[gdb] Fix typos
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2023 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct trace_state_variable;
33 struct trace_status;
34 struct uploaded_tsv;
35 struct uploaded_tp;
36 struct static_tracepoint_marker;
37 struct traceframe_info;
38 struct expression;
39 struct dcache_struct;
40 struct inferior;
41
42 #include "infrun.h" /* For enum exec_direction_kind. */
43 #include "breakpoint.h" /* For enum bptype. */
44 #include "gdbsupport/scoped_restore.h"
45 #include "gdbsupport/refcounted-object.h"
46 #include "target-section.h"
47
48 /* This include file defines the interface between the main part
49 of the debugger, and the part which is target-specific, or
50 specific to the communications interface between us and the
51 target.
52
53 A TARGET is an interface between the debugger and a particular
54 kind of file or process. Targets can be STACKED in STRATA,
55 so that more than one target can potentially respond to a request.
56 In particular, memory accesses will walk down the stack of targets
57 until they find a target that is interested in handling that particular
58 address. STRATA are artificial boundaries on the stack, within
59 which particular kinds of targets live. Strata exist so that
60 people don't get confused by pushing e.g. a process target and then
61 a file target, and wondering why they can't see the current values
62 of variables any more (the file target is handling them and they
63 never get to the process target). So when you push a file target,
64 it goes into the file stratum, which is always below the process
65 stratum.
66
67 Note that rather than allow an empty stack, we always have the
68 dummy target at the bottom stratum, so we can call the target
69 methods without checking them. */
70
71 #include "target/target.h"
72 #include "target/resume.h"
73 #include "target/wait.h"
74 #include "target/waitstatus.h"
75 #include "bfd.h"
76 #include "symtab.h"
77 #include "memattr.h"
78 #include "gdbsupport/gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm-flags.h"
83 #include "tracepoint.h"
84 #include "gdbsupport/fileio.h"
85
86 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
87
88 enum strata
89 {
90 dummy_stratum, /* The lowest of the low */
91 file_stratum, /* Executable files, etc */
92 process_stratum, /* Executing processes or core dump files */
93 thread_stratum, /* Executing threads */
94 record_stratum, /* Support record debugging */
95 arch_stratum, /* Architecture overrides */
96 debug_stratum /* Target debug. Must be last. */
97 };
98
99 enum thread_control_capabilities
100 {
101 tc_none = 0, /* Default: can't control thread execution. */
102 tc_schedlock = 1, /* Can lock the thread scheduler. */
103 };
104
105 /* The structure below stores information about a system call.
106 It is basically used in the "catch syscall" command, and in
107 every function that gives information about a system call.
108
109 It's also good to mention that its fields represent everything
110 that we currently know about a syscall in GDB. */
111 struct syscall
112 {
113 /* The syscall number. */
114 int number;
115
116 /* The syscall name. */
117 const char *name;
118 };
119
120 /* Return a pretty printed form of TARGET_OPTIONS. */
121 extern std::string target_options_to_string (target_wait_flags target_options);
122
123 /* Possible types of events that the inferior handler will have to
124 deal with. */
125 enum inferior_event_type
126 {
127 /* Process a normal inferior event which will result in target_wait
128 being called. */
129 INF_REG_EVENT,
130 /* We are called to do stuff after the inferior stops. */
131 INF_EXEC_COMPLETE,
132 };
133 \f
134 /* Target objects which can be transfered using target_read,
135 target_write, et cetera. */
136
137 enum target_object
138 {
139 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
140 TARGET_OBJECT_AVR,
141 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
142 TARGET_OBJECT_MEMORY,
143 /* Memory, avoiding GDB's data cache and trusting the executable.
144 Target implementations of to_xfer_partial never need to handle
145 this object, and most callers should not use it. */
146 TARGET_OBJECT_RAW_MEMORY,
147 /* Memory known to be part of the target's stack. This is cached even
148 if it is not in a region marked as such, since it is known to be
149 "normal" RAM. */
150 TARGET_OBJECT_STACK_MEMORY,
151 /* Memory known to be part of the target code. This is cached even
152 if it is not in a region marked as such. */
153 TARGET_OBJECT_CODE_MEMORY,
154 /* Kernel Unwind Table. See "ia64-tdep.c". */
155 TARGET_OBJECT_UNWIND_TABLE,
156 /* Transfer auxilliary vector. */
157 TARGET_OBJECT_AUXV,
158 /* StackGhost cookie. See "sparc-tdep.c". */
159 TARGET_OBJECT_WCOOKIE,
160 /* Target memory map in XML format. */
161 TARGET_OBJECT_MEMORY_MAP,
162 /* Flash memory. This object can be used to write contents to
163 a previously erased flash memory. Using it without erasing
164 flash can have unexpected results. Addresses are physical
165 address on target, and not relative to flash start. */
166 TARGET_OBJECT_FLASH,
167 /* Available target-specific features, e.g. registers and coprocessors.
168 See "target-descriptions.c". ANNEX should never be empty. */
169 TARGET_OBJECT_AVAILABLE_FEATURES,
170 /* Currently loaded libraries, in XML format. */
171 TARGET_OBJECT_LIBRARIES,
172 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_SVR4,
174 /* Currently loaded libraries specific to AIX systems, in XML format. */
175 TARGET_OBJECT_LIBRARIES_AIX,
176 /* Get OS specific data. The ANNEX specifies the type (running
177 processes, etc.). The data being transfered is expected to follow
178 the DTD specified in features/osdata.dtd. */
179 TARGET_OBJECT_OSDATA,
180 /* Extra signal info. Usually the contents of `siginfo_t' on unix
181 platforms. */
182 TARGET_OBJECT_SIGNAL_INFO,
183 /* The list of threads that are being debugged. */
184 TARGET_OBJECT_THREADS,
185 /* Collected static trace data. */
186 TARGET_OBJECT_STATIC_TRACE_DATA,
187 /* Traceframe info, in XML format. */
188 TARGET_OBJECT_TRACEFRAME_INFO,
189 /* Load maps for FDPIC systems. */
190 TARGET_OBJECT_FDPIC,
191 /* Darwin dynamic linker info data. */
192 TARGET_OBJECT_DARWIN_DYLD_INFO,
193 /* OpenVMS Unwind Information Block. */
194 TARGET_OBJECT_OPENVMS_UIB,
195 /* Branch trace data, in XML format. */
196 TARGET_OBJECT_BTRACE,
197 /* Branch trace configuration, in XML format. */
198 TARGET_OBJECT_BTRACE_CONF,
199 /* The pathname of the executable file that was run to create
200 a specified process. ANNEX should be a string representation
201 of the process ID of the process in question, in hexadecimal
202 format. */
203 TARGET_OBJECT_EXEC_FILE,
204 /* FreeBSD virtual memory mappings. */
205 TARGET_OBJECT_FREEBSD_VMMAP,
206 /* FreeBSD process strings. */
207 TARGET_OBJECT_FREEBSD_PS_STRINGS,
208 /* Possible future objects: TARGET_OBJECT_FILE, ... */
209 };
210
211 /* Possible values returned by target_xfer_partial, etc. */
212
213 enum target_xfer_status
214 {
215 /* Some bytes are transferred. */
216 TARGET_XFER_OK = 1,
217
218 /* No further transfer is possible. */
219 TARGET_XFER_EOF = 0,
220
221 /* The piece of the object requested is unavailable. */
222 TARGET_XFER_UNAVAILABLE = 2,
223
224 /* Generic I/O error. Note that it's important that this is '-1',
225 as we still have target_xfer-related code returning hardcoded
226 '-1' on error. */
227 TARGET_XFER_E_IO = -1,
228
229 /* Keep list in sync with target_xfer_status_to_string. */
230 };
231
232 /* Return the string form of STATUS. */
233
234 extern const char *
235 target_xfer_status_to_string (enum target_xfer_status status);
236
237 typedef enum target_xfer_status
238 target_xfer_partial_ftype (struct target_ops *ops,
239 enum target_object object,
240 const char *annex,
241 gdb_byte *readbuf,
242 const gdb_byte *writebuf,
243 ULONGEST offset,
244 ULONGEST len,
245 ULONGEST *xfered_len);
246
247 enum target_xfer_status
248 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
249 const gdb_byte *writebuf, ULONGEST memaddr,
250 LONGEST len, ULONGEST *xfered_len);
251
252 /* Request that OPS transfer up to LEN addressable units of the target's
253 OBJECT. When reading from a memory object, the size of an addressable unit
254 is architecture dependent and can be found using
255 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
256 byte long. BUF should point to a buffer large enough to hold the read data,
257 taking into account the addressable unit size. The OFFSET, for a seekable
258 object, specifies the starting point. The ANNEX can be used to provide
259 additional data-specific information to the target.
260
261 Return the number of addressable units actually transferred, or a negative
262 error code (an 'enum target_xfer_error' value) if the transfer is not
263 supported or otherwise fails. Return of a positive value less than
264 LEN indicates that no further transfer is possible. Unlike the raw
265 to_xfer_partial interface, callers of these functions do not need
266 to retry partial transfers. */
267
268 extern LONGEST target_read (struct target_ops *ops,
269 enum target_object object,
270 const char *annex, gdb_byte *buf,
271 ULONGEST offset, LONGEST len);
272
273 struct memory_read_result
274 {
275 memory_read_result (ULONGEST begin_, ULONGEST end_,
276 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
277 : begin (begin_),
278 end (end_),
279 data (std::move (data_))
280 {
281 }
282
283 ~memory_read_result () = default;
284
285 memory_read_result (memory_read_result &&other) = default;
286
287 DISABLE_COPY_AND_ASSIGN (memory_read_result);
288
289 /* First address that was read. */
290 ULONGEST begin;
291 /* Past-the-end address. */
292 ULONGEST end;
293 /* The data. */
294 gdb::unique_xmalloc_ptr<gdb_byte> data;
295 };
296
297 extern std::vector<memory_read_result> read_memory_robust
298 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
299
300 /* Request that OPS transfer up to LEN addressable units from BUF to the
301 target's OBJECT. When writing to a memory object, the addressable unit
302 size is architecture dependent and can be found using
303 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
304 byte long. The OFFSET, for a seekable object, specifies the starting point.
305 The ANNEX can be used to provide additional data-specific information to
306 the target.
307
308 Return the number of addressable units actually transferred, or a negative
309 error code (an 'enum target_xfer_status' value) if the transfer is not
310 supported or otherwise fails. Return of a positive value less than
311 LEN indicates that no further transfer is possible. Unlike the raw
312 to_xfer_partial interface, callers of these functions do not need to
313 retry partial transfers. */
314
315 extern LONGEST target_write (struct target_ops *ops,
316 enum target_object object,
317 const char *annex, const gdb_byte *buf,
318 ULONGEST offset, LONGEST len);
319
320 /* Similar to target_write, except that it also calls PROGRESS with
321 the number of bytes written and the opaque BATON after every
322 successful partial write (and before the first write). This is
323 useful for progress reporting and user interaction while writing
324 data. To abort the transfer, the progress callback can throw an
325 exception. */
326
327 LONGEST target_write_with_progress (struct target_ops *ops,
328 enum target_object object,
329 const char *annex, const gdb_byte *buf,
330 ULONGEST offset, LONGEST len,
331 void (*progress) (ULONGEST, void *),
332 void *baton);
333
334 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
335 using OPS. The return value will be uninstantiated if the transfer fails or
336 is not supported.
337
338 This method should be used for objects sufficiently small to store
339 in a single xmalloc'd buffer, when no fixed bound on the object's
340 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
341 through this function. */
342
343 extern gdb::optional<gdb::byte_vector> target_read_alloc
344 (struct target_ops *ops, enum target_object object, const char *annex);
345
346 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
347 (therefore usable as a NUL-terminated string). If an error occurs or the
348 transfer is unsupported, the return value will be uninstantiated. Empty
349 objects are returned as allocated but empty strings. Therefore, on success,
350 the returned vector is guaranteed to have at least one element. A warning is
351 issued if the result contains any embedded NUL bytes. */
352
353 extern gdb::optional<gdb::char_vector> target_read_stralloc
354 (struct target_ops *ops, enum target_object object, const char *annex);
355
356 /* See target_ops->to_xfer_partial. */
357 extern target_xfer_partial_ftype target_xfer_partial;
358
359 /* Wrappers to target read/write that perform memory transfers. They
360 throw an error if the memory transfer fails.
361
362 NOTE: cagney/2003-10-23: The naming schema is lifted from
363 "frame.h". The parameter order is lifted from get_frame_memory,
364 which in turn lifted it from read_memory. */
365
366 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
367 gdb_byte *buf, LONGEST len);
368 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
369 CORE_ADDR addr, int len,
370 enum bfd_endian byte_order);
371 \f
372 struct thread_info; /* fwd decl for parameter list below: */
373
374 /* The type of the callback to the to_async method. */
375
376 typedef void async_callback_ftype (enum inferior_event_type event_type,
377 void *context);
378
379 /* Normally target debug printing is purely type-based. However,
380 sometimes it is necessary to override the debug printing on a
381 per-argument basis. This macro can be used, attribute-style, to
382 name the target debug printing function for a particular method
383 argument. FUNC is the name of the function. The macro's
384 definition is empty because it is only used by the
385 make-target-delegates script. */
386
387 #define TARGET_DEBUG_PRINTER(FUNC)
388
389 /* These defines are used to mark target_ops methods. The script
390 make-target-delegates scans these and auto-generates the base
391 method implementations. There are four macros that can be used:
392
393 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
394 does nothing. This is only valid if the method return type is
395 'void'.
396
397 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
398 'tcomplain ()'. The base method simply makes this call, which is
399 assumed not to return.
400
401 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
402 base method returns this expression's value.
403
404 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
405 make-target-delegates does not generate a base method in this case,
406 but instead uses the argument function as the base method. */
407
408 #define TARGET_DEFAULT_IGNORE()
409 #define TARGET_DEFAULT_NORETURN(ARG)
410 #define TARGET_DEFAULT_RETURN(ARG)
411 #define TARGET_DEFAULT_FUNC(ARG)
412
413 /* Each target that can be activated with "target TARGET_NAME" passes
414 the address of one of these objects to add_target, which uses the
415 object's address as unique identifier, and registers the "target
416 TARGET_NAME" command using SHORTNAME as target name. */
417
418 struct target_info
419 {
420 /* Name of this target. */
421 const char *shortname;
422
423 /* Name for printing. */
424 const char *longname;
425
426 /* Documentation. Does not include trailing newline, and starts
427 with a one-line description (probably similar to longname). */
428 const char *doc;
429 };
430
431 struct target_ops
432 : public refcounted_object
433 {
434 /* Return this target's stratum. */
435 virtual strata stratum () const = 0;
436
437 /* To the target under this one. */
438 target_ops *beneath () const;
439
440 /* Free resources associated with the target. Note that singleton
441 targets, like e.g., native targets, are global objects, not
442 heap allocated, and are thus only deleted on GDB exit. The
443 main teardown entry point is the "close" method, below. */
444 virtual ~target_ops () {}
445
446 /* Return a reference to this target's unique target_info
447 object. */
448 virtual const target_info &info () const = 0;
449
450 /* Name this target type. */
451 const char *shortname () const
452 { return info ().shortname; }
453
454 const char *longname () const
455 { return info ().longname; }
456
457 /* Close the target. This is where the target can handle
458 teardown. Heap-allocated targets should delete themselves
459 before returning. */
460 virtual void close ();
461
462 /* Attaches to a process on the target side. Arguments are as
463 passed to the `attach' command by the user. This routine can
464 be called when the target is not on the target-stack, if the
465 target_ops::can_run method returns 1; in that case, it must push
466 itself onto the stack. Upon exit, the target should be ready
467 for normal operations, and should be ready to deliver the
468 status of the process immediately (without waiting) to an
469 upcoming target_wait call. */
470 virtual bool can_attach ();
471 virtual void attach (const char *, int);
472 virtual void post_attach (int)
473 TARGET_DEFAULT_IGNORE ();
474
475 /* Detaches from the inferior. Note that on targets that support
476 async execution (i.e., targets where it is possible to detach
477 from programs with threads running), the target is responsible
478 for removing breakpoints from the program before the actual
479 detach, otherwise the program dies when it hits one. */
480 virtual void detach (inferior *, int)
481 TARGET_DEFAULT_IGNORE ();
482
483 virtual void disconnect (const char *, int)
484 TARGET_DEFAULT_NORETURN (tcomplain ());
485 virtual void resume (ptid_t,
486 int TARGET_DEBUG_PRINTER (target_debug_print_step),
487 enum gdb_signal)
488 TARGET_DEFAULT_NORETURN (noprocess ());
489
490 /* Ensure that all resumed threads are committed to the target.
491
492 See the description of
493 process_stratum_target::commit_resumed_state for more
494 details. */
495 virtual void commit_resumed ()
496 TARGET_DEFAULT_IGNORE ();
497
498 /* See target_wait's description. Note that implementations of
499 this method must not assume that inferior_ptid on entry is
500 pointing at the thread or inferior that ends up reporting an
501 event. The reported event could be for some other thread in
502 the current inferior or even for a different process of the
503 current target. inferior_ptid may also be null_ptid on
504 entry. */
505 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
506 target_wait_flags options)
507 TARGET_DEFAULT_FUNC (default_target_wait);
508 virtual void fetch_registers (struct regcache *, int)
509 TARGET_DEFAULT_IGNORE ();
510 virtual void store_registers (struct regcache *, int)
511 TARGET_DEFAULT_NORETURN (noprocess ());
512 virtual void prepare_to_store (struct regcache *)
513 TARGET_DEFAULT_NORETURN (noprocess ());
514
515 virtual void files_info ()
516 TARGET_DEFAULT_IGNORE ();
517 virtual int insert_breakpoint (struct gdbarch *,
518 struct bp_target_info *)
519 TARGET_DEFAULT_NORETURN (noprocess ());
520 virtual int remove_breakpoint (struct gdbarch *,
521 struct bp_target_info *,
522 enum remove_bp_reason)
523 TARGET_DEFAULT_NORETURN (noprocess ());
524
525 /* Returns true if the target stopped because it executed a
526 software breakpoint. This is necessary for correct background
527 execution / non-stop mode operation, and for correct PC
528 adjustment on targets where the PC needs to be adjusted when a
529 software breakpoint triggers. In these modes, by the time GDB
530 processes a breakpoint event, the breakpoint may already be
531 done from the target, so GDB needs to be able to tell whether
532 it should ignore the event and whether it should adjust the PC.
533 See adjust_pc_after_break. */
534 virtual bool stopped_by_sw_breakpoint ()
535 TARGET_DEFAULT_RETURN (false);
536 /* Returns true if the above method is supported. */
537 virtual bool supports_stopped_by_sw_breakpoint ()
538 TARGET_DEFAULT_RETURN (false);
539
540 /* Returns true if the target stopped for a hardware breakpoint.
541 Likewise, if the target supports hardware breakpoints, this
542 method is necessary for correct background execution / non-stop
543 mode operation. Even though hardware breakpoints do not
544 require PC adjustment, GDB needs to be able to tell whether the
545 hardware breakpoint event is a delayed event for a breakpoint
546 that is already gone and should thus be ignored. */
547 virtual bool stopped_by_hw_breakpoint ()
548 TARGET_DEFAULT_RETURN (false);
549 /* Returns true if the above method is supported. */
550 virtual bool supports_stopped_by_hw_breakpoint ()
551 TARGET_DEFAULT_RETURN (false);
552
553 virtual int can_use_hw_breakpoint (enum bptype, int, int)
554 TARGET_DEFAULT_RETURN (0);
555 virtual int ranged_break_num_registers ()
556 TARGET_DEFAULT_RETURN (-1);
557 virtual int insert_hw_breakpoint (struct gdbarch *,
558 struct bp_target_info *)
559 TARGET_DEFAULT_RETURN (-1);
560 virtual int remove_hw_breakpoint (struct gdbarch *,
561 struct bp_target_info *)
562 TARGET_DEFAULT_RETURN (-1);
563
564 /* Documentation of what the two routines below are expected to do is
565 provided with the corresponding target_* macros. */
566 virtual int remove_watchpoint (CORE_ADDR, int,
567 enum target_hw_bp_type, struct expression *)
568 TARGET_DEFAULT_RETURN (-1);
569 virtual int insert_watchpoint (CORE_ADDR, int,
570 enum target_hw_bp_type, struct expression *)
571 TARGET_DEFAULT_RETURN (-1);
572
573 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
574 enum target_hw_bp_type)
575 TARGET_DEFAULT_RETURN (1);
576 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
577 enum target_hw_bp_type)
578 TARGET_DEFAULT_RETURN (1);
579 virtual bool stopped_by_watchpoint ()
580 TARGET_DEFAULT_RETURN (false);
581 virtual bool have_steppable_watchpoint ()
582 TARGET_DEFAULT_RETURN (false);
583 virtual bool stopped_data_address (CORE_ADDR *)
584 TARGET_DEFAULT_RETURN (false);
585 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
586 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
587
588 /* Documentation of this routine is provided with the corresponding
589 target_* macro. */
590 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
591 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
592
593 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
594 struct expression *)
595 TARGET_DEFAULT_RETURN (false);
596 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
597 TARGET_DEFAULT_RETURN (-1);
598
599 /* Return 1 for sure target can do single step. Return -1 for
600 unknown. Return 0 for target can't do. */
601 virtual int can_do_single_step ()
602 TARGET_DEFAULT_RETURN (-1);
603
604 virtual bool supports_terminal_ours ()
605 TARGET_DEFAULT_RETURN (false);
606 virtual void terminal_init ()
607 TARGET_DEFAULT_IGNORE ();
608 virtual void terminal_inferior ()
609 TARGET_DEFAULT_IGNORE ();
610 virtual void terminal_save_inferior ()
611 TARGET_DEFAULT_IGNORE ();
612 virtual void terminal_ours_for_output ()
613 TARGET_DEFAULT_IGNORE ();
614 virtual void terminal_ours ()
615 TARGET_DEFAULT_IGNORE ();
616 virtual void terminal_info (const char *, int)
617 TARGET_DEFAULT_FUNC (default_terminal_info);
618 virtual void kill ()
619 TARGET_DEFAULT_NORETURN (noprocess ());
620 virtual void load (const char *, int)
621 TARGET_DEFAULT_NORETURN (tcomplain ());
622 /* Start an inferior process and set inferior_ptid to its pid.
623 EXEC_FILE is the file to run.
624 ALLARGS is a string containing the arguments to the program.
625 ENV is the environment vector to pass. Errors reported with error().
626 On VxWorks and various standalone systems, we ignore exec_file. */
627 virtual bool can_create_inferior ();
628 virtual void create_inferior (const char *, const std::string &,
629 char **, int);
630 virtual int insert_fork_catchpoint (int)
631 TARGET_DEFAULT_RETURN (1);
632 virtual int remove_fork_catchpoint (int)
633 TARGET_DEFAULT_RETURN (1);
634 virtual int insert_vfork_catchpoint (int)
635 TARGET_DEFAULT_RETURN (1);
636 virtual int remove_vfork_catchpoint (int)
637 TARGET_DEFAULT_RETURN (1);
638 virtual void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool)
639 TARGET_DEFAULT_FUNC (default_follow_fork);
640 virtual int insert_exec_catchpoint (int)
641 TARGET_DEFAULT_RETURN (1);
642 virtual int remove_exec_catchpoint (int)
643 TARGET_DEFAULT_RETURN (1);
644 virtual void follow_exec (inferior *, ptid_t, const char *)
645 TARGET_DEFAULT_IGNORE ();
646 virtual int set_syscall_catchpoint (int, bool, int,
647 gdb::array_view<const int>)
648 TARGET_DEFAULT_RETURN (1);
649 virtual void mourn_inferior ()
650 TARGET_DEFAULT_FUNC (default_mourn_inferior);
651
652 /* Note that can_run is special and can be invoked on an unpushed
653 target. Targets defining this method must also define
654 to_can_async_p and to_supports_non_stop. */
655 virtual bool can_run ();
656
657 /* Documentation of this routine is provided with the corresponding
658 target_* macro. */
659 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
660 TARGET_DEFAULT_IGNORE ();
661
662 /* Documentation of this routine is provided with the
663 corresponding target_* function. */
664 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
665 TARGET_DEFAULT_IGNORE ();
666
667 virtual bool thread_alive (ptid_t ptid)
668 TARGET_DEFAULT_RETURN (false);
669 virtual void update_thread_list ()
670 TARGET_DEFAULT_IGNORE ();
671 virtual std::string pid_to_str (ptid_t)
672 TARGET_DEFAULT_FUNC (default_pid_to_str);
673 virtual const char *extra_thread_info (thread_info *)
674 TARGET_DEFAULT_RETURN (NULL);
675 virtual const char *thread_name (thread_info *)
676 TARGET_DEFAULT_RETURN (NULL);
677 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
678 int,
679 inferior *inf)
680 TARGET_DEFAULT_RETURN (NULL);
681 /* See target_thread_info_to_thread_handle. */
682 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
683 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
684 virtual void stop (ptid_t)
685 TARGET_DEFAULT_IGNORE ();
686 virtual void interrupt ()
687 TARGET_DEFAULT_IGNORE ();
688 virtual void pass_ctrlc ()
689 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
690 virtual void rcmd (const char *command, struct ui_file *output)
691 TARGET_DEFAULT_FUNC (default_rcmd);
692 virtual const char *pid_to_exec_file (int pid)
693 TARGET_DEFAULT_RETURN (NULL);
694 virtual void log_command (const char *)
695 TARGET_DEFAULT_IGNORE ();
696 virtual const target_section_table *get_section_table ()
697 TARGET_DEFAULT_RETURN (default_get_section_table ());
698
699 /* Provide default values for all "must have" methods. */
700 virtual bool has_all_memory () { return false; }
701 virtual bool has_memory () { return false; }
702 virtual bool has_stack () { return false; }
703 virtual bool has_registers () { return false; }
704 virtual bool has_execution (inferior *inf) { return false; }
705
706 /* Control thread execution. */
707 virtual thread_control_capabilities get_thread_control_capabilities ()
708 TARGET_DEFAULT_RETURN (tc_none);
709 virtual bool attach_no_wait ()
710 TARGET_DEFAULT_RETURN (0);
711 /* This method must be implemented in some situations. See the
712 comment on 'can_run'. */
713 virtual bool can_async_p ()
714 TARGET_DEFAULT_RETURN (false);
715 virtual bool is_async_p ()
716 TARGET_DEFAULT_RETURN (false);
717 virtual void async (bool)
718 TARGET_DEFAULT_NORETURN (tcomplain ());
719 virtual int async_wait_fd ()
720 TARGET_DEFAULT_NORETURN (noprocess ());
721 /* Return true if the target has pending events to report to the
722 core. If true, then GDB avoids resuming the target until all
723 pending events are consumed, so that multiple resumptions can
724 be coalesced as an optimization. Most targets can't tell
725 whether they have pending events without calling target_wait,
726 so we default to returning false. The only downside is that a
727 potential optimization is missed. */
728 virtual bool has_pending_events ()
729 TARGET_DEFAULT_RETURN (false);
730 virtual void thread_events (int)
731 TARGET_DEFAULT_IGNORE ();
732 /* This method must be implemented in some situations. See the
733 comment on 'can_run'. */
734 virtual bool supports_non_stop ()
735 TARGET_DEFAULT_RETURN (false);
736 /* Return true if the target operates in non-stop mode even with
737 "set non-stop off". */
738 virtual bool always_non_stop_p ()
739 TARGET_DEFAULT_RETURN (false);
740 /* find_memory_regions support method for gcore */
741 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
742 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
743 /* make_corefile_notes support method for gcore */
744 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
745 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
746 /* get_bookmark support method for bookmarks */
747 virtual gdb_byte *get_bookmark (const char *, int)
748 TARGET_DEFAULT_NORETURN (tcomplain ());
749 /* goto_bookmark support method for bookmarks */
750 virtual void goto_bookmark (const gdb_byte *, int)
751 TARGET_DEFAULT_NORETURN (tcomplain ());
752 /* Return the thread-local address at OFFSET in the
753 thread-local storage for the thread PTID and the shared library
754 or executable file given by LOAD_MODULE_ADDR. If that block of
755 thread-local storage hasn't been allocated yet, this function
756 may throw an error. LOAD_MODULE_ADDR may be zero for statically
757 linked multithreaded inferiors. */
758 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
759 CORE_ADDR load_module_addr,
760 CORE_ADDR offset)
761 TARGET_DEFAULT_NORETURN (generic_tls_error ());
762
763 /* Request that OPS transfer up to LEN addressable units of the target's
764 OBJECT. When reading from a memory object, the size of an addressable
765 unit is architecture dependent and can be found using
766 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
767 1 byte long. The OFFSET, for a seekable object, specifies the
768 starting point. The ANNEX can be used to provide additional
769 data-specific information to the target.
770
771 Return the transferred status, error or OK (an
772 'enum target_xfer_status' value). Save the number of addressable units
773 actually transferred in *XFERED_LEN if transfer is successful
774 (TARGET_XFER_OK) or the number unavailable units if the requested
775 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
776 smaller than LEN does not indicate the end of the object, only
777 the end of the transfer; higher level code should continue
778 transferring if desired. This is handled in target.c.
779
780 The interface does not support a "retry" mechanism. Instead it
781 assumes that at least one addressable unit will be transfered on each
782 successful call.
783
784 NOTE: cagney/2003-10-17: The current interface can lead to
785 fragmented transfers. Lower target levels should not implement
786 hacks, such as enlarging the transfer, in an attempt to
787 compensate for this. Instead, the target stack should be
788 extended so that it implements supply/collect methods and a
789 look-aside object cache. With that available, the lowest
790 target can safely and freely "push" data up the stack.
791
792 See target_read and target_write for more information. One,
793 and only one, of readbuf or writebuf must be non-NULL. */
794
795 virtual enum target_xfer_status xfer_partial (enum target_object object,
796 const char *annex,
797 gdb_byte *readbuf,
798 const gdb_byte *writebuf,
799 ULONGEST offset, ULONGEST len,
800 ULONGEST *xfered_len)
801 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
802
803 /* Return the limit on the size of any single memory transfer
804 for the target. */
805
806 virtual ULONGEST get_memory_xfer_limit ()
807 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
808
809 /* Returns the memory map for the target. A return value of NULL
810 means that no memory map is available. If a memory address
811 does not fall within any returned regions, it's assumed to be
812 RAM. The returned memory regions should not overlap.
813
814 The order of regions does not matter; target_memory_map will
815 sort regions by starting address. For that reason, this
816 function should not be called directly except via
817 target_memory_map.
818
819 This method should not cache data; if the memory map could
820 change unexpectedly, it should be invalidated, and higher
821 layers will re-fetch it. */
822 virtual std::vector<mem_region> memory_map ()
823 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
824
825 /* Erases the region of flash memory starting at ADDRESS, of
826 length LENGTH.
827
828 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
829 on flash block boundaries, as reported by 'to_memory_map'. */
830 virtual void flash_erase (ULONGEST address, LONGEST length)
831 TARGET_DEFAULT_NORETURN (tcomplain ());
832
833 /* Finishes a flash memory write sequence. After this operation
834 all flash memory should be available for writing and the result
835 of reading from areas written by 'to_flash_write' should be
836 equal to what was written. */
837 virtual void flash_done ()
838 TARGET_DEFAULT_NORETURN (tcomplain ());
839
840 /* Describe the architecture-specific features of the current
841 inferior.
842
843 Returns the description found, or nullptr if no description was
844 available.
845
846 If some target features differ between threads, the description
847 returned by read_description (and the resulting gdbarch) won't
848 accurately describe all threads. In this case, the
849 thread_architecture method can be used to obtain gdbarches that
850 accurately describe each thread. */
851 virtual const struct target_desc *read_description ()
852 TARGET_DEFAULT_RETURN (NULL);
853
854 /* Build the PTID of the thread on which a given task is running,
855 based on LWP and THREAD. These values are extracted from the
856 task Private_Data section of the Ada Task Control Block, and
857 their interpretation depends on the target. */
858 virtual ptid_t get_ada_task_ptid (long lwp, ULONGEST thread)
859 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
860
861 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
862 Return 0 if *READPTR is already at the end of the buffer.
863 Return -1 if there is insufficient buffer for a whole entry.
864 Return 1 if an entry was read into *TYPEP and *VALP. */
865 virtual int auxv_parse (const gdb_byte **readptr,
866 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
867 TARGET_DEFAULT_FUNC (default_auxv_parse);
868
869 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
870 sequence of bytes in PATTERN with length PATTERN_LEN.
871
872 The result is 1 if found, 0 if not found, and -1 if there was an error
873 requiring halting of the search (e.g. memory read error).
874 If the pattern is found the address is recorded in FOUND_ADDRP. */
875 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
876 const gdb_byte *pattern, ULONGEST pattern_len,
877 CORE_ADDR *found_addrp)
878 TARGET_DEFAULT_FUNC (default_search_memory);
879
880 /* Can target execute in reverse? */
881 virtual bool can_execute_reverse ()
882 TARGET_DEFAULT_RETURN (false);
883
884 /* The direction the target is currently executing. Must be
885 implemented on targets that support reverse execution and async
886 mode. The default simply returns forward execution. */
887 virtual enum exec_direction_kind execution_direction ()
888 TARGET_DEFAULT_FUNC (default_execution_direction);
889
890 /* Does this target support debugging multiple processes
891 simultaneously? */
892 virtual bool supports_multi_process ()
893 TARGET_DEFAULT_RETURN (false);
894
895 /* Does this target support enabling and disabling tracepoints while a trace
896 experiment is running? */
897 virtual bool supports_enable_disable_tracepoint ()
898 TARGET_DEFAULT_RETURN (false);
899
900 /* Does this target support disabling address space randomization? */
901 virtual bool supports_disable_randomization ()
902 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
903
904 /* Does this target support the tracenz bytecode for string collection? */
905 virtual bool supports_string_tracing ()
906 TARGET_DEFAULT_RETURN (false);
907
908 /* Does this target support evaluation of breakpoint conditions on its
909 end? */
910 virtual bool supports_evaluation_of_breakpoint_conditions ()
911 TARGET_DEFAULT_RETURN (false);
912
913 /* Does this target support native dumpcore API? */
914 virtual bool supports_dumpcore ()
915 TARGET_DEFAULT_RETURN (false);
916
917 /* Generate the core file with native target API. */
918 virtual void dumpcore (const char *filename)
919 TARGET_DEFAULT_IGNORE ();
920
921 /* Does this target support evaluation of breakpoint commands on its
922 end? */
923 virtual bool can_run_breakpoint_commands ()
924 TARGET_DEFAULT_RETURN (false);
925
926 /* Determine current architecture of thread PTID.
927
928 The target is supposed to determine the architecture of the code where
929 the target is currently stopped at. The architecture information is
930 used to perform decr_pc_after_break adjustment, and also to determine
931 the frame architecture of the innermost frame. ptrace operations need to
932 operate according to target_gdbarch (). */
933 virtual struct gdbarch *thread_architecture (ptid_t)
934 TARGET_DEFAULT_RETURN (NULL);
935
936 /* Determine current address space of thread PTID. */
937 virtual struct address_space *thread_address_space (ptid_t)
938 TARGET_DEFAULT_RETURN (NULL);
939
940 /* Target file operations. */
941
942 /* Return true if the filesystem seen by the current inferior
943 is the local filesystem, false otherwise. */
944 virtual bool filesystem_is_local ()
945 TARGET_DEFAULT_RETURN (true);
946
947 /* Open FILENAME on the target, in the filesystem as seen by INF,
948 using FLAGS and MODE. If INF is NULL, use the filesystem seen
949 by the debugger (GDB or, for remote targets, the remote stub).
950 If WARN_IF_SLOW is nonzero, print a warning message if the file
951 is being accessed over a link that may be slow. Return a
952 target file descriptor, or -1 if an error occurs (and set
953 *TARGET_ERRNO). */
954 virtual int fileio_open (struct inferior *inf, const char *filename,
955 int flags, int mode, int warn_if_slow,
956 fileio_error *target_errno);
957
958 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
959 Return the number of bytes written, or -1 if an error occurs
960 (and set *TARGET_ERRNO). */
961 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
962 ULONGEST offset, fileio_error *target_errno);
963
964 /* Read up to LEN bytes FD on the target into READ_BUF.
965 Return the number of bytes read, or -1 if an error occurs
966 (and set *TARGET_ERRNO). */
967 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
968 ULONGEST offset, fileio_error *target_errno);
969
970 /* Get information about the file opened as FD and put it in
971 SB. Return 0 on success, or -1 if an error occurs (and set
972 *TARGET_ERRNO). */
973 virtual int fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno);
974
975 /* Close FD on the target. Return 0, or -1 if an error occurs
976 (and set *TARGET_ERRNO). */
977 virtual int fileio_close (int fd, fileio_error *target_errno);
978
979 /* Unlink FILENAME on the target, in the filesystem as seen by
980 INF. If INF is NULL, use the filesystem seen by the debugger
981 (GDB or, for remote targets, the remote stub). Return 0, or
982 -1 if an error occurs (and set *TARGET_ERRNO). */
983 virtual int fileio_unlink (struct inferior *inf,
984 const char *filename,
985 fileio_error *target_errno);
986
987 /* Read value of symbolic link FILENAME on the target, in the
988 filesystem as seen by INF. If INF is NULL, use the filesystem
989 seen by the debugger (GDB or, for remote targets, the remote
990 stub). Return a string, or an empty optional if an error
991 occurs (and set *TARGET_ERRNO). */
992 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
993 const char *filename,
994 fileio_error *target_errno);
995
996 /* Implement the "info proc" command. Returns true if the target
997 actually implemented the command, false otherwise. */
998 virtual bool info_proc (const char *, enum info_proc_what);
999
1000 /* Tracepoint-related operations. */
1001
1002 /* Prepare the target for a tracing run. */
1003 virtual void trace_init ()
1004 TARGET_DEFAULT_NORETURN (tcomplain ());
1005
1006 /* Send full details of a tracepoint location to the target. */
1007 virtual void download_tracepoint (struct bp_location *location)
1008 TARGET_DEFAULT_NORETURN (tcomplain ());
1009
1010 /* Is the target able to download tracepoint locations in current
1011 state? */
1012 virtual bool can_download_tracepoint ()
1013 TARGET_DEFAULT_RETURN (false);
1014
1015 /* Send full details of a trace state variable to the target. */
1016 virtual void download_trace_state_variable (const trace_state_variable &tsv)
1017 TARGET_DEFAULT_NORETURN (tcomplain ());
1018
1019 /* Enable a tracepoint on the target. */
1020 virtual void enable_tracepoint (struct bp_location *location)
1021 TARGET_DEFAULT_NORETURN (tcomplain ());
1022
1023 /* Disable a tracepoint on the target. */
1024 virtual void disable_tracepoint (struct bp_location *location)
1025 TARGET_DEFAULT_NORETURN (tcomplain ());
1026
1027 /* Inform the target info of memory regions that are readonly
1028 (such as text sections), and so it should return data from
1029 those rather than look in the trace buffer. */
1030 virtual void trace_set_readonly_regions ()
1031 TARGET_DEFAULT_NORETURN (tcomplain ());
1032
1033 /* Start a trace run. */
1034 virtual void trace_start ()
1035 TARGET_DEFAULT_NORETURN (tcomplain ());
1036
1037 /* Get the current status of a tracing run. */
1038 virtual int get_trace_status (struct trace_status *ts)
1039 TARGET_DEFAULT_RETURN (-1);
1040
1041 virtual void get_tracepoint_status (struct breakpoint *tp,
1042 struct uploaded_tp *utp)
1043 TARGET_DEFAULT_NORETURN (tcomplain ());
1044
1045 /* Stop a trace run. */
1046 virtual void trace_stop ()
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Ask the target to find a trace frame of the given type TYPE,
1050 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1051 number of the trace frame, and also the tracepoint number at
1052 TPP. If no trace frame matches, return -1. May throw if the
1053 operation fails. */
1054 virtual int trace_find (enum trace_find_type type, int num,
1055 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1056 TARGET_DEFAULT_RETURN (-1);
1057
1058 /* Get the value of the trace state variable number TSV, returning
1059 1 if the value is known and writing the value itself into the
1060 location pointed to by VAL, else returning 0. */
1061 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1062 TARGET_DEFAULT_RETURN (false);
1063
1064 virtual int save_trace_data (const char *filename)
1065 TARGET_DEFAULT_NORETURN (tcomplain ());
1066
1067 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1068 TARGET_DEFAULT_RETURN (0);
1069
1070 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1071 TARGET_DEFAULT_RETURN (0);
1072
1073 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1074 ULONGEST offset, LONGEST len)
1075 TARGET_DEFAULT_NORETURN (tcomplain ());
1076
1077 /* Get the minimum length of instruction on which a fast tracepoint
1078 may be set on the target. If this operation is unsupported,
1079 return -1. If for some reason the minimum length cannot be
1080 determined, return 0. */
1081 virtual int get_min_fast_tracepoint_insn_len ()
1082 TARGET_DEFAULT_RETURN (-1);
1083
1084 /* Set the target's tracing behavior in response to unexpected
1085 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1086 virtual void set_disconnected_tracing (int val)
1087 TARGET_DEFAULT_IGNORE ();
1088 virtual void set_circular_trace_buffer (int val)
1089 TARGET_DEFAULT_IGNORE ();
1090 /* Set the size of trace buffer in the target. */
1091 virtual void set_trace_buffer_size (LONGEST val)
1092 TARGET_DEFAULT_IGNORE ();
1093
1094 /* Add/change textual notes about the trace run, returning true if
1095 successful, false otherwise. */
1096 virtual bool set_trace_notes (const char *user, const char *notes,
1097 const char *stopnotes)
1098 TARGET_DEFAULT_RETURN (false);
1099
1100 /* Return the processor core that thread PTID was last seen on.
1101 This information is updated only when:
1102 - update_thread_list is called
1103 - thread stops
1104 If the core cannot be determined -- either for the specified
1105 thread, or right now, or in this debug session, or for this
1106 target -- return -1. */
1107 virtual int core_of_thread (ptid_t ptid)
1108 TARGET_DEFAULT_RETURN (-1);
1109
1110 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1111 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1112 a match, 0 if there's a mismatch, and -1 if an error is
1113 encountered while reading memory. */
1114 virtual int verify_memory (const gdb_byte *data,
1115 CORE_ADDR memaddr, ULONGEST size)
1116 TARGET_DEFAULT_FUNC (default_verify_memory);
1117
1118 /* Return the address of the start of the Thread Information Block
1119 a Windows OS specific feature. */
1120 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1121 TARGET_DEFAULT_NORETURN (tcomplain ());
1122
1123 /* Send the new settings of write permission variables. */
1124 virtual void set_permissions ()
1125 TARGET_DEFAULT_IGNORE ();
1126
1127 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1128 with its details. Return true on success, false on failure. */
1129 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1130 static_tracepoint_marker *marker)
1131 TARGET_DEFAULT_RETURN (false);
1132
1133 /* Return a vector of all tracepoints markers string id ID, or all
1134 markers if ID is NULL. */
1135 virtual std::vector<static_tracepoint_marker>
1136 static_tracepoint_markers_by_strid (const char *id)
1137 TARGET_DEFAULT_NORETURN (tcomplain ());
1138
1139 /* Return a traceframe info object describing the current
1140 traceframe's contents. This method should not cache data;
1141 higher layers take care of caching, invalidating, and
1142 re-fetching when necessary. */
1143 virtual traceframe_info_up traceframe_info ()
1144 TARGET_DEFAULT_NORETURN (tcomplain ());
1145
1146 /* Ask the target to use or not to use agent according to USE.
1147 Return true if successful, false otherwise. */
1148 virtual bool use_agent (bool use)
1149 TARGET_DEFAULT_NORETURN (tcomplain ());
1150
1151 /* Is the target able to use agent in current state? */
1152 virtual bool can_use_agent ()
1153 TARGET_DEFAULT_RETURN (false);
1154
1155 /* Enable branch tracing for TP using CONF configuration.
1156 Return a branch trace target information struct for reading and for
1157 disabling branch trace. */
1158 virtual struct btrace_target_info *enable_btrace (thread_info *tp,
1159 const struct btrace_config *conf)
1160 TARGET_DEFAULT_NORETURN (tcomplain ());
1161
1162 /* Disable branch tracing and deallocate TINFO. */
1163 virtual void disable_btrace (struct btrace_target_info *tinfo)
1164 TARGET_DEFAULT_NORETURN (tcomplain ());
1165
1166 /* Disable branch tracing and deallocate TINFO. This function is similar
1167 to to_disable_btrace, except that it is called during teardown and is
1168 only allowed to perform actions that are safe. A counter-example would
1169 be attempting to talk to a remote target. */
1170 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1171 TARGET_DEFAULT_NORETURN (tcomplain ());
1172
1173 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1174 DATA is cleared before new trace is added. */
1175 virtual enum btrace_error read_btrace (struct btrace_data *data,
1176 struct btrace_target_info *btinfo,
1177 enum btrace_read_type type)
1178 TARGET_DEFAULT_NORETURN (tcomplain ());
1179
1180 /* Get the branch trace configuration. */
1181 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1182 TARGET_DEFAULT_RETURN (NULL);
1183
1184 /* Current recording method. */
1185 virtual enum record_method record_method (ptid_t ptid)
1186 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1187
1188 /* Stop trace recording. */
1189 virtual void stop_recording ()
1190 TARGET_DEFAULT_IGNORE ();
1191
1192 /* Print information about the recording. */
1193 virtual void info_record ()
1194 TARGET_DEFAULT_IGNORE ();
1195
1196 /* Save the recorded execution trace into a file. */
1197 virtual void save_record (const char *filename)
1198 TARGET_DEFAULT_NORETURN (tcomplain ());
1199
1200 /* Delete the recorded execution trace from the current position
1201 onwards. */
1202 virtual bool supports_delete_record ()
1203 TARGET_DEFAULT_RETURN (false);
1204 virtual void delete_record ()
1205 TARGET_DEFAULT_NORETURN (tcomplain ());
1206
1207 /* Query if the record target is currently replaying PTID. */
1208 virtual bool record_is_replaying (ptid_t ptid)
1209 TARGET_DEFAULT_RETURN (false);
1210
1211 /* Query if the record target will replay PTID if it were resumed in
1212 execution direction DIR. */
1213 virtual bool record_will_replay (ptid_t ptid, int dir)
1214 TARGET_DEFAULT_RETURN (false);
1215
1216 /* Stop replaying. */
1217 virtual void record_stop_replaying ()
1218 TARGET_DEFAULT_IGNORE ();
1219
1220 /* Go to the begin of the execution trace. */
1221 virtual void goto_record_begin ()
1222 TARGET_DEFAULT_NORETURN (tcomplain ());
1223
1224 /* Go to the end of the execution trace. */
1225 virtual void goto_record_end ()
1226 TARGET_DEFAULT_NORETURN (tcomplain ());
1227
1228 /* Go to a specific location in the recorded execution trace. */
1229 virtual void goto_record (ULONGEST insn)
1230 TARGET_DEFAULT_NORETURN (tcomplain ());
1231
1232 /* Disassemble SIZE instructions in the recorded execution trace from
1233 the current position.
1234 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1235 disassemble SIZE succeeding instructions. */
1236 virtual void insn_history (int size, gdb_disassembly_flags flags)
1237 TARGET_DEFAULT_NORETURN (tcomplain ());
1238
1239 /* Disassemble SIZE instructions in the recorded execution trace around
1240 FROM.
1241 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1242 disassemble SIZE instructions after FROM. */
1243 virtual void insn_history_from (ULONGEST from, int size,
1244 gdb_disassembly_flags flags)
1245 TARGET_DEFAULT_NORETURN (tcomplain ());
1246
1247 /* Disassemble a section of the recorded execution trace from instruction
1248 BEGIN (inclusive) to instruction END (inclusive). */
1249 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1250 gdb_disassembly_flags flags)
1251 TARGET_DEFAULT_NORETURN (tcomplain ());
1252
1253 /* Print a function trace of the recorded execution trace.
1254 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1255 succeeding functions. */
1256 virtual void call_history (int size, record_print_flags flags)
1257 TARGET_DEFAULT_NORETURN (tcomplain ());
1258
1259 /* Print a function trace of the recorded execution trace starting
1260 at function FROM.
1261 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1262 SIZE functions after FROM. */
1263 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1264 TARGET_DEFAULT_NORETURN (tcomplain ());
1265
1266 /* Print a function trace of an execution trace section from function BEGIN
1267 (inclusive) to function END (inclusive). */
1268 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1269 TARGET_DEFAULT_NORETURN (tcomplain ());
1270
1271 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1272 non-empty annex. */
1273 virtual bool augmented_libraries_svr4_read ()
1274 TARGET_DEFAULT_RETURN (false);
1275
1276 /* Those unwinders are tried before any other arch unwinders. If
1277 SELF doesn't have unwinders, it should delegate to the
1278 "beneath" target. */
1279 virtual const struct frame_unwind *get_unwinder ()
1280 TARGET_DEFAULT_RETURN (NULL);
1281
1282 virtual const struct frame_unwind *get_tailcall_unwinder ()
1283 TARGET_DEFAULT_RETURN (NULL);
1284
1285 /* Prepare to generate a core file. */
1286 virtual void prepare_to_generate_core ()
1287 TARGET_DEFAULT_IGNORE ();
1288
1289 /* Cleanup after generating a core file. */
1290 virtual void done_generating_core ()
1291 TARGET_DEFAULT_IGNORE ();
1292
1293 /* Returns true if the target supports memory tagging, false otherwise. */
1294 virtual bool supports_memory_tagging ()
1295 TARGET_DEFAULT_RETURN (false);
1296
1297 /* Return the allocated memory tags of type TYPE associated with
1298 [ADDRESS, ADDRESS + LEN) in TAGS.
1299
1300 LEN is the number of bytes in the memory range. TAGS is a vector of
1301 bytes containing the tags found in the above memory range.
1302
1303 It is up to the architecture/target to interpret the bytes in the TAGS
1304 vector and read the tags appropriately.
1305
1306 Returns true if fetching the tags succeeded and false otherwise. */
1307 virtual bool fetch_memtags (CORE_ADDR address, size_t len,
1308 gdb::byte_vector &tags, int type)
1309 TARGET_DEFAULT_NORETURN (tcomplain ());
1310
1311 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1312 range [ADDRESS, ADDRESS + LEN).
1313
1314 LEN is the number of bytes in the memory range. TAGS is a vector of
1315 bytes containing the tags to be stored to the memory range.
1316
1317 It is up to the architecture/target to interpret the bytes in the TAGS
1318 vector and store them appropriately.
1319
1320 Returns true if storing the tags succeeded and false otherwise. */
1321 virtual bool store_memtags (CORE_ADDR address, size_t len,
1322 const gdb::byte_vector &tags, int type)
1323 TARGET_DEFAULT_NORETURN (tcomplain ());
1324 };
1325
1326 /* Deleter for std::unique_ptr. See comments in
1327 target_ops::~target_ops and target_ops::close about heap-allocated
1328 targets. */
1329 struct target_ops_deleter
1330 {
1331 void operator() (target_ops *target)
1332 {
1333 target->close ();
1334 }
1335 };
1336
1337 /* A unique pointer for target_ops. */
1338 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1339
1340 /* A policy class to interface gdb::ref_ptr with target_ops. */
1341
1342 struct target_ops_ref_policy
1343 {
1344 static void incref (target_ops *t)
1345 {
1346 t->incref ();
1347 }
1348
1349 /* Decrement the reference count on T, and, if the reference count
1350 reaches zero, close the target. */
1351 static void decref (target_ops *t);
1352 };
1353
1354 /* A gdb::ref_ptr pointer to a target_ops. */
1355 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1356
1357 /* Native target backends call this once at initialization time to
1358 inform the core about which is the target that can respond to "run"
1359 or "attach". Note: native targets are always singletons. */
1360 extern void set_native_target (target_ops *target);
1361
1362 /* Get the registered native target, if there's one. Otherwise return
1363 NULL. */
1364 extern target_ops *get_native_target ();
1365
1366 /* Type that manages a target stack. See description of target stacks
1367 and strata at the top of the file. */
1368
1369 class target_stack
1370 {
1371 public:
1372 target_stack () = default;
1373 DISABLE_COPY_AND_ASSIGN (target_stack);
1374
1375 /* Push a new target into the stack of the existing target
1376 accessors, possibly superseding some existing accessor. */
1377 void push (target_ops *t);
1378
1379 /* Remove a target from the stack, wherever it may be. Return true
1380 if it was removed, false otherwise. */
1381 bool unpush (target_ops *t);
1382
1383 /* Returns true if T is pushed on the target stack. */
1384 bool is_pushed (const target_ops *t) const
1385 { return at (t->stratum ()) == t; }
1386
1387 /* Return the target at STRATUM. */
1388 target_ops *at (strata stratum) const { return m_stack[stratum].get (); }
1389
1390 /* Return the target at the top of the stack. */
1391 target_ops *top () const { return at (m_top); }
1392
1393 /* Find the next target down the stack from the specified target. */
1394 target_ops *find_beneath (const target_ops *t) const;
1395
1396 private:
1397 /* The stratum of the top target. */
1398 enum strata m_top {};
1399
1400 /* The stack, represented as an array, with one slot per stratum.
1401 If no target is pushed at some stratum, the corresponding slot is
1402 null. */
1403 std::array<target_ops_ref, (int) debug_stratum + 1> m_stack;
1404 };
1405
1406 /* Return the dummy target. */
1407 extern target_ops *get_dummy_target ();
1408
1409 /* Define easy words for doing these operations on our current target. */
1410
1411 extern const char *target_shortname ();
1412
1413 /* Does whatever cleanup is required for a target that we are no
1414 longer going to be calling. This routine is automatically always
1415 called after popping the target off the target stack - the target's
1416 own methods are no longer available through the target vector.
1417 Closing file descriptors and freeing all memory allocated memory are
1418 typical things it should do. */
1419
1420 void target_close (struct target_ops *targ);
1421
1422 /* Find the correct target to use for "attach". If a target on the
1423 current stack supports attaching, then it is returned. Otherwise,
1424 the default run target is returned. */
1425
1426 extern struct target_ops *find_attach_target (void);
1427
1428 /* Find the correct target to use for "run". If a target on the
1429 current stack supports creating a new inferior, then it is
1430 returned. Otherwise, the default run target is returned. */
1431
1432 extern struct target_ops *find_run_target (void);
1433
1434 /* Some targets don't generate traps when attaching to the inferior,
1435 or their target_attach implementation takes care of the waiting.
1436 These targets must set to_attach_no_wait. */
1437
1438 extern bool target_attach_no_wait ();
1439
1440 /* The target_attach operation places a process under debugger control,
1441 and stops the process.
1442
1443 This operation provides a target-specific hook that allows the
1444 necessary bookkeeping to be performed after an attach completes. */
1445
1446 extern void target_post_attach (int pid);
1447
1448 /* Display a message indicating we're about to attach to a given
1449 process. */
1450
1451 extern void target_announce_attach (int from_tty, int pid);
1452
1453 /* Display a message indicating we're about to detach from the current
1454 inferior process. */
1455
1456 extern void target_announce_detach (int from_tty);
1457
1458 /* Takes a program previously attached to and detaches it.
1459 The program may resume execution (some targets do, some don't) and will
1460 no longer stop on signals, etc. We better not have left any breakpoints
1461 in the program or it'll die when it hits one. FROM_TTY says whether to be
1462 verbose or not. */
1463
1464 extern void target_detach (inferior *inf, int from_tty);
1465
1466 /* Disconnect from the current target without resuming it (leaving it
1467 waiting for a debugger). */
1468
1469 extern void target_disconnect (const char *, int);
1470
1471 /* Resume execution (or prepare for execution) of the current thread
1472 (INFERIOR_PTID), while optionally letting other threads of the
1473 current process or all processes run free.
1474
1475 STEP says whether to hardware single-step the current thread or to
1476 let it run free; SIGNAL is the signal to be given to the current
1477 thread, or GDB_SIGNAL_0 for no signal. The caller may not pass
1478 GDB_SIGNAL_DEFAULT.
1479
1480 SCOPE_PTID indicates the resumption scope. I.e., which threads
1481 (other than the current) run free. If resuming a single thread,
1482 SCOPE_PTID is the same thread as the current thread. A wildcard
1483 SCOPE_PTID (all threads, or all threads of process) lets threads
1484 other than the current (for which the wildcard SCOPE_PTID matches)
1485 resume with their 'thread->suspend.stop_signal' signal (usually
1486 GDB_SIGNAL_0) if it is in "pass" state, or with no signal if in "no
1487 pass" state. Note neither STEP nor SIGNAL apply to any thread
1488 other than the current.
1489
1490 In order to efficiently handle batches of resumption requests,
1491 targets may implement this method such that it records the
1492 resumption request, but defers the actual resumption to the
1493 target_commit_resume method implementation. See
1494 target_commit_resume below. */
1495 extern void target_resume (ptid_t scope_ptid,
1496 int step, enum gdb_signal signal);
1497
1498 /* Ensure that all resumed threads are committed to the target.
1499
1500 See the description of process_stratum_target::commit_resumed_state
1501 for more details. */
1502 extern void target_commit_resumed ();
1503
1504 /* For target_read_memory see target/target.h. */
1505
1506 /* The default target_ops::to_wait implementation. */
1507
1508 extern ptid_t default_target_wait (struct target_ops *ops,
1509 ptid_t ptid,
1510 struct target_waitstatus *status,
1511 target_wait_flags options);
1512
1513 /* Return true if the target has pending events to report to the core.
1514 See target_ops::has_pending_events(). */
1515
1516 extern bool target_has_pending_events ();
1517
1518 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1519
1520 extern void target_fetch_registers (struct regcache *regcache, int regno);
1521
1522 /* Store at least register REGNO, or all regs if REGNO == -1.
1523 It can store as many registers as it wants to, so target_prepare_to_store
1524 must have been previously called. Calls error() if there are problems. */
1525
1526 extern void target_store_registers (struct regcache *regcache, int regs);
1527
1528 /* Get ready to modify the registers array. On machines which store
1529 individual registers, this doesn't need to do anything. On machines
1530 which store all the registers in one fell swoop, this makes sure
1531 that REGISTERS contains all the registers from the program being
1532 debugged. */
1533
1534 extern void target_prepare_to_store (regcache *regcache);
1535
1536 /* Determine current address space of thread PTID. */
1537
1538 struct address_space *target_thread_address_space (ptid_t);
1539
1540 /* Implement the "info proc" command. This returns one if the request
1541 was handled, and zero otherwise. It can also throw an exception if
1542 an error was encountered while attempting to handle the
1543 request. */
1544
1545 int target_info_proc (const char *, enum info_proc_what);
1546
1547 /* Returns true if this target can disable address space randomization. */
1548
1549 int target_supports_disable_randomization (void);
1550
1551 /* Returns true if this target can enable and disable tracepoints
1552 while a trace experiment is running. */
1553
1554 extern bool target_supports_enable_disable_tracepoint ();
1555
1556 extern bool target_supports_string_tracing ();
1557
1558 /* Returns true if this target can handle breakpoint conditions
1559 on its end. */
1560
1561 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1562
1563 /* Does this target support dumpcore API? */
1564
1565 extern bool target_supports_dumpcore ();
1566
1567 /* Generate the core file with target API. */
1568
1569 extern void target_dumpcore (const char *filename);
1570
1571 /* Returns true if this target can handle breakpoint commands
1572 on its end. */
1573
1574 extern bool target_can_run_breakpoint_commands ();
1575
1576 /* For target_read_memory see target/target.h. */
1577
1578 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1579 ssize_t len);
1580
1581 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1582
1583 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1584
1585 /* For target_write_memory see target/target.h. */
1586
1587 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1588 ssize_t len);
1589
1590 /* Fetches the target's memory map. If one is found it is sorted
1591 and returned, after some consistency checking. Otherwise, NULL
1592 is returned. */
1593 std::vector<mem_region> target_memory_map (void);
1594
1595 /* Erases all flash memory regions on the target. */
1596 void flash_erase_command (const char *cmd, int from_tty);
1597
1598 /* Erase the specified flash region. */
1599 void target_flash_erase (ULONGEST address, LONGEST length);
1600
1601 /* Finish a sequence of flash operations. */
1602 void target_flash_done (void);
1603
1604 /* Describes a request for a memory write operation. */
1605 struct memory_write_request
1606 {
1607 memory_write_request (ULONGEST begin_, ULONGEST end_,
1608 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1609 : begin (begin_), end (end_), data (data_), baton (baton_)
1610 {}
1611
1612 /* Begining address that must be written. */
1613 ULONGEST begin;
1614 /* Past-the-end address. */
1615 ULONGEST end;
1616 /* The data to write. */
1617 gdb_byte *data;
1618 /* A callback baton for progress reporting for this request. */
1619 void *baton;
1620 };
1621
1622 /* Enumeration specifying different flash preservation behaviour. */
1623 enum flash_preserve_mode
1624 {
1625 flash_preserve,
1626 flash_discard
1627 };
1628
1629 /* Write several memory blocks at once. This version can be more
1630 efficient than making several calls to target_write_memory, in
1631 particular because it can optimize accesses to flash memory.
1632
1633 Moreover, this is currently the only memory access function in gdb
1634 that supports writing to flash memory, and it should be used for
1635 all cases where access to flash memory is desirable.
1636
1637 REQUESTS is the vector of memory_write_request.
1638 PRESERVE_FLASH_P indicates what to do with blocks which must be
1639 erased, but not completely rewritten.
1640 PROGRESS_CB is a function that will be periodically called to provide
1641 feedback to user. It will be called with the baton corresponding
1642 to the request currently being written. It may also be called
1643 with a NULL baton, when preserved flash sectors are being rewritten.
1644
1645 The function returns 0 on success, and error otherwise. */
1646 int target_write_memory_blocks
1647 (const std::vector<memory_write_request> &requests,
1648 enum flash_preserve_mode preserve_flash_p,
1649 void (*progress_cb) (ULONGEST, void *));
1650
1651 /* Print a line about the current target. */
1652
1653 extern void target_files_info ();
1654
1655 /* Insert a breakpoint at address BP_TGT->placed_address in
1656 the target machine. Returns 0 for success, and returns non-zero or
1657 throws an error (with a detailed failure reason error code and
1658 message) otherwise. */
1659
1660 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1661 struct bp_target_info *bp_tgt);
1662
1663 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1664 machine. Result is 0 for success, non-zero for error. */
1665
1666 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1667 struct bp_target_info *bp_tgt,
1668 enum remove_bp_reason reason);
1669
1670 /* Return true if the target stack has a non-default
1671 "terminal_ours" method. */
1672
1673 extern bool target_supports_terminal_ours (void);
1674
1675 /* Kill the inferior process. Make it go away. */
1676
1677 extern void target_kill (void);
1678
1679 /* Load an executable file into the target process. This is expected
1680 to not only bring new code into the target process, but also to
1681 update GDB's symbol tables to match.
1682
1683 ARG contains command-line arguments, to be broken down with
1684 buildargv (). The first non-switch argument is the filename to
1685 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1686 0)), which is an offset to apply to the load addresses of FILE's
1687 sections. The target may define switches, or other non-switch
1688 arguments, as it pleases. */
1689
1690 extern void target_load (const char *arg, int from_tty);
1691
1692 /* On some targets, we can catch an inferior fork or vfork event when
1693 it occurs. These functions insert/remove an already-created
1694 catchpoint for such events. They return 0 for success, 1 if the
1695 catchpoint type is not supported and -1 for failure. */
1696
1697 extern int target_insert_fork_catchpoint (int pid);
1698
1699 extern int target_remove_fork_catchpoint (int pid);
1700
1701 extern int target_insert_vfork_catchpoint (int pid);
1702
1703 extern int target_remove_vfork_catchpoint (int pid);
1704
1705 /* Call the follow_fork method on the current target stack.
1706
1707 This function is called when the inferior forks or vforks, to perform any
1708 bookkeeping and fiddling necessary to continue debugging either the parent,
1709 the child or both. */
1710
1711 void target_follow_fork (inferior *inf, ptid_t child_ptid,
1712 target_waitkind fork_kind, bool follow_child,
1713 bool detach_fork);
1714
1715 /* Handle the target-specific bookkeeping required when the inferior makes an
1716 exec call.
1717
1718 The current inferior at the time of the call is the inferior that did the
1719 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1720 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1721 inferior, meaning that execution continues with the same inferior. If
1722 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1723 that execution continues in a new inferior.
1724
1725 On exit, the target must leave FOLLOW_INF as the current inferior. */
1726
1727 void target_follow_exec (inferior *follow_inf, ptid_t ptid,
1728 const char *execd_pathname);
1729
1730 /* On some targets, we can catch an inferior exec event when it
1731 occurs. These functions insert/remove an already-created
1732 catchpoint for such events. They return 0 for success, 1 if the
1733 catchpoint type is not supported and -1 for failure. */
1734
1735 extern int target_insert_exec_catchpoint (int pid);
1736
1737 extern int target_remove_exec_catchpoint (int pid);
1738
1739 /* Syscall catch.
1740
1741 NEEDED is true if any syscall catch (of any kind) is requested.
1742 If NEEDED is false, it means the target can disable the mechanism to
1743 catch system calls because there are no more catchpoints of this type.
1744
1745 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1746 being requested. In this case, SYSCALL_COUNTS should be ignored.
1747
1748 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1749 element in this array is nonzero if that syscall should be caught.
1750 This argument only matters if ANY_COUNT is zero.
1751
1752 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1753 for failure. */
1754
1755 extern int target_set_syscall_catchpoint
1756 (int pid, bool needed, int any_count,
1757 gdb::array_view<const int> syscall_counts);
1758
1759 /* The debugger has completed a blocking wait() call. There is now
1760 some process event that must be processed. This function should
1761 be defined by those targets that require the debugger to perform
1762 cleanup or internal state changes in response to the process event. */
1763
1764 /* For target_mourn_inferior see target/target.h. */
1765
1766 /* Does target have enough data to do a run or attach command? */
1767
1768 extern int target_can_run ();
1769
1770 /* Set list of signals to be handled in the target.
1771
1772 PASS_SIGNALS is an array indexed by target signal number
1773 (enum gdb_signal). For every signal whose entry in this array is
1774 non-zero, the target is allowed -but not required- to skip reporting
1775 arrival of the signal to the GDB core by returning from target_wait,
1776 and to pass the signal directly to the inferior instead.
1777
1778 However, if the target is hardware single-stepping a thread that is
1779 about to receive a signal, it needs to be reported in any case, even
1780 if mentioned in a previous target_pass_signals call. */
1781
1782 extern void target_pass_signals
1783 (gdb::array_view<const unsigned char> pass_signals);
1784
1785 /* Set list of signals the target may pass to the inferior. This
1786 directly maps to the "handle SIGNAL pass/nopass" setting.
1787
1788 PROGRAM_SIGNALS is an array indexed by target signal
1789 number (enum gdb_signal). For every signal whose entry in this
1790 array is non-zero, the target is allowed to pass the signal to the
1791 inferior. Signals not present in the array shall be silently
1792 discarded. This does not influence whether to pass signals to the
1793 inferior as a result of a target_resume call. This is useful in
1794 scenarios where the target needs to decide whether to pass or not a
1795 signal to the inferior without GDB core involvement, such as for
1796 example, when detaching (as threads may have been suspended with
1797 pending signals not reported to GDB). */
1798
1799 extern void target_program_signals
1800 (gdb::array_view<const unsigned char> program_signals);
1801
1802 /* Check to see if a thread is still alive. */
1803
1804 extern int target_thread_alive (ptid_t ptid);
1805
1806 /* Sync the target's threads with GDB's thread list. */
1807
1808 extern void target_update_thread_list (void);
1809
1810 /* Make target stop in a continuable fashion. (For instance, under
1811 Unix, this should act like SIGSTOP). Note that this function is
1812 asynchronous: it does not wait for the target to become stopped
1813 before returning. If this is the behavior you want please use
1814 target_stop_and_wait. */
1815
1816 extern void target_stop (ptid_t ptid);
1817
1818 /* Interrupt the target. Unlike target_stop, this does not specify
1819 which thread/process reports the stop. For most target this acts
1820 like raising a SIGINT, though that's not absolutely required. This
1821 function is asynchronous. */
1822
1823 extern void target_interrupt ();
1824
1825 /* Pass a ^C, as determined to have been pressed by checking the quit
1826 flag, to the target, as if the user had typed the ^C on the
1827 inferior's controlling terminal while the inferior was in the
1828 foreground. Remote targets may take the opportunity to detect the
1829 remote side is not responding and offer to disconnect. */
1830
1831 extern void target_pass_ctrlc (void);
1832
1833 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1834 target_interrupt. */
1835 extern void default_target_pass_ctrlc (struct target_ops *ops);
1836
1837 /* Send the specified COMMAND to the target's monitor
1838 (shell,interpreter) for execution. The result of the query is
1839 placed in OUTBUF. */
1840
1841 extern void target_rcmd (const char *command, struct ui_file *outbuf);
1842
1843 /* Does the target include memory? (Dummy targets don't.) */
1844
1845 extern int target_has_memory ();
1846
1847 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1848 we start a process.) */
1849
1850 extern int target_has_stack ();
1851
1852 /* Does the target have registers? (Exec files don't.) */
1853
1854 extern int target_has_registers ();
1855
1856 /* Does the target have execution? Can we make it jump (through
1857 hoops), or pop its stack a few times? This means that the current
1858 target is currently executing; for some targets, that's the same as
1859 whether or not the target is capable of execution, but there are
1860 also targets which can be current while not executing. In that
1861 case this will become true after to_create_inferior or
1862 to_attach. INF is the inferior to use; nullptr means to use the
1863 current inferior. */
1864
1865 extern bool target_has_execution (inferior *inf = nullptr);
1866
1867 /* Can the target support the debugger control of thread execution?
1868 Can it lock the thread scheduler? */
1869
1870 extern bool target_can_lock_scheduler ();
1871
1872 /* Controls whether async mode is permitted. */
1873 extern bool target_async_permitted;
1874
1875 /* Can the target support asynchronous execution? */
1876 extern bool target_can_async_p ();
1877
1878 /* An overload of the above that can be called when the target is not yet
1879 pushed, this calls TARGET::can_async_p directly. */
1880 extern bool target_can_async_p (struct target_ops *target);
1881
1882 /* Is the target in asynchronous execution mode? */
1883 extern bool target_is_async_p ();
1884
1885 /* Enables/disabled async target events. */
1886 extern void target_async (bool enable);
1887
1888 /* Enables/disables thread create and exit events. */
1889 extern void target_thread_events (int enable);
1890
1891 /* Whether support for controlling the target backends always in
1892 non-stop mode is enabled. */
1893 extern enum auto_boolean target_non_stop_enabled;
1894
1895 /* Is the target in non-stop mode? Some targets control the inferior
1896 in non-stop mode even with "set non-stop off". Always true if "set
1897 non-stop" is on. */
1898 extern bool target_is_non_stop_p ();
1899
1900 /* Return true if at least one inferior has a non-stop target. */
1901 extern bool exists_non_stop_target ();
1902
1903 extern exec_direction_kind target_execution_direction ();
1904
1905 /* Converts a process id to a string. Usually, the string just contains
1906 `process xyz', but on some systems it may contain
1907 `process xyz thread abc'. */
1908
1909 extern std::string target_pid_to_str (ptid_t ptid);
1910
1911 extern std::string normal_pid_to_str (ptid_t ptid);
1912
1913 /* Return a short string describing extra information about PID,
1914 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1915 is okay. */
1916
1917 extern const char *target_extra_thread_info (thread_info *tp);
1918
1919 /* Return the thread's name, or NULL if the target is unable to determine it.
1920 The returned value must not be freed by the caller.
1921
1922 You likely don't want to call this function, but use the thread_name
1923 function instead, which prefers the user-given thread name, if set. */
1924
1925 extern const char *target_thread_name (struct thread_info *);
1926
1927 /* Given a pointer to a thread library specific thread handle and
1928 its length, return a pointer to the corresponding thread_info struct. */
1929
1930 extern struct thread_info *target_thread_handle_to_thread_info
1931 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1932
1933 /* Given a thread, return the thread handle, a target-specific sequence of
1934 bytes which serves as a thread identifier within the program being
1935 debugged. */
1936 extern gdb::byte_vector target_thread_info_to_thread_handle
1937 (struct thread_info *);
1938
1939 /* Attempts to find the pathname of the executable file
1940 that was run to create a specified process.
1941
1942 The process PID must be stopped when this operation is used.
1943
1944 If the executable file cannot be determined, NULL is returned.
1945
1946 Else, a pointer to a character string containing the pathname
1947 is returned. This string should be copied into a buffer by
1948 the client if the string will not be immediately used, or if
1949 it must persist. */
1950
1951 extern const char *target_pid_to_exec_file (int pid);
1952
1953 /* See the to_thread_architecture description in struct target_ops. */
1954
1955 extern gdbarch *target_thread_architecture (ptid_t ptid);
1956
1957 /*
1958 * Iterator function for target memory regions.
1959 * Calls a callback function once for each memory region 'mapped'
1960 * in the child process. Defined as a simple macro rather than
1961 * as a function macro so that it can be tested for nullity.
1962 */
1963
1964 extern int target_find_memory_regions (find_memory_region_ftype func,
1965 void *data);
1966
1967 /*
1968 * Compose corefile .note section.
1969 */
1970
1971 extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
1972 int *size_p);
1973
1974 /* Bookmark interfaces. */
1975 extern gdb_byte *target_get_bookmark (const char *args, int from_tty);
1976
1977 extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);
1978
1979 /* Hardware watchpoint interfaces. */
1980
1981 /* GDB's current model is that there are three "kinds" of watchpoints,
1982 with respect to when they trigger and how you can move past them.
1983
1984 Those are: continuable, steppable, and non-steppable.
1985
1986 Continuable watchpoints are like x86's -- those trigger after the
1987 memory access's side effects are fully committed to memory. I.e.,
1988 they trap with the PC pointing at the next instruction already.
1989 Continuing past such a watchpoint is doable by just normally
1990 continuing, hence the name.
1991
1992 Both steppable and non-steppable watchpoints trap before the memory
1993 access. I.e, the PC points at the instruction that is accessing
1994 the memory. So GDB needs to single-step once past the current
1995 instruction in order to make the access effective and check whether
1996 the instruction's side effects change the watched expression.
1997
1998 Now, in order to step past that instruction, depending on
1999 architecture and target, you can have two situations:
2000
2001 - steppable watchpoints: you can single-step with the watchpoint
2002 still armed, and the watchpoint won't trigger again.
2003
2004 - non-steppable watchpoints: if you try to single-step with the
2005 watchpoint still armed, you'd trap the watchpoint again and the
2006 thread wouldn't make any progress. So GDB needs to temporarily
2007 remove the watchpoint in order to step past it.
2008
2009 If your target/architecture does not signal that it has either
2010 steppable or non-steppable watchpoints via either
2011 target_have_steppable_watchpoint or
2012 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2013 watchpoints. */
2014
2015 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2016 write). Only the INFERIOR_PTID task is being queried. */
2017
2018 extern bool target_stopped_by_watchpoint ();
2019
2020 /* Returns true if the target stopped because it executed a
2021 software breakpoint instruction. */
2022
2023 extern bool target_stopped_by_sw_breakpoint ();
2024
2025 extern bool target_supports_stopped_by_sw_breakpoint ();
2026
2027 extern bool target_stopped_by_hw_breakpoint ();
2028
2029 extern bool target_supports_stopped_by_hw_breakpoint ();
2030
2031 /* True if we have steppable watchpoints */
2032
2033 extern bool target_have_steppable_watchpoint ();
2034
2035 /* Provide defaults for hardware watchpoint functions. */
2036
2037 /* If the *_hw_breakpoint functions have not been defined
2038 elsewhere use the definitions in the target vector. */
2039
2040 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2041 Returns negative if the target doesn't have enough hardware debug
2042 registers available. Return zero if hardware watchpoint of type
2043 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2044 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2045 CNT is the number of such watchpoints used so far, including this
2046 one. OTHERTYPE is the number of watchpoints of other types than
2047 this one used so far. */
2048
2049 extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
2050 int othertype);
2051
2052 /* Returns the number of debug registers needed to watch the given
2053 memory region, or zero if not supported. */
2054
2055 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);
2056
2057 extern int target_can_do_single_step ();
2058
2059 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2060 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2061 COND is the expression for its condition, or NULL if there's none.
2062 Returns 0 for success, 1 if the watchpoint type is not supported,
2063 -1 for failure. */
2064
2065 extern int target_insert_watchpoint (CORE_ADDR addr, int len,
2066 target_hw_bp_type type, expression *cond);
2067
2068 extern int target_remove_watchpoint (CORE_ADDR addr, int len,
2069 target_hw_bp_type type, expression *cond);
2070
2071 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2072 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2073 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2074 masked watchpoints are not supported, -1 for failure. */
2075
2076 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2077 enum target_hw_bp_type);
2078
2079 /* Remove a masked watchpoint at ADDR with the mask MASK.
2080 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2081 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2082 for failure. */
2083
2084 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2085 enum target_hw_bp_type);
2086
2087 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2088 the target machine. Returns 0 for success, and returns non-zero or
2089 throws an error (with a detailed failure reason error code and
2090 message) otherwise. */
2091
2092 extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
2093 bp_target_info *bp_tgt);
2094
2095 extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
2096 bp_target_info *bp_tgt);
2097
2098 /* Return number of debug registers needed for a ranged breakpoint,
2099 or -1 if ranged breakpoints are not supported. */
2100
2101 extern int target_ranged_break_num_registers (void);
2102
2103 /* Return non-zero if target knows the data address which triggered this
2104 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2105 INFERIOR_PTID task is being queried. */
2106 #define target_stopped_data_address(target, addr_p) \
2107 (target)->stopped_data_address (addr_p)
2108
2109 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2110 LENGTH bytes beginning at START. */
2111 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2112 (target)->watchpoint_addr_within_range (addr, start, length)
2113
2114 /* Return non-zero if the target is capable of using hardware to evaluate
2115 the condition expression. In this case, if the condition is false when
2116 the watched memory location changes, execution may continue without the
2117 debugger being notified.
2118
2119 Due to limitations in the hardware implementation, it may be capable of
2120 avoiding triggering the watchpoint in some cases where the condition
2121 expression is false, but may report some false positives as well.
2122 For this reason, GDB will still evaluate the condition expression when
2123 the watchpoint triggers. */
2124
2125 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
2126 int type, expression *cond);
2127
2128 /* Return number of debug registers needed for a masked watchpoint,
2129 -1 if masked watchpoints are not supported or -2 if the given address
2130 and mask combination cannot be used. */
2131
2132 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2133
2134 /* Target can execute in reverse? */
2135
2136 extern bool target_can_execute_reverse ();
2137
2138 extern const struct target_desc *target_read_description (struct target_ops *);
2139
2140 extern ptid_t target_get_ada_task_ptid (long lwp, ULONGEST tid);
2141
2142 /* Main entry point for searching memory. */
2143 extern int target_search_memory (CORE_ADDR start_addr,
2144 ULONGEST search_space_len,
2145 const gdb_byte *pattern,
2146 ULONGEST pattern_len,
2147 CORE_ADDR *found_addrp);
2148
2149 /* Target file operations. */
2150
2151 /* Return true if the filesystem seen by the current inferior
2152 is the local filesystem, zero otherwise. */
2153
2154 extern bool target_filesystem_is_local ();
2155
2156 /* Open FILENAME on the target, in the filesystem as seen by INF,
2157 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2158 the debugger (GDB or, for remote targets, the remote stub). Return
2159 a target file descriptor, or -1 if an error occurs (and set
2160 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2161 if the file is being accessed over a link that may be slow. */
2162 extern int target_fileio_open (struct inferior *inf,
2163 const char *filename, int flags,
2164 int mode, bool warn_if_slow,
2165 fileio_error *target_errno);
2166
2167 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2168 Return the number of bytes written, or -1 if an error occurs
2169 (and set *TARGET_ERRNO). */
2170 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2171 ULONGEST offset, fileio_error *target_errno);
2172
2173 /* Read up to LEN bytes FD on the target into READ_BUF.
2174 Return the number of bytes read, or -1 if an error occurs
2175 (and set *TARGET_ERRNO). */
2176 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2177 ULONGEST offset, fileio_error *target_errno);
2178
2179 /* Get information about the file opened as FD on the target
2180 and put it in SB. Return 0 on success, or -1 if an error
2181 occurs (and set *TARGET_ERRNO). */
2182 extern int target_fileio_fstat (int fd, struct stat *sb,
2183 fileio_error *target_errno);
2184
2185 /* Close FD on the target. Return 0, or -1 if an error occurs
2186 (and set *TARGET_ERRNO). */
2187 extern int target_fileio_close (int fd, fileio_error *target_errno);
2188
2189 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2190 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2191 for remote targets, the remote stub). Return 0, or -1 if an error
2192 occurs (and set *TARGET_ERRNO). */
2193 extern int target_fileio_unlink (struct inferior *inf,
2194 const char *filename,
2195 fileio_error *target_errno);
2196
2197 /* Read value of symbolic link FILENAME on the target, in the
2198 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2199 by the debugger (GDB or, for remote targets, the remote stub).
2200 Return a null-terminated string allocated via xmalloc, or NULL if
2201 an error occurs (and set *TARGET_ERRNO). */
2202 extern gdb::optional<std::string> target_fileio_readlink
2203 (struct inferior *inf, const char *filename, fileio_error *target_errno);
2204
2205 /* Read target file FILENAME, in the filesystem as seen by INF. If
2206 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2207 remote targets, the remote stub). The return value will be -1 if
2208 the transfer fails or is not supported; 0 if the object is empty;
2209 or the length of the object otherwise. If a positive value is
2210 returned, a sufficiently large buffer will be allocated using
2211 xmalloc and returned in *BUF_P containing the contents of the
2212 object.
2213
2214 This method should be used for objects sufficiently small to store
2215 in a single xmalloc'd buffer, when no fixed bound on the object's
2216 size is known in advance. */
2217 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2218 const char *filename,
2219 gdb_byte **buf_p);
2220
2221 /* Read target file FILENAME, in the filesystem as seen by INF. If
2222 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2223 remote targets, the remote stub). The result is NUL-terminated and
2224 returned as a string, allocated using xmalloc. If an error occurs
2225 or the transfer is unsupported, NULL is returned. Empty objects
2226 are returned as allocated but empty strings. A warning is issued
2227 if the result contains any embedded NUL bytes. */
2228 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2229 (struct inferior *inf, const char *filename);
2230
2231 /* Invalidate the target associated with open handles that were open
2232 on target TARG, since we're about to close (and maybe destroy) the
2233 target. The handles remain open from the client's perspective, but
2234 trying to do anything with them other than closing them will fail
2235 with EIO. */
2236 extern void fileio_handles_invalidate_target (target_ops *targ);
2237
2238 /* Tracepoint-related operations. */
2239
2240 extern void target_trace_init ();
2241
2242 extern void target_download_tracepoint (bp_location *location);
2243
2244 extern bool target_can_download_tracepoint ();
2245
2246 extern void target_download_trace_state_variable (const trace_state_variable &tsv);
2247
2248 extern void target_enable_tracepoint (bp_location *loc);
2249
2250 extern void target_disable_tracepoint (bp_location *loc);
2251
2252 extern void target_trace_start ();
2253
2254 extern void target_trace_set_readonly_regions ();
2255
2256 extern int target_get_trace_status (trace_status *ts);
2257
2258 extern void target_get_tracepoint_status (breakpoint *tp, uploaded_tp *utp);
2259
2260 extern void target_trace_stop ();
2261
2262 extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
2263 CORE_ADDR addr2, int *tpp);
2264
2265 extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);
2266
2267 extern int target_save_trace_data (const char *filename);
2268
2269 extern int target_upload_tracepoints (uploaded_tp **utpp);
2270
2271 extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);
2272
2273 extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
2274 LONGEST len);
2275
2276 extern int target_get_min_fast_tracepoint_insn_len ();
2277
2278 extern void target_set_disconnected_tracing (int val);
2279
2280 extern void target_set_circular_trace_buffer (int val);
2281
2282 extern void target_set_trace_buffer_size (LONGEST val);
2283
2284 extern bool target_set_trace_notes (const char *user, const char *notes,
2285 const char *stopnotes);
2286
2287 extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);
2288
2289 extern void target_set_permissions ();
2290
2291 extern bool target_static_tracepoint_marker_at
2292 (CORE_ADDR addr, static_tracepoint_marker *marker);
2293
2294 extern std::vector<static_tracepoint_marker>
2295 target_static_tracepoint_markers_by_strid (const char *marker_id);
2296
2297 extern traceframe_info_up target_traceframe_info ();
2298
2299 extern bool target_use_agent (bool use);
2300
2301 extern bool target_can_use_agent ();
2302
2303 extern bool target_augmented_libraries_svr4_read ();
2304
2305 extern bool target_supports_memory_tagging ();
2306
2307 extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
2308 gdb::byte_vector &tags, int type);
2309
2310 extern bool target_store_memtags (CORE_ADDR address, size_t len,
2311 const gdb::byte_vector &tags, int type);
2312
2313 /* Command logging facility. */
2314
2315 extern void target_log_command (const char *p);
2316
2317 extern int target_core_of_thread (ptid_t ptid);
2318
2319 /* See to_get_unwinder in struct target_ops. */
2320 extern const struct frame_unwind *target_get_unwinder (void);
2321
2322 /* See to_get_tailcall_unwinder in struct target_ops. */
2323 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2324
2325 /* This implements basic memory verification, reading target memory
2326 and performing the comparison here (as opposed to accelerated
2327 verification making use of the qCRC packet, for example). */
2328
2329 extern int simple_verify_memory (struct target_ops* ops,
2330 const gdb_byte *data,
2331 CORE_ADDR memaddr, ULONGEST size);
2332
2333 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2334 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2335 if there's a mismatch, and -1 if an error is encountered while
2336 reading memory. Throws an error if the functionality is found not
2337 to be supported by the current target. */
2338 int target_verify_memory (const gdb_byte *data,
2339 CORE_ADDR memaddr, ULONGEST size);
2340
2341 /* Routines for maintenance of the target structures...
2342
2343 add_target: Add a target to the list of all possible targets.
2344 This only makes sense for targets that should be activated using
2345 the "target TARGET_NAME ..." command.
2346
2347 push_target: Make this target the top of the stack of currently used
2348 targets, within its particular stratum of the stack. Result
2349 is 0 if now atop the stack, nonzero if not on top (maybe
2350 should warn user).
2351
2352 unpush_target: Remove this from the stack of currently used targets,
2353 no matter where it is on the list. Returns 0 if no
2354 change, 1 if removed from stack. */
2355
2356 /* Type of callback called when the user activates a target with
2357 "target TARGET_NAME". The callback routine takes the rest of the
2358 parameters from the command, and (if successful) pushes a new
2359 target onto the stack. */
2360 typedef void target_open_ftype (const char *args, int from_tty);
2361
2362 /* Add the target described by INFO to the list of possible targets
2363 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2364 as the command's completer if not NULL. */
2365
2366 extern void add_target (const target_info &info,
2367 target_open_ftype *func,
2368 completer_ftype *completer = NULL);
2369
2370 /* Adds a command ALIAS for the target described by INFO and marks it
2371 deprecated. This is useful for maintaining backwards compatibility
2372 when renaming targets. */
2373
2374 extern void add_deprecated_target_alias (const target_info &info,
2375 const char *alias);
2376
2377 /* A unique_ptr helper to unpush a target. */
2378
2379 struct target_unpusher
2380 {
2381 void operator() (struct target_ops *ops) const;
2382 };
2383
2384 /* A unique_ptr that unpushes a target on destruction. */
2385
2386 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2387
2388 extern void target_pre_inferior (int);
2389
2390 extern void target_preopen (int);
2391
2392 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2393 CORE_ADDR offset);
2394
2395 /* Return the "section" containing the specified address. */
2396 const struct target_section *target_section_by_addr (struct target_ops *target,
2397 CORE_ADDR addr);
2398
2399 /* Return the target section table this target (or the targets
2400 beneath) currently manipulate. */
2401
2402 extern const target_section_table *target_get_section_table
2403 (struct target_ops *target);
2404
2405 /* Default implementation of get_section_table for dummy_target. */
2406
2407 extern const target_section_table *default_get_section_table ();
2408
2409 /* From mem-break.c */
2410
2411 extern int memory_remove_breakpoint (struct target_ops *,
2412 struct gdbarch *, struct bp_target_info *,
2413 enum remove_bp_reason);
2414
2415 extern int memory_insert_breakpoint (struct target_ops *,
2416 struct gdbarch *, struct bp_target_info *);
2417
2418 /* Convenience template use to add memory breakpoints support to a
2419 target. */
2420
2421 template <typename BaseTarget>
2422 struct memory_breakpoint_target : public BaseTarget
2423 {
2424 int insert_breakpoint (struct gdbarch *gdbarch,
2425 struct bp_target_info *bp_tgt) override
2426 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2427
2428 int remove_breakpoint (struct gdbarch *gdbarch,
2429 struct bp_target_info *bp_tgt,
2430 enum remove_bp_reason reason) override
2431 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2432 };
2433
2434 /* Check whether the memory at the breakpoint's placed address still
2435 contains the expected breakpoint instruction. */
2436
2437 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2438 struct bp_target_info *bp_tgt);
2439
2440 extern int default_memory_remove_breakpoint (struct gdbarch *,
2441 struct bp_target_info *);
2442
2443 extern int default_memory_insert_breakpoint (struct gdbarch *,
2444 struct bp_target_info *);
2445
2446
2447 /* From target.c */
2448
2449 extern void initialize_targets (void);
2450
2451 extern void noprocess (void) ATTRIBUTE_NORETURN;
2452
2453 extern void target_require_runnable (void);
2454
2455 /* Find the target at STRATUM. If no target is at that stratum,
2456 return NULL. */
2457
2458 struct target_ops *find_target_at (enum strata stratum);
2459
2460 /* Read OS data object of type TYPE from the target, and return it in XML
2461 format. The return value follows the same rules as target_read_stralloc. */
2462
2463 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2464
2465 /* Stuff that should be shared among the various remote targets. */
2466
2467
2468 /* Timeout limit for response from target. */
2469 extern int remote_timeout;
2470
2471 \f
2472
2473 /* Set the show memory breakpoints mode to show, and return a
2474 scoped_restore to restore it back to the current value. */
2475 extern scoped_restore_tmpl<int>
2476 make_scoped_restore_show_memory_breakpoints (int show);
2477
2478 extern bool may_write_registers;
2479 extern bool may_write_memory;
2480 extern bool may_insert_breakpoints;
2481 extern bool may_insert_tracepoints;
2482 extern bool may_insert_fast_tracepoints;
2483 extern bool may_stop;
2484
2485 extern void update_target_permissions (void);
2486
2487 \f
2488 /* Imported from machine dependent code. */
2489
2490 /* See to_enable_btrace in struct target_ops. */
2491 extern struct btrace_target_info *
2492 target_enable_btrace (thread_info *tp, const struct btrace_config *);
2493
2494 /* See to_disable_btrace in struct target_ops. */
2495 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2496
2497 /* See to_teardown_btrace in struct target_ops. */
2498 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2499
2500 /* See to_read_btrace in struct target_ops. */
2501 extern enum btrace_error target_read_btrace (struct btrace_data *,
2502 struct btrace_target_info *,
2503 enum btrace_read_type);
2504
2505 /* See to_btrace_conf in struct target_ops. */
2506 extern const struct btrace_config *
2507 target_btrace_conf (const struct btrace_target_info *);
2508
2509 /* See to_stop_recording in struct target_ops. */
2510 extern void target_stop_recording (void);
2511
2512 /* See to_save_record in struct target_ops. */
2513 extern void target_save_record (const char *filename);
2514
2515 /* Query if the target supports deleting the execution log. */
2516 extern int target_supports_delete_record (void);
2517
2518 /* See to_delete_record in struct target_ops. */
2519 extern void target_delete_record (void);
2520
2521 /* See to_record_method. */
2522 extern enum record_method target_record_method (ptid_t ptid);
2523
2524 /* See to_record_is_replaying in struct target_ops. */
2525 extern int target_record_is_replaying (ptid_t ptid);
2526
2527 /* See to_record_will_replay in struct target_ops. */
2528 extern int target_record_will_replay (ptid_t ptid, int dir);
2529
2530 /* See to_record_stop_replaying in struct target_ops. */
2531 extern void target_record_stop_replaying (void);
2532
2533 /* See to_goto_record_begin in struct target_ops. */
2534 extern void target_goto_record_begin (void);
2535
2536 /* See to_goto_record_end in struct target_ops. */
2537 extern void target_goto_record_end (void);
2538
2539 /* See to_goto_record in struct target_ops. */
2540 extern void target_goto_record (ULONGEST insn);
2541
2542 /* See to_insn_history. */
2543 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2544
2545 /* See to_insn_history_from. */
2546 extern void target_insn_history_from (ULONGEST from, int size,
2547 gdb_disassembly_flags flags);
2548
2549 /* See to_insn_history_range. */
2550 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2551 gdb_disassembly_flags flags);
2552
2553 /* See to_call_history. */
2554 extern void target_call_history (int size, record_print_flags flags);
2555
2556 /* See to_call_history_from. */
2557 extern void target_call_history_from (ULONGEST begin, int size,
2558 record_print_flags flags);
2559
2560 /* See to_call_history_range. */
2561 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2562 record_print_flags flags);
2563
2564 /* See to_prepare_to_generate_core. */
2565 extern void target_prepare_to_generate_core (void);
2566
2567 /* See to_done_generating_core. */
2568 extern void target_done_generating_core (void);
2569
2570 #endif /* !defined (TARGET_H) */