gdb/
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #if !defined (TARGET_H)
27 #define TARGET_H
28
29 struct objfile;
30 struct ui_file;
31 struct mem_attrib;
32 struct target_ops;
33 struct bp_target_info;
34
35 /* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54 #include "bfd.h"
55 #include "symtab.h"
56 #include "dcache.h"
57 #include "memattr.h"
58
59 enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
63 core_stratum, /* Core dump files */
64 download_stratum, /* Downloading of remote targets */
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
67 };
68
69 enum thread_control_capabilities
70 {
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
73 tc_switch = 2 /* Can switch the running thread on demand. */
74 };
75
76 /* Stuff for target_wait. */
77
78 /* Generally, what has the program done? */
79 enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
83
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
86 TARGET_WAITKIND_STOPPED,
87
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
91
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
95
96 /* The program has forked. A "related" process' ID is in
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
100 TARGET_WAITKIND_FORKED,
101
102 /* The program has vforked. A "related" process's ID is in
103 value.related_pid. */
104
105 TARGET_WAITKIND_VFORKED,
106
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
110 TARGET_WAITKIND_EXECD,
111
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
118
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
122 TARGET_WAITKIND_SPURIOUS,
123
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
132 like for instance the user typing. */
133 TARGET_WAITKIND_IGNORE
134 };
135
136 struct target_waitstatus
137 {
138 enum target_waitkind kind;
139
140 /* Forked child pid, execd pathname, exit status or signal number. */
141 union
142 {
143 int integer;
144 enum target_signal sig;
145 int related_pid;
146 char *execd_pathname;
147 int syscall_id;
148 }
149 value;
150 };
151
152 /* Possible types of events that the inferior handler will have to
153 deal with. */
154 enum inferior_event_type
155 {
156 /* There is a request to quit the inferior, abandon it. */
157 INF_QUIT_REQ,
158 /* Process a normal inferior event which will result in target_wait
159 being called. */
160 INF_REG_EVENT,
161 /* Deal with an error on the inferior. */
162 INF_ERROR,
163 /* We are called because a timer went off. */
164 INF_TIMER,
165 /* We are called to do stuff after the inferior stops. */
166 INF_EXEC_COMPLETE,
167 /* We are called to do some stuff after the inferior stops, but we
168 are expected to reenter the proceed() and
169 handle_inferior_event() functions. This is used only in case of
170 'step n' like commands. */
171 INF_EXEC_CONTINUE
172 };
173
174 /* Return the string for a signal. */
175 extern char *target_signal_to_string (enum target_signal);
176
177 /* Return the name (SIGHUP, etc.) for a signal. */
178 extern char *target_signal_to_name (enum target_signal);
179
180 /* Given a name (SIGHUP, etc.), return its signal. */
181 enum target_signal target_signal_from_name (char *);
182 \f
183 /* Request the transfer of up to LEN 8-bit bytes of the target's
184 OBJECT. The OFFSET, for a seekable object, specifies the starting
185 point. The ANNEX can be used to provide additional data-specific
186 information to the target.
187
188 Return the number of bytes actually transfered, zero when no
189 further transfer is possible, and -1 when the transfer is not
190 supported.
191
192 NOTE: cagney/2003-10-17: The current interface does not support a
193 "retry" mechanism. Instead it assumes that at least one byte will
194 be transfered on each call.
195
196 NOTE: cagney/2003-10-17: The current interface can lead to
197 fragmented transfers. Lower target levels should not implement
198 hacks, such as enlarging the transfer, in an attempt to compensate
199 for this. Instead, the target stack should be extended so that it
200 implements supply/collect methods and a look-aside object cache.
201 With that available, the lowest target can safely and freely "push"
202 data up the stack.
203
204 NOTE: cagney/2003-10-17: Unlike the old query and the memory
205 transfer mechanisms, these methods are explicitly parameterized by
206 the target that it should be applied to.
207
208 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
209 methods, these new methods perform partial transfers. The only
210 difference is that these new methods thought to include "partial"
211 in the name. The old code's failure to do this lead to much
212 confusion and duplication of effort as each target object attempted
213 to locally take responsibility for something it didn't have to
214 worry about. */
215
216 enum target_object
217 {
218 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
219 TARGET_OBJECT_AVR,
220 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
221 TARGET_OBJECT_MEMORY,
222 /* Kernel Unwind Table. See "ia64-tdep.c". */
223 TARGET_OBJECT_UNWIND_TABLE,
224 /* Transfer auxilliary vector. */
225 TARGET_OBJECT_AUXV,
226 /* StackGhost cookie. See "sparc-tdep.c". */
227 TARGET_OBJECT_WCOOKIE
228
229 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
230 };
231
232 extern LONGEST target_read_partial (struct target_ops *ops,
233 enum target_object object,
234 const char *annex, gdb_byte *buf,
235 ULONGEST offset, LONGEST len);
236
237 extern LONGEST target_write_partial (struct target_ops *ops,
238 enum target_object object,
239 const char *annex, const gdb_byte *buf,
240 ULONGEST offset, LONGEST len);
241
242 /* Wrappers to perform the full transfer. */
243 extern LONGEST target_read (struct target_ops *ops,
244 enum target_object object,
245 const char *annex, gdb_byte *buf,
246 ULONGEST offset, LONGEST len);
247
248 extern LONGEST target_write (struct target_ops *ops,
249 enum target_object object,
250 const char *annex, const gdb_byte *buf,
251 ULONGEST offset, LONGEST len);
252
253 /* Wrappers to target read/write that perform memory transfers. They
254 throw an error if the memory transfer fails.
255
256 NOTE: cagney/2003-10-23: The naming schema is lifted from
257 "frame.h". The parameter order is lifted from get_frame_memory,
258 which in turn lifted it from read_memory. */
259
260 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
261 gdb_byte *buf, LONGEST len);
262 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
263 CORE_ADDR addr, int len);
264 \f
265
266 /* If certain kinds of activity happen, target_wait should perform
267 callbacks. */
268 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
269 on TARGET_ACTIVITY_FD. */
270 extern int target_activity_fd;
271 /* Returns zero to leave the inferior alone, one to interrupt it. */
272 extern int (*target_activity_function) (void);
273 \f
274 struct thread_info; /* fwd decl for parameter list below: */
275
276 struct target_ops
277 {
278 struct target_ops *beneath; /* To the target under this one. */
279 char *to_shortname; /* Name this target type */
280 char *to_longname; /* Name for printing */
281 char *to_doc; /* Documentation. Does not include trailing
282 newline, and starts with a one-line descrip-
283 tion (probably similar to to_longname). */
284 /* Per-target scratch pad. */
285 void *to_data;
286 /* The open routine takes the rest of the parameters from the
287 command, and (if successful) pushes a new target onto the
288 stack. Targets should supply this routine, if only to provide
289 an error message. */
290 void (*to_open) (char *, int);
291 /* Old targets with a static target vector provide "to_close".
292 New re-entrant targets provide "to_xclose" and that is expected
293 to xfree everything (including the "struct target_ops"). */
294 void (*to_xclose) (struct target_ops *targ, int quitting);
295 void (*to_close) (int);
296 void (*to_attach) (char *, int);
297 void (*to_post_attach) (int);
298 void (*to_detach) (char *, int);
299 void (*to_disconnect) (struct target_ops *, char *, int);
300 void (*to_resume) (ptid_t, int, enum target_signal);
301 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
302 void (*to_fetch_registers) (int);
303 void (*to_store_registers) (int);
304 void (*to_prepare_to_store) (void);
305
306 /* Transfer LEN bytes of memory between GDB address MYADDR and
307 target address MEMADDR. If WRITE, transfer them to the target, else
308 transfer them from the target. TARGET is the target from which we
309 get this function.
310
311 Return value, N, is one of the following:
312
313 0 means that we can't handle this. If errno has been set, it is the
314 error which prevented us from doing it (FIXME: What about bfd_error?).
315
316 positive (call it N) means that we have transferred N bytes
317 starting at MEMADDR. We might be able to handle more bytes
318 beyond this length, but no promises.
319
320 negative (call its absolute value N) means that we cannot
321 transfer right at MEMADDR, but we could transfer at least
322 something at MEMADDR + N.
323
324 NOTE: cagney/2004-10-01: This has been entirely superseeded by
325 to_xfer_partial and inferior inheritance. */
326
327 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
328 int len, int write,
329 struct mem_attrib *attrib,
330 struct target_ops *target);
331
332 void (*to_files_info) (struct target_ops *);
333 int (*to_insert_breakpoint) (struct bp_target_info *);
334 int (*to_remove_breakpoint) (struct bp_target_info *);
335 int (*to_can_use_hw_breakpoint) (int, int, int);
336 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
337 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
338 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
339 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
340 int (*to_stopped_by_watchpoint) (void);
341 int to_have_continuable_watchpoint;
342 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
343 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
344 void (*to_terminal_init) (void);
345 void (*to_terminal_inferior) (void);
346 void (*to_terminal_ours_for_output) (void);
347 void (*to_terminal_ours) (void);
348 void (*to_terminal_save_ours) (void);
349 void (*to_terminal_info) (char *, int);
350 void (*to_kill) (void);
351 void (*to_load) (char *, int);
352 int (*to_lookup_symbol) (char *, CORE_ADDR *);
353 void (*to_create_inferior) (char *, char *, char **, int);
354 void (*to_post_startup_inferior) (ptid_t);
355 void (*to_acknowledge_created_inferior) (int);
356 void (*to_insert_fork_catchpoint) (int);
357 int (*to_remove_fork_catchpoint) (int);
358 void (*to_insert_vfork_catchpoint) (int);
359 int (*to_remove_vfork_catchpoint) (int);
360 int (*to_follow_fork) (struct target_ops *, int);
361 void (*to_insert_exec_catchpoint) (int);
362 int (*to_remove_exec_catchpoint) (int);
363 int (*to_reported_exec_events_per_exec_call) (void);
364 int (*to_has_exited) (int, int, int *);
365 void (*to_mourn_inferior) (void);
366 int (*to_can_run) (void);
367 void (*to_notice_signals) (ptid_t ptid);
368 int (*to_thread_alive) (ptid_t ptid);
369 void (*to_find_new_threads) (void);
370 char *(*to_pid_to_str) (ptid_t);
371 char *(*to_extra_thread_info) (struct thread_info *);
372 void (*to_stop) (void);
373 void (*to_rcmd) (char *command, struct ui_file *output);
374 struct symtab_and_line *(*to_enable_exception_callback) (enum
375 exception_event_kind,
376 int);
377 struct exception_event_record *(*to_get_current_exception_event) (void);
378 char *(*to_pid_to_exec_file) (int pid);
379 enum strata to_stratum;
380 int to_has_all_memory;
381 int to_has_memory;
382 int to_has_stack;
383 int to_has_registers;
384 int to_has_execution;
385 int to_has_thread_control; /* control thread execution */
386 struct section_table
387 *to_sections;
388 struct section_table
389 *to_sections_end;
390 /* ASYNC target controls */
391 int (*to_can_async_p) (void);
392 int (*to_is_async_p) (void);
393 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
394 void *context);
395 int to_async_mask_value;
396 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
397 unsigned long,
398 int, int, int,
399 void *),
400 void *);
401 char * (*to_make_corefile_notes) (bfd *, int *);
402
403 /* Return the thread-local address at OFFSET in the
404 thread-local storage for the thread PTID and the shared library
405 or executable file given by OBJFILE. If that block of
406 thread-local storage hasn't been allocated yet, this function
407 may return an error. */
408 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
409 CORE_ADDR load_module_addr,
410 CORE_ADDR offset);
411
412 /* Perform partial transfers on OBJECT. See target_read_partial
413 and target_write_partial for details of each variant. One, and
414 only one, of readbuf or writebuf must be non-NULL. */
415 LONGEST (*to_xfer_partial) (struct target_ops *ops,
416 enum target_object object, const char *annex,
417 gdb_byte *readbuf, const gdb_byte *writebuf,
418 ULONGEST offset, LONGEST len);
419
420 int to_magic;
421 /* Need sub-structure for target machine related rather than comm related?
422 */
423 };
424
425 /* Magic number for checking ops size. If a struct doesn't end with this
426 number, somebody changed the declaration but didn't change all the
427 places that initialize one. */
428
429 #define OPS_MAGIC 3840
430
431 /* The ops structure for our "current" target process. This should
432 never be NULL. If there is no target, it points to the dummy_target. */
433
434 extern struct target_ops current_target;
435
436 /* Define easy words for doing these operations on our current target. */
437
438 #define target_shortname (current_target.to_shortname)
439 #define target_longname (current_target.to_longname)
440
441 /* Does whatever cleanup is required for a target that we are no
442 longer going to be calling. QUITTING indicates that GDB is exiting
443 and should not get hung on an error (otherwise it is important to
444 perform clean termination, even if it takes a while). This routine
445 is automatically always called when popping the target off the
446 target stack (to_beneath is undefined). Closing file descriptors
447 and freeing all memory allocated memory are typical things it
448 should do. */
449
450 void target_close (struct target_ops *targ, int quitting);
451
452 /* Attaches to a process on the target side. Arguments are as passed
453 to the `attach' command by the user. This routine can be called
454 when the target is not on the target-stack, if the target_can_run
455 routine returns 1; in that case, it must push itself onto the stack.
456 Upon exit, the target should be ready for normal operations, and
457 should be ready to deliver the status of the process immediately
458 (without waiting) to an upcoming target_wait call. */
459
460 #define target_attach(args, from_tty) \
461 (*current_target.to_attach) (args, from_tty)
462
463 /* The target_attach operation places a process under debugger control,
464 and stops the process.
465
466 This operation provides a target-specific hook that allows the
467 necessary bookkeeping to be performed after an attach completes. */
468 #define target_post_attach(pid) \
469 (*current_target.to_post_attach) (pid)
470
471 /* Takes a program previously attached to and detaches it.
472 The program may resume execution (some targets do, some don't) and will
473 no longer stop on signals, etc. We better not have left any breakpoints
474 in the program or it'll die when it hits one. ARGS is arguments
475 typed by the user (e.g. a signal to send the process). FROM_TTY
476 says whether to be verbose or not. */
477
478 extern void target_detach (char *, int);
479
480 /* Disconnect from the current target without resuming it (leaving it
481 waiting for a debugger). */
482
483 extern void target_disconnect (char *, int);
484
485 /* Resume execution of the target process PTID. STEP says whether to
486 single-step or to run free; SIGGNAL is the signal to be given to
487 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
488 pass TARGET_SIGNAL_DEFAULT. */
489
490 #define target_resume(ptid, step, siggnal) \
491 do { \
492 dcache_invalidate(target_dcache); \
493 (*current_target.to_resume) (ptid, step, siggnal); \
494 } while (0)
495
496 /* Wait for process pid to do something. PTID = -1 to wait for any
497 pid to do something. Return pid of child, or -1 in case of error;
498 store status through argument pointer STATUS. Note that it is
499 _NOT_ OK to throw_exception() out of target_wait() without popping
500 the debugging target from the stack; GDB isn't prepared to get back
501 to the prompt with a debugging target but without the frame cache,
502 stop_pc, etc., set up. */
503
504 #define target_wait(ptid, status) \
505 (*current_target.to_wait) (ptid, status)
506
507 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
508
509 #define target_fetch_registers(regno) \
510 (*current_target.to_fetch_registers) (regno)
511
512 /* Store at least register REGNO, or all regs if REGNO == -1.
513 It can store as many registers as it wants to, so target_prepare_to_store
514 must have been previously called. Calls error() if there are problems. */
515
516 #define target_store_registers(regs) \
517 (*current_target.to_store_registers) (regs)
518
519 /* Get ready to modify the registers array. On machines which store
520 individual registers, this doesn't need to do anything. On machines
521 which store all the registers in one fell swoop, this makes sure
522 that REGISTERS contains all the registers from the program being
523 debugged. */
524
525 #define target_prepare_to_store() \
526 (*current_target.to_prepare_to_store) ()
527
528 extern DCACHE *target_dcache;
529
530 extern int do_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
531 int write, struct mem_attrib *attrib);
532
533 extern int target_read_string (CORE_ADDR, char **, int, int *);
534
535 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
536
537 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
538 int len);
539
540 extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
541 struct mem_attrib *, struct target_ops *);
542
543 extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
544 struct mem_attrib *, struct target_ops *);
545
546 /* Make a single attempt at transfering LEN bytes. On a successful
547 transfer, the number of bytes actually transfered is returned and
548 ERR is set to 0. When a transfer fails, -1 is returned (the number
549 of bytes actually transfered is not defined) and ERR is set to a
550 non-zero error indication. */
551
552 extern int target_read_memory_partial (CORE_ADDR addr, gdb_byte *buf,
553 int len, int *err);
554
555 extern int target_write_memory_partial (CORE_ADDR addr, gdb_byte *buf,
556 int len, int *err);
557
558 extern char *child_pid_to_exec_file (int);
559
560 extern char *child_core_file_to_sym_file (char *);
561
562 #if defined(CHILD_POST_ATTACH)
563 extern void child_post_attach (int);
564 #endif
565
566 extern void child_post_startup_inferior (ptid_t);
567
568 extern void child_acknowledge_created_inferior (int);
569
570 extern void child_insert_fork_catchpoint (int);
571
572 extern int child_remove_fork_catchpoint (int);
573
574 extern void child_insert_vfork_catchpoint (int);
575
576 extern int child_remove_vfork_catchpoint (int);
577
578 extern void child_acknowledge_created_inferior (int);
579
580 extern int child_follow_fork (struct target_ops *, int);
581
582 extern void child_insert_exec_catchpoint (int);
583
584 extern int child_remove_exec_catchpoint (int);
585
586 extern int child_reported_exec_events_per_exec_call (void);
587
588 extern int child_has_exited (int, int, int *);
589
590 extern int child_thread_alive (ptid_t);
591
592 /* From infrun.c. */
593
594 extern int inferior_has_forked (int pid, int *child_pid);
595
596 extern int inferior_has_vforked (int pid, int *child_pid);
597
598 extern int inferior_has_execd (int pid, char **execd_pathname);
599
600 /* From exec.c */
601
602 extern void print_section_info (struct target_ops *, bfd *);
603
604 /* Print a line about the current target. */
605
606 #define target_files_info() \
607 (*current_target.to_files_info) (&current_target)
608
609 /* Insert a breakpoint at address BP_TGT->placed_address in the target
610 machine. Result is 0 for success, or an errno value. */
611
612 #define target_insert_breakpoint(bp_tgt) \
613 (*current_target.to_insert_breakpoint) (bp_tgt)
614
615 /* Remove a breakpoint at address BP_TGT->placed_address in the target
616 machine. Result is 0 for success, or an errno value. */
617
618 #define target_remove_breakpoint(bp_tgt) \
619 (*current_target.to_remove_breakpoint) (bp_tgt)
620
621 /* Initialize the terminal settings we record for the inferior,
622 before we actually run the inferior. */
623
624 #define target_terminal_init() \
625 (*current_target.to_terminal_init) ()
626
627 /* Put the inferior's terminal settings into effect.
628 This is preparation for starting or resuming the inferior. */
629
630 #define target_terminal_inferior() \
631 (*current_target.to_terminal_inferior) ()
632
633 /* Put some of our terminal settings into effect,
634 enough to get proper results from our output,
635 but do not change into or out of RAW mode
636 so that no input is discarded.
637
638 After doing this, either terminal_ours or terminal_inferior
639 should be called to get back to a normal state of affairs. */
640
641 #define target_terminal_ours_for_output() \
642 (*current_target.to_terminal_ours_for_output) ()
643
644 /* Put our terminal settings into effect.
645 First record the inferior's terminal settings
646 so they can be restored properly later. */
647
648 #define target_terminal_ours() \
649 (*current_target.to_terminal_ours) ()
650
651 /* Save our terminal settings.
652 This is called from TUI after entering or leaving the curses
653 mode. Since curses modifies our terminal this call is here
654 to take this change into account. */
655
656 #define target_terminal_save_ours() \
657 (*current_target.to_terminal_save_ours) ()
658
659 /* Print useful information about our terminal status, if such a thing
660 exists. */
661
662 #define target_terminal_info(arg, from_tty) \
663 (*current_target.to_terminal_info) (arg, from_tty)
664
665 /* Kill the inferior process. Make it go away. */
666
667 #define target_kill() \
668 (*current_target.to_kill) ()
669
670 /* Load an executable file into the target process. This is expected
671 to not only bring new code into the target process, but also to
672 update GDB's symbol tables to match.
673
674 ARG contains command-line arguments, to be broken down with
675 buildargv (). The first non-switch argument is the filename to
676 load, FILE; the second is a number (as parsed by strtoul (..., ...,
677 0)), which is an offset to apply to the load addresses of FILE's
678 sections. The target may define switches, or other non-switch
679 arguments, as it pleases. */
680
681 extern void target_load (char *arg, int from_tty);
682
683 /* Look up a symbol in the target's symbol table. NAME is the symbol
684 name. ADDRP is a CORE_ADDR * pointing to where the value of the
685 symbol should be returned. The result is 0 if successful, nonzero
686 if the symbol does not exist in the target environment. This
687 function should not call error() if communication with the target
688 is interrupted, since it is called from symbol reading, but should
689 return nonzero, possibly doing a complain(). */
690
691 #define target_lookup_symbol(name, addrp) \
692 (*current_target.to_lookup_symbol) (name, addrp)
693
694 /* Start an inferior process and set inferior_ptid to its pid.
695 EXEC_FILE is the file to run.
696 ALLARGS is a string containing the arguments to the program.
697 ENV is the environment vector to pass. Errors reported with error().
698 On VxWorks and various standalone systems, we ignore exec_file. */
699
700 #define target_create_inferior(exec_file, args, env, FROM_TTY) \
701 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
702
703
704 /* Some targets (such as ttrace-based HPUX) don't allow us to request
705 notification of inferior events such as fork and vork immediately
706 after the inferior is created. (This because of how gdb gets an
707 inferior created via invoking a shell to do it. In such a scenario,
708 if the shell init file has commands in it, the shell will fork and
709 exec for each of those commands, and we will see each such fork
710 event. Very bad.)
711
712 Such targets will supply an appropriate definition for this function. */
713
714 #define target_post_startup_inferior(ptid) \
715 (*current_target.to_post_startup_inferior) (ptid)
716
717 /* On some targets, the sequence of starting up an inferior requires
718 some synchronization between gdb and the new inferior process, PID. */
719
720 #define target_acknowledge_created_inferior(pid) \
721 (*current_target.to_acknowledge_created_inferior) (pid)
722
723 /* On some targets, we can catch an inferior fork or vfork event when
724 it occurs. These functions insert/remove an already-created
725 catchpoint for such events. */
726
727 #define target_insert_fork_catchpoint(pid) \
728 (*current_target.to_insert_fork_catchpoint) (pid)
729
730 #define target_remove_fork_catchpoint(pid) \
731 (*current_target.to_remove_fork_catchpoint) (pid)
732
733 #define target_insert_vfork_catchpoint(pid) \
734 (*current_target.to_insert_vfork_catchpoint) (pid)
735
736 #define target_remove_vfork_catchpoint(pid) \
737 (*current_target.to_remove_vfork_catchpoint) (pid)
738
739 /* If the inferior forks or vforks, this function will be called at
740 the next resume in order to perform any bookkeeping and fiddling
741 necessary to continue debugging either the parent or child, as
742 requested, and releasing the other. Information about the fork
743 or vfork event is available via get_last_target_status ().
744 This function returns 1 if the inferior should not be resumed
745 (i.e. there is another event pending). */
746
747 int target_follow_fork (int follow_child);
748
749 /* On some targets, we can catch an inferior exec event when it
750 occurs. These functions insert/remove an already-created
751 catchpoint for such events. */
752
753 #define target_insert_exec_catchpoint(pid) \
754 (*current_target.to_insert_exec_catchpoint) (pid)
755
756 #define target_remove_exec_catchpoint(pid) \
757 (*current_target.to_remove_exec_catchpoint) (pid)
758
759 /* Returns the number of exec events that are reported when a process
760 invokes a flavor of the exec() system call on this target, if exec
761 events are being reported. */
762
763 #define target_reported_exec_events_per_exec_call() \
764 (*current_target.to_reported_exec_events_per_exec_call) ()
765
766 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
767 exit code of PID, if any. */
768
769 #define target_has_exited(pid,wait_status,exit_status) \
770 (*current_target.to_has_exited) (pid,wait_status,exit_status)
771
772 /* The debugger has completed a blocking wait() call. There is now
773 some process event that must be processed. This function should
774 be defined by those targets that require the debugger to perform
775 cleanup or internal state changes in response to the process event. */
776
777 /* The inferior process has died. Do what is right. */
778
779 #define target_mourn_inferior() \
780 (*current_target.to_mourn_inferior) ()
781
782 /* Does target have enough data to do a run or attach command? */
783
784 #define target_can_run(t) \
785 ((t)->to_can_run) ()
786
787 /* post process changes to signal handling in the inferior. */
788
789 #define target_notice_signals(ptid) \
790 (*current_target.to_notice_signals) (ptid)
791
792 /* Check to see if a thread is still alive. */
793
794 #define target_thread_alive(ptid) \
795 (*current_target.to_thread_alive) (ptid)
796
797 /* Query for new threads and add them to the thread list. */
798
799 #define target_find_new_threads() \
800 (*current_target.to_find_new_threads) (); \
801
802 /* Make target stop in a continuable fashion. (For instance, under
803 Unix, this should act like SIGSTOP). This function is normally
804 used by GUIs to implement a stop button. */
805
806 #define target_stop current_target.to_stop
807
808 /* Send the specified COMMAND to the target's monitor
809 (shell,interpreter) for execution. The result of the query is
810 placed in OUTBUF. */
811
812 #define target_rcmd(command, outbuf) \
813 (*current_target.to_rcmd) (command, outbuf)
814
815
816 /* Get the symbol information for a breakpointable routine called when
817 an exception event occurs.
818 Intended mainly for C++, and for those
819 platforms/implementations where such a callback mechanism is available,
820 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
821 different mechanisms for debugging exceptions. */
822
823 #define target_enable_exception_callback(kind, enable) \
824 (*current_target.to_enable_exception_callback) (kind, enable)
825
826 /* Get the current exception event kind -- throw or catch, etc. */
827
828 #define target_get_current_exception_event() \
829 (*current_target.to_get_current_exception_event) ()
830
831 /* Does the target include all of memory, or only part of it? This
832 determines whether we look up the target chain for other parts of
833 memory if this target can't satisfy a request. */
834
835 #define target_has_all_memory \
836 (current_target.to_has_all_memory)
837
838 /* Does the target include memory? (Dummy targets don't.) */
839
840 #define target_has_memory \
841 (current_target.to_has_memory)
842
843 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
844 we start a process.) */
845
846 #define target_has_stack \
847 (current_target.to_has_stack)
848
849 /* Does the target have registers? (Exec files don't.) */
850
851 #define target_has_registers \
852 (current_target.to_has_registers)
853
854 /* Does the target have execution? Can we make it jump (through
855 hoops), or pop its stack a few times? FIXME: If this is to work that
856 way, it needs to check whether an inferior actually exists.
857 remote-udi.c and probably other targets can be the current target
858 when the inferior doesn't actually exist at the moment. Right now
859 this just tells us whether this target is *capable* of execution. */
860
861 #define target_has_execution \
862 (current_target.to_has_execution)
863
864 /* Can the target support the debugger control of thread execution?
865 a) Can it lock the thread scheduler?
866 b) Can it switch the currently running thread? */
867
868 #define target_can_lock_scheduler \
869 (current_target.to_has_thread_control & tc_schedlock)
870
871 #define target_can_switch_threads \
872 (current_target.to_has_thread_control & tc_switch)
873
874 /* Can the target support asynchronous execution? */
875 #define target_can_async_p() (current_target.to_can_async_p ())
876
877 /* Is the target in asynchronous execution mode? */
878 #define target_is_async_p() (current_target.to_is_async_p())
879
880 /* Put the target in async mode with the specified callback function. */
881 #define target_async(CALLBACK,CONTEXT) \
882 (current_target.to_async((CALLBACK), (CONTEXT)))
883
884 /* This is to be used ONLY within call_function_by_hand(). It provides
885 a workaround, to have inferior function calls done in sychronous
886 mode, even though the target is asynchronous. After
887 target_async_mask(0) is called, calls to target_can_async_p() will
888 return FALSE , so that target_resume() will not try to start the
889 target asynchronously. After the inferior stops, we IMMEDIATELY
890 restore the previous nature of the target, by calling
891 target_async_mask(1). After that, target_can_async_p() will return
892 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
893
894 FIXME ezannoni 1999-12-13: we won't need this once we move
895 the turning async on and off to the single execution commands,
896 from where it is done currently, in remote_resume(). */
897
898 #define target_async_mask_value \
899 (current_target.to_async_mask_value)
900
901 extern int target_async_mask (int mask);
902
903 /* Converts a process id to a string. Usually, the string just contains
904 `process xyz', but on some systems it may contain
905 `process xyz thread abc'. */
906
907 #undef target_pid_to_str
908 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
909
910 #ifndef target_tid_to_str
911 #define target_tid_to_str(PID) \
912 target_pid_to_str (PID)
913 extern char *normal_pid_to_str (ptid_t ptid);
914 #endif
915
916 /* Return a short string describing extra information about PID,
917 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
918 is okay. */
919
920 #define target_extra_thread_info(TP) \
921 (current_target.to_extra_thread_info (TP))
922
923 /*
924 * New Objfile Event Hook:
925 *
926 * Sometimes a GDB component wants to get notified whenever a new
927 * objfile is loaded. Mainly this is used by thread-debugging
928 * implementations that need to know when symbols for the target
929 * thread implemenation are available.
930 *
931 * The old way of doing this is to define a macro 'target_new_objfile'
932 * that points to the function that you want to be called on every
933 * objfile/shlib load.
934
935 The new way is to grab the function pointer,
936 'deprecated_target_new_objfile_hook', and point it to the function
937 that you want to be called on every objfile/shlib load.
938
939 If multiple clients are willing to be cooperative, they can each
940 save a pointer to the previous value of
941 deprecated_target_new_objfile_hook before modifying it, and arrange
942 for their function to call the previous function in the chain. In
943 that way, multiple clients can receive this notification (something
944 like with signal handlers). */
945
946 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
947
948 #ifndef target_pid_or_tid_to_str
949 #define target_pid_or_tid_to_str(ID) \
950 target_pid_to_str (ID)
951 #endif
952
953 /* Attempts to find the pathname of the executable file
954 that was run to create a specified process.
955
956 The process PID must be stopped when this operation is used.
957
958 If the executable file cannot be determined, NULL is returned.
959
960 Else, a pointer to a character string containing the pathname
961 is returned. This string should be copied into a buffer by
962 the client if the string will not be immediately used, or if
963 it must persist. */
964
965 #define target_pid_to_exec_file(pid) \
966 (current_target.to_pid_to_exec_file) (pid)
967
968 /*
969 * Iterator function for target memory regions.
970 * Calls a callback function once for each memory region 'mapped'
971 * in the child process. Defined as a simple macro rather than
972 * as a function macro so that it can be tested for nullity.
973 */
974
975 #define target_find_memory_regions(FUNC, DATA) \
976 (current_target.to_find_memory_regions) (FUNC, DATA)
977
978 /*
979 * Compose corefile .note section.
980 */
981
982 #define target_make_corefile_notes(BFD, SIZE_P) \
983 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
984
985 /* Thread-local values. */
986 #define target_get_thread_local_address \
987 (current_target.to_get_thread_local_address)
988 #define target_get_thread_local_address_p() \
989 (target_get_thread_local_address != NULL)
990
991 /* Hook to call target dependent code just after inferior target process has
992 started. */
993
994 #ifndef TARGET_CREATE_INFERIOR_HOOK
995 #define TARGET_CREATE_INFERIOR_HOOK(PID)
996 #endif
997
998 /* Hardware watchpoint interfaces. */
999
1000 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1001 write). */
1002
1003 #ifndef STOPPED_BY_WATCHPOINT
1004 #define STOPPED_BY_WATCHPOINT(w) \
1005 (*current_target.to_stopped_by_watchpoint) ()
1006 #endif
1007
1008 /* Non-zero if we have continuable watchpoints */
1009
1010 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1011 #define HAVE_CONTINUABLE_WATCHPOINT \
1012 (current_target.to_have_continuable_watchpoint)
1013 #endif
1014
1015 /* Provide defaults for hardware watchpoint functions. */
1016
1017 /* If the *_hw_beakpoint functions have not been defined
1018 elsewhere use the definitions in the target vector. */
1019
1020 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1021 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1022 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1023 (including this one?). OTHERTYPE is who knows what... */
1024
1025 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1026 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1027 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1028 #endif
1029
1030 #ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1031 #define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1032 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1033 #endif
1034
1035
1036 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1037 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1038 success, non-zero for failure. */
1039
1040 #ifndef target_insert_watchpoint
1041 #define target_insert_watchpoint(addr, len, type) \
1042 (*current_target.to_insert_watchpoint) (addr, len, type)
1043
1044 #define target_remove_watchpoint(addr, len, type) \
1045 (*current_target.to_remove_watchpoint) (addr, len, type)
1046 #endif
1047
1048 #ifndef target_insert_hw_breakpoint
1049 #define target_insert_hw_breakpoint(bp_tgt) \
1050 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
1051
1052 #define target_remove_hw_breakpoint(bp_tgt) \
1053 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
1054 #endif
1055
1056 extern int target_stopped_data_address_p (struct target_ops *);
1057
1058 #ifndef target_stopped_data_address
1059 #define target_stopped_data_address(target, x) \
1060 (*target.to_stopped_data_address) (target, x)
1061 #else
1062 /* Horrible hack to get around existing macros :-(. */
1063 #define target_stopped_data_address_p(CURRENT_TARGET) (1)
1064 #endif
1065
1066 /* This will only be defined by a target that supports catching vfork events,
1067 such as HP-UX.
1068
1069 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1070 child process after it has exec'd, causes the parent process to resume as
1071 well. To prevent the parent from running spontaneously, such targets should
1072 define this to a function that prevents that from happening. */
1073 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1074 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1075 #endif
1076
1077 /* This will only be defined by a target that supports catching vfork events,
1078 such as HP-UX.
1079
1080 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1081 process must be resumed when it delivers its exec event, before the parent
1082 vfork event will be delivered to us. */
1083
1084 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1085 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1086 #endif
1087
1088 /* Routines for maintenance of the target structures...
1089
1090 add_target: Add a target to the list of all possible targets.
1091
1092 push_target: Make this target the top of the stack of currently used
1093 targets, within its particular stratum of the stack. Result
1094 is 0 if now atop the stack, nonzero if not on top (maybe
1095 should warn user).
1096
1097 unpush_target: Remove this from the stack of currently used targets,
1098 no matter where it is on the list. Returns 0 if no
1099 change, 1 if removed from stack.
1100
1101 pop_target: Remove the top thing on the stack of current targets. */
1102
1103 extern void add_target (struct target_ops *);
1104
1105 extern int push_target (struct target_ops *);
1106
1107 extern int unpush_target (struct target_ops *);
1108
1109 extern void target_preopen (int);
1110
1111 extern void pop_target (void);
1112
1113 /* Struct section_table maps address ranges to file sections. It is
1114 mostly used with BFD files, but can be used without (e.g. for handling
1115 raw disks, or files not in formats handled by BFD). */
1116
1117 struct section_table
1118 {
1119 CORE_ADDR addr; /* Lowest address in section */
1120 CORE_ADDR endaddr; /* 1+highest address in section */
1121
1122 struct bfd_section *the_bfd_section;
1123
1124 bfd *bfd; /* BFD file pointer */
1125 };
1126
1127 /* Return the "section" containing the specified address. */
1128 struct section_table *target_section_by_addr (struct target_ops *target,
1129 CORE_ADDR addr);
1130
1131
1132 /* From mem-break.c */
1133
1134 extern int memory_remove_breakpoint (struct bp_target_info *);
1135
1136 extern int memory_insert_breakpoint (struct bp_target_info *);
1137
1138 extern int default_memory_remove_breakpoint (struct bp_target_info *);
1139
1140 extern int default_memory_insert_breakpoint (struct bp_target_info *);
1141
1142
1143 /* From target.c */
1144
1145 extern void initialize_targets (void);
1146
1147 extern void noprocess (void);
1148
1149 extern void find_default_attach (char *, int);
1150
1151 extern void find_default_create_inferior (char *, char *, char **, int);
1152
1153 extern struct target_ops *find_run_target (void);
1154
1155 extern struct target_ops *find_core_target (void);
1156
1157 extern struct target_ops *find_target_beneath (struct target_ops *);
1158
1159 extern int target_resize_to_sections (struct target_ops *target,
1160 int num_added);
1161
1162 extern void remove_target_sections (bfd *abfd);
1163
1164 \f
1165 /* Stuff that should be shared among the various remote targets. */
1166
1167 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1168 information (higher values, more information). */
1169 extern int remote_debug;
1170
1171 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1172 extern int baud_rate;
1173 /* Timeout limit for response from target. */
1174 extern int remote_timeout;
1175
1176 \f
1177 /* Functions for helping to write a native target. */
1178
1179 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1180 extern void store_waitstatus (struct target_waitstatus *, int);
1181
1182 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1183 targ_signal SIGNO has an equivalent ``host'' representation. */
1184 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1185 to the shorter target_signal_p() because it is far less ambigious.
1186 In this context ``target_signal'' refers to GDB's internal
1187 representation of the target's set of signals while ``host signal''
1188 refers to the target operating system's signal. Confused? */
1189
1190 extern int target_signal_to_host_p (enum target_signal signo);
1191
1192 /* Convert between host signal numbers and enum target_signal's.
1193 target_signal_to_host() returns 0 and prints a warning() on GDB's
1194 console if SIGNO has no equivalent host representation. */
1195 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1196 refering to the target operating system's signal numbering.
1197 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1198 gdb_signal'' would probably be better as it is refering to GDB's
1199 internal representation of a target operating system's signal. */
1200
1201 extern enum target_signal target_signal_from_host (int);
1202 extern int target_signal_to_host (enum target_signal);
1203
1204 /* Convert from a number used in a GDB command to an enum target_signal. */
1205 extern enum target_signal target_signal_from_command (int);
1206
1207 /* Any target can call this to switch to remote protocol (in remote.c). */
1208 extern void push_remote_target (char *name, int from_tty);
1209 \f
1210 /* Imported from machine dependent code */
1211
1212 /* Blank target vector entries are initialized to target_ignore. */
1213 void target_ignore (void);
1214
1215 extern struct target_ops deprecated_child_ops;
1216
1217 #endif /* !defined (TARGET_H) */