Wed Jan 13 14:59:02 1999 Michael Snyder <msnyder@cleaver.cygnus.com>
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #if !defined (TARGET_H)
22 #define TARGET_H
23
24 /* This include file defines the interface between the main part
25 of the debugger, and the part which is target-specific, or
26 specific to the communications interface between us and the
27 target.
28
29 A TARGET is an interface between the debugger and a particular
30 kind of file or process. Targets can be STACKED in STRATA,
31 so that more than one target can potentially respond to a request.
32 In particular, memory accesses will walk down the stack of targets
33 until they find a target that is interested in handling that particular
34 address. STRATA are artificial boundaries on the stack, within
35 which particular kinds of targets live. Strata exist so that
36 people don't get confused by pushing e.g. a process target and then
37 a file target, and wondering why they can't see the current values
38 of variables any more (the file target is handling them and they
39 never get to the process target). So when you push a file target,
40 it goes into the file stratum, which is always below the process
41 stratum. */
42
43 #include "bfd.h"
44 #include "symtab.h"
45
46 enum strata {
47 dummy_stratum, /* The lowest of the low */
48 file_stratum, /* Executable files, etc */
49 core_stratum, /* Core dump files */
50 download_stratum, /* Downloading of remote targets */
51 process_stratum /* Executing processes */
52 };
53
54 enum thread_control_capabilities {
55 tc_none = 0, /* Default: can't control thread execution. */
56 tc_schedlock = 1, /* Can lock the thread scheduler. */
57 tc_switch = 2, /* Can switch the running thread on demand. */
58 };
59
60 /* Stuff for target_wait. */
61
62 /* Generally, what has the program done? */
63 enum target_waitkind {
64 /* The program has exited. The exit status is in value.integer. */
65 TARGET_WAITKIND_EXITED,
66
67 /* The program has stopped with a signal. Which signal is in value.sig. */
68 TARGET_WAITKIND_STOPPED,
69
70 /* The program has terminated with a signal. Which signal is in
71 value.sig. */
72 TARGET_WAITKIND_SIGNALLED,
73
74 /* The program is letting us know that it dynamically loaded something
75 (e.g. it called load(2) on AIX). */
76 TARGET_WAITKIND_LOADED,
77
78 /* The program has forked. A "related" process' ID is in value.related_pid.
79 I.e., if the child forks, value.related_pid is the parent's ID.
80 */
81 TARGET_WAITKIND_FORKED,
82
83 /* The program has vforked. A "related" process's ID is in value.related_pid.
84 */
85 TARGET_WAITKIND_VFORKED,
86
87 /* The program has exec'ed a new executable file. The new file's pathname
88 is pointed to by value.execd_pathname.
89 */
90 TARGET_WAITKIND_EXECD,
91
92 /* The program has entered or returned from a system call. On HP-UX, this
93 is used in the hardware watchpoint implementation. The syscall's unique
94 integer ID number is in value.syscall_id;
95 */
96 TARGET_WAITKIND_SYSCALL_ENTRY,
97 TARGET_WAITKIND_SYSCALL_RETURN,
98
99 /* Nothing happened, but we stopped anyway. This perhaps should be handled
100 within target_wait, but I'm not sure target_wait should be resuming the
101 inferior. */
102 TARGET_WAITKIND_SPURIOUS
103 };
104
105 /* The numbering of these signals is chosen to match traditional unix
106 signals (insofar as various unices use the same numbers, anyway).
107 It is also the numbering of the GDB remote protocol. Other remote
108 protocols, if they use a different numbering, should make sure to
109 translate appropriately. */
110
111 /* This is based strongly on Unix/POSIX signals for several reasons:
112 (1) This set of signals represents a widely-accepted attempt to
113 represent events of this sort in a portable fashion, (2) we want a
114 signal to make it from wait to child_wait to the user intact, (3) many
115 remote protocols use a similar encoding. However, it is
116 recognized that this set of signals has limitations (such as not
117 distinguishing between various kinds of SIGSEGV, or not
118 distinguishing hitting a breakpoint from finishing a single step).
119 So in the future we may get around this either by adding additional
120 signals for breakpoint, single-step, etc., or by adding signal
121 codes; the latter seems more in the spirit of what BSD, System V,
122 etc. are doing to address these issues. */
123
124 /* For an explanation of what each signal means, see
125 target_signal_to_string. */
126
127 enum target_signal {
128 /* Used some places (e.g. stop_signal) to record the concept that
129 there is no signal. */
130 TARGET_SIGNAL_0 = 0,
131 TARGET_SIGNAL_FIRST = 0,
132 TARGET_SIGNAL_HUP = 1,
133 TARGET_SIGNAL_INT = 2,
134 TARGET_SIGNAL_QUIT = 3,
135 TARGET_SIGNAL_ILL = 4,
136 TARGET_SIGNAL_TRAP = 5,
137 TARGET_SIGNAL_ABRT = 6,
138 TARGET_SIGNAL_EMT = 7,
139 TARGET_SIGNAL_FPE = 8,
140 TARGET_SIGNAL_KILL = 9,
141 TARGET_SIGNAL_BUS = 10,
142 TARGET_SIGNAL_SEGV = 11,
143 TARGET_SIGNAL_SYS = 12,
144 TARGET_SIGNAL_PIPE = 13,
145 TARGET_SIGNAL_ALRM = 14,
146 TARGET_SIGNAL_TERM = 15,
147 TARGET_SIGNAL_URG = 16,
148 TARGET_SIGNAL_STOP = 17,
149 TARGET_SIGNAL_TSTP = 18,
150 TARGET_SIGNAL_CONT = 19,
151 TARGET_SIGNAL_CHLD = 20,
152 TARGET_SIGNAL_TTIN = 21,
153 TARGET_SIGNAL_TTOU = 22,
154 TARGET_SIGNAL_IO = 23,
155 TARGET_SIGNAL_XCPU = 24,
156 TARGET_SIGNAL_XFSZ = 25,
157 TARGET_SIGNAL_VTALRM = 26,
158 TARGET_SIGNAL_PROF = 27,
159 TARGET_SIGNAL_WINCH = 28,
160 TARGET_SIGNAL_LOST = 29,
161 TARGET_SIGNAL_USR1 = 30,
162 TARGET_SIGNAL_USR2 = 31,
163 TARGET_SIGNAL_PWR = 32,
164 /* Similar to SIGIO. Perhaps they should have the same number. */
165 TARGET_SIGNAL_POLL = 33,
166 TARGET_SIGNAL_WIND = 34,
167 TARGET_SIGNAL_PHONE = 35,
168 TARGET_SIGNAL_WAITING = 36,
169 TARGET_SIGNAL_LWP = 37,
170 TARGET_SIGNAL_DANGER = 38,
171 TARGET_SIGNAL_GRANT = 39,
172 TARGET_SIGNAL_RETRACT = 40,
173 TARGET_SIGNAL_MSG = 41,
174 TARGET_SIGNAL_SOUND = 42,
175 TARGET_SIGNAL_SAK = 43,
176 TARGET_SIGNAL_PRIO = 44,
177 TARGET_SIGNAL_REALTIME_33 = 45,
178 TARGET_SIGNAL_REALTIME_34 = 46,
179 TARGET_SIGNAL_REALTIME_35 = 47,
180 TARGET_SIGNAL_REALTIME_36 = 48,
181 TARGET_SIGNAL_REALTIME_37 = 49,
182 TARGET_SIGNAL_REALTIME_38 = 50,
183 TARGET_SIGNAL_REALTIME_39 = 51,
184 TARGET_SIGNAL_REALTIME_40 = 52,
185 TARGET_SIGNAL_REALTIME_41 = 53,
186 TARGET_SIGNAL_REALTIME_42 = 54,
187 TARGET_SIGNAL_REALTIME_43 = 55,
188 TARGET_SIGNAL_REALTIME_44 = 56,
189 TARGET_SIGNAL_REALTIME_45 = 57,
190 TARGET_SIGNAL_REALTIME_46 = 58,
191 TARGET_SIGNAL_REALTIME_47 = 59,
192 TARGET_SIGNAL_REALTIME_48 = 60,
193 TARGET_SIGNAL_REALTIME_49 = 61,
194 TARGET_SIGNAL_REALTIME_50 = 62,
195 TARGET_SIGNAL_REALTIME_51 = 63,
196 TARGET_SIGNAL_REALTIME_52 = 64,
197 TARGET_SIGNAL_REALTIME_53 = 65,
198 TARGET_SIGNAL_REALTIME_54 = 66,
199 TARGET_SIGNAL_REALTIME_55 = 67,
200 TARGET_SIGNAL_REALTIME_56 = 68,
201 TARGET_SIGNAL_REALTIME_57 = 69,
202 TARGET_SIGNAL_REALTIME_58 = 70,
203 TARGET_SIGNAL_REALTIME_59 = 71,
204 TARGET_SIGNAL_REALTIME_60 = 72,
205 TARGET_SIGNAL_REALTIME_61 = 73,
206 TARGET_SIGNAL_REALTIME_62 = 74,
207 TARGET_SIGNAL_REALTIME_63 = 75,
208 #if defined(MACH) || defined(__MACH__)
209 /* Mach exceptions */
210 TARGET_EXC_BAD_ACCESS = 76,
211 TARGET_EXC_BAD_INSTRUCTION = 77,
212 TARGET_EXC_ARITHMETIC = 78,
213 TARGET_EXC_EMULATION = 79,
214 TARGET_EXC_SOFTWARE = 80,
215 TARGET_EXC_BREAKPOINT = 81,
216 #endif
217 /* Some signal we don't know about. */
218 TARGET_SIGNAL_UNKNOWN,
219
220 /* Use whatever signal we use when one is not specifically specified
221 (for passing to proceed and so on). */
222 TARGET_SIGNAL_DEFAULT,
223
224 /* Last and unused enum value, for sizing arrays, etc. */
225 TARGET_SIGNAL_LAST
226 };
227
228 struct target_waitstatus {
229 enum target_waitkind kind;
230
231 /* Forked child pid, execd pathname, exit status or signal number. */
232 union {
233 int integer;
234 enum target_signal sig;
235 int related_pid;
236 char * execd_pathname;
237 int syscall_id;
238 } value;
239 };
240
241 /* Return the string for a signal. */
242 extern char *target_signal_to_string PARAMS ((enum target_signal));
243
244 /* Return the name (SIGHUP, etc.) for a signal. */
245 extern char *target_signal_to_name PARAMS ((enum target_signal));
246
247 /* Given a name (SIGHUP, etc.), return its signal. */
248 enum target_signal target_signal_from_name PARAMS ((char *));
249
250 \f
251 /* If certain kinds of activity happen, target_wait should perform
252 callbacks. */
253 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
254 on TARGET_ACTIVITY_FD. */
255 extern int target_activity_fd;
256 /* Returns zero to leave the inferior alone, one to interrupt it. */
257 extern int (*target_activity_function) PARAMS ((void));
258 \f
259 struct target_ops
260 {
261 char *to_shortname; /* Name this target type */
262 char *to_longname; /* Name for printing */
263 char *to_doc; /* Documentation. Does not include trailing
264 newline, and starts with a one-line descrip-
265 tion (probably similar to to_longname). */
266 void (*to_open) PARAMS ((char *, int));
267 void (*to_close) PARAMS ((int));
268 void (*to_attach) PARAMS ((char *, int));
269 void (*to_post_attach) PARAMS ((int));
270 void (*to_require_attach) PARAMS ((char *, int));
271 void (*to_detach) PARAMS ((char *, int));
272 void (*to_require_detach) PARAMS ((int, char *, int));
273 void (*to_resume) PARAMS ((int, int, enum target_signal));
274 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
275 void (*to_post_wait) PARAMS ((int, int));
276 void (*to_fetch_registers) PARAMS ((int));
277 void (*to_store_registers) PARAMS ((int));
278 void (*to_prepare_to_store) PARAMS ((void));
279
280 /* Transfer LEN bytes of memory between GDB address MYADDR and
281 target address MEMADDR. If WRITE, transfer them to the target, else
282 transfer them from the target. TARGET is the target from which we
283 get this function.
284
285 Return value, N, is one of the following:
286
287 0 means that we can't handle this. If errno has been set, it is the
288 error which prevented us from doing it (FIXME: What about bfd_error?).
289
290 positive (call it N) means that we have transferred N bytes
291 starting at MEMADDR. We might be able to handle more bytes
292 beyond this length, but no promises.
293
294 negative (call its absolute value N) means that we cannot
295 transfer right at MEMADDR, but we could transfer at least
296 something at MEMADDR + N. */
297
298 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
299 int len, int write,
300 struct target_ops * target));
301
302 #if 0
303 /* Enable this after 4.12. */
304
305 /* Search target memory. Start at STARTADDR and take LEN bytes of
306 target memory, and them with MASK, and compare to DATA. If they
307 match, set *ADDR_FOUND to the address we found it at, store the data
308 we found at LEN bytes starting at DATA_FOUND, and return. If
309 not, add INCREMENT to the search address and keep trying until
310 the search address is outside of the range [LORANGE,HIRANGE).
311
312 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
313 void (*to_search) PARAMS ((int len, char *data, char *mask,
314 CORE_ADDR startaddr, int increment,
315 CORE_ADDR lorange, CORE_ADDR hirange,
316 CORE_ADDR *addr_found, char *data_found));
317
318 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
319 (*current_target.to_search) (len, data, mask, startaddr, increment, \
320 lorange, hirange, addr_found, data_found)
321 #endif /* 0 */
322
323 void (*to_files_info) PARAMS ((struct target_ops *));
324 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
325 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
326 void (*to_terminal_init) PARAMS ((void));
327 void (*to_terminal_inferior) PARAMS ((void));
328 void (*to_terminal_ours_for_output) PARAMS ((void));
329 void (*to_terminal_ours) PARAMS ((void));
330 void (*to_terminal_info) PARAMS ((char *, int));
331 void (*to_kill) PARAMS ((void));
332 void (*to_load) PARAMS ((char *, int));
333 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
334 void (*to_create_inferior) PARAMS ((char *, char *, char **));
335 void (*to_post_startup_inferior) PARAMS ((int));
336 void (*to_acknowledge_created_inferior) PARAMS ((int));
337 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
338 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
339 int (*to_insert_fork_catchpoint) PARAMS ((int));
340 int (*to_remove_fork_catchpoint) PARAMS ((int));
341 int (*to_insert_vfork_catchpoint) PARAMS ((int));
342 int (*to_remove_vfork_catchpoint) PARAMS ((int));
343 int (*to_has_forked) PARAMS ((int, int *));
344 int (*to_has_vforked) PARAMS ((int, int *));
345 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
346 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
347 int (*to_insert_exec_catchpoint) PARAMS ((int));
348 int (*to_remove_exec_catchpoint) PARAMS ((int));
349 int (*to_has_execd) PARAMS ((int, char **));
350 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
351 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
352 int (*to_has_exited) PARAMS ((int, int, int *));
353 void (*to_mourn_inferior) PARAMS ((void));
354 int (*to_can_run) PARAMS ((void));
355 void (*to_notice_signals) PARAMS ((int pid));
356 int (*to_thread_alive) PARAMS ((int pid));
357 void (*to_stop) PARAMS ((void));
358 struct symtab_and_line * (*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
359 struct exception_event_record * (*to_get_current_exception_event) PARAMS ((void));
360 char * (*to_pid_to_exec_file) PARAMS ((int pid));
361 char * (*to_core_file_to_sym_file) PARAMS ((char *));
362 enum strata to_stratum;
363 struct target_ops
364 *DONT_USE; /* formerly to_next */
365 int to_has_all_memory;
366 int to_has_memory;
367 int to_has_stack;
368 int to_has_registers;
369 int to_has_execution;
370 int to_has_thread_control; /* control thread execution */
371 struct section_table
372 *to_sections;
373 struct section_table
374 *to_sections_end;
375 int to_magic;
376 /* Need sub-structure for target machine related rather than comm related? */
377 };
378
379 /* Magic number for checking ops size. If a struct doesn't end with this
380 number, somebody changed the declaration but didn't change all the
381 places that initialize one. */
382
383 #define OPS_MAGIC 3840
384
385 /* The ops structure for our "current" target process. This should
386 never be NULL. If there is no target, it points to the dummy_target. */
387
388 extern struct target_ops current_target;
389
390 /* An item on the target stack. */
391
392 struct target_stack_item
393 {
394 struct target_stack_item *next;
395 struct target_ops *target_ops;
396 };
397
398 /* The target stack. */
399
400 extern struct target_stack_item *target_stack;
401
402 /* Define easy words for doing these operations on our current target. */
403
404 #define target_shortname (current_target.to_shortname)
405 #define target_longname (current_target.to_longname)
406
407 /* The open routine takes the rest of the parameters from the command,
408 and (if successful) pushes a new target onto the stack.
409 Targets should supply this routine, if only to provide an error message. */
410 #define target_open(name, from_tty) \
411 (*current_target.to_open) (name, from_tty)
412
413 /* Does whatever cleanup is required for a target that we are no longer
414 going to be calling. Argument says whether we are quitting gdb and
415 should not get hung in case of errors, or whether we want a clean
416 termination even if it takes a while. This routine is automatically
417 always called just before a routine is popped off the target stack.
418 Closing file descriptors and freeing memory are typical things it should
419 do. */
420
421 #define target_close(quitting) \
422 (*current_target.to_close) (quitting)
423
424 /* Attaches to a process on the target side. Arguments are as passed
425 to the `attach' command by the user. This routine can be called
426 when the target is not on the target-stack, if the target_can_run
427 routine returns 1; in that case, it must push itself onto the stack.
428 Upon exit, the target should be ready for normal operations, and
429 should be ready to deliver the status of the process immediately
430 (without waiting) to an upcoming target_wait call. */
431
432 #define target_attach(args, from_tty) \
433 (*current_target.to_attach) (args, from_tty)
434
435 /* The target_attach operation places a process under debugger control,
436 and stops the process.
437
438 This operation provides a target-specific hook that allows the
439 necessary bookkeeping to be performed after an attach completes.
440 */
441 #define target_post_attach(pid) \
442 (*current_target.to_post_attach) (pid)
443
444 /* Attaches to a process on the target side, if not already attached.
445 (If already attached, takes no action.)
446
447 This operation can be used to follow the child process of a fork.
448 On some targets, such child processes of an original inferior process
449 are automatically under debugger control, and thus do not require an
450 actual attach operation. */
451
452 #define target_require_attach(args, from_tty) \
453 (*current_target.to_require_attach) (args, from_tty)
454
455 /* Takes a program previously attached to and detaches it.
456 The program may resume execution (some targets do, some don't) and will
457 no longer stop on signals, etc. We better not have left any breakpoints
458 in the program or it'll die when it hits one. ARGS is arguments
459 typed by the user (e.g. a signal to send the process). FROM_TTY
460 says whether to be verbose or not. */
461
462 extern void
463 target_detach PARAMS ((char *, int));
464
465 /* Detaches from a process on the target side, if not already dettached.
466 (If already detached, takes no action.)
467
468 This operation can be used to follow the parent process of a fork.
469 On some targets, such child processes of an original inferior process
470 are automatically under debugger control, and thus do require an actual
471 detach operation.
472
473 PID is the process id of the child to detach from.
474 ARGS is arguments typed by the user (e.g. a signal to send the process).
475 FROM_TTY says whether to be verbose or not. */
476
477 #define target_require_detach(pid, args, from_tty) \
478 (*current_target.to_require_detach) (pid, args, from_tty)
479
480 /* Resume execution of the target process PID. STEP says whether to
481 single-step or to run free; SIGGNAL is the signal to be given to
482 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
483 pass TARGET_SIGNAL_DEFAULT. */
484
485 #define target_resume(pid, step, siggnal) \
486 (*current_target.to_resume) (pid, step, siggnal)
487
488 /* Wait for process pid to do something. Pid = -1 to wait for any pid
489 to do something. Return pid of child, or -1 in case of error;
490 store status through argument pointer STATUS. Note that it is
491 *not* OK to return_to_top_level out of target_wait without popping
492 the debugging target from the stack; GDB isn't prepared to get back
493 to the prompt with a debugging target but without the frame cache,
494 stop_pc, etc., set up. */
495
496 #define target_wait(pid, status) \
497 (*current_target.to_wait) (pid, status)
498
499 /* The target_wait operation waits for a process event to occur, and
500 thereby stop the process.
501
502 On some targets, certain events may happen in sequences. gdb's
503 correct response to any single event of such a sequence may require
504 knowledge of what earlier events in the sequence have been seen.
505
506 This operation provides a target-specific hook that allows the
507 necessary bookkeeping to be performed to track such sequences.
508 */
509
510 #define target_post_wait(pid, status) \
511 (*current_target.to_post_wait) (pid, status)
512
513 /* Fetch register REGNO, or all regs if regno == -1. No result. */
514
515 #define target_fetch_registers(regno) \
516 (*current_target.to_fetch_registers) (regno)
517
518 /* Store at least register REGNO, or all regs if REGNO == -1.
519 It can store as many registers as it wants to, so target_prepare_to_store
520 must have been previously called. Calls error() if there are problems. */
521
522 #define target_store_registers(regs) \
523 (*current_target.to_store_registers) (regs)
524
525 /* Get ready to modify the registers array. On machines which store
526 individual registers, this doesn't need to do anything. On machines
527 which store all the registers in one fell swoop, this makes sure
528 that REGISTERS contains all the registers from the program being
529 debugged. */
530
531 #define target_prepare_to_store() \
532 (*current_target.to_prepare_to_store) ()
533
534 extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
535
536 extern int
537 target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
538
539 extern int
540 target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
541 asection *bfd_section));
542
543 extern int
544 target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
545
546 extern int
547 target_write_memory PARAMS ((CORE_ADDR, char *, int));
548
549 extern int
550 xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
551
552 extern int
553 child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
554
555 extern char *
556 child_pid_to_exec_file PARAMS ((int));
557
558 extern char *
559 child_core_file_to_sym_file PARAMS ((char *));
560
561 extern void
562 child_post_attach PARAMS ((int));
563
564 extern void
565 child_post_wait PARAMS ((int, int));
566
567 extern void
568 child_post_startup_inferior PARAMS ((int));
569
570 extern void
571 child_acknowledge_created_inferior PARAMS ((int));
572
573 extern void
574 child_clone_and_follow_inferior PARAMS ((int, int *));
575
576 extern void
577 child_post_follow_inferior_by_clone PARAMS ((void));
578
579 extern int
580 child_insert_fork_catchpoint PARAMS ((int));
581
582 extern int
583 child_remove_fork_catchpoint PARAMS ((int));
584
585 extern int
586 child_insert_vfork_catchpoint PARAMS ((int));
587
588 extern int
589 child_remove_vfork_catchpoint PARAMS ((int));
590
591 extern int
592 child_has_forked PARAMS ((int, int *));
593
594 extern int
595 child_has_vforked PARAMS ((int, int *));
596
597 extern void
598 child_acknowledge_created_inferior PARAMS ((int));
599
600 extern int
601 child_can_follow_vfork_prior_to_exec PARAMS ((void));
602
603 extern void
604 child_post_follow_vfork PARAMS ((int, int, int, int));
605
606 extern int
607 child_insert_exec_catchpoint PARAMS ((int));
608
609 extern int
610 child_remove_exec_catchpoint PARAMS ((int));
611
612 extern int
613 child_has_execd PARAMS ((int, char **));
614
615 extern int
616 child_reported_exec_events_per_exec_call PARAMS ((void));
617
618 extern int
619 child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
620
621 extern int
622 child_has_exited PARAMS ((int, int, int *));
623
624 extern int
625 child_thread_alive PARAMS ((int));
626
627 /* From exec.c */
628
629 extern void
630 print_section_info PARAMS ((struct target_ops *, bfd *));
631
632 /* Print a line about the current target. */
633
634 #define target_files_info() \
635 (*current_target.to_files_info) (&current_target)
636
637 /* Insert a breakpoint at address ADDR in the target machine.
638 SAVE is a pointer to memory allocated for saving the
639 target contents. It is guaranteed by the caller to be long enough
640 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
641 an errno value. */
642
643 #define target_insert_breakpoint(addr, save) \
644 (*current_target.to_insert_breakpoint) (addr, save)
645
646 /* Remove a breakpoint at address ADDR in the target machine.
647 SAVE is a pointer to the same save area
648 that was previously passed to target_insert_breakpoint.
649 Result is 0 for success, or an errno value. */
650
651 #define target_remove_breakpoint(addr, save) \
652 (*current_target.to_remove_breakpoint) (addr, save)
653
654 /* Initialize the terminal settings we record for the inferior,
655 before we actually run the inferior. */
656
657 #define target_terminal_init() \
658 (*current_target.to_terminal_init) ()
659
660 /* Put the inferior's terminal settings into effect.
661 This is preparation for starting or resuming the inferior. */
662
663 #define target_terminal_inferior() \
664 (*current_target.to_terminal_inferior) ()
665
666 /* Put some of our terminal settings into effect,
667 enough to get proper results from our output,
668 but do not change into or out of RAW mode
669 so that no input is discarded.
670
671 After doing this, either terminal_ours or terminal_inferior
672 should be called to get back to a normal state of affairs. */
673
674 #define target_terminal_ours_for_output() \
675 (*current_target.to_terminal_ours_for_output) ()
676
677 /* Put our terminal settings into effect.
678 First record the inferior's terminal settings
679 so they can be restored properly later. */
680
681 #define target_terminal_ours() \
682 (*current_target.to_terminal_ours) ()
683
684 /* Print useful information about our terminal status, if such a thing
685 exists. */
686
687 #define target_terminal_info(arg, from_tty) \
688 (*current_target.to_terminal_info) (arg, from_tty)
689
690 /* Kill the inferior process. Make it go away. */
691
692 #define target_kill() \
693 (*current_target.to_kill) ()
694
695 /* Load an executable file into the target process. This is expected to
696 not only bring new code into the target process, but also to update
697 GDB's symbol tables to match. */
698
699 #define target_load(arg, from_tty) \
700 (*current_target.to_load) (arg, from_tty)
701
702 /* Look up a symbol in the target's symbol table. NAME is the symbol
703 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
704 should be returned. The result is 0 if successful, nonzero if the
705 symbol does not exist in the target environment. This function should
706 not call error() if communication with the target is interrupted, since
707 it is called from symbol reading, but should return nonzero, possibly
708 doing a complain(). */
709
710 #define target_lookup_symbol(name, addrp) \
711 (*current_target.to_lookup_symbol) (name, addrp)
712
713 /* Start an inferior process and set inferior_pid to its pid.
714 EXEC_FILE is the file to run.
715 ALLARGS is a string containing the arguments to the program.
716 ENV is the environment vector to pass. Errors reported with error().
717 On VxWorks and various standalone systems, we ignore exec_file. */
718
719 #define target_create_inferior(exec_file, args, env) \
720 (*current_target.to_create_inferior) (exec_file, args, env)
721
722
723 /* Some targets (such as ttrace-based HPUX) don't allow us to request
724 notification of inferior events such as fork and vork immediately
725 after the inferior is created. (This because of how gdb gets an
726 inferior created via invoking a shell to do it. In such a scenario,
727 if the shell init file has commands in it, the shell will fork and
728 exec for each of those commands, and we will see each such fork
729 event. Very bad.)
730
731 Such targets will supply an appropriate definition for this function.
732 */
733 #define target_post_startup_inferior(pid) \
734 (*current_target.to_post_startup_inferior) (pid)
735
736 /* On some targets, the sequence of starting up an inferior requires
737 some synchronization between gdb and the new inferior process, PID.
738 */
739 #define target_acknowledge_created_inferior(pid) \
740 (*current_target.to_acknowledge_created_inferior) (pid)
741
742 /* An inferior process has been created via a fork() or similar
743 system call. This function will clone the debugger, then ensure
744 that CHILD_PID is attached to by that debugger.
745
746 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
747 and FALSE otherwise. (The original and clone debuggers can use this
748 to determine which they are, if need be.)
749
750 (This is not a terribly useful feature without a GUI to prevent
751 the two debuggers from competing for shell input.)
752 */
753 #define target_clone_and_follow_inferior(child_pid,followed_child) \
754 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
755
756 /* This operation is intended to be used as the last in a sequence of
757 steps taken when following both parent and child of a fork. This
758 is used by a clone of the debugger, which will follow the child.
759
760 The original debugger has detached from this process, and the
761 clone has attached to it.
762
763 On some targets, this requires a bit of cleanup to make it work
764 correctly.
765 */
766 #define target_post_follow_inferior_by_clone() \
767 (*current_target.to_post_follow_inferior_by_clone) ()
768
769 /* On some targets, we can catch an inferior fork or vfork event when it
770 occurs. These functions insert/remove an already-created catchpoint for
771 such events.
772 */
773 #define target_insert_fork_catchpoint(pid) \
774 (*current_target.to_insert_fork_catchpoint) (pid)
775
776 #define target_remove_fork_catchpoint(pid) \
777 (*current_target.to_remove_fork_catchpoint) (pid)
778
779 #define target_insert_vfork_catchpoint(pid) \
780 (*current_target.to_insert_vfork_catchpoint) (pid)
781
782 #define target_remove_vfork_catchpoint(pid) \
783 (*current_target.to_remove_vfork_catchpoint) (pid)
784
785 /* Returns TRUE if PID has invoked the fork() system call. And,
786 also sets CHILD_PID to the process id of the other ("child")
787 inferior process that was created by that call.
788 */
789 #define target_has_forked(pid,child_pid) \
790 (*current_target.to_has_forked) (pid,child_pid)
791
792 /* Returns TRUE if PID has invoked the vfork() system call. And,
793 also sets CHILD_PID to the process id of the other ("child")
794 inferior process that was created by that call.
795 */
796 #define target_has_vforked(pid,child_pid) \
797 (*current_target.to_has_vforked) (pid,child_pid)
798
799 /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
800 anything to a vforked child before it subsequently calls exec().
801 On such platforms, we say that the debugger cannot "follow" the
802 child until it has vforked.
803
804 This function should be defined to return 1 by those targets
805 which can allow the debugger to immediately follow a vforked
806 child, and 0 if they cannot.
807 */
808 #define target_can_follow_vfork_prior_to_exec() \
809 (*current_target.to_can_follow_vfork_prior_to_exec) ()
810
811 /* An inferior process has been created via a vfork() system call.
812 The debugger has followed the parent, the child, or both. The
813 process of setting up for that follow may have required some
814 target-specific trickery to track the sequence of reported events.
815 If so, this function should be defined by those targets that
816 require the debugger to perform cleanup or initialization after
817 the vfork follow.
818 */
819 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
820 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
821
822 /* On some targets, we can catch an inferior exec event when it
823 occurs. These functions insert/remove an already-created catchpoint
824 for such events.
825 */
826 #define target_insert_exec_catchpoint(pid) \
827 (*current_target.to_insert_exec_catchpoint) (pid)
828
829 #define target_remove_exec_catchpoint(pid) \
830 (*current_target.to_remove_exec_catchpoint) (pid)
831
832 /* Returns TRUE if PID has invoked a flavor of the exec() system call.
833 And, also sets EXECD_PATHNAME to the pathname of the executable file
834 that was passed to exec(), and is now being executed.
835 */
836 #define target_has_execd(pid,execd_pathname) \
837 (*current_target.to_has_execd) (pid,execd_pathname)
838
839 /* Returns the number of exec events that are reported when a process
840 invokes a flavor of the exec() system call on this target, if exec
841 events are being reported.
842 */
843 #define target_reported_exec_events_per_exec_call() \
844 (*current_target.to_reported_exec_events_per_exec_call) ()
845
846 /* Returns TRUE if PID has reported a syscall event. And, also sets
847 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
848 the unique integer ID of the syscall.
849 */
850 #define target_has_syscall_event(pid,kind,syscall_id) \
851 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
852
853 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
854 exit code of PID, if any.
855 */
856 #define target_has_exited(pid,wait_status,exit_status) \
857 (*current_target.to_has_exited) (pid,wait_status,exit_status)
858
859 /* The debugger has completed a blocking wait() call. There is now
860 some process event that must be processed. This function should
861 be defined by those targets that require the debugger to perform
862 cleanup or internal state changes in response to the process event.
863 */
864
865 /* The inferior process has died. Do what is right. */
866
867 #define target_mourn_inferior() \
868 (*current_target.to_mourn_inferior) ()
869
870 /* Does target have enough data to do a run or attach command? */
871
872 #define target_can_run(t) \
873 ((t)->to_can_run) ()
874
875 /* post process changes to signal handling in the inferior. */
876
877 #define target_notice_signals(pid) \
878 (*current_target.to_notice_signals) (pid)
879
880 /* Check to see if a thread is still alive. */
881
882 #define target_thread_alive(pid) \
883 (*current_target.to_thread_alive) (pid)
884
885 /* Make target stop in a continuable fashion. (For instance, under Unix, this
886 should act like SIGSTOP). This function is normally used by GUIs to
887 implement a stop button. */
888
889 #define target_stop current_target.to_stop
890
891 /* Get the symbol information for a breakpointable routine called when
892 an exception event occurs.
893 Intended mainly for C++, and for those
894 platforms/implementations where such a callback mechanism is available,
895 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
896 different mechanisms for debugging exceptions. */
897
898 #define target_enable_exception_callback(kind, enable) \
899 (*current_target.to_enable_exception_callback) (kind, enable)
900
901 /* Get the current exception event kind -- throw or catch, etc. */
902
903 #define target_get_current_exception_event() \
904 (*current_target.to_get_current_exception_event) ()
905
906 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
907
908 #define target_next \
909 (current_target.to_next)
910
911 /* Does the target include all of memory, or only part of it? This
912 determines whether we look up the target chain for other parts of
913 memory if this target can't satisfy a request. */
914
915 #define target_has_all_memory \
916 (current_target.to_has_all_memory)
917
918 /* Does the target include memory? (Dummy targets don't.) */
919
920 #define target_has_memory \
921 (current_target.to_has_memory)
922
923 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
924 we start a process.) */
925
926 #define target_has_stack \
927 (current_target.to_has_stack)
928
929 /* Does the target have registers? (Exec files don't.) */
930
931 #define target_has_registers \
932 (current_target.to_has_registers)
933
934 /* Does the target have execution? Can we make it jump (through
935 hoops), or pop its stack a few times? FIXME: If this is to work that
936 way, it needs to check whether an inferior actually exists.
937 remote-udi.c and probably other targets can be the current target
938 when the inferior doesn't actually exist at the moment. Right now
939 this just tells us whether this target is *capable* of execution. */
940
941 #define target_has_execution \
942 (current_target.to_has_execution)
943
944 /* Can the target support the debugger control of thread execution?
945 a) Can it lock the thread scheduler?
946 b) Can it switch the currently running thread? */
947
948 #define target_can_lock_scheduler \
949 (current_target.to_has_thread_control & tc_schedlock)
950
951 #define target_can_switch_threads \
952 (current_target.to_has_thread_control & tc_switch)
953
954 extern void target_link PARAMS ((char *, CORE_ADDR *));
955
956 /* Converts a process id to a string. Usually, the string just contains
957 `process xyz', but on some systems it may contain
958 `process xyz thread abc'. */
959
960 #ifndef target_pid_to_str
961 #define target_pid_to_str(PID) \
962 normal_pid_to_str (PID)
963 extern char *normal_pid_to_str PARAMS ((int pid));
964 #endif
965
966 #ifndef target_tid_to_str
967 #define target_tid_to_str(PID) \
968 normal_pid_to_str (PID)
969 extern char *normal_pid_to_str PARAMS ((int pid));
970 #endif
971
972
973 #ifndef target_new_objfile
974 #define target_new_objfile(OBJFILE)
975 #endif
976
977 #ifndef target_pid_or_tid_to_str
978 #define target_pid_or_tid_to_str(ID) \
979 normal_pid_to_str (ID)
980 #endif
981
982 /* Attempts to find the pathname of the executable file
983 that was run to create a specified process.
984
985 The process PID must be stopped when this operation is used.
986
987 If the executable file cannot be determined, NULL is returned.
988
989 Else, a pointer to a character string containing the pathname
990 is returned. This string should be copied into a buffer by
991 the client if the string will not be immediately used, or if
992 it must persist.
993 */
994
995 #define target_pid_to_exec_file(pid) \
996 (current_target.to_pid_to_exec_file) (pid)
997
998 /* Hook to call target-dependant code after reading in a new symbol table. */
999
1000 #ifndef TARGET_SYMFILE_POSTREAD
1001 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
1002 #endif
1003
1004 /* Hook to call target dependant code just after inferior target process has
1005 started. */
1006
1007 #ifndef TARGET_CREATE_INFERIOR_HOOK
1008 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1009 #endif
1010
1011 /* Hardware watchpoint interfaces. */
1012
1013 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1014 write). */
1015
1016 #ifndef STOPPED_BY_WATCHPOINT
1017 #define STOPPED_BY_WATCHPOINT(w) 0
1018 #endif
1019
1020 /* HP-UX supplies these operations, which respectively disable and enable
1021 the memory page-protections that are used to implement hardware watchpoints
1022 on that platform. See wait_for_inferior's use of these.
1023 */
1024 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1025 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1026 #endif
1027
1028 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1029 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1030 #endif
1031
1032 /* Provide defaults for systems that don't support hardware watchpoints. */
1033
1034 #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1035
1036 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1037 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1038 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1039 (including this one?). OTHERTYPE is who knows what... */
1040
1041 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1042
1043 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1044 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1045 (LONGEST)(byte_count) <= REGISTER_SIZE
1046 #endif
1047
1048 /* However, some addresses may not be profitable to use hardware to watch,
1049 or may be difficult to understand when the addressed object is out of
1050 scope, and hence should be unwatched. On some targets, this may have
1051 severe performance penalties, such that we might as well use regular
1052 watchpoints, and save (possibly precious) hardware watchpoints for other
1053 locations.
1054 */
1055 #if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1056 #define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1057 #endif
1058
1059
1060 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1061 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1062 success, non-zero for failure. */
1063
1064 #define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1065 #define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1066
1067 #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1068
1069 #ifndef target_insert_hw_breakpoint
1070 #define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1071 #define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1072 #endif
1073
1074 #ifndef target_stopped_data_address
1075 #define target_stopped_data_address() 0
1076 #endif
1077
1078 /* If defined, then we need to decr pc by this much after a hardware break-
1079 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1080
1081 #ifndef DECR_PC_AFTER_HW_BREAK
1082 #define DECR_PC_AFTER_HW_BREAK 0
1083 #endif
1084
1085 /* Sometimes gdb may pick up what appears to be a valid target address
1086 from a minimal symbol, but the value really means, essentially,
1087 "This is an index into a table which is populated when the inferior
1088 is run. Therefore, do not attempt to use this as a PC."
1089 */
1090 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1091 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1092 #endif
1093
1094 /* This will only be defined by a target that supports catching vfork events,
1095 such as HP-UX.
1096
1097 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1098 child process after it has exec'd, causes the parent process to resume as
1099 well. To prevent the parent from running spontaneously, such targets should
1100 define this to a function that prevents that from happening.
1101 */
1102 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1103 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1104 #endif
1105
1106 /* This will only be defined by a target that supports catching vfork events,
1107 such as HP-UX.
1108
1109 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1110 process must be resumed when it delivers its exec event, before the parent
1111 vfork event will be delivered to us.
1112 */
1113 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1114 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1115 #endif
1116
1117 /* Routines for maintenance of the target structures...
1118
1119 add_target: Add a target to the list of all possible targets.
1120
1121 push_target: Make this target the top of the stack of currently used
1122 targets, within its particular stratum of the stack. Result
1123 is 0 if now atop the stack, nonzero if not on top (maybe
1124 should warn user).
1125
1126 unpush_target: Remove this from the stack of currently used targets,
1127 no matter where it is on the list. Returns 0 if no
1128 change, 1 if removed from stack.
1129
1130 pop_target: Remove the top thing on the stack of current targets. */
1131
1132 extern void
1133 add_target PARAMS ((struct target_ops *));
1134
1135 extern int
1136 push_target PARAMS ((struct target_ops *));
1137
1138 extern int
1139 unpush_target PARAMS ((struct target_ops *));
1140
1141 extern void
1142 target_preopen PARAMS ((int));
1143
1144 extern void
1145 pop_target PARAMS ((void));
1146
1147 /* Struct section_table maps address ranges to file sections. It is
1148 mostly used with BFD files, but can be used without (e.g. for handling
1149 raw disks, or files not in formats handled by BFD). */
1150
1151 struct section_table {
1152 CORE_ADDR addr; /* Lowest address in section */
1153 CORE_ADDR endaddr; /* 1+highest address in section */
1154
1155 sec_ptr the_bfd_section;
1156
1157 bfd *bfd; /* BFD file pointer */
1158 };
1159
1160 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1161 Returns 0 if OK, 1 on error. */
1162
1163 extern int
1164 build_section_table PARAMS ((bfd *, struct section_table **,
1165 struct section_table **));
1166
1167 /* From mem-break.c */
1168
1169 extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1170
1171 extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1172
1173 extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1174 #ifndef BREAKPOINT_FROM_PC
1175 #define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1176 #endif
1177
1178
1179 /* From target.c */
1180
1181 extern void
1182 initialize_targets PARAMS ((void));
1183
1184 extern void
1185 noprocess PARAMS ((void));
1186
1187 extern void
1188 find_default_attach PARAMS ((char *, int));
1189
1190 void
1191 find_default_require_attach PARAMS ((char *, int));
1192
1193 void
1194 find_default_require_detach PARAMS ((int, char *, int));
1195
1196 extern void
1197 find_default_create_inferior PARAMS ((char *, char *, char **));
1198
1199 void
1200 find_default_clone_and_follow_inferior PARAMS ((int, int *));
1201
1202 extern struct target_ops *
1203 find_core_target PARAMS ((void));
1204 \f
1205 /* Stuff that should be shared among the various remote targets. */
1206
1207 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1208 information (higher values, more information). */
1209 extern int remote_debug;
1210
1211 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1212 extern int baud_rate;
1213 /* Timeout limit for response from target. */
1214 extern int remote_timeout;
1215
1216 extern asection *target_memory_bfd_section;
1217 \f
1218 /* Functions for helping to write a native target. */
1219
1220 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1221 extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1222
1223 /* Convert between host signal numbers and enum target_signal's. */
1224 extern enum target_signal target_signal_from_host PARAMS ((int));
1225 extern int target_signal_to_host PARAMS ((enum target_signal));
1226
1227 /* Convert from a number used in a GDB command to an enum target_signal. */
1228 extern enum target_signal target_signal_from_command PARAMS ((int));
1229
1230 /* Any target can call this to switch to remote protocol (in remote.c). */
1231 extern void push_remote_target PARAMS ((char *name, int from_tty));
1232 \f
1233 /* Imported from machine dependent code */
1234
1235 #ifndef SOFTWARE_SINGLE_STEP_P
1236 #define SOFTWARE_SINGLE_STEP_P 0
1237 #define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1238 #endif /* SOFTWARE_SINGLE_STEP_P */
1239
1240 /* Blank target vector entries are initialized to target_ignore. */
1241 void target_ignore PARAMS ((void));
1242
1243 /* Macro for getting target's idea of a frame pointer.
1244 FIXME: GDB's whole scheme for dealing with "frames" and
1245 "frame pointers" needs a serious shakedown. */
1246 #ifndef TARGET_VIRTUAL_FRAME_POINTER
1247 #define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1248 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1249 #endif /* TARGET_VIRTUAL_FRAME_POINTER */
1250
1251 #endif /* !defined (TARGET_H) */