convert to_make_corefile_notes
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *)
565 TARGET_DEFAULT_IGNORE ();
566 struct target_section_table *(*to_get_section_table) (struct target_ops *);
567 enum strata to_stratum;
568 int (*to_has_all_memory) (struct target_ops *);
569 int (*to_has_memory) (struct target_ops *);
570 int (*to_has_stack) (struct target_ops *);
571 int (*to_has_registers) (struct target_ops *);
572 int (*to_has_execution) (struct target_ops *, ptid_t);
573 int to_has_thread_control; /* control thread execution */
574 int to_attach_no_wait;
575 /* ASYNC target controls */
576 int (*to_can_async_p) (struct target_ops *)
577 TARGET_DEFAULT_FUNC (find_default_can_async_p);
578 int (*to_is_async_p) (struct target_ops *)
579 TARGET_DEFAULT_FUNC (find_default_is_async_p);
580 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 int (*to_supports_non_stop) (struct target_ops *);
583 /* find_memory_regions support method for gcore */
584 int (*to_find_memory_regions) (struct target_ops *,
585 find_memory_region_ftype func, void *data)
586 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
587 /* make_corefile_notes support method for gcore */
588 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
589 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
590 /* get_bookmark support method for bookmarks */
591 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
592 /* goto_bookmark support method for bookmarks */
593 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
594 /* Return the thread-local address at OFFSET in the
595 thread-local storage for the thread PTID and the shared library
596 or executable file given by OBJFILE. If that block of
597 thread-local storage hasn't been allocated yet, this function
598 may return an error. */
599 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
600 ptid_t ptid,
601 CORE_ADDR load_module_addr,
602 CORE_ADDR offset);
603
604 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
605 OBJECT. The OFFSET, for a seekable object, specifies the
606 starting point. The ANNEX can be used to provide additional
607 data-specific information to the target.
608
609 Return the transferred status, error or OK (an
610 'enum target_xfer_status' value). Save the number of bytes
611 actually transferred in *XFERED_LEN if transfer is successful
612 (TARGET_XFER_OK) or the number unavailable bytes if the requested
613 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
614 smaller than LEN does not indicate the end of the object, only
615 the end of the transfer; higher level code should continue
616 transferring if desired. This is handled in target.c.
617
618 The interface does not support a "retry" mechanism. Instead it
619 assumes that at least one byte will be transfered on each
620 successful call.
621
622 NOTE: cagney/2003-10-17: The current interface can lead to
623 fragmented transfers. Lower target levels should not implement
624 hacks, such as enlarging the transfer, in an attempt to
625 compensate for this. Instead, the target stack should be
626 extended so that it implements supply/collect methods and a
627 look-aside object cache. With that available, the lowest
628 target can safely and freely "push" data up the stack.
629
630 See target_read and target_write for more information. One,
631 and only one, of readbuf or writebuf must be non-NULL. */
632
633 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
634 enum target_object object,
635 const char *annex,
636 gdb_byte *readbuf,
637 const gdb_byte *writebuf,
638 ULONGEST offset, ULONGEST len,
639 ULONGEST *xfered_len)
640 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
641
642 /* Returns the memory map for the target. A return value of NULL
643 means that no memory map is available. If a memory address
644 does not fall within any returned regions, it's assumed to be
645 RAM. The returned memory regions should not overlap.
646
647 The order of regions does not matter; target_memory_map will
648 sort regions by starting address. For that reason, this
649 function should not be called directly except via
650 target_memory_map.
651
652 This method should not cache data; if the memory map could
653 change unexpectedly, it should be invalidated, and higher
654 layers will re-fetch it. */
655 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
656
657 /* Erases the region of flash memory starting at ADDRESS, of
658 length LENGTH.
659
660 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
661 on flash block boundaries, as reported by 'to_memory_map'. */
662 void (*to_flash_erase) (struct target_ops *,
663 ULONGEST address, LONGEST length);
664
665 /* Finishes a flash memory write sequence. After this operation
666 all flash memory should be available for writing and the result
667 of reading from areas written by 'to_flash_write' should be
668 equal to what was written. */
669 void (*to_flash_done) (struct target_ops *);
670
671 /* Describe the architecture-specific features of this target.
672 Returns the description found, or NULL if no description
673 was available. */
674 const struct target_desc *(*to_read_description) (struct target_ops *ops);
675
676 /* Build the PTID of the thread on which a given task is running,
677 based on LWP and THREAD. These values are extracted from the
678 task Private_Data section of the Ada Task Control Block, and
679 their interpretation depends on the target. */
680 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
681 long lwp, long thread);
682
683 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
684 Return 0 if *READPTR is already at the end of the buffer.
685 Return -1 if there is insufficient buffer for a whole entry.
686 Return 1 if an entry was read into *TYPEP and *VALP. */
687 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
688 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
689
690 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
691 sequence of bytes in PATTERN with length PATTERN_LEN.
692
693 The result is 1 if found, 0 if not found, and -1 if there was an error
694 requiring halting of the search (e.g. memory read error).
695 If the pattern is found the address is recorded in FOUND_ADDRP. */
696 int (*to_search_memory) (struct target_ops *ops,
697 CORE_ADDR start_addr, ULONGEST search_space_len,
698 const gdb_byte *pattern, ULONGEST pattern_len,
699 CORE_ADDR *found_addrp);
700
701 /* Can target execute in reverse? */
702 int (*to_can_execute_reverse) (struct target_ops *);
703
704 /* The direction the target is currently executing. Must be
705 implemented on targets that support reverse execution and async
706 mode. The default simply returns forward execution. */
707 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
708
709 /* Does this target support debugging multiple processes
710 simultaneously? */
711 int (*to_supports_multi_process) (struct target_ops *);
712
713 /* Does this target support enabling and disabling tracepoints while a trace
714 experiment is running? */
715 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
716
717 /* Does this target support disabling address space randomization? */
718 int (*to_supports_disable_randomization) (struct target_ops *);
719
720 /* Does this target support the tracenz bytecode for string collection? */
721 int (*to_supports_string_tracing) (struct target_ops *);
722
723 /* Does this target support evaluation of breakpoint conditions on its
724 end? */
725 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
726
727 /* Does this target support evaluation of breakpoint commands on its
728 end? */
729 int (*to_can_run_breakpoint_commands) (struct target_ops *);
730
731 /* Determine current architecture of thread PTID.
732
733 The target is supposed to determine the architecture of the code where
734 the target is currently stopped at (on Cell, if a target is in spu_run,
735 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
736 This is architecture used to perform decr_pc_after_break adjustment,
737 and also determines the frame architecture of the innermost frame.
738 ptrace operations need to operate according to target_gdbarch ().
739
740 The default implementation always returns target_gdbarch (). */
741 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
742
743 /* Determine current address space of thread PTID.
744
745 The default implementation always returns the inferior's
746 address space. */
747 struct address_space *(*to_thread_address_space) (struct target_ops *,
748 ptid_t);
749
750 /* Target file operations. */
751
752 /* Open FILENAME on the target, using FLAGS and MODE. Return a
753 target file descriptor, or -1 if an error occurs (and set
754 *TARGET_ERRNO). */
755 int (*to_fileio_open) (struct target_ops *,
756 const char *filename, int flags, int mode,
757 int *target_errno);
758
759 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
760 Return the number of bytes written, or -1 if an error occurs
761 (and set *TARGET_ERRNO). */
762 int (*to_fileio_pwrite) (struct target_ops *,
763 int fd, const gdb_byte *write_buf, int len,
764 ULONGEST offset, int *target_errno);
765
766 /* Read up to LEN bytes FD on the target into READ_BUF.
767 Return the number of bytes read, or -1 if an error occurs
768 (and set *TARGET_ERRNO). */
769 int (*to_fileio_pread) (struct target_ops *,
770 int fd, gdb_byte *read_buf, int len,
771 ULONGEST offset, int *target_errno);
772
773 /* Close FD on the target. Return 0, or -1 if an error occurs
774 (and set *TARGET_ERRNO). */
775 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
776
777 /* Unlink FILENAME on the target. Return 0, or -1 if an error
778 occurs (and set *TARGET_ERRNO). */
779 int (*to_fileio_unlink) (struct target_ops *,
780 const char *filename, int *target_errno);
781
782 /* Read value of symbolic link FILENAME on the target. Return a
783 null-terminated string allocated via xmalloc, or NULL if an error
784 occurs (and set *TARGET_ERRNO). */
785 char *(*to_fileio_readlink) (struct target_ops *,
786 const char *filename, int *target_errno);
787
788
789 /* Implement the "info proc" command. */
790 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
791
792 /* Tracepoint-related operations. */
793
794 /* Prepare the target for a tracing run. */
795 void (*to_trace_init) (struct target_ops *);
796
797 /* Send full details of a tracepoint location to the target. */
798 void (*to_download_tracepoint) (struct target_ops *,
799 struct bp_location *location);
800
801 /* Is the target able to download tracepoint locations in current
802 state? */
803 int (*to_can_download_tracepoint) (struct target_ops *);
804
805 /* Send full details of a trace state variable to the target. */
806 void (*to_download_trace_state_variable) (struct target_ops *,
807 struct trace_state_variable *tsv);
808
809 /* Enable a tracepoint on the target. */
810 void (*to_enable_tracepoint) (struct target_ops *,
811 struct bp_location *location);
812
813 /* Disable a tracepoint on the target. */
814 void (*to_disable_tracepoint) (struct target_ops *,
815 struct bp_location *location);
816
817 /* Inform the target info of memory regions that are readonly
818 (such as text sections), and so it should return data from
819 those rather than look in the trace buffer. */
820 void (*to_trace_set_readonly_regions) (struct target_ops *);
821
822 /* Start a trace run. */
823 void (*to_trace_start) (struct target_ops *);
824
825 /* Get the current status of a tracing run. */
826 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
827
828 void (*to_get_tracepoint_status) (struct target_ops *,
829 struct breakpoint *tp,
830 struct uploaded_tp *utp);
831
832 /* Stop a trace run. */
833 void (*to_trace_stop) (struct target_ops *);
834
835 /* Ask the target to find a trace frame of the given type TYPE,
836 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
837 number of the trace frame, and also the tracepoint number at
838 TPP. If no trace frame matches, return -1. May throw if the
839 operation fails. */
840 int (*to_trace_find) (struct target_ops *,
841 enum trace_find_type type, int num,
842 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
843
844 /* Get the value of the trace state variable number TSV, returning
845 1 if the value is known and writing the value itself into the
846 location pointed to by VAL, else returning 0. */
847 int (*to_get_trace_state_variable_value) (struct target_ops *,
848 int tsv, LONGEST *val);
849
850 int (*to_save_trace_data) (struct target_ops *, const char *filename);
851
852 int (*to_upload_tracepoints) (struct target_ops *,
853 struct uploaded_tp **utpp);
854
855 int (*to_upload_trace_state_variables) (struct target_ops *,
856 struct uploaded_tsv **utsvp);
857
858 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
859 ULONGEST offset, LONGEST len);
860
861 /* Get the minimum length of instruction on which a fast tracepoint
862 may be set on the target. If this operation is unsupported,
863 return -1. If for some reason the minimum length cannot be
864 determined, return 0. */
865 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
866
867 /* Set the target's tracing behavior in response to unexpected
868 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
869 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
870 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
871 /* Set the size of trace buffer in the target. */
872 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
873
874 /* Add/change textual notes about the trace run, returning 1 if
875 successful, 0 otherwise. */
876 int (*to_set_trace_notes) (struct target_ops *,
877 const char *user, const char *notes,
878 const char *stopnotes);
879
880 /* Return the processor core that thread PTID was last seen on.
881 This information is updated only when:
882 - update_thread_list is called
883 - thread stops
884 If the core cannot be determined -- either for the specified
885 thread, or right now, or in this debug session, or for this
886 target -- return -1. */
887 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
888
889 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
890 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
891 a match, 0 if there's a mismatch, and -1 if an error is
892 encountered while reading memory. */
893 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
894 CORE_ADDR memaddr, ULONGEST size);
895
896 /* Return the address of the start of the Thread Information Block
897 a Windows OS specific feature. */
898 int (*to_get_tib_address) (struct target_ops *,
899 ptid_t ptid, CORE_ADDR *addr);
900
901 /* Send the new settings of write permission variables. */
902 void (*to_set_permissions) (struct target_ops *);
903
904 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
905 with its details. Return 1 on success, 0 on failure. */
906 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
907 struct static_tracepoint_marker *marker);
908
909 /* Return a vector of all tracepoints markers string id ID, or all
910 markers if ID is NULL. */
911 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
912 (struct target_ops *, const char *id);
913
914 /* Return a traceframe info object describing the current
915 traceframe's contents. If the target doesn't support
916 traceframe info, return NULL. If the current traceframe is not
917 selected (the current traceframe number is -1), the target can
918 choose to return either NULL or an empty traceframe info. If
919 NULL is returned, for example in remote target, GDB will read
920 from the live inferior. If an empty traceframe info is
921 returned, for example in tfile target, which means the
922 traceframe info is available, but the requested memory is not
923 available in it. GDB will try to see if the requested memory
924 is available in the read-only sections. This method should not
925 cache data; higher layers take care of caching, invalidating,
926 and re-fetching when necessary. */
927 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
928
929 /* Ask the target to use or not to use agent according to USE. Return 1
930 successful, 0 otherwise. */
931 int (*to_use_agent) (struct target_ops *, int use);
932
933 /* Is the target able to use agent in current state? */
934 int (*to_can_use_agent) (struct target_ops *);
935
936 /* Check whether the target supports branch tracing. */
937 int (*to_supports_btrace) (struct target_ops *)
938 TARGET_DEFAULT_RETURN (0);
939
940 /* Enable branch tracing for PTID and allocate a branch trace target
941 information struct for reading and for disabling branch trace. */
942 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
943 ptid_t ptid);
944
945 /* Disable branch tracing and deallocate TINFO. */
946 void (*to_disable_btrace) (struct target_ops *,
947 struct btrace_target_info *tinfo);
948
949 /* Disable branch tracing and deallocate TINFO. This function is similar
950 to to_disable_btrace, except that it is called during teardown and is
951 only allowed to perform actions that are safe. A counter-example would
952 be attempting to talk to a remote target. */
953 void (*to_teardown_btrace) (struct target_ops *,
954 struct btrace_target_info *tinfo);
955
956 /* Read branch trace data for the thread indicated by BTINFO into DATA.
957 DATA is cleared before new trace is added.
958 The branch trace will start with the most recent block and continue
959 towards older blocks. */
960 enum btrace_error (*to_read_btrace) (struct target_ops *self,
961 VEC (btrace_block_s) **data,
962 struct btrace_target_info *btinfo,
963 enum btrace_read_type type);
964
965 /* Stop trace recording. */
966 void (*to_stop_recording) (struct target_ops *);
967
968 /* Print information about the recording. */
969 void (*to_info_record) (struct target_ops *);
970
971 /* Save the recorded execution trace into a file. */
972 void (*to_save_record) (struct target_ops *, const char *filename);
973
974 /* Delete the recorded execution trace from the current position onwards. */
975 void (*to_delete_record) (struct target_ops *);
976
977 /* Query if the record target is currently replaying. */
978 int (*to_record_is_replaying) (struct target_ops *);
979
980 /* Go to the begin of the execution trace. */
981 void (*to_goto_record_begin) (struct target_ops *);
982
983 /* Go to the end of the execution trace. */
984 void (*to_goto_record_end) (struct target_ops *);
985
986 /* Go to a specific location in the recorded execution trace. */
987 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
988
989 /* Disassemble SIZE instructions in the recorded execution trace from
990 the current position.
991 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
992 disassemble SIZE succeeding instructions. */
993 void (*to_insn_history) (struct target_ops *, int size, int flags);
994
995 /* Disassemble SIZE instructions in the recorded execution trace around
996 FROM.
997 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
998 disassemble SIZE instructions after FROM. */
999 void (*to_insn_history_from) (struct target_ops *,
1000 ULONGEST from, int size, int flags);
1001
1002 /* Disassemble a section of the recorded execution trace from instruction
1003 BEGIN (inclusive) to instruction END (inclusive). */
1004 void (*to_insn_history_range) (struct target_ops *,
1005 ULONGEST begin, ULONGEST end, int flags);
1006
1007 /* Print a function trace of the recorded execution trace.
1008 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1009 succeeding functions. */
1010 void (*to_call_history) (struct target_ops *, int size, int flags);
1011
1012 /* Print a function trace of the recorded execution trace starting
1013 at function FROM.
1014 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1015 SIZE functions after FROM. */
1016 void (*to_call_history_from) (struct target_ops *,
1017 ULONGEST begin, int size, int flags);
1018
1019 /* Print a function trace of an execution trace section from function BEGIN
1020 (inclusive) to function END (inclusive). */
1021 void (*to_call_history_range) (struct target_ops *,
1022 ULONGEST begin, ULONGEST end, int flags);
1023
1024 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1025 non-empty annex. */
1026 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1027
1028 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1029 it is not used. */
1030 const struct frame_unwind *to_get_unwinder;
1031 const struct frame_unwind *to_get_tailcall_unwinder;
1032
1033 /* Return the number of bytes by which the PC needs to be decremented
1034 after executing a breakpoint instruction.
1035 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1036 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1037 struct gdbarch *gdbarch);
1038
1039 int to_magic;
1040 /* Need sub-structure for target machine related rather than comm related?
1041 */
1042 };
1043
1044 /* Magic number for checking ops size. If a struct doesn't end with this
1045 number, somebody changed the declaration but didn't change all the
1046 places that initialize one. */
1047
1048 #define OPS_MAGIC 3840
1049
1050 /* The ops structure for our "current" target process. This should
1051 never be NULL. If there is no target, it points to the dummy_target. */
1052
1053 extern struct target_ops current_target;
1054
1055 /* Define easy words for doing these operations on our current target. */
1056
1057 #define target_shortname (current_target.to_shortname)
1058 #define target_longname (current_target.to_longname)
1059
1060 /* Does whatever cleanup is required for a target that we are no
1061 longer going to be calling. This routine is automatically always
1062 called after popping the target off the target stack - the target's
1063 own methods are no longer available through the target vector.
1064 Closing file descriptors and freeing all memory allocated memory are
1065 typical things it should do. */
1066
1067 void target_close (struct target_ops *targ);
1068
1069 /* Attaches to a process on the target side. Arguments are as passed
1070 to the `attach' command by the user. This routine can be called
1071 when the target is not on the target-stack, if the target_can_run
1072 routine returns 1; in that case, it must push itself onto the stack.
1073 Upon exit, the target should be ready for normal operations, and
1074 should be ready to deliver the status of the process immediately
1075 (without waiting) to an upcoming target_wait call. */
1076
1077 void target_attach (char *, int);
1078
1079 /* Some targets don't generate traps when attaching to the inferior,
1080 or their target_attach implementation takes care of the waiting.
1081 These targets must set to_attach_no_wait. */
1082
1083 #define target_attach_no_wait \
1084 (current_target.to_attach_no_wait)
1085
1086 /* The target_attach operation places a process under debugger control,
1087 and stops the process.
1088
1089 This operation provides a target-specific hook that allows the
1090 necessary bookkeeping to be performed after an attach completes. */
1091 #define target_post_attach(pid) \
1092 (*current_target.to_post_attach) (&current_target, pid)
1093
1094 /* Takes a program previously attached to and detaches it.
1095 The program may resume execution (some targets do, some don't) and will
1096 no longer stop on signals, etc. We better not have left any breakpoints
1097 in the program or it'll die when it hits one. ARGS is arguments
1098 typed by the user (e.g. a signal to send the process). FROM_TTY
1099 says whether to be verbose or not. */
1100
1101 extern void target_detach (const char *, int);
1102
1103 /* Disconnect from the current target without resuming it (leaving it
1104 waiting for a debugger). */
1105
1106 extern void target_disconnect (char *, int);
1107
1108 /* Resume execution of the target process PTID (or a group of
1109 threads). STEP says whether to single-step or to run free; SIGGNAL
1110 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1111 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1112 PTID means `step/resume only this process id'. A wildcard PTID
1113 (all threads, or all threads of process) means `step/resume
1114 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1115 matches) resume with their 'thread->suspend.stop_signal' signal
1116 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1117 if in "no pass" state. */
1118
1119 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1120
1121 /* Wait for process pid to do something. PTID = -1 to wait for any
1122 pid to do something. Return pid of child, or -1 in case of error;
1123 store status through argument pointer STATUS. Note that it is
1124 _NOT_ OK to throw_exception() out of target_wait() without popping
1125 the debugging target from the stack; GDB isn't prepared to get back
1126 to the prompt with a debugging target but without the frame cache,
1127 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1128 options. */
1129
1130 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1131 int options);
1132
1133 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1134
1135 extern void target_fetch_registers (struct regcache *regcache, int regno);
1136
1137 /* Store at least register REGNO, or all regs if REGNO == -1.
1138 It can store as many registers as it wants to, so target_prepare_to_store
1139 must have been previously called. Calls error() if there are problems. */
1140
1141 extern void target_store_registers (struct regcache *regcache, int regs);
1142
1143 /* Get ready to modify the registers array. On machines which store
1144 individual registers, this doesn't need to do anything. On machines
1145 which store all the registers in one fell swoop, this makes sure
1146 that REGISTERS contains all the registers from the program being
1147 debugged. */
1148
1149 #define target_prepare_to_store(regcache) \
1150 (*current_target.to_prepare_to_store) (&current_target, regcache)
1151
1152 /* Determine current address space of thread PTID. */
1153
1154 struct address_space *target_thread_address_space (ptid_t);
1155
1156 /* Implement the "info proc" command. This returns one if the request
1157 was handled, and zero otherwise. It can also throw an exception if
1158 an error was encountered while attempting to handle the
1159 request. */
1160
1161 int target_info_proc (char *, enum info_proc_what);
1162
1163 /* Returns true if this target can debug multiple processes
1164 simultaneously. */
1165
1166 #define target_supports_multi_process() \
1167 (*current_target.to_supports_multi_process) (&current_target)
1168
1169 /* Returns true if this target can disable address space randomization. */
1170
1171 int target_supports_disable_randomization (void);
1172
1173 /* Returns true if this target can enable and disable tracepoints
1174 while a trace experiment is running. */
1175
1176 #define target_supports_enable_disable_tracepoint() \
1177 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1178
1179 #define target_supports_string_tracing() \
1180 (*current_target.to_supports_string_tracing) (&current_target)
1181
1182 /* Returns true if this target can handle breakpoint conditions
1183 on its end. */
1184
1185 #define target_supports_evaluation_of_breakpoint_conditions() \
1186 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1187
1188 /* Returns true if this target can handle breakpoint commands
1189 on its end. */
1190
1191 #define target_can_run_breakpoint_commands() \
1192 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1193
1194 extern int target_read_string (CORE_ADDR, char **, int, int *);
1195
1196 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1197 ssize_t len);
1198
1199 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1200 ssize_t len);
1201
1202 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1203
1204 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1205
1206 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1207 ssize_t len);
1208
1209 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1210 ssize_t len);
1211
1212 /* Fetches the target's memory map. If one is found it is sorted
1213 and returned, after some consistency checking. Otherwise, NULL
1214 is returned. */
1215 VEC(mem_region_s) *target_memory_map (void);
1216
1217 /* Erase the specified flash region. */
1218 void target_flash_erase (ULONGEST address, LONGEST length);
1219
1220 /* Finish a sequence of flash operations. */
1221 void target_flash_done (void);
1222
1223 /* Describes a request for a memory write operation. */
1224 struct memory_write_request
1225 {
1226 /* Begining address that must be written. */
1227 ULONGEST begin;
1228 /* Past-the-end address. */
1229 ULONGEST end;
1230 /* The data to write. */
1231 gdb_byte *data;
1232 /* A callback baton for progress reporting for this request. */
1233 void *baton;
1234 };
1235 typedef struct memory_write_request memory_write_request_s;
1236 DEF_VEC_O(memory_write_request_s);
1237
1238 /* Enumeration specifying different flash preservation behaviour. */
1239 enum flash_preserve_mode
1240 {
1241 flash_preserve,
1242 flash_discard
1243 };
1244
1245 /* Write several memory blocks at once. This version can be more
1246 efficient than making several calls to target_write_memory, in
1247 particular because it can optimize accesses to flash memory.
1248
1249 Moreover, this is currently the only memory access function in gdb
1250 that supports writing to flash memory, and it should be used for
1251 all cases where access to flash memory is desirable.
1252
1253 REQUESTS is the vector (see vec.h) of memory_write_request.
1254 PRESERVE_FLASH_P indicates what to do with blocks which must be
1255 erased, but not completely rewritten.
1256 PROGRESS_CB is a function that will be periodically called to provide
1257 feedback to user. It will be called with the baton corresponding
1258 to the request currently being written. It may also be called
1259 with a NULL baton, when preserved flash sectors are being rewritten.
1260
1261 The function returns 0 on success, and error otherwise. */
1262 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1263 enum flash_preserve_mode preserve_flash_p,
1264 void (*progress_cb) (ULONGEST, void *));
1265
1266 /* Print a line about the current target. */
1267
1268 #define target_files_info() \
1269 (*current_target.to_files_info) (&current_target)
1270
1271 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1272 the target machine. Returns 0 for success, and returns non-zero or
1273 throws an error (with a detailed failure reason error code and
1274 message) otherwise. */
1275
1276 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1277 struct bp_target_info *bp_tgt);
1278
1279 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1280 machine. Result is 0 for success, non-zero for error. */
1281
1282 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1283 struct bp_target_info *bp_tgt);
1284
1285 /* Initialize the terminal settings we record for the inferior,
1286 before we actually run the inferior. */
1287
1288 #define target_terminal_init() \
1289 (*current_target.to_terminal_init) (&current_target)
1290
1291 /* Put the inferior's terminal settings into effect.
1292 This is preparation for starting or resuming the inferior. */
1293
1294 extern void target_terminal_inferior (void);
1295
1296 /* Put some of our terminal settings into effect,
1297 enough to get proper results from our output,
1298 but do not change into or out of RAW mode
1299 so that no input is discarded.
1300
1301 After doing this, either terminal_ours or terminal_inferior
1302 should be called to get back to a normal state of affairs. */
1303
1304 #define target_terminal_ours_for_output() \
1305 (*current_target.to_terminal_ours_for_output) (&current_target)
1306
1307 /* Put our terminal settings into effect.
1308 First record the inferior's terminal settings
1309 so they can be restored properly later. */
1310
1311 #define target_terminal_ours() \
1312 (*current_target.to_terminal_ours) (&current_target)
1313
1314 /* Save our terminal settings.
1315 This is called from TUI after entering or leaving the curses
1316 mode. Since curses modifies our terminal this call is here
1317 to take this change into account. */
1318
1319 #define target_terminal_save_ours() \
1320 (*current_target.to_terminal_save_ours) (&current_target)
1321
1322 /* Print useful information about our terminal status, if such a thing
1323 exists. */
1324
1325 #define target_terminal_info(arg, from_tty) \
1326 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1327
1328 /* Kill the inferior process. Make it go away. */
1329
1330 extern void target_kill (void);
1331
1332 /* Load an executable file into the target process. This is expected
1333 to not only bring new code into the target process, but also to
1334 update GDB's symbol tables to match.
1335
1336 ARG contains command-line arguments, to be broken down with
1337 buildargv (). The first non-switch argument is the filename to
1338 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1339 0)), which is an offset to apply to the load addresses of FILE's
1340 sections. The target may define switches, or other non-switch
1341 arguments, as it pleases. */
1342
1343 extern void target_load (char *arg, int from_tty);
1344
1345 /* Start an inferior process and set inferior_ptid to its pid.
1346 EXEC_FILE is the file to run.
1347 ALLARGS is a string containing the arguments to the program.
1348 ENV is the environment vector to pass. Errors reported with error().
1349 On VxWorks and various standalone systems, we ignore exec_file. */
1350
1351 void target_create_inferior (char *exec_file, char *args,
1352 char **env, int from_tty);
1353
1354 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1355 notification of inferior events such as fork and vork immediately
1356 after the inferior is created. (This because of how gdb gets an
1357 inferior created via invoking a shell to do it. In such a scenario,
1358 if the shell init file has commands in it, the shell will fork and
1359 exec for each of those commands, and we will see each such fork
1360 event. Very bad.)
1361
1362 Such targets will supply an appropriate definition for this function. */
1363
1364 #define target_post_startup_inferior(ptid) \
1365 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1366
1367 /* On some targets, we can catch an inferior fork or vfork event when
1368 it occurs. These functions insert/remove an already-created
1369 catchpoint for such events. They return 0 for success, 1 if the
1370 catchpoint type is not supported and -1 for failure. */
1371
1372 #define target_insert_fork_catchpoint(pid) \
1373 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1374
1375 #define target_remove_fork_catchpoint(pid) \
1376 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1377
1378 #define target_insert_vfork_catchpoint(pid) \
1379 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1380
1381 #define target_remove_vfork_catchpoint(pid) \
1382 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1383
1384 /* If the inferior forks or vforks, this function will be called at
1385 the next resume in order to perform any bookkeeping and fiddling
1386 necessary to continue debugging either the parent or child, as
1387 requested, and releasing the other. Information about the fork
1388 or vfork event is available via get_last_target_status ().
1389 This function returns 1 if the inferior should not be resumed
1390 (i.e. there is another event pending). */
1391
1392 int target_follow_fork (int follow_child, int detach_fork);
1393
1394 /* On some targets, we can catch an inferior exec event when it
1395 occurs. These functions insert/remove an already-created
1396 catchpoint for such events. They return 0 for success, 1 if the
1397 catchpoint type is not supported and -1 for failure. */
1398
1399 #define target_insert_exec_catchpoint(pid) \
1400 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1401
1402 #define target_remove_exec_catchpoint(pid) \
1403 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1404
1405 /* Syscall catch.
1406
1407 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1408 If NEEDED is zero, it means the target can disable the mechanism to
1409 catch system calls because there are no more catchpoints of this type.
1410
1411 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1412 being requested. In this case, both TABLE_SIZE and TABLE should
1413 be ignored.
1414
1415 TABLE_SIZE is the number of elements in TABLE. It only matters if
1416 ANY_COUNT is zero.
1417
1418 TABLE is an array of ints, indexed by syscall number. An element in
1419 this array is nonzero if that syscall should be caught. This argument
1420 only matters if ANY_COUNT is zero.
1421
1422 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1423 for failure. */
1424
1425 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1426 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1427 pid, needed, any_count, \
1428 table_size, table)
1429
1430 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1431 exit code of PID, if any. */
1432
1433 #define target_has_exited(pid,wait_status,exit_status) \
1434 (*current_target.to_has_exited) (&current_target, \
1435 pid,wait_status,exit_status)
1436
1437 /* The debugger has completed a blocking wait() call. There is now
1438 some process event that must be processed. This function should
1439 be defined by those targets that require the debugger to perform
1440 cleanup or internal state changes in response to the process event. */
1441
1442 /* The inferior process has died. Do what is right. */
1443
1444 void target_mourn_inferior (void);
1445
1446 /* Does target have enough data to do a run or attach command? */
1447
1448 #define target_can_run(t) \
1449 ((t)->to_can_run) (t)
1450
1451 /* Set list of signals to be handled in the target.
1452
1453 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1454 (enum gdb_signal). For every signal whose entry in this array is
1455 non-zero, the target is allowed -but not required- to skip reporting
1456 arrival of the signal to the GDB core by returning from target_wait,
1457 and to pass the signal directly to the inferior instead.
1458
1459 However, if the target is hardware single-stepping a thread that is
1460 about to receive a signal, it needs to be reported in any case, even
1461 if mentioned in a previous target_pass_signals call. */
1462
1463 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1464
1465 /* Set list of signals the target may pass to the inferior. This
1466 directly maps to the "handle SIGNAL pass/nopass" setting.
1467
1468 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1469 number (enum gdb_signal). For every signal whose entry in this
1470 array is non-zero, the target is allowed to pass the signal to the
1471 inferior. Signals not present in the array shall be silently
1472 discarded. This does not influence whether to pass signals to the
1473 inferior as a result of a target_resume call. This is useful in
1474 scenarios where the target needs to decide whether to pass or not a
1475 signal to the inferior without GDB core involvement, such as for
1476 example, when detaching (as threads may have been suspended with
1477 pending signals not reported to GDB). */
1478
1479 extern void target_program_signals (int nsig, unsigned char *program_signals);
1480
1481 /* Check to see if a thread is still alive. */
1482
1483 extern int target_thread_alive (ptid_t ptid);
1484
1485 /* Query for new threads and add them to the thread list. */
1486
1487 extern void target_find_new_threads (void);
1488
1489 /* Make target stop in a continuable fashion. (For instance, under
1490 Unix, this should act like SIGSTOP). This function is normally
1491 used by GUIs to implement a stop button. */
1492
1493 extern void target_stop (ptid_t ptid);
1494
1495 /* Send the specified COMMAND to the target's monitor
1496 (shell,interpreter) for execution. The result of the query is
1497 placed in OUTBUF. */
1498
1499 #define target_rcmd(command, outbuf) \
1500 (*current_target.to_rcmd) (&current_target, command, outbuf)
1501
1502
1503 /* Does the target include all of memory, or only part of it? This
1504 determines whether we look up the target chain for other parts of
1505 memory if this target can't satisfy a request. */
1506
1507 extern int target_has_all_memory_1 (void);
1508 #define target_has_all_memory target_has_all_memory_1 ()
1509
1510 /* Does the target include memory? (Dummy targets don't.) */
1511
1512 extern int target_has_memory_1 (void);
1513 #define target_has_memory target_has_memory_1 ()
1514
1515 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1516 we start a process.) */
1517
1518 extern int target_has_stack_1 (void);
1519 #define target_has_stack target_has_stack_1 ()
1520
1521 /* Does the target have registers? (Exec files don't.) */
1522
1523 extern int target_has_registers_1 (void);
1524 #define target_has_registers target_has_registers_1 ()
1525
1526 /* Does the target have execution? Can we make it jump (through
1527 hoops), or pop its stack a few times? This means that the current
1528 target is currently executing; for some targets, that's the same as
1529 whether or not the target is capable of execution, but there are
1530 also targets which can be current while not executing. In that
1531 case this will become true after target_create_inferior or
1532 target_attach. */
1533
1534 extern int target_has_execution_1 (ptid_t);
1535
1536 /* Like target_has_execution_1, but always passes inferior_ptid. */
1537
1538 extern int target_has_execution_current (void);
1539
1540 #define target_has_execution target_has_execution_current ()
1541
1542 /* Default implementations for process_stratum targets. Return true
1543 if there's a selected inferior, false otherwise. */
1544
1545 extern int default_child_has_all_memory (struct target_ops *ops);
1546 extern int default_child_has_memory (struct target_ops *ops);
1547 extern int default_child_has_stack (struct target_ops *ops);
1548 extern int default_child_has_registers (struct target_ops *ops);
1549 extern int default_child_has_execution (struct target_ops *ops,
1550 ptid_t the_ptid);
1551
1552 /* Can the target support the debugger control of thread execution?
1553 Can it lock the thread scheduler? */
1554
1555 #define target_can_lock_scheduler \
1556 (current_target.to_has_thread_control & tc_schedlock)
1557
1558 /* Should the target enable async mode if it is supported? Temporary
1559 cludge until async mode is a strict superset of sync mode. */
1560 extern int target_async_permitted;
1561
1562 /* Can the target support asynchronous execution? */
1563 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1564
1565 /* Is the target in asynchronous execution mode? */
1566 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1567
1568 int target_supports_non_stop (void);
1569
1570 /* Put the target in async mode with the specified callback function. */
1571 #define target_async(CALLBACK,CONTEXT) \
1572 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1573
1574 #define target_execution_direction() \
1575 (current_target.to_execution_direction (&current_target))
1576
1577 /* Converts a process id to a string. Usually, the string just contains
1578 `process xyz', but on some systems it may contain
1579 `process xyz thread abc'. */
1580
1581 extern char *target_pid_to_str (ptid_t ptid);
1582
1583 extern char *normal_pid_to_str (ptid_t ptid);
1584
1585 /* Return a short string describing extra information about PID,
1586 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1587 is okay. */
1588
1589 #define target_extra_thread_info(TP) \
1590 (current_target.to_extra_thread_info (&current_target, TP))
1591
1592 /* Return the thread's name. A NULL result means that the target
1593 could not determine this thread's name. */
1594
1595 extern char *target_thread_name (struct thread_info *);
1596
1597 /* Attempts to find the pathname of the executable file
1598 that was run to create a specified process.
1599
1600 The process PID must be stopped when this operation is used.
1601
1602 If the executable file cannot be determined, NULL is returned.
1603
1604 Else, a pointer to a character string containing the pathname
1605 is returned. This string should be copied into a buffer by
1606 the client if the string will not be immediately used, or if
1607 it must persist. */
1608
1609 #define target_pid_to_exec_file(pid) \
1610 (current_target.to_pid_to_exec_file) (&current_target, pid)
1611
1612 /* See the to_thread_architecture description in struct target_ops. */
1613
1614 #define target_thread_architecture(ptid) \
1615 (current_target.to_thread_architecture (&current_target, ptid))
1616
1617 /*
1618 * Iterator function for target memory regions.
1619 * Calls a callback function once for each memory region 'mapped'
1620 * in the child process. Defined as a simple macro rather than
1621 * as a function macro so that it can be tested for nullity.
1622 */
1623
1624 #define target_find_memory_regions(FUNC, DATA) \
1625 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1626
1627 /*
1628 * Compose corefile .note section.
1629 */
1630
1631 #define target_make_corefile_notes(BFD, SIZE_P) \
1632 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1633
1634 /* Bookmark interfaces. */
1635 #define target_get_bookmark(ARGS, FROM_TTY) \
1636 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1637
1638 #define target_goto_bookmark(ARG, FROM_TTY) \
1639 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1640
1641 /* Hardware watchpoint interfaces. */
1642
1643 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1644 write). Only the INFERIOR_PTID task is being queried. */
1645
1646 #define target_stopped_by_watchpoint() \
1647 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1648
1649 /* Non-zero if we have steppable watchpoints */
1650
1651 #define target_have_steppable_watchpoint \
1652 (current_target.to_have_steppable_watchpoint)
1653
1654 /* Non-zero if we have continuable watchpoints */
1655
1656 #define target_have_continuable_watchpoint \
1657 (current_target.to_have_continuable_watchpoint)
1658
1659 /* Provide defaults for hardware watchpoint functions. */
1660
1661 /* If the *_hw_beakpoint functions have not been defined
1662 elsewhere use the definitions in the target vector. */
1663
1664 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1665 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1666 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1667 (including this one?). OTHERTYPE is who knows what... */
1668
1669 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1670 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1671 TYPE, CNT, OTHERTYPE);
1672
1673 /* Returns the number of debug registers needed to watch the given
1674 memory region, or zero if not supported. */
1675
1676 #define target_region_ok_for_hw_watchpoint(addr, len) \
1677 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1678 addr, len)
1679
1680
1681 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1682 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1683 COND is the expression for its condition, or NULL if there's none.
1684 Returns 0 for success, 1 if the watchpoint type is not supported,
1685 -1 for failure. */
1686
1687 #define target_insert_watchpoint(addr, len, type, cond) \
1688 (*current_target.to_insert_watchpoint) (&current_target, \
1689 addr, len, type, cond)
1690
1691 #define target_remove_watchpoint(addr, len, type, cond) \
1692 (*current_target.to_remove_watchpoint) (&current_target, \
1693 addr, len, type, cond)
1694
1695 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1696 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1697 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1698 masked watchpoints are not supported, -1 for failure. */
1699
1700 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1701
1702 /* Remove a masked watchpoint at ADDR with the mask MASK.
1703 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1704 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1705 for failure. */
1706
1707 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1708
1709 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1710 the target machine. Returns 0 for success, and returns non-zero or
1711 throws an error (with a detailed failure reason error code and
1712 message) otherwise. */
1713
1714 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1715 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1716 gdbarch, bp_tgt)
1717
1718 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1719 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1720 gdbarch, bp_tgt)
1721
1722 /* Return number of debug registers needed for a ranged breakpoint,
1723 or -1 if ranged breakpoints are not supported. */
1724
1725 extern int target_ranged_break_num_registers (void);
1726
1727 /* Return non-zero if target knows the data address which triggered this
1728 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1729 INFERIOR_PTID task is being queried. */
1730 #define target_stopped_data_address(target, addr_p) \
1731 (*target.to_stopped_data_address) (target, addr_p)
1732
1733 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1734 LENGTH bytes beginning at START. */
1735 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1736 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1737
1738 /* Return non-zero if the target is capable of using hardware to evaluate
1739 the condition expression. In this case, if the condition is false when
1740 the watched memory location changes, execution may continue without the
1741 debugger being notified.
1742
1743 Due to limitations in the hardware implementation, it may be capable of
1744 avoiding triggering the watchpoint in some cases where the condition
1745 expression is false, but may report some false positives as well.
1746 For this reason, GDB will still evaluate the condition expression when
1747 the watchpoint triggers. */
1748 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1749 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1750 addr, len, type, cond)
1751
1752 /* Return number of debug registers needed for a masked watchpoint,
1753 -1 if masked watchpoints are not supported or -2 if the given address
1754 and mask combination cannot be used. */
1755
1756 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1757
1758 /* Target can execute in reverse? */
1759 #define target_can_execute_reverse \
1760 (current_target.to_can_execute_reverse ? \
1761 current_target.to_can_execute_reverse (&current_target) : 0)
1762
1763 extern const struct target_desc *target_read_description (struct target_ops *);
1764
1765 #define target_get_ada_task_ptid(lwp, tid) \
1766 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1767
1768 /* Utility implementation of searching memory. */
1769 extern int simple_search_memory (struct target_ops* ops,
1770 CORE_ADDR start_addr,
1771 ULONGEST search_space_len,
1772 const gdb_byte *pattern,
1773 ULONGEST pattern_len,
1774 CORE_ADDR *found_addrp);
1775
1776 /* Main entry point for searching memory. */
1777 extern int target_search_memory (CORE_ADDR start_addr,
1778 ULONGEST search_space_len,
1779 const gdb_byte *pattern,
1780 ULONGEST pattern_len,
1781 CORE_ADDR *found_addrp);
1782
1783 /* Target file operations. */
1784
1785 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1786 target file descriptor, or -1 if an error occurs (and set
1787 *TARGET_ERRNO). */
1788 extern int target_fileio_open (const char *filename, int flags, int mode,
1789 int *target_errno);
1790
1791 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1792 Return the number of bytes written, or -1 if an error occurs
1793 (and set *TARGET_ERRNO). */
1794 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1795 ULONGEST offset, int *target_errno);
1796
1797 /* Read up to LEN bytes FD on the target into READ_BUF.
1798 Return the number of bytes read, or -1 if an error occurs
1799 (and set *TARGET_ERRNO). */
1800 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1801 ULONGEST offset, int *target_errno);
1802
1803 /* Close FD on the target. Return 0, or -1 if an error occurs
1804 (and set *TARGET_ERRNO). */
1805 extern int target_fileio_close (int fd, int *target_errno);
1806
1807 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1808 occurs (and set *TARGET_ERRNO). */
1809 extern int target_fileio_unlink (const char *filename, int *target_errno);
1810
1811 /* Read value of symbolic link FILENAME on the target. Return a
1812 null-terminated string allocated via xmalloc, or NULL if an error
1813 occurs (and set *TARGET_ERRNO). */
1814 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1815
1816 /* Read target file FILENAME. The return value will be -1 if the transfer
1817 fails or is not supported; 0 if the object is empty; or the length
1818 of the object otherwise. If a positive value is returned, a
1819 sufficiently large buffer will be allocated using xmalloc and
1820 returned in *BUF_P containing the contents of the object.
1821
1822 This method should be used for objects sufficiently small to store
1823 in a single xmalloc'd buffer, when no fixed bound on the object's
1824 size is known in advance. */
1825 extern LONGEST target_fileio_read_alloc (const char *filename,
1826 gdb_byte **buf_p);
1827
1828 /* Read target file FILENAME. The result is NUL-terminated and
1829 returned as a string, allocated using xmalloc. If an error occurs
1830 or the transfer is unsupported, NULL is returned. Empty objects
1831 are returned as allocated but empty strings. A warning is issued
1832 if the result contains any embedded NUL bytes. */
1833 extern char *target_fileio_read_stralloc (const char *filename);
1834
1835
1836 /* Tracepoint-related operations. */
1837
1838 #define target_trace_init() \
1839 (*current_target.to_trace_init) (&current_target)
1840
1841 #define target_download_tracepoint(t) \
1842 (*current_target.to_download_tracepoint) (&current_target, t)
1843
1844 #define target_can_download_tracepoint() \
1845 (*current_target.to_can_download_tracepoint) (&current_target)
1846
1847 #define target_download_trace_state_variable(tsv) \
1848 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1849
1850 #define target_enable_tracepoint(loc) \
1851 (*current_target.to_enable_tracepoint) (&current_target, loc)
1852
1853 #define target_disable_tracepoint(loc) \
1854 (*current_target.to_disable_tracepoint) (&current_target, loc)
1855
1856 #define target_trace_start() \
1857 (*current_target.to_trace_start) (&current_target)
1858
1859 #define target_trace_set_readonly_regions() \
1860 (*current_target.to_trace_set_readonly_regions) (&current_target)
1861
1862 #define target_get_trace_status(ts) \
1863 (*current_target.to_get_trace_status) (&current_target, ts)
1864
1865 #define target_get_tracepoint_status(tp,utp) \
1866 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1867
1868 #define target_trace_stop() \
1869 (*current_target.to_trace_stop) (&current_target)
1870
1871 #define target_trace_find(type,num,addr1,addr2,tpp) \
1872 (*current_target.to_trace_find) (&current_target, \
1873 (type), (num), (addr1), (addr2), (tpp))
1874
1875 #define target_get_trace_state_variable_value(tsv,val) \
1876 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1877 (tsv), (val))
1878
1879 #define target_save_trace_data(filename) \
1880 (*current_target.to_save_trace_data) (&current_target, filename)
1881
1882 #define target_upload_tracepoints(utpp) \
1883 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1884
1885 #define target_upload_trace_state_variables(utsvp) \
1886 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1887
1888 #define target_get_raw_trace_data(buf,offset,len) \
1889 (*current_target.to_get_raw_trace_data) (&current_target, \
1890 (buf), (offset), (len))
1891
1892 #define target_get_min_fast_tracepoint_insn_len() \
1893 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1894
1895 #define target_set_disconnected_tracing(val) \
1896 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1897
1898 #define target_set_circular_trace_buffer(val) \
1899 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1900
1901 #define target_set_trace_buffer_size(val) \
1902 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1903
1904 #define target_set_trace_notes(user,notes,stopnotes) \
1905 (*current_target.to_set_trace_notes) (&current_target, \
1906 (user), (notes), (stopnotes))
1907
1908 #define target_get_tib_address(ptid, addr) \
1909 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1910
1911 #define target_set_permissions() \
1912 (*current_target.to_set_permissions) (&current_target)
1913
1914 #define target_static_tracepoint_marker_at(addr, marker) \
1915 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1916 addr, marker)
1917
1918 #define target_static_tracepoint_markers_by_strid(marker_id) \
1919 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1920 marker_id)
1921
1922 #define target_traceframe_info() \
1923 (*current_target.to_traceframe_info) (&current_target)
1924
1925 #define target_use_agent(use) \
1926 (*current_target.to_use_agent) (&current_target, use)
1927
1928 #define target_can_use_agent() \
1929 (*current_target.to_can_use_agent) (&current_target)
1930
1931 #define target_augmented_libraries_svr4_read() \
1932 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1933
1934 /* Command logging facility. */
1935
1936 #define target_log_command(p) \
1937 (*current_target.to_log_command) (&current_target, p)
1938
1939
1940 extern int target_core_of_thread (ptid_t ptid);
1941
1942 /* See to_get_unwinder in struct target_ops. */
1943 extern const struct frame_unwind *target_get_unwinder (void);
1944
1945 /* See to_get_tailcall_unwinder in struct target_ops. */
1946 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1947
1948 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1949 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1950 if there's a mismatch, and -1 if an error is encountered while
1951 reading memory. Throws an error if the functionality is found not
1952 to be supported by the current target. */
1953 int target_verify_memory (const gdb_byte *data,
1954 CORE_ADDR memaddr, ULONGEST size);
1955
1956 /* Routines for maintenance of the target structures...
1957
1958 complete_target_initialization: Finalize a target_ops by filling in
1959 any fields needed by the target implementation.
1960
1961 add_target: Add a target to the list of all possible targets.
1962
1963 push_target: Make this target the top of the stack of currently used
1964 targets, within its particular stratum of the stack. Result
1965 is 0 if now atop the stack, nonzero if not on top (maybe
1966 should warn user).
1967
1968 unpush_target: Remove this from the stack of currently used targets,
1969 no matter where it is on the list. Returns 0 if no
1970 change, 1 if removed from stack. */
1971
1972 extern void add_target (struct target_ops *);
1973
1974 extern void add_target_with_completer (struct target_ops *t,
1975 completer_ftype *completer);
1976
1977 extern void complete_target_initialization (struct target_ops *t);
1978
1979 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1980 for maintaining backwards compatibility when renaming targets. */
1981
1982 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1983
1984 extern void push_target (struct target_ops *);
1985
1986 extern int unpush_target (struct target_ops *);
1987
1988 extern void target_pre_inferior (int);
1989
1990 extern void target_preopen (int);
1991
1992 /* Does whatever cleanup is required to get rid of all pushed targets. */
1993 extern void pop_all_targets (void);
1994
1995 /* Like pop_all_targets, but pops only targets whose stratum is
1996 strictly above ABOVE_STRATUM. */
1997 extern void pop_all_targets_above (enum strata above_stratum);
1998
1999 extern int target_is_pushed (struct target_ops *t);
2000
2001 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2002 CORE_ADDR offset);
2003
2004 /* Struct target_section maps address ranges to file sections. It is
2005 mostly used with BFD files, but can be used without (e.g. for handling
2006 raw disks, or files not in formats handled by BFD). */
2007
2008 struct target_section
2009 {
2010 CORE_ADDR addr; /* Lowest address in section */
2011 CORE_ADDR endaddr; /* 1+highest address in section */
2012
2013 struct bfd_section *the_bfd_section;
2014
2015 /* The "owner" of the section.
2016 It can be any unique value. It is set by add_target_sections
2017 and used by remove_target_sections.
2018 For example, for executables it is a pointer to exec_bfd and
2019 for shlibs it is the so_list pointer. */
2020 void *owner;
2021 };
2022
2023 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2024
2025 struct target_section_table
2026 {
2027 struct target_section *sections;
2028 struct target_section *sections_end;
2029 };
2030
2031 /* Return the "section" containing the specified address. */
2032 struct target_section *target_section_by_addr (struct target_ops *target,
2033 CORE_ADDR addr);
2034
2035 /* Return the target section table this target (or the targets
2036 beneath) currently manipulate. */
2037
2038 extern struct target_section_table *target_get_section_table
2039 (struct target_ops *target);
2040
2041 /* From mem-break.c */
2042
2043 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2044 struct bp_target_info *);
2045
2046 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2047 struct bp_target_info *);
2048
2049 extern int default_memory_remove_breakpoint (struct gdbarch *,
2050 struct bp_target_info *);
2051
2052 extern int default_memory_insert_breakpoint (struct gdbarch *,
2053 struct bp_target_info *);
2054
2055
2056 /* From target.c */
2057
2058 extern void initialize_targets (void);
2059
2060 extern void noprocess (void) ATTRIBUTE_NORETURN;
2061
2062 extern void target_require_runnable (void);
2063
2064 extern void find_default_attach (struct target_ops *, char *, int);
2065
2066 extern void find_default_create_inferior (struct target_ops *,
2067 char *, char *, char **, int);
2068
2069 extern struct target_ops *find_target_beneath (struct target_ops *);
2070
2071 /* Find the target at STRATUM. If no target is at that stratum,
2072 return NULL. */
2073
2074 struct target_ops *find_target_at (enum strata stratum);
2075
2076 /* Read OS data object of type TYPE from the target, and return it in
2077 XML format. The result is NUL-terminated and returned as a string,
2078 allocated using xmalloc. If an error occurs or the transfer is
2079 unsupported, NULL is returned. Empty objects are returned as
2080 allocated but empty strings. */
2081
2082 extern char *target_get_osdata (const char *type);
2083
2084 \f
2085 /* Stuff that should be shared among the various remote targets. */
2086
2087 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2088 information (higher values, more information). */
2089 extern int remote_debug;
2090
2091 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2092 extern int baud_rate;
2093 /* Timeout limit for response from target. */
2094 extern int remote_timeout;
2095
2096 \f
2097
2098 /* Set the show memory breakpoints mode to show, and installs a cleanup
2099 to restore it back to the current value. */
2100 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2101
2102 extern int may_write_registers;
2103 extern int may_write_memory;
2104 extern int may_insert_breakpoints;
2105 extern int may_insert_tracepoints;
2106 extern int may_insert_fast_tracepoints;
2107 extern int may_stop;
2108
2109 extern void update_target_permissions (void);
2110
2111 \f
2112 /* Imported from machine dependent code. */
2113
2114 /* Blank target vector entries are initialized to target_ignore. */
2115 void target_ignore (void);
2116
2117 /* See to_supports_btrace in struct target_ops. */
2118 #define target_supports_btrace() \
2119 (current_target.to_supports_btrace (&current_target))
2120
2121 /* See to_enable_btrace in struct target_ops. */
2122 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2123
2124 /* See to_disable_btrace in struct target_ops. */
2125 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2126
2127 /* See to_teardown_btrace in struct target_ops. */
2128 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2129
2130 /* See to_read_btrace in struct target_ops. */
2131 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2132 struct btrace_target_info *,
2133 enum btrace_read_type);
2134
2135 /* See to_stop_recording in struct target_ops. */
2136 extern void target_stop_recording (void);
2137
2138 /* See to_info_record in struct target_ops. */
2139 extern void target_info_record (void);
2140
2141 /* See to_save_record in struct target_ops. */
2142 extern void target_save_record (const char *filename);
2143
2144 /* Query if the target supports deleting the execution log. */
2145 extern int target_supports_delete_record (void);
2146
2147 /* See to_delete_record in struct target_ops. */
2148 extern void target_delete_record (void);
2149
2150 /* See to_record_is_replaying in struct target_ops. */
2151 extern int target_record_is_replaying (void);
2152
2153 /* See to_goto_record_begin in struct target_ops. */
2154 extern void target_goto_record_begin (void);
2155
2156 /* See to_goto_record_end in struct target_ops. */
2157 extern void target_goto_record_end (void);
2158
2159 /* See to_goto_record in struct target_ops. */
2160 extern void target_goto_record (ULONGEST insn);
2161
2162 /* See to_insn_history. */
2163 extern void target_insn_history (int size, int flags);
2164
2165 /* See to_insn_history_from. */
2166 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2167
2168 /* See to_insn_history_range. */
2169 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2170
2171 /* See to_call_history. */
2172 extern void target_call_history (int size, int flags);
2173
2174 /* See to_call_history_from. */
2175 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2176
2177 /* See to_call_history_range. */
2178 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2179
2180 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2181 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2182 struct gdbarch *gdbarch);
2183
2184 /* See to_decr_pc_after_break. */
2185 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2186
2187 #endif /* !defined (TARGET_H) */