gdb: on exec, delegate pushing / unpushing target and adding thread to target_ops...
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct trace_state_variable;
33 struct trace_status;
34 struct uploaded_tsv;
35 struct uploaded_tp;
36 struct static_tracepoint_marker;
37 struct traceframe_info;
38 struct expression;
39 struct dcache_struct;
40 struct inferior;
41
42 #include "infrun.h" /* For enum exec_direction_kind. */
43 #include "breakpoint.h" /* For enum bptype. */
44 #include "gdbsupport/scoped_restore.h"
45 #include "gdbsupport/refcounted-object.h"
46 #include "target-section.h"
47
48 /* This include file defines the interface between the main part
49 of the debugger, and the part which is target-specific, or
50 specific to the communications interface between us and the
51 target.
52
53 A TARGET is an interface between the debugger and a particular
54 kind of file or process. Targets can be STACKED in STRATA,
55 so that more than one target can potentially respond to a request.
56 In particular, memory accesses will walk down the stack of targets
57 until they find a target that is interested in handling that particular
58 address. STRATA are artificial boundaries on the stack, within
59 which particular kinds of targets live. Strata exist so that
60 people don't get confused by pushing e.g. a process target and then
61 a file target, and wondering why they can't see the current values
62 of variables any more (the file target is handling them and they
63 never get to the process target). So when you push a file target,
64 it goes into the file stratum, which is always below the process
65 stratum.
66
67 Note that rather than allow an empty stack, we always have the
68 dummy target at the bottom stratum, so we can call the target
69 methods without checking them. */
70
71 #include "target/target.h"
72 #include "target/resume.h"
73 #include "target/wait.h"
74 #include "target/waitstatus.h"
75 #include "bfd.h"
76 #include "symtab.h"
77 #include "memattr.h"
78 #include "gdbsupport/gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (target_wait_flags target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
141 TARGET_OBJECT_MEMORY,
142 /* Memory, avoiding GDB's data cache and trusting the executable.
143 Target implementations of to_xfer_partial never need to handle
144 this object, and most callers should not use it. */
145 TARGET_OBJECT_RAW_MEMORY,
146 /* Memory known to be part of the target's stack. This is cached even
147 if it is not in a region marked as such, since it is known to be
148 "normal" RAM. */
149 TARGET_OBJECT_STACK_MEMORY,
150 /* Memory known to be part of the target code. This is cached even
151 if it is not in a region marked as such. */
152 TARGET_OBJECT_CODE_MEMORY,
153 /* Kernel Unwind Table. See "ia64-tdep.c". */
154 TARGET_OBJECT_UNWIND_TABLE,
155 /* Transfer auxilliary vector. */
156 TARGET_OBJECT_AUXV,
157 /* StackGhost cookie. See "sparc-tdep.c". */
158 TARGET_OBJECT_WCOOKIE,
159 /* Target memory map in XML format. */
160 TARGET_OBJECT_MEMORY_MAP,
161 /* Flash memory. This object can be used to write contents to
162 a previously erased flash memory. Using it without erasing
163 flash can have unexpected results. Addresses are physical
164 address on target, and not relative to flash start. */
165 TARGET_OBJECT_FLASH,
166 /* Available target-specific features, e.g. registers and coprocessors.
167 See "target-descriptions.c". ANNEX should never be empty. */
168 TARGET_OBJECT_AVAILABLE_FEATURES,
169 /* Currently loaded libraries, in XML format. */
170 TARGET_OBJECT_LIBRARIES,
171 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_SVR4,
173 /* Currently loaded libraries specific to AIX systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_AIX,
175 /* Get OS specific data. The ANNEX specifies the type (running
176 processes, etc.). The data being transfered is expected to follow
177 the DTD specified in features/osdata.dtd. */
178 TARGET_OBJECT_OSDATA,
179 /* Extra signal info. Usually the contents of `siginfo_t' on unix
180 platforms. */
181 TARGET_OBJECT_SIGNAL_INFO,
182 /* The list of threads that are being debugged. */
183 TARGET_OBJECT_THREADS,
184 /* Collected static trace data. */
185 TARGET_OBJECT_STATIC_TRACE_DATA,
186 /* Traceframe info, in XML format. */
187 TARGET_OBJECT_TRACEFRAME_INFO,
188 /* Load maps for FDPIC systems. */
189 TARGET_OBJECT_FDPIC,
190 /* Darwin dynamic linker info data. */
191 TARGET_OBJECT_DARWIN_DYLD_INFO,
192 /* OpenVMS Unwind Information Block. */
193 TARGET_OBJECT_OPENVMS_UIB,
194 /* Branch trace data, in XML format. */
195 TARGET_OBJECT_BTRACE,
196 /* Branch trace configuration, in XML format. */
197 TARGET_OBJECT_BTRACE_CONF,
198 /* The pathname of the executable file that was run to create
199 a specified process. ANNEX should be a string representation
200 of the process ID of the process in question, in hexadecimal
201 format. */
202 TARGET_OBJECT_EXEC_FILE,
203 /* FreeBSD virtual memory mappings. */
204 TARGET_OBJECT_FREEBSD_VMMAP,
205 /* FreeBSD process strings. */
206 TARGET_OBJECT_FREEBSD_PS_STRINGS,
207 /* Possible future objects: TARGET_OBJECT_FILE, ... */
208 };
209
210 /* Possible values returned by target_xfer_partial, etc. */
211
212 enum target_xfer_status
213 {
214 /* Some bytes are transferred. */
215 TARGET_XFER_OK = 1,
216
217 /* No further transfer is possible. */
218 TARGET_XFER_EOF = 0,
219
220 /* The piece of the object requested is unavailable. */
221 TARGET_XFER_UNAVAILABLE = 2,
222
223 /* Generic I/O error. Note that it's important that this is '-1',
224 as we still have target_xfer-related code returning hardcoded
225 '-1' on error. */
226 TARGET_XFER_E_IO = -1,
227
228 /* Keep list in sync with target_xfer_status_to_string. */
229 };
230
231 /* Return the string form of STATUS. */
232
233 extern const char *
234 target_xfer_status_to_string (enum target_xfer_status status);
235
236 typedef enum target_xfer_status
237 target_xfer_partial_ftype (struct target_ops *ops,
238 enum target_object object,
239 const char *annex,
240 gdb_byte *readbuf,
241 const gdb_byte *writebuf,
242 ULONGEST offset,
243 ULONGEST len,
244 ULONGEST *xfered_len);
245
246 enum target_xfer_status
247 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
248 const gdb_byte *writebuf, ULONGEST memaddr,
249 LONGEST len, ULONGEST *xfered_len);
250
251 /* Request that OPS transfer up to LEN addressable units of the target's
252 OBJECT. When reading from a memory object, the size of an addressable unit
253 is architecture dependent and can be found using
254 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
255 byte long. BUF should point to a buffer large enough to hold the read data,
256 taking into account the addressable unit size. The OFFSET, for a seekable
257 object, specifies the starting point. The ANNEX can be used to provide
258 additional data-specific information to the target.
259
260 Return the number of addressable units actually transferred, or a negative
261 error code (an 'enum target_xfer_error' value) if the transfer is not
262 supported or otherwise fails. Return of a positive value less than
263 LEN indicates that no further transfer is possible. Unlike the raw
264 to_xfer_partial interface, callers of these functions do not need
265 to retry partial transfers. */
266
267 extern LONGEST target_read (struct target_ops *ops,
268 enum target_object object,
269 const char *annex, gdb_byte *buf,
270 ULONGEST offset, LONGEST len);
271
272 struct memory_read_result
273 {
274 memory_read_result (ULONGEST begin_, ULONGEST end_,
275 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
276 : begin (begin_),
277 end (end_),
278 data (std::move (data_))
279 {
280 }
281
282 ~memory_read_result () = default;
283
284 memory_read_result (memory_read_result &&other) = default;
285
286 DISABLE_COPY_AND_ASSIGN (memory_read_result);
287
288 /* First address that was read. */
289 ULONGEST begin;
290 /* Past-the-end address. */
291 ULONGEST end;
292 /* The data. */
293 gdb::unique_xmalloc_ptr<gdb_byte> data;
294 };
295
296 extern std::vector<memory_read_result> read_memory_robust
297 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
298
299 /* Request that OPS transfer up to LEN addressable units from BUF to the
300 target's OBJECT. When writing to a memory object, the addressable unit
301 size is architecture dependent and can be found using
302 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
303 byte long. The OFFSET, for a seekable object, specifies the starting point.
304 The ANNEX can be used to provide additional data-specific information to
305 the target.
306
307 Return the number of addressable units actually transferred, or a negative
308 error code (an 'enum target_xfer_status' value) if the transfer is not
309 supported or otherwise fails. Return of a positive value less than
310 LEN indicates that no further transfer is possible. Unlike the raw
311 to_xfer_partial interface, callers of these functions do not need to
312 retry partial transfers. */
313
314 extern LONGEST target_write (struct target_ops *ops,
315 enum target_object object,
316 const char *annex, const gdb_byte *buf,
317 ULONGEST offset, LONGEST len);
318
319 /* Similar to target_write, except that it also calls PROGRESS with
320 the number of bytes written and the opaque BATON after every
321 successful partial write (and before the first write). This is
322 useful for progress reporting and user interaction while writing
323 data. To abort the transfer, the progress callback can throw an
324 exception. */
325
326 LONGEST target_write_with_progress (struct target_ops *ops,
327 enum target_object object,
328 const char *annex, const gdb_byte *buf,
329 ULONGEST offset, LONGEST len,
330 void (*progress) (ULONGEST, void *),
331 void *baton);
332
333 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
334 using OPS. The return value will be uninstantiated if the transfer fails or
335 is not supported.
336
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
341
342 extern gdb::optional<gdb::byte_vector> target_read_alloc
343 (struct target_ops *ops, enum target_object object, const char *annex);
344
345 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
346 (therefore usable as a NUL-terminated string). If an error occurs or the
347 transfer is unsupported, the return value will be uninstantiated. Empty
348 objects are returned as allocated but empty strings. Therefore, on success,
349 the returned vector is guaranteed to have at least one element. A warning is
350 issued if the result contains any embedded NUL bytes. */
351
352 extern gdb::optional<gdb::char_vector> target_read_stralloc
353 (struct target_ops *ops, enum target_object object, const char *annex);
354
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial;
357
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
360
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
364
365 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
366 gdb_byte *buf, LONGEST len);
367 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
368 CORE_ADDR addr, int len,
369 enum bfd_endian byte_order);
370 \f
371 struct thread_info; /* fwd decl for parameter list below: */
372
373 /* The type of the callback to the to_async method. */
374
375 typedef void async_callback_ftype (enum inferior_event_type event_type,
376 void *context);
377
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
385
386 #define TARGET_DEBUG_PRINTER(FUNC)
387
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
391
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
394 'void'.
395
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
399
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
402
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
406
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
411
412 /* Each target that can be activated with "target TARGET_NAME" passes
413 the address of one of these objects to add_target, which uses the
414 object's address as unique identifier, and registers the "target
415 TARGET_NAME" command using SHORTNAME as target name. */
416
417 struct target_info
418 {
419 /* Name of this target. */
420 const char *shortname;
421
422 /* Name for printing. */
423 const char *longname;
424
425 /* Documentation. Does not include trailing newline, and starts
426 with a one-line description (probably similar to longname). */
427 const char *doc;
428 };
429
430 struct target_ops
431 : public refcounted_object
432 {
433 /* Return this target's stratum. */
434 virtual strata stratum () const = 0;
435
436 /* To the target under this one. */
437 target_ops *beneath () const;
438
439 /* Free resources associated with the target. Note that singleton
440 targets, like e.g., native targets, are global objects, not
441 heap allocated, and are thus only deleted on GDB exit. The
442 main teardown entry point is the "close" method, below. */
443 virtual ~target_ops () {}
444
445 /* Return a reference to this target's unique target_info
446 object. */
447 virtual const target_info &info () const = 0;
448
449 /* Name this target type. */
450 const char *shortname () const
451 { return info ().shortname; }
452
453 const char *longname () const
454 { return info ().longname; }
455
456 /* Close the target. This is where the target can handle
457 teardown. Heap-allocated targets should delete themselves
458 before returning. */
459 virtual void close ();
460
461 /* Attaches to a process on the target side. Arguments are as
462 passed to the `attach' command by the user. This routine can
463 be called when the target is not on the target-stack, if the
464 target_ops::can_run method returns 1; in that case, it must push
465 itself onto the stack. Upon exit, the target should be ready
466 for normal operations, and should be ready to deliver the
467 status of the process immediately (without waiting) to an
468 upcoming target_wait call. */
469 virtual bool can_attach ();
470 virtual void attach (const char *, int);
471 virtual void post_attach (int)
472 TARGET_DEFAULT_IGNORE ();
473
474 /* Detaches from the inferior. Note that on targets that support
475 async execution (i.e., targets where it is possible to detach
476 from programs with threads running), the target is responsible
477 for removing breakpoints from the program before the actual
478 detach, otherwise the program dies when it hits one. */
479 virtual void detach (inferior *, int)
480 TARGET_DEFAULT_IGNORE ();
481
482 virtual void disconnect (const char *, int)
483 TARGET_DEFAULT_NORETURN (tcomplain ());
484 virtual void resume (ptid_t,
485 int TARGET_DEBUG_PRINTER (target_debug_print_step),
486 enum gdb_signal)
487 TARGET_DEFAULT_NORETURN (noprocess ());
488
489 /* Ensure that all resumed threads are committed to the target.
490
491 See the description of
492 process_stratum_target::commit_resumed_state for more
493 details. */
494 virtual void commit_resumed ()
495 TARGET_DEFAULT_IGNORE ();
496
497 /* See target_wait's description. Note that implementations of
498 this method must not assume that inferior_ptid on entry is
499 pointing at the thread or inferior that ends up reporting an
500 event. The reported event could be for some other thread in
501 the current inferior or even for a different process of the
502 current target. inferior_ptid may also be null_ptid on
503 entry. */
504 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
505 target_wait_flags options)
506 TARGET_DEFAULT_FUNC (default_target_wait);
507 virtual void fetch_registers (struct regcache *, int)
508 TARGET_DEFAULT_IGNORE ();
509 virtual void store_registers (struct regcache *, int)
510 TARGET_DEFAULT_NORETURN (noprocess ());
511 virtual void prepare_to_store (struct regcache *)
512 TARGET_DEFAULT_NORETURN (noprocess ());
513
514 virtual void files_info ()
515 TARGET_DEFAULT_IGNORE ();
516 virtual int insert_breakpoint (struct gdbarch *,
517 struct bp_target_info *)
518 TARGET_DEFAULT_NORETURN (noprocess ());
519 virtual int remove_breakpoint (struct gdbarch *,
520 struct bp_target_info *,
521 enum remove_bp_reason)
522 TARGET_DEFAULT_NORETURN (noprocess ());
523
524 /* Returns true if the target stopped because it executed a
525 software breakpoint. This is necessary for correct background
526 execution / non-stop mode operation, and for correct PC
527 adjustment on targets where the PC needs to be adjusted when a
528 software breakpoint triggers. In these modes, by the time GDB
529 processes a breakpoint event, the breakpoint may already be
530 done from the target, so GDB needs to be able to tell whether
531 it should ignore the event and whether it should adjust the PC.
532 See adjust_pc_after_break. */
533 virtual bool stopped_by_sw_breakpoint ()
534 TARGET_DEFAULT_RETURN (false);
535 /* Returns true if the above method is supported. */
536 virtual bool supports_stopped_by_sw_breakpoint ()
537 TARGET_DEFAULT_RETURN (false);
538
539 /* Returns true if the target stopped for a hardware breakpoint.
540 Likewise, if the target supports hardware breakpoints, this
541 method is necessary for correct background execution / non-stop
542 mode operation. Even though hardware breakpoints do not
543 require PC adjustment, GDB needs to be able to tell whether the
544 hardware breakpoint event is a delayed event for a breakpoint
545 that is already gone and should thus be ignored. */
546 virtual bool stopped_by_hw_breakpoint ()
547 TARGET_DEFAULT_RETURN (false);
548 /* Returns true if the above method is supported. */
549 virtual bool supports_stopped_by_hw_breakpoint ()
550 TARGET_DEFAULT_RETURN (false);
551
552 virtual int can_use_hw_breakpoint (enum bptype, int, int)
553 TARGET_DEFAULT_RETURN (0);
554 virtual int ranged_break_num_registers ()
555 TARGET_DEFAULT_RETURN (-1);
556 virtual int insert_hw_breakpoint (struct gdbarch *,
557 struct bp_target_info *)
558 TARGET_DEFAULT_RETURN (-1);
559 virtual int remove_hw_breakpoint (struct gdbarch *,
560 struct bp_target_info *)
561 TARGET_DEFAULT_RETURN (-1);
562
563 /* Documentation of what the two routines below are expected to do is
564 provided with the corresponding target_* macros. */
565 virtual int remove_watchpoint (CORE_ADDR, int,
566 enum target_hw_bp_type, struct expression *)
567 TARGET_DEFAULT_RETURN (-1);
568 virtual int insert_watchpoint (CORE_ADDR, int,
569 enum target_hw_bp_type, struct expression *)
570 TARGET_DEFAULT_RETURN (-1);
571
572 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
573 enum target_hw_bp_type)
574 TARGET_DEFAULT_RETURN (1);
575 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
576 enum target_hw_bp_type)
577 TARGET_DEFAULT_RETURN (1);
578 virtual bool stopped_by_watchpoint ()
579 TARGET_DEFAULT_RETURN (false);
580 virtual bool have_steppable_watchpoint ()
581 TARGET_DEFAULT_RETURN (false);
582 virtual bool stopped_data_address (CORE_ADDR *)
583 TARGET_DEFAULT_RETURN (false);
584 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
585 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
586
587 /* Documentation of this routine is provided with the corresponding
588 target_* macro. */
589 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
590 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
591
592 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
593 struct expression *)
594 TARGET_DEFAULT_RETURN (false);
595 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
596 TARGET_DEFAULT_RETURN (-1);
597
598 /* Return 1 for sure target can do single step. Return -1 for
599 unknown. Return 0 for target can't do. */
600 virtual int can_do_single_step ()
601 TARGET_DEFAULT_RETURN (-1);
602
603 virtual bool supports_terminal_ours ()
604 TARGET_DEFAULT_RETURN (false);
605 virtual void terminal_init ()
606 TARGET_DEFAULT_IGNORE ();
607 virtual void terminal_inferior ()
608 TARGET_DEFAULT_IGNORE ();
609 virtual void terminal_save_inferior ()
610 TARGET_DEFAULT_IGNORE ();
611 virtual void terminal_ours_for_output ()
612 TARGET_DEFAULT_IGNORE ();
613 virtual void terminal_ours ()
614 TARGET_DEFAULT_IGNORE ();
615 virtual void terminal_info (const char *, int)
616 TARGET_DEFAULT_FUNC (default_terminal_info);
617 virtual void kill ()
618 TARGET_DEFAULT_NORETURN (noprocess ());
619 virtual void load (const char *, int)
620 TARGET_DEFAULT_NORETURN (tcomplain ());
621 /* Start an inferior process and set inferior_ptid to its pid.
622 EXEC_FILE is the file to run.
623 ALLARGS is a string containing the arguments to the program.
624 ENV is the environment vector to pass. Errors reported with error().
625 On VxWorks and various standalone systems, we ignore exec_file. */
626 virtual bool can_create_inferior ();
627 virtual void create_inferior (const char *, const std::string &,
628 char **, int);
629 virtual void post_startup_inferior (ptid_t)
630 TARGET_DEFAULT_IGNORE ();
631 virtual int insert_fork_catchpoint (int)
632 TARGET_DEFAULT_RETURN (1);
633 virtual int remove_fork_catchpoint (int)
634 TARGET_DEFAULT_RETURN (1);
635 virtual int insert_vfork_catchpoint (int)
636 TARGET_DEFAULT_RETURN (1);
637 virtual int remove_vfork_catchpoint (int)
638 TARGET_DEFAULT_RETURN (1);
639 virtual void follow_fork (bool, bool)
640 TARGET_DEFAULT_FUNC (default_follow_fork);
641 virtual int insert_exec_catchpoint (int)
642 TARGET_DEFAULT_RETURN (1);
643 virtual int remove_exec_catchpoint (int)
644 TARGET_DEFAULT_RETURN (1);
645 virtual void follow_exec (inferior *, ptid_t, const char *)
646 TARGET_DEFAULT_IGNORE ();
647 virtual int set_syscall_catchpoint (int, bool, int,
648 gdb::array_view<const int>)
649 TARGET_DEFAULT_RETURN (1);
650 virtual void mourn_inferior ()
651 TARGET_DEFAULT_FUNC (default_mourn_inferior);
652
653 /* Note that can_run is special and can be invoked on an unpushed
654 target. Targets defining this method must also define
655 to_can_async_p and to_supports_non_stop. */
656 virtual bool can_run ();
657
658 /* Documentation of this routine is provided with the corresponding
659 target_* macro. */
660 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
661 TARGET_DEFAULT_IGNORE ();
662
663 /* Documentation of this routine is provided with the
664 corresponding target_* function. */
665 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
666 TARGET_DEFAULT_IGNORE ();
667
668 virtual bool thread_alive (ptid_t ptid)
669 TARGET_DEFAULT_RETURN (false);
670 virtual void update_thread_list ()
671 TARGET_DEFAULT_IGNORE ();
672 virtual std::string pid_to_str (ptid_t)
673 TARGET_DEFAULT_FUNC (default_pid_to_str);
674 virtual const char *extra_thread_info (thread_info *)
675 TARGET_DEFAULT_RETURN (NULL);
676 virtual const char *thread_name (thread_info *)
677 TARGET_DEFAULT_RETURN (NULL);
678 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
679 int,
680 inferior *inf)
681 TARGET_DEFAULT_RETURN (NULL);
682 /* See target_thread_info_to_thread_handle. */
683 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
684 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
685 virtual void stop (ptid_t)
686 TARGET_DEFAULT_IGNORE ();
687 virtual void interrupt ()
688 TARGET_DEFAULT_IGNORE ();
689 virtual void pass_ctrlc ()
690 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
691 virtual void rcmd (const char *command, struct ui_file *output)
692 TARGET_DEFAULT_FUNC (default_rcmd);
693 virtual char *pid_to_exec_file (int pid)
694 TARGET_DEFAULT_RETURN (NULL);
695 virtual void log_command (const char *)
696 TARGET_DEFAULT_IGNORE ();
697 virtual const target_section_table *get_section_table ()
698 TARGET_DEFAULT_RETURN (default_get_section_table ());
699
700 /* Provide default values for all "must have" methods. */
701 virtual bool has_all_memory () { return false; }
702 virtual bool has_memory () { return false; }
703 virtual bool has_stack () { return false; }
704 virtual bool has_registers () { return false; }
705 virtual bool has_execution (inferior *inf) { return false; }
706
707 /* Control thread execution. */
708 virtual thread_control_capabilities get_thread_control_capabilities ()
709 TARGET_DEFAULT_RETURN (tc_none);
710 virtual bool attach_no_wait ()
711 TARGET_DEFAULT_RETURN (0);
712 /* This method must be implemented in some situations. See the
713 comment on 'can_run'. */
714 virtual bool can_async_p ()
715 TARGET_DEFAULT_RETURN (false);
716 virtual bool is_async_p ()
717 TARGET_DEFAULT_RETURN (false);
718 virtual void async (int)
719 TARGET_DEFAULT_NORETURN (tcomplain ());
720 virtual int async_wait_fd ()
721 TARGET_DEFAULT_NORETURN (noprocess ());
722 /* Return true if the target has pending events to report to the
723 core. If true, then GDB avoids resuming the target until all
724 pending events are consumed, so that multiple resumptions can
725 be coalesced as an optimization. Most targets can't tell
726 whether they have pending events without calling target_wait,
727 so we default to returning false. The only downside is that a
728 potential optimization is missed. */
729 virtual bool has_pending_events ()
730 TARGET_DEFAULT_RETURN (false);
731 virtual void thread_events (int)
732 TARGET_DEFAULT_IGNORE ();
733 /* This method must be implemented in some situations. See the
734 comment on 'can_run'. */
735 virtual bool supports_non_stop ()
736 TARGET_DEFAULT_RETURN (false);
737 /* Return true if the target operates in non-stop mode even with
738 "set non-stop off". */
739 virtual bool always_non_stop_p ()
740 TARGET_DEFAULT_RETURN (false);
741 /* find_memory_regions support method for gcore */
742 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
743 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
744 /* make_corefile_notes support method for gcore */
745 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
746 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
747 /* get_bookmark support method for bookmarks */
748 virtual gdb_byte *get_bookmark (const char *, int)
749 TARGET_DEFAULT_NORETURN (tcomplain ());
750 /* goto_bookmark support method for bookmarks */
751 virtual void goto_bookmark (const gdb_byte *, int)
752 TARGET_DEFAULT_NORETURN (tcomplain ());
753 /* Return the thread-local address at OFFSET in the
754 thread-local storage for the thread PTID and the shared library
755 or executable file given by LOAD_MODULE_ADDR. If that block of
756 thread-local storage hasn't been allocated yet, this function
757 may throw an error. LOAD_MODULE_ADDR may be zero for statically
758 linked multithreaded inferiors. */
759 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
760 CORE_ADDR load_module_addr,
761 CORE_ADDR offset)
762 TARGET_DEFAULT_NORETURN (generic_tls_error ());
763
764 /* Request that OPS transfer up to LEN addressable units of the target's
765 OBJECT. When reading from a memory object, the size of an addressable
766 unit is architecture dependent and can be found using
767 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
768 1 byte long. The OFFSET, for a seekable object, specifies the
769 starting point. The ANNEX can be used to provide additional
770 data-specific information to the target.
771
772 Return the transferred status, error or OK (an
773 'enum target_xfer_status' value). Save the number of addressable units
774 actually transferred in *XFERED_LEN if transfer is successful
775 (TARGET_XFER_OK) or the number unavailable units if the requested
776 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
777 smaller than LEN does not indicate the end of the object, only
778 the end of the transfer; higher level code should continue
779 transferring if desired. This is handled in target.c.
780
781 The interface does not support a "retry" mechanism. Instead it
782 assumes that at least one addressable unit will be transfered on each
783 successful call.
784
785 NOTE: cagney/2003-10-17: The current interface can lead to
786 fragmented transfers. Lower target levels should not implement
787 hacks, such as enlarging the transfer, in an attempt to
788 compensate for this. Instead, the target stack should be
789 extended so that it implements supply/collect methods and a
790 look-aside object cache. With that available, the lowest
791 target can safely and freely "push" data up the stack.
792
793 See target_read and target_write for more information. One,
794 and only one, of readbuf or writebuf must be non-NULL. */
795
796 virtual enum target_xfer_status xfer_partial (enum target_object object,
797 const char *annex,
798 gdb_byte *readbuf,
799 const gdb_byte *writebuf,
800 ULONGEST offset, ULONGEST len,
801 ULONGEST *xfered_len)
802 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
803
804 /* Return the limit on the size of any single memory transfer
805 for the target. */
806
807 virtual ULONGEST get_memory_xfer_limit ()
808 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
809
810 /* Returns the memory map for the target. A return value of NULL
811 means that no memory map is available. If a memory address
812 does not fall within any returned regions, it's assumed to be
813 RAM. The returned memory regions should not overlap.
814
815 The order of regions does not matter; target_memory_map will
816 sort regions by starting address. For that reason, this
817 function should not be called directly except via
818 target_memory_map.
819
820 This method should not cache data; if the memory map could
821 change unexpectedly, it should be invalidated, and higher
822 layers will re-fetch it. */
823 virtual std::vector<mem_region> memory_map ()
824 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
825
826 /* Erases the region of flash memory starting at ADDRESS, of
827 length LENGTH.
828
829 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
830 on flash block boundaries, as reported by 'to_memory_map'. */
831 virtual void flash_erase (ULONGEST address, LONGEST length)
832 TARGET_DEFAULT_NORETURN (tcomplain ());
833
834 /* Finishes a flash memory write sequence. After this operation
835 all flash memory should be available for writing and the result
836 of reading from areas written by 'to_flash_write' should be
837 equal to what was written. */
838 virtual void flash_done ()
839 TARGET_DEFAULT_NORETURN (tcomplain ());
840
841 /* Describe the architecture-specific features of this target. If
842 OPS doesn't have a description, this should delegate to the
843 "beneath" target. Returns the description found, or NULL if no
844 description was available. */
845 virtual const struct target_desc *read_description ()
846 TARGET_DEFAULT_RETURN (NULL);
847
848 /* Build the PTID of the thread on which a given task is running,
849 based on LWP and THREAD. These values are extracted from the
850 task Private_Data section of the Ada Task Control Block, and
851 their interpretation depends on the target. */
852 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
853 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
854
855 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
856 Return 0 if *READPTR is already at the end of the buffer.
857 Return -1 if there is insufficient buffer for a whole entry.
858 Return 1 if an entry was read into *TYPEP and *VALP. */
859 virtual int auxv_parse (gdb_byte **readptr,
860 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
861 TARGET_DEFAULT_FUNC (default_auxv_parse);
862
863 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
864 sequence of bytes in PATTERN with length PATTERN_LEN.
865
866 The result is 1 if found, 0 if not found, and -1 if there was an error
867 requiring halting of the search (e.g. memory read error).
868 If the pattern is found the address is recorded in FOUND_ADDRP. */
869 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
870 const gdb_byte *pattern, ULONGEST pattern_len,
871 CORE_ADDR *found_addrp)
872 TARGET_DEFAULT_FUNC (default_search_memory);
873
874 /* Can target execute in reverse? */
875 virtual bool can_execute_reverse ()
876 TARGET_DEFAULT_RETURN (false);
877
878 /* The direction the target is currently executing. Must be
879 implemented on targets that support reverse execution and async
880 mode. The default simply returns forward execution. */
881 virtual enum exec_direction_kind execution_direction ()
882 TARGET_DEFAULT_FUNC (default_execution_direction);
883
884 /* Does this target support debugging multiple processes
885 simultaneously? */
886 virtual bool supports_multi_process ()
887 TARGET_DEFAULT_RETURN (false);
888
889 /* Does this target support enabling and disabling tracepoints while a trace
890 experiment is running? */
891 virtual bool supports_enable_disable_tracepoint ()
892 TARGET_DEFAULT_RETURN (false);
893
894 /* Does this target support disabling address space randomization? */
895 virtual bool supports_disable_randomization ()
896 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
897
898 /* Does this target support the tracenz bytecode for string collection? */
899 virtual bool supports_string_tracing ()
900 TARGET_DEFAULT_RETURN (false);
901
902 /* Does this target support evaluation of breakpoint conditions on its
903 end? */
904 virtual bool supports_evaluation_of_breakpoint_conditions ()
905 TARGET_DEFAULT_RETURN (false);
906
907 /* Does this target support native dumpcore API? */
908 virtual bool supports_dumpcore ()
909 TARGET_DEFAULT_RETURN (false);
910
911 /* Generate the core file with native target API. */
912 virtual void dumpcore (const char *filename)
913 TARGET_DEFAULT_IGNORE ();
914
915 /* Does this target support evaluation of breakpoint commands on its
916 end? */
917 virtual bool can_run_breakpoint_commands ()
918 TARGET_DEFAULT_RETURN (false);
919
920 /* Determine current architecture of thread PTID.
921
922 The target is supposed to determine the architecture of the code where
923 the target is currently stopped at. The architecture information is
924 used to perform decr_pc_after_break adjustment, and also to determine
925 the frame architecture of the innermost frame. ptrace operations need to
926 operate according to target_gdbarch (). */
927 virtual struct gdbarch *thread_architecture (ptid_t)
928 TARGET_DEFAULT_RETURN (NULL);
929
930 /* Determine current address space of thread PTID. */
931 virtual struct address_space *thread_address_space (ptid_t)
932 TARGET_DEFAULT_RETURN (NULL);
933
934 /* Target file operations. */
935
936 /* Return true if the filesystem seen by the current inferior
937 is the local filesystem, false otherwise. */
938 virtual bool filesystem_is_local ()
939 TARGET_DEFAULT_RETURN (true);
940
941 /* Open FILENAME on the target, in the filesystem as seen by INF,
942 using FLAGS and MODE. If INF is NULL, use the filesystem seen
943 by the debugger (GDB or, for remote targets, the remote stub).
944 If WARN_IF_SLOW is nonzero, print a warning message if the file
945 is being accessed over a link that may be slow. Return a
946 target file descriptor, or -1 if an error occurs (and set
947 *TARGET_ERRNO). */
948 virtual int fileio_open (struct inferior *inf, const char *filename,
949 int flags, int mode, int warn_if_slow,
950 int *target_errno);
951
952 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
953 Return the number of bytes written, or -1 if an error occurs
954 (and set *TARGET_ERRNO). */
955 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
956 ULONGEST offset, int *target_errno);
957
958 /* Read up to LEN bytes FD on the target into READ_BUF.
959 Return the number of bytes read, or -1 if an error occurs
960 (and set *TARGET_ERRNO). */
961 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
962 ULONGEST offset, int *target_errno);
963
964 /* Get information about the file opened as FD and put it in
965 SB. Return 0 on success, or -1 if an error occurs (and set
966 *TARGET_ERRNO). */
967 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
968
969 /* Close FD on the target. Return 0, or -1 if an error occurs
970 (and set *TARGET_ERRNO). */
971 virtual int fileio_close (int fd, int *target_errno);
972
973 /* Unlink FILENAME on the target, in the filesystem as seen by
974 INF. If INF is NULL, use the filesystem seen by the debugger
975 (GDB or, for remote targets, the remote stub). Return 0, or
976 -1 if an error occurs (and set *TARGET_ERRNO). */
977 virtual int fileio_unlink (struct inferior *inf,
978 const char *filename,
979 int *target_errno);
980
981 /* Read value of symbolic link FILENAME on the target, in the
982 filesystem as seen by INF. If INF is NULL, use the filesystem
983 seen by the debugger (GDB or, for remote targets, the remote
984 stub). Return a string, or an empty optional if an error
985 occurs (and set *TARGET_ERRNO). */
986 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
987 const char *filename,
988 int *target_errno);
989
990 /* Implement the "info proc" command. Returns true if the target
991 actually implemented the command, false otherwise. */
992 virtual bool info_proc (const char *, enum info_proc_what);
993
994 /* Tracepoint-related operations. */
995
996 /* Prepare the target for a tracing run. */
997 virtual void trace_init ()
998 TARGET_DEFAULT_NORETURN (tcomplain ());
999
1000 /* Send full details of a tracepoint location to the target. */
1001 virtual void download_tracepoint (struct bp_location *location)
1002 TARGET_DEFAULT_NORETURN (tcomplain ());
1003
1004 /* Is the target able to download tracepoint locations in current
1005 state? */
1006 virtual bool can_download_tracepoint ()
1007 TARGET_DEFAULT_RETURN (false);
1008
1009 /* Send full details of a trace state variable to the target. */
1010 virtual void download_trace_state_variable (const trace_state_variable &tsv)
1011 TARGET_DEFAULT_NORETURN (tcomplain ());
1012
1013 /* Enable a tracepoint on the target. */
1014 virtual void enable_tracepoint (struct bp_location *location)
1015 TARGET_DEFAULT_NORETURN (tcomplain ());
1016
1017 /* Disable a tracepoint on the target. */
1018 virtual void disable_tracepoint (struct bp_location *location)
1019 TARGET_DEFAULT_NORETURN (tcomplain ());
1020
1021 /* Inform the target info of memory regions that are readonly
1022 (such as text sections), and so it should return data from
1023 those rather than look in the trace buffer. */
1024 virtual void trace_set_readonly_regions ()
1025 TARGET_DEFAULT_NORETURN (tcomplain ());
1026
1027 /* Start a trace run. */
1028 virtual void trace_start ()
1029 TARGET_DEFAULT_NORETURN (tcomplain ());
1030
1031 /* Get the current status of a tracing run. */
1032 virtual int get_trace_status (struct trace_status *ts)
1033 TARGET_DEFAULT_RETURN (-1);
1034
1035 virtual void get_tracepoint_status (struct breakpoint *tp,
1036 struct uploaded_tp *utp)
1037 TARGET_DEFAULT_NORETURN (tcomplain ());
1038
1039 /* Stop a trace run. */
1040 virtual void trace_stop ()
1041 TARGET_DEFAULT_NORETURN (tcomplain ());
1042
1043 /* Ask the target to find a trace frame of the given type TYPE,
1044 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1045 number of the trace frame, and also the tracepoint number at
1046 TPP. If no trace frame matches, return -1. May throw if the
1047 operation fails. */
1048 virtual int trace_find (enum trace_find_type type, int num,
1049 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1050 TARGET_DEFAULT_RETURN (-1);
1051
1052 /* Get the value of the trace state variable number TSV, returning
1053 1 if the value is known and writing the value itself into the
1054 location pointed to by VAL, else returning 0. */
1055 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1056 TARGET_DEFAULT_RETURN (false);
1057
1058 virtual int save_trace_data (const char *filename)
1059 TARGET_DEFAULT_NORETURN (tcomplain ());
1060
1061 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1062 TARGET_DEFAULT_RETURN (0);
1063
1064 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1065 TARGET_DEFAULT_RETURN (0);
1066
1067 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1068 ULONGEST offset, LONGEST len)
1069 TARGET_DEFAULT_NORETURN (tcomplain ());
1070
1071 /* Get the minimum length of instruction on which a fast tracepoint
1072 may be set on the target. If this operation is unsupported,
1073 return -1. If for some reason the minimum length cannot be
1074 determined, return 0. */
1075 virtual int get_min_fast_tracepoint_insn_len ()
1076 TARGET_DEFAULT_RETURN (-1);
1077
1078 /* Set the target's tracing behavior in response to unexpected
1079 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1080 virtual void set_disconnected_tracing (int val)
1081 TARGET_DEFAULT_IGNORE ();
1082 virtual void set_circular_trace_buffer (int val)
1083 TARGET_DEFAULT_IGNORE ();
1084 /* Set the size of trace buffer in the target. */
1085 virtual void set_trace_buffer_size (LONGEST val)
1086 TARGET_DEFAULT_IGNORE ();
1087
1088 /* Add/change textual notes about the trace run, returning true if
1089 successful, false otherwise. */
1090 virtual bool set_trace_notes (const char *user, const char *notes,
1091 const char *stopnotes)
1092 TARGET_DEFAULT_RETURN (false);
1093
1094 /* Return the processor core that thread PTID was last seen on.
1095 This information is updated only when:
1096 - update_thread_list is called
1097 - thread stops
1098 If the core cannot be determined -- either for the specified
1099 thread, or right now, or in this debug session, or for this
1100 target -- return -1. */
1101 virtual int core_of_thread (ptid_t ptid)
1102 TARGET_DEFAULT_RETURN (-1);
1103
1104 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1105 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1106 a match, 0 if there's a mismatch, and -1 if an error is
1107 encountered while reading memory. */
1108 virtual int verify_memory (const gdb_byte *data,
1109 CORE_ADDR memaddr, ULONGEST size)
1110 TARGET_DEFAULT_FUNC (default_verify_memory);
1111
1112 /* Return the address of the start of the Thread Information Block
1113 a Windows OS specific feature. */
1114 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1115 TARGET_DEFAULT_NORETURN (tcomplain ());
1116
1117 /* Send the new settings of write permission variables. */
1118 virtual void set_permissions ()
1119 TARGET_DEFAULT_IGNORE ();
1120
1121 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1122 with its details. Return true on success, false on failure. */
1123 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1124 static_tracepoint_marker *marker)
1125 TARGET_DEFAULT_RETURN (false);
1126
1127 /* Return a vector of all tracepoints markers string id ID, or all
1128 markers if ID is NULL. */
1129 virtual std::vector<static_tracepoint_marker>
1130 static_tracepoint_markers_by_strid (const char *id)
1131 TARGET_DEFAULT_NORETURN (tcomplain ());
1132
1133 /* Return a traceframe info object describing the current
1134 traceframe's contents. This method should not cache data;
1135 higher layers take care of caching, invalidating, and
1136 re-fetching when necessary. */
1137 virtual traceframe_info_up traceframe_info ()
1138 TARGET_DEFAULT_NORETURN (tcomplain ());
1139
1140 /* Ask the target to use or not to use agent according to USE.
1141 Return true if successful, false otherwise. */
1142 virtual bool use_agent (bool use)
1143 TARGET_DEFAULT_NORETURN (tcomplain ());
1144
1145 /* Is the target able to use agent in current state? */
1146 virtual bool can_use_agent ()
1147 TARGET_DEFAULT_RETURN (false);
1148
1149 /* Enable branch tracing for PTID using CONF configuration.
1150 Return a branch trace target information struct for reading and for
1151 disabling branch trace. */
1152 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1153 const struct btrace_config *conf)
1154 TARGET_DEFAULT_NORETURN (tcomplain ());
1155
1156 /* Disable branch tracing and deallocate TINFO. */
1157 virtual void disable_btrace (struct btrace_target_info *tinfo)
1158 TARGET_DEFAULT_NORETURN (tcomplain ());
1159
1160 /* Disable branch tracing and deallocate TINFO. This function is similar
1161 to to_disable_btrace, except that it is called during teardown and is
1162 only allowed to perform actions that are safe. A counter-example would
1163 be attempting to talk to a remote target. */
1164 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1165 TARGET_DEFAULT_NORETURN (tcomplain ());
1166
1167 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1168 DATA is cleared before new trace is added. */
1169 virtual enum btrace_error read_btrace (struct btrace_data *data,
1170 struct btrace_target_info *btinfo,
1171 enum btrace_read_type type)
1172 TARGET_DEFAULT_NORETURN (tcomplain ());
1173
1174 /* Get the branch trace configuration. */
1175 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1176 TARGET_DEFAULT_RETURN (NULL);
1177
1178 /* Current recording method. */
1179 virtual enum record_method record_method (ptid_t ptid)
1180 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1181
1182 /* Stop trace recording. */
1183 virtual void stop_recording ()
1184 TARGET_DEFAULT_IGNORE ();
1185
1186 /* Print information about the recording. */
1187 virtual void info_record ()
1188 TARGET_DEFAULT_IGNORE ();
1189
1190 /* Save the recorded execution trace into a file. */
1191 virtual void save_record (const char *filename)
1192 TARGET_DEFAULT_NORETURN (tcomplain ());
1193
1194 /* Delete the recorded execution trace from the current position
1195 onwards. */
1196 virtual bool supports_delete_record ()
1197 TARGET_DEFAULT_RETURN (false);
1198 virtual void delete_record ()
1199 TARGET_DEFAULT_NORETURN (tcomplain ());
1200
1201 /* Query if the record target is currently replaying PTID. */
1202 virtual bool record_is_replaying (ptid_t ptid)
1203 TARGET_DEFAULT_RETURN (false);
1204
1205 /* Query if the record target will replay PTID if it were resumed in
1206 execution direction DIR. */
1207 virtual bool record_will_replay (ptid_t ptid, int dir)
1208 TARGET_DEFAULT_RETURN (false);
1209
1210 /* Stop replaying. */
1211 virtual void record_stop_replaying ()
1212 TARGET_DEFAULT_IGNORE ();
1213
1214 /* Go to the begin of the execution trace. */
1215 virtual void goto_record_begin ()
1216 TARGET_DEFAULT_NORETURN (tcomplain ());
1217
1218 /* Go to the end of the execution trace. */
1219 virtual void goto_record_end ()
1220 TARGET_DEFAULT_NORETURN (tcomplain ());
1221
1222 /* Go to a specific location in the recorded execution trace. */
1223 virtual void goto_record (ULONGEST insn)
1224 TARGET_DEFAULT_NORETURN (tcomplain ());
1225
1226 /* Disassemble SIZE instructions in the recorded execution trace from
1227 the current position.
1228 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1229 disassemble SIZE succeeding instructions. */
1230 virtual void insn_history (int size, gdb_disassembly_flags flags)
1231 TARGET_DEFAULT_NORETURN (tcomplain ());
1232
1233 /* Disassemble SIZE instructions in the recorded execution trace around
1234 FROM.
1235 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1236 disassemble SIZE instructions after FROM. */
1237 virtual void insn_history_from (ULONGEST from, int size,
1238 gdb_disassembly_flags flags)
1239 TARGET_DEFAULT_NORETURN (tcomplain ());
1240
1241 /* Disassemble a section of the recorded execution trace from instruction
1242 BEGIN (inclusive) to instruction END (inclusive). */
1243 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1244 gdb_disassembly_flags flags)
1245 TARGET_DEFAULT_NORETURN (tcomplain ());
1246
1247 /* Print a function trace of the recorded execution trace.
1248 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1249 succeeding functions. */
1250 virtual void call_history (int size, record_print_flags flags)
1251 TARGET_DEFAULT_NORETURN (tcomplain ());
1252
1253 /* Print a function trace of the recorded execution trace starting
1254 at function FROM.
1255 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1256 SIZE functions after FROM. */
1257 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1258 TARGET_DEFAULT_NORETURN (tcomplain ());
1259
1260 /* Print a function trace of an execution trace section from function BEGIN
1261 (inclusive) to function END (inclusive). */
1262 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1263 TARGET_DEFAULT_NORETURN (tcomplain ());
1264
1265 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1266 non-empty annex. */
1267 virtual bool augmented_libraries_svr4_read ()
1268 TARGET_DEFAULT_RETURN (false);
1269
1270 /* Those unwinders are tried before any other arch unwinders. If
1271 SELF doesn't have unwinders, it should delegate to the
1272 "beneath" target. */
1273 virtual const struct frame_unwind *get_unwinder ()
1274 TARGET_DEFAULT_RETURN (NULL);
1275
1276 virtual const struct frame_unwind *get_tailcall_unwinder ()
1277 TARGET_DEFAULT_RETURN (NULL);
1278
1279 /* Prepare to generate a core file. */
1280 virtual void prepare_to_generate_core ()
1281 TARGET_DEFAULT_IGNORE ();
1282
1283 /* Cleanup after generating a core file. */
1284 virtual void done_generating_core ()
1285 TARGET_DEFAULT_IGNORE ();
1286
1287 /* Returns true if the target supports memory tagging, false otherwise. */
1288 virtual bool supports_memory_tagging ()
1289 TARGET_DEFAULT_RETURN (false);
1290
1291 /* Return the allocated memory tags of type TYPE associated with
1292 [ADDRESS, ADDRESS + LEN) in TAGS.
1293
1294 LEN is the number of bytes in the memory range. TAGS is a vector of
1295 bytes containing the tags found in the above memory range.
1296
1297 It is up to the architecture/target to interpret the bytes in the TAGS
1298 vector and read the tags appropriately.
1299
1300 Returns true if fetching the tags succeeded and false otherwise. */
1301 virtual bool fetch_memtags (CORE_ADDR address, size_t len,
1302 gdb::byte_vector &tags, int type)
1303 TARGET_DEFAULT_NORETURN (tcomplain ());
1304
1305 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1306 range [ADDRESS, ADDRESS + LEN).
1307
1308 LEN is the number of bytes in the memory range. TAGS is a vector of
1309 bytes containing the tags to be stored to the memory range.
1310
1311 It is up to the architecture/target to interpret the bytes in the TAGS
1312 vector and store them appropriately.
1313
1314 Returns true if storing the tags succeeded and false otherwise. */
1315 virtual bool store_memtags (CORE_ADDR address, size_t len,
1316 const gdb::byte_vector &tags, int type)
1317 TARGET_DEFAULT_NORETURN (tcomplain ());
1318 };
1319
1320 /* Deleter for std::unique_ptr. See comments in
1321 target_ops::~target_ops and target_ops::close about heap-allocated
1322 targets. */
1323 struct target_ops_deleter
1324 {
1325 void operator() (target_ops *target)
1326 {
1327 target->close ();
1328 }
1329 };
1330
1331 /* A unique pointer for target_ops. */
1332 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1333
1334 /* Decref a target and close if, if there are no references left. */
1335 extern void decref_target (target_ops *t);
1336
1337 /* A policy class to interface gdb::ref_ptr with target_ops. */
1338
1339 struct target_ops_ref_policy
1340 {
1341 static void incref (target_ops *t)
1342 {
1343 t->incref ();
1344 }
1345
1346 static void decref (target_ops *t)
1347 {
1348 decref_target (t);
1349 }
1350 };
1351
1352 /* A gdb::ref_ptr pointer to a target_ops. */
1353 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1354
1355 /* Native target backends call this once at initialization time to
1356 inform the core about which is the target that can respond to "run"
1357 or "attach". Note: native targets are always singletons. */
1358 extern void set_native_target (target_ops *target);
1359
1360 /* Get the registered native target, if there's one. Otherwise return
1361 NULL. */
1362 extern target_ops *get_native_target ();
1363
1364 /* Type that manages a target stack. See description of target stacks
1365 and strata at the top of the file. */
1366
1367 class target_stack
1368 {
1369 public:
1370 target_stack () = default;
1371 DISABLE_COPY_AND_ASSIGN (target_stack);
1372
1373 /* Push a new target into the stack of the existing target
1374 accessors, possibly superseding some existing accessor. */
1375 void push (target_ops *t);
1376
1377 /* Remove a target from the stack, wherever it may be. Return true
1378 if it was removed, false otherwise. */
1379 bool unpush (target_ops *t);
1380
1381 /* Returns true if T is pushed on the target stack. */
1382 bool is_pushed (target_ops *t) const
1383 { return at (t->stratum ()) == t; }
1384
1385 /* Return the target at STRATUM. */
1386 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1387
1388 /* Return the target at the top of the stack. */
1389 target_ops *top () const { return at (m_top); }
1390
1391 /* Find the next target down the stack from the specified target. */
1392 target_ops *find_beneath (const target_ops *t) const;
1393
1394 private:
1395 /* The stratum of the top target. */
1396 enum strata m_top {};
1397
1398 /* The stack, represented as an array, with one slot per stratum.
1399 If no target is pushed at some stratum, the corresponding slot is
1400 null. */
1401 target_ops *m_stack[(int) debug_stratum + 1] {};
1402 };
1403
1404 /* Return the dummy target. */
1405 extern target_ops *get_dummy_target ();
1406
1407 /* Define easy words for doing these operations on our current target. */
1408
1409 extern const char *target_shortname ();
1410
1411 /* Does whatever cleanup is required for a target that we are no
1412 longer going to be calling. This routine is automatically always
1413 called after popping the target off the target stack - the target's
1414 own methods are no longer available through the target vector.
1415 Closing file descriptors and freeing all memory allocated memory are
1416 typical things it should do. */
1417
1418 void target_close (struct target_ops *targ);
1419
1420 /* Find the correct target to use for "attach". If a target on the
1421 current stack supports attaching, then it is returned. Otherwise,
1422 the default run target is returned. */
1423
1424 extern struct target_ops *find_attach_target (void);
1425
1426 /* Find the correct target to use for "run". If a target on the
1427 current stack supports creating a new inferior, then it is
1428 returned. Otherwise, the default run target is returned. */
1429
1430 extern struct target_ops *find_run_target (void);
1431
1432 /* Some targets don't generate traps when attaching to the inferior,
1433 or their target_attach implementation takes care of the waiting.
1434 These targets must set to_attach_no_wait. */
1435
1436 extern bool target_attach_no_wait ();
1437
1438 /* The target_attach operation places a process under debugger control,
1439 and stops the process.
1440
1441 This operation provides a target-specific hook that allows the
1442 necessary bookkeeping to be performed after an attach completes. */
1443
1444 extern void target_post_attach (int pid);
1445
1446 /* Display a message indicating we're about to detach from the current
1447 inferior process. */
1448
1449 extern void target_announce_detach (int from_tty);
1450
1451 /* Takes a program previously attached to and detaches it.
1452 The program may resume execution (some targets do, some don't) and will
1453 no longer stop on signals, etc. We better not have left any breakpoints
1454 in the program or it'll die when it hits one. FROM_TTY says whether to be
1455 verbose or not. */
1456
1457 extern void target_detach (inferior *inf, int from_tty);
1458
1459 /* Disconnect from the current target without resuming it (leaving it
1460 waiting for a debugger). */
1461
1462 extern void target_disconnect (const char *, int);
1463
1464 /* Resume execution (or prepare for execution) of a target thread,
1465 process or all processes. STEP says whether to hardware
1466 single-step or to run free; SIGGNAL is the signal to be given to
1467 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1468 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1469 process id'. A wildcard PTID (all threads, or all threads of
1470 process) means `step/resume INFERIOR_PTID, and let other threads
1471 (for which the wildcard PTID matches) resume with their
1472 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1473 is in "pass" state, or with no signal if in "no pass" state.
1474
1475 In order to efficiently handle batches of resumption requests,
1476 targets may implement this method such that it records the
1477 resumption request, but defers the actual resumption to the
1478 target_commit_resume method implementation. See
1479 target_commit_resume below. */
1480 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1481
1482 /* Ensure that all resumed threads are committed to the target.
1483
1484 See the description of process_stratum_target::commit_resumed_state
1485 for more details. */
1486 extern void target_commit_resumed ();
1487
1488 /* For target_read_memory see target/target.h. */
1489
1490 /* The default target_ops::to_wait implementation. */
1491
1492 extern ptid_t default_target_wait (struct target_ops *ops,
1493 ptid_t ptid,
1494 struct target_waitstatus *status,
1495 target_wait_flags options);
1496
1497 /* Return true if the target has pending events to report to the core.
1498 See target_ops::has_pending_events(). */
1499
1500 extern bool target_has_pending_events ();
1501
1502 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1503
1504 extern void target_fetch_registers (struct regcache *regcache, int regno);
1505
1506 /* Store at least register REGNO, or all regs if REGNO == -1.
1507 It can store as many registers as it wants to, so target_prepare_to_store
1508 must have been previously called. Calls error() if there are problems. */
1509
1510 extern void target_store_registers (struct regcache *regcache, int regs);
1511
1512 /* Get ready to modify the registers array. On machines which store
1513 individual registers, this doesn't need to do anything. On machines
1514 which store all the registers in one fell swoop, this makes sure
1515 that REGISTERS contains all the registers from the program being
1516 debugged. */
1517
1518 extern void target_prepare_to_store (regcache *regcache);
1519
1520 /* Determine current address space of thread PTID. */
1521
1522 struct address_space *target_thread_address_space (ptid_t);
1523
1524 /* Implement the "info proc" command. This returns one if the request
1525 was handled, and zero otherwise. It can also throw an exception if
1526 an error was encountered while attempting to handle the
1527 request. */
1528
1529 int target_info_proc (const char *, enum info_proc_what);
1530
1531 /* Returns true if this target can disable address space randomization. */
1532
1533 int target_supports_disable_randomization (void);
1534
1535 /* Returns true if this target can enable and disable tracepoints
1536 while a trace experiment is running. */
1537
1538 extern bool target_supports_enable_disable_tracepoint ();
1539
1540 extern bool target_supports_string_tracing ();
1541
1542 /* Returns true if this target can handle breakpoint conditions
1543 on its end. */
1544
1545 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1546
1547 /* Does this target support dumpcore API? */
1548
1549 extern bool target_supports_dumpcore ();
1550
1551 /* Generate the core file with target API. */
1552
1553 extern void target_dumpcore (const char *filename);
1554
1555 /* Returns true if this target can handle breakpoint commands
1556 on its end. */
1557
1558 extern bool target_can_run_breakpoint_commands ();
1559
1560 /* Read a string from target memory at address MEMADDR. The string
1561 will be at most LEN bytes long (note that excess bytes may be read
1562 in some cases -- but these will not be returned). Returns nullptr
1563 on error. */
1564
1565 extern gdb::unique_xmalloc_ptr<char> target_read_string
1566 (CORE_ADDR memaddr, int len, int *bytes_read = nullptr);
1567
1568 /* For target_read_memory see target/target.h. */
1569
1570 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1571 ssize_t len);
1572
1573 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1574
1575 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1576
1577 /* For target_write_memory see target/target.h. */
1578
1579 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1580 ssize_t len);
1581
1582 /* Fetches the target's memory map. If one is found it is sorted
1583 and returned, after some consistency checking. Otherwise, NULL
1584 is returned. */
1585 std::vector<mem_region> target_memory_map (void);
1586
1587 /* Erases all flash memory regions on the target. */
1588 void flash_erase_command (const char *cmd, int from_tty);
1589
1590 /* Erase the specified flash region. */
1591 void target_flash_erase (ULONGEST address, LONGEST length);
1592
1593 /* Finish a sequence of flash operations. */
1594 void target_flash_done (void);
1595
1596 /* Describes a request for a memory write operation. */
1597 struct memory_write_request
1598 {
1599 memory_write_request (ULONGEST begin_, ULONGEST end_,
1600 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1601 : begin (begin_), end (end_), data (data_), baton (baton_)
1602 {}
1603
1604 /* Begining address that must be written. */
1605 ULONGEST begin;
1606 /* Past-the-end address. */
1607 ULONGEST end;
1608 /* The data to write. */
1609 gdb_byte *data;
1610 /* A callback baton for progress reporting for this request. */
1611 void *baton;
1612 };
1613
1614 /* Enumeration specifying different flash preservation behaviour. */
1615 enum flash_preserve_mode
1616 {
1617 flash_preserve,
1618 flash_discard
1619 };
1620
1621 /* Write several memory blocks at once. This version can be more
1622 efficient than making several calls to target_write_memory, in
1623 particular because it can optimize accesses to flash memory.
1624
1625 Moreover, this is currently the only memory access function in gdb
1626 that supports writing to flash memory, and it should be used for
1627 all cases where access to flash memory is desirable.
1628
1629 REQUESTS is the vector of memory_write_request.
1630 PRESERVE_FLASH_P indicates what to do with blocks which must be
1631 erased, but not completely rewritten.
1632 PROGRESS_CB is a function that will be periodically called to provide
1633 feedback to user. It will be called with the baton corresponding
1634 to the request currently being written. It may also be called
1635 with a NULL baton, when preserved flash sectors are being rewritten.
1636
1637 The function returns 0 on success, and error otherwise. */
1638 int target_write_memory_blocks
1639 (const std::vector<memory_write_request> &requests,
1640 enum flash_preserve_mode preserve_flash_p,
1641 void (*progress_cb) (ULONGEST, void *));
1642
1643 /* Print a line about the current target. */
1644
1645 extern void target_files_info ();
1646
1647 /* Insert a breakpoint at address BP_TGT->placed_address in
1648 the target machine. Returns 0 for success, and returns non-zero or
1649 throws an error (with a detailed failure reason error code and
1650 message) otherwise. */
1651
1652 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1653 struct bp_target_info *bp_tgt);
1654
1655 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1656 machine. Result is 0 for success, non-zero for error. */
1657
1658 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1659 struct bp_target_info *bp_tgt,
1660 enum remove_bp_reason reason);
1661
1662 /* Return true if the target stack has a non-default
1663 "terminal_ours" method. */
1664
1665 extern bool target_supports_terminal_ours (void);
1666
1667 /* Kill the inferior process. Make it go away. */
1668
1669 extern void target_kill (void);
1670
1671 /* Load an executable file into the target process. This is expected
1672 to not only bring new code into the target process, but also to
1673 update GDB's symbol tables to match.
1674
1675 ARG contains command-line arguments, to be broken down with
1676 buildargv (). The first non-switch argument is the filename to
1677 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1678 0)), which is an offset to apply to the load addresses of FILE's
1679 sections. The target may define switches, or other non-switch
1680 arguments, as it pleases. */
1681
1682 extern void target_load (const char *arg, int from_tty);
1683
1684 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1685 notification of inferior events such as fork and vork immediately
1686 after the inferior is created. (This because of how gdb gets an
1687 inferior created via invoking a shell to do it. In such a scenario,
1688 if the shell init file has commands in it, the shell will fork and
1689 exec for each of those commands, and we will see each such fork
1690 event. Very bad.)
1691
1692 Such targets will supply an appropriate definition for this function. */
1693
1694 extern void target_post_startup_inferior (ptid_t ptid);
1695
1696 /* On some targets, we can catch an inferior fork or vfork event when
1697 it occurs. These functions insert/remove an already-created
1698 catchpoint for such events. They return 0 for success, 1 if the
1699 catchpoint type is not supported and -1 for failure. */
1700
1701 extern int target_insert_fork_catchpoint (int pid);
1702
1703 extern int target_remove_fork_catchpoint (int pid);
1704
1705 extern int target_insert_vfork_catchpoint (int pid);
1706
1707 extern int target_remove_vfork_catchpoint (int pid);
1708
1709 /* If the inferior forks or vforks, this function will be called at
1710 the next resume in order to perform any bookkeeping and fiddling
1711 necessary to continue debugging either the parent or child, as
1712 requested, and releasing the other. Information about the fork
1713 or vfork event is available via get_last_target_status (). */
1714
1715 void target_follow_fork (bool follow_child, bool detach_fork);
1716
1717 /* Handle the target-specific bookkeeping required when the inferior makes an
1718 exec call.
1719
1720 The current inferior at the time of the call is the inferior that did the
1721 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1722 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1723 inferior, meaning that execution continues with the same inferior. If
1724 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1725 that execution continues in a new inferior.
1726
1727 On exit, the target must leave FOLLOW_INF as the current inferior. */
1728
1729 void target_follow_exec (inferior *follow_inf, ptid_t ptid,
1730 const char *execd_pathname);
1731
1732 /* On some targets, we can catch an inferior exec event when it
1733 occurs. These functions insert/remove an already-created
1734 catchpoint for such events. They return 0 for success, 1 if the
1735 catchpoint type is not supported and -1 for failure. */
1736
1737 extern int target_insert_exec_catchpoint (int pid);
1738
1739 extern int target_remove_exec_catchpoint (int pid);
1740
1741 /* Syscall catch.
1742
1743 NEEDED is true if any syscall catch (of any kind) is requested.
1744 If NEEDED is false, it means the target can disable the mechanism to
1745 catch system calls because there are no more catchpoints of this type.
1746
1747 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1748 being requested. In this case, SYSCALL_COUNTS should be ignored.
1749
1750 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1751 element in this array is nonzero if that syscall should be caught.
1752 This argument only matters if ANY_COUNT is zero.
1753
1754 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1755 for failure. */
1756
1757 extern int target_set_syscall_catchpoint
1758 (int pid, bool needed, int any_count,
1759 gdb::array_view<const int> syscall_counts);
1760
1761 /* The debugger has completed a blocking wait() call. There is now
1762 some process event that must be processed. This function should
1763 be defined by those targets that require the debugger to perform
1764 cleanup or internal state changes in response to the process event. */
1765
1766 /* For target_mourn_inferior see target/target.h. */
1767
1768 /* Does target have enough data to do a run or attach command? */
1769
1770 extern int target_can_run ();
1771
1772 /* Set list of signals to be handled in the target.
1773
1774 PASS_SIGNALS is an array indexed by target signal number
1775 (enum gdb_signal). For every signal whose entry in this array is
1776 non-zero, the target is allowed -but not required- to skip reporting
1777 arrival of the signal to the GDB core by returning from target_wait,
1778 and to pass the signal directly to the inferior instead.
1779
1780 However, if the target is hardware single-stepping a thread that is
1781 about to receive a signal, it needs to be reported in any case, even
1782 if mentioned in a previous target_pass_signals call. */
1783
1784 extern void target_pass_signals
1785 (gdb::array_view<const unsigned char> pass_signals);
1786
1787 /* Set list of signals the target may pass to the inferior. This
1788 directly maps to the "handle SIGNAL pass/nopass" setting.
1789
1790 PROGRAM_SIGNALS is an array indexed by target signal
1791 number (enum gdb_signal). For every signal whose entry in this
1792 array is non-zero, the target is allowed to pass the signal to the
1793 inferior. Signals not present in the array shall be silently
1794 discarded. This does not influence whether to pass signals to the
1795 inferior as a result of a target_resume call. This is useful in
1796 scenarios where the target needs to decide whether to pass or not a
1797 signal to the inferior without GDB core involvement, such as for
1798 example, when detaching (as threads may have been suspended with
1799 pending signals not reported to GDB). */
1800
1801 extern void target_program_signals
1802 (gdb::array_view<const unsigned char> program_signals);
1803
1804 /* Check to see if a thread is still alive. */
1805
1806 extern int target_thread_alive (ptid_t ptid);
1807
1808 /* Sync the target's threads with GDB's thread list. */
1809
1810 extern void target_update_thread_list (void);
1811
1812 /* Make target stop in a continuable fashion. (For instance, under
1813 Unix, this should act like SIGSTOP). Note that this function is
1814 asynchronous: it does not wait for the target to become stopped
1815 before returning. If this is the behavior you want please use
1816 target_stop_and_wait. */
1817
1818 extern void target_stop (ptid_t ptid);
1819
1820 /* Interrupt the target. Unlike target_stop, this does not specify
1821 which thread/process reports the stop. For most target this acts
1822 like raising a SIGINT, though that's not absolutely required. This
1823 function is asynchronous. */
1824
1825 extern void target_interrupt ();
1826
1827 /* Pass a ^C, as determined to have been pressed by checking the quit
1828 flag, to the target, as if the user had typed the ^C on the
1829 inferior's controlling terminal while the inferior was in the
1830 foreground. Remote targets may take the opportunity to detect the
1831 remote side is not responding and offer to disconnect. */
1832
1833 extern void target_pass_ctrlc (void);
1834
1835 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1836 target_interrupt. */
1837 extern void default_target_pass_ctrlc (struct target_ops *ops);
1838
1839 /* Send the specified COMMAND to the target's monitor
1840 (shell,interpreter) for execution. The result of the query is
1841 placed in OUTBUF. */
1842
1843 extern void target_rcmd (const char *command, struct ui_file *outbuf);
1844
1845 /* Does the target include memory? (Dummy targets don't.) */
1846
1847 extern int target_has_memory ();
1848
1849 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1850 we start a process.) */
1851
1852 extern int target_has_stack ();
1853
1854 /* Does the target have registers? (Exec files don't.) */
1855
1856 extern int target_has_registers ();
1857
1858 /* Does the target have execution? Can we make it jump (through
1859 hoops), or pop its stack a few times? This means that the current
1860 target is currently executing; for some targets, that's the same as
1861 whether or not the target is capable of execution, but there are
1862 also targets which can be current while not executing. In that
1863 case this will become true after to_create_inferior or
1864 to_attach. INF is the inferior to use; nullptr means to use the
1865 current inferior. */
1866
1867 extern bool target_has_execution (inferior *inf = nullptr);
1868
1869 /* Can the target support the debugger control of thread execution?
1870 Can it lock the thread scheduler? */
1871
1872 extern bool target_can_lock_scheduler ();
1873
1874 /* Controls whether async mode is permitted. */
1875 extern bool target_async_permitted;
1876
1877 /* Can the target support asynchronous execution? */
1878 extern bool target_can_async_p ();
1879
1880 /* Is the target in asynchronous execution mode? */
1881 extern bool target_is_async_p ();
1882
1883 /* Enables/disabled async target events. */
1884 extern void target_async (int enable);
1885
1886 /* Enables/disables thread create and exit events. */
1887 extern void target_thread_events (int enable);
1888
1889 /* Whether support for controlling the target backends always in
1890 non-stop mode is enabled. */
1891 extern enum auto_boolean target_non_stop_enabled;
1892
1893 /* Is the target in non-stop mode? Some targets control the inferior
1894 in non-stop mode even with "set non-stop off". Always true if "set
1895 non-stop" is on. */
1896 extern bool target_is_non_stop_p ();
1897
1898 /* Return true if at least one inferior has a non-stop target. */
1899 extern bool exists_non_stop_target ();
1900
1901 extern exec_direction_kind target_execution_direction ();
1902
1903 /* Converts a process id to a string. Usually, the string just contains
1904 `process xyz', but on some systems it may contain
1905 `process xyz thread abc'. */
1906
1907 extern std::string target_pid_to_str (ptid_t ptid);
1908
1909 extern std::string normal_pid_to_str (ptid_t ptid);
1910
1911 /* Return a short string describing extra information about PID,
1912 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1913 is okay. */
1914
1915 extern const char *target_extra_thread_info (thread_info *tp);
1916
1917 /* Return the thread's name, or NULL if the target is unable to determine it.
1918 The returned value must not be freed by the caller. */
1919
1920 extern const char *target_thread_name (struct thread_info *);
1921
1922 /* Given a pointer to a thread library specific thread handle and
1923 its length, return a pointer to the corresponding thread_info struct. */
1924
1925 extern struct thread_info *target_thread_handle_to_thread_info
1926 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1927
1928 /* Given a thread, return the thread handle, a target-specific sequence of
1929 bytes which serves as a thread identifier within the program being
1930 debugged. */
1931 extern gdb::byte_vector target_thread_info_to_thread_handle
1932 (struct thread_info *);
1933
1934 /* Attempts to find the pathname of the executable file
1935 that was run to create a specified process.
1936
1937 The process PID must be stopped when this operation is used.
1938
1939 If the executable file cannot be determined, NULL is returned.
1940
1941 Else, a pointer to a character string containing the pathname
1942 is returned. This string should be copied into a buffer by
1943 the client if the string will not be immediately used, or if
1944 it must persist. */
1945
1946 extern char *target_pid_to_exec_file (int pid);
1947
1948 /* See the to_thread_architecture description in struct target_ops. */
1949
1950 extern gdbarch *target_thread_architecture (ptid_t ptid);
1951
1952 /*
1953 * Iterator function for target memory regions.
1954 * Calls a callback function once for each memory region 'mapped'
1955 * in the child process. Defined as a simple macro rather than
1956 * as a function macro so that it can be tested for nullity.
1957 */
1958
1959 extern int target_find_memory_regions (find_memory_region_ftype func,
1960 void *data);
1961
1962 /*
1963 * Compose corefile .note section.
1964 */
1965
1966 extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
1967 int *size_p);
1968
1969 /* Bookmark interfaces. */
1970 extern gdb_byte *target_get_bookmark (const char *args, int from_tty);
1971
1972 extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);
1973
1974 /* Hardware watchpoint interfaces. */
1975
1976 /* GDB's current model is that there are three "kinds" of watchpoints,
1977 with respect to when they trigger and how you can move past them.
1978
1979 Those are: continuable, steppable, and non-steppable.
1980
1981 Continuable watchpoints are like x86's -- those trigger after the
1982 memory access's side effects are fully committed to memory. I.e.,
1983 they trap with the PC pointing at the next instruction already.
1984 Continuing past such a watchpoint is doable by just normally
1985 continuing, hence the name.
1986
1987 Both steppable and non-steppable watchpoints trap before the memory
1988 access. I.e, the PC points at the instruction that is accessing
1989 the memory. So GDB needs to single-step once past the current
1990 instruction in order to make the access effective and check whether
1991 the instruction's side effects change the watched expression.
1992
1993 Now, in order to step past that instruction, depending on
1994 architecture and target, you can have two situations:
1995
1996 - steppable watchpoints: you can single-step with the watchpoint
1997 still armed, and the watchpoint won't trigger again.
1998
1999 - non-steppable watchpoints: if you try to single-step with the
2000 watchpoint still armed, you'd trap the watchpoint again and the
2001 thread wouldn't make any progress. So GDB needs to temporarily
2002 remove the watchpoint in order to step past it.
2003
2004 If your target/architecture does not signal that it has either
2005 steppable or non-steppable watchpoints via either
2006 target_have_steppable_watchpoint or
2007 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2008 watchpoints. */
2009
2010 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2011 write). Only the INFERIOR_PTID task is being queried. */
2012
2013 extern bool target_stopped_by_watchpoint ();
2014
2015 /* Returns true if the target stopped because it executed a
2016 software breakpoint instruction. */
2017
2018 extern bool target_stopped_by_sw_breakpoint ();
2019
2020 extern bool target_supports_stopped_by_sw_breakpoint ();
2021
2022 extern bool target_stopped_by_hw_breakpoint ();
2023
2024 extern bool target_supports_stopped_by_hw_breakpoint ();
2025
2026 /* True if we have steppable watchpoints */
2027
2028 extern bool target_have_steppable_watchpoint ();
2029
2030 /* Provide defaults for hardware watchpoint functions. */
2031
2032 /* If the *_hw_beakpoint functions have not been defined
2033 elsewhere use the definitions in the target vector. */
2034
2035 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2036 Returns negative if the target doesn't have enough hardware debug
2037 registers available. Return zero if hardware watchpoint of type
2038 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2039 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2040 CNT is the number of such watchpoints used so far, including this
2041 one. OTHERTYPE is the number of watchpoints of other types than
2042 this one used so far. */
2043
2044 extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
2045 int othertype);
2046
2047 /* Returns the number of debug registers needed to watch the given
2048 memory region, or zero if not supported. */
2049
2050 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);
2051
2052 extern int target_can_do_single_step ();
2053
2054 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2055 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2056 COND is the expression for its condition, or NULL if there's none.
2057 Returns 0 for success, 1 if the watchpoint type is not supported,
2058 -1 for failure. */
2059
2060 extern int target_insert_watchpoint (CORE_ADDR addr, int len,
2061 target_hw_bp_type type, expression *cond);
2062
2063 extern int target_remove_watchpoint (CORE_ADDR addr, int len,
2064 target_hw_bp_type type, expression *cond);
2065
2066 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2067 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2068 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2069 masked watchpoints are not supported, -1 for failure. */
2070
2071 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2072 enum target_hw_bp_type);
2073
2074 /* Remove a masked watchpoint at ADDR with the mask MASK.
2075 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2076 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2077 for failure. */
2078
2079 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2080 enum target_hw_bp_type);
2081
2082 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2083 the target machine. Returns 0 for success, and returns non-zero or
2084 throws an error (with a detailed failure reason error code and
2085 message) otherwise. */
2086
2087 extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
2088 bp_target_info *bp_tgt);
2089
2090 extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
2091 bp_target_info *bp_tgt);
2092
2093 /* Return number of debug registers needed for a ranged breakpoint,
2094 or -1 if ranged breakpoints are not supported. */
2095
2096 extern int target_ranged_break_num_registers (void);
2097
2098 /* Return non-zero if target knows the data address which triggered this
2099 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2100 INFERIOR_PTID task is being queried. */
2101 #define target_stopped_data_address(target, addr_p) \
2102 (target)->stopped_data_address (addr_p)
2103
2104 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2105 LENGTH bytes beginning at START. */
2106 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2107 (target)->watchpoint_addr_within_range (addr, start, length)
2108
2109 /* Return non-zero if the target is capable of using hardware to evaluate
2110 the condition expression. In this case, if the condition is false when
2111 the watched memory location changes, execution may continue without the
2112 debugger being notified.
2113
2114 Due to limitations in the hardware implementation, it may be capable of
2115 avoiding triggering the watchpoint in some cases where the condition
2116 expression is false, but may report some false positives as well.
2117 For this reason, GDB will still evaluate the condition expression when
2118 the watchpoint triggers. */
2119
2120 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
2121 int type, expression *cond);
2122
2123 /* Return number of debug registers needed for a masked watchpoint,
2124 -1 if masked watchpoints are not supported or -2 if the given address
2125 and mask combination cannot be used. */
2126
2127 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2128
2129 /* Target can execute in reverse? */
2130
2131 extern bool target_can_execute_reverse ();
2132
2133 extern const struct target_desc *target_read_description (struct target_ops *);
2134
2135 extern ptid_t target_get_ada_task_ptid (long lwp, long tid);
2136
2137 /* Main entry point for searching memory. */
2138 extern int target_search_memory (CORE_ADDR start_addr,
2139 ULONGEST search_space_len,
2140 const gdb_byte *pattern,
2141 ULONGEST pattern_len,
2142 CORE_ADDR *found_addrp);
2143
2144 /* Target file operations. */
2145
2146 /* Return true if the filesystem seen by the current inferior
2147 is the local filesystem, zero otherwise. */
2148
2149 extern bool target_filesystem_is_local ();
2150
2151 /* Open FILENAME on the target, in the filesystem as seen by INF,
2152 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2153 the debugger (GDB or, for remote targets, the remote stub). Return
2154 a target file descriptor, or -1 if an error occurs (and set
2155 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2156 if the file is being accessed over a link that may be slow. */
2157 extern int target_fileio_open (struct inferior *inf,
2158 const char *filename, int flags,
2159 int mode, bool warn_if_slow,
2160 int *target_errno);
2161
2162 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2163 Return the number of bytes written, or -1 if an error occurs
2164 (and set *TARGET_ERRNO). */
2165 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2166 ULONGEST offset, int *target_errno);
2167
2168 /* Read up to LEN bytes FD on the target into READ_BUF.
2169 Return the number of bytes read, or -1 if an error occurs
2170 (and set *TARGET_ERRNO). */
2171 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2172 ULONGEST offset, int *target_errno);
2173
2174 /* Get information about the file opened as FD on the target
2175 and put it in SB. Return 0 on success, or -1 if an error
2176 occurs (and set *TARGET_ERRNO). */
2177 extern int target_fileio_fstat (int fd, struct stat *sb,
2178 int *target_errno);
2179
2180 /* Close FD on the target. Return 0, or -1 if an error occurs
2181 (and set *TARGET_ERRNO). */
2182 extern int target_fileio_close (int fd, int *target_errno);
2183
2184 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2185 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2186 for remote targets, the remote stub). Return 0, or -1 if an error
2187 occurs (and set *TARGET_ERRNO). */
2188 extern int target_fileio_unlink (struct inferior *inf,
2189 const char *filename,
2190 int *target_errno);
2191
2192 /* Read value of symbolic link FILENAME on the target, in the
2193 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2194 by the debugger (GDB or, for remote targets, the remote stub).
2195 Return a null-terminated string allocated via xmalloc, or NULL if
2196 an error occurs (and set *TARGET_ERRNO). */
2197 extern gdb::optional<std::string> target_fileio_readlink
2198 (struct inferior *inf, const char *filename, int *target_errno);
2199
2200 /* Read target file FILENAME, in the filesystem as seen by INF. If
2201 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2202 remote targets, the remote stub). The return value will be -1 if
2203 the transfer fails or is not supported; 0 if the object is empty;
2204 or the length of the object otherwise. If a positive value is
2205 returned, a sufficiently large buffer will be allocated using
2206 xmalloc and returned in *BUF_P containing the contents of the
2207 object.
2208
2209 This method should be used for objects sufficiently small to store
2210 in a single xmalloc'd buffer, when no fixed bound on the object's
2211 size is known in advance. */
2212 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2213 const char *filename,
2214 gdb_byte **buf_p);
2215
2216 /* Read target file FILENAME, in the filesystem as seen by INF. If
2217 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2218 remote targets, the remote stub). The result is NUL-terminated and
2219 returned as a string, allocated using xmalloc. If an error occurs
2220 or the transfer is unsupported, NULL is returned. Empty objects
2221 are returned as allocated but empty strings. A warning is issued
2222 if the result contains any embedded NUL bytes. */
2223 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2224 (struct inferior *inf, const char *filename);
2225
2226
2227 /* Tracepoint-related operations. */
2228
2229 extern void target_trace_init ();
2230
2231 extern void target_download_tracepoint (bp_location *location);
2232
2233 extern bool target_can_download_tracepoint ();
2234
2235 extern void target_download_trace_state_variable (const trace_state_variable &tsv);
2236
2237 extern void target_enable_tracepoint (bp_location *loc);
2238
2239 extern void target_disable_tracepoint (bp_location *loc);
2240
2241 extern void target_trace_start ();
2242
2243 extern void target_trace_set_readonly_regions ();
2244
2245 extern int target_get_trace_status (trace_status *ts);
2246
2247 extern void target_get_tracepoint_status (breakpoint *tp, uploaded_tp *utp);
2248
2249 extern void target_trace_stop ();
2250
2251 extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
2252 CORE_ADDR addr2, int *tpp);
2253
2254 extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);
2255
2256 extern int target_save_trace_data (const char *filename);
2257
2258 extern int target_upload_tracepoints (uploaded_tp **utpp);
2259
2260 extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);
2261
2262 extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
2263 LONGEST len);
2264
2265 extern int target_get_min_fast_tracepoint_insn_len ();
2266
2267 extern void target_set_disconnected_tracing (int val);
2268
2269 extern void target_set_circular_trace_buffer (int val);
2270
2271 extern void target_set_trace_buffer_size (LONGEST val);
2272
2273 extern bool target_set_trace_notes (const char *user, const char *notes,
2274 const char *stopnotes);
2275
2276 extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);
2277
2278 extern void target_set_permissions ();
2279
2280 extern bool target_static_tracepoint_marker_at
2281 (CORE_ADDR addr, static_tracepoint_marker *marker);
2282
2283 extern std::vector<static_tracepoint_marker>
2284 target_static_tracepoint_markers_by_strid (const char *marker_id);
2285
2286 extern traceframe_info_up target_traceframe_info ();
2287
2288 extern bool target_use_agent (bool use);
2289
2290 extern bool target_can_use_agent ();
2291
2292 extern bool target_augmented_libraries_svr4_read ();
2293
2294 extern bool target_supports_memory_tagging ();
2295
2296 extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
2297 gdb::byte_vector &tags, int type);
2298
2299 extern bool target_store_memtags (CORE_ADDR address, size_t len,
2300 const gdb::byte_vector &tags, int type);
2301
2302 /* Command logging facility. */
2303
2304 extern void target_log_command (const char *p);
2305
2306 extern int target_core_of_thread (ptid_t ptid);
2307
2308 /* See to_get_unwinder in struct target_ops. */
2309 extern const struct frame_unwind *target_get_unwinder (void);
2310
2311 /* See to_get_tailcall_unwinder in struct target_ops. */
2312 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2313
2314 /* This implements basic memory verification, reading target memory
2315 and performing the comparison here (as opposed to accelerated
2316 verification making use of the qCRC packet, for example). */
2317
2318 extern int simple_verify_memory (struct target_ops* ops,
2319 const gdb_byte *data,
2320 CORE_ADDR memaddr, ULONGEST size);
2321
2322 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2323 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2324 if there's a mismatch, and -1 if an error is encountered while
2325 reading memory. Throws an error if the functionality is found not
2326 to be supported by the current target. */
2327 int target_verify_memory (const gdb_byte *data,
2328 CORE_ADDR memaddr, ULONGEST size);
2329
2330 /* Routines for maintenance of the target structures...
2331
2332 add_target: Add a target to the list of all possible targets.
2333 This only makes sense for targets that should be activated using
2334 the "target TARGET_NAME ..." command.
2335
2336 push_target: Make this target the top of the stack of currently used
2337 targets, within its particular stratum of the stack. Result
2338 is 0 if now atop the stack, nonzero if not on top (maybe
2339 should warn user).
2340
2341 unpush_target: Remove this from the stack of currently used targets,
2342 no matter where it is on the list. Returns 0 if no
2343 change, 1 if removed from stack. */
2344
2345 /* Type of callback called when the user activates a target with
2346 "target TARGET_NAME". The callback routine takes the rest of the
2347 parameters from the command, and (if successful) pushes a new
2348 target onto the stack. */
2349 typedef void target_open_ftype (const char *args, int from_tty);
2350
2351 /* Add the target described by INFO to the list of possible targets
2352 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2353 as the command's completer if not NULL. */
2354
2355 extern void add_target (const target_info &info,
2356 target_open_ftype *func,
2357 completer_ftype *completer = NULL);
2358
2359 /* Adds a command ALIAS for the target described by INFO and marks it
2360 deprecated. This is useful for maintaining backwards compatibility
2361 when renaming targets. */
2362
2363 extern void add_deprecated_target_alias (const target_info &info,
2364 const char *alias);
2365
2366 /* A unique_ptr helper to unpush a target. */
2367
2368 struct target_unpusher
2369 {
2370 void operator() (struct target_ops *ops) const;
2371 };
2372
2373 /* A unique_ptr that unpushes a target on destruction. */
2374
2375 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2376
2377 extern void target_pre_inferior (int);
2378
2379 extern void target_preopen (int);
2380
2381 /* Does whatever cleanup is required to get rid of all pushed targets. */
2382 extern void pop_all_targets (void);
2383
2384 /* Like pop_all_targets, but pops only targets whose stratum is at or
2385 above STRATUM. */
2386 extern void pop_all_targets_at_and_above (enum strata stratum);
2387
2388 /* Like pop_all_targets, but pops only targets whose stratum is
2389 strictly above ABOVE_STRATUM. */
2390 extern void pop_all_targets_above (enum strata above_stratum);
2391
2392 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2393 CORE_ADDR offset);
2394
2395 /* Return the "section" containing the specified address. */
2396 const struct target_section *target_section_by_addr (struct target_ops *target,
2397 CORE_ADDR addr);
2398
2399 /* Return the target section table this target (or the targets
2400 beneath) currently manipulate. */
2401
2402 extern const target_section_table *target_get_section_table
2403 (struct target_ops *target);
2404
2405 /* Default implementation of get_section_table for dummy_target. */
2406
2407 extern const target_section_table *default_get_section_table ();
2408
2409 /* From mem-break.c */
2410
2411 extern int memory_remove_breakpoint (struct target_ops *,
2412 struct gdbarch *, struct bp_target_info *,
2413 enum remove_bp_reason);
2414
2415 extern int memory_insert_breakpoint (struct target_ops *,
2416 struct gdbarch *, struct bp_target_info *);
2417
2418 /* Convenience template use to add memory breakpoints support to a
2419 target. */
2420
2421 template <typename BaseTarget>
2422 struct memory_breakpoint_target : public BaseTarget
2423 {
2424 int insert_breakpoint (struct gdbarch *gdbarch,
2425 struct bp_target_info *bp_tgt) override
2426 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2427
2428 int remove_breakpoint (struct gdbarch *gdbarch,
2429 struct bp_target_info *bp_tgt,
2430 enum remove_bp_reason reason) override
2431 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2432 };
2433
2434 /* Check whether the memory at the breakpoint's placed address still
2435 contains the expected breakpoint instruction. */
2436
2437 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2438 struct bp_target_info *bp_tgt);
2439
2440 extern int default_memory_remove_breakpoint (struct gdbarch *,
2441 struct bp_target_info *);
2442
2443 extern int default_memory_insert_breakpoint (struct gdbarch *,
2444 struct bp_target_info *);
2445
2446
2447 /* From target.c */
2448
2449 extern void initialize_targets (void);
2450
2451 extern void noprocess (void) ATTRIBUTE_NORETURN;
2452
2453 extern void target_require_runnable (void);
2454
2455 /* Find the target at STRATUM. If no target is at that stratum,
2456 return NULL. */
2457
2458 struct target_ops *find_target_at (enum strata stratum);
2459
2460 /* Read OS data object of type TYPE from the target, and return it in XML
2461 format. The return value follows the same rules as target_read_stralloc. */
2462
2463 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2464
2465 /* Stuff that should be shared among the various remote targets. */
2466
2467
2468 /* Timeout limit for response from target. */
2469 extern int remote_timeout;
2470
2471 \f
2472
2473 /* Set the show memory breakpoints mode to show, and return a
2474 scoped_restore to restore it back to the current value. */
2475 extern scoped_restore_tmpl<int>
2476 make_scoped_restore_show_memory_breakpoints (int show);
2477
2478 extern bool may_write_registers;
2479 extern bool may_write_memory;
2480 extern bool may_insert_breakpoints;
2481 extern bool may_insert_tracepoints;
2482 extern bool may_insert_fast_tracepoints;
2483 extern bool may_stop;
2484
2485 extern void update_target_permissions (void);
2486
2487 \f
2488 /* Imported from machine dependent code. */
2489
2490 /* See to_enable_btrace in struct target_ops. */
2491 extern struct btrace_target_info *
2492 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2493
2494 /* See to_disable_btrace in struct target_ops. */
2495 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2496
2497 /* See to_teardown_btrace in struct target_ops. */
2498 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2499
2500 /* See to_read_btrace in struct target_ops. */
2501 extern enum btrace_error target_read_btrace (struct btrace_data *,
2502 struct btrace_target_info *,
2503 enum btrace_read_type);
2504
2505 /* See to_btrace_conf in struct target_ops. */
2506 extern const struct btrace_config *
2507 target_btrace_conf (const struct btrace_target_info *);
2508
2509 /* See to_stop_recording in struct target_ops. */
2510 extern void target_stop_recording (void);
2511
2512 /* See to_save_record in struct target_ops. */
2513 extern void target_save_record (const char *filename);
2514
2515 /* Query if the target supports deleting the execution log. */
2516 extern int target_supports_delete_record (void);
2517
2518 /* See to_delete_record in struct target_ops. */
2519 extern void target_delete_record (void);
2520
2521 /* See to_record_method. */
2522 extern enum record_method target_record_method (ptid_t ptid);
2523
2524 /* See to_record_is_replaying in struct target_ops. */
2525 extern int target_record_is_replaying (ptid_t ptid);
2526
2527 /* See to_record_will_replay in struct target_ops. */
2528 extern int target_record_will_replay (ptid_t ptid, int dir);
2529
2530 /* See to_record_stop_replaying in struct target_ops. */
2531 extern void target_record_stop_replaying (void);
2532
2533 /* See to_goto_record_begin in struct target_ops. */
2534 extern void target_goto_record_begin (void);
2535
2536 /* See to_goto_record_end in struct target_ops. */
2537 extern void target_goto_record_end (void);
2538
2539 /* See to_goto_record in struct target_ops. */
2540 extern void target_goto_record (ULONGEST insn);
2541
2542 /* See to_insn_history. */
2543 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2544
2545 /* See to_insn_history_from. */
2546 extern void target_insn_history_from (ULONGEST from, int size,
2547 gdb_disassembly_flags flags);
2548
2549 /* See to_insn_history_range. */
2550 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2551 gdb_disassembly_flags flags);
2552
2553 /* See to_call_history. */
2554 extern void target_call_history (int size, record_print_flags flags);
2555
2556 /* See to_call_history_from. */
2557 extern void target_call_history_from (ULONGEST begin, int size,
2558 record_print_flags flags);
2559
2560 /* See to_call_history_range. */
2561 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2562 record_print_flags flags);
2563
2564 /* See to_prepare_to_generate_core. */
2565 extern void target_prepare_to_generate_core (void);
2566
2567 /* See to_done_generating_core. */
2568 extern void target_done_generating_core (void);
2569
2570 #endif /* !defined (TARGET_H) */