convert to_augmented_libraries_svr4_read
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *)
565 TARGET_DEFAULT_IGNORE ();
566 struct target_section_table *(*to_get_section_table) (struct target_ops *);
567 enum strata to_stratum;
568 int (*to_has_all_memory) (struct target_ops *);
569 int (*to_has_memory) (struct target_ops *);
570 int (*to_has_stack) (struct target_ops *);
571 int (*to_has_registers) (struct target_ops *);
572 int (*to_has_execution) (struct target_ops *, ptid_t);
573 int to_has_thread_control; /* control thread execution */
574 int to_attach_no_wait;
575 /* ASYNC target controls */
576 int (*to_can_async_p) (struct target_ops *)
577 TARGET_DEFAULT_FUNC (find_default_can_async_p);
578 int (*to_is_async_p) (struct target_ops *)
579 TARGET_DEFAULT_FUNC (find_default_is_async_p);
580 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 int (*to_supports_non_stop) (struct target_ops *);
583 /* find_memory_regions support method for gcore */
584 int (*to_find_memory_regions) (struct target_ops *,
585 find_memory_region_ftype func, void *data)
586 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
587 /* make_corefile_notes support method for gcore */
588 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
589 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
590 /* get_bookmark support method for bookmarks */
591 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
592 TARGET_DEFAULT_NORETURN (tcomplain ());
593 /* goto_bookmark support method for bookmarks */
594 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 /* Return the thread-local address at OFFSET in the
597 thread-local storage for the thread PTID and the shared library
598 or executable file given by OBJFILE. If that block of
599 thread-local storage hasn't been allocated yet, this function
600 may return an error. */
601 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
602 ptid_t ptid,
603 CORE_ADDR load_module_addr,
604 CORE_ADDR offset);
605
606 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
607 OBJECT. The OFFSET, for a seekable object, specifies the
608 starting point. The ANNEX can be used to provide additional
609 data-specific information to the target.
610
611 Return the transferred status, error or OK (an
612 'enum target_xfer_status' value). Save the number of bytes
613 actually transferred in *XFERED_LEN if transfer is successful
614 (TARGET_XFER_OK) or the number unavailable bytes if the requested
615 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
616 smaller than LEN does not indicate the end of the object, only
617 the end of the transfer; higher level code should continue
618 transferring if desired. This is handled in target.c.
619
620 The interface does not support a "retry" mechanism. Instead it
621 assumes that at least one byte will be transfered on each
622 successful call.
623
624 NOTE: cagney/2003-10-17: The current interface can lead to
625 fragmented transfers. Lower target levels should not implement
626 hacks, such as enlarging the transfer, in an attempt to
627 compensate for this. Instead, the target stack should be
628 extended so that it implements supply/collect methods and a
629 look-aside object cache. With that available, the lowest
630 target can safely and freely "push" data up the stack.
631
632 See target_read and target_write for more information. One,
633 and only one, of readbuf or writebuf must be non-NULL. */
634
635 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
636 enum target_object object,
637 const char *annex,
638 gdb_byte *readbuf,
639 const gdb_byte *writebuf,
640 ULONGEST offset, ULONGEST len,
641 ULONGEST *xfered_len)
642 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
643
644 /* Returns the memory map for the target. A return value of NULL
645 means that no memory map is available. If a memory address
646 does not fall within any returned regions, it's assumed to be
647 RAM. The returned memory regions should not overlap.
648
649 The order of regions does not matter; target_memory_map will
650 sort regions by starting address. For that reason, this
651 function should not be called directly except via
652 target_memory_map.
653
654 This method should not cache data; if the memory map could
655 change unexpectedly, it should be invalidated, and higher
656 layers will re-fetch it. */
657 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
658
659 /* Erases the region of flash memory starting at ADDRESS, of
660 length LENGTH.
661
662 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
663 on flash block boundaries, as reported by 'to_memory_map'. */
664 void (*to_flash_erase) (struct target_ops *,
665 ULONGEST address, LONGEST length);
666
667 /* Finishes a flash memory write sequence. After this operation
668 all flash memory should be available for writing and the result
669 of reading from areas written by 'to_flash_write' should be
670 equal to what was written. */
671 void (*to_flash_done) (struct target_ops *);
672
673 /* Describe the architecture-specific features of this target.
674 Returns the description found, or NULL if no description
675 was available. */
676 const struct target_desc *(*to_read_description) (struct target_ops *ops);
677
678 /* Build the PTID of the thread on which a given task is running,
679 based on LWP and THREAD. These values are extracted from the
680 task Private_Data section of the Ada Task Control Block, and
681 their interpretation depends on the target. */
682 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
683 long lwp, long thread)
684 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
685
686 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
687 Return 0 if *READPTR is already at the end of the buffer.
688 Return -1 if there is insufficient buffer for a whole entry.
689 Return 1 if an entry was read into *TYPEP and *VALP. */
690 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
691 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
692
693 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
694 sequence of bytes in PATTERN with length PATTERN_LEN.
695
696 The result is 1 if found, 0 if not found, and -1 if there was an error
697 requiring halting of the search (e.g. memory read error).
698 If the pattern is found the address is recorded in FOUND_ADDRP. */
699 int (*to_search_memory) (struct target_ops *ops,
700 CORE_ADDR start_addr, ULONGEST search_space_len,
701 const gdb_byte *pattern, ULONGEST pattern_len,
702 CORE_ADDR *found_addrp);
703
704 /* Can target execute in reverse? */
705 int (*to_can_execute_reverse) (struct target_ops *)
706 TARGET_DEFAULT_RETURN (0);
707
708 /* The direction the target is currently executing. Must be
709 implemented on targets that support reverse execution and async
710 mode. The default simply returns forward execution. */
711 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
712 TARGET_DEFAULT_FUNC (default_execution_direction);
713
714 /* Does this target support debugging multiple processes
715 simultaneously? */
716 int (*to_supports_multi_process) (struct target_ops *)
717 TARGET_DEFAULT_RETURN (0);
718
719 /* Does this target support enabling and disabling tracepoints while a trace
720 experiment is running? */
721 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
722 TARGET_DEFAULT_RETURN (0);
723
724 /* Does this target support disabling address space randomization? */
725 int (*to_supports_disable_randomization) (struct target_ops *);
726
727 /* Does this target support the tracenz bytecode for string collection? */
728 int (*to_supports_string_tracing) (struct target_ops *)
729 TARGET_DEFAULT_RETURN (0);
730
731 /* Does this target support evaluation of breakpoint conditions on its
732 end? */
733 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
734
735 /* Does this target support evaluation of breakpoint commands on its
736 end? */
737 int (*to_can_run_breakpoint_commands) (struct target_ops *);
738
739 /* Determine current architecture of thread PTID.
740
741 The target is supposed to determine the architecture of the code where
742 the target is currently stopped at (on Cell, if a target is in spu_run,
743 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
744 This is architecture used to perform decr_pc_after_break adjustment,
745 and also determines the frame architecture of the innermost frame.
746 ptrace operations need to operate according to target_gdbarch ().
747
748 The default implementation always returns target_gdbarch (). */
749 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
750 TARGET_DEFAULT_FUNC (default_thread_architecture);
751
752 /* Determine current address space of thread PTID.
753
754 The default implementation always returns the inferior's
755 address space. */
756 struct address_space *(*to_thread_address_space) (struct target_ops *,
757 ptid_t);
758
759 /* Target file operations. */
760
761 /* Open FILENAME on the target, using FLAGS and MODE. Return a
762 target file descriptor, or -1 if an error occurs (and set
763 *TARGET_ERRNO). */
764 int (*to_fileio_open) (struct target_ops *,
765 const char *filename, int flags, int mode,
766 int *target_errno);
767
768 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
769 Return the number of bytes written, or -1 if an error occurs
770 (and set *TARGET_ERRNO). */
771 int (*to_fileio_pwrite) (struct target_ops *,
772 int fd, const gdb_byte *write_buf, int len,
773 ULONGEST offset, int *target_errno);
774
775 /* Read up to LEN bytes FD on the target into READ_BUF.
776 Return the number of bytes read, or -1 if an error occurs
777 (and set *TARGET_ERRNO). */
778 int (*to_fileio_pread) (struct target_ops *,
779 int fd, gdb_byte *read_buf, int len,
780 ULONGEST offset, int *target_errno);
781
782 /* Close FD on the target. Return 0, or -1 if an error occurs
783 (and set *TARGET_ERRNO). */
784 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
785
786 /* Unlink FILENAME on the target. Return 0, or -1 if an error
787 occurs (and set *TARGET_ERRNO). */
788 int (*to_fileio_unlink) (struct target_ops *,
789 const char *filename, int *target_errno);
790
791 /* Read value of symbolic link FILENAME on the target. Return a
792 null-terminated string allocated via xmalloc, or NULL if an error
793 occurs (and set *TARGET_ERRNO). */
794 char *(*to_fileio_readlink) (struct target_ops *,
795 const char *filename, int *target_errno);
796
797
798 /* Implement the "info proc" command. */
799 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
800
801 /* Tracepoint-related operations. */
802
803 /* Prepare the target for a tracing run. */
804 void (*to_trace_init) (struct target_ops *)
805 TARGET_DEFAULT_NORETURN (tcomplain ());
806
807 /* Send full details of a tracepoint location to the target. */
808 void (*to_download_tracepoint) (struct target_ops *,
809 struct bp_location *location)
810 TARGET_DEFAULT_NORETURN (tcomplain ());
811
812 /* Is the target able to download tracepoint locations in current
813 state? */
814 int (*to_can_download_tracepoint) (struct target_ops *)
815 TARGET_DEFAULT_RETURN (0);
816
817 /* Send full details of a trace state variable to the target. */
818 void (*to_download_trace_state_variable) (struct target_ops *,
819 struct trace_state_variable *tsv)
820 TARGET_DEFAULT_NORETURN (tcomplain ());
821
822 /* Enable a tracepoint on the target. */
823 void (*to_enable_tracepoint) (struct target_ops *,
824 struct bp_location *location)
825 TARGET_DEFAULT_NORETURN (tcomplain ());
826
827 /* Disable a tracepoint on the target. */
828 void (*to_disable_tracepoint) (struct target_ops *,
829 struct bp_location *location)
830 TARGET_DEFAULT_NORETURN (tcomplain ());
831
832 /* Inform the target info of memory regions that are readonly
833 (such as text sections), and so it should return data from
834 those rather than look in the trace buffer. */
835 void (*to_trace_set_readonly_regions) (struct target_ops *)
836 TARGET_DEFAULT_NORETURN (tcomplain ());
837
838 /* Start a trace run. */
839 void (*to_trace_start) (struct target_ops *)
840 TARGET_DEFAULT_NORETURN (tcomplain ());
841
842 /* Get the current status of a tracing run. */
843 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
844 TARGET_DEFAULT_RETURN (-1);
845
846 void (*to_get_tracepoint_status) (struct target_ops *,
847 struct breakpoint *tp,
848 struct uploaded_tp *utp)
849 TARGET_DEFAULT_NORETURN (tcomplain ());
850
851 /* Stop a trace run. */
852 void (*to_trace_stop) (struct target_ops *)
853 TARGET_DEFAULT_NORETURN (tcomplain ());
854
855 /* Ask the target to find a trace frame of the given type TYPE,
856 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
857 number of the trace frame, and also the tracepoint number at
858 TPP. If no trace frame matches, return -1. May throw if the
859 operation fails. */
860 int (*to_trace_find) (struct target_ops *,
861 enum trace_find_type type, int num,
862 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
863 TARGET_DEFAULT_RETURN (-1);
864
865 /* Get the value of the trace state variable number TSV, returning
866 1 if the value is known and writing the value itself into the
867 location pointed to by VAL, else returning 0. */
868 int (*to_get_trace_state_variable_value) (struct target_ops *,
869 int tsv, LONGEST *val)
870 TARGET_DEFAULT_RETURN (0);
871
872 int (*to_save_trace_data) (struct target_ops *, const char *filename)
873 TARGET_DEFAULT_NORETURN (tcomplain ());
874
875 int (*to_upload_tracepoints) (struct target_ops *,
876 struct uploaded_tp **utpp)
877 TARGET_DEFAULT_RETURN (0);
878
879 int (*to_upload_trace_state_variables) (struct target_ops *,
880 struct uploaded_tsv **utsvp)
881 TARGET_DEFAULT_RETURN (0);
882
883 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
884 ULONGEST offset, LONGEST len)
885 TARGET_DEFAULT_NORETURN (tcomplain ());
886
887 /* Get the minimum length of instruction on which a fast tracepoint
888 may be set on the target. If this operation is unsupported,
889 return -1. If for some reason the minimum length cannot be
890 determined, return 0. */
891 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
892 TARGET_DEFAULT_RETURN (-1);
893
894 /* Set the target's tracing behavior in response to unexpected
895 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
896 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
897 TARGET_DEFAULT_IGNORE ();
898 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
899 TARGET_DEFAULT_IGNORE ();
900 /* Set the size of trace buffer in the target. */
901 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
902 TARGET_DEFAULT_IGNORE ();
903
904 /* Add/change textual notes about the trace run, returning 1 if
905 successful, 0 otherwise. */
906 int (*to_set_trace_notes) (struct target_ops *,
907 const char *user, const char *notes,
908 const char *stopnotes)
909 TARGET_DEFAULT_RETURN (0);
910
911 /* Return the processor core that thread PTID was last seen on.
912 This information is updated only when:
913 - update_thread_list is called
914 - thread stops
915 If the core cannot be determined -- either for the specified
916 thread, or right now, or in this debug session, or for this
917 target -- return -1. */
918 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
919
920 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
921 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
922 a match, 0 if there's a mismatch, and -1 if an error is
923 encountered while reading memory. */
924 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
925 CORE_ADDR memaddr, ULONGEST size);
926
927 /* Return the address of the start of the Thread Information Block
928 a Windows OS specific feature. */
929 int (*to_get_tib_address) (struct target_ops *,
930 ptid_t ptid, CORE_ADDR *addr)
931 TARGET_DEFAULT_NORETURN (tcomplain ());
932
933 /* Send the new settings of write permission variables. */
934 void (*to_set_permissions) (struct target_ops *)
935 TARGET_DEFAULT_IGNORE ();
936
937 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
938 with its details. Return 1 on success, 0 on failure. */
939 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
940 struct static_tracepoint_marker *marker)
941 TARGET_DEFAULT_RETURN (0);
942
943 /* Return a vector of all tracepoints markers string id ID, or all
944 markers if ID is NULL. */
945 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
946 TARGET_DEFAULT_NORETURN (tcomplain ());
947
948 /* Return a traceframe info object describing the current
949 traceframe's contents. If the target doesn't support
950 traceframe info, return NULL. If the current traceframe is not
951 selected (the current traceframe number is -1), the target can
952 choose to return either NULL or an empty traceframe info. If
953 NULL is returned, for example in remote target, GDB will read
954 from the live inferior. If an empty traceframe info is
955 returned, for example in tfile target, which means the
956 traceframe info is available, but the requested memory is not
957 available in it. GDB will try to see if the requested memory
958 is available in the read-only sections. This method should not
959 cache data; higher layers take care of caching, invalidating,
960 and re-fetching when necessary. */
961 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
962 TARGET_DEFAULT_RETURN (0);
963
964 /* Ask the target to use or not to use agent according to USE. Return 1
965 successful, 0 otherwise. */
966 int (*to_use_agent) (struct target_ops *, int use)
967 TARGET_DEFAULT_NORETURN (tcomplain ());
968
969 /* Is the target able to use agent in current state? */
970 int (*to_can_use_agent) (struct target_ops *)
971 TARGET_DEFAULT_RETURN (0);
972
973 /* Check whether the target supports branch tracing. */
974 int (*to_supports_btrace) (struct target_ops *)
975 TARGET_DEFAULT_RETURN (0);
976
977 /* Enable branch tracing for PTID and allocate a branch trace target
978 information struct for reading and for disabling branch trace. */
979 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
980 ptid_t ptid);
981
982 /* Disable branch tracing and deallocate TINFO. */
983 void (*to_disable_btrace) (struct target_ops *,
984 struct btrace_target_info *tinfo);
985
986 /* Disable branch tracing and deallocate TINFO. This function is similar
987 to to_disable_btrace, except that it is called during teardown and is
988 only allowed to perform actions that are safe. A counter-example would
989 be attempting to talk to a remote target. */
990 void (*to_teardown_btrace) (struct target_ops *,
991 struct btrace_target_info *tinfo);
992
993 /* Read branch trace data for the thread indicated by BTINFO into DATA.
994 DATA is cleared before new trace is added.
995 The branch trace will start with the most recent block and continue
996 towards older blocks. */
997 enum btrace_error (*to_read_btrace) (struct target_ops *self,
998 VEC (btrace_block_s) **data,
999 struct btrace_target_info *btinfo,
1000 enum btrace_read_type type);
1001
1002 /* Stop trace recording. */
1003 void (*to_stop_recording) (struct target_ops *);
1004
1005 /* Print information about the recording. */
1006 void (*to_info_record) (struct target_ops *);
1007
1008 /* Save the recorded execution trace into a file. */
1009 void (*to_save_record) (struct target_ops *, const char *filename);
1010
1011 /* Delete the recorded execution trace from the current position onwards. */
1012 void (*to_delete_record) (struct target_ops *);
1013
1014 /* Query if the record target is currently replaying. */
1015 int (*to_record_is_replaying) (struct target_ops *);
1016
1017 /* Go to the begin of the execution trace. */
1018 void (*to_goto_record_begin) (struct target_ops *);
1019
1020 /* Go to the end of the execution trace. */
1021 void (*to_goto_record_end) (struct target_ops *);
1022
1023 /* Go to a specific location in the recorded execution trace. */
1024 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1025
1026 /* Disassemble SIZE instructions in the recorded execution trace from
1027 the current position.
1028 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1029 disassemble SIZE succeeding instructions. */
1030 void (*to_insn_history) (struct target_ops *, int size, int flags);
1031
1032 /* Disassemble SIZE instructions in the recorded execution trace around
1033 FROM.
1034 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1035 disassemble SIZE instructions after FROM. */
1036 void (*to_insn_history_from) (struct target_ops *,
1037 ULONGEST from, int size, int flags);
1038
1039 /* Disassemble a section of the recorded execution trace from instruction
1040 BEGIN (inclusive) to instruction END (inclusive). */
1041 void (*to_insn_history_range) (struct target_ops *,
1042 ULONGEST begin, ULONGEST end, int flags);
1043
1044 /* Print a function trace of the recorded execution trace.
1045 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1046 succeeding functions. */
1047 void (*to_call_history) (struct target_ops *, int size, int flags);
1048
1049 /* Print a function trace of the recorded execution trace starting
1050 at function FROM.
1051 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1052 SIZE functions after FROM. */
1053 void (*to_call_history_from) (struct target_ops *,
1054 ULONGEST begin, int size, int flags);
1055
1056 /* Print a function trace of an execution trace section from function BEGIN
1057 (inclusive) to function END (inclusive). */
1058 void (*to_call_history_range) (struct target_ops *,
1059 ULONGEST begin, ULONGEST end, int flags);
1060
1061 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1062 non-empty annex. */
1063 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1064 TARGET_DEFAULT_RETURN (0);
1065
1066 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1067 it is not used. */
1068 const struct frame_unwind *to_get_unwinder;
1069 const struct frame_unwind *to_get_tailcall_unwinder;
1070
1071 /* Return the number of bytes by which the PC needs to be decremented
1072 after executing a breakpoint instruction.
1073 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1074 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1075 struct gdbarch *gdbarch);
1076
1077 int to_magic;
1078 /* Need sub-structure for target machine related rather than comm related?
1079 */
1080 };
1081
1082 /* Magic number for checking ops size. If a struct doesn't end with this
1083 number, somebody changed the declaration but didn't change all the
1084 places that initialize one. */
1085
1086 #define OPS_MAGIC 3840
1087
1088 /* The ops structure for our "current" target process. This should
1089 never be NULL. If there is no target, it points to the dummy_target. */
1090
1091 extern struct target_ops current_target;
1092
1093 /* Define easy words for doing these operations on our current target. */
1094
1095 #define target_shortname (current_target.to_shortname)
1096 #define target_longname (current_target.to_longname)
1097
1098 /* Does whatever cleanup is required for a target that we are no
1099 longer going to be calling. This routine is automatically always
1100 called after popping the target off the target stack - the target's
1101 own methods are no longer available through the target vector.
1102 Closing file descriptors and freeing all memory allocated memory are
1103 typical things it should do. */
1104
1105 void target_close (struct target_ops *targ);
1106
1107 /* Attaches to a process on the target side. Arguments are as passed
1108 to the `attach' command by the user. This routine can be called
1109 when the target is not on the target-stack, if the target_can_run
1110 routine returns 1; in that case, it must push itself onto the stack.
1111 Upon exit, the target should be ready for normal operations, and
1112 should be ready to deliver the status of the process immediately
1113 (without waiting) to an upcoming target_wait call. */
1114
1115 void target_attach (char *, int);
1116
1117 /* Some targets don't generate traps when attaching to the inferior,
1118 or their target_attach implementation takes care of the waiting.
1119 These targets must set to_attach_no_wait. */
1120
1121 #define target_attach_no_wait \
1122 (current_target.to_attach_no_wait)
1123
1124 /* The target_attach operation places a process under debugger control,
1125 and stops the process.
1126
1127 This operation provides a target-specific hook that allows the
1128 necessary bookkeeping to be performed after an attach completes. */
1129 #define target_post_attach(pid) \
1130 (*current_target.to_post_attach) (&current_target, pid)
1131
1132 /* Takes a program previously attached to and detaches it.
1133 The program may resume execution (some targets do, some don't) and will
1134 no longer stop on signals, etc. We better not have left any breakpoints
1135 in the program or it'll die when it hits one. ARGS is arguments
1136 typed by the user (e.g. a signal to send the process). FROM_TTY
1137 says whether to be verbose or not. */
1138
1139 extern void target_detach (const char *, int);
1140
1141 /* Disconnect from the current target without resuming it (leaving it
1142 waiting for a debugger). */
1143
1144 extern void target_disconnect (char *, int);
1145
1146 /* Resume execution of the target process PTID (or a group of
1147 threads). STEP says whether to single-step or to run free; SIGGNAL
1148 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1149 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1150 PTID means `step/resume only this process id'. A wildcard PTID
1151 (all threads, or all threads of process) means `step/resume
1152 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1153 matches) resume with their 'thread->suspend.stop_signal' signal
1154 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1155 if in "no pass" state. */
1156
1157 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1158
1159 /* Wait for process pid to do something. PTID = -1 to wait for any
1160 pid to do something. Return pid of child, or -1 in case of error;
1161 store status through argument pointer STATUS. Note that it is
1162 _NOT_ OK to throw_exception() out of target_wait() without popping
1163 the debugging target from the stack; GDB isn't prepared to get back
1164 to the prompt with a debugging target but without the frame cache,
1165 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1166 options. */
1167
1168 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1169 int options);
1170
1171 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1172
1173 extern void target_fetch_registers (struct regcache *regcache, int regno);
1174
1175 /* Store at least register REGNO, or all regs if REGNO == -1.
1176 It can store as many registers as it wants to, so target_prepare_to_store
1177 must have been previously called. Calls error() if there are problems. */
1178
1179 extern void target_store_registers (struct regcache *regcache, int regs);
1180
1181 /* Get ready to modify the registers array. On machines which store
1182 individual registers, this doesn't need to do anything. On machines
1183 which store all the registers in one fell swoop, this makes sure
1184 that REGISTERS contains all the registers from the program being
1185 debugged. */
1186
1187 #define target_prepare_to_store(regcache) \
1188 (*current_target.to_prepare_to_store) (&current_target, regcache)
1189
1190 /* Determine current address space of thread PTID. */
1191
1192 struct address_space *target_thread_address_space (ptid_t);
1193
1194 /* Implement the "info proc" command. This returns one if the request
1195 was handled, and zero otherwise. It can also throw an exception if
1196 an error was encountered while attempting to handle the
1197 request. */
1198
1199 int target_info_proc (char *, enum info_proc_what);
1200
1201 /* Returns true if this target can debug multiple processes
1202 simultaneously. */
1203
1204 #define target_supports_multi_process() \
1205 (*current_target.to_supports_multi_process) (&current_target)
1206
1207 /* Returns true if this target can disable address space randomization. */
1208
1209 int target_supports_disable_randomization (void);
1210
1211 /* Returns true if this target can enable and disable tracepoints
1212 while a trace experiment is running. */
1213
1214 #define target_supports_enable_disable_tracepoint() \
1215 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1216
1217 #define target_supports_string_tracing() \
1218 (*current_target.to_supports_string_tracing) (&current_target)
1219
1220 /* Returns true if this target can handle breakpoint conditions
1221 on its end. */
1222
1223 #define target_supports_evaluation_of_breakpoint_conditions() \
1224 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1225
1226 /* Returns true if this target can handle breakpoint commands
1227 on its end. */
1228
1229 #define target_can_run_breakpoint_commands() \
1230 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1231
1232 extern int target_read_string (CORE_ADDR, char **, int, int *);
1233
1234 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1235 ssize_t len);
1236
1237 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1238 ssize_t len);
1239
1240 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1241
1242 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1243
1244 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1245 ssize_t len);
1246
1247 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1248 ssize_t len);
1249
1250 /* Fetches the target's memory map. If one is found it is sorted
1251 and returned, after some consistency checking. Otherwise, NULL
1252 is returned. */
1253 VEC(mem_region_s) *target_memory_map (void);
1254
1255 /* Erase the specified flash region. */
1256 void target_flash_erase (ULONGEST address, LONGEST length);
1257
1258 /* Finish a sequence of flash operations. */
1259 void target_flash_done (void);
1260
1261 /* Describes a request for a memory write operation. */
1262 struct memory_write_request
1263 {
1264 /* Begining address that must be written. */
1265 ULONGEST begin;
1266 /* Past-the-end address. */
1267 ULONGEST end;
1268 /* The data to write. */
1269 gdb_byte *data;
1270 /* A callback baton for progress reporting for this request. */
1271 void *baton;
1272 };
1273 typedef struct memory_write_request memory_write_request_s;
1274 DEF_VEC_O(memory_write_request_s);
1275
1276 /* Enumeration specifying different flash preservation behaviour. */
1277 enum flash_preserve_mode
1278 {
1279 flash_preserve,
1280 flash_discard
1281 };
1282
1283 /* Write several memory blocks at once. This version can be more
1284 efficient than making several calls to target_write_memory, in
1285 particular because it can optimize accesses to flash memory.
1286
1287 Moreover, this is currently the only memory access function in gdb
1288 that supports writing to flash memory, and it should be used for
1289 all cases where access to flash memory is desirable.
1290
1291 REQUESTS is the vector (see vec.h) of memory_write_request.
1292 PRESERVE_FLASH_P indicates what to do with blocks which must be
1293 erased, but not completely rewritten.
1294 PROGRESS_CB is a function that will be periodically called to provide
1295 feedback to user. It will be called with the baton corresponding
1296 to the request currently being written. It may also be called
1297 with a NULL baton, when preserved flash sectors are being rewritten.
1298
1299 The function returns 0 on success, and error otherwise. */
1300 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1301 enum flash_preserve_mode preserve_flash_p,
1302 void (*progress_cb) (ULONGEST, void *));
1303
1304 /* Print a line about the current target. */
1305
1306 #define target_files_info() \
1307 (*current_target.to_files_info) (&current_target)
1308
1309 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1310 the target machine. Returns 0 for success, and returns non-zero or
1311 throws an error (with a detailed failure reason error code and
1312 message) otherwise. */
1313
1314 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1315 struct bp_target_info *bp_tgt);
1316
1317 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1318 machine. Result is 0 for success, non-zero for error. */
1319
1320 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1321 struct bp_target_info *bp_tgt);
1322
1323 /* Initialize the terminal settings we record for the inferior,
1324 before we actually run the inferior. */
1325
1326 #define target_terminal_init() \
1327 (*current_target.to_terminal_init) (&current_target)
1328
1329 /* Put the inferior's terminal settings into effect.
1330 This is preparation for starting or resuming the inferior. */
1331
1332 extern void target_terminal_inferior (void);
1333
1334 /* Put some of our terminal settings into effect,
1335 enough to get proper results from our output,
1336 but do not change into or out of RAW mode
1337 so that no input is discarded.
1338
1339 After doing this, either terminal_ours or terminal_inferior
1340 should be called to get back to a normal state of affairs. */
1341
1342 #define target_terminal_ours_for_output() \
1343 (*current_target.to_terminal_ours_for_output) (&current_target)
1344
1345 /* Put our terminal settings into effect.
1346 First record the inferior's terminal settings
1347 so they can be restored properly later. */
1348
1349 #define target_terminal_ours() \
1350 (*current_target.to_terminal_ours) (&current_target)
1351
1352 /* Save our terminal settings.
1353 This is called from TUI after entering or leaving the curses
1354 mode. Since curses modifies our terminal this call is here
1355 to take this change into account. */
1356
1357 #define target_terminal_save_ours() \
1358 (*current_target.to_terminal_save_ours) (&current_target)
1359
1360 /* Print useful information about our terminal status, if such a thing
1361 exists. */
1362
1363 #define target_terminal_info(arg, from_tty) \
1364 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1365
1366 /* Kill the inferior process. Make it go away. */
1367
1368 extern void target_kill (void);
1369
1370 /* Load an executable file into the target process. This is expected
1371 to not only bring new code into the target process, but also to
1372 update GDB's symbol tables to match.
1373
1374 ARG contains command-line arguments, to be broken down with
1375 buildargv (). The first non-switch argument is the filename to
1376 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1377 0)), which is an offset to apply to the load addresses of FILE's
1378 sections. The target may define switches, or other non-switch
1379 arguments, as it pleases. */
1380
1381 extern void target_load (char *arg, int from_tty);
1382
1383 /* Start an inferior process and set inferior_ptid to its pid.
1384 EXEC_FILE is the file to run.
1385 ALLARGS is a string containing the arguments to the program.
1386 ENV is the environment vector to pass. Errors reported with error().
1387 On VxWorks and various standalone systems, we ignore exec_file. */
1388
1389 void target_create_inferior (char *exec_file, char *args,
1390 char **env, int from_tty);
1391
1392 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1393 notification of inferior events such as fork and vork immediately
1394 after the inferior is created. (This because of how gdb gets an
1395 inferior created via invoking a shell to do it. In such a scenario,
1396 if the shell init file has commands in it, the shell will fork and
1397 exec for each of those commands, and we will see each such fork
1398 event. Very bad.)
1399
1400 Such targets will supply an appropriate definition for this function. */
1401
1402 #define target_post_startup_inferior(ptid) \
1403 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1404
1405 /* On some targets, we can catch an inferior fork or vfork event when
1406 it occurs. These functions insert/remove an already-created
1407 catchpoint for such events. They return 0 for success, 1 if the
1408 catchpoint type is not supported and -1 for failure. */
1409
1410 #define target_insert_fork_catchpoint(pid) \
1411 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1412
1413 #define target_remove_fork_catchpoint(pid) \
1414 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1415
1416 #define target_insert_vfork_catchpoint(pid) \
1417 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1418
1419 #define target_remove_vfork_catchpoint(pid) \
1420 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1421
1422 /* If the inferior forks or vforks, this function will be called at
1423 the next resume in order to perform any bookkeeping and fiddling
1424 necessary to continue debugging either the parent or child, as
1425 requested, and releasing the other. Information about the fork
1426 or vfork event is available via get_last_target_status ().
1427 This function returns 1 if the inferior should not be resumed
1428 (i.e. there is another event pending). */
1429
1430 int target_follow_fork (int follow_child, int detach_fork);
1431
1432 /* On some targets, we can catch an inferior exec event when it
1433 occurs. These functions insert/remove an already-created
1434 catchpoint for such events. They return 0 for success, 1 if the
1435 catchpoint type is not supported and -1 for failure. */
1436
1437 #define target_insert_exec_catchpoint(pid) \
1438 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1439
1440 #define target_remove_exec_catchpoint(pid) \
1441 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1442
1443 /* Syscall catch.
1444
1445 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1446 If NEEDED is zero, it means the target can disable the mechanism to
1447 catch system calls because there are no more catchpoints of this type.
1448
1449 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1450 being requested. In this case, both TABLE_SIZE and TABLE should
1451 be ignored.
1452
1453 TABLE_SIZE is the number of elements in TABLE. It only matters if
1454 ANY_COUNT is zero.
1455
1456 TABLE is an array of ints, indexed by syscall number. An element in
1457 this array is nonzero if that syscall should be caught. This argument
1458 only matters if ANY_COUNT is zero.
1459
1460 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1461 for failure. */
1462
1463 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1464 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1465 pid, needed, any_count, \
1466 table_size, table)
1467
1468 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1469 exit code of PID, if any. */
1470
1471 #define target_has_exited(pid,wait_status,exit_status) \
1472 (*current_target.to_has_exited) (&current_target, \
1473 pid,wait_status,exit_status)
1474
1475 /* The debugger has completed a blocking wait() call. There is now
1476 some process event that must be processed. This function should
1477 be defined by those targets that require the debugger to perform
1478 cleanup or internal state changes in response to the process event. */
1479
1480 /* The inferior process has died. Do what is right. */
1481
1482 void target_mourn_inferior (void);
1483
1484 /* Does target have enough data to do a run or attach command? */
1485
1486 #define target_can_run(t) \
1487 ((t)->to_can_run) (t)
1488
1489 /* Set list of signals to be handled in the target.
1490
1491 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1492 (enum gdb_signal). For every signal whose entry in this array is
1493 non-zero, the target is allowed -but not required- to skip reporting
1494 arrival of the signal to the GDB core by returning from target_wait,
1495 and to pass the signal directly to the inferior instead.
1496
1497 However, if the target is hardware single-stepping a thread that is
1498 about to receive a signal, it needs to be reported in any case, even
1499 if mentioned in a previous target_pass_signals call. */
1500
1501 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1502
1503 /* Set list of signals the target may pass to the inferior. This
1504 directly maps to the "handle SIGNAL pass/nopass" setting.
1505
1506 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1507 number (enum gdb_signal). For every signal whose entry in this
1508 array is non-zero, the target is allowed to pass the signal to the
1509 inferior. Signals not present in the array shall be silently
1510 discarded. This does not influence whether to pass signals to the
1511 inferior as a result of a target_resume call. This is useful in
1512 scenarios where the target needs to decide whether to pass or not a
1513 signal to the inferior without GDB core involvement, such as for
1514 example, when detaching (as threads may have been suspended with
1515 pending signals not reported to GDB). */
1516
1517 extern void target_program_signals (int nsig, unsigned char *program_signals);
1518
1519 /* Check to see if a thread is still alive. */
1520
1521 extern int target_thread_alive (ptid_t ptid);
1522
1523 /* Query for new threads and add them to the thread list. */
1524
1525 extern void target_find_new_threads (void);
1526
1527 /* Make target stop in a continuable fashion. (For instance, under
1528 Unix, this should act like SIGSTOP). This function is normally
1529 used by GUIs to implement a stop button. */
1530
1531 extern void target_stop (ptid_t ptid);
1532
1533 /* Send the specified COMMAND to the target's monitor
1534 (shell,interpreter) for execution. The result of the query is
1535 placed in OUTBUF. */
1536
1537 #define target_rcmd(command, outbuf) \
1538 (*current_target.to_rcmd) (&current_target, command, outbuf)
1539
1540
1541 /* Does the target include all of memory, or only part of it? This
1542 determines whether we look up the target chain for other parts of
1543 memory if this target can't satisfy a request. */
1544
1545 extern int target_has_all_memory_1 (void);
1546 #define target_has_all_memory target_has_all_memory_1 ()
1547
1548 /* Does the target include memory? (Dummy targets don't.) */
1549
1550 extern int target_has_memory_1 (void);
1551 #define target_has_memory target_has_memory_1 ()
1552
1553 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1554 we start a process.) */
1555
1556 extern int target_has_stack_1 (void);
1557 #define target_has_stack target_has_stack_1 ()
1558
1559 /* Does the target have registers? (Exec files don't.) */
1560
1561 extern int target_has_registers_1 (void);
1562 #define target_has_registers target_has_registers_1 ()
1563
1564 /* Does the target have execution? Can we make it jump (through
1565 hoops), or pop its stack a few times? This means that the current
1566 target is currently executing; for some targets, that's the same as
1567 whether or not the target is capable of execution, but there are
1568 also targets which can be current while not executing. In that
1569 case this will become true after target_create_inferior or
1570 target_attach. */
1571
1572 extern int target_has_execution_1 (ptid_t);
1573
1574 /* Like target_has_execution_1, but always passes inferior_ptid. */
1575
1576 extern int target_has_execution_current (void);
1577
1578 #define target_has_execution target_has_execution_current ()
1579
1580 /* Default implementations for process_stratum targets. Return true
1581 if there's a selected inferior, false otherwise. */
1582
1583 extern int default_child_has_all_memory (struct target_ops *ops);
1584 extern int default_child_has_memory (struct target_ops *ops);
1585 extern int default_child_has_stack (struct target_ops *ops);
1586 extern int default_child_has_registers (struct target_ops *ops);
1587 extern int default_child_has_execution (struct target_ops *ops,
1588 ptid_t the_ptid);
1589
1590 /* Can the target support the debugger control of thread execution?
1591 Can it lock the thread scheduler? */
1592
1593 #define target_can_lock_scheduler \
1594 (current_target.to_has_thread_control & tc_schedlock)
1595
1596 /* Should the target enable async mode if it is supported? Temporary
1597 cludge until async mode is a strict superset of sync mode. */
1598 extern int target_async_permitted;
1599
1600 /* Can the target support asynchronous execution? */
1601 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1602
1603 /* Is the target in asynchronous execution mode? */
1604 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1605
1606 int target_supports_non_stop (void);
1607
1608 /* Put the target in async mode with the specified callback function. */
1609 #define target_async(CALLBACK,CONTEXT) \
1610 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1611
1612 #define target_execution_direction() \
1613 (current_target.to_execution_direction (&current_target))
1614
1615 /* Converts a process id to a string. Usually, the string just contains
1616 `process xyz', but on some systems it may contain
1617 `process xyz thread abc'. */
1618
1619 extern char *target_pid_to_str (ptid_t ptid);
1620
1621 extern char *normal_pid_to_str (ptid_t ptid);
1622
1623 /* Return a short string describing extra information about PID,
1624 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1625 is okay. */
1626
1627 #define target_extra_thread_info(TP) \
1628 (current_target.to_extra_thread_info (&current_target, TP))
1629
1630 /* Return the thread's name. A NULL result means that the target
1631 could not determine this thread's name. */
1632
1633 extern char *target_thread_name (struct thread_info *);
1634
1635 /* Attempts to find the pathname of the executable file
1636 that was run to create a specified process.
1637
1638 The process PID must be stopped when this operation is used.
1639
1640 If the executable file cannot be determined, NULL is returned.
1641
1642 Else, a pointer to a character string containing the pathname
1643 is returned. This string should be copied into a buffer by
1644 the client if the string will not be immediately used, or if
1645 it must persist. */
1646
1647 #define target_pid_to_exec_file(pid) \
1648 (current_target.to_pid_to_exec_file) (&current_target, pid)
1649
1650 /* See the to_thread_architecture description in struct target_ops. */
1651
1652 #define target_thread_architecture(ptid) \
1653 (current_target.to_thread_architecture (&current_target, ptid))
1654
1655 /*
1656 * Iterator function for target memory regions.
1657 * Calls a callback function once for each memory region 'mapped'
1658 * in the child process. Defined as a simple macro rather than
1659 * as a function macro so that it can be tested for nullity.
1660 */
1661
1662 #define target_find_memory_regions(FUNC, DATA) \
1663 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1664
1665 /*
1666 * Compose corefile .note section.
1667 */
1668
1669 #define target_make_corefile_notes(BFD, SIZE_P) \
1670 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1671
1672 /* Bookmark interfaces. */
1673 #define target_get_bookmark(ARGS, FROM_TTY) \
1674 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1675
1676 #define target_goto_bookmark(ARG, FROM_TTY) \
1677 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1678
1679 /* Hardware watchpoint interfaces. */
1680
1681 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1682 write). Only the INFERIOR_PTID task is being queried. */
1683
1684 #define target_stopped_by_watchpoint() \
1685 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1686
1687 /* Non-zero if we have steppable watchpoints */
1688
1689 #define target_have_steppable_watchpoint \
1690 (current_target.to_have_steppable_watchpoint)
1691
1692 /* Non-zero if we have continuable watchpoints */
1693
1694 #define target_have_continuable_watchpoint \
1695 (current_target.to_have_continuable_watchpoint)
1696
1697 /* Provide defaults for hardware watchpoint functions. */
1698
1699 /* If the *_hw_beakpoint functions have not been defined
1700 elsewhere use the definitions in the target vector. */
1701
1702 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1703 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1704 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1705 (including this one?). OTHERTYPE is who knows what... */
1706
1707 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1708 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1709 TYPE, CNT, OTHERTYPE);
1710
1711 /* Returns the number of debug registers needed to watch the given
1712 memory region, or zero if not supported. */
1713
1714 #define target_region_ok_for_hw_watchpoint(addr, len) \
1715 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1716 addr, len)
1717
1718
1719 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1720 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1721 COND is the expression for its condition, or NULL if there's none.
1722 Returns 0 for success, 1 if the watchpoint type is not supported,
1723 -1 for failure. */
1724
1725 #define target_insert_watchpoint(addr, len, type, cond) \
1726 (*current_target.to_insert_watchpoint) (&current_target, \
1727 addr, len, type, cond)
1728
1729 #define target_remove_watchpoint(addr, len, type, cond) \
1730 (*current_target.to_remove_watchpoint) (&current_target, \
1731 addr, len, type, cond)
1732
1733 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1734 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1735 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1736 masked watchpoints are not supported, -1 for failure. */
1737
1738 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1739
1740 /* Remove a masked watchpoint at ADDR with the mask MASK.
1741 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1742 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1743 for failure. */
1744
1745 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1746
1747 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1748 the target machine. Returns 0 for success, and returns non-zero or
1749 throws an error (with a detailed failure reason error code and
1750 message) otherwise. */
1751
1752 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1753 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1754 gdbarch, bp_tgt)
1755
1756 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1757 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1758 gdbarch, bp_tgt)
1759
1760 /* Return number of debug registers needed for a ranged breakpoint,
1761 or -1 if ranged breakpoints are not supported. */
1762
1763 extern int target_ranged_break_num_registers (void);
1764
1765 /* Return non-zero if target knows the data address which triggered this
1766 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1767 INFERIOR_PTID task is being queried. */
1768 #define target_stopped_data_address(target, addr_p) \
1769 (*target.to_stopped_data_address) (target, addr_p)
1770
1771 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1772 LENGTH bytes beginning at START. */
1773 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1774 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1775
1776 /* Return non-zero if the target is capable of using hardware to evaluate
1777 the condition expression. In this case, if the condition is false when
1778 the watched memory location changes, execution may continue without the
1779 debugger being notified.
1780
1781 Due to limitations in the hardware implementation, it may be capable of
1782 avoiding triggering the watchpoint in some cases where the condition
1783 expression is false, but may report some false positives as well.
1784 For this reason, GDB will still evaluate the condition expression when
1785 the watchpoint triggers. */
1786 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1787 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1788 addr, len, type, cond)
1789
1790 /* Return number of debug registers needed for a masked watchpoint,
1791 -1 if masked watchpoints are not supported or -2 if the given address
1792 and mask combination cannot be used. */
1793
1794 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1795
1796 /* Target can execute in reverse? */
1797 #define target_can_execute_reverse \
1798 current_target.to_can_execute_reverse (&current_target)
1799
1800 extern const struct target_desc *target_read_description (struct target_ops *);
1801
1802 #define target_get_ada_task_ptid(lwp, tid) \
1803 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1804
1805 /* Utility implementation of searching memory. */
1806 extern int simple_search_memory (struct target_ops* ops,
1807 CORE_ADDR start_addr,
1808 ULONGEST search_space_len,
1809 const gdb_byte *pattern,
1810 ULONGEST pattern_len,
1811 CORE_ADDR *found_addrp);
1812
1813 /* Main entry point for searching memory. */
1814 extern int target_search_memory (CORE_ADDR start_addr,
1815 ULONGEST search_space_len,
1816 const gdb_byte *pattern,
1817 ULONGEST pattern_len,
1818 CORE_ADDR *found_addrp);
1819
1820 /* Target file operations. */
1821
1822 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1823 target file descriptor, or -1 if an error occurs (and set
1824 *TARGET_ERRNO). */
1825 extern int target_fileio_open (const char *filename, int flags, int mode,
1826 int *target_errno);
1827
1828 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1829 Return the number of bytes written, or -1 if an error occurs
1830 (and set *TARGET_ERRNO). */
1831 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1832 ULONGEST offset, int *target_errno);
1833
1834 /* Read up to LEN bytes FD on the target into READ_BUF.
1835 Return the number of bytes read, or -1 if an error occurs
1836 (and set *TARGET_ERRNO). */
1837 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1838 ULONGEST offset, int *target_errno);
1839
1840 /* Close FD on the target. Return 0, or -1 if an error occurs
1841 (and set *TARGET_ERRNO). */
1842 extern int target_fileio_close (int fd, int *target_errno);
1843
1844 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1845 occurs (and set *TARGET_ERRNO). */
1846 extern int target_fileio_unlink (const char *filename, int *target_errno);
1847
1848 /* Read value of symbolic link FILENAME on the target. Return a
1849 null-terminated string allocated via xmalloc, or NULL if an error
1850 occurs (and set *TARGET_ERRNO). */
1851 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1852
1853 /* Read target file FILENAME. The return value will be -1 if the transfer
1854 fails or is not supported; 0 if the object is empty; or the length
1855 of the object otherwise. If a positive value is returned, a
1856 sufficiently large buffer will be allocated using xmalloc and
1857 returned in *BUF_P containing the contents of the object.
1858
1859 This method should be used for objects sufficiently small to store
1860 in a single xmalloc'd buffer, when no fixed bound on the object's
1861 size is known in advance. */
1862 extern LONGEST target_fileio_read_alloc (const char *filename,
1863 gdb_byte **buf_p);
1864
1865 /* Read target file FILENAME. The result is NUL-terminated and
1866 returned as a string, allocated using xmalloc. If an error occurs
1867 or the transfer is unsupported, NULL is returned. Empty objects
1868 are returned as allocated but empty strings. A warning is issued
1869 if the result contains any embedded NUL bytes. */
1870 extern char *target_fileio_read_stralloc (const char *filename);
1871
1872
1873 /* Tracepoint-related operations. */
1874
1875 #define target_trace_init() \
1876 (*current_target.to_trace_init) (&current_target)
1877
1878 #define target_download_tracepoint(t) \
1879 (*current_target.to_download_tracepoint) (&current_target, t)
1880
1881 #define target_can_download_tracepoint() \
1882 (*current_target.to_can_download_tracepoint) (&current_target)
1883
1884 #define target_download_trace_state_variable(tsv) \
1885 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1886
1887 #define target_enable_tracepoint(loc) \
1888 (*current_target.to_enable_tracepoint) (&current_target, loc)
1889
1890 #define target_disable_tracepoint(loc) \
1891 (*current_target.to_disable_tracepoint) (&current_target, loc)
1892
1893 #define target_trace_start() \
1894 (*current_target.to_trace_start) (&current_target)
1895
1896 #define target_trace_set_readonly_regions() \
1897 (*current_target.to_trace_set_readonly_regions) (&current_target)
1898
1899 #define target_get_trace_status(ts) \
1900 (*current_target.to_get_trace_status) (&current_target, ts)
1901
1902 #define target_get_tracepoint_status(tp,utp) \
1903 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1904
1905 #define target_trace_stop() \
1906 (*current_target.to_trace_stop) (&current_target)
1907
1908 #define target_trace_find(type,num,addr1,addr2,tpp) \
1909 (*current_target.to_trace_find) (&current_target, \
1910 (type), (num), (addr1), (addr2), (tpp))
1911
1912 #define target_get_trace_state_variable_value(tsv,val) \
1913 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1914 (tsv), (val))
1915
1916 #define target_save_trace_data(filename) \
1917 (*current_target.to_save_trace_data) (&current_target, filename)
1918
1919 #define target_upload_tracepoints(utpp) \
1920 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1921
1922 #define target_upload_trace_state_variables(utsvp) \
1923 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1924
1925 #define target_get_raw_trace_data(buf,offset,len) \
1926 (*current_target.to_get_raw_trace_data) (&current_target, \
1927 (buf), (offset), (len))
1928
1929 #define target_get_min_fast_tracepoint_insn_len() \
1930 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1931
1932 #define target_set_disconnected_tracing(val) \
1933 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1934
1935 #define target_set_circular_trace_buffer(val) \
1936 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1937
1938 #define target_set_trace_buffer_size(val) \
1939 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1940
1941 #define target_set_trace_notes(user,notes,stopnotes) \
1942 (*current_target.to_set_trace_notes) (&current_target, \
1943 (user), (notes), (stopnotes))
1944
1945 #define target_get_tib_address(ptid, addr) \
1946 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1947
1948 #define target_set_permissions() \
1949 (*current_target.to_set_permissions) (&current_target)
1950
1951 #define target_static_tracepoint_marker_at(addr, marker) \
1952 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1953 addr, marker)
1954
1955 #define target_static_tracepoint_markers_by_strid(marker_id) \
1956 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1957 marker_id)
1958
1959 #define target_traceframe_info() \
1960 (*current_target.to_traceframe_info) (&current_target)
1961
1962 #define target_use_agent(use) \
1963 (*current_target.to_use_agent) (&current_target, use)
1964
1965 #define target_can_use_agent() \
1966 (*current_target.to_can_use_agent) (&current_target)
1967
1968 #define target_augmented_libraries_svr4_read() \
1969 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1970
1971 /* Command logging facility. */
1972
1973 #define target_log_command(p) \
1974 (*current_target.to_log_command) (&current_target, p)
1975
1976
1977 extern int target_core_of_thread (ptid_t ptid);
1978
1979 /* See to_get_unwinder in struct target_ops. */
1980 extern const struct frame_unwind *target_get_unwinder (void);
1981
1982 /* See to_get_tailcall_unwinder in struct target_ops. */
1983 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1984
1985 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1986 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1987 if there's a mismatch, and -1 if an error is encountered while
1988 reading memory. Throws an error if the functionality is found not
1989 to be supported by the current target. */
1990 int target_verify_memory (const gdb_byte *data,
1991 CORE_ADDR memaddr, ULONGEST size);
1992
1993 /* Routines for maintenance of the target structures...
1994
1995 complete_target_initialization: Finalize a target_ops by filling in
1996 any fields needed by the target implementation.
1997
1998 add_target: Add a target to the list of all possible targets.
1999
2000 push_target: Make this target the top of the stack of currently used
2001 targets, within its particular stratum of the stack. Result
2002 is 0 if now atop the stack, nonzero if not on top (maybe
2003 should warn user).
2004
2005 unpush_target: Remove this from the stack of currently used targets,
2006 no matter where it is on the list. Returns 0 if no
2007 change, 1 if removed from stack. */
2008
2009 extern void add_target (struct target_ops *);
2010
2011 extern void add_target_with_completer (struct target_ops *t,
2012 completer_ftype *completer);
2013
2014 extern void complete_target_initialization (struct target_ops *t);
2015
2016 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2017 for maintaining backwards compatibility when renaming targets. */
2018
2019 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2020
2021 extern void push_target (struct target_ops *);
2022
2023 extern int unpush_target (struct target_ops *);
2024
2025 extern void target_pre_inferior (int);
2026
2027 extern void target_preopen (int);
2028
2029 /* Does whatever cleanup is required to get rid of all pushed targets. */
2030 extern void pop_all_targets (void);
2031
2032 /* Like pop_all_targets, but pops only targets whose stratum is
2033 strictly above ABOVE_STRATUM. */
2034 extern void pop_all_targets_above (enum strata above_stratum);
2035
2036 extern int target_is_pushed (struct target_ops *t);
2037
2038 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2039 CORE_ADDR offset);
2040
2041 /* Struct target_section maps address ranges to file sections. It is
2042 mostly used with BFD files, but can be used without (e.g. for handling
2043 raw disks, or files not in formats handled by BFD). */
2044
2045 struct target_section
2046 {
2047 CORE_ADDR addr; /* Lowest address in section */
2048 CORE_ADDR endaddr; /* 1+highest address in section */
2049
2050 struct bfd_section *the_bfd_section;
2051
2052 /* The "owner" of the section.
2053 It can be any unique value. It is set by add_target_sections
2054 and used by remove_target_sections.
2055 For example, for executables it is a pointer to exec_bfd and
2056 for shlibs it is the so_list pointer. */
2057 void *owner;
2058 };
2059
2060 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2061
2062 struct target_section_table
2063 {
2064 struct target_section *sections;
2065 struct target_section *sections_end;
2066 };
2067
2068 /* Return the "section" containing the specified address. */
2069 struct target_section *target_section_by_addr (struct target_ops *target,
2070 CORE_ADDR addr);
2071
2072 /* Return the target section table this target (or the targets
2073 beneath) currently manipulate. */
2074
2075 extern struct target_section_table *target_get_section_table
2076 (struct target_ops *target);
2077
2078 /* From mem-break.c */
2079
2080 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2081 struct bp_target_info *);
2082
2083 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2084 struct bp_target_info *);
2085
2086 extern int default_memory_remove_breakpoint (struct gdbarch *,
2087 struct bp_target_info *);
2088
2089 extern int default_memory_insert_breakpoint (struct gdbarch *,
2090 struct bp_target_info *);
2091
2092
2093 /* From target.c */
2094
2095 extern void initialize_targets (void);
2096
2097 extern void noprocess (void) ATTRIBUTE_NORETURN;
2098
2099 extern void target_require_runnable (void);
2100
2101 extern void find_default_attach (struct target_ops *, char *, int);
2102
2103 extern void find_default_create_inferior (struct target_ops *,
2104 char *, char *, char **, int);
2105
2106 extern struct target_ops *find_target_beneath (struct target_ops *);
2107
2108 /* Find the target at STRATUM. If no target is at that stratum,
2109 return NULL. */
2110
2111 struct target_ops *find_target_at (enum strata stratum);
2112
2113 /* Read OS data object of type TYPE from the target, and return it in
2114 XML format. The result is NUL-terminated and returned as a string,
2115 allocated using xmalloc. If an error occurs or the transfer is
2116 unsupported, NULL is returned. Empty objects are returned as
2117 allocated but empty strings. */
2118
2119 extern char *target_get_osdata (const char *type);
2120
2121 \f
2122 /* Stuff that should be shared among the various remote targets. */
2123
2124 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2125 information (higher values, more information). */
2126 extern int remote_debug;
2127
2128 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2129 extern int baud_rate;
2130 /* Timeout limit for response from target. */
2131 extern int remote_timeout;
2132
2133 \f
2134
2135 /* Set the show memory breakpoints mode to show, and installs a cleanup
2136 to restore it back to the current value. */
2137 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2138
2139 extern int may_write_registers;
2140 extern int may_write_memory;
2141 extern int may_insert_breakpoints;
2142 extern int may_insert_tracepoints;
2143 extern int may_insert_fast_tracepoints;
2144 extern int may_stop;
2145
2146 extern void update_target_permissions (void);
2147
2148 \f
2149 /* Imported from machine dependent code. */
2150
2151 /* Blank target vector entries are initialized to target_ignore. */
2152 void target_ignore (void);
2153
2154 /* See to_supports_btrace in struct target_ops. */
2155 #define target_supports_btrace() \
2156 (current_target.to_supports_btrace (&current_target))
2157
2158 /* See to_enable_btrace in struct target_ops. */
2159 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2160
2161 /* See to_disable_btrace in struct target_ops. */
2162 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2163
2164 /* See to_teardown_btrace in struct target_ops. */
2165 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2166
2167 /* See to_read_btrace in struct target_ops. */
2168 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2169 struct btrace_target_info *,
2170 enum btrace_read_type);
2171
2172 /* See to_stop_recording in struct target_ops. */
2173 extern void target_stop_recording (void);
2174
2175 /* See to_info_record in struct target_ops. */
2176 extern void target_info_record (void);
2177
2178 /* See to_save_record in struct target_ops. */
2179 extern void target_save_record (const char *filename);
2180
2181 /* Query if the target supports deleting the execution log. */
2182 extern int target_supports_delete_record (void);
2183
2184 /* See to_delete_record in struct target_ops. */
2185 extern void target_delete_record (void);
2186
2187 /* See to_record_is_replaying in struct target_ops. */
2188 extern int target_record_is_replaying (void);
2189
2190 /* See to_goto_record_begin in struct target_ops. */
2191 extern void target_goto_record_begin (void);
2192
2193 /* See to_goto_record_end in struct target_ops. */
2194 extern void target_goto_record_end (void);
2195
2196 /* See to_goto_record in struct target_ops. */
2197 extern void target_goto_record (ULONGEST insn);
2198
2199 /* See to_insn_history. */
2200 extern void target_insn_history (int size, int flags);
2201
2202 /* See to_insn_history_from. */
2203 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2204
2205 /* See to_insn_history_range. */
2206 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2207
2208 /* See to_call_history. */
2209 extern void target_call_history (int size, int flags);
2210
2211 /* See to_call_history_from. */
2212 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2213
2214 /* See to_call_history_range. */
2215 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2216
2217 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2218 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2219 struct gdbarch *gdbarch);
2220
2221 /* See to_decr_pc_after_break. */
2222 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2223
2224 #endif /* !defined (TARGET_H) */