reformat comment in target.h
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* The piece of the object requested is unavailable. */
217 TARGET_XFER_UNAVAILABLE = 2,
218
219 /* Generic I/O error. Note that it's important that this is '-1',
220 as we still have target_xfer-related code returning hardcoded
221 '-1' on error. */
222 TARGET_XFER_E_IO = -1,
223
224 /* Keep list in sync with target_xfer_status_to_string. */
225 };
226
227 /* Return the string form of STATUS. */
228
229 extern const char *
230 target_xfer_status_to_string (enum target_xfer_status status);
231
232 /* Enumeration of the kinds of traceframe searches that a target may
233 be able to perform. */
234
235 enum trace_find_type
236 {
237 tfind_number,
238 tfind_pc,
239 tfind_tp,
240 tfind_range,
241 tfind_outside,
242 };
243
244 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
245 DEF_VEC_P(static_tracepoint_marker_p);
246
247 typedef enum target_xfer_status
248 target_xfer_partial_ftype (struct target_ops *ops,
249 enum target_object object,
250 const char *annex,
251 gdb_byte *readbuf,
252 const gdb_byte *writebuf,
253 ULONGEST offset,
254 ULONGEST len,
255 ULONGEST *xfered_len);
256
257 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
258 OBJECT. The OFFSET, for a seekable object, specifies the
259 starting point. The ANNEX can be used to provide additional
260 data-specific information to the target.
261
262 Return the number of bytes actually transfered, or a negative error
263 code (an 'enum target_xfer_error' value) if the transfer is not
264 supported or otherwise fails. Return of a positive value less than
265 LEN indicates that no further transfer is possible. Unlike the raw
266 to_xfer_partial interface, callers of these functions do not need
267 to retry partial transfers. */
268
269 extern LONGEST target_read (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte *buf,
272 ULONGEST offset, LONGEST len);
273
274 struct memory_read_result
275 {
276 /* First address that was read. */
277 ULONGEST begin;
278 /* Past-the-end address. */
279 ULONGEST end;
280 /* The data. */
281 gdb_byte *data;
282 };
283 typedef struct memory_read_result memory_read_result_s;
284 DEF_VEC_O(memory_read_result_s);
285
286 extern void free_memory_read_result_vector (void *);
287
288 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
289 ULONGEST offset,
290 LONGEST len);
291
292 extern LONGEST target_write (struct target_ops *ops,
293 enum target_object object,
294 const char *annex, const gdb_byte *buf,
295 ULONGEST offset, LONGEST len);
296
297 /* Similar to target_write, except that it also calls PROGRESS with
298 the number of bytes written and the opaque BATON after every
299 successful partial write (and before the first write). This is
300 useful for progress reporting and user interaction while writing
301 data. To abort the transfer, the progress callback can throw an
302 exception. */
303
304 LONGEST target_write_with_progress (struct target_ops *ops,
305 enum target_object object,
306 const char *annex, const gdb_byte *buf,
307 ULONGEST offset, LONGEST len,
308 void (*progress) (ULONGEST, void *),
309 void *baton);
310
311 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
312 be read using OPS. The return value will be -1 if the transfer
313 fails or is not supported; 0 if the object is empty; or the length
314 of the object otherwise. If a positive value is returned, a
315 sufficiently large buffer will be allocated using xmalloc and
316 returned in *BUF_P containing the contents of the object.
317
318 This method should be used for objects sufficiently small to store
319 in a single xmalloc'd buffer, when no fixed bound on the object's
320 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
321 through this function. */
322
323 extern LONGEST target_read_alloc (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, gdb_byte **buf_p);
326
327 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
328 returned as a string, allocated using xmalloc. If an error occurs
329 or the transfer is unsupported, NULL is returned. Empty objects
330 are returned as allocated but empty strings. A warning is issued
331 if the result contains any embedded NUL bytes. */
332
333 extern char *target_read_stralloc (struct target_ops *ops,
334 enum target_object object,
335 const char *annex);
336
337 /* See target_ops->to_xfer_partial. */
338 extern target_xfer_partial_ftype target_xfer_partial;
339
340 /* Wrappers to target read/write that perform memory transfers. They
341 throw an error if the memory transfer fails.
342
343 NOTE: cagney/2003-10-23: The naming schema is lifted from
344 "frame.h". The parameter order is lifted from get_frame_memory,
345 which in turn lifted it from read_memory. */
346
347 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
348 gdb_byte *buf, LONGEST len);
349 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
350 CORE_ADDR addr, int len,
351 enum bfd_endian byte_order);
352 \f
353 struct thread_info; /* fwd decl for parameter list below: */
354
355 /* The type of the callback to the to_async method. */
356
357 typedef void async_callback_ftype (enum inferior_event_type event_type,
358 void *context);
359
360 /* These defines are used to mark target_ops methods. The script
361 make-target-delegates scans these and auto-generates the base
362 method implementations. There are four macros that can be used:
363
364 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
365 does nothing. This is only valid if the method return type is
366 'void'.
367
368 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
369 'tcomplain ()'. The base method simply makes this call, which is
370 assumed not to return.
371
372 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
373 base method returns this expression's value.
374
375 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
376 make-target-delegates does not generate a base method in this case,
377 but instead uses the argument function as the base method. */
378
379 #define TARGET_DEFAULT_IGNORE()
380 #define TARGET_DEFAULT_NORETURN(ARG)
381 #define TARGET_DEFAULT_RETURN(ARG)
382 #define TARGET_DEFAULT_FUNC(ARG)
383
384 struct target_ops
385 {
386 struct target_ops *beneath; /* To the target under this one. */
387 char *to_shortname; /* Name this target type */
388 char *to_longname; /* Name for printing */
389 char *to_doc; /* Documentation. Does not include trailing
390 newline, and starts with a one-line descrip-
391 tion (probably similar to to_longname). */
392 /* Per-target scratch pad. */
393 void *to_data;
394 /* The open routine takes the rest of the parameters from the
395 command, and (if successful) pushes a new target onto the
396 stack. Targets should supply this routine, if only to provide
397 an error message. */
398 void (*to_open) (char *, int);
399 /* Old targets with a static target vector provide "to_close".
400 New re-entrant targets provide "to_xclose" and that is expected
401 to xfree everything (including the "struct target_ops"). */
402 void (*to_xclose) (struct target_ops *targ);
403 void (*to_close) (struct target_ops *);
404 /* Attaches to a process on the target side. Arguments are as
405 passed to the `attach' command by the user. This routine can
406 be called when the target is not on the target-stack, if the
407 target_can_run routine returns 1; in that case, it must push
408 itself onto the stack. Upon exit, the target should be ready
409 for normal operations, and should be ready to deliver the
410 status of the process immediately (without waiting) to an
411 upcoming target_wait call. */
412 void (*to_attach) (struct target_ops *ops, const char *, int);
413 void (*to_post_attach) (struct target_ops *, int)
414 TARGET_DEFAULT_IGNORE ();
415 void (*to_detach) (struct target_ops *ops, const char *, int)
416 TARGET_DEFAULT_IGNORE ();
417 void (*to_disconnect) (struct target_ops *, const char *, int)
418 TARGET_DEFAULT_NORETURN (tcomplain ());
419 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 ptid_t (*to_wait) (struct target_ops *,
422 ptid_t, struct target_waitstatus *, int)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
425 TARGET_DEFAULT_IGNORE ();
426 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
427 TARGET_DEFAULT_NORETURN (noprocess ());
428 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
429 TARGET_DEFAULT_NORETURN (noprocess ());
430
431 void (*to_files_info) (struct target_ops *)
432 TARGET_DEFAULT_IGNORE ();
433 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
434 struct bp_target_info *)
435 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
436 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
437 struct bp_target_info *)
438 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
439 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
440 TARGET_DEFAULT_RETURN (0);
441 int (*to_ranged_break_num_registers) (struct target_ops *)
442 TARGET_DEFAULT_RETURN (-1);
443 int (*to_insert_hw_breakpoint) (struct target_ops *,
444 struct gdbarch *, struct bp_target_info *)
445 TARGET_DEFAULT_RETURN (-1);
446 int (*to_remove_hw_breakpoint) (struct target_ops *,
447 struct gdbarch *, struct bp_target_info *)
448 TARGET_DEFAULT_RETURN (-1);
449
450 /* Documentation of what the two routines below are expected to do is
451 provided with the corresponding target_* macros. */
452 int (*to_remove_watchpoint) (struct target_ops *,
453 CORE_ADDR, int, int, struct expression *)
454 TARGET_DEFAULT_RETURN (-1);
455 int (*to_insert_watchpoint) (struct target_ops *,
456 CORE_ADDR, int, int, struct expression *)
457 TARGET_DEFAULT_RETURN (-1);
458
459 int (*to_insert_mask_watchpoint) (struct target_ops *,
460 CORE_ADDR, CORE_ADDR, int)
461 TARGET_DEFAULT_RETURN (1);
462 int (*to_remove_mask_watchpoint) (struct target_ops *,
463 CORE_ADDR, CORE_ADDR, int)
464 TARGET_DEFAULT_RETURN (1);
465 int (*to_stopped_by_watchpoint) (struct target_ops *)
466 TARGET_DEFAULT_RETURN (0);
467 int to_have_steppable_watchpoint;
468 int to_have_continuable_watchpoint;
469 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
470 TARGET_DEFAULT_RETURN (0);
471 int (*to_watchpoint_addr_within_range) (struct target_ops *,
472 CORE_ADDR, CORE_ADDR, int)
473 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
474
475 /* Documentation of this routine is provided with the corresponding
476 target_* macro. */
477 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
478 CORE_ADDR, int)
479 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
480
481 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
482 CORE_ADDR, int, int,
483 struct expression *)
484 TARGET_DEFAULT_RETURN (0);
485 int (*to_masked_watch_num_registers) (struct target_ops *,
486 CORE_ADDR, CORE_ADDR)
487 TARGET_DEFAULT_RETURN (-1);
488 void (*to_terminal_init) (struct target_ops *)
489 TARGET_DEFAULT_IGNORE ();
490 void (*to_terminal_inferior) (struct target_ops *)
491 TARGET_DEFAULT_IGNORE ();
492 void (*to_terminal_ours_for_output) (struct target_ops *)
493 TARGET_DEFAULT_IGNORE ();
494 void (*to_terminal_ours) (struct target_ops *)
495 TARGET_DEFAULT_IGNORE ();
496 void (*to_terminal_save_ours) (struct target_ops *)
497 TARGET_DEFAULT_IGNORE ();
498 void (*to_terminal_info) (struct target_ops *, const char *, int)
499 TARGET_DEFAULT_FUNC (default_terminal_info);
500 void (*to_kill) (struct target_ops *)
501 TARGET_DEFAULT_NORETURN (noprocess ());
502 void (*to_load) (struct target_ops *, const char *, int)
503 TARGET_DEFAULT_NORETURN (tcomplain ());
504 /* Start an inferior process and set inferior_ptid to its pid.
505 EXEC_FILE is the file to run.
506 ALLARGS is a string containing the arguments to the program.
507 ENV is the environment vector to pass. Errors reported with error().
508 On VxWorks and various standalone systems, we ignore exec_file. */
509 void (*to_create_inferior) (struct target_ops *,
510 char *, char *, char **, int);
511 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
512 TARGET_DEFAULT_IGNORE ();
513 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
514 TARGET_DEFAULT_RETURN (1);
515 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
516 TARGET_DEFAULT_RETURN (1);
517 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
518 TARGET_DEFAULT_RETURN (1);
519 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
520 TARGET_DEFAULT_RETURN (1);
521 int (*to_follow_fork) (struct target_ops *, int, int)
522 TARGET_DEFAULT_FUNC (default_follow_fork);
523 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
524 TARGET_DEFAULT_RETURN (1);
525 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
526 TARGET_DEFAULT_RETURN (1);
527 int (*to_set_syscall_catchpoint) (struct target_ops *,
528 int, int, int, int, int *)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_has_exited) (struct target_ops *, int, int, int *)
531 TARGET_DEFAULT_RETURN (0);
532 void (*to_mourn_inferior) (struct target_ops *)
533 TARGET_DEFAULT_FUNC (default_mourn_inferior);
534 /* Note that to_can_run is special and can be invoked on an
535 unpushed target. Targets defining this method must also define
536 to_can_async_p and to_supports_non_stop. */
537 int (*to_can_run) (struct target_ops *)
538 TARGET_DEFAULT_RETURN (0);
539
540 /* Documentation of this routine is provided with the corresponding
541 target_* macro. */
542 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
543 TARGET_DEFAULT_IGNORE ();
544
545 /* Documentation of this routine is provided with the
546 corresponding target_* function. */
547 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
548 TARGET_DEFAULT_IGNORE ();
549
550 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
551 TARGET_DEFAULT_RETURN (0);
552 void (*to_find_new_threads) (struct target_ops *)
553 TARGET_DEFAULT_IGNORE ();
554 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
555 TARGET_DEFAULT_FUNC (default_pid_to_str);
556 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (NULL);
558 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
559 TARGET_DEFAULT_RETURN (NULL);
560 void (*to_stop) (struct target_ops *, ptid_t)
561 TARGET_DEFAULT_IGNORE ();
562 void (*to_rcmd) (struct target_ops *,
563 const char *command, struct ui_file *output)
564 TARGET_DEFAULT_FUNC (default_rcmd);
565 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
566 TARGET_DEFAULT_RETURN (NULL);
567 void (*to_log_command) (struct target_ops *, const char *)
568 TARGET_DEFAULT_IGNORE ();
569 struct target_section_table *(*to_get_section_table) (struct target_ops *)
570 TARGET_DEFAULT_RETURN (NULL);
571 enum strata to_stratum;
572 int (*to_has_all_memory) (struct target_ops *);
573 int (*to_has_memory) (struct target_ops *);
574 int (*to_has_stack) (struct target_ops *);
575 int (*to_has_registers) (struct target_ops *);
576 int (*to_has_execution) (struct target_ops *, ptid_t);
577 int to_has_thread_control; /* control thread execution */
578 int to_attach_no_wait;
579 /* This method must be implemented in some situations. See the
580 comment on 'to_can_run'. */
581 int (*to_can_async_p) (struct target_ops *)
582 TARGET_DEFAULT_RETURN (0);
583 int (*to_is_async_p) (struct target_ops *)
584 TARGET_DEFAULT_RETURN (0);
585 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
586 TARGET_DEFAULT_NORETURN (tcomplain ());
587 /* This method must be implemented in some situations. See the
588 comment on 'to_can_run'. */
589 int (*to_supports_non_stop) (struct target_ops *)
590 TARGET_DEFAULT_RETURN (0);
591 /* find_memory_regions support method for gcore */
592 int (*to_find_memory_regions) (struct target_ops *,
593 find_memory_region_ftype func, void *data)
594 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
595 /* make_corefile_notes support method for gcore */
596 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
597 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
598 /* get_bookmark support method for bookmarks */
599 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
600 TARGET_DEFAULT_NORETURN (tcomplain ());
601 /* goto_bookmark support method for bookmarks */
602 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
603 TARGET_DEFAULT_NORETURN (tcomplain ());
604 /* Return the thread-local address at OFFSET in the
605 thread-local storage for the thread PTID and the shared library
606 or executable file given by OBJFILE. If that block of
607 thread-local storage hasn't been allocated yet, this function
608 may return an error. LOAD_MODULE_ADDR may be zero for statically
609 linked multithreaded inferiors. */
610 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
611 ptid_t ptid,
612 CORE_ADDR load_module_addr,
613 CORE_ADDR offset)
614 TARGET_DEFAULT_NORETURN (generic_tls_error ());
615
616 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
617 OBJECT. The OFFSET, for a seekable object, specifies the
618 starting point. The ANNEX can be used to provide additional
619 data-specific information to the target.
620
621 Return the transferred status, error or OK (an
622 'enum target_xfer_status' value). Save the number of bytes
623 actually transferred in *XFERED_LEN if transfer is successful
624 (TARGET_XFER_OK) or the number unavailable bytes if the requested
625 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
626 smaller than LEN does not indicate the end of the object, only
627 the end of the transfer; higher level code should continue
628 transferring if desired. This is handled in target.c.
629
630 The interface does not support a "retry" mechanism. Instead it
631 assumes that at least one byte will be transfered on each
632 successful call.
633
634 NOTE: cagney/2003-10-17: The current interface can lead to
635 fragmented transfers. Lower target levels should not implement
636 hacks, such as enlarging the transfer, in an attempt to
637 compensate for this. Instead, the target stack should be
638 extended so that it implements supply/collect methods and a
639 look-aside object cache. With that available, the lowest
640 target can safely and freely "push" data up the stack.
641
642 See target_read and target_write for more information. One,
643 and only one, of readbuf or writebuf must be non-NULL. */
644
645 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
646 enum target_object object,
647 const char *annex,
648 gdb_byte *readbuf,
649 const gdb_byte *writebuf,
650 ULONGEST offset, ULONGEST len,
651 ULONGEST *xfered_len)
652 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
653
654 /* Returns the memory map for the target. A return value of NULL
655 means that no memory map is available. If a memory address
656 does not fall within any returned regions, it's assumed to be
657 RAM. The returned memory regions should not overlap.
658
659 The order of regions does not matter; target_memory_map will
660 sort regions by starting address. For that reason, this
661 function should not be called directly except via
662 target_memory_map.
663
664 This method should not cache data; if the memory map could
665 change unexpectedly, it should be invalidated, and higher
666 layers will re-fetch it. */
667 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
668 TARGET_DEFAULT_RETURN (NULL);
669
670 /* Erases the region of flash memory starting at ADDRESS, of
671 length LENGTH.
672
673 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
674 on flash block boundaries, as reported by 'to_memory_map'. */
675 void (*to_flash_erase) (struct target_ops *,
676 ULONGEST address, LONGEST length)
677 TARGET_DEFAULT_NORETURN (tcomplain ());
678
679 /* Finishes a flash memory write sequence. After this operation
680 all flash memory should be available for writing and the result
681 of reading from areas written by 'to_flash_write' should be
682 equal to what was written. */
683 void (*to_flash_done) (struct target_ops *)
684 TARGET_DEFAULT_NORETURN (tcomplain ());
685
686 /* Describe the architecture-specific features of this target. If
687 OPS doesn't have a description, this should delegate to the
688 "beneath" target. Returns the description found, or NULL if no
689 description was available. */
690 const struct target_desc *(*to_read_description) (struct target_ops *ops)
691 TARGET_DEFAULT_RETURN (NULL);
692
693 /* Build the PTID of the thread on which a given task is running,
694 based on LWP and THREAD. These values are extracted from the
695 task Private_Data section of the Ada Task Control Block, and
696 their interpretation depends on the target. */
697 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
698 long lwp, long thread)
699 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
700
701 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
702 Return 0 if *READPTR is already at the end of the buffer.
703 Return -1 if there is insufficient buffer for a whole entry.
704 Return 1 if an entry was read into *TYPEP and *VALP. */
705 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
706 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
707 TARGET_DEFAULT_FUNC (default_auxv_parse);
708
709 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
710 sequence of bytes in PATTERN with length PATTERN_LEN.
711
712 The result is 1 if found, 0 if not found, and -1 if there was an error
713 requiring halting of the search (e.g. memory read error).
714 If the pattern is found the address is recorded in FOUND_ADDRP. */
715 int (*to_search_memory) (struct target_ops *ops,
716 CORE_ADDR start_addr, ULONGEST search_space_len,
717 const gdb_byte *pattern, ULONGEST pattern_len,
718 CORE_ADDR *found_addrp)
719 TARGET_DEFAULT_FUNC (default_search_memory);
720
721 /* Can target execute in reverse? */
722 int (*to_can_execute_reverse) (struct target_ops *)
723 TARGET_DEFAULT_RETURN (0);
724
725 /* The direction the target is currently executing. Must be
726 implemented on targets that support reverse execution and async
727 mode. The default simply returns forward execution. */
728 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
729 TARGET_DEFAULT_FUNC (default_execution_direction);
730
731 /* Does this target support debugging multiple processes
732 simultaneously? */
733 int (*to_supports_multi_process) (struct target_ops *)
734 TARGET_DEFAULT_RETURN (0);
735
736 /* Does this target support enabling and disabling tracepoints while a trace
737 experiment is running? */
738 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
739 TARGET_DEFAULT_RETURN (0);
740
741 /* Does this target support disabling address space randomization? */
742 int (*to_supports_disable_randomization) (struct target_ops *);
743
744 /* Does this target support the tracenz bytecode for string collection? */
745 int (*to_supports_string_tracing) (struct target_ops *)
746 TARGET_DEFAULT_RETURN (0);
747
748 /* Does this target support evaluation of breakpoint conditions on its
749 end? */
750 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
751 TARGET_DEFAULT_RETURN (0);
752
753 /* Does this target support evaluation of breakpoint commands on its
754 end? */
755 int (*to_can_run_breakpoint_commands) (struct target_ops *)
756 TARGET_DEFAULT_RETURN (0);
757
758 /* Determine current architecture of thread PTID.
759
760 The target is supposed to determine the architecture of the code where
761 the target is currently stopped at (on Cell, if a target is in spu_run,
762 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
763 This is architecture used to perform decr_pc_after_break adjustment,
764 and also determines the frame architecture of the innermost frame.
765 ptrace operations need to operate according to target_gdbarch ().
766
767 The default implementation always returns target_gdbarch (). */
768 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
769 TARGET_DEFAULT_FUNC (default_thread_architecture);
770
771 /* Determine current address space of thread PTID.
772
773 The default implementation always returns the inferior's
774 address space. */
775 struct address_space *(*to_thread_address_space) (struct target_ops *,
776 ptid_t)
777 TARGET_DEFAULT_FUNC (default_thread_address_space);
778
779 /* Target file operations. */
780
781 /* Open FILENAME on the target, using FLAGS and MODE. Return a
782 target file descriptor, or -1 if an error occurs (and set
783 *TARGET_ERRNO). */
784 int (*to_fileio_open) (struct target_ops *,
785 const char *filename, int flags, int mode,
786 int *target_errno);
787
788 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
789 Return the number of bytes written, or -1 if an error occurs
790 (and set *TARGET_ERRNO). */
791 int (*to_fileio_pwrite) (struct target_ops *,
792 int fd, const gdb_byte *write_buf, int len,
793 ULONGEST offset, int *target_errno);
794
795 /* Read up to LEN bytes FD on the target into READ_BUF.
796 Return the number of bytes read, or -1 if an error occurs
797 (and set *TARGET_ERRNO). */
798 int (*to_fileio_pread) (struct target_ops *,
799 int fd, gdb_byte *read_buf, int len,
800 ULONGEST offset, int *target_errno);
801
802 /* Close FD on the target. Return 0, or -1 if an error occurs
803 (and set *TARGET_ERRNO). */
804 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
805
806 /* Unlink FILENAME on the target. Return 0, or -1 if an error
807 occurs (and set *TARGET_ERRNO). */
808 int (*to_fileio_unlink) (struct target_ops *,
809 const char *filename, int *target_errno);
810
811 /* Read value of symbolic link FILENAME on the target. Return a
812 null-terminated string allocated via xmalloc, or NULL if an error
813 occurs (and set *TARGET_ERRNO). */
814 char *(*to_fileio_readlink) (struct target_ops *,
815 const char *filename, int *target_errno);
816
817
818 /* Implement the "info proc" command. */
819 void (*to_info_proc) (struct target_ops *, const char *,
820 enum info_proc_what);
821
822 /* Tracepoint-related operations. */
823
824 /* Prepare the target for a tracing run. */
825 void (*to_trace_init) (struct target_ops *)
826 TARGET_DEFAULT_NORETURN (tcomplain ());
827
828 /* Send full details of a tracepoint location to the target. */
829 void (*to_download_tracepoint) (struct target_ops *,
830 struct bp_location *location)
831 TARGET_DEFAULT_NORETURN (tcomplain ());
832
833 /* Is the target able to download tracepoint locations in current
834 state? */
835 int (*to_can_download_tracepoint) (struct target_ops *)
836 TARGET_DEFAULT_RETURN (0);
837
838 /* Send full details of a trace state variable to the target. */
839 void (*to_download_trace_state_variable) (struct target_ops *,
840 struct trace_state_variable *tsv)
841 TARGET_DEFAULT_NORETURN (tcomplain ());
842
843 /* Enable a tracepoint on the target. */
844 void (*to_enable_tracepoint) (struct target_ops *,
845 struct bp_location *location)
846 TARGET_DEFAULT_NORETURN (tcomplain ());
847
848 /* Disable a tracepoint on the target. */
849 void (*to_disable_tracepoint) (struct target_ops *,
850 struct bp_location *location)
851 TARGET_DEFAULT_NORETURN (tcomplain ());
852
853 /* Inform the target info of memory regions that are readonly
854 (such as text sections), and so it should return data from
855 those rather than look in the trace buffer. */
856 void (*to_trace_set_readonly_regions) (struct target_ops *)
857 TARGET_DEFAULT_NORETURN (tcomplain ());
858
859 /* Start a trace run. */
860 void (*to_trace_start) (struct target_ops *)
861 TARGET_DEFAULT_NORETURN (tcomplain ());
862
863 /* Get the current status of a tracing run. */
864 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
865 TARGET_DEFAULT_RETURN (-1);
866
867 void (*to_get_tracepoint_status) (struct target_ops *,
868 struct breakpoint *tp,
869 struct uploaded_tp *utp)
870 TARGET_DEFAULT_NORETURN (tcomplain ());
871
872 /* Stop a trace run. */
873 void (*to_trace_stop) (struct target_ops *)
874 TARGET_DEFAULT_NORETURN (tcomplain ());
875
876 /* Ask the target to find a trace frame of the given type TYPE,
877 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
878 number of the trace frame, and also the tracepoint number at
879 TPP. If no trace frame matches, return -1. May throw if the
880 operation fails. */
881 int (*to_trace_find) (struct target_ops *,
882 enum trace_find_type type, int num,
883 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
884 TARGET_DEFAULT_RETURN (-1);
885
886 /* Get the value of the trace state variable number TSV, returning
887 1 if the value is known and writing the value itself into the
888 location pointed to by VAL, else returning 0. */
889 int (*to_get_trace_state_variable_value) (struct target_ops *,
890 int tsv, LONGEST *val)
891 TARGET_DEFAULT_RETURN (0);
892
893 int (*to_save_trace_data) (struct target_ops *, const char *filename)
894 TARGET_DEFAULT_NORETURN (tcomplain ());
895
896 int (*to_upload_tracepoints) (struct target_ops *,
897 struct uploaded_tp **utpp)
898 TARGET_DEFAULT_RETURN (0);
899
900 int (*to_upload_trace_state_variables) (struct target_ops *,
901 struct uploaded_tsv **utsvp)
902 TARGET_DEFAULT_RETURN (0);
903
904 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
905 ULONGEST offset, LONGEST len)
906 TARGET_DEFAULT_NORETURN (tcomplain ());
907
908 /* Get the minimum length of instruction on which a fast tracepoint
909 may be set on the target. If this operation is unsupported,
910 return -1. If for some reason the minimum length cannot be
911 determined, return 0. */
912 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
913 TARGET_DEFAULT_RETURN (-1);
914
915 /* Set the target's tracing behavior in response to unexpected
916 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
917 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
918 TARGET_DEFAULT_IGNORE ();
919 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
920 TARGET_DEFAULT_IGNORE ();
921 /* Set the size of trace buffer in the target. */
922 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
923 TARGET_DEFAULT_IGNORE ();
924
925 /* Add/change textual notes about the trace run, returning 1 if
926 successful, 0 otherwise. */
927 int (*to_set_trace_notes) (struct target_ops *,
928 const char *user, const char *notes,
929 const char *stopnotes)
930 TARGET_DEFAULT_RETURN (0);
931
932 /* Return the processor core that thread PTID was last seen on.
933 This information is updated only when:
934 - update_thread_list is called
935 - thread stops
936 If the core cannot be determined -- either for the specified
937 thread, or right now, or in this debug session, or for this
938 target -- return -1. */
939 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
940 TARGET_DEFAULT_RETURN (-1);
941
942 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
943 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
944 a match, 0 if there's a mismatch, and -1 if an error is
945 encountered while reading memory. */
946 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
947 CORE_ADDR memaddr, ULONGEST size)
948 TARGET_DEFAULT_FUNC (default_verify_memory);
949
950 /* Return the address of the start of the Thread Information Block
951 a Windows OS specific feature. */
952 int (*to_get_tib_address) (struct target_ops *,
953 ptid_t ptid, CORE_ADDR *addr)
954 TARGET_DEFAULT_NORETURN (tcomplain ());
955
956 /* Send the new settings of write permission variables. */
957 void (*to_set_permissions) (struct target_ops *)
958 TARGET_DEFAULT_IGNORE ();
959
960 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
961 with its details. Return 1 on success, 0 on failure. */
962 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
963 struct static_tracepoint_marker *marker)
964 TARGET_DEFAULT_RETURN (0);
965
966 /* Return a vector of all tracepoints markers string id ID, or all
967 markers if ID is NULL. */
968 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
969 TARGET_DEFAULT_NORETURN (tcomplain ());
970
971 /* Return a traceframe info object describing the current
972 traceframe's contents. This method should not cache data;
973 higher layers take care of caching, invalidating, and
974 re-fetching when necessary. */
975 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Ask the target to use or not to use agent according to USE. Return 1
979 successful, 0 otherwise. */
980 int (*to_use_agent) (struct target_ops *, int use)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
982
983 /* Is the target able to use agent in current state? */
984 int (*to_can_use_agent) (struct target_ops *)
985 TARGET_DEFAULT_RETURN (0);
986
987 /* Check whether the target supports branch tracing. */
988 int (*to_supports_btrace) (struct target_ops *)
989 TARGET_DEFAULT_RETURN (0);
990
991 /* Enable branch tracing for PTID and allocate a branch trace target
992 information struct for reading and for disabling branch trace. */
993 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
994 ptid_t ptid)
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Disable branch tracing and deallocate TINFO. */
998 void (*to_disable_btrace) (struct target_ops *,
999 struct btrace_target_info *tinfo)
1000 TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002 /* Disable branch tracing and deallocate TINFO. This function is similar
1003 to to_disable_btrace, except that it is called during teardown and is
1004 only allowed to perform actions that are safe. A counter-example would
1005 be attempting to talk to a remote target. */
1006 void (*to_teardown_btrace) (struct target_ops *,
1007 struct btrace_target_info *tinfo)
1008 TARGET_DEFAULT_NORETURN (tcomplain ());
1009
1010 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1011 DATA is cleared before new trace is added.
1012 The branch trace will start with the most recent block and continue
1013 towards older blocks. */
1014 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1015 VEC (btrace_block_s) **data,
1016 struct btrace_target_info *btinfo,
1017 enum btrace_read_type type)
1018 TARGET_DEFAULT_NORETURN (tcomplain ());
1019
1020 /* Stop trace recording. */
1021 void (*to_stop_recording) (struct target_ops *)
1022 TARGET_DEFAULT_IGNORE ();
1023
1024 /* Print information about the recording. */
1025 void (*to_info_record) (struct target_ops *)
1026 TARGET_DEFAULT_IGNORE ();
1027
1028 /* Save the recorded execution trace into a file. */
1029 void (*to_save_record) (struct target_ops *, const char *filename)
1030 TARGET_DEFAULT_NORETURN (tcomplain ());
1031
1032 /* Delete the recorded execution trace from the current position
1033 onwards. */
1034 void (*to_delete_record) (struct target_ops *)
1035 TARGET_DEFAULT_NORETURN (tcomplain ());
1036
1037 /* Query if the record target is currently replaying. */
1038 int (*to_record_is_replaying) (struct target_ops *)
1039 TARGET_DEFAULT_RETURN (0);
1040
1041 /* Go to the begin of the execution trace. */
1042 void (*to_goto_record_begin) (struct target_ops *)
1043 TARGET_DEFAULT_NORETURN (tcomplain ());
1044
1045 /* Go to the end of the execution trace. */
1046 void (*to_goto_record_end) (struct target_ops *)
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Go to a specific location in the recorded execution trace. */
1050 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1051 TARGET_DEFAULT_NORETURN (tcomplain ());
1052
1053 /* Disassemble SIZE instructions in the recorded execution trace from
1054 the current position.
1055 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1056 disassemble SIZE succeeding instructions. */
1057 void (*to_insn_history) (struct target_ops *, int size, int flags)
1058 TARGET_DEFAULT_NORETURN (tcomplain ());
1059
1060 /* Disassemble SIZE instructions in the recorded execution trace around
1061 FROM.
1062 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1063 disassemble SIZE instructions after FROM. */
1064 void (*to_insn_history_from) (struct target_ops *,
1065 ULONGEST from, int size, int flags)
1066 TARGET_DEFAULT_NORETURN (tcomplain ());
1067
1068 /* Disassemble a section of the recorded execution trace from instruction
1069 BEGIN (inclusive) to instruction END (inclusive). */
1070 void (*to_insn_history_range) (struct target_ops *,
1071 ULONGEST begin, ULONGEST end, int flags)
1072 TARGET_DEFAULT_NORETURN (tcomplain ());
1073
1074 /* Print a function trace of the recorded execution trace.
1075 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1076 succeeding functions. */
1077 void (*to_call_history) (struct target_ops *, int size, int flags)
1078 TARGET_DEFAULT_NORETURN (tcomplain ());
1079
1080 /* Print a function trace of the recorded execution trace starting
1081 at function FROM.
1082 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1083 SIZE functions after FROM. */
1084 void (*to_call_history_from) (struct target_ops *,
1085 ULONGEST begin, int size, int flags)
1086 TARGET_DEFAULT_NORETURN (tcomplain ());
1087
1088 /* Print a function trace of an execution trace section from function BEGIN
1089 (inclusive) to function END (inclusive). */
1090 void (*to_call_history_range) (struct target_ops *,
1091 ULONGEST begin, ULONGEST end, int flags)
1092 TARGET_DEFAULT_NORETURN (tcomplain ());
1093
1094 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1095 non-empty annex. */
1096 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1097 TARGET_DEFAULT_RETURN (0);
1098
1099 /* Those unwinders are tried before any other arch unwinders. If
1100 SELF doesn't have unwinders, it should delegate to the
1101 "beneath" target. */
1102 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1103 TARGET_DEFAULT_RETURN (NULL);
1104
1105 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1106 TARGET_DEFAULT_RETURN (NULL);
1107
1108 /* Return the number of bytes by which the PC needs to be decremented
1109 after executing a breakpoint instruction.
1110 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1111 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1112 struct gdbarch *gdbarch)
1113 TARGET_DEFAULT_FUNC (default_target_decr_pc_after_break);
1114
1115 /* Prepare to generate a core file. */
1116 void (*to_prepare_to_generate_core) (struct target_ops *)
1117 TARGET_DEFAULT_IGNORE ();
1118
1119 /* Cleanup after generating a core file. */
1120 void (*to_done_generating_core) (struct target_ops *)
1121 TARGET_DEFAULT_IGNORE ();
1122
1123 int to_magic;
1124 /* Need sub-structure for target machine related rather than comm related?
1125 */
1126 };
1127
1128 /* Magic number for checking ops size. If a struct doesn't end with this
1129 number, somebody changed the declaration but didn't change all the
1130 places that initialize one. */
1131
1132 #define OPS_MAGIC 3840
1133
1134 /* The ops structure for our "current" target process. This should
1135 never be NULL. If there is no target, it points to the dummy_target. */
1136
1137 extern struct target_ops current_target;
1138
1139 /* Define easy words for doing these operations on our current target. */
1140
1141 #define target_shortname (current_target.to_shortname)
1142 #define target_longname (current_target.to_longname)
1143
1144 /* Does whatever cleanup is required for a target that we are no
1145 longer going to be calling. This routine is automatically always
1146 called after popping the target off the target stack - the target's
1147 own methods are no longer available through the target vector.
1148 Closing file descriptors and freeing all memory allocated memory are
1149 typical things it should do. */
1150
1151 void target_close (struct target_ops *targ);
1152
1153 /* Find the correct target to use for "attach". If a target on the
1154 current stack supports attaching, then it is returned. Otherwise,
1155 the default run target is returned. */
1156
1157 extern struct target_ops *find_attach_target (void);
1158
1159 /* Find the correct target to use for "run". If a target on the
1160 current stack supports creating a new inferior, then it is
1161 returned. Otherwise, the default run target is returned. */
1162
1163 extern struct target_ops *find_run_target (void);
1164
1165 /* Some targets don't generate traps when attaching to the inferior,
1166 or their target_attach implementation takes care of the waiting.
1167 These targets must set to_attach_no_wait. */
1168
1169 #define target_attach_no_wait \
1170 (current_target.to_attach_no_wait)
1171
1172 /* The target_attach operation places a process under debugger control,
1173 and stops the process.
1174
1175 This operation provides a target-specific hook that allows the
1176 necessary bookkeeping to be performed after an attach completes. */
1177 #define target_post_attach(pid) \
1178 (*current_target.to_post_attach) (&current_target, pid)
1179
1180 /* Takes a program previously attached to and detaches it.
1181 The program may resume execution (some targets do, some don't) and will
1182 no longer stop on signals, etc. We better not have left any breakpoints
1183 in the program or it'll die when it hits one. ARGS is arguments
1184 typed by the user (e.g. a signal to send the process). FROM_TTY
1185 says whether to be verbose or not. */
1186
1187 extern void target_detach (const char *, int);
1188
1189 /* Disconnect from the current target without resuming it (leaving it
1190 waiting for a debugger). */
1191
1192 extern void target_disconnect (const char *, int);
1193
1194 /* Resume execution of the target process PTID (or a group of
1195 threads). STEP says whether to single-step or to run free; SIGGNAL
1196 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1197 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1198 PTID means `step/resume only this process id'. A wildcard PTID
1199 (all threads, or all threads of process) means `step/resume
1200 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1201 matches) resume with their 'thread->suspend.stop_signal' signal
1202 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1203 if in "no pass" state. */
1204
1205 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1206
1207 /* Wait for process pid to do something. PTID = -1 to wait for any
1208 pid to do something. Return pid of child, or -1 in case of error;
1209 store status through argument pointer STATUS. Note that it is
1210 _NOT_ OK to throw_exception() out of target_wait() without popping
1211 the debugging target from the stack; GDB isn't prepared to get back
1212 to the prompt with a debugging target but without the frame cache,
1213 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1214 options. */
1215
1216 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1217 int options);
1218
1219 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1220
1221 extern void target_fetch_registers (struct regcache *regcache, int regno);
1222
1223 /* Store at least register REGNO, or all regs if REGNO == -1.
1224 It can store as many registers as it wants to, so target_prepare_to_store
1225 must have been previously called. Calls error() if there are problems. */
1226
1227 extern void target_store_registers (struct regcache *regcache, int regs);
1228
1229 /* Get ready to modify the registers array. On machines which store
1230 individual registers, this doesn't need to do anything. On machines
1231 which store all the registers in one fell swoop, this makes sure
1232 that REGISTERS contains all the registers from the program being
1233 debugged. */
1234
1235 #define target_prepare_to_store(regcache) \
1236 (*current_target.to_prepare_to_store) (&current_target, regcache)
1237
1238 /* Determine current address space of thread PTID. */
1239
1240 struct address_space *target_thread_address_space (ptid_t);
1241
1242 /* Implement the "info proc" command. This returns one if the request
1243 was handled, and zero otherwise. It can also throw an exception if
1244 an error was encountered while attempting to handle the
1245 request. */
1246
1247 int target_info_proc (const char *, enum info_proc_what);
1248
1249 /* Returns true if this target can debug multiple processes
1250 simultaneously. */
1251
1252 #define target_supports_multi_process() \
1253 (*current_target.to_supports_multi_process) (&current_target)
1254
1255 /* Returns true if this target can disable address space randomization. */
1256
1257 int target_supports_disable_randomization (void);
1258
1259 /* Returns true if this target can enable and disable tracepoints
1260 while a trace experiment is running. */
1261
1262 #define target_supports_enable_disable_tracepoint() \
1263 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1264
1265 #define target_supports_string_tracing() \
1266 (*current_target.to_supports_string_tracing) (&current_target)
1267
1268 /* Returns true if this target can handle breakpoint conditions
1269 on its end. */
1270
1271 #define target_supports_evaluation_of_breakpoint_conditions() \
1272 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1273
1274 /* Returns true if this target can handle breakpoint commands
1275 on its end. */
1276
1277 #define target_can_run_breakpoint_commands() \
1278 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1279
1280 extern int target_read_string (CORE_ADDR, char **, int, int *);
1281
1282 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1283 ssize_t len);
1284
1285 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1286 ssize_t len);
1287
1288 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1289
1290 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1291
1292 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1293 ssize_t len);
1294
1295 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1296 ssize_t len);
1297
1298 /* Fetches the target's memory map. If one is found it is sorted
1299 and returned, after some consistency checking. Otherwise, NULL
1300 is returned. */
1301 VEC(mem_region_s) *target_memory_map (void);
1302
1303 /* Erase the specified flash region. */
1304 void target_flash_erase (ULONGEST address, LONGEST length);
1305
1306 /* Finish a sequence of flash operations. */
1307 void target_flash_done (void);
1308
1309 /* Describes a request for a memory write operation. */
1310 struct memory_write_request
1311 {
1312 /* Begining address that must be written. */
1313 ULONGEST begin;
1314 /* Past-the-end address. */
1315 ULONGEST end;
1316 /* The data to write. */
1317 gdb_byte *data;
1318 /* A callback baton for progress reporting for this request. */
1319 void *baton;
1320 };
1321 typedef struct memory_write_request memory_write_request_s;
1322 DEF_VEC_O(memory_write_request_s);
1323
1324 /* Enumeration specifying different flash preservation behaviour. */
1325 enum flash_preserve_mode
1326 {
1327 flash_preserve,
1328 flash_discard
1329 };
1330
1331 /* Write several memory blocks at once. This version can be more
1332 efficient than making several calls to target_write_memory, in
1333 particular because it can optimize accesses to flash memory.
1334
1335 Moreover, this is currently the only memory access function in gdb
1336 that supports writing to flash memory, and it should be used for
1337 all cases where access to flash memory is desirable.
1338
1339 REQUESTS is the vector (see vec.h) of memory_write_request.
1340 PRESERVE_FLASH_P indicates what to do with blocks which must be
1341 erased, but not completely rewritten.
1342 PROGRESS_CB is a function that will be periodically called to provide
1343 feedback to user. It will be called with the baton corresponding
1344 to the request currently being written. It may also be called
1345 with a NULL baton, when preserved flash sectors are being rewritten.
1346
1347 The function returns 0 on success, and error otherwise. */
1348 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1349 enum flash_preserve_mode preserve_flash_p,
1350 void (*progress_cb) (ULONGEST, void *));
1351
1352 /* Print a line about the current target. */
1353
1354 #define target_files_info() \
1355 (*current_target.to_files_info) (&current_target)
1356
1357 /* Insert a breakpoint at address BP_TGT->placed_address in
1358 the target machine. Returns 0 for success, and returns non-zero or
1359 throws an error (with a detailed failure reason error code and
1360 message) otherwise. */
1361
1362 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1363 struct bp_target_info *bp_tgt);
1364
1365 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1366 machine. Result is 0 for success, non-zero for error. */
1367
1368 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1369 struct bp_target_info *bp_tgt);
1370
1371 /* Initialize the terminal settings we record for the inferior,
1372 before we actually run the inferior. */
1373
1374 #define target_terminal_init() \
1375 (*current_target.to_terminal_init) (&current_target)
1376
1377 /* Put the inferior's terminal settings into effect.
1378 This is preparation for starting or resuming the inferior. */
1379
1380 extern void target_terminal_inferior (void);
1381
1382 /* Put some of our terminal settings into effect,
1383 enough to get proper results from our output,
1384 but do not change into or out of RAW mode
1385 so that no input is discarded.
1386
1387 After doing this, either terminal_ours or terminal_inferior
1388 should be called to get back to a normal state of affairs. */
1389
1390 #define target_terminal_ours_for_output() \
1391 (*current_target.to_terminal_ours_for_output) (&current_target)
1392
1393 /* Put our terminal settings into effect.
1394 First record the inferior's terminal settings
1395 so they can be restored properly later. */
1396
1397 #define target_terminal_ours() \
1398 (*current_target.to_terminal_ours) (&current_target)
1399
1400 /* Save our terminal settings.
1401 This is called from TUI after entering or leaving the curses
1402 mode. Since curses modifies our terminal this call is here
1403 to take this change into account. */
1404
1405 #define target_terminal_save_ours() \
1406 (*current_target.to_terminal_save_ours) (&current_target)
1407
1408 /* Print useful information about our terminal status, if such a thing
1409 exists. */
1410
1411 #define target_terminal_info(arg, from_tty) \
1412 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1413
1414 /* Kill the inferior process. Make it go away. */
1415
1416 extern void target_kill (void);
1417
1418 /* Load an executable file into the target process. This is expected
1419 to not only bring new code into the target process, but also to
1420 update GDB's symbol tables to match.
1421
1422 ARG contains command-line arguments, to be broken down with
1423 buildargv (). The first non-switch argument is the filename to
1424 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1425 0)), which is an offset to apply to the load addresses of FILE's
1426 sections. The target may define switches, or other non-switch
1427 arguments, as it pleases. */
1428
1429 extern void target_load (const char *arg, int from_tty);
1430
1431 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1432 notification of inferior events such as fork and vork immediately
1433 after the inferior is created. (This because of how gdb gets an
1434 inferior created via invoking a shell to do it. In such a scenario,
1435 if the shell init file has commands in it, the shell will fork and
1436 exec for each of those commands, and we will see each such fork
1437 event. Very bad.)
1438
1439 Such targets will supply an appropriate definition for this function. */
1440
1441 #define target_post_startup_inferior(ptid) \
1442 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1443
1444 /* On some targets, we can catch an inferior fork or vfork event when
1445 it occurs. These functions insert/remove an already-created
1446 catchpoint for such events. They return 0 for success, 1 if the
1447 catchpoint type is not supported and -1 for failure. */
1448
1449 #define target_insert_fork_catchpoint(pid) \
1450 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1451
1452 #define target_remove_fork_catchpoint(pid) \
1453 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1454
1455 #define target_insert_vfork_catchpoint(pid) \
1456 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1457
1458 #define target_remove_vfork_catchpoint(pid) \
1459 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1460
1461 /* If the inferior forks or vforks, this function will be called at
1462 the next resume in order to perform any bookkeeping and fiddling
1463 necessary to continue debugging either the parent or child, as
1464 requested, and releasing the other. Information about the fork
1465 or vfork event is available via get_last_target_status ().
1466 This function returns 1 if the inferior should not be resumed
1467 (i.e. there is another event pending). */
1468
1469 int target_follow_fork (int follow_child, int detach_fork);
1470
1471 /* On some targets, we can catch an inferior exec event when it
1472 occurs. These functions insert/remove an already-created
1473 catchpoint for such events. They return 0 for success, 1 if the
1474 catchpoint type is not supported and -1 for failure. */
1475
1476 #define target_insert_exec_catchpoint(pid) \
1477 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1478
1479 #define target_remove_exec_catchpoint(pid) \
1480 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1481
1482 /* Syscall catch.
1483
1484 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1485 If NEEDED is zero, it means the target can disable the mechanism to
1486 catch system calls because there are no more catchpoints of this type.
1487
1488 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1489 being requested. In this case, both TABLE_SIZE and TABLE should
1490 be ignored.
1491
1492 TABLE_SIZE is the number of elements in TABLE. It only matters if
1493 ANY_COUNT is zero.
1494
1495 TABLE is an array of ints, indexed by syscall number. An element in
1496 this array is nonzero if that syscall should be caught. This argument
1497 only matters if ANY_COUNT is zero.
1498
1499 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1500 for failure. */
1501
1502 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1503 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1504 pid, needed, any_count, \
1505 table_size, table)
1506
1507 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1508 exit code of PID, if any. */
1509
1510 #define target_has_exited(pid,wait_status,exit_status) \
1511 (*current_target.to_has_exited) (&current_target, \
1512 pid,wait_status,exit_status)
1513
1514 /* The debugger has completed a blocking wait() call. There is now
1515 some process event that must be processed. This function should
1516 be defined by those targets that require the debugger to perform
1517 cleanup or internal state changes in response to the process event. */
1518
1519 /* The inferior process has died. Do what is right. */
1520
1521 void target_mourn_inferior (void);
1522
1523 /* Does target have enough data to do a run or attach command? */
1524
1525 #define target_can_run(t) \
1526 ((t)->to_can_run) (t)
1527
1528 /* Set list of signals to be handled in the target.
1529
1530 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1531 (enum gdb_signal). For every signal whose entry in this array is
1532 non-zero, the target is allowed -but not required- to skip reporting
1533 arrival of the signal to the GDB core by returning from target_wait,
1534 and to pass the signal directly to the inferior instead.
1535
1536 However, if the target is hardware single-stepping a thread that is
1537 about to receive a signal, it needs to be reported in any case, even
1538 if mentioned in a previous target_pass_signals call. */
1539
1540 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1541
1542 /* Set list of signals the target may pass to the inferior. This
1543 directly maps to the "handle SIGNAL pass/nopass" setting.
1544
1545 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1546 number (enum gdb_signal). For every signal whose entry in this
1547 array is non-zero, the target is allowed to pass the signal to the
1548 inferior. Signals not present in the array shall be silently
1549 discarded. This does not influence whether to pass signals to the
1550 inferior as a result of a target_resume call. This is useful in
1551 scenarios where the target needs to decide whether to pass or not a
1552 signal to the inferior without GDB core involvement, such as for
1553 example, when detaching (as threads may have been suspended with
1554 pending signals not reported to GDB). */
1555
1556 extern void target_program_signals (int nsig, unsigned char *program_signals);
1557
1558 /* Check to see if a thread is still alive. */
1559
1560 extern int target_thread_alive (ptid_t ptid);
1561
1562 /* Query for new threads and add them to the thread list. */
1563
1564 extern void target_find_new_threads (void);
1565
1566 /* Make target stop in a continuable fashion. (For instance, under
1567 Unix, this should act like SIGSTOP). This function is normally
1568 used by GUIs to implement a stop button. */
1569
1570 extern void target_stop (ptid_t ptid);
1571
1572 /* Send the specified COMMAND to the target's monitor
1573 (shell,interpreter) for execution. The result of the query is
1574 placed in OUTBUF. */
1575
1576 #define target_rcmd(command, outbuf) \
1577 (*current_target.to_rcmd) (&current_target, command, outbuf)
1578
1579
1580 /* Does the target include all of memory, or only part of it? This
1581 determines whether we look up the target chain for other parts of
1582 memory if this target can't satisfy a request. */
1583
1584 extern int target_has_all_memory_1 (void);
1585 #define target_has_all_memory target_has_all_memory_1 ()
1586
1587 /* Does the target include memory? (Dummy targets don't.) */
1588
1589 extern int target_has_memory_1 (void);
1590 #define target_has_memory target_has_memory_1 ()
1591
1592 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1593 we start a process.) */
1594
1595 extern int target_has_stack_1 (void);
1596 #define target_has_stack target_has_stack_1 ()
1597
1598 /* Does the target have registers? (Exec files don't.) */
1599
1600 extern int target_has_registers_1 (void);
1601 #define target_has_registers target_has_registers_1 ()
1602
1603 /* Does the target have execution? Can we make it jump (through
1604 hoops), or pop its stack a few times? This means that the current
1605 target is currently executing; for some targets, that's the same as
1606 whether or not the target is capable of execution, but there are
1607 also targets which can be current while not executing. In that
1608 case this will become true after to_create_inferior or
1609 to_attach. */
1610
1611 extern int target_has_execution_1 (ptid_t);
1612
1613 /* Like target_has_execution_1, but always passes inferior_ptid. */
1614
1615 extern int target_has_execution_current (void);
1616
1617 #define target_has_execution target_has_execution_current ()
1618
1619 /* Default implementations for process_stratum targets. Return true
1620 if there's a selected inferior, false otherwise. */
1621
1622 extern int default_child_has_all_memory (struct target_ops *ops);
1623 extern int default_child_has_memory (struct target_ops *ops);
1624 extern int default_child_has_stack (struct target_ops *ops);
1625 extern int default_child_has_registers (struct target_ops *ops);
1626 extern int default_child_has_execution (struct target_ops *ops,
1627 ptid_t the_ptid);
1628
1629 /* Can the target support the debugger control of thread execution?
1630 Can it lock the thread scheduler? */
1631
1632 #define target_can_lock_scheduler \
1633 (current_target.to_has_thread_control & tc_schedlock)
1634
1635 /* Controls whether async mode is permitted. */
1636 extern int target_async_permitted;
1637
1638 /* Can the target support asynchronous execution? */
1639 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1640
1641 /* Is the target in asynchronous execution mode? */
1642 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1643
1644 /* Put the target in async mode with the specified callback function. */
1645 #define target_async(CALLBACK,CONTEXT) \
1646 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1647
1648 #define target_execution_direction() \
1649 (current_target.to_execution_direction (&current_target))
1650
1651 /* Converts a process id to a string. Usually, the string just contains
1652 `process xyz', but on some systems it may contain
1653 `process xyz thread abc'. */
1654
1655 extern char *target_pid_to_str (ptid_t ptid);
1656
1657 extern char *normal_pid_to_str (ptid_t ptid);
1658
1659 /* Return a short string describing extra information about PID,
1660 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1661 is okay. */
1662
1663 #define target_extra_thread_info(TP) \
1664 (current_target.to_extra_thread_info (&current_target, TP))
1665
1666 /* Return the thread's name. A NULL result means that the target
1667 could not determine this thread's name. */
1668
1669 extern char *target_thread_name (struct thread_info *);
1670
1671 /* Attempts to find the pathname of the executable file
1672 that was run to create a specified process.
1673
1674 The process PID must be stopped when this operation is used.
1675
1676 If the executable file cannot be determined, NULL is returned.
1677
1678 Else, a pointer to a character string containing the pathname
1679 is returned. This string should be copied into a buffer by
1680 the client if the string will not be immediately used, or if
1681 it must persist. */
1682
1683 #define target_pid_to_exec_file(pid) \
1684 (current_target.to_pid_to_exec_file) (&current_target, pid)
1685
1686 /* See the to_thread_architecture description in struct target_ops. */
1687
1688 #define target_thread_architecture(ptid) \
1689 (current_target.to_thread_architecture (&current_target, ptid))
1690
1691 /*
1692 * Iterator function for target memory regions.
1693 * Calls a callback function once for each memory region 'mapped'
1694 * in the child process. Defined as a simple macro rather than
1695 * as a function macro so that it can be tested for nullity.
1696 */
1697
1698 #define target_find_memory_regions(FUNC, DATA) \
1699 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1700
1701 /*
1702 * Compose corefile .note section.
1703 */
1704
1705 #define target_make_corefile_notes(BFD, SIZE_P) \
1706 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1707
1708 /* Bookmark interfaces. */
1709 #define target_get_bookmark(ARGS, FROM_TTY) \
1710 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1711
1712 #define target_goto_bookmark(ARG, FROM_TTY) \
1713 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1714
1715 /* Hardware watchpoint interfaces. */
1716
1717 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1718 write). Only the INFERIOR_PTID task is being queried. */
1719
1720 #define target_stopped_by_watchpoint() \
1721 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1722
1723 /* Non-zero if we have steppable watchpoints */
1724
1725 #define target_have_steppable_watchpoint \
1726 (current_target.to_have_steppable_watchpoint)
1727
1728 /* Non-zero if we have continuable watchpoints */
1729
1730 #define target_have_continuable_watchpoint \
1731 (current_target.to_have_continuable_watchpoint)
1732
1733 /* Provide defaults for hardware watchpoint functions. */
1734
1735 /* If the *_hw_beakpoint functions have not been defined
1736 elsewhere use the definitions in the target vector. */
1737
1738 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1739 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1740 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1741 (including this one?). OTHERTYPE is who knows what... */
1742
1743 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1744 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1745 TYPE, CNT, OTHERTYPE);
1746
1747 /* Returns the number of debug registers needed to watch the given
1748 memory region, or zero if not supported. */
1749
1750 #define target_region_ok_for_hw_watchpoint(addr, len) \
1751 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1752 addr, len)
1753
1754
1755 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1756 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1757 COND is the expression for its condition, or NULL if there's none.
1758 Returns 0 for success, 1 if the watchpoint type is not supported,
1759 -1 for failure. */
1760
1761 #define target_insert_watchpoint(addr, len, type, cond) \
1762 (*current_target.to_insert_watchpoint) (&current_target, \
1763 addr, len, type, cond)
1764
1765 #define target_remove_watchpoint(addr, len, type, cond) \
1766 (*current_target.to_remove_watchpoint) (&current_target, \
1767 addr, len, type, cond)
1768
1769 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1770 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1771 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1772 masked watchpoints are not supported, -1 for failure. */
1773
1774 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1775
1776 /* Remove a masked watchpoint at ADDR with the mask MASK.
1777 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1778 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1779 for failure. */
1780
1781 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1782
1783 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1784 the target machine. Returns 0 for success, and returns non-zero or
1785 throws an error (with a detailed failure reason error code and
1786 message) otherwise. */
1787
1788 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1789 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1790 gdbarch, bp_tgt)
1791
1792 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1793 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1794 gdbarch, bp_tgt)
1795
1796 /* Return number of debug registers needed for a ranged breakpoint,
1797 or -1 if ranged breakpoints are not supported. */
1798
1799 extern int target_ranged_break_num_registers (void);
1800
1801 /* Return non-zero if target knows the data address which triggered this
1802 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1803 INFERIOR_PTID task is being queried. */
1804 #define target_stopped_data_address(target, addr_p) \
1805 (*target.to_stopped_data_address) (target, addr_p)
1806
1807 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1808 LENGTH bytes beginning at START. */
1809 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1810 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1811
1812 /* Return non-zero if the target is capable of using hardware to evaluate
1813 the condition expression. In this case, if the condition is false when
1814 the watched memory location changes, execution may continue without the
1815 debugger being notified.
1816
1817 Due to limitations in the hardware implementation, it may be capable of
1818 avoiding triggering the watchpoint in some cases where the condition
1819 expression is false, but may report some false positives as well.
1820 For this reason, GDB will still evaluate the condition expression when
1821 the watchpoint triggers. */
1822 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1823 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1824 addr, len, type, cond)
1825
1826 /* Return number of debug registers needed for a masked watchpoint,
1827 -1 if masked watchpoints are not supported or -2 if the given address
1828 and mask combination cannot be used. */
1829
1830 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1831
1832 /* Target can execute in reverse? */
1833 #define target_can_execute_reverse \
1834 current_target.to_can_execute_reverse (&current_target)
1835
1836 extern const struct target_desc *target_read_description (struct target_ops *);
1837
1838 #define target_get_ada_task_ptid(lwp, tid) \
1839 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1840
1841 /* Utility implementation of searching memory. */
1842 extern int simple_search_memory (struct target_ops* ops,
1843 CORE_ADDR start_addr,
1844 ULONGEST search_space_len,
1845 const gdb_byte *pattern,
1846 ULONGEST pattern_len,
1847 CORE_ADDR *found_addrp);
1848
1849 /* Main entry point for searching memory. */
1850 extern int target_search_memory (CORE_ADDR start_addr,
1851 ULONGEST search_space_len,
1852 const gdb_byte *pattern,
1853 ULONGEST pattern_len,
1854 CORE_ADDR *found_addrp);
1855
1856 /* Target file operations. */
1857
1858 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1859 target file descriptor, or -1 if an error occurs (and set
1860 *TARGET_ERRNO). */
1861 extern int target_fileio_open (const char *filename, int flags, int mode,
1862 int *target_errno);
1863
1864 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1865 Return the number of bytes written, or -1 if an error occurs
1866 (and set *TARGET_ERRNO). */
1867 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1868 ULONGEST offset, int *target_errno);
1869
1870 /* Read up to LEN bytes FD on the target into READ_BUF.
1871 Return the number of bytes read, or -1 if an error occurs
1872 (and set *TARGET_ERRNO). */
1873 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1874 ULONGEST offset, int *target_errno);
1875
1876 /* Close FD on the target. Return 0, or -1 if an error occurs
1877 (and set *TARGET_ERRNO). */
1878 extern int target_fileio_close (int fd, int *target_errno);
1879
1880 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1881 occurs (and set *TARGET_ERRNO). */
1882 extern int target_fileio_unlink (const char *filename, int *target_errno);
1883
1884 /* Read value of symbolic link FILENAME on the target. Return a
1885 null-terminated string allocated via xmalloc, or NULL if an error
1886 occurs (and set *TARGET_ERRNO). */
1887 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1888
1889 /* Read target file FILENAME. The return value will be -1 if the transfer
1890 fails or is not supported; 0 if the object is empty; or the length
1891 of the object otherwise. If a positive value is returned, a
1892 sufficiently large buffer will be allocated using xmalloc and
1893 returned in *BUF_P containing the contents of the object.
1894
1895 This method should be used for objects sufficiently small to store
1896 in a single xmalloc'd buffer, when no fixed bound on the object's
1897 size is known in advance. */
1898 extern LONGEST target_fileio_read_alloc (const char *filename,
1899 gdb_byte **buf_p);
1900
1901 /* Read target file FILENAME. The result is NUL-terminated and
1902 returned as a string, allocated using xmalloc. If an error occurs
1903 or the transfer is unsupported, NULL is returned. Empty objects
1904 are returned as allocated but empty strings. A warning is issued
1905 if the result contains any embedded NUL bytes. */
1906 extern char *target_fileio_read_stralloc (const char *filename);
1907
1908
1909 /* Tracepoint-related operations. */
1910
1911 #define target_trace_init() \
1912 (*current_target.to_trace_init) (&current_target)
1913
1914 #define target_download_tracepoint(t) \
1915 (*current_target.to_download_tracepoint) (&current_target, t)
1916
1917 #define target_can_download_tracepoint() \
1918 (*current_target.to_can_download_tracepoint) (&current_target)
1919
1920 #define target_download_trace_state_variable(tsv) \
1921 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1922
1923 #define target_enable_tracepoint(loc) \
1924 (*current_target.to_enable_tracepoint) (&current_target, loc)
1925
1926 #define target_disable_tracepoint(loc) \
1927 (*current_target.to_disable_tracepoint) (&current_target, loc)
1928
1929 #define target_trace_start() \
1930 (*current_target.to_trace_start) (&current_target)
1931
1932 #define target_trace_set_readonly_regions() \
1933 (*current_target.to_trace_set_readonly_regions) (&current_target)
1934
1935 #define target_get_trace_status(ts) \
1936 (*current_target.to_get_trace_status) (&current_target, ts)
1937
1938 #define target_get_tracepoint_status(tp,utp) \
1939 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1940
1941 #define target_trace_stop() \
1942 (*current_target.to_trace_stop) (&current_target)
1943
1944 #define target_trace_find(type,num,addr1,addr2,tpp) \
1945 (*current_target.to_trace_find) (&current_target, \
1946 (type), (num), (addr1), (addr2), (tpp))
1947
1948 #define target_get_trace_state_variable_value(tsv,val) \
1949 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1950 (tsv), (val))
1951
1952 #define target_save_trace_data(filename) \
1953 (*current_target.to_save_trace_data) (&current_target, filename)
1954
1955 #define target_upload_tracepoints(utpp) \
1956 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1957
1958 #define target_upload_trace_state_variables(utsvp) \
1959 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1960
1961 #define target_get_raw_trace_data(buf,offset,len) \
1962 (*current_target.to_get_raw_trace_data) (&current_target, \
1963 (buf), (offset), (len))
1964
1965 #define target_get_min_fast_tracepoint_insn_len() \
1966 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1967
1968 #define target_set_disconnected_tracing(val) \
1969 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1970
1971 #define target_set_circular_trace_buffer(val) \
1972 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1973
1974 #define target_set_trace_buffer_size(val) \
1975 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1976
1977 #define target_set_trace_notes(user,notes,stopnotes) \
1978 (*current_target.to_set_trace_notes) (&current_target, \
1979 (user), (notes), (stopnotes))
1980
1981 #define target_get_tib_address(ptid, addr) \
1982 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1983
1984 #define target_set_permissions() \
1985 (*current_target.to_set_permissions) (&current_target)
1986
1987 #define target_static_tracepoint_marker_at(addr, marker) \
1988 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1989 addr, marker)
1990
1991 #define target_static_tracepoint_markers_by_strid(marker_id) \
1992 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1993 marker_id)
1994
1995 #define target_traceframe_info() \
1996 (*current_target.to_traceframe_info) (&current_target)
1997
1998 #define target_use_agent(use) \
1999 (*current_target.to_use_agent) (&current_target, use)
2000
2001 #define target_can_use_agent() \
2002 (*current_target.to_can_use_agent) (&current_target)
2003
2004 #define target_augmented_libraries_svr4_read() \
2005 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2006
2007 /* Command logging facility. */
2008
2009 #define target_log_command(p) \
2010 (*current_target.to_log_command) (&current_target, p)
2011
2012
2013 extern int target_core_of_thread (ptid_t ptid);
2014
2015 /* See to_get_unwinder in struct target_ops. */
2016 extern const struct frame_unwind *target_get_unwinder (void);
2017
2018 /* See to_get_tailcall_unwinder in struct target_ops. */
2019 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2020
2021 /* This implements basic memory verification, reading target memory
2022 and performing the comparison here (as opposed to accelerated
2023 verification making use of the qCRC packet, for example). */
2024
2025 extern int simple_verify_memory (struct target_ops* ops,
2026 const gdb_byte *data,
2027 CORE_ADDR memaddr, ULONGEST size);
2028
2029 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2030 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2031 if there's a mismatch, and -1 if an error is encountered while
2032 reading memory. Throws an error if the functionality is found not
2033 to be supported by the current target. */
2034 int target_verify_memory (const gdb_byte *data,
2035 CORE_ADDR memaddr, ULONGEST size);
2036
2037 /* Routines for maintenance of the target structures...
2038
2039 complete_target_initialization: Finalize a target_ops by filling in
2040 any fields needed by the target implementation. Unnecessary for
2041 targets which are registered via add_target, as this part gets
2042 taken care of then.
2043
2044 add_target: Add a target to the list of all possible targets.
2045 This only makes sense for targets that should be activated using
2046 the "target TARGET_NAME ..." command.
2047
2048 push_target: Make this target the top of the stack of currently used
2049 targets, within its particular stratum of the stack. Result
2050 is 0 if now atop the stack, nonzero if not on top (maybe
2051 should warn user).
2052
2053 unpush_target: Remove this from the stack of currently used targets,
2054 no matter where it is on the list. Returns 0 if no
2055 change, 1 if removed from stack. */
2056
2057 extern void add_target (struct target_ops *);
2058
2059 extern void add_target_with_completer (struct target_ops *t,
2060 completer_ftype *completer);
2061
2062 extern void complete_target_initialization (struct target_ops *t);
2063
2064 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2065 for maintaining backwards compatibility when renaming targets. */
2066
2067 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2068
2069 extern void push_target (struct target_ops *);
2070
2071 extern int unpush_target (struct target_ops *);
2072
2073 extern void target_pre_inferior (int);
2074
2075 extern void target_preopen (int);
2076
2077 /* Does whatever cleanup is required to get rid of all pushed targets. */
2078 extern void pop_all_targets (void);
2079
2080 /* Like pop_all_targets, but pops only targets whose stratum is
2081 strictly above ABOVE_STRATUM. */
2082 extern void pop_all_targets_above (enum strata above_stratum);
2083
2084 extern int target_is_pushed (struct target_ops *t);
2085
2086 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2087 CORE_ADDR offset);
2088
2089 /* Struct target_section maps address ranges to file sections. It is
2090 mostly used with BFD files, but can be used without (e.g. for handling
2091 raw disks, or files not in formats handled by BFD). */
2092
2093 struct target_section
2094 {
2095 CORE_ADDR addr; /* Lowest address in section */
2096 CORE_ADDR endaddr; /* 1+highest address in section */
2097
2098 struct bfd_section *the_bfd_section;
2099
2100 /* The "owner" of the section.
2101 It can be any unique value. It is set by add_target_sections
2102 and used by remove_target_sections.
2103 For example, for executables it is a pointer to exec_bfd and
2104 for shlibs it is the so_list pointer. */
2105 void *owner;
2106 };
2107
2108 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2109
2110 struct target_section_table
2111 {
2112 struct target_section *sections;
2113 struct target_section *sections_end;
2114 };
2115
2116 /* Return the "section" containing the specified address. */
2117 struct target_section *target_section_by_addr (struct target_ops *target,
2118 CORE_ADDR addr);
2119
2120 /* Return the target section table this target (or the targets
2121 beneath) currently manipulate. */
2122
2123 extern struct target_section_table *target_get_section_table
2124 (struct target_ops *target);
2125
2126 /* From mem-break.c */
2127
2128 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2129 struct bp_target_info *);
2130
2131 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2132 struct bp_target_info *);
2133
2134 /* Check whether the memory at the breakpoint's placed address still
2135 contains the expected breakpoint instruction. */
2136
2137 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2138 struct bp_target_info *bp_tgt);
2139
2140 extern int default_memory_remove_breakpoint (struct gdbarch *,
2141 struct bp_target_info *);
2142
2143 extern int default_memory_insert_breakpoint (struct gdbarch *,
2144 struct bp_target_info *);
2145
2146
2147 /* From target.c */
2148
2149 extern void initialize_targets (void);
2150
2151 extern void noprocess (void) ATTRIBUTE_NORETURN;
2152
2153 extern void target_require_runnable (void);
2154
2155 extern void find_default_attach (struct target_ops *, const char *, int);
2156
2157 extern void find_default_create_inferior (struct target_ops *,
2158 char *, char *, char **, int);
2159
2160 extern struct target_ops *find_target_beneath (struct target_ops *);
2161
2162 /* Find the target at STRATUM. If no target is at that stratum,
2163 return NULL. */
2164
2165 struct target_ops *find_target_at (enum strata stratum);
2166
2167 /* Read OS data object of type TYPE from the target, and return it in
2168 XML format. The result is NUL-terminated and returned as a string,
2169 allocated using xmalloc. If an error occurs or the transfer is
2170 unsupported, NULL is returned. Empty objects are returned as
2171 allocated but empty strings. */
2172
2173 extern char *target_get_osdata (const char *type);
2174
2175 \f
2176 /* Stuff that should be shared among the various remote targets. */
2177
2178 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2179 information (higher values, more information). */
2180 extern int remote_debug;
2181
2182 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2183 extern int baud_rate;
2184 /* Timeout limit for response from target. */
2185 extern int remote_timeout;
2186
2187 \f
2188
2189 /* Set the show memory breakpoints mode to show, and installs a cleanup
2190 to restore it back to the current value. */
2191 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2192
2193 extern int may_write_registers;
2194 extern int may_write_memory;
2195 extern int may_insert_breakpoints;
2196 extern int may_insert_tracepoints;
2197 extern int may_insert_fast_tracepoints;
2198 extern int may_stop;
2199
2200 extern void update_target_permissions (void);
2201
2202 \f
2203 /* Imported from machine dependent code. */
2204
2205 /* See to_supports_btrace in struct target_ops. */
2206 #define target_supports_btrace() \
2207 (current_target.to_supports_btrace (&current_target))
2208
2209 /* See to_enable_btrace in struct target_ops. */
2210 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2211
2212 /* See to_disable_btrace in struct target_ops. */
2213 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2214
2215 /* See to_teardown_btrace in struct target_ops. */
2216 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2217
2218 /* See to_read_btrace in struct target_ops. */
2219 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2220 struct btrace_target_info *,
2221 enum btrace_read_type);
2222
2223 /* See to_stop_recording in struct target_ops. */
2224 extern void target_stop_recording (void);
2225
2226 /* See to_save_record in struct target_ops. */
2227 extern void target_save_record (const char *filename);
2228
2229 /* Query if the target supports deleting the execution log. */
2230 extern int target_supports_delete_record (void);
2231
2232 /* See to_delete_record in struct target_ops. */
2233 extern void target_delete_record (void);
2234
2235 /* See to_record_is_replaying in struct target_ops. */
2236 extern int target_record_is_replaying (void);
2237
2238 /* See to_goto_record_begin in struct target_ops. */
2239 extern void target_goto_record_begin (void);
2240
2241 /* See to_goto_record_end in struct target_ops. */
2242 extern void target_goto_record_end (void);
2243
2244 /* See to_goto_record in struct target_ops. */
2245 extern void target_goto_record (ULONGEST insn);
2246
2247 /* See to_insn_history. */
2248 extern void target_insn_history (int size, int flags);
2249
2250 /* See to_insn_history_from. */
2251 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2252
2253 /* See to_insn_history_range. */
2254 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2255
2256 /* See to_call_history. */
2257 extern void target_call_history (int size, int flags);
2258
2259 /* See to_call_history_from. */
2260 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2261
2262 /* See to_call_history_range. */
2263 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2264
2265 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2266 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2267 struct gdbarch *gdbarch);
2268
2269 /* See to_decr_pc_after_break. */
2270 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2271
2272 /* See to_prepare_to_generate_core. */
2273 extern void target_prepare_to_generate_core (void);
2274
2275 /* See to_done_generating_core. */
2276 extern void target_done_generating_core (void);
2277
2278 #endif /* !defined (TARGET_H) */