
1816 fails or is not supported; 0 if the object is empty; or the length
1817 of the object otherwise. If a positive value is returned, a
1818 sufficiently large buffer will be allocated using xmalloc and
1819 returned in *BUF_P containing the contents of the object.
1820
1821 This method should be used for objects sufficiently small to store
1822 in a single xmalloc'd buffer, when no fixed bound on the object's
1823 size is known in advance. */
1824 extern LONGEST target_fileio_read_alloc (const char *filename,
1825 gdb_byte **buf_p);
1826
1827 /* Read target file FILENAME. The result is NUL-terminated and
1828 returned as a string, allocated using xmalloc. If an error occurs
1829 or the transfer is unsupported, NULL is returned. Empty objects
1830 are returned as allocated but empty strings. A warning is issued
1831 if the result contains any embedded NUL bytes. */
1832 extern char *target_fileio_read_stralloc (const char *filename);
1833
1834
1835 /* Tracepoint-related operations. */
1836
1837 #define target_trace_init() \
1838 (*current_target.to_trace_init) (&current_target)
1839
1840 #define target_download_tracepoint(t) \
1841 (*current_target.to_download_tracepoint) (&current_target, t)
1842
1843 #define target_can_download_tracepoint() \
1844 (*current_target.to_can_download_tracepoint) (&current_target)
1845
1846 #define target_download_trace_state_variable(tsv) \
1847 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1848
1849 #define target_enable_tracepoint(loc) \
1850 (*current_target.to_enable_tracepoint) (&current_target, loc)
1851
1852 #define target_disable_tracepoint(loc) \
1853 (*current_target.to_disable_tracepoint) (&current_target, loc)
1854
1855 #define target_trace_start() \
1856 (*current_target.to_trace_start) (&current_target)
1857
1858 #define target_trace_set_readonly_regions() \
1859 (*current_target.to_trace_set_readonly_regions) (&current_target)
1860
1861 #define target_get_trace_status(ts) \
1862 (*current_target.to_get_trace_status) (&current_target, ts)
1863
1864 #define target_get_tracepoint_status(tp,utp) \
1865 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1866
1867 #define target_trace_stop() \
1868 (*current_target.to_trace_stop) (&current_target)
1869
1870 #define target_trace_find(type,num,addr1,addr2,tpp) \
1871 (*current_target.to_trace_find) (&current_target, \
1872 (type), (num), (addr1), (addr2), (tpp))
1873
1874 #define target_get_trace_state_variable_value(tsv,val) \
1875 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1876 (tsv), (val))
1877
1878 #define target_save_trace_data(filename) \
1879 (*current_target.to_save_trace_data) (&current_target, filename)
1880
1881 #define target_upload_tracepoints(utpp) \
1882 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1883
1884 #define target_upload_trace_state_variables(utsvp) \
1885 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1886
1887 #define target_get_raw_trace_data(buf,offset,len) \
1888 (*current_target.to_get_raw_trace_data) (&current_target, \
1889 (buf), (offset), (len))
1890
1891 #define target_get_min_fast_tracepoint_insn_len() \
1892 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1893
1894 #define target_set_disconnected_tracing(val) \
1895 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1896
1897 #define target_set_circular_trace_buffer(val) \
1898 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1899
1900 #define target_set_trace_buffer_size(val) \
1901 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1902
1903 #define target_set_trace_notes(user,notes,stopnotes) \
1904 (*current_target.to_set_trace_notes) (&current_target, \
1905 (user), (notes), (stopnotes))
1906
1907 #define target_get_tib_address(ptid, addr) \
1908 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1909
1910 #define target_set_permissions() \
1911 (*current_target.to_set_permissions) (&current_target)
1912
1913 #define target_static_tracepoint_marker_at(addr, marker) \
1914 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1915 addr, marker)
1916
1917 #define target_static_tracepoint_markers_by_strid(marker_id) \
1918 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1919 marker_id)
1920
1921 #define target_traceframe_info() \
1922 (*current_target.to_traceframe_info) (&current_target)
1923
1924 #define target_use_agent(use) \
1925 (*current_target.to_use_agent) (&current_target, use)
1926
1927 #define target_can_use_agent() \
1928 (*current_target.to_can_use_agent) (&current_target)
1929
1930 #define target_augmented_libraries_svr4_read() \
1931 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1932
1933 /* Command logging facility. */
1934
1935 #define target_log_command(p) \
1936 (*current_target.to_log_command) (&current_target, p)
1937
1938
1939 extern int target_core_of_thread (ptid_t ptid);
1940
1941 /* See to_get_unwinder in struct target_ops. */
1942 extern const struct frame_unwind *target_get_unwinder (void);
1943
1944 /* See to_get_tailcall_unwinder in struct target_ops. */
1945 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1946
1947 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1948 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1949 if there's a mismatch, and -1 if an error is encountered while
1950 reading memory. Throws an error if the functionality is found not
1951 to be supported by the current target. */
1952 int target_verify_memory (const gdb_byte *data,
1953 CORE_ADDR memaddr, ULONGEST size);
1954
1955 /* Routines for maintenance of the target structures...
1956
1957 complete_target_initialization: Finalize a target_ops by filling in
1958 any fields needed by the target implementation.
1959
1960 add_target: Add a target to the list of all possible targets.
1961
1962 push_target: Make this target the top of the stack of currently used
1963 targets, within its particular stratum of the stack. Result
1964 is 0 if now atop the stack, nonzero if not on top (maybe
1965 should warn user).
1966
1967 unpush_target: Remove this from the stack of currently used targets,
1968 no matter where it is on the list. Returns 0 if no
1969 change, 1 if removed from stack. */
1970
1971 extern void add_target (struct target_ops *);
1972
1973 extern void add_target_with_completer (struct target_ops *t,
1974 completer_ftype *completer);
1975
1976 extern void complete_target_initialization (struct target_ops *t);
1977
1978 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1979 for maintaining backwards compatibility when renaming targets. */
1980
1981 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1982
1983 extern void push_target (struct target_ops *);
1984
1985 extern int unpush_target (struct target_ops *);
1986
1987 extern void target_pre_inferior (int);
1988
1989 extern void target_preopen (int);
1990
1991 /* Does whatever cleanup is required to get rid of all pushed targets. */
1992 extern void pop_all_targets (void);
1993
1994 /* Like pop_all_targets, but pops only targets whose stratum is
1995 strictly above ABOVE_STRATUM. */
1996 extern void pop_all_targets_above (enum strata above_stratum);
1997
1998 extern int target_is_pushed (struct target_ops *t);
1999
2000 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2001 CORE_ADDR offset);
2002
2003 /* Struct target_section maps address ranges to file sections. It is
2004 mostly used with BFD files, but can be used without (e.g. for handling
2005 raw disks, or files not in formats handled by BFD). */
2006
2007 struct target_section
2008 {
2009 CORE_ADDR addr; /* Lowest address in section */
2010 CORE_ADDR endaddr; /* 1+highest address in section */
2011
2012 struct bfd_section *the_bfd_section;
2013
2014 /* The "owner" of the section.
2015 It can be any unique value. It is set by add_target_sections
2016 and used by remove_target_sections.
2017 For example, for executables it is a pointer to exec_bfd and
2018 for shlibs it is the so_list pointer. */
2019 void *owner;
2020 };
2021
2022 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2023
2024 struct target_section_table
2025 {
2026 struct target_section *sections;
2027 struct target_section *sections_end;
2028 };
2029
2030 /* Return the "section" containing the specified address. */
2031 struct target_section *target_section_by_addr (struct target_ops *target,
2032 CORE_ADDR addr);
2033
2034 /* Return the target section table this target (or the targets
2035 beneath) currently manipulate. */
2036
2037 extern struct target_section_table *target_get_section_table
2038 (struct target_ops *target);
2039
2040 /* From mem-break.c */
2041
2042 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2043 struct bp_target_info *);
2044
2045 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2046 struct bp_target_info *);
2047
2048 extern int default_memory_remove_breakpoint (struct gdbarch *,
2049 struct bp_target_info *);
2050
2051 extern int default_memory_insert_breakpoint (struct gdbarch *,
2052 struct bp_target_info *);
2053
2054
2055 /* From target.c */
2056
2057 extern void initialize_targets (void);
2058
2059 extern void noprocess (void) ATTRIBUTE_NORETURN;
2060
2061 extern void target_require_runnable (void);
2062
2063 extern void find_default_attach (struct target_ops *, char *, int);
2064
2065 extern void find_default_create_inferior (struct target_ops *,
2066 char *, char *, char **, int);
2067
2068 extern struct target_ops *find_target_beneath (struct target_ops *);
2069
2070 /* Find the target at STRATUM. If no target is at that stratum,
2071 return NULL. */
2072
2073 struct target_ops *find_target_at (enum strata stratum);
2074
2075 /* Read OS data object of type TYPE from the target, and return it in
2076 XML format. The result is NUL-terminated and returned as a string,
2077 allocated using xmalloc. If an error occurs or the transfer is
2078 unsupported, NULL is returned. Empty objects are returned as
2079 allocated but empty strings. */
2080
2081 extern char *target_get_osdata (const char *type);
2082
2083 \f
2084 /* Stuff that should be shared among the various remote targets. */
2085
2086 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2087 information (higher values, more information). */
2088 extern int remote_debug;
2089
2090 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2091 extern int baud_rate;
2092 /* Timeout limit for response from target. */
2093 extern int remote_timeout;
2094
2095 \f
2096
2097 /* Set the show memory breakpoints mode to show, and installs a cleanup
2098 to restore it back to the current value. */
2099 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2100
2101 extern int may_write_registers;
2102 extern int may_write_memory;
2103 extern int may_insert_breakpoints;
2104 extern int may_insert_tracepoints;
2105 extern int may_insert_fast_tracepoints;
2106 extern int may_stop;
2107
2108 extern void update_target_permissions (void);
2109
2110 \f
2111 /* Imported from machine dependent code. */
2112
2113 /* Blank target vector entries are initialized to target_ignore. */
2114 void target_ignore (void);
2115
2116 /* See to_supports_btrace in struct target_ops. */
2117 #define target_supports_btrace() \
2118 (current_target.to_supports_btrace (&current_target))
2119
2120 /* See to_enable_btrace in struct target_ops. */
2121 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2122
2123 /* See to_disable_btrace in struct target_ops. */
2124 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2125
2126 /* See to_teardown_btrace in struct target_ops. */
2127 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2128
2129 /* See to_read_btrace in struct target_ops. */
2130 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2131 struct btrace_target_info *,
2132 enum btrace_read_type);
2133
2134 /* See to_stop_recording in struct target_ops. */
2135 extern void target_stop_recording (void);
2136
2137 /* See to_info_record in struct target_ops. */
2138 extern void target_info_record (void);
2139
2140 /* See to_save_record in struct target_ops. */
2141 extern void target_save_record (const char *filename);
2142
2143 /* Query if the target supports deleting the execution log. */
2144 extern int target_supports_delete_record (void);
2145
2146 /* See to_delete_record in struct target_ops. */
2147 extern void target_delete_record (void);
2148
2149 /* See to_record_is_replaying in struct target_ops. */
2150 extern int target_record_is_replaying (void);
2151
2152 /* See to_goto_record_begin in struct target_ops. */
2153 extern void target_goto_record_begin (void);
2154
2155 /* See to_goto_record_end in struct target_ops. */
2156 extern void target_goto_record_end (void);
2157
2158 /* See to_goto_record in struct target_ops. */
2159 extern void target_goto_record (ULONGEST insn);
2160
2161 /* See to_insn_history. */
2162 extern void target_insn_history (int size, int flags);
2163
2164 /* See to_insn_history_from. */
2165 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2166
2167 /* See to_insn_history_range. */
2168 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2169
2170 /* See to_call_history. */
2171 extern void target_call_history (int size, int flags);
2172
2173 /* See to_call_history_from. */
2174 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2175
2176 /* See to_call_history_range. */
2177 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2178
2179 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2180 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2181 struct gdbarch *gdbarch);
2182
2183 /* See to_decr_pc_after_break. */
2184 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2185
2186 #endif /* !defined (TARGET_H) */